Exam 2, Mathematics 109
Prof. Cristian D. Popescu
November 20, 2013

Name:
Student ID:

Note: There are 3 questions on this exam. You will not receive credit unless you show all your work. No books, calculators, notes or tables are permitted.

I. (35 points)

Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be the functions given by

$$
f(x)=\left\{\begin{array}{ll}
x-1, & \text { if } x \text { is even; } \\
x+1, & \text { if } x \text { is odd }
\end{array} \quad g(x)= \begin{cases}x+1, & \text { if } x \text { is even } \\
x-1, & \text { if } x \text { is odd }\end{cases}\right.
$$

(1) Is f bijective? Justify your answer.
(2) If the answer to question (1) above is affirmative compute the inverse function $f^{-1}: \mathbb{Z} \rightarrow \mathbb{Z}$.
(3) Compute $f \circ g$.

Important note: You may use the fact that if $x \in \mathbb{Z}$, then x is even if and only if there exists $k \in \mathbb{Z}$ such that $x=2 k$ and x is odd if and only if there exists $k \in \mathbb{Z}$ such that $x=2 k+1$.

II. (35 points)

Let $\left\{F_{n}\right\}_{n \geq 1}$ be the Fibonacci sequence defined inductively by

$$
F_{1}=F_{2}=1, \quad F_{n+2}=F_{n+1}+F_{n}, \quad \forall n \in \mathbb{N} .
$$

(1) Prove that for all natural numbers n we have

$$
\sum_{i=1}^{n} F_{i}^{2}=F_{n} \cdot F_{n+1}
$$

(2) Prove that for all natural numbers n we have

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

where $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$.
Important note: α and β are the roots of the quadratic equation $x^{2}=x+1$.

III. (30 points)

(1) Let A, B, C be three subsets of a universal set X. Prove that

$$
(A \cap B=A \cap C) \wedge(A \cup B=A \cup C) \Longrightarrow B=C
$$

(2) If the following statement is true, prove it; if it is false, negate it and prove its negation.

$$
\exists y \in \mathbb{R}, \quad \forall x \in \mathbb{R}, \quad x y=1
$$

