MATH 21C, MIDTERM 2 SOLUTIONS, WINTER 2003, OKIKIOLU.

1. A curve is given by the equation

$$
\mathbf{r}(t)=\left\langle\frac{5 t^{2}}{2}, \frac{4 t^{3}}{3},-t^{3}\right\rangle, \quad 0 \leq t \leq \sqrt{3}
$$

(a). Calculate the equation of the tangent line to the curve at the point $\left(\frac{5}{2}, \frac{4}{3},-1\right)$.
(b). Calculate the length of the curve.

Solution. (a). $\mathbf{r}^{\prime}(t)=\left\langle 5 t, 4 t^{2},-3 t^{2}\right\rangle$. At the point given,

$$
\frac{5 t^{2}}{2}=\frac{5}{2}, \quad \frac{4 t^{3}}{3}=\frac{4}{3}, \quad-t^{3}=-1
$$

The unique solution to these three equations is $t=1$. Now $\mathbf{r}^{\prime}(1)=\langle 5,4,-3\rangle$ and so the equation of the tangent line in vector form is $\mathbf{r}_{0}(t)=\left\langle\frac{5}{2}+5 t, \frac{4}{3}+4 t,-1-3 t\right\rangle$.
(b). $\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{(5 t)^{2}+\left(4 t^{2}\right)^{2}+\left(3 t^{2}\right)^{2}}=5 t \sqrt{1+t^{2}}$. Then the length is

$$
\int_{0}^{\sqrt{3}} 5 t \sqrt{1+t^{2}} d t=\left.\frac{5}{3}\left(1+t^{2}\right)^{3 / 2}\right|_{0} ^{\sqrt{3}}=\frac{35}{3}
$$

2. Let $f(x, y)=e^{x}(1+\sin y)$.
(a). Calculate the equation of the tangent plane to the graph $z=f(x, y)$ at the point $(x, y, z)=(0, \pi, 1)$.
(b). By making a linear approximation of f at the point $(x, y)=(0, \pi)$, estimate $f(0.2, \pi-0.1)$.
Solution. (a).

$$
f_{x}=e^{x}(1+\sin y), \quad f^{y}=e^{x} \cos y, \quad f_{x}(0, \pi)=1, \quad f_{y}(0, \pi)=-1
$$

Tangent plane at $(0, \pi, 1)$ is $z-1=(x-0)-(y-\pi)$.
(b). The value on the graph $z=f(x, y)$ is approximated by the value of z on the tangent plane: $f(0.2, \pi-0.1) \approx 1+(0.2-0)-(\pi-0.1-\pi)=1+0.2+0.1=1.3$.
(Alternatively use differentials to get the same answer.)
3. The temperature of a heated plate is given by $f(x, y)=x^{2} / y$.
(a). At the point $(1,1)$, in which direction is the rate of change of temperature greatest?
(b). An ant travels on the plane at unit speed and passes through the point $(1,1)$ in the direction $\langle 3,4\rangle$. What rate of change of temperature does the ant experience as it passes through $(1,1)$?
Solution. (a). Rate is greatest in the direction $\nabla f(1,1)$. Now $\nabla f=\left\langle 2 x / y,-x^{2} / y^{2}\right\rangle$, and so $\nabla f(1,1)=\langle 2,-1\rangle$.
(b). Unit vector in the direction $\langle 3,4\rangle$ is $\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$. Rate of change of temperature is

$$
D_{\mathbf{u}} f(1,1)=\nabla f(1,1) \cdot \mathbf{u}=\langle 2,-1\rangle \cdot\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle=\frac{2}{5}
$$

4. Find all the critical points of the function $f(x, y)=x^{2}-2 x y+\frac{y^{3}}{3}$ and determine whether each critical point is a local maximum, a local minimum or a saddle point.

Solution. Solve for critical points

$$
\begin{aligned}
& 0=f_{x}=2 x-2 y \quad \Rightarrow \quad x=y \\
& 0=f_{y}=-2 x+y^{2} \quad \Rightarrow \quad 0=-2 y+y^{2} \quad \Rightarrow \quad y(y-2)=0
\end{aligned}
$$

We get the points $(0,0)$ and $(2,2)$. Now

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 & -2 \\
-2 & 2 y
\end{array}\right|=4 y-4
$$

At $(0,0)$ we have $D=-4<0$ so $(0,0)$ is a saddle. At $(2,2)$ we have $D=4>0$ and $f_{x x}=2>0$ so $(2,2)$ is a local minimum.
5. Use Lagrange multipliers to calculate the maximum and minimum values of $x^{4}+y^{4}$ on the curve $x^{2}+y^{4}=1$.
Solution. $f=x^{4}+y^{4}, g=x^{2}+y^{4}$. Solve $\nabla f=\lambda \nabla g$ and $g=4$:

$$
\left\{\begin{array}{l}
4 x^{3}=\lambda 2 x \\
4 y^{3}=\lambda 4 y^{3} \\
x^{2}+y^{4}=1
\end{array}\right.
$$

The second equation implies $\lambda=1$ or $y=0$. If $\lambda=1$ the the first equation implies $2 x\left(2 x^{2}-1\right)=0$ so $x=0$ or $x= \pm 2^{-1 / 2}$. The constraint gives the points $(x, y)=(0, \pm 1)$ and the four points $(x, y)=\left(\pm 2^{-1 / 2}, \pm 2^{-1 / 4}\right)$. If $y=0$ then the constraint gives the points $(\pm 1,0)$. Evaluating f at these points,

$$
f(0, \pm 1)=1, \quad f\left(\pm 2^{-1 / 2}, \pm 2^{-1 / 4}\right)=3 / 4, \quad f(\pm 1,0)=1
$$

The max is 1 and the \min is $3 / 4$.

