
Hae they come pouri11g out of the 
blue. Little arrows for me a11d for 
you. 

-Albert Hammond and 
Mike Hazelwood 

Little Arrows 
Dutchess Music/BMI, 1968 

IICtlrs 

1.0 Introduction: The Racetrack Game 
Many measurable quantities, such as length, area, volume, mass, and temperature, 
can be completely described by specifying their magnitude. Other quantities, such as 
velocity, force, and acceleration, require both a magnitude and a direction for their 
description. These quantities are vectors. For example, wind velocity is a vector 
consisting of wind speed and direction, such as 10 km/h southwest. Geometrically, 
vectors are often represented as arrows or directed line segments. 

Although the idea of a vector was introduced in the 19th century, its usefulness in 
applications, particularly those in the physical sciences, was not realized until the 
20th century. More recently, vectors have found applications in computer science, 
statistics, economics, and the life and social sciences. We will consider some of these 
many applications throughout this book. 

This chapter introduces vectors and begins to consider some of their geometric 
and algebraic properties. We will also consider one nongeometric application where 
vectors are useful. We begin, though, with a simple game that introduces some of the 
key ideas. [You may even wish to play it with a friend during those (very rare!) dull 
moments in linear algebra class.] 

The game is played on graph paper. A track, with a starting line and a finish line, 
is drawn on the paper. The track can be of any length and shape, so long as it is wide 
enough to accommodate all of the players. For this example, we will have two players 
(let's call them Ann and Bert) who use different colored pens to represent their cars 
or bicycles or whatever they are going to race around the track. (Let's think of Ann 
and Bert as cyclists.) 

Ann and Bert each begin by drawing a dot on the starting line at a grid point on 
the graph paper. They take turns moving to a new grid point, subject to the following 
rules: 

1. Each new grid point and the line segment connecting it to the previous grid point 
must lie entirely within the track. 

2. No two players may occupy the same grid point on the same turn. (This is the 
"no collisions" rule.) 

3. Each new move is related to the previous move as follows: If a player moves 
a units horizontally and b units vertically on one move, then on the next move 
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The Irish mathematician William 
Rowan Hamilton ( 1805-1865) 
used vector concepts in his study 
of complex numbers and their 
generalization, the quaternions. 

he or she must move between a - I and a + 1 units horizontally and between 
b - I and b + 1 units vertically. In other words, if the second move is c units 
horizontally and d units vertically, then 'a - c :5 1 and lb - d :5 1. (This is the 
"acceleration/deceleration" rule.) Note that this rule forces the first move to be 
1 unit vertically and/or 1 unit horizontally. 

A player who collides with another player or leaves the track is eliminated. The 
winner is the first player to cross the finish line. If more than one player crosses 
the finish line on the same turn, the one who goes farthest past the finish line is the 
winner. 

In the sample game shown in Figure 1.1, Ann was the winner. Bert accelerated too 
quickly and had difficulty negotiating the turn at the top of the track. 

To understand rule 3, consider Ann's third and fourth moves. On her third move, 
she went 1 unit horizontally and 3 units vertically. On her fourth move, her options 
were to move 0 to 2 units horizontally and 2 to 4 units vertically. (Notice that some 
of these combinations would have placed her outside the track.) She chose to move 
2 units in each direction. 

Start '---...__....___, '--+------' Finish 
A 8 

Floure 1.1 
A sample game of racetrack 

Problem 1 Play a few games of racetrack. 
Problem 2 Is it possible for Bert to win this race by choosing a different sequence 

of moves? 
Problem 3 Use the notation [a, b] to denote a move that is a units horizontally 

and b units vertically. (Either a orb or both may be negative.) If move [3, 4] has just 
been made, draw on graph paper all the grid points that could possibly be reached on 
the next move. 

Problem 4 What is the net effect of two successive moves? In other words, if you 
move [a, b] and then [c, d], how far horizontally and vertically will you have moved 
altogether? 
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The Cartesian plane is named 
after the French philosopher and 
mathematician Rene Descartes 
(1596-1650), whose introduction 
of coordinates allowed geometric 
problems to be handled using 
algebraic techniques. 

The word vector comes from the 
Latin root meaning "to carry." A 
vector is formed when a point is 

r displaced-or "carried off"-a 
given distance in a given direction. 
Viewed another way, vectors 
"carry" two pieces of information: 
their length and their direction. 

When writing vectors by hand, 
it is difficult to indicate boldface. 
Some people prefer to write v for 
the vector denoted in print by v, 
but in most cases it is fine to use 
an ordinary lowercase v. It will 

be clear from the context 

component is derived 
Latin words co, meaning 
:with," and ponere, mean­

a vector is "put 
of its components. 

Section 1.1 The Geometry and Algebra of Vectors 3 

Problem 5 Write out Ann's sequence of moves using the [a, b] notation. Suppose 
she begins at the origin (0, 0) on the coordinate axes. Explain how you can find the 
coordinates of the grid point corresponding to each of her moves without looking at 
the graph paper. If the axes were drawn differently, so that Ann's starting point was not 
the origin but the point (2, 3 ), what would the coordinates of her final point be? 

Although simple, this game introduces several ideas that will be useful in our 
study of vectors. The next three sections consider vectors from geometric and alge­
braic viewpoints, beginning, as in the racetrack game, in the plane. 

The Geometrv and Algebra ot Vectors 

vectors in the Plane 
We begin by considering the Cartesian plane with the familiar x- andy-axes. A vector 
is a directed line segment that corresponds to a displacement from one point A to 
another point B; see Figure 1.2. 

The vector from A to B is denoted by AB; the point A is called its initial point, or 
tail, and the point B is called its terminal point, or head. Often, a vector is simply 
denoted by a single boldface, lowercase letter such as v. 

The set of all points in the plane corresponds to the set of all vectors whose tails 
are at the origin 0. To each point A, there corresponds the vector a = OA; to each vec­
tor a with tail at 0, there corresponds its head A. (Vectors of this form are sometimes 
called position vectors.) 

It is natural to represent such vectors using coordinates. For example, in 
Figure 1.3, A= (3, 2) and we write the vector a= OA = [3, 2] using square brackets. 
Similarly, the other vectors in Figure 1.3 are 

b=[-1,3] and ~=[2,-1] 

The individual coordinates (3 and 2 in the case of a) are called the components of the 
vector. A vector is sometimes said to be an ordered pair of real numbers. The order is 
important since, for example, [3, 2] ¥- [2, 3]. In general, two vectors are equal if and 
only if their corresponding components are equal. Thus, [x, y] = [ 1, 5] implies that 
x = 1 andy= 5. 

It is frequently convenient to use column vectors instead of (or in addition to) 

row vectors. Another representation of [3, 2] is [~].(The important point is that the 

y 

y 

A~B 

--+----------+X 

figure 1.2 figure 1.3 
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IR2 is pronounced "r two." 

When vectors are referred to by 
their coordinates, they are being 
considered analytically. 

Example1.1 

components are ordered.) In later chapters, you will see that column vectors are some­
what better from a computational point of view; for now, try to get used to both 
representations. ___. 

It may occur to you that we cannot really draw the vector [0, 0] = 00 from the 
origin to itself. Nevertheless, it is a perfectly good vector and has a special name: the 
zero vector. The zero vector is denoted by 0. 

The set of all vectors with two components is denoted by IR2 (where IR denotes 
the set of real numbers from which the components of vectors in IR2 are chosen). 
Thus, [ -1, 3.5], [ v'2, 1T ], and [~, 4] are all in IR2

• 

Thinking back to the racetrack game, let's try to connect all of these ideas to vec­
tors whose tails are no tat the origin. The etymological origin of the word vector in the 
verb "to carry" provides a clue. The vector [3, 2] may be interpreted as follows: Start­
ing at the origin 0, travel 3 units to the right, then 2 units up, finishing at P. The 
same displacement may be applied with other initial P.Oints. Figure 1.4 shows two 
equivalent displacements, represented by the vectors AB and CD. 

y 

c 

Flaure1.4 

We define two vectors as equal if they have the same length and the same direc­
tion. Thus, AB =CD in Figure 1.4. (Even though they have different initial and ter­
minal points, they represent the same displacement.) Geometrically, two vectors are 
equal if one can be obtained by sliding (or translating) the other parallel to itself until 
the two vectors coincide. In terms of components, in Figure 1.4 we have A = (3, 1) 
and B = (6, 3). Notice that the vector [3, 2) that records the displacement is just the 
difference of the respective components: 

1\B = [3, 2] = [6- 3, 3- 1] 

Similarly, -CD= (-1- (-4), 1- (-1)] = [3,2] 

and thus AB =CD, as expected. 
----> 

A vector such as OP with its tail at the origin is said to be in standard position. 
The foregoing discussion shows that every vector can be drawn as a vector in standard 
position. Conversely, a vector in standard position can be redrawn (by translation) so 
that its tail is at any point in the plane. 

If A = ( -1, 2) and B = {3, 4), find AB and redraw it (a) in standard position and 
(b)with its tail at the point C = (2, -1). 

SolutiOI We compute AB = [3 - ( -1), 4 - 2) = [4, 2]. If AB is then trartslaltea, 
to CD, where C = (2, -1), then we must have D = (2 + 4, -1 + 2) = (6, 1}. 
Figure 1.5.) 
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Figure 1.5 

New Vectors from Old 

/)(6. l) 
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As in the racetrack game, we often want to "follow" one vector by another. This leads 
to the notion of vector addition, the first basic vector operation. 

If we follow u by v, we can visualize the total displacement as a third vector, 
denoted by u + v. In Figure 1.6, u = [I, 2] and v = [ 2, 2], so the net effect of follow­
ing u byv is 

[1+2,2+2]=[3,4] 

which gives u + v. In general, if u = [lip 11 2] and v = I vi' v2 ], then their sum u +vis 
the vector 

It is helpful to visualize u + v geometrically. The following rule is the geometric 
version of the foregoing discussion. 

\" 

Figure 1.6 
Vector ,1ddition 
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The Head-to-Tail Rule 

Figure 1.8 
The parallelogram 
determined by u and v 

The Parallelogram Rule 

Example 1.2 

Given vectors u and v in IR2
, translate v so that its tail coincides with the head 

of u. The sum u + v of u and v is the vector from the tail of u to the head of v. 
(See Figure 1.7.) 

/ -. 7 
Figure 1.1 
The head-to-tail rule 

By translating u and v parallel to themselves, we obtain a parallelogram, as 
shown in Figure 1.8. This parallelogram is called the parallelogram determined by u 
and v. It leads to an equivalent version of the head-to-tail rule for vectors in standard 
position. 

Given vectors u and v in IR2 (in standard position), their sum u + vis the vector 
in standard position along the diagonal of the parallelogram determined by u and 
v. (See Figure 1.9.) 

y 

Figura 1.9 
The parallelogram rule 

Ifu = [3, -1) and v = [1, 4], compute and draw u + v. 

Solallon We compute u + v = [3 + 1, -l + 4) = [4, 3). This vector is drawn 
using the head-to-tail rule in Figure l.IO(a) and using the parallelogram rule in 
Figure l.IO(b ). 
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(a) 

Figure 1.10 
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(b) 

The second basic vector operation is scalar multiplication. Given a vector v and 
a real number c, the scalar multiple cv is the vector obtained by multiplying each 
component of v by c. For example, 3 [- 2, 4] = [- 6, 12]. In general, 

Geometrically, cv is a "scaled" version of v. 

----------------------~----------------------------------------------------------~ 

Example 1.3 Ifv = [ -2, 4], compute and draw 2v, ~v, and -2v. 

Solulion We calculate as follows: 

2v = [2(-2), 2(4)] = [ -4, 8] 
~v = [t(-2),1(4)] = [-1,2] 

-2v = [ -2( -2), -2(4)] = [ 4, -8] 

These vectors are shown in Figure 1.11. 

y 

2v 

-2v 

Figure 1.11 
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v 

-v v 

2v -2v 

figure 1.12 

The term sm/ar comes from the 
Latin word scala, meaning "lad­
der." The equally spaced rungs on 
a ladder suggest a scale, and in vec­
tor arithmetic, multiplication by a 
constant changes only the scale (or 
length) of a vector. Thus, constants 
became known as scalars. 

Example 1.4 

y 

A .-. 
~B a 

b 
X 

figure 1.14 

_.lv 
2 figure 1.13 

Vector subtraction 

u 

Observe that cv has the same direction as v if c > 0 and the opposite direction if 

c < 0. We also see that cv is · c' times as long as v. For this reason, in the context of vec­

tors, constants (that is, real numbers) are referred to as scalars. As Figure 1.12 shows, 

when translation of vectors is taken into account, two vectors are scalar multiples of 

each other if and only if they are parallel. 
A special case of a scalar multiple is ( -1 )v, which is written as -v and is called 

the negative ofv. We can use it to define vector subtraction: The difference of u and 
v is the vector u - v defined by 

u- v = u + ( -v) 

Figure 1.13 shows that u - v corresponds to the "other" diagonal of the parallelo­
gram determined by u and v. 

If u = [ l, 2] and v = [- 3, 1 ], then u - v = [ 1 - (- 3), 2 - 1] = [ 4, 1]. 

The definition of subtraction in Example 1.4 also agrees with the way we calcu­
late a vector such as AB. If the points A and B correspond to the vectors a and b in 
standard position, then AB = b- a, as shown in Figure 1.14. [Observe that the head­
to-tail rule applied to this diagram gives the equation a + (b - a) = b. If we had 
accidentally drawn b - a with its head at A instead of at B, the diagram would have 
read b + (b - a) = a, which is clearly wrong! More will be said about algebraic 
expressions involving vectors later in this section.] 

vectors in rR3 

Everything we have just done extends easily to three dimensions. The set of all ordered 
triples of real numbers is denoted by IR3

• Points and vectors are located using three 
mutually perpendicular coordinate axes that meet at the origin 0. A point such as 
A = ( 1, 2, 3) can be located as follows: First travel 1 unit along the x-axis, then move 
2 units parallel to they-axis, and finally move 3 units parallel to the z-axis. The corre­
sponding vector a = [ 1, 2, 3] is then OA, as shown in Figure 1.15. 

Another way to visualize vector a in IR3 is to construct a box whose six sides are deter­
mined by the three coordinate planes (the xy-, xz-, and yz-planes) and by three planes 
through the point ( l, 2, 3) parallel to the coordinate planes. The vector [ 1, 2, 3] then corre­
sponds to the diagonal from the origin to the opposite corner of the box (see Figure 1.16). 

< 

.. 
• 
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The '\:omponentwise" definitions of vector addition and scalar multiplication are 
extended to IR·1 in an obvious way. 

Vectors in lR1" 

In general, we define IR" as the set of all ordered 11-tuples of real numbers written as 
row or column vectors. Thus, a vector v in IR" is of the form 

[
I'll 

[v1,v2, ... ,v,] or ? 
v, 

The individual entries of v are its components; I'; is called the ith component. 
We extend the definitions of vector addition and scalar multiplication to IR" in the 

obvious way: If u = [ 11 1, 112, ••• , 11
11

] and v = [ v1, v2, ••• , 1'
11
], the ith component of 

u + v is II; + v, and the ith component of cv is just cv;. 
Since in IR" we can no longer draw pictures of vectors, it is important to be able to 

calculate with vectors. We must be careful not to assume that vector arithmetic will be 
similar to the arithmetic of real numbers. Often it is, and the algebraic calculations we 
do with vectors are similar to those we would do with scalars. But, in later sections, 
we will encounter situations where vector algebra is quite unlike our previous experi­
ence with real numbers. So it is important to verify any algebraic properties before 
attempting to use them. 

One such property is commutativity of addition: u + v = v + u for vectors u and 
v. This is certainly true in IR 2

• Geometrically, the head-to-tail rule shows that both 
u + v and v + u are the main diagonals of the parallelogram determined by u and v. 
(The parallelogram rule also retlects this symmetry; see Figure 1.! 7.) 

Note that Figure 1.17 is simply an illustration of the property u + v = v + u. It is 
not a prout~ since it does not cover every possible case. For example, we must also in-

.... elude the cases where u = v, u = -v, and u = 0. (What would diagrams for these 
cases look like?) For this reason, an algebraic proof is needed. However, it is just as 
easy to give a proof that is valid in IR" as to give one that is valid in IR2

• 

The following theorem summarizes the algebraic properties of vector addition 
and scalar multiplication in IR". The proofs follow from the corresponding properties 
of real numbers. 
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Theore11 1.1 

The word theorem is derived from 
the Greek word theorema, which in 
tum comes from a word meaning 
"to look at." Thus, a theorem is 
based on the insights we have 
when we look at examples and 
extract from them properties that 
we try to prove hold in general. 
Similarly, when we understand 
something in mathematics-the 
proof of a theorem, for example­
we often say, "I see:' 

Fluure 1.18 

Algebraic Properties of Vectors in IR" 

Let u, v, and w be vectors in IR" and let c and d be scalars. Then 

a. u + v = v + u 
b. (u + v) + w = u + (v + w) 

Commutativity 

Associativity 

c. u + 0 = u ,. 

d. u + (-u) = 0 

e. c(u + v) = cu + cv Distributivity 

Distributivity f. ( c + d)u = cu + du 

g. c(du) = (cd)u 

h. lu = u 

Remarks 
• Properties (c) and (d) together with the commutativity property (a) imply 

that 0 + u = u and -u + u = 0 as well. 
• If we read the distributivity properties (e) and (f) from right to left, they say 

that we can factor a common scalar or a common vector from a sum. 

Proof We prove properties (a) and (b) and leave the proofs of the remaining 
properties as exercises. Let u = [Up ~ ••.• , un], v = [ Vp v2, ... , v n], and w = 
( Wp W2, ••• , Wn]. 

(a) U + V = (Up u2, ... , Un] + ( Vp V2, ... , Vn] 

= (u1 + Vp ~+ V2, ... , Un + Vn] 

= [v1 + UpV2+ ~ •... ,vn+ un] 

= [vpv2, ... ,vn] + [up~····•un] 
=v+u 

The second and fourth equalities are by the definition of vector addition, and the 
third equality is by the commutativity of addition of real numbers. 

(b) Figure 1.18 illustrates associativity in IR2
• Algebraically, we have 

= [(ul + V1) + W1, (u2 + v2) + w2, ... , (u. + v.) + wn] 

= [ul + (v1 + W1), U2 + (v2 + W2), ... , Un + (vn + Wn)] 

= [ u1, u2, • •• , u.] + [ v1 + w1, v2 + w2, ••• , Vn + wn] 

=[up u2, ... , un] +([vi, v2, •.. , vn] + [wl, w2, ... , wn)) 

= u + (v + w) 

The fourth equality is by the associativity of addition of real numbers. Note the 
ful use of parentheses. 
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By property (b) of Theorem l. I, we lll<l)' unambiguously write u + v + w with­
out parentheses, since we may group the summands in whichever way we please. By 
(a), we may also rearrange the summands-for example, as w + u + v-if we choose. 
Likewise, sums of four or more vectors can he calculated without regard to order or 

grouping. In general, if vi' v, ... , v, arc vectors in IR 11
, we will write such sums with­

out parentheses: 

The next example illustrates the usc of Theorem 1.1 in performing algebraic 
calculations with vectors. 

Let a, b, and x denote vectors in IR 11
• 

(a) Simplify 3a + (3b- 2a) + 2(b- a). 
(b) If Sx- a= 2(a + 2x), solve for x in terms of a. 

Solution We will give both solutions in ddail, with reference to all of the properties 
in Theorem I. l that we use. It is good practice to justify all steps the tlrst few times 

you do this type of calculation. Once you are comt(Jrtable with the vector properties, 
though, it is acceptable to leave out some of the intermediate steps to save time and 
space. 

(a) We begin by inserting parentheses. 

3a + (5b - 2a) + 2(b - a) = (3a + (5b - 2a)) + 2(b - a) 

= (3a + (-2a + 5b)) + (2b- 2a) 

= ((3a + (-2a)) + Sb) + (2b- 2a) 

= ((3 + (-2))a + Sb) + (2b- 2a) 

= ( l a + Sb) + ( 2b - 2a) 

= ( (a + Sb) + 2b) - 2a 

=(a+ (Sb + 2b)) -- 2a 

=(a+ (5 + 2)b) - 2a 

=(7b+a)-2a 

= 7b +(a- 2a) 

= 7b + (l - 2)a 

= 7b + (-I )a 

= 7b- a 

(,1), il') 

!h) 

II) 

I h), I hi 

I h) 

lti 

i a) 

(h) 

(f). {h) 

You can see why we will agree to omit some of these steps! In practice, it is acceptable 
to simplify this sequence of steps as 

3a + (5b- 2a) + 2(b -a) 3a + Sb - 2a + 2b - 2a 

( 3a - 2a - 2a) + ( 5b + 2b) 

= -·a + 7b 

or even to do most of the calculation mentally. 
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Example 1.6 

Example1.J 

(b) In detail, we have 

Sx - a = 2(a + 2x) 

Sx - a = 2a + 2(2x) (e) 

Sx- a= 2a + (2·2)x (g) 

Sx- a= 2a + 4x 

(Sx- a) - 4x = (2a + 4x) - 4x 

(-a + Sx) - 4x = 2a + (4x- 4x) 

-a + ( Sx - 4x) = 2a + 0 

-a+ (5- 4)x = 2a 

-a+ (l)x = 2a 

a + (-a + x) = a + 2a 

(a+ (-a))+ x = (1 + 2)a 

0 + x = 3a 

x = 3a 

Again, we will usually omit most of these steps. 

linear combinations and coordinates 

(a), (b) 

(b), (d) 

(f), (c) 

(h) 

(b),(f) 

(d) 

(c) 

A vector that is a sum of scalar multiples of other vectors is said to be a linear combi­
nation of those vectors. The formal definition follows. 

Definition A vector vis a linear combination of vectors vp v2, ••• , vk if there 
are scalars Cp Cz, ... , ck such that v = c1v1 + ezv2 + · · · + ckvk" The scalars Cp Cz, ..• , 
ck are called the coefficients of the linear combination. 

~ 
Remark Determining whether a given vector is a linear combination of other 

vectors is a problem we will address in Chapter 2. 

In ~2, it is possible to depict linear combinations of two (nonparallel) vectors 
quite conveniently. 

Let u = [ ~] and v = [ ~]. We can use u and v to locate a new set of axes (in the same 

way that e1 = [ ~] and e2 = [ ~ J locate the standard coordinate axes). We can use 
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Figure 1.19 

these new axes to determine a coordinate grid that will let us easily locate linear 
combinations of u and v. 

As Figure 1.19 shows, w can be located by starting at the origin and traveling 
-u followed by 2v. That is, 

w = -u + 2v 

We say that the coordinates of w with respect to u and v are -1 and 2. (Note that 
this is just another way of thinking of the coefficients of the linear combination.) 
It follows that 

(Observe that -1 and 3 are the coordinates ofw with respect to e1 and e2.) 

Switching from the standard coordinate axes to alternative ones is a useful idea. It 
has applications in chemistry and geology, since molecular and crystalline structures 
often do not fall onto a rectangular grid. It is an idea that we will encounter repeat­
edly in this book. 

Binarv Vectors and Modular Arilhmelic 
We will also encounter a type of vector that has no geometric interpretation-at least 
not using Euclidean geometry. Computers represent data in terms ofOs and 1s (which 
can be interpreted as off/on, closed/open, false/true, or no/yes). Binary vectors are 
vectors each of whose components is a 0 or a l. As we will see in Section 1.4, such 
vectors arise naturally in the study of many types of codes. 

In this setting, the usual rules of arithmetic must be modified, since the result of 
each calculation involving scalars must be a 0 or a 1. The modified rules for addition 
and multiplication are given below. 

The only curiosity here is the rule that 1 + 1 = 0. This is not as strange as it appears; 
if we replace 0 with the word "even" and 1 with the word "odd," these tables simply 
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Example 1.8 

We are using the term length dif­
ferently from the way we used it in 
IR". This should not be confusing, 
since there is no geometric notion 
of length for binary vectors. 

Example1.9 

Example 1.10 

Example 1.11 

summarize the familiar parity rules for the addition and multiplication of even and 
odd integers. For example, 1 + 1 = 0 expresses the fact that the sum of two odd inte­
gers is an even integer. With these rules, our set of scalars {0, 1} is denoted by 7L2 and 
is called the set of integers modulo 2. 

In 7L2, 1 + 1 + 0 + 1 = 1 and 1 + 1 + 1 + 1 = 0. (These calculations illustrate the parity 

'"'" og«in' Tho '"m of thcee odd' ond on mn i' odd; tho mm of fouc odd> i' ":· t 
With 7L2 as our set of scalars, we now extend the above rules to vectors. The set of 

all n-tuples ofOs and 1s (with all arithmetic performed modulo 2) is denoted by 7L;. 
The vectors in /l~ are called binary vectors of length n. 

The vectors in 7L~ are [ 0, 0], [ 0, 1], [ 1, 0], and [ 1, 1]. (How many vectors does 7L~ 
contain, in general?) 

Let u = [ 1, 1, 0, 1, 0] and v = [0, 1, 1, 1, 0] be two binary vectors oflength 5. Find u · v. 

Solullon The calculation of u · v takes place in /l2, so we have 

u·v= 1·0+ 1·1 +0·1 + l·l +0·0 
=0+1+0+1+0 
= 0 

It is possible to generalize what we have just done for binary vectors to vectors whose 
components are taken from a finite set {0, 1, 2, ... , k} fork 2: 2. To do so, we must first 
extend the idea of binary arithmetic. 

The integers modulo 3 is the set /l 3 = { 0, 1, 2) with addition and multiplication given 
by the following tables: 

+ 0 2 

0 0 2 

1 l 2 0 

2 2 0 

0 1 2 

0 0 0 0 

1 0 1 2 

2 0 2 

Observe that the result of each addition and multiplication belongs to the set 
{0, 1, 2); we say that /l3 is closed with respect to the operations of addition and multi­
plication. It is perhaps easiest to think of this set in terms of a 3-hour clock with 0, 1, 
and 2 on its face, as shown in Figure 1.20. 

The calculation 1 + 2 = 0 translates as follows: 2 hours after 1 o'clock, it is 
0 o'clock. Just as 24:00 and 12:00 are the same on a 12-hour clock, so 3 and 0 are 
equivalent on this 3-hour clock. Likewise, all multiples of 3-positive and negative­
are equivalent to 0 here; 1 is equivalent to any number that is 1 more than a multiple 
of 3 (such as -2, 4, and 7); and 2 is equivalent to any number that is 2 more than a 



Section l.l The Ceometry and Algebra of Vectors 15 

multiple of 3 (such as -I, 5, and 8). We can visualize the number line as wrapping 
around a circle, as shown in Figure 1.21. 

() 

Figure 1.20 
Arithmetic modulo J 

. . . . I. 2 . .'i .... ~. I. -1 . 

Figure 1.21 

-----------------------+---------------------------------------------------------------~ 

Example 1.12 

Example 1.13 

To what is 3548 equivalent in Z,? 

Solulion This is the same as asking where 3548 lies on our 3-hour clock. The key is 
to calculate how t:1r this number is from the nearest (smaller) multiple of 3; that is, 
we need to know the remainder when 3548 is divided by 3. By long division, we find that 
3548 = 3 · 1182 + 2, so the remainder is 2. Therefore, 3548 is equivalent to 2 in Z,.4 
In courses in abstract algebra and number theory, which explore this concept in 
greater detail, the above equivalence is often written as 3548 = 2 (mod 3) or 3548 = 2 
(mod 3 ), where = is read "is congruent to." We will not use this notation or termi­
nology here. 

In Z, calculate 2 + 2 + I + 2. 

Solulion 1 We use the same ideas as in Example 1.12. The ordinary sum is 2 + 2 + 
I + 2 = 7, which is I more than 6, so division by 3leaves a remainder of I. Thus, 2 + 
2 + I + 2 = I in Z.,. 

Solulion 2 A better way to perform this calculation is to do it step by step entirely in 71_,. 

2 + 2 + I + 2 = (2 + 2) + 1 + 2 

=1+1+2 

=(1+1)+2 

=2+2 

= I 

Here we have used parentheses to group the terms we have chosen to combine. We could 
speed things up by simultaneously combining the first two and the last two terms: 

(2 + 2) +(I + 2) = I + 0 

=I 
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Repeated multiplication can be handled similarly. The idea is to use the addition and 
multiplication tables to reduce the result of each calculation to 0, 1, or 2. 4 

Extending these ideas to vectors is straightforward. 

Example 1.14 In£:~, let u = [2, 2, 0, 1, 2] and v = [1, 2, 2, 2, 1]. Then 

3 

u·v=2·1 +2·2+0·2+ 1·2+2·1 

=2+1+0+2+2 

= 1 

Vectors in£:~ are referred to as ternary vectors of length 5. 

Flaura1.22 
Arithmetic modulo m 

In general, we have the set lm = {0, 1, 2, ... , m- 1} of integers modulo m (cor­
responding to an m-hour clock, as shown in Figure 1.22). A vector oflength n whose 
entries are in Z m is called an m-ary vector of length n. The set of all m-ary vectors of 
length n is denoted by £:~. 

t Exercises 1.1 

1. Draw the following vectors in standard position 
in ~2: 

(a) a= [~] 

(c) c = [ -~] 

(b) b = [~] 

(d) d = [ -~J 
2. Draw the vectors in Exercise 1 with their tails at the 

point (1, -3). 

3. Draw the following vectors in standard position 
in ~3: 

(a)a=[0,2,0] 
(c) c = [1, -2, 1] 

(b) b = [3,2, 1] 
(d) d = [ -1, -1, -2] 

4. If the vectors in Exercise 3 are translated so that their 
heads are at the point (1, 2, 3), find the points that 
correspond to their tails. 

5. For each of the following pairs of points, draw the 
vector AB. Then compute and redraw AB as a vector 
in standard position. 

(a) A=(1,-1),B=(4,2) 
(b) A= (0, -2), B = (2, -1) 

(c) A= (2, D, B = (!, 3) 

<d> A= G, ~), n = a, D 

6. A hiker walks 4 km north and then 5 km northeast. 
Draw displacement vectors representing the hiker's 
trip and draw a vector that represents the hiker's net 
displacement from the starting point. 

Exercises 7-10 refer to the vectors in Exercise 1. Compute 
the indicated vectors and also show how the results can be 
obtained geometrically. 

~a+b Lb+c 

9. d- c 10. a-d 

Exercises 11 and 12 refer to the vectors in Exercise 3. 
Compute the indicated vectors. 

11. 2a + 3c 12. 2c - 3b - d 

13. Find the components of the vectors u, v, u + v, and 
u- v, where u and v are as shown in Figure 1.23. 

14. In Figure 1.24, A, B, C, D, E, and Fare the vertices of a 
regular hexagon centered at the origin. 

Express each of the following vectors in terms of 
-----> ---+ 

a = OA and b = OB: 
--> 

(a) AB (b) nc 
(c) AD --> 

(d) CF 

(e) AC --> -+ -> 
(f) BC + DE + FA 

,· 

! 

I 
I 

l 
Ind 

f~~l 
·:,16. I 

In l~ 
vet.i I 
17. 

18., 



Figure 1.23 

c 

£ 

Figure 1.24 

-I 

y 

\' 

B 

F 

In Exercises 15 and 16, simp/if)· the given vector expression. 
Indicate which properties in Theorem 1.1 you use. 

15. 2(a- 3b) + 3(2b +a) 

16. -3(a- c)+ 2(a + 2b) + 3(c- b) 

In Exercises 17 and /8, solve for the vector x in terms of the 
vectors a and b. 

17. x- a= 2(x- 2a) 

18. x + 2a- b = 3(x +a) - 2(2a- b) 

In Exercises 19 and 20, draw the coordinate axes relative to u 
and v and locate w. 

19. u = [ _ : l v = [ : l w = 2u + 3v 

20. u = [- ~ l v = [ ~ l w = - u - 2v 

In Exe · rczses 2Imul22, draw the stt111dard coordinate axes on 
thes d. arne zagram as the axes relative to u and v. Use these to 
/indw as a linear com/Jination ofu and v. 
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2l.u= [_:J.v= [:lw= rn 
22. u = [ - ~ l v = [ ~ l w = [!] 
23. Draw diagrams to illustrate properties (d) and (c) of 

Theorem l.l. 

24. Give algebraic proofs of properties (d) through (g) of 
Theorem 1.1. 

In Exercises 25-28, u and van: binary l'Cctors. Find u + v 
cllld u · v i 11 each msc. 

25. u = [~].v = [:] 

27. u = [1,0, I, l],v = [1, I, I, lj 

28.u = [1, 1,0, l.O],v = [0, I, I, 1,0] 

29. Write out the addition and multiplication tables for 2"
4

• 

30. \\'rite out the addition and multiplication tables for 2",. 

In Exercises 31-43, perform the indiwtcd calwlations. 

31. 2 + 2 + 2 in 2"1 32. 2 · 2 · 2 in 2"1 

33. 2(2 + l + 2) in 2"3 34. 3 + I + 2 + 3 in 2", 
35. 2 · 3 · 2 in 2"4 36. 3( 3 + 3 + 2) in 2" 1 

37. 2 + I + 2 + 2 + I in 2"3 , 2"1, and 2"5 

38. (3 + 4)(3 + 2 + 4 + 2) in2"5 

39. 8(6 + 4 + 3) inz:'y 

41. [2, 1,2] + [2,0, I] inz:'; 42. [2, 1,2]· [2,2, I] in2":; 

43.[2, 0, 3, 2]· ([3, I, I, 2] + [3, 3, 2, I]) in 2"1 and in 2"~ 

In Exercises 44-55, solve the gil'el! equation or indiwte that 
there is no solution. 

44. x + 3 = 2 in 2", 

46. 2x = I in 2", 

48. 2x = I in 2"5 

50. 3x = 4 in 2"6 

52. Sx = 9in2" 11 

54. 4x + 5 = 2 in 2"" 

45. X + 5 = I in z:'~o 

47. 2x = I in 2" 1 

49. 3x = 4 in 2"5 

51. 6x = 5 in Z"x 
53. 2x + 3 = 2 in 2"5 

55. 6x + 3 = I in Z"x 
56. (a) For which values of a does x + a = 0 have a solu­

tion in 2") 
(b) For which values of a and b does x + a= b have a 

solution in 2",,? 
(c) For which values of a, b, and 111 does x + a = b 

have a solution in 2",,? 

57. (a) For which values of a does ax= I have a solution in 2",? 
(b) For which values of a does m: = l have a solution in 2"

6
? 

(c) For which values of a and 111 does ax= 1 have a 
solution in 2",? 
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Example 1.15 

Length and Angle: The Dot Product 
It is quite easy to reformulate the familiar geometric concepts of length, distance, 
and angle in terms of vectors. Doing so will allow us to use these important and 
powerful ideas in settings more general than IR2 and IR 3

• In subsequent chapters, 
these simple geometric tools will be used to solve a wide variety of problems arising 
in applications-even when there is no geometry apparent at all! 

The Dot Product 
The vector versions of length, distance, and angle can all be described using the 
notion of the dot product of two vectors. 

Definition rf 

then the dot product u · v of u and v is defined by 

U•V = U1V1 + U2V2 +···+ UnVn 

In words, u · v is the sum of the products of the corresponding components of u 
and v. It is important to note a couple of things about this "product" that we have just 
defined: First, u and v must have the same number of components. Second, the dot 
product u · v is a number, not another vector. (This is why u · v is sometimes called 
the scalar product of u and v.) The dot product of vectors in !Rn is a special and im­
portant case of the more general notion of inner product, which we will explore in 
Chapter 7. 

Compute u • v when u ~ [ J and v ~ [-n 
Solution u · v = 1 · (-3) + 2 • 5 + (-3) • 2 = 1 

Notice that if we had calculated v · u in Example 1.15, we would have computed 

V• U = ( -3) • 1 + 5 • 2 + 2 • ( -3) = 1 

That u · v = v • u in general is clear, since the individual products of the components 
commute. This commutativity property is one of the properties of the dot product ·· 
that we will use repeatedly. The main properties of the dot product are summarized . 
in Theorem 1.2. 
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SeLtion 1.2 LL·ngth and Angle: The Dot Product 

Let u, v, and w be vectors in IR" and let c be a scalar, Then 

a. u·v = v· u 
b. u·(v + w) = u·v + u·w 
c. ( m) · v = c( u · v) 
d. u · u 2: 0 and u · u = 0 if and only if u = 0 

\\'e pru\·c (a) and (c) and leave proof of the remaining properties for the 
exercises. 

(a) Apph·ing the definition of dot product to u · v and v · u, we obtain 

u·v = u1 t•1 + 112 1'2 + ··· + 11
11

1'
11 

l'll/1 + l',lf, + ... + l'//l/1/ 

v·u 

where the middle equality follows from the bet that multiplication of real numbers is 
commutative. 

(c) Using the definitions of scalar multiplication and dot product, we have 

(cu)·v = [cu 1,cu2, ••• ,cu"]·[t'1,v2, ••• , ~'11 ] 

Cl/ 1 V 1 + Cl/2 l'2 + · · · + Clt
11

l'
11 

c(u 1v1 + 112 1•2 + ... + 11
11
v

11
) 

c( u · v) 

Property ( b l can be read from right to lcti, in which case it says that we can 
t:Ktor out a common vector u from a sum of dot products. This property also has 
a "right-handed" analogue that follows from properties (b) and (a) together: 
( v + w) . u = v . u + w . u. 

Property (c) can be extended to give u·(cv) = c(u · v) (Exercise 58). This 
extended version of (c) essentially says that in taking a scalar multiple of a dot 

product of vectors, the scalar can first be combined with whichever vector is more 
convenient. For example, 

(t[-I,-3,2])·[6,-4,0] = [-I,-3,2]·(H6.-~.o]) = [-i,-3,2]·[3,-2,0] = 3 

With this approach we avoid introducing fractions into the vectors, as the original 
grouping would have. 

The second part of (d) uses the logical connective i(nllli ol!/)' if Appendix A 
discusses this phrase in more detail, but for the moment let us just note that the 
wording signals a double i111plicntion-namely, 

if u == 0, then u · u = 0 

and if u · u = 0, then u = 0 

Theorem 1.2 shows that aspects of the algebra of vectors resemble the algebra of 
numbers. The next example shows that we can sometimes find wctor analogues of 
familiar identities. 
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Example 1.16 Prove that (u + v) · (u + v) = u · u + 2(u · v) + v· v for all vectors u and v in IR". 

SOIUIIOI (u+v)·(u+v) = (u+v)·u+(u+v)·v 

=u·u+v·u+u·v+v·v 

=u·u+u·v+u·v+v·v 

= u . u + 2( u . v) + v. v 

~ (Identify the parts of Theorem 1.2 that were used at each step.) 

y 

b v = [~] 

a 

Fluure1.25 

Example 1.11 

Theorem 1.3 

length 
To see how the dot product plays a role in the calculation of lengths, recall how 
lengths are computed in the plane. The Theorem of Pythagoras is all we need. 

In IR2
, the length of the vector v = [ ~] is the distance from the origin to the point 

(a, b), which, by Pythagoras' Theorem, is given by ~' as in Figure 1.25. 

Observe that a2 + ~ = v • v. This leads to the following definition. 

Definition The length (or norm) of a vector v = [ ~:] in IR" is the nonneg-
ative scalar llvll defined by : 

Vn 

II vii = ~ = V vi + ~ + · · · + ~ 

In words, the length of a vector is the square root of the sum of the squares of its 
components. Note that the square root of v • v is always defined, since v • v 2: 0 by 
Theorem 1.2(d). Note also that the definition can be rewritten to give llvll 2 = v•v, 
which will be useful in proving further properties of the dot product and lengths of 
vectors. 

11[2,3]11 = ~ = v'13 

Theorem 1.3 lists some of the main properties of vector length. 

Let v be a vector in IR" and let c be a scalar. Then 

a. II vii = 0 if and only ifv = 0 

b. II cv II = Jell I vii 

Proof Property (a) follows immediately from Theorem 1.2(d). To show (b), we 

llcvll 2 = (cv) ·(cv) = r(v·v) = rllvll 2 

using Theorem 1.2(c). Taking square roots of both sides, using 
y'2 = lei for any real number c, gives the result. 

f 

i 

I 
1 

I 
I 
l 
I 

-I 
I 
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A vector of length I is called a unit vector. In IR.:>, the set of all unit vectors can be 
identified with the unit circle, the circle of radius 1 centered at the origin (see 
Figure 1.26). Given any nonzero vector v, we can always find a unit vector in the same 
direction as v by dividing v by its own length (or, equivalently, multiplyiltg by 1/llvll ). 
We can show this algebraically by using property (b) of Theorem 1.3 above: 
If u = ( I/llvll )v, then 

llull = 11(1/JivJj)vll = II/IIvillllvll = (1/jjvjj)livll =I 

and u is in the same direction as v, since 1/llvll is a positive scalar. Finding a unit vec­
tor in the same direction is often referred to as normalizing a vector (see Figure 1.27). 

-I 

Figure 1.26 
Unit vectors in !R;' 

Figure 1.21 
Normalizing a vector 

v 

-----------------------+--------------------------------------------------------------~ 

In IR", let e1 = [~]and e" = [~].Then e1 and e" are unit vectors, since the sum of the 

squares of their components is 1 in each case. Similarly, in IR 3, we can construct unit 

Example 1.18 

vectors 

Observe in Figure 1.28 that these vectors serve to locate the positive coordinate axes 
;n Ol' ood Ul'. _ ~ 

\" 

--t---i~-----+--... _r 

.r y 
Figure 1.28 
Standard unit vectors in !R;' and !R;' 
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Example 1.19 

Theorem 1.4 

-
u 

Fluure1.29 
The Triangle Inequality 

Theorem 1.5 

In general, in !Rn, we define unit vectors el' e2, ••• , en, where ei has 1 in its ith com­
ponent and zeros elsewhere. These vectors arise repeatedly in linear algebra and are 
called the standard unit vectors. 

Nmmalire the V&tO<V ~ [ -n 
Solution II vii = V 22 + ( -1 )2 + 32 = y'14, so a unit vector in the same direction 
as v is given by 

u = (1/llvll)v = (l/v14) -1 = -I/v14 [ 2] [ 2/v'i4] 
3 3/v'i4 

Since property (b) of Theorem 1.3 describes how length behaves with respect to 
scalar multiplication, natural curiosity suggests that we ask whether length and vec­
tor addition are compatible. It would be nice if we had an identity such as II u + vii = 
II ull + II vii, but for almost any choice of vectors u and v this turns out to be false. [See 
Exercise 52( a).] However, all is not lost, for it turns out that if we replace the =sign 
by :5, the resulting inequality is true. The proof of this famous and important 
result-the Triangle Inequality-relies on another important inequality-the 
Cauchy-Schwarz Inequality-which we will prove and discuss in more detail in 
Chapter 7. 

The Cauchy-Schwarz Inequality 

For all vectors u and v in IR", 

lu ·vi :5 llullllvll 

See Exercises 71 and 72 for algebraic and geometric approaches to the proof of this 
inequality. . 

In IR2 or IR3
, where we can use geometry, it is clear from a diagram such as·. 

Figure 1.29 that llu + vii :5 !lull + II vii for all vectors u and v. We now show that 
is true more generally. 

The Triangle Inequality 

For all vectors u and v in IR", 

llu +vii :5 !lull + llvll 
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Proof Since both sides of the inequality are nonnegative, showing that the square of 
the left-hand side is less than or equal to the square of the right-hand side is equiva-

....... lent to proving the theorem. (Why?) We compute 

as required. 

Distance 

II u + vii" = ( u + v) · ( u + v) 
= u . u + 2( u. v) + v. v 

:S //uf + 2/u • v/ + II vii" 
:S II ull" + 21/ ui/11 v// + /I vii" 
= (1/u// + i/viff 

The distance between two vectors is the direct analogue of the distance between two 
points on the real number line or two points in the Cartesian plane. On the number 
line (Figure 1.30), the distance between the numbers a and b is given by a-- b. (Tak­
ing the absolute value ensures that we do not need to know which of a orb is larger.) 
This distance is also equal to Y (a - b)", and its two-dimensional generalization is 
the familiar formula for the distance d between points ( a

1
, 11

2
) and ( bl' b

2 
)-namely, 

d = Y(a, - h,)" + (a2 - b
2
jl. 

tl 

"' I + 
-2 {) 

Figure 1.30 

d = a- b = '-2- 3 = 5 

;, 
+ 
3 I "' 

In terms of vectors, if a = [a,] and b = [ b, ], then dis just the length of a - b, 
a2 b2 

as shown in Figure 1.31. This is the basis for the next definition. 

' (/ 

(a 1, a2) 

' - I 
I 
I 
I 

: (/2- h2 
I 
I 
I 
I 

(/7, ho)•-----------JJ 1 
- a 1 - h

1 

Figure 1.31 

d = Y(a, - b,f + (a2 - bJ:! =/fa- bff 

y 

a 

a 
(h,, b2) 

---t--1 h --.. .. X 

------------~----------~----~------------------------- ---

Definition The distanced(u, v) between vectors u and v in IR" is defined by 

d(u, v) = //u - v// 

---------------- --------------------- --- ·----------~--------- --------- ---------- ----
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Example 1.20 

v 

Figure 1.33 

Example 1.21 

Sllldll Wocomput< u ~ v ~ [ ~ l 'o 

d(u,v) = llu- vii= V(Yz)2 + (-1)2 + 12 = v'4 = 2 

Angles 

The dot product can also be used to calculate the angle between a pair of vectors. 
In IR2 or IR3

, the angle between the nonzero vectors u and v will refer to the angle £J 

determined by these vectors that satisfies 0 ::5 (} ::5 180° (see Figure 1.32). 

v 

v~ /" 

~0 
u u 

0 

v/-1 

u 

,.__C\ 
v u 

Figure 1.32 
The angle between u and v 

In Figure 1.33, consider the triangle with sides u, v, and u - v, where £J is the angle 
between u and v. Applying the law of cosines to this triangle yields 

llu- vll 2 = llull 2 + llvll 2
- 2llullllvll cosO 

Expanding the left-hand side and using llvl\ 2 = v · v several times, we obtain 

llull
2 

- 2(u · v) + llvll
2 

= lluf + llvl\
2 

- 2\\ullllvll cos £J 

which, after simplification, leaves us with u · v = llullllvll cos fJ. From this we obtain 
the following formula for the cosine of the angle (J between nonzero vectors u and v. 
We state it as a definition. 

Definition For nonzero vectors u and v in IR", 
U•V 

cos (J = llu\lllvll 

Compute the angle between the vectors u = [ 2, 1, - 2] and v = [ 1, 1, 1]. 
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Solution We calculate u · v = 2 • I + I · I + (- 2) • I = I,jl ull = y 22 + 12 + (-2 )" = 

V9 = 3, and llvll = Vl 2 + 12 + 12 = v3. Therefore, cos 8 = l/3YJ, so 

~ 
----------------------~------------------------------------------------------------~~ 

Example 1.22 Compute the angle between the diagonals on two adjacent faces of a cube. 

Solution The dimensions of the cube do not matter, so we will work with a cube 
with sides of length I. Orient the cube relative to the coordinate axes in IR-\ as shown 
in Figure 1.34, and take the two side diagonals to be the vectors [I, 0, I] and [ 0, I, 1]. 
Then angle 8 between these vectors satisfies 

cos l:i = 
1·0 + 0·1 + 1·1 I 

v2v2 2 
from which it follows that the required angle is rr/3 radians, or 60°. 

[0. I, II 

y 
X 

Figure 1.34 

(Actually, we don't need to do any calculations at all to get this answer. If we draw 
a third side diagonal joining the vertices at ( 1, 0, I) and ( 0, I, I), we get an equilateral 
triangle, since all of the side diagonals are of equal length. The angle we want is one 
of the angles of this triangle and therefore measures 60°. Sometimes a little insight 
can save a lot of calculation; in this case, it gives a nice check on our work!) 

Remarks 
• As this discussion shows, we usually will have to settle for an approximation 

to the angle between two vectors. However, when the angle is one of the so-called spe­
cial angles (0°, 30°,45°,60°,90°, or an integer multiple of these), we should be able to 
recognize its cosine (Table 1.1) and thus give the corresponding angle exactly. In all 
other cases, we will use a calculator or computer to approximate the desired angle by 
means of the inverse cosine function. 

Table 1.1 Cosines of Special Angles 
8 

cos l:i 
V4 
2 

V3 
2 

v2 I 

2 v2 
v1 
2 2 

Yo 
-=0 

2 
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The word orthogonal is derived 
from the Greek words orthos, 
meaning "upright," and gonia, 
meaning "angle." Hence, orthogo­
nal literally means "right-angled." 
The Latin equivalent is rectangular. 

Example 1.23 

Theorem 1.6 

Fluure1.35 

• The derivation of the formula for the cosine of the angle between two vectors 
is valid only in ~2 or ~3, since it depends on a geometric fact: the law of cosines. In 
~n, for n > 3, the formula can be taken as a definition instead. This makes sense, since 

the Cauchy-Schwarz Inequality implies that lll~l.ll:lll ::5 1, so ll:ll.ll:ll ranges from 

- 1 to 1, just as the cosine function does. 

Orthogonal Vectors 
The concept of perpendicularity is fundamental to geometry. Anyone study­
ing geometry quickly realizes the importance and usefulness of right angles. We 
now generalize the idea of perpendicularity to vectors in ~n, where it is called 
orthogonality. 

In ~2 or ~3 , two nonzero vectors u and v are perpendicular if the angle (} between 
u·v 

them is a right angle-that is, if(} = 7T /2 radians, or 90°. Thus, II ullllvll = cos 90o = 0, 

and it follows that u · v = 0. This motivates the following definition. 

Definition Two vectors u and v in IRn are orthogonal to each other if u • v = 0. 

Since 0 · v = 0 for every vector v in IRn, the zero vector is orthogonal to every 
vector. 

In IR3
, u = [1, 1, -2] and v = [3, 1, 2] are orthogonal, since u · v = 3 + 1 - 4 = 0. 

4 
Using the notion of orthogonality, we get an easy proof of Pythagoras' Theorem, 

valid in IRn. 

Pythagoras' Theorem 

For all vectors u and v in IRn, llu + vll 2 = llull 2 + llvll 2 if and only if u and v are 
orthogonal. 

Proal From Example 1.16, we have llu + vll 2 = llull 2 + 2(u • v) + llvll 2 for all vectors 
u and v in IRn. It follows immediately that llu + vll 2 = llull 2 + llvll 2 if and only if 
u · v = 0. See Figure 1.35. 

The concept of orthogonality is one of the most important and useful in linear 
algebra, and it often arises in surprising ways. Chapter 5 contains a detailed treatment 
of the topic, but we will encounter it many times before then. One problem in which 
it clearly plays a role is finding the distance from a point to a line, where "dropping a 
perpendicular" is a familiar step. 
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The projection of v onto u 
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Projections 

We now consider the problem of finding the distance from a point to a line in the 
context of vectors. As you will see, this technique leads to an important concept: the 
projection of a vector onto another vector. 

As Figure 1.36 shows, the problem of finding the distance from a point B to a 
line ((in IR 2 

or IR') reduces to the problem of finding the length of the perpendicular 
line segment PB or, equivalently, the length of the vector PB. If we choose a point A 
on (,then, in the right -angled triangle j.APB, the other two vectors are the leg AP and 
the hypotenuse AB. AP is called the projection of AB onto the line l. We will now look 
at this situation in terms of vectors. 

B B 

\ e 
p 

Figure 1.36 
The distance from a point to a line 

Consider two nonzero vectors u and v. Let p be the vector obtained by dropping 
a perpendicular from the head of v onto u and let 8 be the angle between u and v, as 

shown in Figure 1.37. Then clearly p = 1/pjju, where u = (1/llull )u is the unit vector 
in the direction of u. Moreover, elementary trigonometry gives IIPII = II vii cos 8, and 

u•v 
we know that cos 8 = llul/llvl/" Thus, after substitution, we obtain 

p= llvl/(11~1·1/:ll)(~)u 
= ( ~~~~~ )u 
= (~)u 

u·u 

This is the formula we want, and it is the basis of the following definition for vec­
tors in IR". 

Definition If u and v are vectors in IR" and u =I= 0, then the projection of 
v onto u is the vector proj

0
(v) defined by 

proju(v) = ( u. v)u 
u·u 

An alternative way to derive this formula is described in Exercise 73. 
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~ 
proj0 (V) u 

flllfl 1.38 

EXIIDPII 1.24 

RemarkS 
• The term projection comes from the idea of projecting an image onto a wall 

(with a slide projector, for example). Imagine a beam of light with rays parallel to 
each other and perpendicular to u shining down on v. The projection of v onto u is 
just the shadow cast, or projected, by v onto u. 

• It may be helpful to think of proju(v) as a function with variable v. Then the 
variable v occurs only once on the right-hand side of the definition. Also, it is helpful 
to remember Figure 1.38, which reminds us that proju(v) is a scalar multiple of the 
vector u (not v). 

• Although in our derivation of the definition of proju(v) we required vas well 
as u to be nonzero (why?), it is clear from the geometry that the projection of the 

zero vector onto u is 0. The definition is in agreement with this, since ( u · 
0 

) u = 
Ou = 0. u· u 

• If the angle between u and vis obtuse, as in Figure 1.38, then proju(v) will be in 
the opposite direction from u; that is, proju(v) will be a negative scalar multiple of u. 

• If u is a unit vectorthen proju(v) = (u · v)u. (Why?) 

Find the projection of v onto u in each case. 

(a) v = [-~] and u = [ ~] (b) v ~ m •nd u ~ ,, 

(c) v = [~] and u = [ ~~~] 
3 1/Yi 

SOIIIIOI 

(a) We compute u · v = [ ~] · [-~] = 1 and u · u = [ ~] · [ ~] = 5, so 

proju(v) = (:::)u = H~J = [~~:] 
(b) Since e3 is a unit vector, 

pmj,,(v) ~ (•,·•)•, = "' = m 
(c) We see that llull = Vi + i +! = 1. Thus, 

proju(v) = (u·v)u = (~ + 1 + ~)[ ~j~ ] = 
3

(
1 

+
2 

Yz)[ ~j~ ] 
1/Vz 1/Vz 

= 3(1: 0)[ ~] 

EJI 
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Exercises 1. 2 
In Exercises 1-6, find u · v. 

l. u = [ - ~ l v = [ ~ ] 2. u = [ - ~ l v = [ : ] 

J.F [}~ m = •. u= Ul= U~l 
5. u = [1, \12, vJ,OJ,v = [4, -\12,0, -5] 

CAS 6. U = [ 1.12, - 3.25, 2.07, -1.83], 

v = [-2.29, 1.72, 4.33, -1.54 J 

In Exercises 7-12, find II ull for the given exercise, and give a 
unit vector in the direction ofu. 

7. Exercise 1 

CAS I 0. Exercise 4 

8. Exercise 2 9. Exercise 3 

11. Exercise 5 cAs 12. Exercise 6 

In Exercises 13-16, find the distanced( u, v) between u and 
v in the given exercise. 

13. Exercise 1 14. Exercise 2 

15. Exercise 3 cAs 16. Exercise 4 

17. If u, v, and ware vectors in IR", n 2:: 2, and cis a 
scalar, explain why the following expressions make 
no sense: 

(a) llu·vll 
(c) u·(v·w) 

(b) u·v + w 
(d) c·(u + w) 

In Exercises 18-23, determine whether the angle between 
u and v is acute, obtuse, or a right angle. 

20. u = [5, 4, -3], v = [1, -2, -1] 
CAS 
- 21. u = [0.9, 2.1, 1.2], v = [ -4.5, 2.6, -0.8] 

22.u= [1,2,3,4],v= [-3,1,2,-2] 

23.u= [1,2,3,4],v= [5,6,7,8] 

In Exercises 24-29, find the angle between u and v in the 
given exercise. 

24. Exercise 18 25. Exercise 19 26. Exercise 20 
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cAs 27. Exercise 21 cAs 28. Exercise 22 cAs 29. Exercise 23 

30. Let A= (- 3, 2), B = ( 1, 0), and C = (4, 6). Prove that 
:lABC is a right-angled triangle. 

31. Let A= (1, 1, -1), B = ( -3, 2, -2), and C = (2, 2, -4). 
Prove that ~ABC is a right-angled triangle. 

cAs 32. Find the angle between a diagonal of a cube and an 
adjacent edge. 

33. A cube has four diagonals. Show that no two of them 
are perpendicular. 

In Exercises 34-39, find the projection ofv onto u. Draw a 
sketch in Exercises 34 and 35. 

34. A parallelogram has diagonals determined by the 
vectors 

Show that the parallelogram is a rhombus (all sides of 
equal length) and determine the side length. 

35. The rectangle ABCD has vertices at A= (1, 2, 3), 
B = (3, 6,- 2), and C = (0, 5, -4). Determine the 
coordinates of vertex D. 

36. An airplane heading due east has a velocity of 200 
miles per hour. A wind is blowing from the north at 
40 miles per hour. What is the resultant velocity of the 
airplane? 

37. A boat heads north across a river at a rate of 4 miles per 
hour. If the current is flowing east at a rate of 3 miles 
per hour, find the resultant velocity of the boat. 

38. Ann is driving a motorboat across a river that is 2 k.m 
wide. The boat has a speed of 20 k.m/h in still water, and 
the current in the river is flowing at 5 k.m/h. Ann heads 
out from one bank of the river for a dock directly across 
from her on the opposite bank. She drives the boat in a 
direction perpendicular to the current. 

(a) How far downstream from the dock will Ann land? 
(b) How long will it take Ann to cross the river? 

39. Bert can swim at a rate of 2 miles per hour in still 
water. The current in a river is flowing at a rate of 1 
mile per hour. If Bert wants to swim across the river to 
a point directly opposite, at what angle to the bank of 
the river must he swim? 



30 Chapter l Vectors 

In Exercises 40-45,find the projection ofv onto u. Draw a 
sketch in Exercises 40 and 41. 

[ 
3.01] [ 1.34] 

:: 45. u = -0.33 'v = 4.25 
2.52 -1.66 

Figure 1.39 suggests two ways in which vectors 
may be used to compute the area of a triangle. 
The area A of 

v 

(a) 

u 
(b) 

Figure 1.39 

the triangle in part (a) is given by !Jiullllv - proju(v)JI, 
and part (b) suggests the trigonometric form of the 

area of a triangle: A = illullllvllsin8 (We can use the 
identity sinO = \.h - cos2 8 to find sin 8.) 

':bJ ~cises 46 and 47, compute the area of the triangle with 
fl!tgJVen vertices using both methods. 
. A={l,-l),B=(2,2),C=(4,0) 

. =(3,-1,4),B= (4,-2,6),C= (5,0,2) 

In Exercises 48 and 49, find all values of the scalar k for 
which the two vectors are orthogonal. 

48 •• ~ [: ].v ~ [: ~ : 1 49 .• ~ [ -l ~ [ _ n 
50. Describe all vectors v = [;] that are orthogonal 

to u = [ ~]. 

51. Describe all vectors v = [;] that are orthogonal 

to u = [ ~]. 
52. Under what conditions are the following true for 

vectors u and v in IR2 or IR3? 

(a) llu +vii = !lull + llvll (b) llu + vii = I lull - llvll 

53. Prove Theorem l.2(b). 

54. Prove Theorem l.2(d). 

In Exercises 55-57, prove the stated property of distance 
between vectors. 

55. d(u, v) = d(v, u) for all vectors u and v 

56. d(u, w):::::: d(u, v) + d(v, w) for all vectors u, v, and w 

57. d(u, v) = 0 if and only ifu = v 

58. Prove that u • cv = c(u · v) for all vectors u and v in IR" 
and all scalars c. 

59. Prove that llu - vii ~ !lull - llvll for all vectors u and 
v in IR". [Hint: Replace u by u - v in the Triangle 
Inequality.] 

60. Suppose we know that u • v = u • w. Does it follow 
that v = w? If it does, give a proof that is valid in IR"; 
otherwise, give a counterexample (that is, a specific set 
of vectors u, v, and w for which u • v = u • w but 
vi= w). 

61. Prove that (u + v) · (u - v) = lluW -llvW for all vec­
tors u and v in IR". 

62. (a) Prove that llu + vll2 + llu - vjJ2 
= 2llull

2 + 2llvll
2 

for all vectors u and v in IR". 
(b) Draw a diagram showing u, v, u + v, and u- v 

in IR2 and use (a) to deduce a result about 
parallelograms. 

1 1 . 
63. Prove that u · v = -JJu + vJJ 2 

- -JJu - vr for all 
4 4 

vectors u and v in IR". 

I 
64. (a) P j 

a I 
(b) ~ I 

I I 
,, i 

! 

65. (a) P j 

(b) ! I 
66. If I lull I 

! 
67. Show I 

llvJI = I 
68. (a) P I 

u ' 
(b) F I 

; 
u: 

! 
69. Prove 1 

vecto l 
70. (a) P 1 

(b) F j 
(c) E I 

l 

71. The.( I 
eqmv 

1 sides: 
i 

(a) h f 
l 
" 

Prove [ 
side fJ I 
differ, f 
(b) p t ,, 

' f 
~ 



64. (a) Prove that llu + vii = llu - vii if and only if u and v 
<Ire orthogonal. 

(b) Draw a diagram showing u, v, u + v, and u- v 
in IR' and use (a) to deduce a result about paral­
lelograms. 

65. (a) Prove that u + v and u - v are orthogonal in IR" if 
and only if I lull = llvll. 

(b) Draw a diagram showing u, v, u + v, and u - v in 
IR 2 and use (a) to deduce a result about parallelo­
grams. 

66. If ljull = 2, llvll = vJ , and u · v = I, find llu + vii. 

67. Show that there are no vectors u and v such that I lull= I, 

';vlf = 2, and u · v = 3. 

68. (a) Prove that if u is orthogonal to both v and w, then 
u is orthogonal to v + w. 

(b) Prove that if u is orthogonal to both v and w, then 
u is orthogonal to sv + tw for all scalars sand t. 

69. Prove that u is orthogonal to v- proju(v) for all 
vectors u and v in IR", where u * 0. 

70. (a) Prove that proju(proju(v)) = proj"(v). 
(b) Prove that proj)v- proiu(v)) = 0. 
(c) Explain (a) and (b) geometrically. 

71. The Cauchy-Schwarz Inequality u · v ::S llulfllvll is 
equivalent to the inequality we get by squaring both 
sides: (u · v)

2 
::S llulf" llvll". 

(a) In IR2
, with u = l111

] and v = l v,], this becomes 
112 V1 

Prove this algebraically. [Hint: Subtract the left-hand 
side from the right-hand side and show that the 
difference must necessarily be nonnegative.] 
(b) Prove the analogue of (a) in IR3• 
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72. Another approach to the proof of the Cauchy-Schwarz 
Inequality is suggested by Figure 1.40, which shows 
that in IR 2 or IR\ ffproju(v)ff ::S ffvff. Show that this is 
equivalent to the Cauchy-Schwarz Inequality. 

V I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
n 

Figure 1.40 

u 

73. Cse the fact that proju(v) = cu for some scalar c, to­
gether with Figure 1.41, to find c and thereby derive 
the formula for proju(v). 

v 
\' <'ll 

tll u 

Figure 1.41 

74. Using mathematical induction, prove the following 
generalization of the Triangle Inequality: 

for alln 2:: I. 
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Figure 1.42 
The midpoint of AB 
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Figure 1.43 

32 

bplarauan 

Vectors and Geometry 

Many results in plane Euclidean geometry can be proved using vector techniques. 
For example, in Example 1.24, we used vectors to prove Pythagoras' Theorem. In this 
exploration, we will use vectors to develop proofs for some other theorems from 
Euclidean geometry. 

As an introduction to the notation and the basic approach, consider the following 
easy example. 

Give a vector description of the midpoint M of a line segmentAB. 

Solution We first convert everything to vector notation. If 0 denotes the origin and 
Pis a point, let p be the vector OP. In this situation, a = oA, b = DB, m = OM, and 
AB = oB- OA = b - a (Figure 1.42). 

Now, since M is the midpoint of AB, we have 

_____.. l-----. I ( ) m - a = AM = 2AB = 2 b - a 

so m = a + !(b - a) = !(a + b) 

1. Give a vector description of the point P that is one-third of the way from A to 
Bon the line segment AB. Generalize. 

2. Prove that the line segment joining the midpoints of two sides of a triangle is 
parallel to the third side and half as long. (In vector notation, prove that PQ = ! AB 
in Figure 1.43.) 

3. Prove that the quadrilateral PQRS (Figure 1.44), whose vertices are the mid­
points of the sides of an arbitrary quadrilateral ABCD, is a parallelogram. 

4. A median of a triangle is a line segment from a vertex to the midpoint of the 
opposite side (Figure 1.45). Prove that the three medians of any triangle are concur­
rent (i.e., they have a common point of intersection) at a point G that is two-thirds 
of the distance from each vertex to the midpoint of the opposite side. [Hint: In 
Figure 1.46, show that the point that is two-thirds of the distance from AtoP is given 
by h a + b + c). Then show that 1( a + b + c) is two- thirds of the distance from B to 
Q and two-thirds of the distance from C to R.] The point Gin Figure 1.46 is called the 
centroid of the triangle. 
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Figure 1.44 

Figure 1.41 
An altitude 
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Figure 1.51J 
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The circumcenter 
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c c c 
Figure 1.45 Figure 1.46 
A median The centroid 

5. An altitude of a triangle is a line segment from a vertex that is perpendicular 
to the opposite side (Figure !.47). Prove that the three altitudes of a triangle are 
concurrent. [Hint: Let H be the point of intersection of the altitudes from A and Bin 
Figure 1.48. Prove thatCH is orthogonal to AB.] The point H in Figure 1.48 is called 
the orthocenter of the triangle. 

B 

6. A perpendicular bisector of a line segment is a line through the midpoint of the 
segment, perpendicular to the segment (Figure 1.49). Prove that the perpendicular 
bisectors of the three sides of a triangle are concurrent. [Hint: Let K be the point of in­
tersection of t~erpendicular bisectors of AC and BC in Figure 1.50. Prove that RK is 
orthogonal to AB.] The point Kin Figure !.50 is called the circumcenterof the triangle. 

c 

H 

~~~ 
A._---+----------------~8 

A B 

Figure 1.48 Figure 1.49 
The orthocenter A perpendicular bisector 

7. Let A and B be the endpoints of a diameter of a circle. If Cis any point on the 
circle, prove that LACB is a right angle. [Hint: In Figure 1.51, let 0 be the center of the 
circle. Express everything in terms of a and c and show that AC is orthogonal to BC.] 

8. Prove that the line segments joining the midpoints of opposite sides of a 
quadrilateral bisect each other (Figure 1.52). 

A 8 c 

D 

Figure 1.51 Figure 1.52 

33 
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Example 1.26 

The Latin word norma refers to a 
carpenter's square, used for draw­
ing right angles. Thus, a normal 
vector is one that is perpendicular 
to something else, usually a plane. 

lines and Planes 
We are all familiar with the equation of a line in the Cartesian plane. We now want to 
consider lines in IR 2 from a vector point of view. The insights we obtain from this 
approach will allow us to generalize to lines in IR3 and then to planes in IR3

• Much of 
the linear algebra we will consider in later chapters has its origins in the simple geom­
etry of lines and planes; the ability to visualize these and to think geometrically about 
a problem will serve you well. 

lines in !R2 and !R3 

In the xy-plane, the general form of the equation of a line is ax+ by= c. If b i= 0, then 
the equation can be rewritten as y = -(a!b)x + c!b, which has the form y = mx + k. 
[This is the slope-intercept form; m is the slope of the line, and the point with coordi­
nates (0, k) is its y-intercept.] To get vectors into the picture, let's consider an example. 

The line£ with equation 2x + y = 0 is shown in Figure 1.53. It is a line with slope -2 
passing through the origin. The left-hand side of the equation is in the form of a dot 

product; in fact, if we let n = [ ~] and x = [;],then the equation becomes n · x = 0. 

The vector n is perpendicular to the line-that is, it is orthogonal to any vector x that 
is parallel to the line (Figure 1.54)-and it is called a normal vector to the line. The 
equation n • X = 0 is the normal form of the equation of£. 

Another way to think about_this line is to imagine a particle moving along the 
line. Suppose the particle is initially at the origin at time t = 0 and it moves along 
the line in such a way that its x-coordinate changes 1 unit per second. Then at t = 1 
the particle is at (I, -2 ), at t = 1.5 it is at (1.5, -3 ), and, if we allow negative values 
of t (that is, we consider where the particle was in the past), at t = - 2 it is (or was) at 

y y 

f 

Figure 1.53 Figura 1.54 
The line 2x + y = 0 A normal vector n 
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(- 2, 4). This movement is illustrated in Figure 1.55. In general, if x = t, then y = -2 t, 
and we may write this relationship in vector form as 

What is the significance of the vector d = [ _ ~]? It is a particular vector parallel 

to (,called a direction vector for the line. As shown in Figure 1.56, we may write the 
equation of e as X = td. This is the vector form of the equation of the line. 

If the line does not pass through the origin, then we must modify things 
slightly. 

y 

y 

(' 

Figure 1.56 
Figure 1.55 A direction vector d 

______ _., 
Consider the line e with equation 2x + y = 5 (Figure 1.57). This is just the line from 
Example 1.26 shifted upward 5 units. It also has slope -2, but its y-intercept is the 
point (0, 5). It is clear that the vectors d and n from Example 1.26 are, respectively, a 
direction vector and a normal vector for this line too. 

Thus, n is orthogonal to every vector that is parallel to e. The point P = (I, 3) is 
on e. If X = (x, y) represents a general point on e, then the vector PX = X - p is 
parallel toe and n. (x- p) = 0 (see Figure 1.58). Simplified, we haven. X= n. p. 
As a check, we compute 

n • x = [ ~] · [;] = 2x + y and n • p = [ ~] · [ ~] = 5 

Thus, the normal form n · x = n · p is just a different representation of the general 
form of the equation of the line. (Note that in Example 1.26, p was the zero vector, so 
n · p = 0 gave the right-hand side of the equation.) 
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The word parameter and the corre­
sponding adjective parametric 
come from the Greek words para, 
meaning "alongside;' and metron, 
meaning "measure." Mathemati­
cally speaking, a parameter is a 
variable in terms of which other 
variables are expressed-a new 
"measure" placed alongside 
old ones. 

y y 

e 
Figure 1.51 Figure 1.58 
The line 2x + y = 5 n • (x- p) = 0 

These results lead to the following definition. 

Definition The normal form of the equation of a line e in IR2 is 

n · (x- p) = 0 or n · x = n • p 

e 

where pis a specific point one and n * 0 is a normal vector for e. 
The general form of the equation of e is ax + by = c, where n = [ ~] is a nor­

mal vector for e. 

Continuing with Example 1.27, let us now find the vector form of the equation 
of e. Note that, for each choice of x, x - p must be parallel to-and thus a multiple 
of-the direction vector d. That is, x - p = td or x = p + td for some scalar t. In 
terms of components, we have 

[;] = [ ~] + t[ -~] (I ) 

or x=!+t 
y = 3- 2t (2) 

Equation (I) is the vector form of the equation of e, and the componentwise equa­
tions ( 2) are called parametric equations of the line. The variable tis called a parameter. 

How does all of this generalize to IR3? Observe that the vector and parametric 
forms of the equations of a line carry over perfectly. The notion of the slope of a line 
in IR2-which is difficult to generalize to three dimensions-is replaced by the more 
convenient notion of a direction vector, leading to the following definition. 

Definition The vector form of the equation of a line e in IR2 or IR3 is 

X= p + td 

where pis a specific point one and d * 0 is a direction vector for e. 
The equations corresponding to the components of the vector form of the 

equation are called parametric equations of e. 
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We will often abbreviate this terminology slightly, referring simply to the general, 
normal, vector, and parametric equations of a line or plane. 

,... 
Find vector and parametric equations of the line in R' through the point P = ( l, 2, -I), 

l"''"lld to th"'""' d " [ -n 
Solulion The vector equation x = p + td is 

The parametric form is 

Remarks 

[;] [_}{;] 
X= I + St 

y= 2- t 

z = -I + 3t 

• The vector and parametric forms of the equation of a given line ( are not 
unique-in fact, there are infinitely many, since we may use any point on f to deter­
mine p and any direction vector for f. However, all direction vectors are clearly mul-

tiples of each other. [ 10 l 
In Example 1.28, ( 6, l, 2) is another point on the line (take t = l ), and -2 is 

another direction vector. Therefore, 6 

gives a different (but equivalent) vector equation for the line. The relationship 
between the two parameters s and t can be found by comparing the parametric 
equations: For a given point (x, y, z) on t, we have 

implying that 

x = l + St = 6 + lOs 

y = 2- t = l- 2s 

z = -1 + 3t = 2 + 6s 

-lOs+ St = 5 

2s- t = -1 

-6s+3t= 3 

Each of these equations reduces to t = l + 2s. 
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Example 1.29 

Figura 1.59 
n is orthogonal to infinitely many 
vectors 

n 

Figura 1.60 
n • (x- p) = 0 

• Intuitively, we know that a line is a one-dimensional object. The idea of 
"dimension" will be clarified in Chapters 3 and 6, but for the moment observe that 
this idea appears to agree with the fact that the vector form of the equation of a line 
requires one parameter. 

One often hears the expression "two points determine a line." Find a vector equation 
of the line e in IR3 determined by the points P = ( -1, 5, o) and Q = ( 2, 1, 1). 

Solution We may choose any point on e for p, so we will use P ( Q would also be 
fine). 

A convenient direction vector is d = PQ = [ -~] (or any scalar multiple of this). 
Thus, we obtain 1 

X= p + td 

= [ -} { -;] 

Planes in ~3 

The next question we should ask ourselves is, How does the general form of the equa­
tion of a line generalize to IR3? We might reasonably guess that if ax + by = c is the 
general form of the equation of a line in IR2

, then ax + by + cz = d might represent a 
line in IR3

• In normal form, this equation would ben· x = n · p, where n is a normal 
vector to the line and p corresponds to a point on the line. 

To see if this is a reasonable hypothesis, let's think about the special case of the 

"!ll.tion "" + by + a = 0. In norm.I fmm, it becom" n • x = 0. where n = [: ]· 

However, the set of all vectors x that satisfy this equation is the set of all vectors or­
thogonal ton. As shown in Figure 1.59, vectors in infinitely many directions have this 
property, determining a family of parallel planes. So our guess was incorrect: It 
appears that ax+ by+ cz = dis the equation of a plane-not a line-in IR3

• 

Let's make this finding more precise. Every plane '1P in-IR3 can be determined by 
specifying a point p on '1P and a nonzero vector n normal to '1P (Figure 1.60). Thus, if 
x represents an arbitrary point on CJ>, we haven· (x - p) = 0 or n · x = n · p. If 

n = [ ~ ]•nd x = [: l then, in te.m• of wmponen" the "'u•tion bewme. 

ax + by + cz = d (where d = n · p). 

Definition The normal form of the equation of a plane '1P in IR3 is 

n·(x-p)=O or n·x=n·p 

where p is a specific point on '1P and n =I= 0 is a normal vector for '1P. 

The general form of the equation ofC!P is ax+ by+ cz = d, where n = [ ~1 is 
a normal vector for '1P. c 
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Note that <111}' scalar multiple of a normal vector for a plane is another normal 
vector. 

Find the normal and general forms of the equation of the plane that contains the 

point P ~ I 6, 0, I i<>nd h"' nontMI wctnt n ~ [ iJ 
'""" u" With p ~ [ ~ lmd x ~ [: l """'" n · p ~ t • 6 + 2 • 0 + 3 • t ~ 9, '" 

the normal equation n · x = n · p becomes the general eqLwtion x + 2y + 3z = \ 

Geometrically, it is dear that parallel planes have the same normal vector(s). 
Thus, their general equations have left-hand sides that are multiples of each other. So, 
for example, 2x + 4y + 6z = I 0 is the general equation of a plane that is parallel to 
the plane in Example 1.30, since we may rewrite the equation as x + 2y + 3z = 5-
from which we see that the two planes have the same normal vector n. (Note that the 
planes do not coincide, since the right- hand sides of their equations are distinct) 

We may also express the equation of a plane in vector or parametric form. To do 
so, we observe that a plane can also be determined by specifying one of its points P 
(by the vector p) and two direction vectors u and v parallel to the plane (but not par­
allel to each other). As Figure 1.61 shows, given any point X in the plane (located 

TV \ p \l( r i\ 

f~-------""X 
su 

figure 1.61 
x- p = su + tv 

by x), we can always find appropriate multiples su and tv of the direction vectors such 
that x - p = su + tv or x = p + su + tv. If we write this equation componentwise, 
we obtain parametric equations for the plane. 

llefinilion The vector form of the equation of a plane'.!P in IR1 is 

x = p + su +tv 

where p is a point on :1> and u and v are direction vectors for (J/' ( u and v are non­
zero and parallel to '.1', but not parallel to each other). 

The equations corresponding to the components of the vector form of the 
equation are called parametric equations of~]'. 
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Example 1.31 Find vector and parametric equations for the plane in Example 1.30. 

Figure 1.62 
Two normals determine a line 

Figure 1.63 
The intersection of 
two planes is a line 

Solution We need to find two direction vectors. We have one point P = ( 6, 0, 1) in 
the plane; if we can find two other points Q and R in r;;]>, then the vectors PQ and PR 
can serve as direction vectors (unless by bad luck they happen to be parallel!). By trial 
and error, we observe that Q = (9, 0, 0) and R = (3, 3, O) both satisfy the general equa­
tion x + 2y + 3z = 9 and so lie in the plane. Then we compute 

which, since they are not scalar multiples of each other, will serve as direction vectors. 
Therefore, we have the vector equation of7fl, 

and the corresponding parametric equations, 

x = 6 + 3s- 3t 

y= 3t 

z= 1- s- t 

......... [What would have happened had we chosen R = (0, 0, 3)?] 

Remarks 
• A plane is a two-dimensional object, and its equation, in vector or parametric 

form, requires two parameters. 
• As Figure 1.59 shows, given a point Panda nonzero vector n in IR3

, there are 
infinitely many lines through P with n as a normal vector. However, P and two non­
parallel normal vectors n 1 and n2 do serve to locate a line f uniquely, since f must 
then be the line through P that is perpendicular to the plane with equation x = p + 
m 1 + tn2 (Figure 1.62). Thus, a line in IR 3 can also be specified by a pair of equations 

a1 x + b1y + c1 z = d1 

a2x + bzr + c2z = d2 

one corresponding to each normal vector. But since these equations correspond to a 
......... pair of nonparallel planes (why nonparallel?), this is just the description of a line as 

the intersection of two nonparallel planes (Figure 1.63). Algebraically, the line con­
sists of all points (x, y, z) that simultaneously satisfy both equations. We will explore 
this concept further in Chapter 2 when we discuss the solution of systems of linear 
equations. 

Tables 1.2 and 1.3 summarize the information presented so far about the equa­
tions of lines and planes. 

Observe once again that a single (general) equation describes a line in IR2 but a 
plane in IR 3

• [In higher dimensions, an object (line, plane, etc.) determined by a single 
equation of this type is usually called a hyperplane.] The relationship among the 

I 
f 

l 
I 

I 
I 

t 
I 
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Table 1.2 Equations of Lines in ~E 2 

Normal Form General Form Vector Form Parametric Form 

n·x=n·p ax+ by= c x=p+td 
{
X= Pi+ tdl 
y = p, + td2 

Table 1.3 Lines and Planes in IR 3 

Lines 

Planes 

Normal Form 

{
ni·X = nl·p1 

n 2 ·x = n 2 • p 2 

n·x=n·p 

Example 1.32 

General Form 

{
a1x + b1y + c1z: d1 

a2x + b2y + c2z - d2 

ax+ by+ cz= d 

Vector Form Parametric Form 

X= p + td 

x=p+su+tv 

dimension of the object, the number of equations required, and the dimension of the 
space is given by the "balancing formula": 

(dimension of the object) + (number of general equations) = dimension of the space 

The higher the dimension of the object, the fewer equations it needs. For exam­
ple, a plane in 1Rl3 is two-dimensional, requires one general equation, and lives in 
a three-dimensional space: 2 + 1 = 3. A line in 1Rl3 is one-dimensional and so needs 
3 - 1 = 2 equations. Note that the dimension of the object also agrees with the num­
ber of parameters in its vector or parametric form. Notions of "dimension" will be 
clarified in Chapters 3 and 6, but for the time being, these intuitive observations will 
serve us well. 

We can now find the distance from a point to a line or a plane by combining the 
results of Section 1.2 with the results from this section. 

------------~ 

Find the distance from the point B = (I, 0, 2) to the line f through the point 

A ~ ( 3, I, I) with dicoction vectoc d ~ [ - il 
Solulion As we have already determined, we need to calculate the length of PH, 
where pis the point on eat the foot of the perpendicular from B. If we label v = AB, 
then AP = projd(v) and PH= v- projd(v) (see Figure 1.64). We do the necessary 
calculations in several steps. 



42 Chapter I Vectors 

vi 
I 

/ 
I 

Figure 1.64 

I 
I 

/ 

B 

d(B, t) = llv- projd(v)ll 

Step 2: The projection of v onto d is 

(
d•v) 

projd(v) = d. d d 

= ((-1)·(-2) + 1·(-1) + 0•1)[-~] 
( -1 )2 + 1 + 0 

0 

[ -1] =! 1 

0 

~ r-ll 
Step 3: The vector we want is 

[-2] [_!] [_Jl 
v- projd(v) = - ~ - ! = -1 

Step 4: The distance d(B, £) from B to£ is 

ltv- pmj,(v)ll ~ [ =!] 
Using Theorem l.3(b) to simplify the calculation, we have 

Note 

ltv- pmj,(v)ll ~ l [ =:] 
= ~V9 + 9 + 4 

= !V22 

• In terms of our earlier notation, d(B, £) = d(v, projd(v)). 
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In the case where the line ( is in Iff and its equation has the general form 
ax+ by= c, the distanced( B, ()from B = (x11 , y0 ) is given by the formula 

tJX0 + by0 - c d( B, f) = ____ __:____ 

Ya2 + lr 
(3) 

You are invited to prove this formula in Exercise 39. 

--------E;-ample 1.33 -r :· ind the distance tro1~~he poin~ = ~~, o, 2 J to the plane ~J> whose general equati: 
IS X+ y- z =I. 

Solution In this case, we need to calculate the length of PB, where Pis the point on 
.1' at the foot of the perpendicular trom B. As Figure 1.65 shows, if A is any point on 

.~ '"d we ''""'e the nonn,l """' n ~ [ _:] of?/' so thot its t'il ;, '' A, then we 

need to find the length of the projection of AB onto n. Again we do the necessary 
calculations in steps. 

n 

A 

Figure 1.65 

d(B, .i') = llproj"(ABJII 

I 
I 
I 
I 
I 

B 

flp 

Step l: By trial and error, we find any point whose coordinates satisfy the equation 
x + y - z = I. A = ( I, 0, 0) will do. 

Step 2: Set 

FAB~b-·~m 
Step 3: The projection of v onto n is 

(~)n n·n 

( 1·0+1·0-1·2)[ :] 
I + I + (-I ) 2 

-I 
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Step 4: The distance d(B, !JP) from B to !JP is 

llpmj"(v)ll ~HI [ J 

In general, the distance d(B, !JP) from the point B = (Xo, y0, zo) to the plane whose 
general equation is ax + by + cz = dis given by the formula 

[axo + by0 + cz0 - d[ 
d( B, g;) = .:____:_Yr-a=2 =+=b=2=+==cz,-------.:. (4) 

You will be asked to derive this formula in Exercise 40. 

! Exercises 1. 3 

In Exercises 1 and 2, write the equation of the line passing 
through P with normal vector n in (a) normal form and 
(b) general form. 

1. P = (0, 0), n = [~] 2. P = (2, 1 ), n = [ ~~] 
In Exercises 3-6, write the equation of the line passing 
through P with direction vector d in (a) vector form and 
(b) parametric form. 

3. p = (1, 0), d = [- ~] 4. p = (3, -3 ), d = [- ~] 

5. p ~ (O,O,O),d ~ [ -~] 6. P ~ (-3, I, 2), d ~ m 
In Exercises 7 and 8, write the equation of the plane passing 
through P with normal vector n in (a) normal form and 
(b) general form. 

7. P~ (0, !,O),n ~ m 8. P ~ (-3, 1,2),n ~ m 

In Exercises 9 and 10, write the equation of the plane passing 
through P with direction vectors u andv in (a) vector form 
and (b) parametric form. 

9. p ~ (0,0,0), u ~ [:J.v ~ [ -;] 

IO.P~(4,-1,3),u~ [J~ [-:J 
In Exercises 11 and 12, give the vector equation of the line 
passing through P and Q. 

11. p = (1, -2), Q = (3, 0) 

12. p = (4, -1, 3), Q = (2, 1, 3) 

In Exercises 13 and 14, give the vector equation of the plane 
passing through P, Q, and R. 

13. P = (1, 1, 1), Q = (4, 0, 2), R = (0, 1, -1) 

14. P = (1, 0, 0), Q = (0, 1, 0), R = (0, 0, 1) 

15. Find parametric equations and an equation in vector 
form for the lines in IR2 with the following equations: 

(a) y = 3x- 1 (b) 3x + 2y = 5 

1 

1 

I I 
21 

J 
2 I 

I 



16. Consider the vector equation x = p + t(q- p), where 
p and q correspond to distinct points P and Q in IR2 

or IR.1. 
(a) Show that this equation describes the line segment 

PQ as t varies from 0 to 1. 
(b) For which value oft is x the midpoint of PQ, 

and what is x in this case? 
(c) Find the midpoint of PQwhen P = (2, -3) and 

Q = (0, l ). 
(d) Find the midpoint of PQ when P = (I, 0, l) 

and Q = (4, I, -2). 
(e) Find the two points that divide PQ in part (c) into 

three equal parts. 
(f) Find the two points that divide PQ in part (d) into 

three equal parts. 

17. Suggest a "vector proof" of the fact that, in IR', two 
lines with slopes m1 and 1112 are perpendicular if and 
only if 111 11112 = -1. 

18. The line(' passes through the point P = (I, -I, I) and 

h<>> di"dion wctm d ~ [ _a Fot mh of the 

following planes ?P, determine whether f and '.Jf> are 
parallel, perpendicular, or neither: 

(a) 2x + 3y- z = l (b) 4x- y + 5z = 0 
(c) x- y- z = 3 (d) 4x + 6y- 2z = 0 

19. The plane 0J> 1 has the equation 4x- y + 5z = 2. For 
each of the planes 7J> in Exercise 18, determine whether 
!J> 1 and rzl' are parallel, perpendicular, or neither. 

20. Find the vector form of the equation of the line in IR 2 

that passes through P = (2, -1) and is perpendicular 
to the line with general equation 2x- 3y = I. 

21. Find the vector form of the equation of the line in IR' 
that passes through P = (2, -I) and is parallel to the 
line with general equation 2x- 3y = I. 

22. Find the vector form of the equation of the line in R1 

that passes through P = ( -1, 0, 3) and is perpendicular 
to the plane with general equation x - 3y + 2z = 5. 

23. Find the vector form of the equation of the line in R1 

that passes through P = (- I, 0, 3) and is parallel to 
the line with parametric equations 

X= I - t 

y = 2 + 3t 
z = -2 - t 

24. Find the normal form of the equation of the plane that 
passes through P = ( 0, -2, 5) and is parallel to the 
plane with general equation 6x - y + 2z = 3. 
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25. A cube has vertices at the eight points (x, y, z), where 
each of x, y, and z is either 0 or l. (See Figure 1.34.) 

(a) Find the general equations of the planes that 
determine the six faces (sides) of the cube. 

(b) Find the general equation of the plane that con­
tains the diagonal from the origin to (I, l, 1) and 
is perpendicular to the xy-plane. 

(c) Find the general equation of the plane that 
contains the side diagonals referred to in 
Example 1.22. 

26. Find the equation of the set of all points that are 
equidistant from the points P = (I, 0,- 2) and 
Q= (5,2,4). 

In Exercises 27 and 28, find the distance from the point Q to 
the li11e i. 

27. Q= (2,2),fwithequation [;] = [ -~] + r[_~] 

28. Q ~ (0, I. 0), I with cquotion [;] ~ [:] + { -~] 
In Exercises 29 and 30, find the distance from the point Q to 
the plane (if'. 

29. Q = (2, 2, 2), 7/' with equation x + y- z = 0 

30. Q = (0, 0, 0), J> with equation x- 2y + 2z = 1 

Figure I .66 suggests a way to use vectors to locate the point 
R 011 l that is closest to Q. 

31. Find the point Ron (that is closest to Q in Exercise 27. 

32. Find the point Ron t that is closest to Q in Exercise 28. 

p 

•o 
Figure 1.6!__. 
r = p + PR 

Q 

r 
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Figure I.67 suggests a way to use vectors to locate the point R 
on CJ> that is closest to Q. 

-' 

"/_-.-··-··~· 
0 

Figure 1.6J 

r=p+PQ+QR 

33. Find the point Ron CJ> that is closest to Q in Exercise 29. 

34. Find the point Ron I!J> that is closest to Q in Exercise 30. 

In Exercises 35 and 36, find the distance between the parallel 
lines. 

35. [;] = [~] + s[ -~] and [;] = [!] + { -~] 

, •. [;] = UJ + m ,nd [:J = m + n 
In Exercises 37 and 38, find the distm:zce between the parallel 
planes. 

37. 2x + y - 2z = 0 and 2x + y - 2z = 5 

38. x + y + z = 1 and x + y + z = 3 

39. Prove equation (3) on page 43. 

40. Prove equation (4) on page 44. 

41. Prove that, in IR2
, the distance between parallel lines 

with equations n • x = c1 and n • x = c2 is given by 

let - c2l 
II nil 

42. Prove that the distance between parallel planes with 
equations n • x = d1 and n • x = d2 is given by 

ldt- dzl 

II nil 

If two nonparallel planes I!J> 1 and I!J> 2 have normal vectors n 1 

and n2 and(} is the angle between n1 and n2, then we define 

the angle between I!J> 1 and CJ> 2 to be either(} or 180° - (}, 
whichever is an awte angle. (Figure 1.68) 

180- (} 

Figure 1.68 

In Exercises 43-44, find the acute angle between the planes 
with the given equations. 

43. x + y + z = 0 and 2x + y - 2z = 0 

44. 3x- y + 2z = 5 and x + 4y- z = 2 

In Exercises 45-46, show that the plane and line with the 
given equations intersect, and then find the awte angle of 
intersection between them. 

45. The plane given by x + y + 2z = 0 and the line 
given by x = 2 + t 

y = 1 - 2t 

z = 3 + t 

46. The plane given by 4x - y - z = 6 and the line 

given by x = t 

y = 1 + 2t 

z = 2 + 3t 

Exercises 47-48 explore one approach to the problem of find­
ing the projection of a vector onto a plane. As Figure 1.69 
shows, ifi!J> is a plane through the origin in IR3 with normal 
vector n, and v is a vector in IR3

, then p = proj2i'( v) is a 
vector in I!J> such that v - en = p for some scalar c. 

Figure 1.69 
Projection onto a plane 

47.l 
( 
s 

48. l 

i 
I 
l 
f 
f 
~ 



47. L\ing the L1ct that n is orthogonal to every vector in jl 
i ,111d hence top), solve for c and thereby tind an expres­

sinn for p in terms of v and n. 

48. L'sc· the method of Exercise 43 to tind the projection of 

v~ Ul 
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onto the planes with the following equations: 

(a) x + )' + ::: = 0 

(c) x-2z=O 

(b) 3x- y + z = 0 

(d) 2x- 3y + z = 0 


