FACT SHEET FOR MATH 20C

1. Motion in Three-Space

- If $\mathbf{r}(t)$ is the position vector of a particle in three-space at time t, then its velocity and acceleration are given by

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t), \quad \mathbf{a}(t)=\mathbf{v}^{\prime}(t)
$$

Besides, the unit tangent and normal vectors to the trajectory of the particle are given by

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|} \quad \mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

The arc-length for $t \in[a, b]$ is given by

$$
\int_{b}^{a}\left\|\mathbf{r}^{\prime}(t)\right\| d t
$$

2. Tangent Planes and Linear Approximations

- The equation of the tangent plane for the graph of a function $z=f(x, y)$ at the point (a, b) is given by

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

-. The tangent plane to the surface $f(x, y, z)=0$ at the point (a, b, c) is given by the equation

$$
f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0
$$

-. The linear approximation of a function $f(x, y)$ at the point (a, b) in its domain is given by

$$
f(a+h, b+k) \approx f(a, b)+f_{x}(a, b) h+f_{y}(a, b) k
$$

-. A function $f(x, y)$ is differentiable at a point (a, b) in its domain if $f_{x}(a, b)$ and $f_{y}(a, b)$ exist and

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{f(a+h, b+k)-\left(f(a, b)+f_{x}(a, b) h+f_{y}(a, b) k\right)}{\sqrt{h^{2}+k^{2}}}=0
$$

3. Gradients and Directional Derivatives

- Given a function f and a vector \mathbf{v}, the derivative of f with respect to \mathbf{v} at the point P is given by

$$
D_{\mathbf{v}} f(P)=\nabla f(P) \cdot \mathbf{v}
$$

- Given a function f, and a vector \mathbf{v}, the directional derivative of f in the direction of \mathbf{v} at the point P is given by

$$
D_{\mathbf{u}} f(P)=\nabla f(P) \cdot \mathbf{u}
$$

where

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

4. Optimization in Several Variables

- A point P in the domain of a function f is called a critical point if one of the following is satisfied.
(1) $\nabla f(P)=0$, i.e., all the partial derivatives are zero.
(2) At least one of the partial derivatives does not exist.
- If (a, b) is a critical point of a function $f(x, y)$ in two variables, we define the discriminant as

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-f_{x y}(a, b)^{2}
$$

Theorem 4.1 (Second Derivative Test). Let $P=(a, b)$ be a critical point of $f(x, y)$. Assume that the second derivatives $f_{x x}, f_{y y}, f_{x y}$ are continuous near P. Then
(1) If $D>0$, then $f(a, b)$ is a local minimum or local maximum.
(2) if $D<0$, then $f(a, b)$ is a saddle point.
(3) if $D=0$, the test is inconclusive.

Furthermore,
(4) if $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(5) if $D>0$ and $f_{x x}(a, b)<0$ then $f(a, b)$ is a local maximum.

Theorem 4.2 (Lagrange Multipliers). Assume that f and g are differentiable functions. If f has a local minimum or maximum on the constraint $g=0$ at the point P, and if $\nabla g(P) \neq 0$, then there is a scalar λ such that

$$
\nabla f(P)=\lambda \nabla g(P)
$$

