Extreme local statistics in random graphs: maximum tree extension counts

Lutz Warnke
Department of Mathematics
UCSD

Abstract

We consider a generalization of the maximum degree in random graphs. Given a rooted tree T, let X_{v} denote the number of copies of T rooted at v in the binomial random graph $G_{n, p}$. We ask the question where the maximum $M_{n}=$ $\max \left\{X_{1}, \ldots, X_{n}\right\}$ of X_{v} over all vertices is concentrated. For edge-probabilities $p=p(n)$ tending to zero not too fast, the maximum is asymptotically attained by the vertex of maximum degree. However, for smaller edge probabilities $p=p(n)$, the behavior is more complicated: our large deviation type optimization arguments reveal that the behavior of M_{n} changes as we vary $p=p(n)$, due to different mechanisms that can make the maximum large.

Based on joint work with Pedro Araújo, Simon Griffiths and Matas Šileikis; see arXiv:2310.11661

