Solutions to Math 21C Final, Winter 02.

1. Two vectors for two of the sides of the triangle are $\mathbf{a}=\langle 1,2,1\rangle$ and $\mathbf{b}=$ $\langle 2,-2,3\rangle$. The area of the triangle is $|\mathbf{a} \times \mathbf{b}| / 2$. We have $\mathbf{a} \times \mathbf{b}=\ldots=8 \mathbf{i}-\mathbf{j}-6 \mathbf{k}$ and $|\mathbf{a} \times \mathbf{b}|=\sqrt{8^{2}+1+6^{2}}=\sqrt{101}$.
2. The curves intersect when $\left\langle t, t^{2}, t^{3}\right\rangle=\left\langle 1+s, 4 s, 8 s^{2}\right\rangle$ for some t and s. This means that $t=1+s$ and $t^{2}=4 s=4(t-1)$ so $t^{2}-4 t+4=0$ and hence $(t-2)^{2}=0$, i.e. $t=2$ and hence $s=1$. Its is easy to check that also the last equation is satisfied for these values. We have $\mathbf{r}_{1}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle$ so $\mathbf{r}_{1}^{\prime}(2)=\langle 1,4,12\rangle$ and $\mathbf{r}_{2}^{\prime}(s)=\langle 1,4,16 s\rangle$ so $\mathbf{r}_{2}^{\prime}(1)=\langle 1,4,16\rangle$. The angle is given by $\cos \theta=\mathbf{r}_{1}^{\prime}(2) \cdot \mathbf{r}_{2}^{\prime}(1) /\left(\left|\mathbf{r}_{1}^{\prime}(2)\right|\left|\mathbf{r}_{2}^{\prime}(1)\right|\right)=$ $209 /\left(\sqrt{1+4^{2}+12^{2}} \cdot \sqrt{1+4^{2}+16^{2}}\right)=209 / \sqrt{161 \cdot 273}$.
3. The vector $\mathbf{n}=\langle 2,1,4\rangle$ between the points is normal to the plane and the point in the middle between the points $P=(0,3 / 2,1)$ is on the plane. The equation of the plane is therefore $2(x-0)+1(y-3 / 2)+4(z-1)=0$.
4. $\mathbf{r}^{\prime}(t)=3 t^{1 / 2} \mathbf{i}-2 \sin 2 t \mathbf{j}+2 \cos 2 t \mathbf{k}$. The initial speed is $\left|\mathbf{r}^{\prime}(0)\right|=|2 \mathbf{k}|=2$. The arc length is $\int_{0}^{1}\left|\mathbf{r}^{\prime}(t)\right| d t=\int_{0}^{1} \sqrt{9 t+4} d t=(9 t+4)^{3 / 2} 2 /\left.27\right|_{0} ^{1}=2\left(13^{3 / 2}-4^{3 / 2}\right) / 27$.
5. The tangent plane to $F(x, y, z)=x^{2}+y^{2} / 4+z^{2} / 9=1$ at a point $\left(x_{0}, y_{0}, z_{0}\right)$ has normal $\nabla F\left(x_{0}, y_{0}, z_{0}\right)=\left\langle 2 x_{0}, y_{0} / 2,2 z_{0} / 9\right\rangle$. This vector is parallel to the normal of the plane $x+y-z=0$, which is $\langle 1,1,-1\rangle$, if $2 x_{0}=\lambda, y_{0} / 2=\lambda$ and $2 z_{0} / 9=-\lambda$ Since the point also must lie on the surface we must have $F(\lambda / 2,2 \lambda,-9 \lambda / 2)=\lambda^{2} / 4+\lambda^{2}+$ $9 \lambda^{2} / 4=7 \lambda^{2} / 2=1$ so $\lambda= \pm \sqrt{2 / 7}$. The point is $\left(x_{0}, y_{0}, z_{0}\right)= \pm \sqrt{2 / 7}(1 / 2,2,-9 / 2)$.
6. $f_{x}(x, y)=4 x^{3}-8 y=0$ and $f_{y}(x, y)=-8 x+4 y=0$ gives $y=2 x$ and $4 x\left(x^{2}-4\right)=0$. Hence $x=0$ or $x= \pm 2$ so the critical points are $(0,0),(2,4),(-2,-4)$. $f_{x x}=12 x^{2}, f_{x y}=-8, f_{y y}=4$ so $D(x, y)=f_{x x} f_{y y}-f_{x y}^{2}=48 x^{2}-64$. Then $D(0,0)<0$ so $(0,0)$ is a saddle point, $D(2,4)=128>0$ and $f_{x x}(2,4)=48>0$ so $(2,4)$ is local $\min , D(-2,-4)=128>0$ and $f_{x x}(-2,-4)=48>0$ so $(-2,-4)$ is local min.
7. Minimize the area $A=x y+2 x z+2 y z$, subject to the constraint that the volume is $V=x y z=32,000$. Lagrange multiplies: $\nabla A(x, y, z)=\langle y+2 z, x+2 z, 2 x+2 y\rangle$ and $\nabla V(x, y, z)=\langle y z, x z, x y\rangle$ so we must find all (x, y, z) and λ such that $y+2 z=\lambda y z$, $x+2 z=\lambda x z, 2 x+2 y=\lambda x y$ and $V(x, y, z)=32,000$. Multiplying the first equation by x, the second by y and the third by z we get $x(y+2 z)=y(x+2 z)=z(2 x+2 y)$. Subtracting the first two equations gives $2 z(x-y)=0$ and subtracting the first and third gives $(x-2 z) y=0$. If $z=0$ then $y=0$ or $x=0$. If $z \neq 0$ then $x=y=0$ or $x=y=2 z$. Hence we have the points $(x, 0,0),(0, y, 0),(0,0, z)$ and $(2 z, 2 z, z)$. Only the last one gives $V \neq 0$ and we must have $V(2 z, 2 z, z)=4 z^{3}=32,000$ which is equivalent to $z=20$ so $(x, y, z)=(40,40,20)$.
8. Let $D=\left\{(x, y) ; 10-3 x^{2}-3 y^{2} \geq 4\right\}=\left\{(x, y) ; x^{2}+y^{2} \leq 2\right\}$.

The volume is $\iint_{D} z d A=\iint_{D}\left(10-3 x^{2}-3 y^{2}\right) d A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}}\left(10-3 r^{2}\right) r d r d \theta=$ $\left.\int_{0}^{2 \pi}\left(5 r^{2}-3 r^{4} / 4\right)\right|_{0} ^{\sqrt{2}} d \theta=\int_{0}^{2 \pi} 7 d \theta=14 \pi$.
9. $\iint_{T} \sqrt{1+1+4 y^{2}} d A=\int_{0}^{1} \int_{0}^{y} \sqrt{2+4 y^{2}} d x d y=\left.\int_{0}^{1} \sqrt{2+4 y^{2}} x\right|_{x=0} ^{y} d y=$ $\int_{0}^{1} \sqrt{2+4 y^{2}} y d y\left(2+4 y^{2}\right)^{3 / 2} /\left.12\right|_{0} ^{1}=\left(6^{3 / 2}-2^{3 / 2}\right) / 12$.
10. $E=\{(x, y, z) ; x \geq 0, y \geq 0, z \geq 0, x+y+z / 2 \leq 1\}$ $=\{(x, y, z) ; 0 \leq z \leq 2,0 \leq y \leq 1-z / 2,0 \leq x \leq 1-y-z / 2\}$.
$\iiint_{E} y d V=\int_{0}^{2} \int_{0}^{1-z / 2} \int_{0}^{1-y-z / 2} y d x d y d z=\left.\int_{0}^{2} \int_{0}^{1-z / 2} y x\right|_{x=0} ^{1-y-z / 2} d y d z$ $=\int_{0}^{2} \int_{0}^{1-z / 2} y(1-y-z / 2) d y d z=\left.\int_{0}^{2}\left(y^{2} / 2-y^{3} / 3-z y^{2} / 4\right)\right|_{y=0} ^{1-z / 2} d z$ $=\int_{0}^{2}(1-z / 2)^{3} / 6 d z=\int_{1 / 2}^{1} t^{3} / 3 d t=t^{4} /\left.12\right|_{0} ^{1}=1 / 12$.

