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Descriptive set theory: motivation

Descriptive set theory is the study of “definable” subsets of the reals.
Studying all subsets of the reals can lead to strange pathologies which don’t
occur in actual mathematics.

Non-measurable sets.

A basis for R as a Q-vector space.

The continuum hypothesis (is there some A ⊆ R with
|N| < |A| < |R|??)
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Descriptive set theory: precisely

Descriptive set theory is the study are Polish spaces, that is, second
countable, completely metrizable spaces. For instance:

1 The real line R.

2 Cantor space 2N.

3 Baire space NN.

Today, “definable” will mean Borel.
A Borel set is a set that can be constructed from open sets by using
countable unions/intersections and complements.
Similarly, we’ll only be looking at Borel maps, that is, functions
f : X → Y such that the preimages of open sets are Borel.
Fact: Any two uncountable Polish spaces are Borel isomorphic.
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Descriptive set theory: the previous examples

The pathologies from earlier:

Non-measurable sets? Every Borel set is measurable.

A basis for R as a Q-vector space? There is no Borel basis.

The continuum hypothesis? Every Borel set satisfies the continuum
hypothesis, i.e. if A ⊆ R is a Borel subset, then either A is countable,
or |A| = |R|.
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Borel equivalence relations

A fairly new1 area of descriptive set theory involves the study of Borel
equivalence relations.
A Borel equivalence relation on a set X is an equivalence relation E on
X such that E ⊆ X2 is Borel (consider it as a set of pairs).
Many natural classification problems in mathematics arise as Borel
equivalence relations:

Classification of finitely generated groups up to isomorphism.

Classification of (open) Riemann surfaces up to conformal equivalence.

Classification of finitely generated groups up to quasi-isometry.

Some of these do not have “reasonable” invariants which classify them.
One aim of the program of Borel equivalence relations is to make these
kinds of statements precise.

11980s
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Borel equivalence relations

Let E and F be Borel equivalence relations on X and Y respectively.
We say that E is Borel reducible to F (denoted E ≤B F ) if there is a
Borel map X → Y such that

x E x′ ⇐⇒ f(x) F f(x′).

This defines a preorder on Borel equivalence relations.
We say that E is smooth if it is Borel reducible to =R, the equality relation
on R.
This corresponds to those classification problems which have concrete
invariants.
For instance, the classification of 5× 5 unitary matrices up to similarity (aka
conjugacy) is smooth, where the concrete invariants are the 5 eigenvalues.
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Countable Borel equivalence relations

Today we’ll work in the context of countable Borel equivalence relations
(CBER), which are Borel equivalence relations with every class countable.
Canonical example:
Let Γ be a countable group, let X be a Polish space, and fix a continuous
action Γ y X.
The orbit equivalence relation EXΓ is defined as follows:

x EXΓ x′ ⇐⇒ ∃γ [γ · x = x′]

This is a CBER. (In fact, all CBERs arise in this manner!)

Irrational rotation Z y S1.

Bernoulli shift Z y 2Z.

Bernoulli shift Γ y 2Γ.
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CBERs under ≤B

=0

=1

=2

...

=N

=R

E0

everything else

E∞

Forte Shinko (Caltech) Realizations of equivalence relations and subshifts September 30, 2021 8 / 20



CBERs under ≤B

=0

=1

=2

...

=N

=R

E0

everything else

E∞

Forte Shinko (Caltech) Realizations of equivalence relations and subshifts September 30, 2021 8 / 20



Topological realizations

Henceforth, assume all CBERs are aperiodic, i.e. every class is infinite.
Topology is useful to study CBERs.
The prototypical example:

Proposition

Let Γ y X be a continuous action of a countable group on a Polish space
X, with no finite orbits. If EXΓ is minimal, then it is not smooth.

A CBER E on a Polish space is minimal if every class is dense.
A CBER E has a minimal action realization if there is some countable
group Γ, some Polish space X, and a continuous action Γ y X such that
EXΓ is Borel isomorphic to E.
If E has a minimal action realization, then E is not smooth. Converse?
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Minimal realizations

A CBER E has a minimal realization if it is Borel isomorphic to a minimal
CBER on a Polish space.
We show that every CBER has a minimal realization:

Theorem ([FKSV21])

Let E be an aperiodic CBER and let X be a perfect Polish space. Then E
has a minimal realization on X.

Even smooth ones!
This implies a stronger version of the marker lemma (purely Borel fact
about every CBER).
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Minimal action realizations

Back to minimal action realizations!
A CBER E is hyperfinite if E ≤B E0.
We can realize every hyperfinite CBER.
“Low complexity”

Question

Does every non-smooth aperiodic CBER have a minimal action realization?
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Compact actions

There is an analogous statement for compact spaces:

Proposition

Let Γ y X be a continuous action of a countable group on a compact
Polish space X, with no finite orbits. Then EXΓ is not smooth.

A CBER E has a compact action realization if there is some countable
group Γ, some compact Polish space X, and a continuous action Γ y X
such that EXΓ is Borel isomorphic to E.
We know for instance...

Hyperfinite CBERs.

Free parts of the shift (2N)Γ.

The universal compressible CBER.
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Kσ realizations

A subset of a Polish space is Kσ if it is the countable union of compact sets.
If Γ y X with X compact, then EXΓ is Kσ:

x EXΓ x′ ⇐⇒ ∃γ [γ · x = x′]

Clinton Conley asked an easier question:
Does every E have a Kσ realization?
Yes!

Theorem ([FKSV21])

Every aperiodic CBER E has a Kσ realization.
That is, E is Borel isomorphic to a Kσ CBER.
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Realizations as subshifts

A natural question is to consider compact realizations not just on an
arbitrary compact Polish space, but as a subshift.
Let X be a Polish space.
A subshift of XΓ is a closed Γ-invariant subset K ⊆ XΓ.
One can realize a universal CBER as a minimal subshift:

Theorem ([FKSV21])

There is a minimal subshift K of 2F3 such that EK is a universal CBER.

In general, we know many groups Γ for which 2Γ has a minimal subshift
with universal CBER (certain wreath products).
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Side remark on amenability

A countable group Γ is amenable if every continuous action Γ y X on a
compact space has an invariant measure.
We show that it suffices to check subshifts of 2Γ.

Theorem ([FKSV21])

A group Γ is amenable iff every subshift of 2Γ has an invariant measure.

Andy Zucker has informed me that this also follows from facts about
strongly proximal actions (which I am not very good at, sorry Josh).
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The space of subshifts

A natural object to consider when studying subshifts is the space of
subshifts.
For a Polish space X, let Sh(X) be the standard Borel space of subshifts of
XF∞ .
Every compact Polish space is a closed subspace of [0, 1]N (the Hilbert
cube).
Sh([0, 1]N) is a universal space for compact actions.
Similarly, Sh(RN) is a universal space for arbitrary actions.
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Topological and descriptive complexity

Theorem

The set
{K ∈ Sh([0, 1]N) : K is smooth}

is meager and Π1
1-complete (not Borel).

Question

The set
{K ∈ Sh([0, 1]N) : K is hyperfinite}

is Σ1
2.

Is this upper bound exact?
Is this set comeager?
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Topological and descriptive complexity

A CBER E on X is measure-hyperfinite if for every Borel probability
measure µ on X, there is a µ-conull subset Y ⊆ X such that E � Y is
hyperfinite.

Theorem

The set
{K ∈ Sh(X) : EK is measure-hyperfinite}

is comeager and Π1
1-complete.

Theorem

The set
{K ∈ Sh(X) : K is free and measure-hyperfinite}

is dense Gδ.

Gδ is very surprising!
Argument is indirect, we can’t show Gδ directly.
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A no-go theorem

We’ve seen that the class of smooth subshifts is not Borel.
This implies that even if every CBER has a compact realization, there is no
effective way to obtain this realization.
Precisely:

Theorem ([FKSV21])

There is a non-smooth aperiodic subshift F ∈ Sh(RN), such that for every
K ∈ Sh([0, 1]N), there is no ∆1

1(F ) isomorphism of EF with EK .
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Thank you!

Joshua Frisch, Alexander S. Kechris, Forte Shinko, and Zoltán
Vidnyánszky.
Realizations of countable Borel equivalence relations.
arXiv:2109.12486, 2021.
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