ON THE RUBIN-STARK CONJECTURE FOR
A SPECIAL CLASS OF CM EXTENSIONS
OF TOTALLY REAL NUMBER FIELDS

CRISTIAN D. Poprscu!

Abstract. We use Greither’s recent results on Brumer’s Conjecture to prove Ru-
bin’s integral version of Stark’s Conjecture, up to a power of 2, for an infinite class
of CM extensions of totally real number fields, called “nice extensions”. As a con-
sequence, we show that the Brumer—Stark Conjecture is true for “nice extensions”,
up to a power of 2.

INTRODUCTION

In [12], Rubin formulates an integral version of Stark’s general conjecture (see the
Main Conjecture in [15]), in the case of abelian L—functions of arbitrary order of
vanishing at s = 0. The Brumer-Stark Conjecture can be viewed as a particular
case of Rubin’s statement, restricted to L—functions of order of vanishing 1 at
s = 0. Brumer’s Conjecture is a less precise (and therefore weaker) version of the
Brumer-Stark Conjecture. It roughly states that, for an abelian extension K/k of
number fields, of Galois group G, the associated Stickelberger ideal is contained
in the Z[G]-annihilator of the ideal-class group Ax of K. Brumer’s Conjecture is
an attempt to extend the classical theorem of Stickelberger, dealing with abelian
extensions of Q, to abelian extensions of general base fields.

Although its function field analogue has been settled for quite some time (see [15,
Chapitre V] and [6]), Brumer’s Conjecture is far from being proved in the number
field case. In [5], Greither uses techniques introduced by Wiles in [16] to settle a
strong form of Brumer’s Conjecture, up to a power of 2, for a special class of CM
extensions of totally real fields, which he calls “nice extensions”.

In this paper, we use Greither’s results to prove Rubin’s Conjecture, up to a
power of 2, for "nice extensions”. By restricting this result to L—functions of order
of vanishing 1 at s = 0, we prove that the Brumer—Stark Conjecture is true, up to
a power of 2, for “nice extensions”.

Further results of Greither [4] have recently helped us settle the 2—part of and
therefore give a proof for the full conjecture of Rubin for the particular case of
“nice extensions” K/Q, where K is an imaginary abelian field of odd prime power
conductor. These results will be treated in detail in [11].

The paper is organized as follows. In §1, we introduce the notations and give
several general definitions. In §2, we state Rubin’s Conjecture and study some of
its functoriality properties. In §3, we state the conjectures of Brumer and Brumer—
Stark and provide links between these statements and Rubin’s Conjecture. In §4,
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we prove Rubin’s Conjecture, up to a power of 2, for general ”nice extensions” (see
Theorem 4.2.3). As a consequence, we prove the Brumer-Stark Conjecture, up to
a power of 2, for general "nice extensions” (see Corollary 4.2.4).

Acknowledgement. We would like to thank Cornelius Greither for kindly sharing
with us his results on “nice extensions” prior to publication, as well as promptly
answering all our questions regarding Fitting ideals.

1. PRELIMINARY CONSIDERATIONS AND NOTATIONS

Throughout this paper, K/k will denote a a finite, abelian extension of number
fields, of Galois group G = G(K/k). We will denote by g the group of roots of
unity in K. wg and A(K/k) are the order and respectively the Z [G]-annihilator
of pg. Ax denotes the ideal—class group of K.

For a prime w of K, we write K,, for the completion of K at w, and | - | :
K,, — R U {0} for the w—absolute value, normalized so that

+z (the usual absolute value), if K, = R
|z = { zZ, it K, =C

(Nw) ~ordw (), if K, is nonarchimedian.

Here Nw denotes the cardinality of the residue field K(w) at w. For a prime v in
k, which does not ramify in K/k, o, denotes its Frobenius automorphism in G.

Let G be the set of complex valued, irreducible characters of G. For every x € @,
let ey = 1/|G| Y. ,cc x(0) -0~ be the corresponding idempotent in the group-ring
C|[G]. If M is a Z [G]-module and R is a commutative ring, then RM := R®z M,
M* := Homgq (M, Z [G]). For every x € G, (CM)* will denote the x—component
of the C[G]-module CM.

Now, let us assume that S is a finite set of primes in k, containing at least all the
primes which ramify in K/k and all the infinite primes. Let Sk be the set of primes
in K, sitting above primes in S. Then Og will denote the ring of Sk integers in
K, Ug is the group of Skx—units in K (i.e Us := OF), and Ag is the ideal-class
group of Og. If T' is an auxiliary, nonempty, finite set of primes in k, disjoint from
S, we will denote by Ug, the subgroup of finite index in Ug, consisting of elements
congruent to 1 modulo every prime in Tx. Ag 1 denotes the quotient of the group
of fractional Og—ideals of K by the subgroup of principal Og—ideals which have a
generator congruent to 1 modulo every prime in Tx. We have the following exact
sequence of Z [G]-modules (see §1.1 in [12]).

(1) 0—>U57T—>U5i> @K(w)ngsyTLASHO

weTk

Here, j(z) := (zmod w; w € Tx), for all z € Ug, and &((zy ;w € Tk)) is the ideal—
class of fOg in Ag 7, for some f € K* satisfying the equality j(f) = (zy;w € Tx)
in @, K (w)*. Finally, 7(a) is the class of the Og—fractional ideal a in Ag, for all
ae AS,T-

For every x € (A}’, let Ly s(s,x) be the Artin L—function associated to x, with
Euler factors at primes in S removed. If x # 1q, Lg/i,s(s, x) is holomorphic at
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every s € C, while for x = 1¢g, Lk/k,s(s, x) is holomorphic everywhere except for
s =1, where it has a pole of order 1. For Re(s) > 1, one has a product expansion
Lgjk,s(s,x) = [ (1 -No=*- x(0,))" 1, which is uniformly convergent on compact
vgS
sets. For a set T" as above, if one multiplies Lg /x s(s,x) by the complex-analytic
function d7(s, x) := [[ (1-Nv'=*.-x(0,)), one obtains the so called (S, T')-modified
veT
L-function associated to x, given by Lg ks 7(s,X) := 07(s,X) - Lx/k,s(5, x)- Since
67(s,x) is holomorphic everywhere and 07(1,1g) = 0, Lg/k s7(s, Xx) is holomor-
phic everywhere, for all x € G. It is also very important to notice that, for any
given x, since 07 (0,x) # 0, the orders of vanishing at s = 0 of Ly 5(s,x) and
Lk k,s,7(s,x) are the same.
For fixed K/k, S and T as above, and for every y € G, let ry_g be the (common)
order of vanishing of Lg /i s(s,x) and Lk ks (s, x) at s = 0. As Tate shows in
Chapitre 0 of [15],

card{v € S|xlg, = 1¢,}, if x # 1¢
card(S) — 1, it x = 1¢

(2) ry,s = dimg (CUs)X = { ,
where G, is the decomposition group of v relative to K/k.
Let o7(s) := > 07(s.x)ey-1, for all s € C. The S-Stickelberger and respec-

xeG
tively (S, T)—Stickelberger functions are defined by

@K/k,S(S) = Z LK/k,S(S; X) - Ex—1
XE@

Ox/k,5,7(8) = 61(5) - O /1,5(5) = Z Lrc/k,s,7(8,X) - ex—1 -
xE@
We think of © gy, s (respectively © g /i, s 7) as a complex meromorphic (respectively
holomorphic) function, holomorphic at s = 0 and taking values in C[G]|. The

value O /i, 5(0) satisfies the following most remarkable integrality property, proved
independently by Deligne-Ribet [3] and Barsky—Cassou-Nogues [1].

Theorem 1.1. If o € A(K/k), then o - Ok, 5(0) € Z[G].

The next corollary explains why one prefers working with the (.S, T')-modified
instead of the S—modified L—functions and it also provides a motivation for the
hypotheses in Rubin’s Conjecture (see §2 below).

Corollary 1.2. If S and T are two sets of primes as above, and Usr Nur = {1},
then GS,T(O) S/ [G]

Proof. Clearly, 67(0) -« € Ugr, for all z € Ug and, in particular, for all z € uxk.
Under the assumption Usr N pux = {1}, this implies that é7(0) € A(K/k). The
desired result now follows from Theorem 1.1. O

2. RUBIN’S CONJECTURE
Let K/k, S and T be as in §1, and let » > 0 be an integer. Let us assume that the
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set of data (K /k, S, T, r) satisfies the following extended set of hypotheses:

S contains all the infinite primes of k.
S contains all the primes which ramify in K/k.
(H) S contains at least r primes which split completely in K/k.
|S| > r+1.
T#0, SNT=10, UsyTﬂ,uK:{l}.

Under hypotheses (H), (2) above implies that, for any y € G, we have Ty,8 > T,

and therefore @ggk ST

subring of C and M an R [G]-module without R-torsion, let

(0) := lim0 57 "Ok/k,s,7(s) makes sense in C[G]. If Ris a

MT,S:{:cE]W|6X-a::0111C®RM,VxéCA}'8uchthatrX75>r}.

If r > 1, let us choose an r-tuple V' = (vy,...,v,) of r distinct primes in S which
split completely in K/k, and fix W = (wy,...,w,), where w; is a prime in K lying
above v;, for any 1 < i < r. For every Z [G]-module M, let AL, M denote its r—th
exterior power over Z [G]. One can define a regulator map

C AL Usr ™ C[q]

by letting Ry (us A~ Auy) = 1<(%ejt<r (— > log |Uj|w7?' . a), for uq,...,ur € Ugr,
=)= oeG

and then extending to C Ay Ug, 7 by C-linearity.
If 7 = 0, one defines Ry to be the identity endomorphism of CA% Ug 1 = C[G].

Remark 1. As pointed out in Remark 2, §1.6 of [9], Ry is a C[G]-morphism,
which induces an isomorphism

RW|(C/\EU51T)T L (CAGUsr), s — ClGl, -

For every (r — 1)—tuple (¢1,...,¢r-1) € {Uj—;’T}T’l, one can view each ¢; as an
element of Homgg)(CUs,r, C[G]) = CU; 7, and define a C [G]-morphism

LA AGr 1
_—

CAgUsr CUs,,
such that, for every uq,...,u, € CUgr, one has
LA Adra(ur A Aup) = Y (1) et (i (uy)) - uy -
1<k<r 1<j<r
i#k

In order to simplify notations, in the equality above, and often throughout this
paper, we write the internal operation on CUg,r additively rather than multiplica-
tively.

Definition 2.1. Assuming that (K/k, S, T, r) satisfies hypotheses (H), let Ag r
be the Z [G]-submodule of Q A, Us.r, defined by
A {e € (Q NG US!T)T,S |®(e) € Us,p, VO € (U;T)r_l}, ifr>1,
T Z[Glys. ifr=0.

In [12], Rubin states the following conjecture, extended to the case of global
fields of arbitrary characteristic in [7].
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Conjecture B(K/k, S, T, r) (Rubin). Let us assume that the data (K/k,S,T,r)
satisfies hypotheses (H). Then, for any choice of V. and W, there exists a unique

€s,T,w € AS,T; such that Rw(&‘g’ﬂw) = @gg}k,&T(O).

Remark 2. Let us note that, under the hypotheses above, there always exists a
unique element e, 7w in (C Ag Us,7),. o, satisfying the above regulator condition

(see Remark 1 above, and notice that G(ngysyT(O) € C[G], ). In particular, the

uniqueness in conjecture B is automatic.

Remark 3. It is not difficult to show that, given (K/k, S, T, r), if conjecture
B(K/k, S, T, r) is true for a choice of V' and W then it is true for any other choice.
In fact, one can show that if one has “too much freedom” in choosing V' (in the
sense that S contains at least r + 1 primes which split completely in K/k), then
B(K/k, S, T, r) is trivially true in virtue of the S—class number formula. (See [12],
§3.1 for a proof of conjecture B in this case.) Also, once V is chosen, the element
es,r,w depends in a very simple way of the choice of W. For these reasons, we will
suppress V and W from our future notations and denote €5 7w simply €g 7.

Remark 4. For r = 0, Definition 2.1 gives Agr =Z [G]O,S' Therefore, Corollary
1.2 shows that B(K/k, S, T,0) is true.

For » = 1, Definition 2.1 gives Asr = (Usr)1,s. As Proposition 3.4 below
shows, under certain hypotheses, Conjecture B(K/k, S, T, 1), for a fixed K/k, and
varying S and T, is equivalent to the Brumer—Stark Conjecture.

In what follows, if R is a subring of Q, we denote by RB(K/k, S, T, r) the state-
ment obtained if one replaces As by RAs 1 := R®z Agr in Rubin’s Conjecture,
for the set of data (K/k, S, T, r). In this paper, R will typically be either Z,) (the
localization of Z at a prime p), Z[1/2], Z[1/|G]], or Q.

Remark 5. The uniqueness property emphasized in Remark 2 above shows that,
for a given set of data (K/k, S, T, r), satisfying hypotheses (H), one has the fol-
lowing equivalences.

B(K/k, S, T, r) <= ZB(K/k, S, T, r), for all primes p.
Z[1/2]B(K/k, S, T, r) <= Z»B (K/k, S, T, r), for all primes p # 2.
Z[1/|G|B(K/k, S, T, r) <= ZB (K/k, S, T, r), for all primes p 1 |G|.

Definition 2.2. Let S C S’ be two finite set of primes in k, containing all the
infinite primes as well as the primes which ramify in K/k. Let T be a finite,
nonempty set of primes in k, such that S'NT = (). Then, Ag/ g denotes the
subgroup of Ast generated by the set of ideal-classes associated to primes in K
sitting above primes in S’.

One obviously has an exact sequence of Z [G]-modules
(3) 0— Agiysr — Asg — Asir — 0.

Throughout this paper, if R denotes a Noetherian ring and M a finitely generated
R-module, then Fittp(M) denotes the first Fitting ideal of M. For definition and
properties of Fitting ideals needed for our purposes, the reader can consult [7], §1.4.
The next proposition shows how Rubin’s Conjectures depends on S, T', and 7.
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Proposition 2.3. Let p be a prime number, and assume that the set of data
(K/k, S, T, r) satisfies hypotheses (H). Then, the following hold true.
(i) If S € 8" and (K/k,S',T,r) satisfies hypotheses (H), then

Z(p)B(K/k‘, S, T, 7“) - Z(p)B(K/k,SI,T, 7“) .

(i) Let S’ := SU{vr41,... 0}, with vyy1,..., v distinct primes in k, which
do not belong to S and split completely in K/k. If TNS" =0, then

Z(p)B(K/k,S/,T, ’I"/) ES Z(p)B (K/k, S, T, T) .

(iii) Under the assumptions and notations of (ii), let esr be the unique element
esr € (CAL Us,r), g satisfying Ry (es,r) = @g)T(O) Then

€S, T € Fittz(p)[c] (AS’/S’,T & Z(p)) - Z(p)AS,T - Z(p)B(K/k, Sl, T, ’l“/) .

(iv) Let So be a finite set of primes in k, containing all the infinite primes
as well as those which ramify in K/k. Let S’ = So U {v{,...,v.}, S” = Sy U
{v{,..., v}, with vi,... v, (respectively vY,... vl ) distinct, completely split

in K/k, and not in So. Assume that (K/k,S’,T,r") and (K/k,S",T,r")satisfy
hypotheses (H). Then, if Ag:;s,. 1@ ZLpy = Agr 5,7 @ L), one has an equivalence

Z(p)B(K/k‘, Sl, T, 7"/) <~ Z(p)B(K/k, S”, T, 1"//) .
(v) Let T' be a finite set of primes in k, such that T CT' and SNT' = (. Then

Z@)B(K/k, S, T, ?") —— Z(p)B(K/k,S, T’,T) .

Proof. For the proofs of (i), (ii), (iii) see §5.1 in [12]. Please note that Rubin denotes
Agr s by As,s:. For the proof of (v), see [9], Proposition 5.3.1 .

We will now prove (iv). Let ¥ := 5" U S” and o := card(X \ Sp). Then, the
set of data (K/k,3,T,0) satisfies hypotheses (H). The equality Ag /g, 7 ® Z(,) =
Agnyse,r @ Zipy, combined with exact sequence (3) above, shows that As/srr ®
Z(p) = AE/S”,T &® Z(p) = 0. This implies that

Fittz(p)[g] (AE/S’,T ® Z(p)) = Fittz(p>[g] (AE/S”,T ® Z(p)) = Z(p) [G] .
These equalities, combined with (ii) and (iii), shows that
Z,B(K/k, S'\T,r") < Z,)B(K/k,X,T,0) <= Z(p)B(K/k,S”,T, ),

which concludes the proof of (iv). O

Corollary 2.4. Let Sy be a finite set of primes in k, containing all the infinite
primes as well as those which ramify in K/k. Let S = Sp U {v1,...,v.}, with
v1,...,0. distinct, not in Sp, and completely split in K/k. Let T be a finite set of
primes in k, such that (K/k, S, T, r) satisfies hypotheses (H). Then

Os,,7(0) € Fittz, (61 (Aso. T ® L)) - Zip) (Gl g, = ZipB (E/k, S, T, 7).
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Proof. Tchebotarev’s density theorem allows us to pick v,11, ..., v,s, mutually dis-
tinct primes in k, which are completely split in K/k, do not belong to S, and, if
8" = SU{vry1,..., 00}, then Agr 7 ® Z(,) = 0. The exact sequence (3) implies
that

As /501 © Zp) = Aso. 1 ® L) -

Assume now that Og, r(0) € Fittz , c(As, 7®Z))Z ) [G]o,so‘ This implies that

Z»)B(K/k, S0, T,0) is true and that the unique element eg, 7 € (C AL USOaT)o,SU’

satisfying Rw (cs,,17) = @g:iT(O), belongs in fact to Fittz , (Asr/sor @ L) -
As,,r- Now, we use Proposition 2.3 (iii) to conclude that Z ) B(K/k, S, T,r’) is
true. Proposition 2.3 (ii) implies that Z,)B (K/k, S, T, r) is true. O

3. THE CONJECTURES OF BRUMER AND BRUMER-STARK.
LINKS TO RUBIN’S CONJECTURE

Although the conjectures we are about to state can be formulated for global fields
of arbitrary characteristic, we will restrict ourselves to the number field case. A
more detailed discussion of these conjectures can be found in [15] and [14]. As in
the previous sections, K/k is an abelian extension of number fields, of Galois group
G. Let Sy be a finite set of primes in K/k, containing the infinite primes, as well
as those which ramify in K/k.

Conjecture Br(K/k,Sy) (Brumer). Under the above assumptions, one has an
inclusion of Z |G]—ideals

A(K/k) - ©5,(0) € Anngg)(Ak) -

As the reader will realize right away, this conjecture aims at generalizing the
classical theorem of Stickelberger (which is precisely the statement above, for
K/k = Q(¢,)/Q) to general abelian extensions of number fields. The left—hand
side of the inclusion above is the Sy—Stickelberger ideal associated to K/k.

Remark 1. For every subring R of Q, we denote by RBr(K/k, Sp) the statement
(R Xz A(K/k‘)) . @SO<0) - AIIIIR[G] (AK KRz R) .
Obviously, one has the following equivalences

Br(K/k, So) <= Z,Br(K/k, So), for all primes p.
Z[1/2|Br(K/k, So) <= Z,Br(K/k, Sp), for all odd primes p.

In what follows, if S is a finite set of primes in k, containing Sy, we denote by u the
image of u € Ug via the canonical (non—injective) group morphism Us — QUs.
Also, if M is a subgroup of Ug, we denote by M the image of M via this morphism.
Obviously, one has a canonical group isomorphism M- M /M N pg.

Definition 3.1. For any S as above, let
Ula(b/kys = {u € Ug| K (u*%)/k is abelian } .

Obviously, U?(b/k,s is a Z [G]-submodule of Ug. For every prime v in k, v &€ S, let
8y = (1 —Nv-o0,1) € Z[G]. For any finite set T of primes in k, TN S = 0, let
Ot := [[,er 6. Obviously, 7 = 67(0), where d7(s) is the complex-holomorphic
function defined in §1. A proof of the following lemma can be found in [15], Chap.
1V, §1.
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Lemma 3.2. Fiz a set S as above. Then A(K/k) is generated as a Z[G]-module
by its subset {00 |T € Ts}, where Tg = {T|T finite set of primes in 'k, TN S =
0, UsrNpr ={1}}.

—~—

Lemma 3.3. Let S be as above, and let uw € Ug. Then, u € Uf‘(b/k s if and only if

one of the following equivalent conditions is satisfied
1. There exists {uq | € A(K/k)} CUg, such that

u® = u¥x, for all o € A(K/k)
u@:ug, for all o, € A(K/k).

II. For all T € Tg, there are elements ur € Ug,r, such that

or _ , WK
u —UT .

II1. There exists a finite subset T of Tg, such that {67 |T € T} generates
A(K/k) over Z[G] and there are elements ur € Ugr, such that

u’T = for dl T €T.

Proof. For a proof, see [15], Chapitre IV. O
We are now ready to state an equivalent form of the Conjecture of Brumer—Stark.

Conjecture BrSt(K/k,Sp) (Brumer—Stark). Assume that K/k and Sy are as
above. Let w be a prime in K, not in (So), sitting above a prime v in K, which
splits completely in K/k. Let S, := So U {v}. Then, there exists a unique U, €

{Uik s, Yo,50, such that

wi-©5,(0))

’U)( :uw'OK;

as fractional Ox —ideals.

Remark 2. For a prime number p, we denote by Z,BrSt(K/k, Sp) the statement
in Conjecture BrSt(K/k, Sy), restricted to primes w, whose ideal—class @ has order
a power of p in Ag. Obviously, one has an equivalence

BrSt(K/k, So) <= Z,)BrSt(K/k, Sp), for all primes p.

In light of this, it is sensible to denote by Z[1/2]|BrSt(K/k, Sop) the statement in
Conjecture BrSt(K/k, Sy), restricted to primes w, whose ideal-class @ has odd
order in Ag. The analogue of the second equivalence in Remark 1 above obviously
holds true in this case as well.

The following results provide the link between Rubin’s Conjecture and the Con-
jecture of Brumer-Stark (see [12], §2.2 as well).

Proposition 3.4. Let K/k and Sp be as above. Then, the following are equivalent.

(1) Conjecture B(K/k,S, = So U {v},T,1) holds true, for all primes v in k
which do not belong to Sy and split completely in K/k, and all sets T € Tg, .
(2) Conjgecture BrSt(K/k, So) holds true.
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Proof. First, let us assume that (1) holds true. Let w and v be as in the statement of
BrSt(K/k, Sp). Lemma 3.2 allows us to write wx = Y ;.7 ar-dr, where ar € Z [G]
and the sum is taken with respect to a finite subset 7 of Tg, , such that {61 |T € T}
generates A(K/k) over Z [G]. Equality (2) implies right away that My s, = M1 s,,
for all Z [G]-modules M. Since B(K/k, Sy, T,1) is true, we can find unique elements
€S,,T € (USE,T)O,SO; such that

Rwy(es, r) = O, 7(0) = —logNw - ©5, 7(0), forall T € T .

The definition of Ry, shows that the equalities above are equivalent to the follow-
ing equalities of fractional Ox—ideals.

(4) W Os0rO) — g 1 Ok, forall T e T.

Now, let us consider the element u € {Ug, }o,s,, defined by

Uy 1= sgiT .
TeT

Equalities (4) clearly imply the following equality of fractional Ox—ideals.
(5) w50 () = 4 O .

We also claim that u,, € (U?{':}k S ) o Indeed, we have
Mo 07 0

R{w} (ufuT/Eg‘)fT> = — logNw . (6TwK . @SO(O) — wKéT . @So (0)) =0.

However, uff/sg’fT € (Us,, 1)y 5, (see the prof of Corollary 1.2). On the other

hand, as Remark 1 in§2 shows, Ry, is injective on (Us, 1) which is isomorphic

to (USU,T)[]’ s, Therefore, the equalities above imply

0,50’

ult = esip, forallTeT.

Now, Lemma 3.3(III), implies that u,, € (U?(b/k’sv)o,s(]' This fact, combined with
(5) above, shows that BrSt(K/k, Sp) holds true.

Now, let us assume that BrSt(K/k, Sp) holds true. Let v, w and T be as in
Proposition 3.4 (1). Let 1, be the unique element in {Ug’/k\_;v }o,s0, such that

(6) w(wk-eso(ﬂ)) = uy - Ok,

Then, Lemma 3.2 (IIT) implies that there exists a unique element eg, 1 in Ag, r =
(Us,,1)g.s,+ Such that e’y = u®7 . Equality (6) above implies that

R{w}(ESv,T) = 5T . (— logNw . 650 (0) = — IOgNU) . @SD,T(O) = iS‘g,T(O) .

This shows that B(K/k, S, = So U {v},T,1) holds true. O
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Proposition 3.5. Let K/k and Sp be as above, and let p be a prime number. Then,
the following are equivalent.
(1) Conjecture Z,B(K/k, S, = SoU{v}, T, 1) holds true, for all primes v in k
which do not belong to Sy and split completely in K/k, and all sets T € Tg, .
(2) Conjecture Z,)BrSt(K/k, So) holds true.

Proof. Similar to the proof of Proposition 3.4. Left to the reader. O

Remark 3. (see [15], Chapitre IV, as well) Let us notice that BrSt(K/k, So) is
a strengthening of Br(K/k, Sp). Indeed, let us assume that BrSt(K/k, Sp) is true.
Let to be an element in Ax. Tchebotarev’s density theorem allows us to take a
prime w in K, sitting above v in k, such that v splits completely in K/k, v is not
in Sg, and @ = w in Ag. Let T € Tg,. Proposition 3.4 shows that B(K/k, S,,T,1)
holds true. As the arguments in the second part of Proposition 3.4 show, this
implies that there exists s, 7 € (Us, 1), g, such that

w(mOs0®) = cg Ok =0,

as ideal-classes in Ag. This shows that o7 - ©g,(0) is in Anngg)(Ax), for all
T € Tg,. Lemma 3.2 now implies that, indeed, Br(K/k, Sp) is true.

4. CONJECTURE Z[1/2]B(K/k, S,T,r) FOR “NICE” EXTENSIONS

The goal of this section is to prove Rubin’s Conjecture, up to a power of 2 (i.e.
statement Z[1/2|B(K/k, S,T,r)), for a special class of abelian extensions introduced
by Greither in [5] and called “nice” extensions.

4.1. “Nice” extensions. Greither’s Theorem. In what follows, we restrict
ourselves to abelian extensions K /k of Galois group G, where k is a totally real and
K is a CM number field. As usual, K denotes the maximal totally real subfield
of K. Obviously, k C K. Since K is CM, Gal(K/K™) is of order two, generated
by the (unique) automorphism j of K induced by the complex conjugation on C.
A character x € G is called odd (respectively even) if x(j) = —1 (respectively
x(j) = +1.) We will denote by K¢ the Galois closure of K over Q. It is easy to
check that K is also a CM-field. The following definitions are due to Greither.

Definition 4.1.1. Let p be a finite prime in k of residual characteristic p. Then,
p is called critical for K/k, if one of the following conditions is satisfied.

(1) p is ramified in K/k.
(2) Kl - (KCI)+(Cp)-

Definition 4.1.2. Under the above notations and assumptions, the extension K/k
is called “nice”, if the following conditions are simultaneously satisfied.
(1) For all critical primes p in k, the decomposition group Gy of p in K/k
contains j.
(2) For all odd primes p, one has ged(|ux ® Zy|, [K @ k(ux ® Zy)]) = 1,
where px ® Zy) is (canonically) identified with the group of p—power roots
of unity in K.

We remind the reader that a Z [G]-module M is called G—cohomologically trivial
if ﬁZ(H, M) = 0, for all subgroups H of G and all i € Z. (Here, ﬁZ(H, ) denote the
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Tate—cohomology functors associated to H.) In [9], §5.4, we introduce the class of
admissible Galois extensions of global fields K/k, characterized by the fact that
ux is Gal(K/k)—cohomologically trivial. Also, following [9], for a rational prime p,
we call K/k p—admissible if ux ® Z, is Gal(K/k)-cohomologically trivial. Since
pr = Op(pr ® L)), K/k is admissible if and only if it is p-admissible for all p.
In [9, Lemma 5.4.4] we provide the following criterion for p—admissibility.

Lemma 4.1.3. Let K/k be a Galois extension of number fields, of Galois group
G, and let p be a prime number.

(1) Ifp is odd, then K/k is p—admissible if and only if
ged(lur ® Zp) |, [K : k(px ® Z))]) = 1.

(2) K/k is 2—admissible if and only if
. if i @ Zay # i @ Loy, then
21K« k(px ® Z2)] and {k NQ(ux ® Zy)) is not a (totally) real field |

An immediate consequence of this Lemma is the following.

Corollary 4.1.4. An abelian extension of number fields K/k, of Galois group G,
with K CM and k totally real, is nice if and only if the following conditions are
simultaneously satisfied.
(1) For all critical primes p in k, the decomposition group Gy of p in K/k
contains j.
(2) For all odd rational primes p, px ® Zy,) is G-cohomologically trivial.

Remark 1. (a) Clearly, all abelian extensions of type K/Q, where K is an imag-
inary number field of prime power conductor ¢, are nice. In particular, extensions
of type Q((r)/Q, with £ prime, are nice. Indeed, in these cases, since K = K,
the only critical prime is £. Since Gy = G, condition (1) in Definition 4.1.2 above is
clearly satisfied. Condition (2) is trivially satisfied for Q({s)/Q. Let us now check
condition (2) for K a general (imaginary) subfield of Q ({s»). The only nontrivial
case is checking (—admissibility, for £ # 2 and pur ® Z) # {1}. But in this case K
is a subfield of Q((¢), containing Q(¢;). Therefore, K = Q ({ym), with 1 < m < n,
and K is clearly {—admissible.

(b) We leave it as an exercise for the interested reader to check the following.

(1) If k totally real and ¢ is a prime number, such that ¢ is not ramified in k/Q,
then k((en)/k is nice, for all n > 1.

(2) Let k be a Galois extension of Q of odd degree. Let a be an ideal in Oy, stable
under the action of Gal(k/Q). Let Supp(a) denote the set of residual characteristics
of all the primes dividing a. Let & (a) denote the maximal abelian extension of k, of
conductor dividing a, and of degree coprime to 2 H' p, where the product is taken

over all primes p in Supp(a). Then, k(a)(y/— [ p)/k is nice.

We will now introduce additional notations, which will remain valid for the rest
of this paper. Please note that the notations which follow differ from those in [4] or
[5]. Let R:=Z[G], R- :=Z|G]/(1+j), and Ry = Z[G] /(1 — j). For any prime
number p, let R,y := Z, [G]. By abuse of notation, let

W:R—»R,, ﬂ'ZR(p)—»R(p)

,—
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be the natural projections. If M is an R—module, let
M712M®RR7, M+Z:M®RR+,

M~ :={zeM|(1+j)-2=0}, M":={zeM|(l1-j) z=0}.
Let H be the subgroup of G generated by j. If an R—module N happens to be
H—cohomologically trivial, then one clearly has equalities

N-=(1-4)-N, Nt=(1-j)-N.

For this reason, the equalities above hold true for N = R, N = R(,), and N =
M ® Z ), where M is an arbitrary R module and p is an odd prime.

For an R—module M, since (1+ j) € Anng(M~), M~ and (M ® Z(,)) come
endowed with natural R_-module and respectively R,y _—module structures. Also,
if p is an odd prime, one has a direct sum decomposition

(M&Zy) = (M2Zy) & (MeZg) " .

This decomposition, combined with elementary properties of Fitting ideals, gives

1) Fittn,, (M Zg) ") =Fittn,, (M%) .

Moreover, since Fitting ideals commute with extensions of scalars (see [)], one has

wt (Fittny, - (49 2)) 7)) = Fittg, (M 5 2) ") + R
8) = Fittr,, (M 22Zq) ") @R

= FittR(p) (M X Z(p))i &) R(J:;) .

Remark 2. (a) Let p be an odd prime and P the p—Sylow subgroup of G. Let us
write G = P x A, where A is a subgroup of G, with p{ |A|. Let A/ ~ be the set
of equivalence classes of complex-valued characters of A, with respect to the usual
equivalence relation of characters, given by x ~ Y/, if there exists o € Gal(Q/Q),
such that y = coy’. For any x € 3, let Z(p) [x] denote the semi—local principal ideal
domain obtained by adjoining to Z,) the values (of an arbitrary representative of
the character—class) of x. One has the well-known direct sum decomposition

Rey = B Zp WP
XER/~
With respect to the decomposition above, one obviously has
Ry, — @ ZulIPl, R~ @ ZupkIFl.

XEA/~ XEA/~
x(j)=-1 x(J)=+1
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Also, 7 induces a ring isomorphism between R(;) and R, _. Obviously, R(J;) and
R(,),+ are also isomorphic as rings. This shows in particular that R, R(';), R(;),
Rpy,—, and R,y 4 are all semi local rings (as direct sums of integral extensions of
semi local rings). Also, since R,y,— is isomorphic to a direct summand of R(,),
Ry, is a flat R, —algebra.

(b) Now, let us consider a finite set Sg of primes in &, containing all the infinite
primes as well as those which ramify in K/k. A celebrated theorem of Minkowsky
implies right away that we have |Sg| > 2. Since for any infinite prime vy in k, one
has j € G,_, equality (2) in §1, implies that

X (650 (0)) = Lg, (07X71) =0,

for all x € A, such that Xx(3) = 1. According to (b) above, this shows that, for any
odd prime number p, we have

(A(K/k) ® Z)) - ©5,(0) € Ry,

As a direct consequence of the fact that every ramified critical prime in a nice ex-
tension has to satisfy condition (1) in Definition 4.1.2, Greither proves the following
(see Theorem 2.1 in [5]).

Proposition 4.1.5 (Greither). If K/k is a nice extension and p is an odd prime,
then (AK ® Z(p))_ is G cohomologically trivial.

Lemma 4.1.6. If K/k is a nice extension and p is an odd prime, then

(1) pdrg, (nx ® Z(p)) < 1.
(2) de(p) (Ax ® Z(p))f <1.

Here, pdg,,, (M) denotes the R,)—projective dimension of the Ry —module M.

Proof. If O is a principal ideal domain, an O[G]-module M has O[G]-projective
dimension at most 1 if and only if M is G—cohomologically trivial. (See [9], Propo-
sition 5.2.2.) Therefore, (1) follows from Corollary 4.1.4(2), and (2) follows from
Proposition 4.1.5. O

Corollary 4.1.7. If K/k is a nice extension and p is an odd prime, then
(1) A(K/k) ®Z) = ap - Ry, for some non—zerodivisor a, € Ry .
(2) Fittr,,, ((AK ® Z(p))f) = fp+ Rp), for some non—zerodivisor f, € Ry).

Proof. In [10] we prove the following result (see [10], Lemma 4.2.6).

Lemma 4.1.8. Let S denote a commutative, semi—local, Noetherian ring, and let
Q(S) be its total ring of fractions. Let M be a finitely generated S—module, such
that M ®g Q(S) = 0. Assume that pdsg(M) < 1. Then, Fitts(M) is a principal
ideal, generated by a non-zerodivisor of S.

The statements in Corollary 4.1.7 now follow by applying the lemma above to
S:= Ry and M := pg®Zy,), respectively M := (Ag®Z(,))~. Remark 2(a) above
shows that, indeed, S := R,) satisfies the hypotheses in Lemma 4.1.8. Lemma 4.1.6
ensures that both px ® Z,y and (Ax ® Zp))~ have projective dimension at most
1 over R(,). Also, as the reader will notice right away, since px ® Z, is a cyclic
Ry~module, Fittp, (ux ® Zy)) = Anng, (ix © Z)) = AK/k) © Z,). O
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Let us denote by Sy the set consisting precisely of all the infinite primes in k and
all the finite primes in & which ramify in K/k. The main result of [5] (Theorems
4.10 and 4.11) is the following strong form of Z[1/2|Br(K/k, So), for all finite sets
Sy of primes in k, containing Sgp.

Theorem 4.1.9 (Greither). If K/k is a nice extension, then
m ((A(E/k) ® Zy)) - O54,(0)) = Fittry,, ((AK ® Z(p))f) v

for all odd primes p.

Remark 3. Let us first note that, indeed, the statement above implies conjecture
Z[1/2]Br(K/k, Sp), for all finite sets Sy of primes in k, containing Spe. In order to
see this, let us fix such an Sy and an odd prime p. Then, Og,(0) = [[(1 — o, }) -
©35,,(0), where the product is taken over primes v in Spg \ Sp. Therefore, if we

apply 7! to the equality in Theorem 4.1.9 and use (8), we obtain
(A(K/k) ® Z(p)) -O5,(0) € Fittr,, (AK ® Z(p))7 ® R(:) :
However, if we combine the last inclusion with Remark 2(b) above, we obtain

(A(K/k) ® Zy)) - Os,(0) € Fittr,, (Ax © Zg))

(9) .
C Fittr,, (Ax ® Zy))

This indeed shows that Z,)Br(K/k, Sp) is true, for all p and Sy as above. Therefore,

Z[1/2]Br(K/k, Sy) is true.

4.2. The proof of Z[1/2|B(K/k, S, T, r). As a consequence of Theorem 4.1.9,
we will first prove the following.

Proposition 4.2.1. Let p be an odd prime, Sy a finite set of primes in k, contain-
ing Soo, and T a finite set of primes in k, such that SoNT = () and Us, rNur = {1}.
Then, the following holds true.

©s,,7(0) € (R(P))o,so 'FittR(m (ASO:T ® Z(p)) :

Proof. We will return to the notations of Corollary 4.1.7. We remind the reader
that ©g,,7(0) = o7 - Og,(0), where o7 is defined in §3 (see the paragraph following
definition 3.1) and is obviously a non—zerodivisor in R. Please note that, since
or € A(K/k) (see the proof of Corollary 3.2) and a, is a non-zerodivisor Ry~
generator of A(K/k) ® Z), the element 07 - a, ' (which a priori only makes sense
in Q[G]) is in fact a non zerodivisor in R(,y. The first inclusion in (9) above,
combined with equality (7), implies that

(10)  Os,r(0) € (or-ay?) -Fittn,, ((Ax ©Zn) ") = (or-a;" - ) - Ry

Now, by definition ©g, r(0) € (R(P))o Se

X € G, such that ry g, > 0.) However, since dp - a;l - fp is a non—zerodivisor in

(i.e. ey - Og,,r(0) =0, for all characters
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R(p), this means that ey - (67 -a, ' - f,) # 0, for all x € G. These facts, combined
with (10), show that, in fact we have

(11)
Os,,7(0) € (0ra,  fo) - (Rp)) o s, = (0ra, ") Fittr, ((AK ® Z<p>)_)'(R(p))o,SO :

Now, let us note that, since for all characters x € 6’, such that x(j) = +1, we

have ry g, > 0 (see Remark 2(b)), Remark 2(a) implies that (R(p))OSo S R,

Therefore, if we take into account (7), we have

Fittr,, ((AK ® Z(p))i) ) (R(p))o,so = Fittr,,, ((AK ® Z(p))7> ' (R(p))o,so
= Fittr,, (Ax ®Z()) - (Rw),.s,
= Fittg, (AK ® Z(p)) ) (R(P))O,So )

The last equality, combined with (11), gives
(12) ©5,,7(0) € (0ray ") - Fittr, (Ax ©Z)) - (Rp)) g g, -

In order to complete the proof of Proposition 4.2.1, we need to make a remark and
prove a lemma, which are valid in a quite general setting.

Remark 1. Assume that K/k is an arbitrary abelian extension of global fields, of
Galois group G. Let T be a finite, nonempty set of finite primes in k, unramified
in K/k, such that there are no roots of unity in K, congruent to 1 modulo all the
primes in Tx. Let Ar := @, o, K(w)*, and view px as a Z [G]-submodule of
Arp, via (the injective) morphism

g:ﬂK—>AT7

given by £(¢) = (¢ mod w)yery, for all ¢ € pur. Let p be a prime number
and assume that pux ® Z(,) is G-cohomologically trivial. Then, the R(,)—cyclicity
of urx ® Z,y and Corollary 4.1.7(1) (whose proof only uses the G—cohomological
triviality of px ® Z,)), imply that Fittr,,, (/,LK ® Z(p)) = A(K/k) ® Z) is an
invertible R,y ideal. Let us denote by (A(K/k) ® Z,)) ' its inverse, viewed as
a fractional R, ideal in Q[G]. The assumptions made on T imply that d7 €
A(K/k) ® Zy), and therefore o7 - (A(K/k) ® Z,)) " is an ideal in R(y).

Lemma 4.1.2. Under the assumptions and notations of Remark 1, we have

or - (A(K/k) ® Z(m)il = FittR(p> (AT//.LK ® Z(p)) .

Proof of Lemma 4.2.2. First, as remarked in [9], §5.3, we have Z [G]-isomorphisms

Ar = P (K(w)* ®za, Z1G]) = PZIG]/ ().

veT veT
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where for each v in T, one picks an arbitrary w in Tk, sitting above v. Since &,
is a non—zerodivisor of Z [G], the isomorphisms above imply on one hand that Ap
and therefore Ar ® Z(,) are G—cohomologically trivial, and on the other hand that

Fittp (A7) = (H 5v> -R=96r-R.

veT
We have a short exact sequence of R(,)-modules
0= px ®Zp) — Ar ®Zp) — Ar/px @ Z) — 0.

Since two terms of this sequence are G—cohomologically trivial, so is the third.
Therefore, Lemma 4.9 in [5] (see part b) of the proof), implies that we have an
equality

Fittrg, (1 © L)) - Fittr, (Ar/px © Zep)) = Fittr,, (Ar © Zg,)) -

Now, we multiply the last equality by (A(K/k)® Z(p))_1 (or, equivalently, by
(FittR(p) (,uK ® Z(p)))il, and obtain

FittR(p) (AT/,UK ® Z(p)) =op - (.A(K/k) ® Z(p))il .
This concludes the proof of Lemma 4.1.2. [

Now, we return to the Proof of Proposition 4.2.1. The definition of Ag, implies
that we have a surjective R(,)—morphism

Ak © L) — Asy @ Lp) -
This yields the following inclusion of Fitting ideals (see [7], §1.4).
(13) FittR(p) (AK (39 Z(p)) - FittR(p) (ASD X Z(p)) .

On the other hand, since ux N Us,r = {1}, (1) in §1 gives the following exact
sequence of R(,~modules

Ar/pg @ Zp) = Asor © Zip) — Asy @ Z) — 0.

This, combined with the behaviour of Fitting ideals in short exact sequences (see
[7], §1.4) and Lemma 4.2.2, yields the following inclusion of R(;,)—ideals.

(14) ((5'1’&;1) . FittR(p) (ASO & Z(p)) - FittR(p) (ASO,T ® Z(p)) .
We now combine (12), (13), and (14) to obtain
Os,,1(0) € (R(p))o,sg 'Fitt‘R(p) (ASo,T ® Z(p)) )

which concludes the proof of Proposition 4.2.1. O

We are now ready to state and prove the main theorem of §4.
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Theorem 4.2.3. let K/k be a nice extension and assume that the set of data
(K/k, S, T, r) satisfies hypotheses (H). Then, conjecture Z[1/2|B(K/k, S, T, r) is
true.

Proof. Let vy,vs,--- ,v, be r distinct primes in S, which split completely in K/k.
Since K is a CM field and k is totally real, none of the infinite primes in k split com-
pletely in K/k. Therefore, the set Sy := S\ {v1,v2,--- , v, } satisfies the hypotheses
in Proposition 4.2.1. Proposition 4.2.1 and Corollary 2.4 imply that conjecture
Z,)B(K/k, S, T, r) is true, for all odd primes p. Consequently, the second equiv-
alence in Remark 5, §2, shows that conjecture Z[1/2|B(K/k, S, T, r) is true. O

Now, as a consequence of the above theorem, we settle the Brumer—Stark Con-
jecture, up to a power of 2, for nice extensions.

Corollary 4.2.4. Let K/k be a nice extension. Let Sy be a finite set of primes
in k, containing all the infinite primes of k as well as those which ramify in K/k.
Then, conjecture Z[1/2]BrSt(K/k, So) is true.

Proof. Theorem 4.2.3, for r = 1 and sets S, := Sp U {v}, with v not in Sy and
completely split in K/k, together with Proposition 3.5, imply the desired result. O

Remark 2. Assume that K/k is a nice extension and (K/k, S, T, r) satisfies hy-
potheses (H). In [9], we formulate a weaker version of Rubin’s Conjecture, depending
only on the set (K/k, S, r) (see Conjecture C(K/k, S, r), [9], §2.1.) As shown in
[9], Theorem 5.5.1, if the extension K/k is p—admissible for a prime p (i.e px ® Z,)
is G—cohomologically trivial), then, one has an equivalence

ZpC(K/k, S, 1) <= ZB(K/k, S, T, r) , for all T € Ts .

As remarked in Corollary 4.1.4, nice extensions are p—admissible, for all odd primes
p. Therefore, Theorem 4.2 implies that conjecture Z[1/2]C (K/k, S, r) (i.e. con-
jecture Z,)C(K/k, S, r), for all odd primes p) is also true for nice extensions K /k.
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