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Abstract. We show that, for all characteristic p global fields k and natural numbers
n coprime to the order of the non–p–part of the Picard group Pic0(k) of k, there
exists an abelian extension L/k whose local degree at every prime of k is equal to n.
This answers in the affirmative in this context a question recently posed by Kisilevsky
and Sonn. As a consequence, we show that, for all n and k as above, the n–torsion
subgroup Brn(k) of the Brauer group Br(k) of k is algebraic, answering a question
of Aldjaeff and Sonn in this context.

Introduction

Let k be a field and n a strictly positive integer. We denote by Brn(k) the n–
torsion subgroup of the Brauer group Br(k) of k. In [AS], the authors raise the
question whether the group Brn(k) is algebraic, i.e. equal to the kernel Br(L/k)
of the restriction map Br(k) −→ Br(L), for an algebraic separable extension L/k.
For arbitrary fields k, the answer to this question is in general “No” (see [AS] for
an example). However, the question is still open in the case where the field k is
a global field, i.e. either a number field or a characteristic p–function field with
a finite constant field. In [AS] and [KS], the authors answer this question in the
affirmative in certain instances where k is a number field. In this paper, we are
concerned with this question in the situation where k is a global function field. It
turns out that, for a given global function field k and a given integer n, the group
Brn(k) is algebraic if there exists a Galois extension L/k of local degree equal to n
at every prime v of k (see Proposition 1.5 below). Consequently, in this paper we
focus mainly on the construction of such Galois extensions, which is an interesting
problem in its own right. We use global and local class–field theoretical methods
to show that, given n and k as above, there exists an abelian Galois extension L/k
whose local degrees are all equal to n provided that n is coprime to the order of
the non–p part of the order of the Picard group of k (see Theorem 5.1 below). The
proof is divided into two major cases: the case where n is a p–power (see §3) and
the case where n is coprime to p (see §4). Our approach to the coprime–to–p case
was inspired by the constructions of Kisilevsky and Sonn in the case where k is
a number field whose class–number is coprime to n (see [KS]). The proof of the
p–power case uses methods and results which are more specific to characteristic p
global fields.
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1. Notations, definitions, and setup

1.1. Global function fields. Throughout this paper, p denotes a fixed prime
number, q := pν denotes a fixed power of p, with ν ∈ N≥1, and Fq denotes the
field of q elements. Let k be a characteristic p global field (i.e. a finite extension
of a rational field Fp(T ) of variable T ) of exact field of constants Fq, meaning that
Fq is contained and algebraically closed in k. We denote by Jk de group of idèles
of k and by Pic0(k) the Picard group of equivalence classes of degree 0 divisors
in k. In the sequel, we refer to the equivalence classes of valuations of k as the
primes of k. They are in a canonical one–to–one correspondence to the non–zero
prime ideals of various Dedekind subrings of k. For every prime v in k, we let kv

denote the completion of k with respect to v. As usual, we let Ov, mv, Uv and
U

(1)
v := 1+mv denote the valuation ring, its maximal ideal, the group of units, and

group of principal units in kv, respectively. The group U
(1)
v comes endowed with

the canonical filtration {U (i)
v }i≥1, where U

(i)
v := 1 + mi

v, for all i ≥ 1. The residue
field Fq(v) := Ov/mv is a finite extension of Fq, and its degree dv := [Fq(v) : Fq] is
called the degree of v over Fq. If πv is a uniformizer for v, then there are canonical
ring isomorphisms

Ov
∼−→ Fqdv [[πv]] , kv

∼−→ Fqdv ((πv)) ,

and group isomorphisms

Uv/U (1)
v

∼−→ F×
qdv

, Uv
∼−→ U (1)

v × F×
qdv

, U (i)
v /U (i+1)

v
∼−→ F+

qdv
,

for all i ∈ N≥1. Consequently, U
(1)
v is a pro–p group and therefore a (compact) topo-

logical Zp–module. Its Zp–module structure is described by the following proposi-
tion, whose proof can be found in [I] (see Proposition 2.8, page 25).

Proposition 1.1. As a topological Zp–module, U
(1)
v is isomorphic to a product of

countably many copies of Zp.

For a given k as above and a given m ∈ N≥1, we denote by km the constant field
extension of degree m of k, i.e. the field compositum k · Fqm over Fq, inside a fixed
separable closure of k. The following is a direct consequence of class–field theory.

Lemma 1.2.
(1) The extension km/k is unramified everywhere.
(2) A prime v in k splits in a product of gcd(m, dv) distinct primes in km/k.

In what follows, Pk will denote the set of primes of the global function field k.

Definition 1.3. A separable extension L/k of k is called of finite (respectively
constant, equal to n) local degree if [Lw : kv] is finite (respectively equal to n), for
all v ∈ Pk and all w ∈ PL, such that w divides v.

If L/k is a Galois extension then, for each v ∈ Pk, the local degree [Lw : kv] does
not depend on w ∈ PL dividing v, and will be denoted by [L : k]v in what follows.
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1.2 Brauer groups of global function fields. In what follows, if k is an arbi-
trary field, we denote by Br(k) its Brauer group. For the definitions, examples and
properties of Brauer groups which are relevant in the present context, the reader
can consult [S]. The Brauer group Br(k) is a commutative, torsion group, and there
exists a canonical group isomorphism

H2(G(k/k), k
×

)
jk

∼ // Br(k) ,

where k denotes a separable closure of k and Hi(G(k/k),M) is the i–th Galois
cohomology group with coefficients in the G(k/k)–module M . If L/k is an algebraic
separable field extension, then the restriction map resk/L at the level of Galois–
cohomology groups induces a restriction map at the level of Brauer groups, also
denoted by resk/L, such that the following diagram is commutative.

(1) H2(G(k/k), k
×

)

resk/L

²²

∼
jk //Br(k)

resk/L

²²
H2(G(L/L), L

×
)

jL

∼ //Br(L) .

The kernel of resk/L is denoted by Br(L/k) and it is a subgroup of Br(k) called the
L/k–relative Brauer group.

Definition 1.4. A subgroup H of Br(k) is called algebraic if there exists a separable
algebraic extension L/k, such that H = Br(L/k).

For any m ∈ Z≥1, we denote by Brm(k) the m–torsion subgroup of Br(k). In
[AS], the authors raise the question whether, given a field k and m ∈ Z≥1, the group
Brm(k) is algebraic. For arbitrary fields k, the answer to this question is in general
“No” (see [AS] for an example). However, the question is open in the case where
the field k is a global field, i.e. either a number field or a characteristic p–function
field with a finite constant field. In [AS] and [KS] the authors answer this question
in the affirmative in certain instances where k is a number field. In this paper, we
are concerned with this question in the case where k is a global function field.

Proposition 1.5. Let k be a characteristic p global field, let m ∈ Z≥1, and let L/k
be a Galois extension, such that [L : k]v = m, for all v ∈ Pk. Then, we have

Br(L/k) = Brm(k) .

In particular, Brm(k) is algebraic.

Proof. We need a few standard facts about Brauer groups of global function fields.
The reader can consult [S] for the proofs. If E is a global function field, then there
are canonical group morphisms

Br(E)
resE/Ew−−−−−→ Br(Ew)

invEw−−−−→
∼

Q/Z ,

for all w ∈ PE . The composition invw := resE/EW
◦ invEW

is called the local
invariant map at w. For every x ∈ Br(E), one has invw(x) = 0, for all but finitely
many w ∈ PE . The Brauer group Br(E) fits in an exact sequence

(2) 0 −→ Br(E)
⊕w∈PE

invw−−−−−−−−→
⊕

w∈PE

Q/Z −→ Q/Z −→ 0 ,
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where the right–most non–trivial map sends every element of
⊕

w∈PE
Q/Z into the

sum of its components. If E/k is a finite extension of global function fields, then
for all w ∈ PE and v ∈ Pk, such that w divides v, one has commutative diagrams

(3) Br(kv)
invkv

∼ //

reskv/Ew

²²

Q/Z

[Ew:kv]

²²
Br(Ew)

invEw

∼ // Q/Z

These lead to the following morphism of short exact sequences

(4) 0 // Br(k)

resk/E

²²

⊕vinvv // ⊕
v Q/Z

⊕v(⊕w|v[Ew:kv ])

²²

// Q/Z

²²

// 0

0 // Br(E)
⊕winvw//

⊕
v(

⊕
w|v Q/Z) // Q/Z // 0

,

where v runs through Pk and w runs through PE . Now, we return to the proof
of Proposition 1.5. Let x be an element of Brm(k), ant let Sx be the finite subset
of Pk consisting of all those v ∈ Pk, such that invv(x) 6= 0. Since [L : k]v = m,
for all v ∈ Pk, and Sx is finite, Krasner’s Lemma (see [L], II, §2) implies the
existence of a finite Galois extension E/k, with E ⊆ L, such that [E : k]v = m,
for all v ∈ Sx. Since x ∈ Brm(k), the exact sequence (2) for E := k implies that
invv(x) ∈ (1/m)Z/Z, for all v ∈ Pk. Consequently, the commutative diagram (3)
implies that

invw(resk/E(x)) = [E : k]v · invv(x) = 0 ,

for all w ∈ PE and v ∈ Pk sitting below w. Consequently, the commutative diagram
(4) implies that resk/E(x) = 0. Therefore, we have x ∈ Br(E/k). However, (1)
implies that Br(E/k) ⊆ Br(L/k). Consequently, we have an inclusion Brm(k) ⊆
Br(L/k).

Now, let x ∈ Br(L/k). The commutative diagram (1) implies that there exists
E/k finite, Galois, with E ⊆ L, such that x ∈ Br(E/k). The commutative diagram
(3) shows that

invw(resk/E(x)) = [E : k]v · invv(x) = 0 ,

for all w ∈ PE and v ∈ Pk sitting below w. However, since [E : k]v is a divisor of
[L : k]v = m, for all v ∈ Pk, the last equality shows that

invv(x) ∈ (1/m)Z/Z ,

for all v ∈ Pk. Now, via the exact sequence (2) for E := k, this implies that
x ∈ Brm(k), which concludes the proof of Proposition 1.5. ¤

2. Reduction Steps

Proposition 1.5 above shows that the algebraicity of Brn(k) for a given global
function field k and a given n ∈ N≥1 is a consequence of the existence of a separable
algebraic extension L/k with constant local degrees equal to n. The existence of
such extensions L/k is an interesting question in its own right. The remainder
of this paper focuses mainly on this question. The following lemmas provide two
reduction steps which will turn out to be very useful in the process of constructing
extensions L/k of finite constant local degrees.
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Lemma 2.1. Assume that n = `a1
1 ·. . .·`ar

r , with `1 , . . . , `r distinct primes numbers
and a1, . . . , ar ∈ N≥1. If Li/k are Galois extensions such that [Li : k]v = `ai

i , for
all v ∈ Pk, and all i = 1, . . . , r, then their compositum L := L1 · . . . ·Lr is a Galois
extension satisfying [L : k]v = n, for all v ∈ Pk.

Proof. This is a direct consequence of the fact that local degrees are multiplicative
in towers of fields. ¤

Lemma 2.1 allows us to reduce the proof of the main theorem to the case where
n is a prime power.

Lemma 2.2. If k/k′ is a finite separable extension of local degrees coprime to n
and L′/k′ is a Galois extension of local degrees [L′ : k′]v′ = n, for all v′ ∈ Pk′ , then
the field compositum L := L′ · k is a Galois extension of k, such that [L : k]v = n,
for all v ∈ Pk.

Proof. It is very clear that L/k is Galois. Let v ∈ Pk. Let w be a prime in L,
sitting above v, and let w′ and v′ be its restrictions to L′ and k′, respectively. Then
Lw = Lw′ · kv′ and therefore

[Lw : kv] · [kv : k′v′ ] = [Lw : L′w′ ] · [L′w′ : k′v′ ] .

Since [Lw : kv] ≤ [L′w′ : k′v′ ] = n, and [kv : k′v′ ] is coprime to n, the equality above
implies that [Lw : kv] = n. ¤

Lemma 2.2 is especially useful in the case where [k : k′] is a finite Galois ex-
tension of degree coprime to n. Then, its local degrees will divide its degree and,
consequently, will be coprime to n.

3. p–Power constant local degrees

In this section we will prove the following.

Theorem 3.1. Let k be a characteristic p function field and n := pm, for some
m ∈ Z≥1. Then, there exists an abelian extension L/k whose local degrees [L : k]v
are equal to n, for all v ∈ Pk.

We need several preparatory lemmas.

Lemma 3.2. Let w be a fixed prime in Pk. Then there exists a finite, non-empty
set S ⊆ Pk, such that w 6∈ S and satisfying the following equivalent conditions.

(1) There exists no non–trivial abelian extension of k which is unramified ev-
erywhere and completely split at all primes v ∈ S.

(2) We have an equality Jk = k×(
∏

v∈S k×v ×
∏

v 6∈S Uv).

Proof. For any finite, non–empty set S′ ⊆ Pk, such w 6∈ S′, if we denote by KS′

the maximal abelian extension of k, unramified everywhere and completely split at
all primes in S′, class–field theory shows that the extension KS′/k is finite and the
global Artin reciprocity map induces a group isomorphism

(5) Jk/k× · (
∏

v∈S′
k×v ×

∏

v 6∈S′
Uv) ∼−→ G(KS′/k) .
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Consequently, it suffices to find a set S satisfying property (2) in Lemma 3.2 Let
v1 ∈ Pk, v1 6= w and let S1; = {v1}. Then the extension KS1/k is finite. In fact,
we have an exact sequence of groups

1 −→ J
(0)
k /k×(

∏

v∈Pk

Uv) −→ Jk/k×(k×v1
×

∏

v 6=v1

Uv)
d̂eg−−→ Z/dv1Z −→ 1 ,

where J
(0)
k denotes the group of idèles of total degree 0 and d̂eg denotes the total

degree modulo dv1 map at the level of idèles. Since the left–most non–trivial term of
the exact sequence above is canonically isomorphic to Pic0(k) and therefore finite,
the term in the middle is finite. Consequently, G(KS1/k) is also finite. For any
v 6∈ S1 the isomorphism (5) for S′ := S1 sends any v–uniformizer πv ∈ k×v into
the Frobenius morphism σv associated to v in kv/k. Chebotarev’s density theorem
allows us to pick primes v2, . . . , vr in Pk\{w, v1}, such that σv2 , . . . , σvr

generate the
group G(KS1/k). The isomorphism (5) for S′ := S1 shows that this is equivalent
to the equality

Jk := k×(
∏

v∈S

k×v ×
∏

v 6∈S

Uv) ,

where S := {v1, v2, . . . , vr}. This concludes the Proof of Lemma 3.2. ¤
Proposition 3.3. Let w be a fixed prime in Pk. Let T ⊆ Pk be a finite set of primes
in k, such that w 6∈ T . Let α ∈ Z≥0. Then, there exists an abelian extension K/k,
which is totally ramified at w, unramified everywhere else, completely split at all
primes v in T , and of Galois group G(K/k) ∼−→ (Z/pZ)α.

Proof. The case α = 0 is clear. Let us assume that α ∈ Z≥1. For our fixed prime
w, let S be a finite set of primes satisfying the conditions in Lemma 3.2. Let
S′ := T ∪ S. Note that w 6∈ S′. For all i ∈ Z≥1, let K

(i)
S′,w denote the maximal

abelian extension of k of conductor dividing wi, and completely split at all primes
v ∈ S′. By class–field theory, the global Artin reciprocity map induces a group
isomorphism

Jk/k×(
∏

v∈S′
k×v × U (i)

w ×
∏

v 6∈S′∪{w}
Uv) ∼−→ G(K(i)

S′,w/k) .

However, according to Lemma 3.2, we have Jk = k×(
∏

v∈S k×v ×∏
v 6∈S Uv). This

implies that the left–hand–side of the above isomorphism is isomorphic to

Uw/ιw(US′) · U (i)
w ,

where ιw : k× −→ k×w is the canonical inclusion and US′ is the group of S′–units in
k×. Therefore, we obtain a group isomorphism

Uw/ιw(US′) · U (i)
w

∼−→ G(K(i)
S′,w/k) .

Since Uw = F×
qdw

× U
(1)
w , the isomorphism above shows that there exists a subfield

L
(i)
S′,w of K

(i)
S′,w, containing k, such that

(6) U (1)
w /ιw(U (1)

S′ ) · U (i)
w

∼−→ G(L(i)
S′,w/k) ,

where U
(1)
S′ denotes the subgroup (of finite index) of US′ consisting of those S′–units

in k× which are congruent to 1 modulo w. We will need the following Lemma.
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Lemma 3.4. For a multiplicative abelian group X we will denote by rkZ/pZ(X) the
dimension of the Z/pZ–vector space X/Xp. The following hold true.

(1) limi→∞ rkZ/pZ(U
(1)
w /U

(i)
w ) = ∞ .

(2) For i sufficiently large we have

rkZ/pZ(U (1)
w /ιw(U (1)

S′ ) · U (i)
w ) ≥ α .

Proof of Lemma 3.4. According to Proposition 1.1, we have an isomorphism of
topological Zp–modules

U (1)
w

j−→
∼
Zℵ0

p .

Comparing bases of open neighborhoods for the left-hand–side and right–hand–side
of the above isomorphism, respectively, we can conclude that for all t ∈ Z≥1, there
exists it ∈ Z≥1, such that

j(U (it)
w ) ⊆ (pZp)t × Zp × Zp × · · · .

This shows that j induces a surjective group morphism

U (1)
w /U (it)

w −→ (Z/pZ)t −→ 0 .

This implies that the Z/pZ–rank of the left–hand–side is at least t, which concludes
the proof of part (1). In order to prove part (2), let us observe that, for all i, we
have an exact sequence of groups

ιw(U (1)
S′ ) −→ U (1)

w /U (i)
w −→ U (1)

w /ιw(U (1)
S′ ) · U (i)

w −→ 1 .

The function field analogue of Dirichlet’s S′–unit theorem implies that

rkZ/pZ(ιw(U (1)
S′ )) ≤ rkZ/pZ(U

(1)
S′ ) = card(S′)− 1 .

In fact, since Leopoldt’s Conjecture is known to hold true in function fields (see
[K]), one can replace the “≤” sign above with the “=” sign. The above inequality,
combined with the last exact sequence and Lemma 3.4(1), concludes the proof of
Lemma 3.4(2). ¤

Now, we return to the proof of Proposition 3.3. We combine isomorphism (6)
and Lemma 3.4(2) to conclude that, for i sufficiently large, there exists a field
K ⊆ L

(i)
S′,w containing k, such that

G(K/k) ∼−→ (Z/pZ)α .

The extension K/k satisfies all the required properties. ¤

Proof of Theorem 3.1. Let us fix an ordering on Pk, Pk = {v1, v2, . . . }. The ex-
tension L/k will be obtained as the compositum of countably many finite abelian
extensions {Ki/k}i≥1, which will be constructed inductively below.
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Step 1. We apply Proposition 3.3 for w := v1, T = ∅, and α := m, and let
K1/k be a fixed abelian extension of k, which is totally ramified at v1, unramified
everywhere else, such that

G(K1/k) ∼−→ (Z/pZ)m .

Step 2. Since v2 is unramified in K1/k and G(K1/k) has exponent p, the
decomposition group Gv2 of v2 in K1/k is cyclic isomorphic to (Z/pZ)(m−γ2), where
m − 1 ≤ γ2 ≤ m. We apply Proposition 3.3 for w := v2, T = T1 := {v1}, and
α := γ2, and let K2/k be a fixed abelian extension of k, which is totally ramified at
v2, unramified everywhere else, completely split at all the primes in T1, such that

G(K2/k) ∼−→ (Z/pZ)γ2 .

Now, we assume that we have constructed K1/k, . . . , Kr/k, for r ≥ 2, and we
describe the construction of Kr+1/k.

Step (r+1). LetKr be the compositum K1·K2·. . .·Kr. Since G(Ki/k) is a finite,
abelian group of exponent p, for all i ≤ r, G(Kr/k) is finite, abelian of exponent p.
Consequently, since Ki/k is unramified at vr+1, for all i ≤ r, and therefore Kr/k is
unramified at vr+1, the decomposition group Gvr+1 of vr+1 in Kr/k is isomorphic to
(Z/pZ)(m−γr+1), where m−1 ≤ γr+1 ≤ m. We apply Proposition 3.3 for w := vr+1,
T = Tr := {v1, . . . , vr}, and α := γr+1, and let Kr+1/k be a fixed abelian extension
of k, which is totally ramified at vr+1, unramified everywhere else, completely split
at all the primes in Tr, such that

G(Kr+1/k) ∼−→ (Z/pZ)γr+1 .

We let L to be the compositum of all the fields {Ki}i≥1 constructed above and
claim that [L : k]v = n, for all v ∈ Pk. Indeed, let v = vr, for some r ≥ 1. Then
[L : k]v = evr (L/k) · fvr (L/k), where evr (L/k) and fvr (L/k) are the ramification
and inertia degrees of vr in L/k, respectively. Since Ki/k is unramified at vr, for
all i 6= r (see Step i, for i 6= r) and Kr/k is totally ramified at vr (see Step r), we
have

evr (L/k) = [Kr : k] = pγr .

Since, by the definition of γr, we have fvr (Kr−1/k) = p(m−γr), and fvr (Kr/k) = 1
(as Kr/k is totally ramified at vr, cf. Step r.), and fvr (Ki/k) = 1, for all i ≥ r +1
(as Ki/k is completely split at vr, cf. Step i., for all i ≥ r+1), we have an equality

fvr (L/k) = fvr (Kr−1/k) = p(m−γr) .

Consequently, we have an equality

[L : k]v = p(m−γr) · pγr = pm = n ,

which concludes the proof of Theorem 3.1. ¤
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4. Constant local degrees coprime to p

For a characteristic p function field k, we denote by hk the order of its Picard
group Pic0(k). In this section, we will prove the following.

Theorem 4.1. Let k be a characteristic p function field and n ∈ N≥1, such that
gcd(n, p · hk) = 1. Then, there exists an abelian extension L/k whose local degrees
[L : k]v are equal to n, for all v ∈ Pk.

Before proceeding to the proof of Theorem 4.1, we need a series of preparatory
lemmas. First, let us observe that Lemma 2.1 shows that it suffices to prove The-
orem 4.1 for n equal to a power of a prime number which does not divide p · hk.
Let us fix such a prime number ` and let n := `m, for a fixed m ∈ N≥1. Let us fix
d ∈ N≥1, such that

n | q
d − 1
q − 1

.

The reader will notice right away that, for example, d could be taken to be the
order of the class q̂ of q in (Z/nn′Z)×, where n′ := gcd(n, q − 1). Let Pk,nd denote
the set of primes in k, whose degrees over Fq are divisible by nd. Lemma 1.2 above
shows that Pk,nd coincides with the set of primes in k which split in the constant
field extension knd/k. Chebotarev’s density theorem implies that Pk,nd has density
1/nd in Pk and, consequently, is an infinite set. Let us fix v∞ ∈ Pk, such that
gcd(`, dv∞) = 1 (i.e. v∞ is one of the infinitely many primes in Pk which are inert
in k`/k, according to Lemma 1.2.) Let

A∞ := {x ∈ k | ordv(x) ≥ 0 , for all v ∈ Pk \ {v∞}} .

Then A∞ is a Dedekind domain whose non–zero prime ideals are in one–to–one
correspondence with Pk \ {v∞}, and its (finite) ideal class-group Pic(A∞) fits into
an exact sequence

1 −→ Pic0(k) −→ Pic(A∞) −→ Z/dv∞Z −→ 1 ,

where the last non–trivial map is the degree modulo d∞ map applied to ideal–
classes of A∞, viewed as classes of divisors of k whose support does not contain
v∞. Let h∞ := card(Pic(A∞)). Then h∞ = dv∞ · hk and gcd(`, h∞) = 1. Let us
fix an ordering of the primes in Pk (i.e. a bijection between Pk and Z≥0),

Pk := {v0 := v∞, v1, v2, v3, . . . } .

Proposition 4.2. Let w ∈ Pk,nd. Then there exists a unique field extension
k(w)n/k with the following properties.

(1) k(w)n/k is cyclic of degree n.
(2) k(w)n/k is totally ramified at w and unramified at all v ∈ Pk \ {w}.
(3) The prime v∞ splits completely in k(w)n/k.

Proof. Let k(w) be the maximal abelian extension of k, of conductor dividing w, in
which v∞ splits completely. If an extension k(w)n/k with the properties listed above
exists then, by class–field theory, k(w)n ⊆ k(w). Consequently, in order to prove
Proposition 4.2 it suffices to show that k(w)/k has a unique intermediate extension
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k(w)n/k satisfying the properties above. In fact, we will show that k(w)/k has
a unique intermediate extension of degree n, and then show that this extension
satisfies properties 1–3 above. Let H∞ denote the A∞–Hilbert class–field of k, i.e.
the maximal abelian extension of k, which is unramified everywhere, in which v∞
splits completely. Class–field theory shows that we have an inclusion H∞ ⊆ k(w)
and an isomorphism of exact sequences of groups

1 //
Uw

U
(1)
w F×q

o

²²

//
Jk

k×
[
k×v∞U

(1)
w

∏′
v Uv

]

o

²²

//
Jk

k×
[
k×v∞Uw

∏′
v Uv

]

o

²²

// 1

1 // G(k(w)/H∞) // G(k(w)/k) // G(H∞/k) // 1 ,

where
∏′

v is the product with respect to all primes v ∈ Pk \ {v∞, w}, the vertical
isomorphisms are given by the global Artin reciprocity map, and the horizontal
morphism are the canonical inclusion and projection maps at the level of idèle
classes and Galois groups, respectively. Consequently, we have the following group
isomorphisms

G(H∞/k) ∼−→ Jk

k×
[
k×v∞Uw ×

∏′
v Uv

] ∼−→ Pic(A∞) ,

G(k(w)/H∞) ∼−→ Uw/U (1)
w · F×q ∼−→ F×

qdw
/F×q .

Since gcd(`, h∞) = 1 and w ∈ Pk,nd, the isomorphisms above show that the `–Sylow
subgroup of G(k(w)/k) is isomorphic to the `–Sylow subgroup of G(k(w)/H∞) ∼−→
F×

qdw
/F×q , and therefore it is a cyclic group of order divisible by n = `m. This

implies right away that there exists a unique subfield of k(w) of degree n over k,
namely the maximal subfield of k(w) which is fixed by the subgroup

G(k(w)/k)n := {gn | g ∈ G(k(w)/k)}

of G(k(w)/k). Let us denote by k(w)n this subfield. Then, we have the following
group isomorphisms,

(7) F×
qdw

/(F×
qdw

)n ∼−→ Uw/Un
w

iw,n∼−→ Jk/Jn
k k×[k×v∞U (1)

w ×Π′vUv]
ρw,n∼−→ G(k(w)n/k) .

The first two isomorphisms above are induced by the canonical inclusions F×
qdw

⊆
Uw and Uw ⊆ Jk, respectively, and ρw,n is given by the global Artin reciprocity
map. Since k×v∞ and Uv, for all v 6= v∞, w, are contained in the kernel of the global
Artin map ρw,n in (7), global class–field theory implies that k(w)n/k is indeed
completely split at v∞ and unramified away from w. Also, the third and second
isomorphisms in (7) show that k(w)n/k is totally ramified at w. This concludes the
proof of Proposition 4.2. ¤

Our next goal is to prove a reciprocity law giving an explicit description of those
primes v ∈ Pk \{w, v∞} which split completely, respectively stay inert in the cyclic
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extension k(w)n/k, for a fixed w ∈ Pk,nd. Let v̂ denote the class of v in Pic(A∞),
for v ∈ Pk \ {w, v∞}. Obviously, we have v̂h∞ = 1 in Pic(A∞). This means that
there exists xv ∈ k×, unique up to multiplication by an element in F×q , such that
its divisor div(xv) satisfies

(8) div(xv) = h∞ · v − (h∞dv/dv∞) · v∞ .

For each v ∈ Pk \ {w, v∞}, we fix an xv ∈ k× with this property.

Proposition 4.3 (a reciprocity law). Let w ∈ Pk,nd and v ∈ Pk \ {w, v∞}.
Then, the following statements hold true.

(1) The prime v splits completely in k(w)n/k is and only if the prime w splits
completely in knd(x

1/n
v )/k.

(2) The prime v is inert in k(w)n/k if and only if the prime w does not split
completely in knd(x

1/`
v )/k.

Proof. We begin with the following remark.

Remark. Since d was chosen so that n | (qd − 1)/(q − 1), we have an inclusion
F×q ⊆ (F×

qnd)n ⊆ (k×nd)
n. Consequently, the fields knd(x

1/n
v ) and knd(x

1/`
v ) do not

depend on the above choice for xv and the extensions knd(x
1/n
v )/k and knd(x

1/`
v )/k

are Galois. Also, equality (8) combined with the assumption that gcd(n, h∞) = 1
shows that the extensions knd(x

1/n
v )/knd and knd(x

1/`
v )/knd are cyclic of degrees

n and `, respectively, totally ramified at all the primes in knd sitting above v,
and unramified at all primes in knd sitting above primes other than v and v∞ (in
particular, unramified at w).

Let σv ∈ G(k(w)n/k) denote the Frobenius morphism associated to v in the
extension k(w)n/k. Then v splits completely in k(w)n/k if and only if σv = 1.
However, since gcd(n, h∞) = 1 and σv ∈ G(k(w)n/k) ∼−→ Z/nZ, we have σv = 1 if
and only if σh∞

v = 1. Equality (8) combined with the definition of Artin’s global
reciprocity map ρw,n, shows that via the isomorphisms (7) we have

(9) σh∞
v = ρw,n(x̃v) = ρw,n ◦ iw,n(x̂v

−1) ,

where x̃v is the class in Jk/Jn
k k×[k×v∞U

(1)
w ×∏′

v Uv] of the idèle whose v–component
is equal to xv and the remaining components are trivial, and x̂v is the class of xv

in Uw/Un
w. This shows that σh∞

v = 1 if and only if xv ∈ Un
w or, equivalently, if

and only if xv is an n–power modulo w. This happens if and only if the equation
Xn − xv = 0 has at least one root modulo w. However, since nd | dw and therefore
all the order n roots of unity are in F×

qdw
, the equation above has one root modulo

w if and only if the polynomial Xn−xv splits into n distinct linear factors modulo
w. However, since w splits completely in knd/k, this happens if and only if all the
primes sitting above w in knd split completely in knd(x

1/n
v )/knd, which is equivalent

to the complete splitting of w in knd(x
1/n
v )/knd. This concludes the proof of (1).

In order to prove (2), let us observe that the arguments above show that v is inert
in k(w)n/k if and only if σh∞

v is not an `–power in G(k(w)n/k). Equalities (9) show
that this happens if and only if xv is not an `–power modulo w. This happens if
and only if the polynomial X`−xv is irreducible modulo w. As above, this happens
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if and only if all the primes sitting above w in knd are inert in knd(x
1/`
v )/knd. Since

w splits completely in knd/k and the extension knd(x
1/`
v )/knd is of prime degree `

(see the Remark above), this happens if and only if w does not split completely in
knd(x

1/n
v )/k. ¤

Proof of Theorem 4.1. As remarked at the beginning of §4.1, it suffices to construct
an extension L/k as in the statement of Theorem 4.1, for n = `m, with ` prime,
gcd(`, ph∞) = 1. The extension L/k will be constructed as a compositum of count-
ably many linearly disjoint Galois extensions {Li/k}i≥0, with cyclic Galois groups
G(Li/k) of degree n. The construction of Li/k is done inductively and described
in detail below. In what follows, we refer to the ordering of Pk fixed above the
statement of Proposition 4.2.

Step 0. We let L0 := kn.

Step 1. We let L1 := k(vj1)n where vj1 is a fixed prime in Pk,nd.

Step 2. We let L2 := k(vj2)n, where j2 > j1, and vj2 ∈ Pk,nd, with the following
properties.

(1) The prime vj1 splits completely in k(vj2)n/k.
(2) The primes vi ∈ Pk, with i < j1 are inert in k(vj2)n/k.

Of course, before declaring Step 2. complete, we would need to prove the existence
of a prime vj2 ∈ Pk,nd with properties (1) and (2) above. Proposition 4.2 implies
that a prime vj2 ∈ Pk satisfies properties (1) and (2) above if, firstly, it splits
completely in knd/k (which is equivalent to vj2 ∈ Pk,nd, according to Lemma 1.2),
and secondly, it splits completely in knd(x

1/n
vj1

)/k and it does not split completely
in knd(x

1/`
vi )/k, for all i < j1. Let L2 the extension of knd generated by {x1/n

vj1
} ∪

{x1/`
vi | 1 ≤ i < j1}. Then, the Remark made in the proof of Proposition 4.2 shows

that L2/k is a Galois extension and, for ramification reasons (see the Remark above)
one has an isomorphism of groups.

G(L2/knd)
∼−→ G(knd(x1/n

vj1
)/knd)×

j1−1∏

i=1

G(knd(x1/`
vi

)/knd) .

Chebotarev’s Density Theorem applied to the finite Galois extension L2/k shows
that there are infinitely many primes v ∈ Pk which are completely split in knd/k
and whose Frobenius morphism σv ∈ G(L2/knd) is sent under the isomorphism
above to (1, σ1, σ2, . . . , σj1−1), where σi is a generator of (the cyclic group, see the
Remark above) G(knd(x

1/`
vi )/knd) for all i, 1 ≤ i < j1−1. Any such prime v belongs

to Pk,nd (since it is completely split in knd/k) and satisfies properties (1) and (2).
In order to complete Step 2., we fix j2 > j1, so that vj2 is such a prime.

Now, assuming that we have constructed L0 := knd, L1 := k(vj1)n, . . . , Ls :=
k(vjs)n, for s ≥ 2, we describe the construction of Ls+1.

Step (s+1). We let Ls+1 := k(vjs+1)n, where vjs+1 ∈ Pk,nd, with js+1 > js,
satisfying the following properties.

(1) The primes vj1 , . . . , vjs split completely in k(vjs+1)n/k.
(2) The primes vi ∈ Pk, with js−1 < i < js are inert in k(vjs+1)n/k.
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The proof of the existence of a prime vjs+1 with the above properties is almost
identical to our proof of the existence of vj2 (see Step 2. above.) As above, the
Chebotarev’s Density Theorem applied to the extension Ls/k, where Ls is the field
generated over knd by the set {x1/n

vj1
, . . . x

1/n
vjs
} ∪ {x1/`

vi | js−1 ≤ i < js}, implies the
existence of infinitely many primes v ∈ Pk which are completely split in knd/k and
whose Frobenius morphism σv ∈ G(Ls/knd) is sent via the group isomorphism

G(L2/knd)
∼−→

s∏
t=1

G(knd(x1/n
vjt

)/knd)×
js−1∏

i=js−1+1

G(knd(x1/`
vi

)/knd)

into (1, . . . , 1, σjs−1+1, . . . σjs−1), where σi is a generator of G(knd(x
1/`
vi )/knd), for

all i. We fix js+1 > js, so that vjs+1 is such a prime.

We let the extension L/k be the compositum of all the extensions {Li/k}i≥0

defined above. We claim that L/k satisfies the property [L : k]v = n, for all v ∈ Pk.
First of all, let us note that Proposition 4.2 implies that Li/k are cyclic of degree
n and linearly disjoint. Therefore, we have group isomorphisms

(10) G(L/k) ∼−→
∏

i≥0

G(Li/k) ∼−→
∏

i≥0

Z/nZ .

Let v ∈ Pk. There are three distinct cases.
Case 0. Assume that v = v∞. Then, since v splits completely in Li/k, for all

i ≥ 1 (see Proposition 4.2(3)) and v is inert in L0/k, we have equalities [L : k]v =
[L0 : k]v = [L0 : k] = n.

Case 1. Assume that v = vi ∈ Pk \ {v∞, vj1 , vj2 , . . . }. Then Li/k is unramified
at v for all i ≥ 0 (see Proposition 4.2(2) and Lemma 1.2) and therefore L/k is
unramified at v. Consequently, [L : k]v equals the order ord(σv) of the Frobenius
morphism σv of v in L/k. The isomorphisms (10) above show that ord(σv) ≤ n.
On the other hand, we claim that [L : k]v ≥ n. Indeed, we either have i < j1, or
there exists (a unique) s ≥ 2, such that js−1 < i < js. In the former case, Step 2
above shows that [L : k]v ≥ [L2 : k]v = n, and in the later case Step (s+1) above
shows that [L : k]v ≥ [Ls+1 : k]v = n. Therefore [L : k]v = n.

Case 2. Assume that v = vjs , for some s ≥ 1. If s = 1, since v splits completely
in L0/k (see Lemma 1.2 and recall that v ∈ Pk,nd in this case), v splits completely
in Li/k, for all i ≥ 2 (see Step s, for s ≥ 2), and v is totally ramified in L1/k (see
Proposition 4.2), we have

[L : k]v = [L1 : k]v = [L1 : k] = n .

If s ≥ 2, then v splits completely in Li/k, for all i < s (see Lemma 1.2 for i = 0
and Step s for 0 < i < s), v splits completely in Li/k, for all i > s (see Step i, for
i > s), and v is totally ramified in Ls/k (Proposition 4.2(2)), we have

[L : k]v = [Ls : k]v = [Ls : k] = n .

This concludes the proof of Theorem 4.1. ¤
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5. Conclusions

We conclude with the following.

Theorem 5.1. Let k be a global function field of characteristic p and n ∈ Z≥1, such
that n is coprime to hk/pordp(hk). Then, there exists an abelian Galois extension
L/k, such that [L : k]v = n, for all v ∈ Pk.

Proof. Apply Lemma 2.1, Theorem 3.1 and Theorem 4.1. ¤
Corollary 5.2. For k and n as in Theorem 5.1, the group Brn(k) is equal to
Br(L/k), for an abelian extension L/k. In particular, Brn(k) is algebraic.

Proof. Combine Theorem 5.1 with Proposition 1.5. ¤
Remark. Finally, let us note that the hypotheses in Theorem 5.1 and Corollary
5.2 are met for all n if hk is a p–power. In particular, they are met if k is a rational
function field Fq(T ).
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