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Abstract. In [12], Stark formulated his far-reaching refined conjecture on the first derivative of
abelian (imprimitive) L–functions of order of vanishing r = 1 at s = 0. In [10], Rubin extended
Stark’s refined conjecture to describe the r-th derivative of abelian (imprimitive) L-functions of
order of vanishing r at s = 0, for arbitrary values r. However, in both Stark’s and Rubin’s
setups, the order of vanishing is imposed upon the imprimitive L–functions in question somewhat
artificially, by requiring that the Euler factors corresponding to r distinct completely split primes
have been removed from the Euler product expressions of these L–functions. In this paper,
we formulate and provide evidence in support of a conjecture in the spirit of and extending
the Rubin-Stark Conjectures to the most general (abelian) setting: arbitrary order of vanishing
abelian imprimitive L-functions, regardless of their type of imprimitivity. The second author’s
conversations with Harold Stark and David Dummit (especially regarding the order of vanishing
1 setting) were instrumental in formulating this generalization.

1. Introduction and notation

In a series of papers published in the 1970s and early 1980s, culminating in [12], Stark developed
the programme which is now widely known as “Stark’s conjectures.” The purpose is to extract
information on arithmetic invariants of global field extensions K/k from special values of the asso-
ciated Artin L-functions. Stark’s original (refined) integral conjecture [12] predicted an arithmetic
formula for the first derivative of an abelian S–imprimitive L-function at s = 0 under the pres-
ence in the set S of primes whose Euler factors “are missing” of a distinguished prime v0 which
splits completely in K/k. In [10], Rubin presented a conjecture which extended Stark’s to the rth

derivative under the presence of r splitting primes in S. In [6], the second author introduced a
modification of Rubin’s conjecture which behaved more naturally under “base change”. Previous
work by Dummit, Hayes, Sands, and Tangedal (see e.g. [2], [3]) and their discussions with Stark
lead Stark in 2001 to proposing the extended first order abelian Stark question—an extension of
Stark’s original integral conjecture which dropped the requirement of the distinguished splitting
prime v0. This question was investigated by Erickson in [5]. The aim of this work is to formulate
and provide evidence for a conjecture in the spirit of and extending the Rubin-Stark Conjectures
to the most general (abelian) setting: arbitrary order of vanishing abelian imprimitive L-functions,
regardless of their type of imprimitivity. The second author is responsible for the statement of the
conjecture, which was subsequently investigated by the first in [4]. The conjecture is developed in
§§2-3. In §4, we study its various functoriality properties as well as its links to the Rubin-Stark
conjectures. In §5, we provide some evidence in its support.
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Fix a finite, abelian extension of global fields K/k, and let G be its Galois group. Let Ĝ =
Hom(G,C×). For every χ ∈ Ĝ, eχ is the corresponding idempotent in the group algebra C[G]. Let
S and T denote finite sets of places of k. The sets of all places in K dividing places in S and T will
be denoted SK and TK respectively. Let US,T denote the group consisting of all the SK-units in K
which are congruent to 1 modulo every prime in TK . Let U∗

S,T = HomZ[G](US,T ,Z[G]) be the dual
group of US,T . For every prime v ∈ S we fix once and for all a prime w(v) ∈ SK sitting above v and
denote by Gv its corresponding decomposition group in K/k (which is independent of the choice of
w(v) because G is abelian). For every place w in K, | · |w denotes the absolute value associated
to w, normalized in the canonical way (so that the product formula holds for K.) We call a pair
(S, T ) appropriate for K/k if S and T are finite, nonempty, disjoint sets of places of k such that

(H)
{

(1) S contains all the archimedian and all the K/k-ramified primes.
(2) US,T has no Z-torsion.

}

For any set E, |E| will denote the cardinality of E. If r is a nonnegative integer, ℘(E) will denote
the power set of E, and ℘r(E) will denote the set of subsets of E of exact cardinality r. If A is a
Z-module, CA := C⊗Z A, and QA := Q⊗Z A.

2. The L-functions, covering sets, and orders of vanishing

For any χ ∈ Ĝ, let

LS,T (χ, s) :=
∏

v∈T

(
1− χ(σ−1

v )Nv1−s
) · LS(χ, s)

where LS(χ, s) is the usual S-incomplete (C-valued, meromorphic) Artin L-function attached to χ.
As in [10] and [8], we define the G-equivariant (S, T )-modified L-function by

ΘS,T : C −→ C[G] , ΘS,T (s) :=
∑

χ∈ bG
LS,T (χ, s) · eχ−1 .

This function takes values in C[G] and is holomorphic everywhere in C. For every natural number
r, we let ΘK/k,S,T,r = 1

r!Θ
(r)
K/k,S,T (0) denote the r–th Taylor coefficient of ΘS,T (s) at s = 0. The

main goal of Stark’s conjectural programme is to extract the arithmetic information encoded in the
first non-vanishing element in this infinite list of Taylor coefficients (the so-called leading term of
ΘS,T (s) at s = 0.)

For every character χ ∈ Ĝ, we let

rS(χ) = ords=0LS,T (χ, s)

be the order of vanishing of the corresponding L-function at s = 0. This is a nonnegative integer,
which is easily seen to be independent of T . It is well known that

rS(χ) =
{

card{v ∈ S |χ(Gv) = {1}}, if χ 6= 1G ;
card S − 1, if χ = 1G.

(see, e.g., [13, Proposition 3.4]). In what follows, we let rS(K/k) := minχ rS(χ).

Let S′ be a subset of S, Π be a subset of Ĝ and r be a nonnegative integer. In light of the above
equalities, we give the following.
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Definition 2.1. We say that S′ is an r-cover for Π if the following two conditions are satisfied:
(1) For all χ ∈ Π, there exist (at least) r distinct primes v ∈ S′, such that χ(Gv) = {1}.
(2) If the trivial character 1G belongs to Π, then |S′| ≥ r + 1.

Note that if S is an r-cover for Ĝ, then rS(χ) ≥ rS(K/k) ≥ r, for all χ ∈ Ĝ. In particular, this
happens if, for example, S contains r distinct primes which split completely in K/k and |S| ≥ r +1
(which is precisely the hypothesis in Rubin’s conjecture [10], for arbitrary r, or Stark’s refined
conjecture [12], in the case where r = 1.)

Lemma 2.2. If S is an r-cover for Ĝ and |S| = r + 1, then S contains at least r primes which
split completely in K/k (i.e. S has to satisfy the hypotheses in Rubin’s conjecture.)

Proof. Using the factorization of the (S, T )−zeta function of K into L-functions and counting the
orders of zeros at s = 0 yields

(1)
∑

χ∈ bG
χ 6=1G

rS(χ) =
∑

v∈S

(gv − 1)

where gv = |G|/|Gv| is the number of primes of K above v. Now, since r ≤ rS(χ) for all χ,
r(|G| − 1) ≤ ∑

v∈S(gv − 1). Suppose, for the sake of contradiction, that S contained two primes
v1, v2 which did not split completely in K/k. That is to say gv1 , gv2 < |G|, and hence (as gv divides
|G|), gvi

−1

|G|−1 < 1
2 for i = 1, 2. Then we have

r ≤
∑

v∈S

gv − 1
|G| − 1

<
1
2

+
1
2

+ (r − 1) = r,

a contradiction. Therefore such v1 and v2 do not exist, and at least r primes of S split in K/k. ¤

For every r, we let Ĝr,S := {χ ∈ Ĝ | rS(χ) = r}. Note that 1G ∈ Ĝr,S if and only if |S| = r + 1.

Lemma 2.3. Let r be a natural number. Assume that S is an r-cover for Ĝ. If S′, S′′ ⊂ S are
r-covers for Ĝr,S (respectively Ĝr,S \ {1G}), then their intersection S′ ∩ S′′ is also an r-cover for
Ĝr,S (respectively Ĝr,S \ {1G}).
Proof. Let χ ∈ Ĝr,S \ {1G}. Then S′ and S′′ contain two subsets of cardinality r, say {v′1, . . . , v′r}
and {v′′1 , . . . , v′′r }, respectively, which are r-covers of {χ} (meaning that χ(Gv′i) = χ(Gv′′i ) = {1}, for
all i = 1, . . . , r.) However, since χ ∈ Ĝr,S \ {1G}, χ is trivial when restricted to the decomposition
groups of exactly r primes in S. This shows that {v′1, . . . , v′r} = {v′′1 , . . . , v′′r } ⊆ S′ ∩ S′′. Therefore
S′ ∩ S′′ is an r–cover of Ĝr,S \ {1G}.

If 1G ∈ Ĝr,S , then |S| = r + 1. Therefore, if S′ and S′′ are r-covers of Ĝr,S , then S′ = S′′ = S,
so S′ ∩ S′′ = S is also an r-cover of Ĝr,S . ¤

Definition 2.4. Let r be a natural number. Assume that S is an r-cover of Ĝ. We let

Smin =
⋂

S′ ,

where S′ ⊆ S runs over all r-covers for Ĝr,S \ {1G} contained in S. (By the previous lemma, this
set is the unique minimal r-cover for Ĝr,S \ {1G} and it depends on both S and r.)
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Examples. (1) Assume that S contains (at least) r distinct primes which split completely in K/k

and that |S| ≥ r+1. Then S is an r–cover for the entire Ĝ, as mentioned before. If Ĝr,S \{1G} 6= ∅,
then S has to contain exactly r distinct primes which split completely, say {v1, . . . , vr}. Clearly,
in this case we have Smin = {v1, . . . , vr}. On the other hand, if Ĝr,S \ {1G} = ∅, then S contains
more than r primes which split completely and Smin = ∅. In particular, Ĝr,S = {1G} if and only if
|S| = r + 1 and all primes in S split completely in K/k.

Also, it is very important to note that if G is cyclic, then S is an r–cover for Ĝ if and only if G
contains (at least) r distinct primes which split completely in K/k and |S| ≥ r + 1. Indeed, this
is a consequence of the fact that a generator χ of Ĝ (which is a faithful character of G) has to be
trivial if restricted to the decomposition groups of at least r distinct primes in S, rendering those
groups trivial.

(2) In this example, r = 1. Let p and q be two odd prime numbers, satisfying

p ≡ q ≡ 1 mod 4 ,

(
p

q

)
= 1 .

Let k = Q and K = Q(
√−p,

√−q). We ask the reader to check that S = {∞, 2, p, q} is a 1–cover
for Ĝ. Please note that in this case S consists precisely of the primes which ramify and therefore no
prime in S splits completely in K/k. In this case, Ĝ1,S = Ĝ1,S \ {1G} = {χp, χq}, where χp and χq

are the two nontrivial (quadratic) characters of G(Q(
√−p)/Q) and G(Q(

√−q)/Q), respectively. It
is an easy exercise to show that Smin = {p, q}, in this case.

(3) In this example, r = 1. Let p and q be two odd prime numbers, satisfying

p ≡ 1 mod 4 , q ≡ 3 mod 4 ,

(
p

q

)
= 1 .

Let K ′ := Q(ζq)Dp , where ζq := e2πi/q and Dp is the decomposition group associated to p in
Q(ζq)/Q. Please note that Q(

√−q) ⊆ K ′. Let K ′+ be the maximal real subfield of K ′. Let l be
an odd prime number, different from p and q and satisfying

(
l

K ′/Q

)
6= 1 ,

(
l

K ′+/Q

)
= 1 ,

(p

l

)
= −1

(i.e. l splits completely in K ′+/Q, but it does not split completely in K ′/Q and Q(
√

p)/Q.) Let
k := Q and K := K ′(

√
p). We ask the reader to check that S := {∞, p, q, l} is a 1–cover for Ĝ.

Obviously, none of the primes in S splits completely in K/k. Let χ be a generator of ̂G(K ′/Q) and
ψp the generator of ̂G(Q(

√
p)/Q). Then, it is not hard to see that

Ĝ1,S = Ĝ1,S \ {1G} = {χi | i odd } ∪ {ψp · χi | i 6= 0} ,

where i runs through the obvious range. Also, one easily shows that Smin = {∞, p, l}.

3. Regulator maps, evaluators and lattices. The conjecture.

In this section and what follows, (S, T ) is an appropriate pair for the abelian extension of global
fields K/k, whose Galois group is denoted by G. Also, we assume that S is an r-cover for Ĝ, for
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some (fixed) positive integer r. Throughout the rest of the paper, all exterior powers are viewed
over the ring Z[G], unless otherwise specified. For a Z[G]-module M with no Z-torsion, let

Mr,S :=
{

m ∈M | eχ ·m = 0 in CM, for all χ 6∈ Ĝr,S

}
.

Note that C[G]r,S = C[G]·ΘK/k,S,T,r, by definition. In particular, C[G]r,S = 0 if only if ΘK/k,S,T,r =
0, if and only if S is an r + 1 cover of Ĝ, if and only if Ĝr,S = ∅, if and only if rS(K/k) > r.

Now, we introduce and fix an order on the set S. In particular, this induces an order on every
subset I of S. If Ĝr,S = {1G} (and this can happen if and only if S consists precisely of r + 1
completely split primes – see Example 1 in §2), we let I(S) := {v1, v2, . . . , vr}, assuming that
v1 < v2 < · · · < vr < vr+1 are the elements of the (ordered) set S. For any I ⊆ S of cardinality r,
we define a C[G]-linear regulator map RI : C ∧r US,T → C[G], by setting

RI(u1 ∧ . . . ∧ ur) := det
v∈I

1≤j≤r

(
1
|Gv|

∑

σ∈G

log
∣∣∣uσ−1

j

∣∣∣
w(v)

· σ
)

,

for all u1, . . . , ur ∈ US,T and then extending by C-linearity. Finally, we define the regulator map

R := Rr,S :=

{ ∑
I∈℘r(Smin) RI , if Ĝr,S 6= {1G};

RI(S), if Ĝr,S = {1G},
where the summation over all the subsets of cardinality r of Smin is by definition equal to 0 if
Smin = ∅. Consequently, R = 0 if r < rS(K/k) (i.e. if S is an (r + 1)–cover of Ĝ.)

Remark 3.1. Note that the discussion in Example 1 of §2 shows that if S contains r primes which
split completely v1 < v2 < ... < vr and I(S) = {v1, . . . , vr} if Ĝr,S = {1G}, then the map R defined
above is equal to the regulator map RW defined by Rubin in [10], for W = (w(v1), w(v2), . . . , w(vr)).

Proposition 3.2. The map R gives a C[G]-isomorphism (C ∧r US,T )r,S

∼=−→ (C[G])r,S.

Proof. First of all, let us note that if S contains r primes which split completely, then the proposition
above is a direct consequence of [10, Lemma 2.7]. Therefore, in light of Lemma 2.2, we may assume
that |S| > r+1. Consequently, 1G 6∈ Ĝr,S and R =

∑
I∈℘r(Smin) RI . Also, we may assume that r =

rS(K/k), otherwise the proposition is trivially true, as R = 0 and (C ∧r US,T )r,S = (C[G])r,S = 0.
For the proof of Proposition 3.2, we will need some additional definitions and auxiliary lemmas.

Let YS be the Z[G]–module of divisors of K supported above SK (i.e. the free abelian group
generated by SK , endowed with the obvious G–action.) Let XS be the Z[G]–submodule of YS

consisting of all divisors of degree 0. We have an exact sequence of C[G]–modules

0 −→ CXS −→ CYS
deg−→ C −→ 0 ,

where deg is the degree map (extended by C–linearity) and the last non–zero module to the right
is endowed with the trivial G–action. Since 1G 6∈ Ĝr,S , the exact sequence above implies that we
have the following equalities

(CXS)r,S = (CYS)r,S and (C ∧r XS)r,S = (C ∧r YS)r,S .

Note that YS = ⊕v∈SC[G] · w(v). Also, it is obvious that for all v ∈ S, we have a C[G]–module
isomorphism C[G] ·w(v)

∼=−→ C[G]/IGv , where IGv is the relative augmentation ideal associated to
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Gv (generated as an ideal of Z[G] by the set {σ − 1 | σ ∈ Gv}.) Consequently, we have

(2) C ∧r YS =
⊕

I∈℘r(S)

C[G] ·WI

∼=−→
⊕

I∈℘r(S)

C[G]/IDI
.

Here, WI := w(v1) ∧ · · · ∧ w(vr), assuming that I = {v1, v2, . . . , vr} and v1 < · · · < vr. Also, DI

is the subgroup of G generated by ∪v∈IGv and IDI is its relative augmentation ideal. Note that
IDI

=
∑

v∈I IGv .

It is well known (see [13]) that we have a C[G]–linear isomorphism

LS : CUS,T

∼=−→ CXS , LS(u) =
∑

v∈S

`w(v)(u) · w(v) ,

where `w(v)(u) = (1/|Gv|)
∑

σ∈G log |uσ−1 |w(v) · σ, for all u ∈ US,T . As a direct consequence of the
definitions, the link between LS and the regulators RI defined earlier is the following.

(3) (∧rLS)(z) =
∑

I∈℘r(S)

RI(z) ·WI , for all z ∈ C ∧r US,T ,

where ∧rLS : C ∧r US,T −→ C ∧r XS ⊆ C ∧r YS is the usual r–th exterior power of LS .

The following equalities follow from the functional equation and the nonvanishing at s = 1 of
the corresponding L–functions (see [13]).

dimC(eχ · CUS,T ) = dimC(eχ · CXS) = rS(χ), for all χ ∈ Ĝ .

Consequently, since under the current hypotheses r = rS(K/k) and 1G 6∈ Ĝr,S , the C[G]r,S–modules
(C ∧r XS)r,S = (C ∧r YS)r,S and (C ∧r US,T )r,S are free of rank 1 over C[G]r,S = ⊕χ∈ bGr,S

C · eχ.
The following Lemma provides a natural basis for the 1–dimensional C[G]r,S–module (C∧r XS)r,S .

Lemma 3.3. Assume that S is an r–cover for Ĝ, |S| > r + 1 and r = rS(K/k). Then

(1) A set S0 ⊆ S is an r–cover for Ĝr,S if and only if

(C ∧r XS)r,S = (C ∧r YS)r,S = C[G]r,S ·WS0 ,

where WS0 :=
∑

I∈℘r(S0)
WI .

(2) In particular, er,S ·WSmin is a C[G]r,S–basis for (C ∧r XS)r,S, where er,S :=
∑

χ∈ bGr,S
eχ.

Proof. Since (C ∧r YS)r,S is free of rank one over C[G]r,S , the element er,S ·WS0 is a basis of this
space if and only if we have eχ ·WS0 6= 0, for all χ ∈ Ĝr,S . However, based on (3), this happens
if and only if, for all χ ∈ Ĝr,S , there exists an Iχ ∈ ℘r(S0), such that eχ ·WIχ 6= 0. On the other
hand, this last non–equality happens if and only if eχ · IDIχ

= 0, which happens if and only if
eχ · IGv = 0, for all all v ∈ Iχ. Finally, this happens if and only if χ(Gv) = {1}, for all v ∈ Iχ,
which means that Iχ is an r–cover for {χ} and consequently that S0 is an r–cover for Ĝr,S . This
concludes the proof of Lemma 3.3. ¤

Lemma 3.4. Under the hypotheses of Lemma 3.3, if z ∈ (C ∧r US,T )r,S, then

(∧rLS)(z) = R(z) ·WSmin .
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Proof. Lemma 3.3 implies that for any z as above, we have

(∧rLS)(z) ∈ C[G]r,S ·WSmin ⊆ ⊕I∈℘r(Smin)C[G]r,S ·WI .

Consequently, (3) shows that (∧rLS)(z) =
∑

I∈℘r(Smin) RI(z) · WI . However, note that since Gv

fixes w(v), we have `w(v)(z) ∈ NGv
· C[G]r,S , for all v ∈ S, where NGv

=
∑

σ∈Gv
σ. Consequently,

RI(z) ∈
∏

v∈I

NGv · C[G]r,S , for all I ∈ ℘r(S) .

Now, it suffices to show that if αI ∈
∏

v∈I NGv · C[G]r,S , for all I ∈ ℘r(Smin), then
∑

αI ·WI = (
∑

αI) · (
∑

WI) = (
∑

αI) ·WSmin ,

where I runs through ℘r(Smin) and the second equality above is obvious by the definition of WSmin .
The first equality above can be shown character-by-character. Indeed due to the fact that αI ∈
C[G]r,S , for all I, it suffices to show that

eχ · (
∑

αI ·WI) = eχ · (
∑

αI) · (
∑

WI) , for all χ ∈ Ĝr,S .

Let χ ∈ Ĝr,S . Since rS(χ) = r and χ 6= 1G, there exists a unique Iχ ∈ ℘r(Smin), such that
χ(Gv) = {1}, for all v ∈ Iχ. Obviously, the set Iχ also satisfies χ(Gv) 6= {1}, for all v 6∈ Iχ. This
implies right away that χ(NGv ) = 0, for all v 6∈ Iχ and also that χ(IDI ) 6= 0, for all I 6= Iχ.
Consequently, we have eχ ·αI = 0 and eχ ·WI = 0, for all I 6= Iχ (recall (3)). Therefore, both sides
of the last displayed equality are equal to eχ ·αIχ ·WIχ . This concludes the proof of the Lemma. ¤
Now, Proposition 3.2 is a direct consequence of Lemma 3.3, Lemma 3.4 and of the fact that (∧rLS)
induces (by restriction) an isomorphism from (C ∧r US,T )r,S to (C ∧r XS)r,S .

¤
In light of Proposition 3.2, we can make the following definition.

Definition 3.5. Assuming that (S, T ) is appropriate for K/k and S is an r–cover for Ĝ, we let

εK/k,S,T,r := R−1
(
ΘK/k,S,T,r

)

Remark 3.6. Sometimes we refer to εK/k,S,T,r as an (L–function) evaluator, because evaluating
the regulator R against it gives the special value ΘK/k,S,T,r at s = 0 of the equivariant L-function
ΘK/k,S,T (s). Note that εK/k,S,T,r = 0 if and only if rS(K/k) > r. Also, note that, if S contains r
primes which split completely, then εK/k,S,T,r is precisely the evaluator εK/k,S,T defined by Rubin
in [10] (a direct consequence of the fact that under these hypotheses, our regulator and Rubin’s
coincide, as remarked earlier.)

As in [10], we define C[G]–linear pairing C ∧r U∗
S,T × C ∧r US,T → C[G] by setting

(φ1 ∧ · · · ∧ φr)(u1 ∧ · · · ∧ ur) = det
1≤i,j≤r

(φi(uj)).

for all φ1, . . . , φr ∈ U∗
S,T and all u1, . . . , ur ∈ US,T , and then extending by C-linearity. Following

[10] we also define the following Z[G]–submodule of finite rank (lattice) of (Q ∧r US,T )r,S .

Definition 3.7.

ΛS,T,r :=
{

z ∈ (Q ∧r US,T )r,S

∣∣∣ φ(z) ∈ Z[G] for all φ ∈ ∧rU∗
S,T

}
.

We are now ready to formulate our extension of the Rubin-Stark conjecture.
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Conjecture 3.8. B̃(K/k, S, T, r). Assume that (S, T ) is an appropriate pair for K/k and that S

is an r–cover for Ĝ. Then
εK/k,S,T,r ∈ ΛS,T,r .

Remark 3.9. Note that if S contains r primes which split completely in K/k (e.g. if |S| = r + 1,
see Lemma 2.2) then, in light of Remark 2, the conjecture above is equivalent to Rubin’s Conjecture
B(K/k, S, T, r) (see [10].) In particular, in the exceptional case where Ĝr,S = {1G}, the conjecture
is true as a direct consequence of Dirichlet’s S–class number formula for k, as proved by Rubin in
[10, Proposition 3.1]. Also, note that if rS(K/k) > r, the conjecture above is trivially true, with
εK/k,S,T,r = 0.

We conclude this section with a couple of very useful formulas for the regulator R.

Lemma 3.10. Assume that |S| > r + 1. Let χ ∈ Ĝr,S and Iχ ∈ ℘r(S) be the unique subset, such
that χ(Gv) = {1}, for all v ∈ Iχ. Then, for all z ∈ (C ∧r US,T )r,S, we have

(1) R(z) =
∑

I∈℘r(S) RI(z) , for all z ∈ (C ∧r US,T )r,S .

(2) R(eχ · z) = RIχ(eχ · z) .

Proof. It suffices to show that if I ∈ ℘r(S) and I 6= Iχ, then RI(eχ · z) = 0, for all χ ∈ Ĝr,S .
Obviously, since χ 6= 1G (as |S| > r +1), we also have χ(Gv) 6= {1}, for all v 6∈ Iχ. Therefore, there
is a v ∈ I \ Iχ, such that χ(Gv) 6= {1} or, equivalently, χ(NGv ) = 0. The proof of Lemma 3.4 shows
that RI(eχ · z) = eχ ·RI(z) ∈ ∏

v∈I χ(NGv ) · Ceχ = 0. This concludes the proof. ¤

4. Functoriality results

Throughout this section we assume that (S, T ) is an appropriate pair for the abelian extension
K/k of Galois group G. Also, we assume that S is an r–cover for Ĝ. In light of Remark 3 above, we
will assume that r = rS(K/k) and |S| > r + 1. Throughout, we let εK/k := εK/k,S,T,r. The main
goal of this section is to study various functoriality properties of conjecture B̃(K/k, S, T, r) as well
as its links to Rubin’s conjecture for various intermediate field extensions M/k, with M ⊆ K. Note
that for any such M , the pair (S, T ) is appropriate for M/k and S is an r–cover for Ĝ(M/k). So
conjecture B̃(M/k, S, T, r) makes perfect sense. In order to “align” our regulator maps properly,
we make the following convention: for every v ∈ S, the chosen prime w′(v) sitting above v in M is
precisely the prime sitting below w(v) (recall that w(v) is the chosen prime in K sitting above v.)
Since we will be dealing with a variety of top fields K, M etc. (while the bottom field k remains
fixed), we distinguish between the various regulators computed at the level of these top fields by
incorporating the relevant top field as a superscript in the regulator notation: RK , RM , RK

I , RM
I ,

etc.

Fix a field M intermediate to K/k. Let H = G(K/M), viewed as a subgroup of G = G(K/k).
We identify Γ := G/H with the Galois group G(M/k). Let NH = NK/M :=

∑
h∈H h ∈ C[G] be the

algebraic norm attached to H. We abuse notation and denote by NH = NK/M : UK,S,T → UM,S,T

the norm map at the level of groups of units as well. This induces a C[G]–linear map

N
(r)
H = N

(r)
K/M := ∧rNH : C ∧r UK,S,T → C ∧r UM,S,T .

Note that since C[G] is a semisimple ring, CUM,S,T is a direct summand of CUK,S,T (in the category
of C[G]–modules), and consequently we have a natural inclusion of C[G]–modules

C ∧r UM,S,T ↪→ C ∧r UK,S,T .
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Let πK/M : C[G] → C[Γ] denote the natural projection and π∗K/M : C[Γ] → C[G] be the C–linear
coprojection map given by

σH 7→ σNK/M

|H| , for all σ ∈ G .

Obviously, π ◦ π∗(x) = x and π∗ ◦ π(x) = (NH/|H|) · x. It is important to note that for any χ ∈ Γ̂,

(4) π∗K/M (eχ) = eχ◦πK/M

and

(5)
NK/M

|H| =
∑

χ∈ bG
χ|H=1G

eχ.

Also, there is a natural conorm map N∗
K/M : U∗

K,S,T → U∗
M,S,T , given by

φ 7→ N∗
K/Mφ where (N∗

K/Mφ)(u) =
1

[K : M ]
πK/M ◦ φ(u) , for all φ ∈ U∗

K,S,T .

Remark 4.1. It is not very difficult to see that since UK,S,T and UM,S,T have no Z–torsion, the
conorm map N∗

K/M is surjective [8, Lemma 4.1.2]. Also, a straightforward calculation shows that

φ(u) = |H| · π∗K/M ◦N∗
K/Mφ(u) , for all u ∈ UM,S,T and all φ ∈ U∗

K,S,T .

Proposition 4.2. With notations as above, assume that I ∈ ℘r(S). Then, the following hold for
all x ∈ C ∧r UM,S,T and z ∈ C ∧r UK,S,T .

(1) RK
I (x) = |H|r · π∗K/M ◦RM

I (x) and RK(x) = |H|r · π∗K/M ◦ RM (x) .

(2) RM
I (N (r)

K/Mz) = πK/M ◦RK
I (z) and RM (N (r)

K/Mz) = πK/M ◦ RK(z)

Proof. This is a direct consequence of Lemma 3.10 and the equalities

`w(v)(x) = |H| · π∗K/M ◦ `w′(v)(x) , for all x ∈ CUM,S,T

`w′(v)(NK/Mx) = πK/M ◦ `w(v)(x) for all x ∈ CUK,S,T

where v ∈ S, w(v) is the chosen prime in K sitting above v and w′(v) is the prime in M sitting
below w(v). The equalities above are consequences of |u|1/|Gv|

w(v) = |u|1/|Γv|
w′(v) , for all u ∈ UM,S,T . ¤

Corollary 4.3. With notations as above, we have

εM/K,S,T,r = N
(r)
K/M (εK/k,S,T,r) .

Proof. First, observe that the C[G]–linear map N
(r)
K/M maps (C ∧r UK,S,T )r,S to (C ∧r UM,S,T )r,S .

Now, the corollary is a direct consequence of the injectivity of RM when restricted to this latter
space, Proposition 4.2, part (2), and the inflation property of Artin L–functions which implies that
πK/M (ΘK/k,S,T,r) = ΘM/k,S,T,r. ¤

Lemma 4.4. For any z ∈ C ∧r UK,S,T , and φ1, . . . , φr ∈ U∗
K,S,T , we have

πK/M (φ1 ∧ . . . ∧ φr)(z) = ((N∗
K/Mφ1) ∧ . . . ∧ (N∗

K/Mφr))(N
(r)
K/Mz).
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Proof. By C-linearity, it suffices to assume z = u1 ∧ . . . ∧ ur. Then

πK/M (φ1 ∧ . . . ∧ φr)(u1 ∧ . . . ∧ ur) = πK/M det(φi(uj))

= det
(

πK/M

NK/M

[K : M ]
φi(uj)

)

= det
(

1
[K : M ]

πK/Mφi(NK/Muj)
)

= det
(
(N∗

K/Mφi)(NK/Muj)
)

= ((N∗
K/Mφ1) ∧ . . . ∧ (N∗

K/Mφr))(N
(r)
K/Mz)

as desired. ¤
Theorem 4.5. With notations as above, we have

B̃(K/k, S, T, r) ⇒ B̃(M/k, S, T, r) .

Proof. According to Corollary 4.3, all we have to check is that N
(r)
K/M (εK/k,S,T,r) ∈ ΛM/k,S,T ,

assuming that εK/k,S,T,r ∈ ΛK/k,S,T . Let ϕ1, . . . , ϕr ∈ U∗
M,S,T . Recalling that that the map N∗

K/M

is surjective, pick φ1, . . . , φr ∈ U∗
K,S,T such that N∗

K/Mφi = ϕi. Using Lemma 4.4, we compute

(ϕ1 ∧ . . . ∧ ϕr)(εM/k,S,T,r) = (ϕ1 ∧ . . . ∧ ϕr)(N
(r)
K/MεK/k,S,T,r)

= πK/M

(
(φ1 ∧ . . . ∧ φr)(εK/k,S,T,r)

)

∈ πK/MZ[G] = Z[Γ].

¤
Lemma 4.6. Assume that (S, T ) is appropriate for K/k and S is an r–cover for Ĝ. Then for any
finite sets S′ and T ′, such that S ⊆ S′, T ⊆ T ′ and S′ ∩ T ′ = ∅, we have the following.

(1) εK/k,S′,T ′,r =
∏

v∈T ′\T (1−Nv · σ−1
v ) ·∏v∈S′\S(1− σ−1

v ) · εK/k,S,T,r

(2) B̃(K/k, S, T, r) ⇒ B̃(K/k, S′, T ′, r) .

Proof. The proof is identical to that of the corresponding Lemma for Rubin’s conjecture (see [10].)
¤

The abelian extension K/k has a number of distinguished subfields. For each character χ ∈ Ĝ,
we have Kχ, the fixed field of the kernel of χ. Note that exactly rS(χ) primes of S split completely
in the extension Kχ/k. Hence for those characters of minimal order of vanishing r we have a Rubin
evaluator εχ := εKχ/k,S,T,r. In what follows, we let εK/k := εK/k,S,T,r.

Proposition 4.7. With notations as above,

(6) εK/k =
∑

χ∈ bGr,S

1
| kerχ|r eχεχ.

Proof. First, note that both sides in the equality above belong to (C ∧r UK,S,T )r,S . Since RK is
injective when restricted to this space, it suffices to show that RK applied to the right hand side is
equal to ΘK/k,S,T,r. We prove this one character at a time. Fix a χ ∈ Ĝr,S . Let π := πK/Kχ

and
let ẽχ ∈ C[G(Kχ/k)] be the idempotent of χ, viewed as a character of G(Kχ/k). Let z denote the
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right hand side of the equality in the statement above. First, we observe that π∗(ẽχ) = eχ. Next,
we use Proposition 4.2 and the inflation property of Artin L–functions to compute.

RK(z)eχ =
1

| kerχ|rR
K(εχ)eχ

= π∗(RKχ(εχ))eχ

= π∗
(
ΘKχ/k,S,T,r

)
eχ

= π∗
(
ẽχ ·ΘKχ/k,S,T,r

)
eχ

= π∗
(
ẽχ · 1

r!
L

(r)
Kχ/k,S,T (0, χ−1)

)
eχ

=
1
r!

L
(r)
K/k,S,T (0, χ−1)eχ

= ΘK/k,S,T,reχ.

This concludes the proof of the Proposition. ¤

Now, we shift viewpoint and instead of looking at the primes split in Kχ, for a given χ ∈ Ĝr,S , we
fix a set of primes and look at the subextension in which they split completely. Recall that ℘r(Smin)
denotes the set of all subsets of Smin of cardinality r. For each I ∈ ℘r(Smin), let DI = 〈Gv〉v∈I (the
subgroup of G generated by the decomposition groups of the primes in I) and let KI := KDI . Note
that every v ∈ I splits completely in KI/k. Putting εI := εKI/k,S,T,r, an alternative description of
the evaluator εK/k is given by the following.

Proposition 4.8. With notations as above, we have

(7) εK/k =
∑

I∈℘r(Smin)

1
|DI |r εI .

Proof. For any I, we compute

1
|DI |r εI =

1
|DI |r

NDI

|DI | εI

=
1

|DI |r
∑

χ∈ bG
DI⊆ker χ

eχεI

=
1

|DI |r
∑

χ∈ bG
DI⊆ker χ

eχ

N
(r)
KI/Kχ

[kerχ : DI ]r
εI

=
∑

χ∈ bG
DI⊆ker χ

1
| kerχ|r eχεχ

where the first equality holds because elements of DI fix εI , the second is equation (5), the third
holds because χ(NKI/Kχ

) = [ker χ : DI ] for those χ whose kernels contain DI . Therefore
∑

I∈℘r(Smin)

1
|DI |r εI =

∑

χ∈ bG

nχ

| kerχ|r eχεχ,
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where

nχ = card{I ∈ ℘r(Smin) | DI ⊆ kerχ}
= card{I ∈ ℘r(Smin) and for all v ∈ I, v splits in Kχ}.

Then nχ = 1 if and only if rS(K/k) = rS(χ). When nχ > 1 we have more than r primes which
split in Kχ/k and εχ = 0 by Remark 3.9. The proof concludes by Proposition 4.7. ¤
Proposition 4.9. Under the above assumptions and notations, we have.

(1) If B̃(KI/k, S, T, r) is true for all I ∈ ℘r(Smin), then

εK/k ∈
1
|G|ΛS,T ,

i.e., B̃(K/k, S, T, r) is true up to a factor of |G| = [K : k].
(2) If B̃(KI/k, S, T, r) is true up to primes dividing |G| (i.e. εI ∈ Z[1/|G|]ΛKI/k,S,T ), for all

I ∈ ℘r(Smin), then so is B̃(K/k, S, T, r) (i.e. εK/k ∈ Z[1/|G|]ΛK/k,S,T .)

Proof. Let φ = φ1 ∧ . . . ∧ φr ∈
∧r
Z[G] U

∗
K,S,T . Let M be an arbitrary intermediate field for K/k.

Note that Lemma 4.4 combined with the fact that εM/k is fixed by H = G(K/M) yield

φ

(
1

[K : M ]r
εM/k

)
=

1
[K : M ]r

π∗K/MπK/Mφ(εM/k)

=
1

[K : M ]r
π∗K/M ((N∗

K/M )(r)φ)(N (r)
K/MεK/M )

= π∗K/M ((N∗
K/M )(r)φ)(εK/M )

∈ π∗K/MZ[Γ] .

Under hypotheses (1) and (2), respectively, we have

π∗K/MZ[Γ] ⊆ 1
[K : M ]

Z[G] (⊆ 1
[K : M ]

Z[1/|G|][G], respectively.)

Now, we apply this computation repeatedly with M = KI for each I ∈ ℘r(Smin) to the formula
given by Theorem 4.8 to obtain the result. Of course, we finally need to note that |DI | divides |G|,
for all I ∈ ℘r(Smin). ¤

Remark 4.10. Note that under the hypotheses of Propositions 4.8 and 4.9, B̃(KI/k, S, T, r) is
equivalent to the classical Rubin–Stark conjecture for the same data, for all I ∈ ℘r(S) (as all r
primes in I split completely in KI/k, by definition.) So, these propositions relate our conjecture to
the classical Rubin-Stark conjecture for various distinguished intermediate extensions M/k.

In light of the above remark, a consequence of Proposition 4.9 is the following.

Theorem 4.11. Under the above notations and assumptions, the following hold.
(1) If K/Q is a Galois abelian extension, then

εK/k ∈
1
|G|Z[1/2]ΛK/k,S,T .

(2) Further, if K is an imaginary abelian extension of Q of odd, prime power conductor, then

εK/k ∈
1
|G|ΛK/Q,S,T .
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(3) If K is a characteristic p > 0 global field, then

εK/k ∈
1
|G|ΛK/k,S,T .

Proof. In [1] and [9] the Rubin–Stark conjecture for abelian extensions K/k of characteristic p global
fields is proved unconditionally. This result, combined with Proposition 4.9, settles (3) above.

In [1], Burns proves the Rubin–Stark conjecture up to an undetermined power of 2 for all abelian
extensions of number fields K/k, provided that K/Q is abelian. This result, combined with Propo-
sition 4.9, settles (1) above.

In [7], (a strong form of) the Rubin–Stark conjecture is proved for extensions K/Q with K
abelian, imaginary and of odd prime power conductor. This leads to (2) above. ¤

5. Unramified covers and extensions of prime exponent

In this section, we will provide some evidence in support of conjecture B̃(K/k, S, T, r). The as-
sumptions and notations are the same as in §4. In particular, (S, T ) is an appropriate pair for
the abelian extension K/k, whose Galois group is denoted by G. Also, S is an r–cover for Ĝ and
|S| > r + 1.

Theorem 5.1. Suppose that S has a subset S′ which is an r-cover for Ĝ consisting of only finite
primes that do not ramify in K/k. Let Sb := S \ S′. If B̃(KI/k, Sb ∪ I, T, r) is true for all
I ∈ ℘r(Smin), then B̃(K/k, S, T, r) is true.

Proof. Note that Smin ⊆ S′. As S′ contains only finite, unramifying primes, Sb still contains all
infinite and ramifying primes and hence is appropriate for the extension K/k.

If |S′| = r, then Smin = S′ contains r primes which split completely in K/k (as S′ is an r–cover
for Ĝ) and KI = K for I = Smin, therefore B̃(K/k, S, T, r) is true. Therefore, we may assume that
|S′| > r. For any I ∈ ℘r(Smin) we may define

ηI =
∏

v∈S′\I

(
1− σ−1

v

)

The Frobenius automorphisms above exist because we are assuming the primes in S′ are unramified.
The element ηI is relevant in what follows because, as Lemma 4.6 shows, we have

(8) εKI/k,S,T,r = ηI · εKI/k,Sb∪I,T,r

for all I ∈ ℘r(Smin). Temporarily, fix some I ∈ ℘r(Smin). Take v ∈ I and χ ∈ Ĝ. We claim that

χ((σv − 1)ηI) = 0 .

Obviously, the claim is true if χ(ηI) = 0. But χ(ηI) 6= 0 implies that no prime in S′ \ I splits in
Kχ/k. However we know at least r primes of S′ have to split in Kχ/k, as S′ is an r-cover. Thus
all the primes in I split in Kχ/k, so χ(σv) = 1 and the claim has been shown. Since this holds
for all χ ∈ Ĝ we conclude that (σv − 1)ηI = 0, that is, σv · ηI = ηI . In the case of unramified
primes, DI , the subgroup generated by the decomposition groups of the primes in I, is actually
generated by the Frobenius automorphisms, DI = 〈σv | v ∈ I〉. Thus, we have shown that ηI is
fixed by DI . However Z[G] is a free Z[DI ]–module, so is DI–cohomologically trivial. Consequently

Ĥ
0
(DI ,Z[G]) = 0 and Z[G]DI = NDIZ[G]. Therefore

ηI = NDI · η′I for some η′I ∈ Z[G] .
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Let φ = φ1 ∧ . . . ∧ φr ∈
∧r

U∗
S,T . We need only show that φ(εK/k,S,T ) ∈ Z[G], as this will imply

that εK/k,S,T is an element of ΛK/k,S,T , which is the prediction of the conjecture. We will show first
that φ(εKI/k,Sb∪I,T,r) = Nr

DI
βφ

I for some βφ
I ∈ Z[G]. Indeed, if we use successively Remark 4.1, the

hypothesis εKI/k,Sb∪I,T,r ∈ ΛKI/k,Sb∪I,T and the fact that Im(π∗K/KI
) ⊆ NDI

|DI |Z[G], we conclude

φ(εKI/k,Sb∪I,T,r) = |DI |rπ∗K/KI
(N∗(r)

K/KI
(φ)(εKI/k,Sb∪I,T,r)) ∈ |DI |r−1NDIZ[G] = Nr

DI
Z[G].

Now, we use (8) and Proposition 4.8 to compute

φ(εK/k,S,T ) =
∑

I∈℘r(Smin)

1
|DI |r φ(εKI/k,S,T,r)

=
∑ η′I

|DI |r NDI
φ(εKI/k,Sb∪I,T,r)

=
∑ η′I

|DI |r Nr+1
DI

βφ
I

=
∑

η′INDI
βφ

I

∈ Z[G],

concluding the proof. ¤
Let us turn to a more specific type of abelian extension. The first author has a forthcoming

article inspired by [11] regarding conjecture B̃ in multiquadratic extensions, i.e., those of exponent
two. Much more can be said in that case because Rubin’s conjecture was shown by Rubin to be true
for relative quadratic extensions, and he gave an explicit description of the evaluator [10]. Instead,
here let us focus on a more general case where the exponent of our field extension is a prime l.
That is G = G(K/k) ∼= (Z/lZ)m. Our goal is to prove B̃(K/k, S, T, r) under the hypothesis that
the standard Rubin-Stark conjecture is true for (cyclic) extensions of degree l. Please recall that
if G = G(K/k) is cyclic and S is an r–cover for Ĝ, then S has to contain r primes which split
completely in K/k, so the standard Rubin-Stark conjecture applies (see Example 1, §2).

Theorem 5.2. Suppose l is a prime number, G = G(K/k) ∼= (Z/lZ)m and that B̃(M/k, S′, T, r) is
true for every degree l extension M of k contained in K and appropriate S′ ⊆ S. Let Sram denote
the set of finite primes of k that ramify in K/k, and S∞ denote the set of infinite places of k. If

(9) |S| ≥ r + |Sram|+ |S∞|+ (m− 1)l

then B̃(K/k, S, T, r) is true.

Proof. Take χ ∈ Ĝr,S . Let H = kerχ and M = KH . We know that M/k is a Z/lZ-extension in
which exactly r primes of S split completely. Let SH consist of these r primes together with Sram

and S∞. Then we have

(10) εM/k,S,T,r =


 ∏

v∈S\SH

(1− σ−1
v )


 εM/k,SH ,T,r.

where σv here represents the Frobenius of v in M/k. (As none of the primes in S \ SH split in
M/k, these Frobenius morphisms are nontrivial.) Note that G(M/k) is cyclic with generator σ.
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Because 1− σt = (1− σ)(1 + σ + · · ·+ σt−1), the product appearing in equation (10) is divisible by
(1− σ)|S\SH |, and hence by (1− σ)(m−1)l. The binomial theorem (combined with the cancellation
of the first and last terms) implies (1− σ)l ∈ lZ[G(M/k)]. Hence

(11) εM/k,S,T,r = lm−1ηH · εM/k,SH ,T,r.

for some ηH ∈ Z[G(M/k)]. Since [K : M ] = lm−1, we have the necessary factor such that when
the computation in the proof of Proposition 4.9 is carried out, indeed φ(εK/k,S,T ) ∈ Z[G]. ¤

Definition 5.3. S is a completely nontrivial r-cover for K/k if it contains no prime which splits
completely in K/k.

Corollary 5.4. If G = G(K/k) ∼= (Z/lZ)m, B̃(M/k, S′, T, r) is true for every degree l extension
of k contained in K and appropriate S′ ⊆ S, S is a completely nontrivial r-cover and

r ≥ 1
l − 1

[
|Sram|+ |S∞|+ (m− 1)l − 1

]

then B̃(K/k, S, T ) is true.

Proof. By hypothesis, none of the primes in S split completely in K/k, so it follows that each
decomposition group is nontrivial and gv ≤ lm−1. Since S is an r-cover for Ĝ, for every χ ∈ Ĝ,
rS(χ) ≥ r. Substituting these estimates into equation (1) yields (lm − 1)r ≤ (lm−1 − 1)|S|, or
|S| ≥ lm−1

l(m−1)−1
r > lr. Since |S| is an integer, |S| ≥ lr + 1 = r + (l − 1)r + 1, which, by hypothesis

is at least r + |Sram|+ |S∞|+ (m− 1)l. We are done by the previous Theorem. ¤

Example. Theorem 5.2 may also be used to give (infinitely) many examples of extensions K/Q
for which B̃(K/Q, S′, T, r) can be proved.

First, let us note that Rubin’s conjecture is known to hold for Z/lZ-extensions K/Q, if l is a
prime. If l = 2, this is proved in [10] (for arbitrary base fields k.) Assume that l > 2. Burns proves
in [1] the conjecture for K/Q up to a power of 2 (see the proof of Theorem 4.11 above.) On the
other hand, if the base field is Q, Rubin’s conjecture is known to hold true up to primes dividing the
order of the Galois group G(K/Q) (as a consequence of the fact that cyclotomic units and Gauss
sums form Euler Systems, see [8].) This fact combined with Burns’s result settles the conjecture
for l > 2 as well.

Next, let K/Q be any (Z/lZ)m extension, with l prime, and let (S, T ) be a pair which is appro-
priate for K/Q, such that S is an r–cover for Ĝ and r = rS(K/k). Fix a particular character of
minimal order of vanishing ψ ∈ Ĝr,S . Put b = r + |Sram| + |S∞| + (m − 1)l − |S|. If b ≤ 0 then
B̃(K/Q, S, T, r) is already true by Theorem 5.2, so assume b ≥ 1. Let E be a set of b primes of Q
disjoint from S and T , such that

(12) ψ(σv) 6= 1 for all v ∈ E.

Such a set may be chosen by the Tchebotarev Density Theorem. Finally, let S′ = S ∪ E. Because
of our assumption (12), no prime in E splits in Kψ/Q, and rS′(ψ) = rS(ψ) = r. Now

|S′| = |S|+ b = r + |S′ram|+ |S′∞|+ (m− 1)l.

All the hypotheses of Theorem 5.2 are fulfilled, so B̃(K/Q, S′, T, r) follows.

Of course, the same idea can be used to construct an infinite class of examples in characteristic
p > 0, where the full Rubin-Stark conjecture is known to hold (see proof of Theorem 4.11).



16 CALEB J. EMMONS AND CRISTIAN D. POPESCU

References

[1] David Burns. Congruences between derivatives of abelian L-functions at s = 0. Invent. Math., 169(3):451–499,
2007.

[2] David S. Dummit and David R. Hayes. Checking the p-adic Stark conjecture when p is archimedean. In ANTS-
II: Proceedings of the Second International Symposium on Algorithmic Number Theory, pages 91–97, London,
UK, 1996. Springer-Verlag.

[3] David S. Dummit, Jonathan W. Sands, and Brett A. Tangedal. Computing Stark units for totally real cubic
fields. Math. Comput., 66(219):1239–1267, 1997.

[4] Caleb Emmons. Higher Order Integral Stark-type Conjectures. PhD thesis, University of California, San Diego,
2006.

[5] Stefan Erickson. New Settings of the First Order Stark Conjectures. PhD thesis, University of California, San
Diego, 2005.

[6] Cristian D. Popescu. Base change for Stark-type conjectures “over Z”. J. Reine Angew. Math., 542:85–111,
2002.

[7] Cristian D. Popescu. The Rubin–Stark conjecture for imaginary abelian fields of odd prime power conductor.
Math. Ann., (330):215–233, 2004.

[8] Cristian D. Popescu. Rubin’s integral refinement of the abelian Stark conjecture. In Stark’s conjectures: recent
work and new directions, volume 358 of Contemp. Math., pages 1–35. Amer. Math. Soc., Providence, RI, 2004.

[9] Cristian D. Popescu. The Rubin–Stark conjecture for a special class of function field extensions. J. Number
Thry., (2):276–307, 2005.

[10] Karl Rubin. A Stark conjecture “over Z” for abelian L-functions with multiple zeros. Ann. Inst. Fourier (Greno-
ble), 46(1):33–62, 1996.

[11] Jonathan W. Sands. Popescu’s conjecture in multi-quadratic extensions. In Stark’s conjectures: recent work and
new directions, volume 358 of Contemp. Math., pages 127–141. Amer. Math. Soc., Providence, RI, 2004.

[12] H. M. Stark. L-functions at s = 1. IV. First derivatives at s = 0. Adv. in Math., 35(3):197–235, 1980.
[13] John Tate. Les conjectures de Stark sur les fonctions L d’Artin en s = 0, volume 47 of Progress in Mathe-
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