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Abstract. We study the free part of the Bernoulli action of Zn for n ≥ 2 and

the Borel combinatorics of the associated Schreier graphs. We construct or-

thogonal decompositions of the spaces into marker sets with various additional
properties. In general, for Borel graphs Γ admitting weakly orthogonal decom-

positions, we show that χB(Γ) ≤ 2χ(Γ)− 1 under some mild assumptions. As

a consequence, we deduce that the Borel chromatic number for F (2Z
n
) is 3 for

all n ≥ 2. Weakly orthogonal decompositions also give rise to Borel unlayered

toast structures. We also construct orthogonal decompositions of F (2Z
2
) with

strong topological regularity, in particular with all atoms homeomorphic to a

disk. This allows us to show that there is a Borel perfect matching for F (2Z
n
)

for all n ≥ 2 and that there is a Borel lining of F (2Z
2
).
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1. Introduction

This paper is a contribution to the fast developing field of Borel combinatorics,
which studies combinatorics of definable graphs and other structures on Polish
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spaces. For an overview of the entire field we refer the reader to the surveys [15]
and [18].

The object of study for Borel combinatorics is a Borel graph G on a Polish space
X. Two main concepts that have been extensively explored are proper colorings
and perfect matchings. A proper coloring of G is a map c : V (G) → κ, where κ
is a cardinal, such that for any x, y ∈ V (G) with (x, y) ∈ E(G), c(x) ̸= c(y). A
perfect matching of G is a map m : V (G) → V (G) such that for all x ∈ V (G),
(x,m(x)) ∈ E(G) and m2(x) = x. Since these concepts are all functions, we may
impose definability conditions on them and consider, for instance, continuous or
Borel proper colorings (equipping the cardinal κ with the discrete topology) and
continuous or Borel perfect matchings, etc.

The Borel graphs considered in this paper are Schreier graphs of marked group
actions. A marked group is a pair (Γ, S), where Γ is a group and S is a finite
generating set of Γ. Usually we also require S = S−1 and 1Γ ̸∈ S. When the
generating set is standard or otherwise understood, we omit specifying the set S
and say that Γ is a marked group. The Cayley graph G(Γ, S) of a marked group
(Γ, S) is defined by

V (G(Γ, S)) = Γ

and

E(G(Γ, S)) = {(g, h) ∈ Γ2 : ∃s ∈ S h = sg}.
When there is a Borel action of a marked group Γ on a Polish space X, the Schreier
graph of the action Γ ↷ X on X, denoted Σ(Γ, S), is defined by

V (Σ(Γ, S)) = X

and

E(Σ(Γ, S)) = {(x, y) ∈ X2 : ∃s ∈ S y = s · x}.
The Schreier graph will be particularly nice when the action Γ ↷ X is free; in this
case the Schreirer graph on each orbit of the action will be a copy of the Cayley
graph G(Γ, S).

In this paper the particular marked groups that we consider are Zn with their
standard sets of generators {±e1, . . . ,±en} where for 1 ≤ i ≤ n, the i-th coordinate
of ei is 1 and the other coordinates are 0. Most of the time we will be considering
the Bernoulli shift action of Zn on 2Z

n

= {0, 1}Zn

, where for g ∈ Zn and x ∈ 2Z
n

,

(g · x)(h) = x(g + h)

for all h ∈ Zn. In addition, since we are mostly interested in free actions, we
consider the free part of the Bernoulli shift action:

F (2Z
n

) = {x ∈ 2Z
n

: ∀0 ̸= g ∈ Zn g · x ̸= x}.

The systematic study of Borel combinatorics started with [16], in which Kechris,
Solecki, and Todorcevic introduced and studied the notion of Borel chromatic num-
bers. When there exists a Borel proper coloring c : V (G) → κ for a countable
cardinal κ, we call the least such κ the Borel chromatic number for G. A funda-
mental result proved in [16] states that, if in a Borel graph G every vertex has
degree ≤ k for some finite k, then the Borel chromatic number of G is ≤ k + 1.
Marks [17] showed that this bound is optimal using Borel determinacy methods. He
constructed marked group actions which give rise to Borel acyclic k-regular graphs
with their Borel chromatic numbers achieving any number from 2 to k + 1. More
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recently, Conley, Jackson, Marks, Seward, and Tucker-Drob [4] improved these ex-
amples to hyperfinite Borel graphs, more specifically, Borel graphs which come from
marked group actions where the orbit equivalence relation is hyperfinite.

In the case of F (2Z
n

), it is well known by an ergodicity argument that the
Borel chromatic number is at least 3, although the chromatic number of the Cayley
graph of Zn is 2. For F (2Z) it is also well known that the Borel chromatic number is
exactly 3. For F (2Z

n

) where n ≥ 2, Gao and Jackson [9] constructed a continuous
proper coloring with 4 colors. In [11] the authors of the present paper proved that
the continuous chromatic number of F (2Z

n

), where n ≥ 2, is exactly 4. We also
announced that the Borel chromatic number of F (2Z

n

) is 3. In this paper we present
a proof.

Theorem 1.1. Suppose n ≥ 2 and Zn ↷ X is a free Borel action of Zn on a
Polish space X. Then the Borel chromatic number of the Schreier graph on X is 3.

A classical theorem of König in graph theory (which is a special case of Hall’s
marriage theorem) asserts that if G is a k-regular bipartite graph then G has a
perfect matching. The Borel version of the statement turns out to be false in
general. Marks [17] constructed, for every k ≥ 2, a k-regular acyclic Borel bipartite
graph with no Borel perfect matching. These Borel graphs come from actions of
free groups with finitely many generators. In this paper we prove that there is a
Borel matching for F (2Z

n

) for any n ≥ 2.

Theorem 1.2. Suppose n ≥ 2 and Zn ↷ X is a free Borel action of Zn on a
Polish space X. Then there is a Borel perfect matching for the Schreier graph on
X.

A related concept in combinatoric is proper edge-coloring for a graph G, which is
a map k : E(G) → κ, where κ is a cardinal, such that for any e, f ∈ E(G) such that
e and f share exactly one vertex, k(e) ̸= k(f). The least cardinal κ that admits
a proper edge-coloring k : E(G) → κ is called the edge chromatic number of G.
A classical theorem of Vizing states that if in a graph G every vertex has degree
≤ k, then the edge chromatic number of G is ≤ k + 1. By a theorem of König, a
k-regular bipartite graph G has edge chromatic number k. The Borel versions of
these results turn out all to be false in general. Marks [17] constructed k-regular
acyclic Borel graphs which all have Borel chromatic number 2 but the Borel edge
chromatic numbers vary arbitrarily from k to 2k − 1.

Recently, Greb́ık–Rozhoň [14] and Weilacher [22] independently showed that the
Borel edge chromatic number for F (2Z

n

), where n ≥ 2, is 2n. This implies our
Theorem 1.2. Bencs–Hrǔsková–Tóth [1] showed the same theorem for n = 2, which
is a weaker result but sufficient to deduce our theorem. Of course, the methods used
in these proofs are all different from the one presented in this paper. In contrast,
in [11] the authors of the present paper showed that the continuous edge chromatic

number of F (2Z
2

) is 5. More recently, Gao–Wang–Wang–Yan [12] showed that the
continuous edge chromatic number of F (2Z

n

) for n ≥ 2 is exactly 2n+ 1.
In this paper we also consider the combinatorial concepts of line section and

lining in a Schreier graph of a marked group action. Following [11], a line section of
Σ(Γ, S) is a subgraph G where each vertex in G has degree 2. If G is a line section,
we call each connected component of G a G-line. A line section G is complete if G
meets every orbit of the action. A line section G is single if for each x ∈ X, the
intersection of G with the orbit of x is a nonempty single G-line. A lining G is a
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single line section where the vertex set of G is the entire space, and in particular it
is a complete line section. A line section G on X is Borel (clopen, resp.) if for each
generator e ∈ S, the set {x ∈ X : (x, e · x) ∈ G} is Borel (clopen, resp.).

The authors of the present paper studied the existence of clopen line sections in

[11]. We showed that there do not exist clopen single line sections of F (2Z
2

); in

particular, there are no clopen linings of F (2Z
2

). In this paper we prove that there

exists a Borel lining of F (2Z
2

).

Theorem 1.3. Suppose Z2 ↷ X is a free Borel action of Z2 on a Polish space X.
Then there is a Borel lining for the Schreier graph on X.

Recently, Chandgotia–Unger [3] has proved the existence of Borel linings in
higher dimensions with a different method.

The method we use to prove all these combinatorial results can be collectively
called the orthgonal marker method. The simplest form of this method was first
developed by Gao and Jackson in [9] to tackle the hyperfiniteness problem for
countable abelian group actions. Later Schneider and Seward [19] extended the
orthogonal marker method to countable locally nilpotent groups and used it to show
the hyperfiniteness of the orbit equivalence relations of their actions. It was already
clear in [9] that the orthognal marker regions we constructed not only can facilitate
a proof of hyperfiniteness but also allows us to prove results of combinatorial nature
about the Schreier graphs. In fact, it was shown in [9] that for any n ≥ 2, there is
a continuous proper coloring of F (2Z

n

) with 4 colors.
In this paper we further develop the orthogonal marker method and use it to

prove our theorems stated above. In Section 2 we first present a review of the
orthogonal marker method and prove some improvements. In general, an orthogonal
marker structure is a sequence {Rk}k≥1 of partitions of the phase space F (2Z

n

)
such that each element in Rk (which we refer to as a marker region) is a finite
subset of an orbit with certain properties. We regard each Rn as a layer of the
orthogonal marker structure, and orthogonality refers to the relationship between
marker regions from different layers. The main improvement we explore in Section 2
is that, by controlling the geometric parameters used in the construction of Rk, we
are able to obtain orthogonal marker regions that are connected. It turns out that
connectedness is a key consideration in the construction of combinatorial objects
such as proper colorings, perfect matchings, and linings.

Starting from Section 3 we adopt a slightly different point of view when we
consider an orthogonal marker structure {Rk}k≥1. Here, for each k ≥ 1 we con-
sider all the partitions Rm for m ≥ k and the coarsest common refinement of all
of them, denoted Ak. The elements of Ak are called k-atoms of the orthogonal
marker structure. We also consider the decomposition of Ak into finite connected
components and define notions of strong and weak orthogonality. In Section 4
we work with weakly orthogonal decompositions with polynomial bound and some
additional boundedness condition on the orthogonality constant and prove some
results about their Borel chromatic numbers. These results imply Theorem 1.1.
We also show that weak orthogonal decompositions give rise to a combinatorial
structure known as toast in the literature (defined in [10] and [11]). In particular,
we show that there exists a Borel unlayered toast on F (2Z

n

) for all n ≥ 1.
In Section 5 we prove the main technical theorem of this paper about orthgonal

decompositions. We show that for n = 2, the orthogonal marker structure {Rk}k≥1
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can be constructred so that all k-atoms are homeomorphic to disks. This has
consequences about the exact structures of k-atoms as well as their relationship with
the (k − 1)-atoms, which allow us to perform constructions in Section 6 of a Borel
perfect matching (Theorem 1.2) and in Section 7 of a Borel lining (Theorem 1.3).

2. Orthogonal markers and structures for F (2Z
n

)

We review the orthogonal marker structures for the equivalence relation Fn given
by the left shift action of the group Zn on the free part F (2Z

n

) of the space 2Z
n

.
These arguments are presented in detail in [9]. Here we review the construction,
summarize the main results, and present some improvements. In §3 we will intro-
duce a slightly different point of view which we refer to as an orthogonal decom-
position. The notion of an orthogonal decomposition will be a key component of
many of our arguments.

2.1. Review of clopen rectangular partition construction. A frequent way
to construct clopen rectangular partitions is to start with d-marker sets. We recall
this definition.

Definition 2.1. Let d > 0 be an integer. A d-marker set Md ⊆ F (2Z
n

) is a set
satisfying the following:

(1) ∀x ̸= y ∈ Md ρ(x, y) > d.
(2) ∀x ∈ F (2Z

n

) ∃y ∈ Md ρ(x, y) ≤ d.

We often refer to d as a marker distance. We say the d-marker set Md is clopen
if the set Md is a relatively clopen set in F (2Z

n

).
For each marker distance d there is a clopen partition Rd of F (2Z

n

) into rectan-
gles with side lengths in {d, d+1}. More precisely, Rd is a subequivalence relation
of Fn with the property that on each Fn class [x], Rd ↾ [x] is a partition of [x]
into finite sets, each of which is a rectangle in the sense that it is of the form R · y
for some y ∈ [x] where R ⊆ Zn is a rectangle (i.e., R = Zn ∩

∏
i[ai, bi]). Also,

Rd is clopen in the sense that we have the relative clopenness in F (2Z
n

) of the set
C of x ∈ F (2Z

n

) such that [x]Rd
= R · x for some R of the form R =

∏
i[0, ci].

Intuitively, elements of the set C are the “bottom-left” corners of all rectangles in
the partition given by Rd. We will, with a slight abuse of terminolgy, refer to Rd

as a “clopen partition” or “clopen finite subequivalence relation” though Rd is not
relatively clopen as a subset of F (2Z

n

)× F (2Z
n

).
In [9] a clopen rectangular partition Rd with side lengths in {d, d + 1} is con-

structed by first starting with a d′-marker set Md′ with d′ ≫ d. About each point
x ∈ Md′ we consider the “cube” C = Cx in [x] centered at x with side lengths d′.
These cubes clearly cover F (2Z

n

) by property (2) of Definition 2.1. We refer to
this collection of cubes as a clopen covering of F (2Z

n

). For each of these cubes C
we “adjust” it by moving each of its faces outward with a distance bounded by a
small fraction of d′ (say no more than 1

10d
′). When doing the adjustment we ensure

that each of the faces f of C stays a certain distance, bounded below by a fixed
fraction ϵd′ of d′ (where ϵ is a fixed constant depending only on n), away from any
parallel face f ′ of a cube C ′ within a Hausdorff distance of 5d′ from C. To do these
adjustments we use a big-marker-little-marker procedure. More precisely, we use
an auxiliary distance d′′ ≫ d′ and a d′′-marker set Md′′ ⊆ Md (actually, to make
Md′′ ⊆ Md′ we must relax slightly the inequalities in Definition 2.1 by replacing d
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with (1− η)d for property (1) and (1 + η)d for property (2) for some small η). We
use Md′′ to organize the adjustment process, first adjusting the points of Md′′ , then
at step i adjusting the cubes centered at points in gi ·Md′ not already considered,
where {gi} is an enumeration of all g ∈ Zn within distance d′′/2 to the origin. As
d′′ ≫ d′, the cubes being adjusted at any given step do not interfere with each
other. After finitely many steps (roughly (d′′)n many) we will have adjusted all
of the cubes. This results in a clopen partition Rd′ of F (2Z

n

) into regions each of
which is the disjoint union of finitely many rectangles R of side lengths between
ϵd′ and 6

5d
′. If d′ is large enough so that ϵd′ > d2, then we proceed with a finite

subdivision algorithm to further subdivide the Rd′ regions into rectangles with side
lengths in {d, d + 1}. This produces the desired clopen rectangular partition Rd.
The full details of this construction can be found in [9].

In summary, the key steps of the clopen rectangular partition construction for a
marker distance d are the following:

(1) Find a clopen covering of F (2Z
n

) by rectangles of side lengths d′ ≫ d;
(2) Using a big-marker-little-marker procedure, adjust the rectangles in the

clopen covering so that any parallel faces of rectangles are at least ϵd′ apart,
for some constant ϵ depending only on n; the adjusted clopen covering gives
rise to a clopen partition of F (2Z

n

) into rectangular polygonal regions;
(3) Use a finite subdivision algorithm to divide each of the rectangular polygo-

nal regions in the clopen partition into rectangles of side lengths d or d+1.

In the following we give a variant of the finite subdivision algorithm in dimension
n = 2 so that in the final clopen rectangular partition, no points will be close to 4
different rectangles.

Lemma 2.2. Let 0 < ϵ ≤ 1/2 and d > 0 be a sufficiently large integer. Let R
be a rectangular polygonal region in Z2 such that any parallel sides of R have a
perpendicular distance at least 12d. Let S be a subset of the boundary of R such
that each point in S is at least 1

60ϵd apart from any corner of R and any two points
of S are at least ϵd apart. Then there is a partition R of R into rectangles such
that

(i) any rectangle in R has side lengths between 1
2d and d;

(ii) for any rectangle R̃ in R, any corner of R̃ is at least 1
60ϵd apart from any

point in S;
(iii) no point of R is within 1

60ϵd of four different rectangles in R.

Proof. We first note that if p is any point on the boundary of R then within 1
10ϵd

of p there is a point q on the boundary of R such that q is at least 1
60ϵd apart from

any corner of R or any point of S. In fact, if p is at least 1
60ϵd apart from any

corner of R or any point of S, then we let q = p. Otherwise, some corner of R or
point of S is within 1

60ϵd of p. Consider all the points on the boundary of R that

are within 1
20ϵd of p. If there are no other corner of R or point of S in this set, then

some point q can be selected from this set to satisfy the requirement. Otherwise,
it must be the case that both a corner of R and a point of S are within 1

20ϵd of

p. Now consider the set of all points on the boundary of R that are within 1
10ϵd

of p. By our assumption about R and S, there are no other points in this set that
is either a corner of R or a point of S. A point q can be selected from this set to
satisfy the requirement.
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It is worth noting that the point q can be chosen from either side of p on the
boundary of R as long as its choice is not blocked by the existence of a corner on
one side. This observation will be useful in our argument below.

Next, we claim that if p is any point on the boundary of R that is not itself a
corner and l is the unique line of the boundary of R that contains p, then there is a
point q on l within 1

5ϵd of p such that q is at least 1
60ϵd apart from any corner of R

or any point of S, and, letting s be the ray starting from q that is perpendicular to
l and pointing to the interior of R, then the very first intersection of s with another
part of the boundary of R is a point r that is also at least 1

60ϵd apart from any
corner of R or any point of S.

To prove this claim we need to consider a number of cases. However, the ar-
gument for all these cases are similar. We only give the argument for one case.
Suppose p is within 1

60ϵd of a corner of R and within 1
30ϵd of a point in S. This is

illustrated in Figure 1. The above mentioned corner of R and the point in S must

p

R
S

q′

q

l m

r

r′
s′

s

Figure 1. Avoiding corners of R and points of S

be on two opposite sides of p on l. In this case we still can pick a point q′ on l within
1
10ϵd of p such that q′ is at least 1

60ϵd apart from any point of S. Obviously q′ is
on the opposite side of p as the corner of R is. Note that by our assumptions the
next point of S is at least ϵd apart from p, and therefore at least 9

10ϵd apart from
q′. Now let s′ be the ray through q′ that is perpendicular to l and pointing to the
interior of R. Let r′ be the first intersection of s′ with a boundary part of R, which
we denote by m. m and l are parallel. Draw a ray through p that is perpendicular
to l and pointing to the interior of R. Then on m, on the opposite side of r′, there
is not a corner of R that is within ϵd of r′. This is because, otherwise, by comparing
the corner close to p and such a corner, we obtain two parallel sides of R that are
within perpendicular distance d of each other, contradicting our assumption. Thus,
on this side of r′ of m there is a point r within 1

10ϵd of r′ such that r is at least
1
60ϵd apart from any point of S. Now let q be on l and s be the ray to give r as
the intersection of s with m. Then p and q are on opposite sides of q′ on l, and q
is within 1

10ϵd of q′. Thus q is within 1
5ϵd of p and is as required.

We use the above claim tacitly in the following finite subdivision algorithm. The
algorithm consists of four steps. In the first step, for each horizontal boundary side
l of R draw a horizontal line l′ within R so that the distance between l and l′ is in
between 3d and 4d, and that the two intersections of l′ with the boundary of R are
at least 1

60ϵd away from any corner of R or point of S. In the second step, for each
vertical boundary line l of R whose extension intersects the interior of R, extend
l until it intersects the first horizontal line that is created in the first step of the
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Figure 2. The first two steps of the subdivision algorithm

algorithm. The first two steps of the algorithm is illustrated in Figure 2. The first
two steps give a subdivision of R into rectangles of side lengths at least 3d. Also,
no point is within 4d of four distinct rectangles. For each of these rectangles, say
R′, let S′ be the set of its non-corner boundary points that are either in S or next
to a corner of another rectangle created in the first two steps. Then any point of S′

is at least 1
60ϵd apart from a corner of R′ and any two points of S′ are at least ϵd

apart if their distance is > 1. Now in the third step of the algorithm, we introduce
vertical lines to each rectangle R′ to subdivide it into smaller rectangles. For each
R′, the distances between any two vertical lines will be between 1

2d and d, and the

intersections of these new lines with the boundary of R′ will be at least 1
60ϵd apart

from any point of S′. This can clearly be done to any R′ with the assumed property
of S′, using the fact that the edges of R′ have lengths at least 3d. It takes a moment
of reflection to see that after this is done to each rectangle, we add to the S′ for a
neighboring rectangle, but we still maintain the property that any two points of S′

is at least ϵd apart if their distance is > 1. Thus this can be done to all rectangles
one by one. Moreover, after all these divisions by vertical lines are completed, each
of the resulting rectangles also satisfies the property that any two points of the new
S′ is at least ϵd apart if their distance is > 1 and at least 1

60ϵd apart from a corner.

In addition, the resulting rectangles from the third step all have width between 1
2d

and d. Finally, in the fourth step of the algorithm we introduce only horizontal
lines to further subdivide the rectangles resulting from the third step. The final
resulting rectangles will have side lengths between 1

2d and d, and all of their corners

will be at least 1
60ϵd apart from other corners from neighboring rectangles or from

a point of S. Thus the proof of the lemma is complete. □

We can apply Lemma 2.2 to obtain clopen rectangular partitions of F (2Z
2

) in
which no four rectangles come together. We state this in the next lemma.

Lemma 2.3. For all sufficiently large d there is a clopen rectangular partition on

F (2Z
2

) having the following properties:

(1) All of the rectangles in the partition have side lengths between 1
2d and d.

(2) No point is within distance 1
120d of four distinct rectangles of the partition.

Proof. In order to get this we only need to modify step (3) of the standard con-
struction as sketched before Lemma 2.2. We also assume that d′ > d is sufficiently
large so that ϵd′ > 12d, where ϵ is as in (2) of the sketch before Lemma 2.2. Using

the big-marker-little-marker procedure one produces a clopen covering of F (2Z
2

)
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by rectangles of side lengths at least d′, and such that distinct parallel edges are
at least ϵd′ apart. At each stage i (as determined by the big-marker-little-marker
procedure) we subtract from each stage i rectangle the rectangles that intersect
it from earlier stages. This produces a rectangular polyhedral region R with the
property that parallel edges at least ϵd′ > 12d apart. We simultaneously subdivide
the rectangular polyhedron R into smaller rectangular regions using Lemma 2.2.
We apply the lemma using ϵ = 1

2 and the set S being the points on the boundary of
R of distance 1 from a perpendicular edge of a (smaller) rectangle produced at an
earlier stage together with the points on the boundary of R which are on the edge of
a (larger, not yet subdivided) rectangle corresponding to a later stage j > i in the
big-marker-little-marker procedure. The resulting rectangular partition produced
at the end has the desired property. □

2.2. Review of orthogonal marker region construction. In [9] we also gave
a construction of the so-called orthogonal marker regions on F (2Z

n

). For the or-
thogonal marker region construction we have a sequence d0 < d1 < · · · of marker
distances. We refer to dk as the k-th marker distance. For our arguments we need
the sequence of marker distances to grow reasonably fast. We will implicitly as-
sume in the following that there is a fixed constant K = K(n) (depending on the
dimension n) such that dk+1 > Kdk for all k.

The orthogonal marker regions will be a sequence Rm of clopen partitions of
F (2Z

n

) into polygonal regions each of which is a union of rectangles. We inductively
define the mth clopen partition Rm. To begin, we let Rm

m be a clopen rectangular
partition of F (2Z

n

) with side lengths in {dm, dm + 1}. We may construct this
partition so that parallel edges which are distance > 1 apart are distance > ϵ0dm
apart, for some fixed ϵ0 > 0 (this was implicit in the argument of Lemma 2.3
except here we do not need Lemma 2.2 but rather can use a simpler subdivision
algorithm obtained by just extending the faces of the earlier regions which intersect
a rectangular region at some stage of the construction).

We successively modify the regions to produce clopen partitions Rm
m−1, . . . ,Rm

1 ,
and we will let Rm = Rm

1 . Suppose we have defined Rm
k+1. We again use a

big-marker-little-marker construction by working with d′′ ≫ d′ ≫ dk to produce
rectangular marker regions R̃ of side lengths between 1

2dk and dk. More specifically,

let R be a clopen covering of F (2Z
n

) by rectangles with side lengths approximately
d′. We then adjust the faces of rectangles in R to produce another clopen covering
R′ such that parallel faces of distinct regions in the covering are at least 3ϵ′d′

apart, for some fixed ϵ′ > 0. We may assume ϵ′d′ > 12dk. We then do a secondary
adjustment to produce R′′ by moving the faces of the regions in R′ no more than
ϵ′d′ so that the perpendicular distance between parallel faces of a region in R′′ and
a nearby region of Rj

k for all k ≤ j < m are at least ϵ1dk apart, for some fixed
ϵ1 > 0 which also depends only on n. We still have that parallel faces of distinct
regions in R′′ are at least ϵ′d′ > 12dk apart. We then do a subdivision algorithm
to produce a clopen partition R̃ so that each rectangular region in the partition
has side lengths between 1

2dk and dk, and each face of a region in R̃ is at least ϵ2dk
from any parallel face of a nearby region in Rj

k for k ≤ j < m, and at least ϵ2dk
from a parallel face of a region in R̃ if it has distance > 1 from that face.

We then get a clopen assignment to each region R̃ of R̃ one of the regions of
Rm

k+1 which intersect it. We then replace each region R of Rm
k+1 with the union of



10 SU GAO, STEVE JACKSON, EDWARD KROHNE, AND BRANDON SEWARD

the R̃ which are assigned to R. Thus we have obtained Rm
k . Note that each region

R of the partition Rm
k is a finite union of rectangular regions from the R̃ partition.

If we let ϵ = ϵ(n) = min{ϵ1, ϵ2}, then we have the following properties of the
Rm

k .

Definition 2.4. The orthogonality properties of the Rm
k are the following.

(1) (bounded geometry) Rm
k is a clopen partition of F (2Z

n

), and each region R

in Rm
k is a finite disjoint union of rectangles in R̃ with side lengths between

1
2dk and dk.

(2) (orthogonality to previous regions) Any face F of a region in Rm
k is at

least ϵdk away from any parallel face F ′ of a nearby region in Rj
k for any

k ≤ j < m.
(3) (orthogonality to same regions) Any face F of a region in Rm

k is at least ϵdk
away from any parallel face F ′ of a nearby region inRm

k unless ρ(F, F ′) ≤ 1.

As we said above, we set Rm = Rm
1 . This completes the review of the construc-

tion of the basic orthogonal marker regions, for a given set of distances d0 < d1 · · · .
We note explicitly for later purposes that for each dimension n, there is a fixed
constant K = K(n) such that if dk+1 > Kdk for all k, then the orthogonal marker
construction can be carried out.

It is not clear that the orthogonal marker regions that we constructed above are
connected and have connected boundaries. These connectedness properties will be
useful later, so we note below that they can be arranged with a refinement or a
variation of the above construction.

A subset S ⊆ Zn is connected if it is connected in the Cayley graph of Zn with
the standard generators. For any set S ⊆ Zn we define the boundary of S, denoted
by ∂S, to be the set of points x ∈ S such that e · x ̸∈ S for one of the standard
generators e. Since the regions we consider will be finite unions of rectangles with
reasonably big side lengths, we will regard such S ⊆ Zn as a subset of Rn in the
obvious way and speak of their connectedness, simple connectedness, and their
boundaries as subsets of Rn−1. This convention will make our discussion easier.

Theorem 2.5. For some fixed ϵ = ϵn > 0 there are clopen partitions Rm of F (2Z
n

)
satisfying the orthogonality properties so that each region R of an Rm partition is
connected and also its boundary ∂R is connected. In fact each region R is homeo-
morphic to the closed unit ball in Rn.

The rest of this subsection is devoted to a proof of Lemma 2.5 for the dimension
n = 2 case. A different proof for the general case will be given in the next subsection.
We first give a proof for the dimension n = 2 case as the argument in this case
requires less modification of the construction, and the n = 2 case suffices for the
applications we will have later in the paper.

We follow the general outline of the standard construction of orthogonal marker
regions but make several modifications. First, in constructingRm

m we use Lemma 2.3
and ensure that no point is close to 4 rectangular marker regions. In the subsequent
steps, we will maintain this property at each step of the construction. Suppose we
have defined Rm

k+1 and for each region R of Rm
k+1 we have that R and ∂R are

connected. In fact, we will inductively assume that the Rm
k+1 regions are homeo-

morphic to the closed unit disk via a homeomorphism which maps the boundary to
the unit circle (and so induces a homeomorphism between the boundary and the
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unit circle). As in the standard orthogonal marker regions construction, we define

an auxiliary clopen rectangular partition R̃ in the step of the construction of Rm
k

from Rm
k+1. In defining the R̃ partition, we use scale dk and Lemma 2.3 to get the

partition R̃. Thus, every point x of F (2Z
2

) is close to at most 3 distinct regions of

R̃ (i.e., no 4 regions of R̃ come together).

The next step is to assign the regions R̃ of R̃ to the regions R of Rm
k+1. Instead

of doing the assignment arbitrarily as in the standard construction, we make the
following modification. Call a region R̃ exceptional if it intersects 3 distinct regions
of R̃m

k+1. First, we assign the exceptional regions R̃ to regions R of Rm
k+1 as follows.

Let R1, R2, R3 be the three regions of Rm
k+1 which intersect R̃. Label them so that

R3 is the region which contains an entire face of R̃ (see Figure 3). Assign R̃ to R1.

Then, for the regions R̃′ in R̃ that are within 2dk distance of the exceptional R̃,
assign R̃′ to R1 if R̃′ intersects R1. Next, for those regions R̃′ in R̃ that are within
2dk distance to R̃, if they have not been assigned, assign them to R2. Figure 3
illustrates this assignment process near the exceptional rectangles of R̃.

R1 R2

R3

Figure 3. The assignment algorithm in dimension 2. The red
rectangles are assigned to R1, and the blue ones to R2.

The rectangles R̃′ of R̃ which are not within 2dk of an exceptional rectangle are
assigned arbitrarily as before. The regions of Rm

k are obtained from this assignment
as in the standard construction. It is clear that the orthogonality properties are
satisfied as before. We only verify that the regions are homemorphic to the unit
disk (with boundaries mapping to the unit circle).

A region R′′ of Rm
k is obtained from a region R of Rm

k+1 in two steps. First, for

each exceptional rectangle R̃ which intersects R, we add or subtract from R the
rectangles of R̃ within 2dk of R̃ according to the above algorithm (the region R
corresponds to one of the regions R1, R2, R3 in the above description, and which
one may depend on R̃). Let R′ be the region obtained from R in this first step.
In the second step we produce R′′ from R′ by adding or subtracting from R′ all of
the rectangles R̃ in R̃ which intersect R (or equivalently R′) not within 2dk of an
exceptional rectangle intersecting R. We first show that R′ is homeomorphic to R
(and thus by induction to the unit ball). Consider a single exceptional rectangle R̃

of R̃ which intersects R. With respect to R̃, that is, in considereing the rectangles
of R̃ within 2dk of R̃, R may be considered as R1, R2, or R3 in the algorithm.
If R is considered as R1, then all of the rectangles of R̃ within 2dk of R̃ which
intersect R are added to R in forming R′. There is clearly a homeomophism of
this new region with R which preserves boundaries, and is obtained by contracting
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each of these rectangles in R̃ back to the boundary of R. These homeomorphism
can be taken to be the identity outside of B(R̃, 3dk), the 3dk neighborhood of R̃.

Suppose R is considered as an R2 region with respect to R̃. In this case we obtain
R′ within a 3dk neighborhood of R̃ by first removing the rectangles within 2dk of R̃
which intersect both R1 and R2, and then adding the rectangles which intersect R2

but not R1. After removing the first set of rectangles the result is homeomorphic
to R2 by the same contraction argument used in the R1 case. There is also a
homeomorphism which contracts the added rectangles back to the boundary of R.
Both of these homeomorphisms will be the identity outside ofB(R̃, 3dk). Combining

these two homeomorphisms gives a homeomorphism between R′ ∩ B(R̃, 2dk) with

R ∩ B(R̃, 2dk) which is the identity outside of B(R̃, 3dk). In the third case where
R is considered as the R3 region, we remove all of the rectangles which intersect
R within 2dk of R̃ in forming R′. Clearly a simple contraction of these rectangles
to the boundary of R gives the homeomorphism in this case as well. Since the
different exceptional rectangles which intersect R are at least ϵdk+1 ≫ 3dk apart,
we can combine these homeomorphisms from these exceptional rectangles meeting
R to produce a (boundary preserving) homeomorphism from R′ to R.

We next show R′′ is homeomorphic to R′ by a boundary preserving homeomor-
phism. For each edge l of R, say l is horizontal, let Ml be the the set of rectangles
in R̃ which intersects l and are not within 2dk of an exceptional rectangle R̃. Let Sl

be the rectangle whose horizontal edges have distance dk + ϵ from l, for some small
ϵ > 0, and whose left edge has x-coordinate a− ϵ where the leftmost rectangle A in
Ml has x-coordinate a. Likewise, the right edge of Sl has x-coordinate b+ ϵ where

R

B(R̃, 2dk)

l

Sl

Ml

Figure 4. The construction of R′′ from R′. The blue rectangles
are to be added and the red ones to be removed.

b is the x-coordinate of the right edge of the rightmost rectangle B in Ml. If l is
vertical the rectangle Sl is similarly defined. Figure 4 illustrates these definitions.
Note that none of the rectangles in R̃ which intersect a different edge l′ of R will
intersect Sl. In fact, if Sl′ denotes the corresponding rectangle for the edge l′, then
Sl ∩ Sl′ = ∅ (if ϵ < 1

2dk). It is easy to see that there is homeomorphism of Sl

with itself which is the identity on the boundary of Sl and which maps Sl ∩ R′ to
Sl ∩ R′′. Combining these homeomorphisms for the different edges of R gives a
homeomorphism from R′ to R′′.

This finishes a proof of Theorem 2.5 for the n = 2 case.

2.3. Connected orthogonal marker regions. In this subsection we give a proof
of the general case of Theorem 2.5 that requires more substantial modifications of
the standard construction of orthogonal marker regions.
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We still follow the general outline of the standard construction. Specifically, we
will construct an auxiliary clopen rectangular partition R̃ in the construction of
Rm

k from Rm
k+1. However, in constructing R̃, we will use n + 1 many scale values

ϵ0d
′
k < ϵ1d

′
k < · · · < ϵnd

′
k instead of the single value dk as before. At the end we

will take dk = ϵ0d
′
k. By subdividing the rectangles in R̃ we will produce a clopen

partition S̃ with side lengths between 1
2dk and dk and an assignment map which

assigns to each S ∈ S̃ a region of Rm
k+1 so that the resulting regions define the

partition Rm
k which satisfy Theorem 2.5 for some ϵ > 0.

We first let R be a clopen partition of F (2Z
n

) into rectangles of side lengths
between 1

2d
′
k and d′k. We may assume that for some η > 0 (which depends only

on n) that (2) and (3) of the orthogonality properties hold using the constant η.
Furthermore, we may assume that every face of a rectangle in R is also at least ηd′k
away from any parallel face of a nearby rectangle in Rm

k+1. Fix ϵ0 < ϵ1 < · · · < ϵn
with ϵn < 1

3η and ϵj <
1
12ϵj+1 for all j < n.

Say a rectangle R in R is of type j (where 0 ≤ j ≤ n) if there are exactly j
distinct basic unit vectors e such that R intersects a face of some Rm

k+1 region
which is perpendicular to e. In particular, R is of type 0 if it does not intersect any
face of an Rm

k+1 region, and it is of type n if intersects a corner of an Rm
k+1 region.

To construct the partition R̃, we further subdivide the rectangles in R. We begin
with the rectangles R in R of type n. Note that R is a rectangle of side lengths
between 1

2d
′
k and d′k, whereas any region in Rm

k+1 is a disjoint union of finitely

many rectangles each of which has side lengths at least 1
2dk+1, with dk+1 ≫ d′k.

Also by our assumption, R intersects n many mutually perpendicular faces of a
Rm

k+1 region. Since ϵn < 1
3η ≪ 1

2 , we may subdivide R into rectangles S with side

lengths between 2
3ϵnd

′
k and ϵnd

′
k such that the perpendicular distance between any

face of S and a parallel face of an Rm
k+1 region intersecting R is at least 1

4ϵnd
′
k. Let

R̃n be the resulting partition. Let Sn be the collection of all rectangles of type n
in R̃n. At the next step we consider the rectangles R in R̃n of type n − 1. These
include both the rectangles in R of type n−1 and the rectangles S in a subdivision
from the first step which happen to be of type n − 1. We subdivide all of these
rectangles into rectangles with side lenghs between 2

3ϵn−1d
′
k and ϵn−1d

′
k in such a

way that the distance from any of their faces to a face of a region in Rm
k+1 is at

least 1
4ϵn−1d

′
k. Let the resulting partition be R̃n−1. Let Sn−1 be the collection of

all rectangles in these subdivisions which are still of type n− 1. Continuing in this
manner we define the partitions R̃n, . . . , R̃1 = R̃ each of which is a refinement of
the previous one in the sequence. We also obtain collections Sn, . . . ,S1, and Sj

is the collection of all rectangles of type j in the partition R̃. In summary, each
rectangle in Sj has side lengths between

2
3ϵjd

′
k and ϵjd

′
k, and any face of a rectangle

in Sj is at least 1
4ϵjd

′
k from a parallel face in Rm

k+1. Also, each rectangle in Sj is of

type j. We let R̃ be the collection
⋃

j Sj . The standard arguments show that we

may assume that there is an ϵ′ > 0 such that the orthogonality properties 2 and 3
holds for the faces of regions in R̃ using constant ϵ′.

We define Rm
k using R̃ and an arbitrary assignment of the rectangles in R̃ to

regions of Rm
k+1 which intersect them. Figure 5 illustrates this construction in

dimension 2.
It is clear from our construction that the orthogonality properties hold for Rm

k .
We verify that each region of Rm

k is homeomorphic to the closed unit ball via a
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R1 R2

R3 S2

S1

Figure 5. The second construction in dimension 2.

homemorphism which preserves the boundaries. This suffices, as we may then take
dk = ϵ0d

′
k and subdivide the rectangles in R̃ to have dimensions between 1

2dk and
dk and maintain the orthogonality properties 2, 3 for some constant ϵ > 0.

Fix a region R of Rm
k+1. Let A be the set of all rectangles in R̃ which intersect

∂R. Let A = B ∪ C where B are those rectangles in A which are assigned to R
and C = A − B. Let R′ be the region of Rm

k corresponding to R, that is, R′ is
the union of R and all of the rectangles in B, minus all of the rectangles in C.
For 0 ≤ j ≤ n + 1, let Bj , Cj be those rectangles in B, C respectively of type
≥ j. Let Aj = Bj ∪ Cj . Let Rj = (R ∪ (∪Bj)) − (∪Cj). Thus, R′ = R0 and
R = Rn+1. We show for each 0 ≤ j ≤ n that Rj is homeomorphic to Rj+1 by a
boundary preserving homeomorphism. Since Rn+1 = R is homeomorphic to the
ball by induction, this suffices. Let Tj+1 = ∪Aj+1.

Consider a j-edge E of ∂R. By a j-edge we mean a connected component of the
intersection of j mutually perpendicular faces of R. Say the faces determining E
have normal vectors ek1

, . . . , ekj
. For i ∈ {k1, . . . , kj}, let ci be the common value

of πi(x) for x ∈ E. So, E is of the form E = I1 × I2 × · · · × In where Ii is a proper
interval for i /∈ {k1, . . . , kj}, and for i ∈ {k1, . . . , kj} we have Ii = {ci}. Let πE

denote the projection map to E, so πE(t1, . . . , tn) = (s1, . . . , sn) where si = ti if
i /∈ {k1, . . . , kj}, and si = ci otherwise.

Fix ϵ > 0 with ϵj < ϵ < 1
4ϵj+1. Let E(ϵ) = J1 × J2 × · · · × Jn where Ji = Ii for

i /∈ {k1, . . . , kj}, and Ji = [ci− ϵd′k, ci+ ϵd′k] for i ∈ {k1, . . . , kj}. Roughly speaking,
E(ϵ) is the ϵd′k-expansion of E in the directions ek1 , . . . , ekj .

Let E′(ϵ) = E(ϵ) \ Tj+1. Let F = E \ Tj+1. Let F (ϵ) be the set of all x =
(t1, . . . , tn) such that πE(x) ∈ F and ti ∈ [ci− ϵd′k, ci+ ϵd′k] for i ∈ {k1, . . . , kj}. So,
F (ϵ) is the ϵd′k-expansion of F in the directions ek1

, . . . , ekj
. For each x ∈ E, let x(ϵ)

denote the set of (t1, . . . , tn) such that πE(t1, . . . , tn) = x and ti ∈ [ci−ϵd′k, ci+ϵd′k]
for i ∈ {k1, . . . , kj}.

Claim 2.6. E′(ϵ) = F (ϵ).

Proof. It is clear that F (ϵ) ⊆ E(ϵ). We show that for every point x ∈ E, if x ∈ F
then x(ϵ) ⊆ E′(ϵ), and if x /∈ F then x(ϵ) ⊆ Tj+1. The claim then follows.

To see this, consider x ∈ E. First suppose x ∈ Tj+1. Then x lies both in E and
a rectangle Q in Aj+1 which intersects E. Since all faces determining E are at least
1
4ϵj+1d

′
k > ϵd′k from any parallel faces of Q, it follows that x(ϵ) ⊆ Q. Thus if x /∈ F

we have x(ϵ) ⊆ Tj+1. Suppose now that x ∈ F . Suppose toward a contradiction
that y ∈ x(ϵ) ∩ Tj+1 (that is, this set is non-empty). Let Lk1

, Lk2
, . . . , Lkj

be
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Figure 6. The set E′(ϵ).

the natural sequence of line segments of length ≤ ϵd′k which together form a path
p = (u0 = x, uk1

, . . . , ukj
= y) from x to y. Here Lkr

only involves changing the
kr coordinate. More precisely, Lkr is the set of points z with πi(z) = πi(ukr−1) for
i ̸= kr, and πkr (z) is between πkr (ukr−1) = πkr (x) = ckr and πkr (ukr ) = πkr (y).
Let r be minimal such that ukr

∈ Tj+1. Say ukr
∈ Q, where Q is a rectangle in

Aj+1. Note that ukr−1
is on the boundary of R, in fact it lies on a face of ∂R with

normal vector ekr
. However, ukr

lies on a face of Q which is perpendicular to ekr
.

This contradicts the fact that any face of Q is at least 1
4ϵj+1d

′
k > ϵd′k from a parallel

face of R. □

Figure 6 illustrates the set E′(ϵ) in 3-dimensions where E is the j = 1 “edge”
corresponding to the x, y plane. The rectangles in green form the set T2 (those in
T1 \T2 are not shown). The region in blue is E′(ϵ) (only the top half of it is shown).

Note that by Claim 2.6, E′(ϵ)∩Rj+1 is the set of points x such that πE(x) ∈ F
and for i ∈ {k1, . . . , kj}, πi(x) ∈ I ′i where I

′
i is an interval of the form [ci, ci+ϵd′k] or

of the form [ci− ϵd′k, ci]. Now, for each such j-edge E of R and corresponding E′(ϵ)
there is a boundary preserving homeomorphism between E′(ϵ)∩Rj and E′(ϵ)∩Rj+1.
This is because, by Claim 2.6, E′(ϵ) ∩Rj is obtained from E′(ϵ) ∩Rj+1 by adding
the rectangles of type j of Bj which intersect F , and deleting those of Cj which
intersect F . Each of these rectangles T is of the form (T ∩ F ) × C where C is a
j-dimensional rectangle with side lengths < ϵd′k. The homeomorphism is induced
by continuously contracting the edge lengths of C to 0.

For each j-edge E of R, let φE be a boundary preserving homeomorphism of
E′(ϵ) ∩Rj with E′(ϵ) ∩Rj+1. we can take φE to be the identity on the boundary
of E′(ϵ). To finish the proof of Theorem 2.5 it suffices to show the following claim,
which shows that we can take the union of the φE (and the identity on Rj\

⋃
E E′(ϵ),

where the union ranges over all the j-edges E of R).

Claim 2.7. Let E1, E2 be distinct j-edges of R. Then the corresponding E′
1(ϵ),

E′
2(ϵ) are disjoint.

Proof. Let z ∈ E′
1(ϵ) ∩ E′

2(ϵ). Say E1 is defined by faces with normal vectors
{ek1

, . . . , ekj
} and values ci for i ∈ {k1, . . . , kj} as above. Let D1 = {k1, . . . , kj}

(so for x ∈ E1, πi(x) = ci for i ∈ D1). Similarly, let E2 be defined by {eℓ1 , . . . , eℓj}
and values c′i. Let D2 = {ℓ1, . . . , ℓj}. Since E1 ̸= E2, and E1, E2 are both within
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distance ϵd′k of z, and hence they are of distance 2ϵd′k of each other, we must have
that D1 ̸= D2.

Let z1 = πE1(z) ∈ E1, so z1 is obtained from z by changing all of the values
πi(z), for i ∈ D1, to the value ci. Similarly, let z2 = πE2

(z). Let w be such that
πi(w) = πi(z) for i /∈ D1∪D2, πi(w) = ci for i ∈ D1 and πi(w) = c′i for i ∈ D2−D1.
That is, w is the result of changing the values πi(z) for i ∈ D1∪D2. Since D1 ̸= D2,
w lies on a j′-edge of R for j′ ≥ j + 1. Also w and z are within ϵd′k of each other.
This is a contradiction as w lies in a rectangle Q ∈ Tj+1, and all faces of Q which
are perpendicular to a direction in D1 ∪D2 have distance at least 1

4ϵj+1d
′
k > ϵd′k

from w. □

3. Orthogonal Decompositions in F (2Z
n

)

In §2 we recalled the construction of the orthogonal marker regions Rk = Rk
1

for F (2Z
n

) corresponding to a set of marker distances d1 < d2 < · · · (which satisfy
dk+1/dk ≥ K for some constant K = K(n) depending only on the dimension n). A
slightly different point of view results in what we call an orthogonal decomposition
for F (2Z

n

). In §4 we will present a more general form of the definition in the context
of a Borel graphing of a countable Borel equivalence relation. The basic idea is to
consider the sets Xk = ∂Rk =

⋃
{∂R : R ∈ Rk}, the set of boundary points for the

regions in the Borel partition Rk. These sets are not pairwise disjoint, but they
intersect in a controlled fashion which we make precise below. We record here the
strongest forms of these intersection properties, while in §4 we abstract a weaker
version on these properties which nonetheless suffices for some applications (e.g.,
the existence of toast structures and the Borel proper 3-coloring of the Schreier
graph on F (2Z

n

)).
For each k we consider all the partitions Rm for m ≥ k and let Ak be the

coarsest common refinement of all of them. We call the elements of Ak the k-
atoms of the orthogonal decomposition. In contrast, we write X∞

k for
⋃∞

m=k Xm =⋃∞
m=k ∂Rm and let R(k) denote the collection of connected components of X−X∞

k

(where X = F (2Z
n

)). We call these connected components of X − X∞
k the k-

nuclei of the orthogonal decomposition. In §5 we will show that we may maintain
certain topological regularity for the k-atoms and the k-nuclei, as shown possible in
Theorem 2.5 for the marker regions R ∈ Rk themselves. This will guarantee that
the k-atoms and k-nuclei are in one-one correspondence, and that each k-nucleus
is exactly the interior of a k-atom. In the rest of this section we describe the basic
orthogonality properties of the k-nuclei.

The following theorem summarizes the properties of the orthogonal decomposi-
tion.

Theorem 3.1. Let Rm be a sequence of marker regions for X = F (2Z
n

) satisfying
the orthogonal properties for distances d1 < d2 < · · · as contructed in the proof of
Theorem 2.5. Let Xk = ∂Rk, and X∞

k =
⋃∞

m=k Xm. Then the following hold.

(1)
⋂

k X
∞
k = ∅, and for each k the connected components of X−X∞

k are finite.
(2) (strong orthogonality) There is a constant ϵ = ϵ(n) > 0 and a function

δ : X × N × N → n such that δ(x, k, ℓ) = 0 unless x ∈ X∞
k and ℓ ≤ k, and

satisfying: if k < k′, x ∈ Xk, x′ ∈ Xk′ , then for any ℓ ≤ k if we have
δ(x, k, ℓ) = δ(x′, k′, ℓ), then ρ(x, x′) > ϵdℓ.
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Proof. Each connected component of X − X∞
k is contained in a connected com-

ponent of X − Xk, which is contained in a set of the form R − ∂R for some
R ∈ Rk = Rk

1 . Since each R ∈ Rk
1 is finite, (1) holds.

For (2), let δ be the function defined as follows. If x /∈ Xk, set δ(x, k, ℓ) = 0 for
all ℓ. Suppose now x ∈ Xk and ℓ ≤ k. Let Bk

ℓ =
⋃
{∂R′ : R′ ∈ Rk

ℓ }. So, Bk
ℓ is the

union of the ℓth level boundaries of the regions used in the construction of Rk. Let
y ∈ Bk

ℓ be the point of Bk
ℓ closest to x in the ρ-metric on [x] (with ties broken in an

arbitrary Borel manner). Let R̃k
ℓ be the set of auxiliary rectangles used in defining

Rk
ℓ from Rk

ℓ+1. Then for some R̃ ∈ R̃k
ℓ we have y ∈ ∂R̃. We set δ(x, k, ℓ) = i if y is

on a face of R̃ which is perpendicular to ei (if there is more than one such i, take
the least one).

We note that there is a constant N = N(n) such that for the points x and
y in the above definition, ρ(x, y) ≤ N(d1 + · · · + dℓ−1). This is because, in the
construction of Rk

j from Rk
j+1, we started with auxiliary rectangles of side lengths

as large as ϵnd
′
j , while dj = ϵ0d

′
j . Thus, any point of Bk

j has distance at most Ndj
to Bk

j+1, where N = ϵn
ϵ0
.

Suppose now k < k′, x ∈ Xk, x′ ∈ Xk, and for some ℓ < k we have that
δ(x, k, ℓ) = δ(x′, k′, ℓ). Let y, y′ be the points defined as above corresponding to x
and x′, respectively. Now we have ρ(x, y), ρ(x′, y′) ≤ N(d1 + · · · + dℓ−1). Because
δ(x, k, ℓ) = δ(x′, k′, ℓ), y and y′ are on parallel faces of rectangles R and R′, where

R ∈ R̃k
ℓ and R′ ∈ R̃k′

ℓ . By construction, every face of a rectangle in R̃k′

ℓ is at least

ϵdℓ from a parallel face of any rectangle in R̃k
ℓ , where ϵ > 0 is a constant depending

only on n. So,

ρ(x, x′) > ϵdℓ − 2N(d1 + · · ·+ dℓ−1) >
ϵ

2
dℓ

provided 2N
K−1 < ϵ

2 (recall K is a constant so that dj+1 > Kdj for all j). This

establishes (2), with constant ϵ
2 . □

We refer to sets {Xk}k∈N satisfying (1) and (2) of Theorem 3.1 as a strong or-
thogonal decomposition, and the constant ϵ > 0 in (2) as the orthogonality constant
for the decomposition.

The following corollary is a consequence of Theorem 3.1 which we refer to as
bounded geometry weak orthogonality (we will generalize and formalize this defini-
tion in the next section).

Corollary 3.2. Let {Xk}k∈N be a strong orthogonal decomposition for F (2Z
n

) with
orthogonality constant ϵ > 0. Then the following hold.

(1) For every k ≥ 1 and every connected component R of X −X∞
k we have for

all ℓ ≥ k that

ρ(R,Xℓ) ≤
ϵ

2
d1 =⇒ ρ(R,Xℓ) ≤ 1.

(2) For every k ≥ 1 and every connected component R of X −X∞
k we have

|{ℓ ≥ k : ρ(R,Xℓ) = 1}| ≤ n+ 1.

Proof. Let R be a connected component of X − X∞
k . We first show (2). Let

ℓ1 < ℓ2 < · · · < ℓm enumerate the ℓ > k such that ρ(Xℓ, R) = 1. Suppose m > n.
For each 1 ≤ j ≤ m let xj ∈ Xℓj be such that ρ(xj , R) = 1. There must be
j1 ̸= j2 such that δ(xj1 , ℓj1 , k + 1) = δ(xj2 , ℓj2 , k + 1). However, we then have
that ρ(xj1 , xj2) > ϵdk+1 > 2dk (we assume K is large enough so that ϵdi+1 > 2di,
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that is, K > 2
ϵ ). However, since ρ(xj1 , R) = 1, ρ(xj2 , R) = 1, we have that

ρ(xj1 , xj2) ≤ dk + 2, a contradiction.
Next we show (1). Let R be a connected component of X −X∞

k , let x ∈ R, and
let y ∈ Xℓ with ℓ ≥ k and ρ(x, y) ≤ ϵ

2d1. Consider the path p from x to y such that
ρ(z, y) ≤ ρ(x, y) for all z ∈ p. Let x′ ∈ p be the first point on the path not in R.
Say x′ ∈ Xℓ′ . If ℓ = ℓ′, then let x′′ be the point of p immediately before x′, and we
have that x′′ ∈ R and ρ(x′′, Xℓ) = 1.

So, assume ℓ′ ̸= ℓ. We thus have points x′ ∈ Xℓ′ , y ∈ Xℓ with ρ(x′, R) = 1 and
ρ(x′, y) ≤ ϵ

2d1. Recall e1, . . . , en are the coordinate vectors in Zn. Let x0 = x′,
y0 = y, and assume (α1e1 + · · · + αnen) · x0 = y0 for α1, . . . , αn ∈ Z. We claim
that either ρ(R,Xℓ) = 1 (and thus the corollary is proved) or there are β1, γ1 ∈ Z
with α1β1 ≥ 0, β1γ1 ≤ 0, and α1 = β1 − γ1 such that, letting x1 = (β1e1) · x0 and
y1 = (γ1e1) · y0, we have x1 ∈ Xℓ′ , y1 ∈ Xℓ, ρ(x1, R) = 1, and ρ(x1, y1) ≤ ϵ

2d1.
If α1 = 0 then let β1 = γ1 = 0 and we have x1 = x0 and y1 = y0. Suppose

α1 ̸= 0. Let β ≥ 0 be the largest such that β ≤ |α1| and sgn(α1)βe1 · x0 is an
element of Xℓ′ and is of distance 1 to R. Also let γ ≥ 0 be the largest such that
γ ≤ |α1| and −sgn(α1)γe1 · y0 is an element of Xℓ. If β + γ ≥ |α1|, then the claim
holds by letting β1 = sgn(α1)β and γ1 = β1 − α1. Suppose β + γ < |α1|. Then
−sgn(α1)γe1 · y0 is on a face S of Xℓ that is perpendicular to e1. On the other
hand, we have two possible cases for the reason β is the largest with sgn(α1)βe1 ·x0

being an element of Xℓ′ and of distance 1 to R. Case 1 is sgn(α1)βe1 · x0 is on a
face T of Xℓ′ that is perpendicular to e1. In this case, S and T are parallel, and
ρ(S, T ) ≤ ϵ

2d1, contradicting the strong orthogonality condition of Theorem 3.1.
Case 2 is sgn(α1)βe1 ·x0 is of distance 1 to an element x′′ ∈ R, and x′′ is of distance
1 to a face T of some Xℓ′′ which is perpendicular to e1. In this case, if ℓ′′ = ℓ,
we have ρ(x′′, Xℓ) = 1 and the corollary is proved; otherwise ℓ′′ ̸= ℓ and again S
and T are parallel faces of distance ≤ ϵ

2d1, contradicting the strong orthogonality
condition of Theorem 3.1.

Applying the claim, we either have verified the corollary, or we will get x1 ∈ Xℓ′ ,
y1 ∈ Xℓ with ρ(x1, R) = 1 and ρ(x1, y1) ≤ ϵ

2d1. Now (α2e2 + · · ·+ αnen) · x1 = y1.
By similar arguments, we obtain x2, . . . , xn and y2, . . . , yn (unless we finish the
proof of the corollary early) where xn = yn ∈ Xℓ′ ∩ Xℓ. Since ρ(xn, R) = 1, we
have ρ(R,Xℓ) = 1 as promised. □

4. Weakly Orthogonal Decompositions

In this section we present some applications of the weakly orthogonal decompo-
sitions. One of the applications is to the computation of Borel chromatic numbers.
Our results will imply that for all n ≥ 2, the Schreier graph of F (2Z

n

) has Borel
chromatic number 3. This is in contrast with the result in [11] that their contin-
uous chromatic numbers are 4. These are the first known results where the Borel
characteristics and the continuous characteristics of countabe group actions behave
differently. Another application is to the existence of the so-called Borel unlayered
toast structures on F (2Z

n

). The significance of this notion is that it implies hyper-
finiteness for the orbit equivalence relation. In contrast with other known results,
we have shown in [11] that continuous toast structures do not exist, and in [10] that
Borel layered toast structures do not exist.

Fix a standard Borel space X and a Borel graph Γ ⊆ X × X on X. Let ρΓ
denote the shortest-path-length metric on the connected components of Γ.
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Definition 4.1. A weakly orthogonal decomposition of X is a collection (Xk)k≥1

of Borel subsets of X satisfying the following two conditions. Below we write X∞
k

for
⋃∞

n=k Xn.

(i) (decomposition) Every connected component of Γ ↾ (X \X∞
k ) is finite, and⋂

k≥1 X
∞
k = ∅.

(ii) (weakly orthogonal) There exists a constant Q such that for every k ≥ 1
and every connected component R of Γ ↾ (X \X∞

k ) we have for all n ≥ k

ρΓ(R,X∞
n ) ≤ Q =⇒ ρΓ(R,X∞

n ) = 1.

We furthermore say that (Xk)k≥1 has bounded geometry if in addition to the above
properties it satisfies the following.

(iii) (bounded geometry) There exists a constant P such that for every k ≥ 1
and every connected component R of Γ ↾ (X \X∞

k ) we have

|{n ≥ k : ρΓ(R,Xn) = 1}| ≤ P.

We call the smallest P satisfying (iii) the polygonal bound for (Xk)k≥1, and we call
the smallest Q satisfying (ii) the orthogonality constant for (Xk)k≥1.

As we have shown in Corollary 3.2, in F (2Z
n

) bounded geomtry weakly or-
thogonal decompositions exist with polygonal bound P = n+ 1 and orthogonality
constant Q = ϵ

2d1. Here the constant ϵ depends on n but d1 does not. In particular,
we can pick d1 to be arbitrarily large.

We observe that the existence of a weakly orthogonal decomposition of X neces-
sitates hyperfiniteness.

Lemma 4.2. Let X be a standard Borel space and let Γ ⊆ X×X be a Borel graph
on X. Let EΓ be the equivalence relation on X given by the connected components
of Γ. If there exists a weakly orthogonal decomposition of X then EΓ is hyperfinite.

Proof. Fix a weakly orthogonal decomposition (Xk)k≥1 of X. For k ≥ 1 let Ek be
the equivalence relation which is trivial (consists of singletons) when restricted to
X∞

k and which when restricted to X \X∞
k is given by the connected components

of Γ ↾ (X \X∞
k ). The sequence (Ek)k≥1 witnesses the hyperfiniteness of EΓ. □

We also observe that if a Borel graph Γ admits a weakly orthogonal decomposi-
tion with bounded geometry, then necessarily Γ is locally finite. For if x ∈ X, then
by bounded geometry, there are only finitely many n such that ρ(x,Xn) = 1. Let
m be large enough so that if ρ(x,Xn) = 1, then n < m, and x /∈ X∞

m . But then
X \ X∞

m contains x and all the neighbors of x, and so the connected component
of X \X∞

m which contains x contains all of its neighbors. Since this component is
finite, x has only finitely many neighbors in Γ.

For the remainder of this section we fix a bounded geometry weakly orthogonal
decomposition (Xk)k≥1 of X with polygonal bound P and orthogonality constant
Q. We set X∞

k =
⋃∞

n=k Xn.

Definition 4.3. A set R ⊆ X is a k-nucleus if R is a connected component of
Γ ↾ (X \X∞

k ). We say that R is an nucleus if R is a k-nucleus for some k ≥ 1.

Definition 4.4. Let R be a nucleus.

• We define the stage of R, denoted s(R), to be the maximum k such that R
is a k-nucleus.
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• For m ≥ 1, we define the m-boundary index of R to be

BR(m) = {n ≥ m : ρΓ(R,Xn) = 1}.
• We define the amplitude of R to be a(R) = maxBR(s(R)).
• For d ≥ 1, the d-fundamental interior of R is

fd(R) = {r ∈ R : ∀n ≥ s(R) ρΓ(r,X
∞
n ) ≥ P · d− |BR(n+ 1)| · d}.

Lemma 4.5. Let R and R′ be nuclei.

(i) If R ∩R′ ̸= ∅ and s(R) ≤ s(R′) then R ⊆ R′.
(ii) If R ⊆ R′ and R ̸= R′ then s(R) < s(R′).
(iii) If R ⊆ R′ then BR(n) ⊆ BR′(n) for all n ≥ s(R′).
(iv) |BR(n+ 1)| ≤ P − 1 for all n ≥ s(R).
(v) If R ⊆ R′ then a(R) ≤ a(R′).

Proof. (i). By definition R is connected in Γ ↾ (X \X∞
s(R)) and therefore connected

in the larger graph Γ ↾ (X \X∞
s(R′)). The set R′ is a connected component of the

latter graph, so as R ∩R′ ̸= ∅ we must have R ⊆ R′.
(ii). For every k ≥ s(R′), R is strictly contained in R′ which is connected in

the graph Γ ↾ (X \ X∞
k ). So R is not a connected component of Γ ↾ (X \ X∞

k ).
Therefore s(R) < s(R′).

(iii). Fix n ≥ s(R′). Suppose that m ∈ BR(n). Then ρΓ(R,Xm) = 1. Since
R′ is a connected component of Γ ↾ (X \ X∞

s(R′)) and m ≥ n ≥ s(R′), we must

have R′ ∩ Xm = ∅. Using R ⊆ R′ we obtain 0 < ρΓ(R
′, Xm) ≤ ρΓ(R,Xm) = 1.

Therefore m ∈ BR′(n).
(iv). This follows immediately from the bounded geometry property in Definition

4.1 and the fact that by definition s(R) ̸∈ BR(n+ 1) for n ≥ s(R).
(v). It is immediate from the definitions that s(R) ≤ a(R) and s(R′) ≤ a(R′).

If a(R) ≤ s(R′) then we are done. Otherwise a(R) ∈ BR(s(R
′)) ⊆ BR′(s(R′)) by

(iii) and hence

a(R′) = maxBR′(s(R′)) ≥ maxBR(s(R
′)) = maxBR(s(R)) = a(R). □

Lemma 4.6. Let R and R′ be nuclei and fix d ≥ 1. Assume that P · d ≤ Q.

(i) ρΓ(fd(R), X \R) ≥ d.
(ii) If R ∩R′ = ∅ then ρΓ(fd(R), fd(R

′)) ≥ 2d.
(iii) If R ⊆ R′ then fd(R) ⊆ fd(R

′).
(iv) If fd(R) ⊆ fd(R

′) and a(R) < a(R′) then ρΓ(fd(R), X \ fd(R′)) ≥ d.

Proof. (i). R is a connected component of Γ ↾ (X \X∞
s(R)), so from Lemma 4.5.(iv)

we obtain

ρΓ(fd(R), X \R) = ρΓ(fd(R), X∞
s(R)) ≥ P · d− |BR(s(R) + 1)| · d ≥ d.

(ii). By swapping R and R′ if necessary, we may assume that s(R) ≤ s(R′).
Since R′ is a finite connected component of Γ ↾ (X \X∞

s(R′)) and R ∩X∞
s(R′) = ∅,

we have that ρΓ(R,R′) ≥ 2. So from (i) we obtain

ρΓ(fd(R), fd(R
′)) ≥ ρΓ(fd(R), X \R)+ρΓ(R,R′)−1+ρΓ(X \R′, fd(R

′))−1 ≥ 2d.

(iii). By Lemma 4.5.(iii) we have for all n ≥ s(R′)

ρΓ(fd(R), X∞
n ) ≥ P · d− |BR(n+ 1)| · d ≥ P · d− |BR′(n+ 1)| · d.

It follows from the definitions that fd(R) ⊆ fd(R
′).
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(iv). Fix y with ρΓ(y, fd(R)) < d. We will argue that y ∈ fd(R
′). By (i)

we have that y ∈ R ⊆ R′. Consider s(R′) ≤ n < a(R′). By Lemma 4.5.(iii)
we have BR(n + 1) ⊆ BR′(n + 1). The assumption a(R) < a(R′) further gives
a(R′) ∈ BR′(n+ 1) \BR(n+ 1) so that |BR(n+ 1)|+ 1 ≤ |BR′(n+ 1)|. Therefore
for s(R′) ≤ n < a(R′) we have

ρΓ(y,X
∞
n ) > ρΓ(fd(R), X∞

n )−d ≥ P ·d−|BR(n+1)| ·d−d ≥ P ·d−|BR′(n+1)| ·d.
For n ≥ a(R′) we have n ̸∈ BR(s(R)) since a(R) < a(R′). So ρΓ(R,X∞

n ) > 1 and
thus by the weakly orthogonal property and (i) we have

ρΓ(y,X
∞
n ) > ρΓ(fd(R), X∞

n )− d ≥ ρΓ(fd(R), X \R) + ρΓ(R,X∞
n )− 1− d

≥ Q+ 1− 1 = Q ≥ P · d = P · d− |BR′(n+ 1)| · d.
We conclude that y ∈ fd(R

′). □

Remark 4.7. The weakly orthogonal property has only been used thus far in proving
clause (iv) of Lemma 4.6.

For a graph Γ on X and n ≥ 1 define

Γ(n) = {(x, y) : x ̸= y and ρΓ(x, y) ≤ n}.

Theorem 4.8. Let X be a standard Borel space and let Γ ⊆ X×X be a Borel graph
on X. Let (Xk)k≥1 be a bounded geometry weakly orthogonal decomposition of X
with polygonal bound P and orthogonality constant Q. If d ≥ 1 and (2d+1)·P ≤ Q,
then there is a Borel set Y ⊆ X such that both of the graphs Γ(d) ↾ Y and Γ(d) ↾
(X \ Y ) have finite connected components.

Proof. Call a nucleus R maximal if a(R) < a(R′) for every nucleus R′ with R′ ⊋ R.
For a set A ⊆ X set

∂dA = {a ∈ A : ρΓ(a,X \A) ≤ d}.
Define

Y =
⋃{

∂df2d+1(R) : R is a maximal nucleus
}
.

Let R and R′ be maximal nuclei with

ρΓ(∂df2d+1(R), ∂df2d+1(R
′)) ≤ d.

By Lemma 4.6.(i) we must have that R ∩R′ ̸= ∅. By swapping R and R′, we may
suppose that s(R) ≤ s(R′) so that R ⊆ R′. It follows from Lemma 4.6.(iii) that
f2d+1(R) ⊆ f2d+1(R

′). We have

ρΓ(f2d+1(R), X \ f2d+1(R
′)) ≤ d+ ρΓ(∂df2d+1(R), ∂df2d+1(R

′)) ≤ 2d < 2d+ 1,

so from Lemma 4.6.(iv) we conclude that a(R) = a(R′). By maximality it follows
that R = R′. We conclude that every connected component of Γ(d) ↾ Y is contained
in ∂df2d+1(R) for some maximal nucleus R and hence is finite.

Now fix x ∈ X \ Y . By Definition 4.1.(i) there is k ≥ 1 with ρΓ(x,X
∞
k ) >

P · (2d+1). Let R be the unique k-nucleus containing x. Notice that x ∈ f2d+1(R).
Any nucleus R′ ⊇ R with a(R′) = a(R) must be contained in the same connected
component of Γ ↾ (X \ X∞

a(R)) as R. Since the connected components of Γ ↾
(X \X∞

a(R)) are finite, there must exist a maximal R′ ⊇ R with a(R′) = a(R). By

Lemma 4.6.(iii) we have x ∈ f2d+1(R) ⊆ f2d+1(R
′). Since ∂df2d+1(R

′) ⊆ Y and
x ∈ f2d+1(R

′) \ Y , the connected component of x in Γ(d) ↾ (X \ Y ) is contained in
f2d+1(R

′) and is therefore finite. □
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The following corollary is based off an argument due to Conley and Miller [7].

Corollary 4.9. Let X be a standard Borel space and let Γ ⊆ X × X be a Borel
graph on X with χ(Γ) < ℵ0. Suppose that there is a bounded geometry weakly
orthogonal decomposition of X with polygonal bound P and orthogonality constant
Q satisfying 5 · P ≤ Q. Then

χB(Γ) ≤ 2 · χ(Γ)− 1.

Proof. By Theorem 4.8, there is a Borel set Y ⊆ X such that both of the graphs
Γ(2) ↾ Y and Γ(2) ↾ (X \ Y ) have finite connected components. In particular,
the connected components of Γ ↾ Y are finite and therefore we can find a Borel
chromatic coloring

cY : Y → {1, 2, . . . , χ(Γ)}
of Γ ↾ Y . Set Y ′ = Y \ c−1

Y (χ(Γ)) and set c = cY ↾ Y ′. Since we removed a single
color from Y , we did not remove any pair of adjacent points in Y . It follows that
for every connected component C ′ of Γ ↾ (X \ Y ′), there is a connected component
C of Γ(2) ↾ (X \ Y ) such that C ′ is contained in the union of C and the set of
neighbors of C. Since C is finite and Γ is locally finite, it follows that C ′ is finite.
Therefore there is a Borel chromatic coloring

d : X \ Y ′ → {χ(Γ), χ(Γ) + 1, . . . , 2 · χ(Γ)− 1}
of Γ ↾ (X \ Y ′). The functions c and d use disjoint colors, so c ∪ d is a Borel
chromatic (2 · χ(Γ)− 1)-coloring of Γ. □

Corollary 4.10. For every n ≥ 1, χB(F (2Z
n

) = 3.

Proof. We observe that χ(F (2Z
n

)) = 2 and that Corollary 3.2 holds with P = n+1
and Q = ϵ

2d1, where we can take d1 to be arbitrarily large. Then the conclusion
holds by Corollary 4.9. □

We recall the definition of toast structures (c.f. [10] and [11]).

Definition 4.11. LetX be a standard Borel space and Γ ⊆ X×X be a Borel graph
on X. Let ρΓ be the shortest-path-length metric on the connected components of Γ.
Let EΓ be the equivalence relation on X given by the connected components of Γ.
Let {Tn} be a sequence of subequivalence relations of EΓ, i.e., each Tn ⊆ EΓ is an
equivalence relation on a subset of X, called the domain of Tn, denoted dom(Tn).
We call {Tn} a (unlayered) toast if

(1) Each Tn-equivalence class is finite.
(2)

⋃
n dom(Tn) = X.

(3) For each Tn-equivalence class C, and each Tm-equivalence class C ′ where
m > n, if C ∩ C ′ ̸= ∅ then C ⊆ C ′.

(4) For each Tn-equivalence class C there is m > n and a Tm-equivalence class
C ′ such that C ⊆ C ′ \ ∂C ′, where ∂C ′ = {x ∈ C ′ : ρΓ(x,X \ C ′) = 1}.

We call {Tn} a layered toast if instead of (4) above, we have

(4’) For each Tn-equivalence class C there is a Tn+1-equivalence class C ′ such
that C ⊆ C ′ \ ∂C ′.

If {Tn} is an unlayered or layered toast, we call {Tn} Borel if for each n, dom(Tn) ⊆
X is Borel and Tn is a Borel equivalence relation on dom(Tn). If X is a zero-
dimensional Polish space and {Tn} an unlayered or layered toast on X, we call
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{Tn} continuous if for every n, dom(Tn) ⊆ X is clopen in X and Tn is a clopen
equivalence relation on dom(Tn).

With an argument similar to Lemma 4.2, we can see that the existence of a Borel
unlayered toast implies hyperfiniteness of EΓ.

Theorem 4.12. Let X be a standard Borel space and let Γ be a Borel graph on
X. Let d ≥ 2. Suppose that there is a bounded geometry weakly orthogonal de-
composition of X with polygonal bound P and orthogonality constant Q satisfying
d · P ≤ Q. Then there is a Borel unlayered toast on X.

Proof. As in the proof of Theorem 4.8 we consider maximal nuclei, i.e., nuclei R
for which a(R) < a(R′) for every nucleus R′ with R′ ⊋ R. As in the proof of
Theorem 4.8, every nucleus is contained in some maximal nucleus.

For each n, define

dom(Tn) =
⋃

{fd(R) : s(R) = n and R is maximal}

and Tn by the partition of dom(Tn) given by {fd(R) : s(R) = n}. Definition 4.11
(1) and (2) follow immediately from Definition 4.1 (i) (decomposition). For Def-
inition 4.11 (3), let m > n. Consider a Tn-equivalence class C = fd(R) and a
Tm-equivalence class C ′ = fd(R

′). Assume C ∩C ′ ̸= ∅. It follows that R∩R′ ̸= ∅.
Hence by Lemma 4.5 (i), R ⊆ R′. By Lemma 4.6 (iii), C = fd(R) ⊆ fd(R

′) = C ′.
Finally, for Definition 4.11 (4), let C = fd(R) be a Tn-equivalence class. Let

R′ be any maximal nucleus with R′ ⊋ R. Then R ⊆ R′ and a(R′) > a(R). By
Lemma 4.6 (iii) and (iv), we have ρΓ(C,X \C ′) ≥ d ≥ 2. Hence C ⊆ C ′ \ ∂C ′. □

Corollary 4.13. For each n ≥ 1, there exists a Borel unlayered toast on F (2Z
n

).

Proof. This follows from Corollary 3.2 and Theorem 4.12, again noting that the
condition d · P ≤ Q can be satisfied in Corollary 3.2 by choosing a large enough
d1. □

In contrast, in [10] we showed that there is no Borel layered toast on F (2Z
n

) for
any n ≥ 1, and in [11] we showed that there is no continuous unlayered toast on
F (2Z

n

) for any n ≥ 1.

5. Topological regularity

The orthogonality results of Theorem 3.1 and Corollary 3.2 establish a certain
“geometric regularity” for the connected components R of X−X∞

k . We prove here
a result which shows that we may strengthen the conclusion to get a “topological
regularity” for these components as well. In fact, we can control (in a sense to be
made precise) the possible shapes and configurations for these components. Since
we only need these arguments for dimension 2, we will restrict to this case. The
main point is that we can produce an orthogonal decomposition with components
homeomorphic to the unit ball of R2.

We continue to let e1, e2 denote the standard generators of Z2, or equivalently
the standard unit vectors of R2.

We first give an informal description of our construction in this section, which
will be a variation of the basic orthogonal marker construction that is a refinement
of the construction used in §2.3 to prove Theorem 2.5. As in that proof we will
use marker distances d1 ≪ d2 ≪ · · · ≪ dn ≪ dn+1 · · · along with different scale
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values on each level n. The scale values will be of the form δdk, where dk is a
marker distance the use of which depends on the stage of the construction, and δ
is a multiplier which is a fixed parameter not depending on k. We will use several
such fixed parameters 0 < α < ϵ2 < η < ϵ1 < 1, and they do not depend on the
stage of the construction in which they are used. In fact we will have

α <
1

10
ϵ2 < ϵ2 < η2 < η < 2η < ϵ1 <

1

2

to serve various purposes. Their exact values will be determined later in the con-
struction.

As before, we will construct orthogonal marker decompositions Rm
k for all m ≥ 1

and 1 ≤ k ≤ m. If (m1, k1), (m2, k2) are pairs of positive integers with k1 ≤ m1

and k2 ≤ m2, we let (m1, k1) ≺ (m2, k2) if m1 < m2 or (m1 = m2 and k1 > k2).
This ordering has order-type ω and corresponds to the order in which we construct
the Rm

k regions. Thus, we construct R1
1, R2

2, R2
1, R3

3, R3
2, R3

1, · · · . In particular,
for each m, we will start with a clopen rectangular decomposition Rm

m and then
successively fractilize each region in Rm

k+1 to obtain the clopen decomposition Rm
k .

We thus eventually define the clopen decomposition Rm
1 .

The rectangles in Rm
m (the “diagonal” steps of the construction) will have side

lengths roughly αdm, whereas the rectangles used in modifying the regions in Rm
k+1

to obtain the regions inRm
k will have side lengths between η2dk and dk. Since αdk <

1
10η

2dk, each rectangle R in Rk
k will be at least 10 times smaller than any rectangle

used to get an Rm
k region from an Rm

k+1 region. Similar to previous constructions,

we will first define an auxiliary clopen rectangular partial decomposition Q̃m
k which

will cover the boundaries of the Rm
k+1 regions. We will then define a rectangular

partial decomposition R̃m
k which refines the Q̃m

k in that every R ∈ R̃m
k is a subset

of a Q ∈ Q̃m
k . The R̃m

k regions will also cover the boundaries of the Rm
k+1 regions.

Finally, we use a continuous (but otherwise arbitrary) assignment of the R̃m
k regions

to one of the Rm
k+1 regions it intersects. This will define the Rm

k regions.
We next describe the construction in more, formal details. Asssume inductively

that the Rm1

k1
have been constructed for all (m1, k1) ≺ (m, k) and that the following

inductive hypotheses are satisfied.

Inductive Hypotheses

(H1) Each R ∈ Rm1
m1

is a rectangle with side lengths between 1
2αdm1

and αdm1
.

(H2) Q̃m1

k1
is defined if k1 < m1, and is a clopen rectangular partial decomposition

which covers the boundaries of the regions in Rm1

k1+1. Each rectangle Q ∈
Q̃m1

k1
has side lengths between 1

2dk1
and dk1

.

(H3) (orthogonality of the Q̃) If k1 < m1 and F is a side of a rectangle in Q̃m1

k1
,

then F is at least ϵ1dk1 from any parallel side F ′ of a rectangle in one of
the following decompositions:

• Rk1+1
k1+1,

• R̃m2

k1+1 for m2 ∈ (k1 + 1,m1],

• Q̃ℓ
k1

for ℓ ∈ (k1,m1),

• Q̃m1

k1
if ρ(F, F ′) > 1;

Also, F is at least αϵ1dk1
from a parallel side of a rectangle in Rk1

k1
.
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(H4) R̃m1

k1
is defined if k1 < m1 and R̃m1

k1
is a clopen rectangular refinement of

Q̃m1

k1
which still covers the boundaries of the regions inRm1

k1+1. In particular,

each R ∈ R̃m1

k1
is a subrectangle of a Q ∈ Q̃m1

k1
. Each rectangle R ∈ R̃m1

k1

has side lengths between η2dk1
and dk1

.

(H5) (short directions for the R̃) If R ∈ R̃m1

k1
and R intersects 2 non-parallel

sides of regions in R̃m1

k1+1, then R has side lengths ηdk1
. In this case, we say

that R has type 2. Otherwise, R intersects exactly one side F of a region in
R̃m1

k1+1. Then the length of R in the direction perpendicular to F is η2dk1 .
In this case we say that R has type 1, and call the direction perpendicular
to F the short direction for R.

(H6) (coherence of Q̃ and R̃) If F is a side of a rectangle R ∈ R̃m1

k1
, then either

F is part of a side of a rectangle Q ∈ Q̃m1

k1
or F is within ηdk1

of a parallel
boundary side of a region in Rm1

k1+1. In fact, if R is of type-1 and not adja-

cent to a rectangle of type-2, then F is within η2dk1 of a parallel boundary
side of a region in Rm1

k1+1.

(H7) (orthogonality of the R̃) Any side F of a rectangle R ∈ R̃m1

k1
is at least

ϵ2dk1 from any parallel side F ′ of a rectangle R′ ∈ R̃m1

k1
if ρ(F, F ′) > 1.

(H8) (orthogonality of the R̃) Any side F of a rectangle R ∈ R̃m1

k1
is at least

ϵ2dk1
from any parallel side of a rectangle R′ ∈ R̃m2

k1
for m2 ∈ (k1,m1).

Also, F is at least αϵ2dk1 from any parallel side of a rectangle in Rk1

k1
.

Remark 5.1. Although the constants ϵ1, η, ϵ2 and α are pre-fixed, absolute constants
not depending on the stages of the construction, we will determine their exact values
through describing the construction in detail at the inductive step. The constant ϵ1
will be a preliminary orthogonality constant used in constructing the Q̃ (to maintain
the orthogonality in the inductive hypothesis (H3)). We will then pick constant η

with η2 < η < 2η < ϵ1 which is used in construction the R̃ rectangles as a control of
the side lengths. The R̃ rectangles will be adjusted to satisfy orthogonality (items
(H7) and (H8) of the induction hypothesis), which determines the orthogonality
constant ϵ2 < η2. Throughout this construction the diagonal decompositions Rm

m

will be specially defined to have a multiplier α for their side lengths compared
to the non-diagonal decompositions. A key observation is that the orthogonality
estimates involving the diagonal decompositions hold with the same multiplier α
no matter what the value of α is. In other words, none of the constants ϵ1, η and
ϵ2 depend on the value of α. We finally pick α < 1

10ϵ2. In the end, the constant

ϵ = αϵ2 will be the final resulting orthogonality constant for the R̃.

Remark 5.2. If R ∈ R̃m1

k1
is of type 2, then R has edge lengths ηdk1

from (H6). If

R is of type 1 and not adjacent to a type 2 rectangle R′ ∈ R̃m1

k1
then R has short

dimension η2dk1 and has other side length between 1
2dk1

and dk1
from (H3) and

(H6). If R is of type 1 and is adjacent to an R of type-2 then R still has short
dimension η2dk1 and has other side length between (ϵ1−η)dk1 and dk1 . This follows
from (H4) and (H5).

We now turn to the construction of the Rm
k regions. For k = m, let Rm

m be a

rectangular clopen decomposition of F (2Z
2

) with each rectangleR ∈ Rm
m having side

lengths between 1
2αdm and αdm. Then the inductive hypothesis (H1) is maintained.

Assume now the clopen partition Rm
k+1 has been defined, and we define Rm

k .
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Let P̃m
k be a clopen rectangular partition of F (2Z

2

) satisfying the following:

(1) Each rectangle Q ∈ P̃m
k has side lengths between 1

2dk and dk.

(2) Each side of a rectangle Q ∈ P̃m
k is at least ϵ1dk from a parallel side of a

rectangle R ∈ Rk+1
k+1.

(3) Each side of a rectangle Q ∈ P̃m
k is at least ϵ1dk from a parallel side of a

rectangle R ∈ R̃m2

k+1 for any m2 ∈ (k + 1,m].

(4) Each side of a rectangle Q ∈ P̃m
k is at least ϵ1dk from a parallel side of a

rectangle Q′ ∈ Q̃ℓ
k for any ℓ ∈ (k,m).

(5) Each side F of a rectangle Q ∈ P̃m
k is at least ϵ1dk from a parallel side F ′

of a rectangle Q′ ∈ P̃m
k if ρ(F, F ′) > 1.

(6) Each side F of a rectangle Q ∈ P̃m
k is at least αϵ1dk from a parallel side F ′

of a rectangle Q′ ∈ Rk
k.

The construction of the P̃m
k is by the standard orthogonal marker region con-

struction using the inductive hypotheses. The orthogonality condition in (2) is
guaranteed by (H1) and the fact that αdk+1 > dk since dk+1 ≫ dk. The condition
in (3) is guaranteed by (H7) and (H8), together with the fact that αϵ2dk+1 > 10dk
because dk+1 ≫ dk. For the condition in (4), we note that by (H2) each rectangle

in Q̃ℓ
k for ℓ ∈ (k,m) is within distance dk to the boundaries of a rectangle in R̃ℓ

k+1.
Again by (H7) and (H8), together with the fact that αϵ2dk+1 > 10dk, we conclude
that there is an absolute upper bound (independent from m, k) for the number of

such Q̃ℓ
k rectangles Q′ to consider. The condition in (5) can be guaranteed by the

standard construction. Finally, the factor of α in (6) comes from the fact that the
rectangles in Rk

k have smaller side lengths of size roughly αdk, as opposed to dk.
Again, this orthogonality condition can be guranteed for any value of α as long as
the Rk

k rectangles have side lengths between 1
2αdk and αdk, which is given by (H1).

The consideration of (1)–(5) gives an absolute upper bound for the number of
rectangle sides to avoid. This upper bound, which does not depend on m and k,
determines the constant ϵ1. Then the consideration of (6) follows for any constant
value α which is independent from ϵ1. The exact value of α will be determined
later in the construction.

Now we define Q̃m
k to consist of those rectangles in P̃m

k which intersect the
boundary of a Rm

k+1 region. Then it is straightforward to check that the inductive
hypotheses (H2) and (H3) are maintained.

We now define a clopen rectangular partial decomposition R̃m
k which still covers

the boundaries of Rm
k+1. Each rectangle R ∈ R̃m

k is a subrectangle of some Q ∈ Q̃m
k .

The construction of R from Q will be done in a continuous manner. We will then
let Rm

k be obtained from Rm
k+1 by using the auxiliary partial decomposition R̃m

k in

the usual way: we assign each region R ∈ R̃m
k to one of the regions in Rm

k+1 which
R intersects. For each region D ∈ Rm

k+1, let U be the union of all the rectangles

R ∈ R̃m
k which are assigned to D, and let V be the union of all the rectangles

R′ ∈ R̃m
k which intersect the boundary of D but are not assigned to D (they are

assigned to some neighboring regions of D). Let D′ = (D ∪ U) − V . Then Rm
k is

the collection of all such D′ for D ∈ Rm
k+1.

Observe that from this construction we will have maintained inductively that
any boundary side of a region in Rm

k is part of a side of some rectangle in R̃m
k . We

will use this observation tacitly in our proof below.
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We will be using a constant η that satisfies η2 < η < 2η < ϵ1. As we proceed to
describe the rectangles in R̃m

k , we use Figure 7 to illustrate the construction.

Let Q ∈ Q̃m
k . As in (H5), we say Q has type 1 if Q intersects exactly one side of

a rectangle in Rm
k+1, and say Q is of type 2 if it intersects 2 such sides.

First suppose that Q has type 2. Let S0 ⊆ Q be a rectangle centered at a corner
point of an Rm

k+1 region, and such that S0 has side lengths ηdk. This is possible
by (3) above and the fact that 2η < ϵ1. The basic orthogonality arguments give
that we may translate S0 in each direction by a small amount (say by an amount
< 1

10η
2dk) such that any side of the translated S0 is at least ϵ2dk from a parallel

side of a rectangle in R̃ℓ
k for any ℓ ∈ (k,m), and also at least αϵ2dk from a parallel

side of a rectangle in Rk
k. We may also assume the translation is small enough so

that any side of the translated S0 is at least η
2dk from a parallel side of a region in

Rm
k+1. In doing this construction we use the inductive hypotheses (H2), (H4) and

(H8). This orthogonality argument is the first of several that will determine the
value of ϵ2. One may think of a current value of ϵ2, noting that we may have to
shrink the value later. In any case, ϵ2 will depend on η (but not on m, k), and we
assume that ϵ2 < η2. Similar to the situation of (6) above, this construction works
with any value α.

S0

S1

S2

Rm
k+1

Q̃m
k

R̃m
k

Figure 7. Construction of the R̃m
k

We continue to construct other subrectangles of Q which will be in R̃m
k . Let

S0 denote the translated rectangle constructed above. For each of the 2, 3, or 4
sides s of an Rm

k+1 region which are incident to the corner point, we let S1, S2 (and
possibly S3, S4) be rectangles contained in Q \S0 which contain the the portion of
the boundary sides of an Rm

k+1 region intersecting Q which lie outside of S0, and

each of these rectangles has width η2dk. (In Figure 7 only S1 and S2 are shown.)
Note that we only need to specify two sides of the Si since the other two sides are
parts of the sides of Q and S0, respectively. We then translate the Si rectangles
by no more than 1

10η
2dk so that the two sides of Si which are perpendicular to

their adjacent side of Q are at least ϵ2dk from a parallel side of a rectangle in R̃ℓ
k

for ℓ ∈ (k,m), and at least αϵ2dk from a parallel side of a rectangle in Rk
k. In

doing this construction we use the inductive hypotheses (H2), (H4), (H7) and (H8).
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Also, we may have to shrink the value of ϵ2 obtained from the first step where we
constructed S0. But the construction works with any value of α.

Next we consider a rectangle Q of type 1. In this case, there is only one boundary
side F of an Rm

k+1 region which intersects Q. We let S5 ⊆ Q be a rectangle

containing F ∩ Q, with the two sides parallel to F having distance η2dk and the
other two sides being parts of sides of Q. We then translate S5 perpendicular to F
so that the long sides of S5 (the sides parallel to F ) are:

• at least ϵ2dk away from parallel sides of a rectangle in R̃ℓ
k for ℓ ∈ (k,m),

• at least ϵ2dk away from parallel sides of rectangles of the form S1, S2, S3

and S4, and
• at least αϵ2dk away from parallel sides of a rectangle in Rk

k.

As above, this uses the inductive hypotheses (H2), (H4), (H7) and (H8) and may
require shrinking the constant ϵ2 again, but the construction works with any value
of α.

This finishes the construction of R̃m
k , and the value of ϵ2 is determined from the

above orthogonality arguments. At this point, we fix the consatnt α < 1
10ϵ2.

We now verify the inductive hypotheses for the R̃m
k rectangles. Assume k < m.

The inductive hypotheses (H4), (H5) and (H6)) are immediate from the construc-

tion of the rectangles in R̃m
k . The inductive hypothesis (H7) is implicit from the

above construction; just note that the sides of rectangles of the form S0–S5 are
designed to be sufficiently far apart.

The next lemma verifes induction hypothesis (H8).

Lemma 5.3. (orthogonality of the R̃) The Q̃, R̃ rectangles satisfy inductive hy-
pothesis (H8).

Proof. Let F be a side of a rectangle R ∈ R̃m
k . Then by our construction, F is

either part of a side of a rectangle Q ∈ Q̃m
k or is within ηdk of a parallel side on

the boundary of a region in Rm
k+1. In the latter case, F is within ηdk of a parallel

side of a rectangle in K ∈ R̃m
k+1.

Suppose F ′ be a side of a rectangle R′ ∈ R̃ℓ
k where ℓ ∈ (k,m). Since (ℓ, k) ≺

(m, k), by (H4), (H5) and (H6) for R̃ℓ
k, F

′ is either part of a side of a rectangle

Q′ ∈ Q̃ℓ
k or is within ηdk of a parallel side of a rectangle K ′ ∈ R̃m2

k+1 (or K ′ ∈ Rm2

k+1

if m2 = k + 1).
If F is in the K case, then the result follows from the above constructions of

the S0–S5 regions. If both F , F ′ are in the Q, Q′ case respectively, then the result
follows from (4) above. If F is in the Q case and F ′ is in the K ′ case, then by (2)
and (3) above, F is ϵ1dk away from any parallel side of K ′. Since F ′ is within ηdk of
such a parallel side, we conclude that F and F ′ are at least (ϵ1−η)dk > ηdk > ϵ2dk
apart.

Now suppose F ′ is a side of a rectangle R′ ∈ Rk
k. If F is in the Q case the

result follows from (6). If F is in the K case the result follows from the above
constructions of the S0–S5. □

For convenience, we summarize the sizes of the R̃m
k rectangles in the following.

Fact 5.4. The rectangles in R̃m
k form a clopen assignment and the rectangles in R̃m

k

cover the boundaries of the regions in Rm
k+1. We furthermore have the following.
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(1) Each rectangle in R̃m
k has side lengths between η2dk and dk, and is of type-1

or type-2 with respect to the regions in Rm
k+1.

(2) A type-2 rectangle in R̃m
k has side lengths ηdk.

(3) A type-1 rectangle in R̃m
k has smaller side length η2dk in the short direction.

(4) A type-1 rectangle R in R̃m
k has smaller sides which are part of the bound-

aries of a region in Q̃m
k if R is not adjacent to a type-2 rectangle in R̃m

k . In
particular, such an R has longer side lengths between 1

2dk and dk.

We let ϵ = αϵ2, which is the smallest of the constants appearing in the induction
hypotheses. In most of the arguments we can use the single constant ϵ in our
estimates. An exception occurs in the following Claim 5.7.

Theorem 5.5. For each ℓ, the connected components of F (2Z
2

) \
⋃∞

m=ℓ ∂Rm
1 are

homeomorphic to disks.

Proof. We fix ℓ and show by reverse induction on k, starting from k = ℓ, that the

connected components of N ℓ
k are homeomorphic to disks, where N ℓ

k = F (2Z
2

) \⋃∞
m=ℓ ∂Rm

k . The result for k = 1 then finishes the proof.
Consider first the case k = ℓ. The connected components of N ℓ

ℓ are contained
within a single Rℓ

ℓ rectangle R.

Claim 5.6. For each of the two directions e1, e2, there is at most one value of m > ℓ
such that a boundary side of an Rm

ℓ region that is parallel to ei intersects R.

Proof. Fix e ∈ {e1, e2}, and suppose there is a boundary side F1 of a region in
Rm1

ℓ and a parallel coundary side F2 of a region in Rm2

ℓ such that F1 and F2 both

intersect the rectangle R ∈ Rℓ
ℓ. Since ℓ is not equal to m1 or m2, from (H7) and

(H8) of the induction hypotheses we have that ρ(F1, F2) > ϵ2dℓ > 10αdℓ. Since R
has side lengths αdℓ, both F1 and F2 cannot intersect R. □

Claim 5.6 says that each rectangle R in Rℓ
ℓ is divided into connected components

of N ℓ
ℓ in one of a small number of possible ways; these are illustrated in Figure 8.

Thus the theorem holds in the case k = ℓ.

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

ℓ

m ℓ

ℓ

ℓ

ℓ

m ℓ

ℓ

ℓ m

ℓ
m

ℓ
ℓ

ℓ m1

ℓ
m2

Figure 8. Possible ways in which an Rℓ
ℓ rectangle is divided by

higher level Rm
ℓ regions.

We now assume the connected components of N ℓ
k+1 are homeomorphic to disks,

and show the result for N ℓ
k .
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Claim 5.7. Let R0 ∈ Rℓ
ℓ, R1 ∈ Rm1

ℓ , and possibly R2 ∈ Rm2

ℓ be such that ∂Ri ∩
∂R0 ̸= ∅ for i = 1, 2. Let R0(k) ∈ Rℓ

k, R1(k) ∈ Rm1

k , R2(k) ∈ Rm2

k be the regions

corresponding to R0, R1 and R2, respectively. Then any member of N ℓ
k contained

in R0(k) has boundary contained in ∂R0(k) ∪ ∂R1(k) ∪ ∂R2(k).

Proof. Figure 8 illustrates the possible ways in which this situation can happen.
To be specific, let us consider the case where R1 ∈ Rm1

ℓ exists but R2 does not
and we are in the second case of Figure 8 (the other cases are similar). From
(H8) we have that the boundary of R1 is at least ϵ2αdℓ from a parallel boundary

of R0. Since dk ≪ · · · ≪ dℓ−1 ≪ dℓ, we have
∑ℓ−1

i=k di < 1
2ϵ2αdℓ, and it follows

that ∂R1(k) ∩ R0(k) ̸= ∅. Similarly, if R′ ̸= R1(k) is another regon in
⋃∞

m=ℓ Rm
k ,

then ∂R′ ∩R0(k) = ∅ and so ∂R1(k) is the only k-level boundary which intersects
R0(k). Thus, any element of N ℓ

k contained in R0(k) is formed from ∂R1(k), and
its boundary is contained in ∂R0(k) ∪ ∂R1(k).

□

In view of Claim 5.7 we only need to consider at most three regions R0 ∈ Rℓ
ℓ,

R1 ∈ Rm1

ℓ , R2 ∈ Rm2

ℓ in the situation illustrated in Figure 8 and show that the

members of N ℓ
k contained in R0(k) are homeomorphic to disks. In the following

argument we continue to use the notation established in Claim 5.7.
Clearly R1 = R1(ℓ) divides R0 = R0(ℓ) into two connected components, each of

which (a rectangle) is homeomorphic to a disk. Suppose inductively that R1(k+1)
divides R0(k + 1) into two components, each of which is homeomorphic to a disk.
Assume inductively that the following hold.

(I1) ∂R1(k + 1) intersects ∂R0(k + 1) in exactly two points x = x(k + 1), y =
y(k + 1).

(I2) At the points x, y, a vertical (horizontal) edge of ∂R1(k + 1) intersects a
horizontal (vertical) edge of ∂R0(k + 1).

Note that by (H8), any boundary side of ∂R1(k + 1) is at least ϵdk+1 from a
parallel coundary side of ∂R0(k+1). Let us call L1 the boundary side of ∂R1(k+1)
containing x, and L0 the boundary side of ∂R0(k + 1) containing x (the argument
at the point y is similar). We use Figure 9 to illustrate the situation as we proceed
with the argument.

The segment L1 must extend vertically above and below L0 at least ϵdk+1 ≫
dk, which follows from (H8). Similarly, L0 extends horizontally past x at least
ϵdk+1 ≫ dk. Also, outside of the balls of radius ϵdk+1 around x and y, every point
of ∂R1(k + 1) between x and y is at least ϵdk+1 from any point of ∂R0(k + 1).
This follows from (H8) and assumption (I1) above. It is therefore immediate that
outside of these balls we also have that ∂R1(k) and ∂R0(k) are disjoint. Let us

consider the ball B of radius ϵdk+1 aound x. Let S1 ∈ R̃m
k containing x. This is

one of the rectangles used in forming R1(k) from R1(k + 1) (by either adding or
removing it from R1(k + 1)). Let E1 be the vertical edge of S1 which forms part
of the boundary of R1(k). Note that E1 crosses L0. From (H6) we have that the

short sides of S1 (those parallel to L0) are part of the sides of a rectangle Q1 ∈ Q̃m
k .

From (H3) we have that these short sides of S1 are at least ϵ1dk away from L0.
Thus, E1 extends vertically at least ϵ1dk above and below L0.

On the other hand, let S0 ∈ R̃ℓ
k be the rectangle used in forming R0(k) from

R0(k + 1) such that E1 intersects S0 (or equivalently S0 contains x). From (H5)
we have that the sides of S0 parallel to L0 are within η2dk < ϵ1dk of L0. Thus, the
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E1

L1

L0

x

x′ S0

S1

Figure 9. Proof of Theorem 5.5. The green shaded rectangle is
S1. The boundary of R1(k) is shown in blue, and the boundary of
R0(k) in green.

part of ∂R1(k) formed by the short sides of S1 and E1 only intersects ∂R0(k) in a
single point x′ on a long side of S0. It likewise follows from (H5) that inside the
ball B, x′ is the only point of intersection of ∂R1(k) and ∂R0(k). This establishes
the above assumptions (I1) and (I2) for R1(k) and R0(k).

The above argument applies verbatim to pairs R0, R1 and R1, R2, giving that
any element of N ℓ

k is homeomorphic to a disk.
Finally, the completed induction for k = 1 finishes the proof of Theorem 5.5. □

From Theorem 5.5 it is clear that in a orthogonal decomposition with topological

regularity, a k-nucleus, namely a connected component of F (2Z
2

) \
⋃

m≥k ∂Rm
1 , is

exactly A− ∂A for an k-atom. It thus follows that all k-atoms are also homeomor-
phic to disks.

Corollary 5.8. There is an orthogonal decomposition of F (2Z
2

) in which, for any
k, all k-atoms are homeomorphic to disks.

We do not yet know how to generalize Corollary 5.8 to higher dimensions. One
possible approach is to prove a version of Lemma 2.2 in higher dimensions so that,
from a local point of view, an arbitrary assignment of the R̃m

k regions to one of
the Rm

k+1 regions will result in the marker regions obtained homeomorphic to disks,
as in the 2-dimensional construction in this section. This boils down to a finitary
problem of whether such preliminary decompositions always exist in dimension
3 and above (e.g. whether one can decompose an arbitrary finite n-dimensional
rectangular polygon so that no point is close to n + 2 different regions). It seems
that if this preliminary decomposition is possible, then the rest of the method used
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in this section can be applied to obtain a generalization for higher dimensions. Of
course, Corollary 5.8 suffices for our results in the rest of this paper.

6. Borel Perfect Matchings in F (2Z
n

)

In this section we use the method of orthogonal decompositions to show that
there is a Borel perfect matching for F (2Z

n

) for n ≥ 2. By a Borel perfect matching
we mean a Borel complete section B ⊆ F (2Z

n

) and a Borel function f : B →
{0, . . . , n−1} such that the pairs (x, ef(x) ·x) for x ∈ B partition the space F (2Z

n

).
More generally we consider an free Borel action of Zn on a Polish space X

and its (undirected) Schreier graph associated with the standard generating set
{e0, . . . , en−1} of Zn. A Borel perfect matching is similarly defined. We show the
following theorem.

Theorem 6.1. For any n ≥ 2 and any free Borel action of Zn on a Polish space
X, there is a Borel perfect matching for the Schreier graph on X.

In order to prove Theorem 6.1 it is clearly enough to consider the case n = 2.
The proof for a general free action of Z2 is identical to the proof for the shift action

of Z2 on X = F (2Z
2

), so we consider this case.

6.1. Charges, corner functions, and finite Stokes theorems. We first prove
a combinatorial result for Z2 itself. In fact, this result can be extended to Zn, which
we give, though we only need the case n = 2. The result is a sort of “finite version”
of Stokes theorem. We first present the n = 2 case.

For x = (i, j) ∈ Z2, let q(x) = (−1)i+j and call it the charge of x. For x =
(i, j), y = (i′, j′) ∈ Z2, let ρ(x, y) = max{|i − i′|, |j − j′|} denote the ℓ∞ distance
between x and y. If F ⊆ Z2, let ∂F = {x ∈ F : ρ(x,Z2 − F ) = 1}.

For F ⊆ Z2 we define a corner function c : F → Z as follows (the name derives
from the fact that for a rectangular polygon in Z2 the function c(x) is 0 except
when x is a corner point of the boundary). For x ∈ F we set

c(x) = 4− 2e(x) + s(x),

where e(x) is the number of horizontal and vertical edges that connect x to a point
of F , that is, e(x) = |{p ∈ {(±1, 0), (0,±1)} : x+ p ∈ F}|. Also s(x) is the number
of points y of the form x+(±1,±1) which are in F and are such that the two points
of Z2 which are adjacent to both x and y are also in F .

The following is our “finite Stokes theorem” for finite F ⊆ Z2.

Theorem 6.2 (Finite Stokes). Let F ⊆ Z2 be finite. Then we have∑
x∈F

q(x) =
1

4

∑
x∈∂F

q(x)c(x).

Proof. For x ∈ F − ∂F , we have that c(x) = 0, and so∑
x∈∂F

q(x)c(x) =
∑
x∈F

q(x)c(x).

So, it suffices to show that
∑

x∈F (4q(x)−q(x)c(x)) = 0. From the definition of c(x)
we have that

∑
x∈F (4q(x) − q(x)c(x)) =

∑
x∈F (2q(x)e(x) − q(x)s(x)). It suffices

to show that each of the sums
∑

x∈F q(x)e(x) and
∑

x∈F q(x)s(x) is equal to 0.
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Let E be the set of pairs of points (“edges”) (x, y) with x, y ∈ F and x, y
differing by (±1, 0) or (0,±1). Then

∑
x∈F q(x)e(x) =

∑
(x,y)∈E(q(x) + q(y)) = 0

as q(x) + q(y) = 0 for all (x, y) ∈ E.
Let S be the set of “squares” in F , that is, S is the set of all 4-element subsets

of F of the form R = {(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)} for some i, j. Then
we have

∑
x∈F q(x)s(x) =

∑
R∈S

∑
(a,b)∈R(−1)a+b = 0 as for each square R in F

we have that
∑

(a,b)∈R(−1)a+b = 0.

This completes the proof of Theorem 6.2. □

Although Theorem 6.2 is all we need for the results of this paper, we state the
natural generalization to Zn for any n ≥ 2. If k ≤ n, by a k-dimensional 1-cube in
Zn we mean a set of the form

C = {x = (x1, . . . , xn) ∈ Zn : xi = ±1 for i ∈ I and xi = 0 for i ̸∈ I}
for some I ⊆ {1, . . . , n} with |I| = k, i.e., C is a set with 2k many elements
x = (x1, . . . , xn) ∈ Zn such that any non-zero coordinate of x must occur in one of
the coordinates i1, . . . , ik where 1 ≤ i1 < · · · < ik ≤ n, and any non-zero coordinate
of x must be ±1. There are 2k

(
n
k

)
many distinct k-dimensional 1-cubes in Zn.

Theorem 6.3. Let F ⊆ Zn be finite. Then∑
x∈F

q(x) =
1

2n

∑
x∈∂F

q(x)c(x)

where q(x) =
∑n

i=1(−1)xi and c(x) =
∑n

i=0(−1)i2n−ici(x) where c0(x) = 1, and
for i > 0, ci(x) is the number of i-dimensional 1-cubes C such that C + x ⊆ F .

The proof of Theorem 6.3 is an immediate generalization of that of Theorem 6.2.
Returning to Z2, we will need the following simple lemma about the

∑
q(x)c(x)

expression of Theorem 6.2.

p

p′

Figure 10. Adjacent paths p, p′ as in Lemma 6.4

Lemma 6.4. Let p be a simple (i.e. non-self-intersecting) path consisting of a
concatenation of horizontal and vertical segments of points in Z2. Assume each
segment has length at least 5. Let p′ be a path disjoint from p which is contained
in Bρ∞(p, 1) (the set of points of distance 1 from p in the ρ∞ metric), and which
is adjacent to p as shown in Figure 10. Fix an orientation for p so that p′ lies to
the left of p. Let s =

∑
x∈p q(x)c(x), where the values of c(x) are computed for the
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region R = Z2 \ p′ and let s′ =
∑

x∈p′ q(x)c′(x), where c′(x) is computed for the

region R′ = Z2 \ p. Then s = −s′.

Proof. For each of the pairs (x, x′) of corresponding corner points for p, p′ we have
that q(x) = q(x′), and it is easy to check that c(x) = −c′(x′), and the result
follows. □

6.2. Currents and extensions of partial matchings. We now discuss some
terminolgy and simple results concerning matchings of finite regions in Z2.

The regions we consider will be rectangular polygons that are in between two
“parallel” paths. To begin, we consider the simplest kind of such region, which
is a region strictly between two parallel (horizontal or vertical) lines in Z2. For
definiteness, let us consider two parallel horizontal lines y = α and y = β (where
α < β are in Z). The region will be defined as

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β}
for some a < b in Z. In general b− a is much larger than β − α, and we thus refer
to β − α− 1 (the number of integers strickly between α and β) as the thickness of
R. For reasons that will become clear, we assume the thickness of R is even.

We will be considering matchings of the induced subgraph of the Cayley graph on
R. To emphasize that these are not necessarily perfect mathchings, we refer to them
as partial matchings. If M is a partial matching of R, then M is a subgraph of the
Cayley graph on R such that each vertex has degree 0 or 1, i.e., degM (x) = 0 or 1
for x ∈ R. We call the set {x ∈ R : degM (x) = 1} the domain of M , and denote it
by dom(M).

A partial matching of R is said to be of the canonical form if it is as shown
in Figure 11, i.e., all edges of the matching are horizontal, and the domain of the
matching is either the entire R (if b− a+ 1 is even) or all of R except those points
with x-coordinate b (as shown, if b− a+ 1 is odd).

Figure 11. The canonical matching.

Consider a more general partial matching M of R. Let us fix an orientation for
this region, say left to right. Consider

S = {(x, y) ∈ R : a < x < b, α < y < β}.
Suppose the domain of M includes all points of S. For all a < x < b, we define the
current of M at x, which we denote CM (x) or just C(x) if M is understood.

For a < x < b, let Sx = {(x, y) : α < y < β}. For each z ∈ Sx, if M matches it
with a point to the right of z, or with a point below or above z, then z contributes
0 to the current. If M matches z with a point to the left of z, then z contributes
q(z) to the current. Summing these values for the points in Sx gives the current
CM (x). Note that since R has even thickness, the canonical matching has current
0 at all x.
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The current is well-defined by the following fact.

Lemma 6.5. Suppose M is a partial matching of R whose domain includes all
points of S. Then for any a < x0 ≤ x1 < b we have that CM (x0) = CM (x1).

Proof. It suffices to prove the lemma for x0 = a + 1 and x1 = b − 1. Since R
has even thickness, we have

∑
z∈R q(z) = 0. Also

∑
z∈dom(M) q(z) = 0, and so,∑

z∈R−dom(M) q(z) = 0. Since S ⊆ dom(M), we get∑
(a,y)∈R−dom(M)

q(a, y) +
∑

(b,y)∈R−dom(M)

q(b, y) = 0.

We claim that the first sum equals the current CM (x0). This is because, for each
(a, y) ∈ R − dom(M), M matches (a + 1, y) = (x0, y) with a point either to the
right, or above and below, and thus (x0, y) contributes 0 to CM (x0); on the other
hand, for each (a, y) ∈ dom(M), M matches (x0, y) to (a, y), which is to the left of
(x0, y), and thus (x0, y) contributes q(x0, y) = −q(a, y) to CM (x0). Therefore

CM (x0) =
∑

(a,y)∈dom(M)

−q(a, y).

Note again R has even thickness, and thus
∑

(a,y)∈R q(a, y) = 0. It follows that

CM (x0) =
∑

(a,y)∈R−dom(M)

q(a, y).

Now we claim that the second sum equals −CM (x1). To see this, again note∑
(x1,y)∈R q(x1, y) = 0 and write the sum as∑

(x1,y)∈A

q(x1, y) +
∑

(x1,y)∈B

q(x1, y) +
∑

(x1,y)∈C

q(x1, y) = 0

where A is the set of points which are matched by M vertically to a point (again in
A), B is the set of points which are matched byM to a point to the left, and C is the
set of points which are matched by M to a point to the right. The first sum equals
0, and the second sum equals CM (x1). For each (x1, y) ∈ C, (x1 + 1, y) = (b, y) is
matched by M to (x1, y), which is to the left of (b, y), and q(x1, y) = −q(b, y). Let
D be the set of all (b, y) ∈ R which are matched by M to the point on the left.
Thus it suffices to show that∑

(b,y)∈D

q(b, y) +
∑

(b,y)∈R−dom(M)

q(b, y) = 0.

Finally, let E be the set of all points (b, y) ∈ R which are matched by M vertically
to a point (again in E). Since

∑
(b,y)∈R q(b, y) = 0, we get that∑

(b,y)∈R−dom(M)

q(b, y) +
∑

(b,y)∈D

q(b, y) +
∑

(b,y)∈E

q(b, y) = 0.

Note that the third term is 0, thus we get the desired equality. In conclusion, we
get CM (x0) = CM (x1). □

In Figure 12 we give an example of a partial matching of R = {(x, y) ∈ Z2 : 0 ≤
x ≤ 40, 0 < y < 9} (with the left-to-right orientation) whose current is 1.

In general, we call a partial matching M of a region

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β}
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Figure 12. A partial matching of current 1.

full if the domain of M includes all points of the set

{(x, y) ∈ Z2 : a < x < b, α < y < β}.
Lemma 6.5 guarantees that the current is well-defined for full partial matchings.

We next present some lemmas about partial matchings with a given current. We
first prove a lemma that guarantees a “standard form” for a partial matching with
a given current. In the lemma we tacitly assume that the orientations of the regions
are all left-to-right.

Lemma 6.6. Suppose M is a full partial matching of the region

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β},
where the thickness w = β − α− 1 is even. Suppose M has current k. There is an
absolute constant C0 such that if b′ > b + C0w

2, then we can extend M to a full
partial matching M ′ of

R′ = {(x, y) ∈ Z2 : a ≤ x ≤ b′, α < y < β}
such that (b′, y) ∈ dom(M ′) iff y ∈ L ∪ A, where L ∈ {L0, L1} and A ∈ {A0, A1},
and

L0 = ∅,
L1 = {y : α+ 2|k|+ 1 ≤ y < β},
A0 = {α+ 2i− 1 : 1 ≤ i ≤ |k|},
A1 = {α+ 2i : 1 ≤ i ≤ |k|}.

Proof. We describe an algorithm to extend M to a full partial matching M ′ of R′

by following the left-to-right orientation. First consider the right-edge of R, that is,
the points with x-cooordinate x = b. By extending M by adding horizontal edges,
we may assume without loss of generality that all of the points on the right-edge
of M are eventually matched to points to their left or right (that is, M contains
no vertical edges between points on the right-edge of R, and for those points on
the right-edge of R for which M is undefined, M ′ will match them to the points on
the right). There is also no loss of generality (by extending M further by adding
horizontal edges) in assuming that the top point of the right-edge of R is included
in the domain of M , that is, it is matched by M to the point to its left.

In the first step of the algorithm, define M ′ for all points on the right-edge of R
in an obvious way, that is, if z is a point of the right-edge of R so that z ̸∈ dom(M),
then M ′ matches z to the point on its right. Along the right-edge of R, from the
top to the bottom, we use the letter l to represent the point if M ′ matches it to
the point on the left, and use the letter r to represent the point if M ′ matches it
to the point on the right. Thus we obtain a sequence of l’s and r’s to represent
the pattern of matching M ′ on the right-edge. From our assumption above, the
sequence starts with an l.
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Consider first the case where the left/right matching pattern from top to bottom
along the right-edge of R is of the form

ll · · · l
i

lrl · · · · · · rlr
t alternations

r · · · rr
j

or
ll · · · l

i

lrl · · · · · · lrl
t alternations

l · · · ll
j

.

That is, the pattern begins and ends with a block of l’s or r’s, and in-between is
a single block of alternations of l’s and r’s with a total of, say, t alternations. In
Figure 13, if we take b = 1 (that is, we read the pattern from the second column
of points) then we see the pattern llrlrlll with t = 4 alternations. Note that the
current in this case is equal to 2. Figure 13 illustrates a procedure to extend M so
that in the extended partial matching, the left/right matching pattern of the right
edge becomes llllrlrl.

Figure 13. Moving the alternations down.

Consider the set A of t + 1 vertically consecutive points on the right-edge of R
which correspond to the block of t alternations. If A is followed by j ≥ 2 terms
in the sequence (i.e., there are at least two points vertically below the last point),
then an extension of M as shown in Figure 13 will result in a similar pattern along
its right edge except the block A has been shifted two to the right in the pattern
(that is, two steps down along the right edge). In this figure, the pattern llrlrlll
(taking b = 1) has been shifted to llllrlrl (in this case the alternating block A has
been shifted to the bottom of the pattern). Repeating this process, we may move
the alternating block down until it either terminates the pattern (e.g., llllrlrl) or
ends at the next to last position (e.g., lllrlrll). The above argument shows that in
the second case we may also move the alternating blocks to the right by two, so
for example lllrlrll becomes lllllrlr). So, a single aternating block may always be
moved to a tail of the pattern (in the last case, the size of the final alternating block
has decreased by one). The horizontal distance needed to implement a single step
of the procedure illustrated in Figure 13 is linear in t. The number of iterations
needed to move the block of alternations to the tail is approximately j

2 . Thus the

horizontal distance needed to perform the entire procedure is linear in w2.
In the general case, the pattern will consist of an intial segment of l’s (without

loss of generality) and then a number of alternating blocks A1, . . . , Ap which are
separated by constant blocks of length at least one. We then proceed as above,
successively moving the blocks down to either form a larger alternating tail segment,
or else resulting in the concatenation of two alternating blocks. For example, we
could change lrllllrl into lllrllrl which ends with two alternating blocks of the form
lrl. However, a variation of the previous argument shows that a concatenation of
alternating blocks may be changed to end in a single alternating block (perhaps
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of length 0). In this example, it is easy to see that lllrllrl may be changed to
llllllll. Continuing this process, we change the initial pattern to one which is a
constant block of l’s followed by a single alternating block. Note the length of the
final terminating alternating block is uniquely given by the conservation of current,
Lemma 6.5. Again, the horizontal distance needed to implement this procedure is
linear in w2.

So, we may extendM to the right to some partial matching N so that the pattern
of the right edge of N is ll · · · lA, where A is an alternating block starting with r.
Extending N to the entire region R‘ by only adding horizontal edges, we obtain a
full partial matching M ′ of R′. The pattern ll · · · lA shows up either on the right-
edge of R′ or on the column immediately to the left of the right-edge. In the first
case, we have (b′, y) ∈ dom(M ′) exactly when y ∈ L0 ∪ A0 = A0 or exactly when
y ∈ L0 ∪ A1 = A1 (which is uniquely determined by the conservation of current).
In the second case, we have (b′, y) ∈ dom(M ′) exactly when y ∈ L1 ∪A0 or exactly
when y ∈ L1 ∪A1. □

The next lemma says that for a given current k, we may extend a partial matching
with current k to “join” any other partial matching of current k.

Lemma 6.7. Suppose M is a full partial matching of the region

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β},

where the thickness w = β − α − 1 is even. Suppose M has current k. Let C0 be
the absolute constant given by Lemma 6.6. If b′ > a′ > b+2C0w

2, and M ′ is a full
partial matching of

R′ = {(x, y) ∈ Z2 : a′ ≤ x ≤ b′, α < y < β}

with current k, then we can extend M ∪M ′ to a full partial matching of the region

R̂ = {(x, y) ∈ Z2 : a ≤ x ≤ b′, α < y < β}.

Proof. By Lemma 6.6 we may extend M to the right to some partial matching N
so that the pattern on the right edge of N is of the form ll · · · lA, where A is a
single alternating block of l’s and r’s. Symmetrically, we may apply Lemma 6.6 to
M ′ and extend it to the left to some partial matching N ′ so that the pattern on
the left edge of N ′ is of the form ll · · · lA′, where again A′ is an alternating block.
From Lemma 6.5 it follows that A and A′ have the same length and that if the
right edge of N has x-coordinate e and the left edge of N ′ has x-coordinate f , then
f − e is even. Note here that if the right edge pattern is l2iA where A = rl · · · rl
is of even length w− 2i, the current at this vertical edge is 1

2 (w− 2i) (asssume the
overall parity is such that q(z) = −1 for the top point of the right edge), and if the
right edge has pattern l2i+1A where A = rl · · · r has odd length w − 2i − 1, then
the right edge has current − 1

2 (w − 2i).
We may fill in the remaining region of points with x-coordinates between e and

f to a full partial matching extending both M and M ′. □

So far in this subsection we have carefully considered the region

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β}

where the thickness w = β − α − 1 is even and the orientation is left-to-right. All
of our results can be generalized to the case where the orientation is right-to-left,
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and to the case where

R = {(x, y) ∈ Z2 : α < x < β, a ≤ y ≤ b},

the thickness w = β − α − 1 is even and the orientation is either top-to-bottom
or bottom-to-top. In the next lemma, we consider a slightly more complex region,
where we have to “turn a corner.” We show that there is no difficulty in generalizing
our results to this case. The statement and proof are illustrated in Figure 14.

Figure 14. Turning a corner.

Lemma 6.8. Suppose w > 0 is even, and a, b > 1. Consider the region

R′ = {(x, y) ∈ Z2 : (0 ≤ x ≤ a+ w, 0 < y < w + 1) or
(a < x < a+ w + 1, w + 1 ≤ y ≤ w + b+ 1)}

as shown in Figure 14. Let

S = {(x, y) ∈ Z2 : 0 < x < a, 0 < y < w + 1},

S′ = {(x, y) ∈ Z2 : 0 ≤ x ≤ a, 0 < y < w + 1},
and

R = {(x, y) ∈ Z2 : (0 < x ≤ a+ w, 0 < y < w + 1) or
(a < x < a+ w + 1, w + 1 ≤ y < w + b+ 1)}.

Suppose M is a partial matching with S ⊆ dom(M) ⊆ S′ which consists of only

horizontal edges. Then M can be extended to a partial matching M̂ with R ⊆
dom(M̂) ⊆ R′. Moreover, assuming the orientation of R′ is left-to-right followed

by bottom-to-top, the current of M̂ at y = w + b is equal to the current of M at
x = 1.

Proof. For each point (a, y) on the right edge of S′, we extend the partial matching
M by following the horizontal line through (a, y) to the point (a+w− y+1, y) on
the diagonal line between the two corner points, and then vertically to the point
(a + w − y + 1, w + b + 1). Since the point (a, y) on the right edge of S′ have the
same parity as the corresponding point (a + w − y + 1, w + 1), this results in the

desired matching. In particular, the current of M̂ at x = a is equal to the current
of M at x = 1 by Lemma 6.5, and by the above observation about the parities of
points, it is equal to the current of M̂ at y = w + 1, which is again equal to the
current of M̂ at y = w + b by Lemma 6.5. □

The next lemma says that a partial matching with a certain current can absorb
a given charge, with a resulting change in the current.
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Figure 15. Absorbing a charge.

Lemma 6.9. Let

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β}
with w = β−α− 1 even. Suppose M is a full partial matching of the region R and
suppose on the right-edge of R the partial matching M is of the standard form as
defined in Lemma 6.6. Let z = (c, α + 1) be a point with c > b+ w. Then for any
b′ > c+ w, we can extend M to a full partial matching M ′ of the region

R′ = {(x, y) ∈ Z2 : a ≤ x ≤ b′, α < y < β} − {z}
so that M ′ is of the standard form on the right-edge of R′.

Proof. Assume the right edge of M has the pattern ll · · · lA where A is a block of
t alternations of l’s and r’s. We consider two cases. The first case is c − b is even
and A ends with an l, or c− b is odd and A ends with an r. In this case Figure 15
shows the algorithm for extending M (in Figure 15 the point z is shown as being
“grounded”, that is, matched to a point on the boundary). The resulting partial
matching is already of the standard form, with the absolute value of the current
increasing by 1 as we pass the absorbed charge. In the example of Figure 15, which
is the non-trivial case, if the overall parity is chosen so that q(z) = 1, then the
current changes from +2 to +3 as we move past the new charge z. The second
case is c − b is even and A ends with an r, or c − b is odd and A ends with an l.
In this case, we only need to extend M by adding horizontal edges up to x = c to
absorb the charge, and the absolute value of the current decreases by 1. Now this
partial matching has the pattern ll · · · lA′ll or ll · · · lA′rr, where A′ is a block of t−2
alternations. We apply the moving-the-alternations-down algorithm in the proof
of Lemma 6.6 to obtain the standard form ll · · · lA′. Since this algorithm takes at
most t steps, we obtain the conclusion of the lemma with any b′ > c+ w. □

The next lemma says that a partial matching can absorb a number of given
charges of the same sign, with no restrictions on the distances between them, pro-
vided that the number of charges is small compared to the thickness of the region.

Lemma 6.10. Let

R = {(x, y) ∈ Z2 : a ≤ x ≤ b, α < y < β}
with w = β − α − 1 even. Suppose M is a full partial matching of the region
R and suppose on the right-edge of R the partial matching M is of the standard
form as defined in Lemma 6.6. Suppose M has current k. Let l < 1

2 (w − 2k) and
b + w < c1 < · · · < cl. Suppose for 1 ≤ i < l, ci+1 − ci is even. For i = 1, . . . , l,
let zi = (ci, α+ 1). Let C0 be the absolute constant given by Lemma 6.6. Then for
any b′ > cl + C0w

2, we can extend M to a full partial matching M ′ of the region

R′ = {(x, y) ∈ Z2 : a ≤ x ≤ b′, α < y < β} − {z1, . . . , zl}
so that M ′ is of the standard form on the right-edge of R′.
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Proof. We use the same algorithms as in the proof of Lemma 6.9 to absorb the
charges one-by-one. By our assumption, only one of the cases in the proof of
Lemma 6.9 occurs for all given charges. Now suppose all the charges are of the
form of the first case in that proof. Then note that the algorithm we use for this
case can be applied simultaneously for all charges at the same time without creating
a conflict. Moreover, the pattern of the resulting partial matching is still in the
standard form.

(a) The first case (b) The second case

Figure 16. Absorbing multiple charges of the same sign.

Similarly, if all the charges are of the form of the second case, then the greedy
algorithm to use horizontal edges in the matching works also for all the charges.
Figure 16 illustrates these situations. After absorbing all the charges, it takes at
most C0w

2 many steps to put the partial matching back to the standard form. □

We will also use the following lemma on partial matchings of a rectangle.

Lemma 6.11. Let R be a rectangle in Z2 and k =
∑

x∈R q(x) be its total charge.
Then k ∈ {0, 1,−1}. Suppose S ⊆ ∂R with

∑
x∈S q(x) = k. Suppose also that any

side length of R is greater than the size of S, |S|. Then there is a perfect matching
M of R− S.

Proof. That k ∈ {0, 1,−1} is obvious. We prove the second part of the lemma by
induction on |S|. When |S| = 0 we have k = 0 and R must be a rectangle with
dimensions l×w where at least one of l and w is even. In this case it is obvious that
R has a perfect matching. When |S| = 1 we have k = ±1 and the only element
x0 ∈ S satisfies q(x0) = k. Now R is a rectangle with dimensions l × w where
both l and w are odd, and all four corner points of R must have charge k. Let E
be a side of R containing x0. Then E − {x0} consists of at most two segments of
even size, and therefore each admits a perfect matching. R−E is a rectangle with
total charge 0 and therefore admits a perfect matching by the above observation.
In summary, we have that R− {x0} has a perfect matching.

Now consider |S| > 1. Then at least two elements of S have opposite charge.
Fixing an orientation of ∂R, we also conclude that at least two elements of S, say
x0 and x1, have opposite charge and are adjacent (that is, there are no other points
of S in between x0 and x1 along ∂R from x0 to x1). Let E be the path segment of
∂S with x0 and x1 as endpoints. E is either a part of a side of R or a part of two
consecutive sides of R. In either case let F ⊆ ∂R be either a side or two consecutive
sides containing E. Let F̃ be the set of all points of R with at most distance 1 to
F . Consider R′ = R− F̃ . Then R′ is still a rectangle. The total charge of R′ is still
k. Let S′

0 = S− F̃ and S′
1 ⊆ ∂R′ be the set of points x′ ∈ ∂R′ that have distance 2

to some x ∈ (F −E) ∩ S in the Cayley graph of Z2. Then S′ = S′
0 ∪ S′

1 has size at
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most |S| − 2, which is less than any side length of R′. By the inductive hypothesis,
there is a perfect matching M ′ of R′ − S′. We obtain a perfect matching M of
R− S by extending M ′ and making the following definitions:

(i) M is a perfect matching of elements of E − {x0, x1} (this is possible since
there are even number of points from x0 to x1 along E);

(ii) Let Ẽ be the set of points x ̸∈ ∂R but are adjacent to some points of E in

the Cayley graph of R. Then M is a perfect matching of Ẽ (this is because

either Ẽ is a path of the same length as E or their length differ by 4);
(iii) For each x ∈ F − E − S, M matches x to the unique x∗ ̸∈ ∂R adjacent to

x in the Cayley graph of R;
(iv) For each x ∈ (F − E) ∩ S, M leaves x unmatched, but matches its corre-

sponding point x′ in S′
1 to the unique x∗ ̸∈ ∂R adjacent to x in the Cayley

graph of R.

F

}
F̃· · ·

S

S′

· · ·
x0 x1E

· · ·
Ẽ

· · ·
S

S′

· · ·

Figure 17. Constructing a partial matching of a rectangle.

The construction when F is a single edge is illustrated in Figure 17. The con-
struction when F is the union of two edges is similar. □

6.3. An orthogonal decomposition with bounded charge. An important step

in the construction of a Borel perfect matching for F (2Z
2

) is the construction of
an orthogonal decomposition such that all of the k-atoms have a charge bounded
by a fixed constant K, which is independent of k. The key to doing this is the
use of the finite Stokes theorem, Theorem 6.2, which says that it is enough to
control the function q(x)c(x) along the boundaries of these regions. This we do by
a modification of the orthogonal marker construction given in Section 5.

Recall that for each ℓ ≥ 1, the Rℓ
ℓ regions form a rectangular decomposition

of F (2Z
2

). Then, as we inductively defined Rℓ
k for k < ℓ, each Rℓ

k region is a
“fractalized” version of a corresponding Rℓ

k+1 region. Nevertheless, each Rℓ
k region

is still a rectangular polygon with side lengths between ϵdk and dk. At the end,
we obtain Rℓ = Rℓ

1, where each region is a rectangular polygon with side lengths
between ϵd1 and d1. We will need d1 to be sufficiently large in order for various
arguments below to work. Here we do not specify its exact value, but only note
that d1 can obviously be made to be larger than any given constant.

Next we analyze the boundaries of the Rℓ regions, denoted Xℓ = ∂Rℓ. By a
path segment, we mean a simple (i.e. non-self-intersecting) path consisting of a
concatenation of horizontal and vertical segment of points in the Schreier graph of

F (2Z
2

) (cf. Lemma 6.4). The boundary of any Rℓ region itself (picking a starting
point) is a path segment. We say that two path segments p and p∗ are adjacent, if
for any x ∈ p there is x∗ ∈ p∗ with ρ(x, x∗) = 1 and vice versa.

We remark that these objects might look somewhat different at different scales.
Figure 18 illustrates the construction of Rℓ

ℓ, where each region is a rectangle. From
a large scale, for example, the scale dℓ ≫ d1, the boundaries of the regions can
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be roughly viewed as lines on R2 that divide the plane into rectangular regions.
However, from a detailed scale, that is, the scale d1, the boundaries of Rℓ

ℓ regions
can be seen to actually consist of adjacent path segments that are either horizontal
or vertical. For results in this subsection we need the perspective from the d1 scale.

R

(a) At the scale dℓ

(b) At the scale d1

Figure 18. Perspectives of the boundaries of the Rℓ
ℓ regions.

Lemma 6.12. There is an absolute constant C1 such that for any ℓ ≥ 1, there
is a Borel partition P of Xℓ into pairs of adjacent path segments so that for each
R ∈ Rℓ, ∂R consists of at most C1 many path segments in P .

Proof. We obtain P by following the inductive construction of Rℓ
k for k ≤ ℓ. For

each k ≤ ℓ, we obtain a Borel partion Pk of ∂Rℓ
k into pairs of adjacent path segments

so that the boundary of each R ∈ Rℓ
k consists of at most C1 many path segments

in Pk. Eventually we let P = P1.
For k = ℓ the statement obviously holds with C1 = 12. This is because, each

R ∈ Rℓ
ℓ is a rectangle with side lengths between 1

2αℓdℓ and αℓdℓ by (H1), and the

usual othogonality of the sides of Rℓ
ℓ guarantees that each horizontal or vertical

segment of points in Pℓ has length at least ϵdℓ.
In general, as we consider k < ℓ and construct Rℓ

k regions from Rℓ
k+1 regions,

each of the path segments in Pk+1 gives rise to a “fractalized” path segment in
Pk. For example, each horizontal or vertical segment from Pℓ becomes a path
segment (no longer necessarily horizontal or vertical) in Pℓ−1. Note that we have
ϵdℓ > ϵd1 ≫ 5, and it follows that each pair of adjacent path segments in Pk+1

corresponds still to a pair of adjacent path segments in Pk.
Thus, at the end of the process, we obtain P1 which is a partition of Xℓ into pairs

of adjacent path segments, where the boundary of each Rℓ
1 region still consists of

no more than C1 many path segments in P1. By the inductive hypotheses on the
orthgonality of Rℓ

k (1 ≤ k ≤ ℓ) regions, we get that, for each path segment in P1

consisting of horizontal and vertial segments of points, each horizontal and vertical
segment has lengths at least ϵd1. □

The next lemma modifies the construction of Rℓ in Section 5 so that the total
charge of any Rℓ region is bounded.

Lemma 6.13. The orthogonal marker decompositions {Rℓ
k}1≤k≤ℓ may be con-

structed so as to satisfy the following additional property: There is an absolute
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constant 4 ≤ K < d1 such that for any ℓ ≥ 1 and any path segment p contained in
the boundary of some Rℓ region, we have that

|
∑
x∈p

q(x)c(x)| ≤ K.

Proof. For any ℓ ≥ 1, we leave all the constructions of Rℓ
k for 1 < k ≤ ℓ as they

were done in Section 5 and only modify the last step of the construction. To do
this, first let R′

ℓ be the Rℓ
1 constructed in Section 5. We indicate below how to

modify it to obtain Rℓ as we desire.
Let C1 be the absolute constant in Lemma 6.12 and let P be a Borel partition

of X ′
ℓ = ∂R′

ℓ into pairs of adjacent path segments given by Lemma 6.12. Let C0

be the absolute constant in Lemma 6.6. Let w ≥ 10 be an even number with
ϵd1 ≫ 40C0w

2.
Consider a pair {p, p∗} of adjacent path segements in P . Both p and p∗ are

simple (i.e. non-self-intersecting) paths and consist of a concatenation of vertical
and horizontal segments of lengths at least ϵd1. Let R, R∗ be the corresponding
regions in R′

ℓ with p ⊆ ∂R, p∗ ⊆ ∂R∗. Write p as a concatenation s0s1 . . . sh where
the sj are horizontal or vertical line segments of points of lengths between ϵd1 and
d1, except perhaps for the first and last segment. By our construction (specifically,
by Claim 5.6 and Figure 8), there are at most two of the sj which intersect an
X ′

m for m > ℓ. For all of the remaining ≥ h − 4 segments sj , we can position a
(40w + 1) × 40w rectangle Sj of points near the center of the segment sj (we will
say more about its specific location later in this proof) as shown in Figure 19 so
as to change the value of

∑
x∈sj

q(x)c(x) by either +4 or −4, where here c(x) is

computed relative to the region R. Since ϵd1 ≫ 40w + 1 and these Sj are near the
centers of the segments sj , they are contractible to sj without intersecting any of
the other Sj′ or sj′ . Thus, adding these Sj does not alter the topology of the region
R (it is still homeomorphic to a disk), nor the connectedness of ∂R.

Sj

p

p∗

R

R∗

40w + 1

40w

Figure 19. Adjusting the boundaries.

Thus it is possible to add the regions Sj so that for any initial segment u of p we
have that |

∑
x∈u q(x)c(x)| ≤ 5C1. Furthermore, the Sj are not placed in the first

or last segments of p, nor in a segment which intersects an Xm for m > ℓ. A simple
orthognality argument shows that we will have that any Sj is at least 1

3ϵd1 from
Xm. If sj is not the initial or final line segment of p, nor does it intersect X ′

m for
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any m > ℓ, then we will take into account one more consideration as we determine
the exact location of Sj on the line segment sj . Consider the set sj ∩

⋃
k<ℓ X

′
k.

By the orthogonality from our construction, each point in sj ∩
⋃

k<ℓ X
′
k is at least

ϵd1 from the endpoints of sj , and if x, y are two distinct points of sj ∩
⋃

k<ℓ X
′
k,

then either ρ(x, y) = 1 or ρ(x, y) > ϵd1. Thus sj \
⋃

k<ℓ X
′
k consists of a number

of line segments, each of which has length at least ϵd1. We will actually put Sj

near the center of one of these line segments, so that it is at least 1
3ϵd1 ≫ C0w

2

from sj ∩
⋃

k<ℓ X
′
k and from the endpoints of sj . This property will be useful in

our construction in the next subsection.
From Lemma 6.4 we also have that |

∑
x∈u∗ q(x)c(x)| ≤ 5C1 for any initial seg-

ment u∗ of p∗. Since the number of path segments in the boundary of any R′
ℓ region

R is bounded by C1, this gives a bound K for the sum
∑

x∈p q(x)c(x) for any path
p ∈ ∂R for an Rℓ region R, as required. □

Similarly, in view of the analysis of Figure 8, we get a similar bound for paths p
in ∂A for any k-atom A.

Lemma 6.14. There is an absolute constant 4 ≤ K < d1 such that for any k ≥ 1
and any path segment p contained in the boundary of some k-atom A, we have that
|
∑

x∈p q(x)c(x)| ≤ K.

Proof. This follows immediately from Lemma 6.13 and the fact that each k-atom
A intersects Xℓ for at most 2 distinct ℓ > k (see Figure 8). □

6.4. The construction of a Borel perfect matching. We are now ready to

give the construction of a Borel perfect matching M of F (2Z
2

). In the arguments
constructing orthogonal decompositions up to this point, we assumed the set dk
of distance scales satisfied d1 < d2 · · · and dk+1

dk
> C for some fixed constant C

independent of k. We now wish to impose an intermediate growth condition on

the dk: we assume hence forth that dk+1

dk
≤ C ′ for some fixed constant C ′. It

follows that there is an absolute bound C ′′ (independent of k) on the number of
(k − 1)-atoms that can be contained within a given k-atom.

Let us fix an even number w > 10C ′′K, where K is as in Lemma 6.14. Intu-
itively, C ′′K represents the possible “accumulation of charge” within a k-atom in
the construction, w will be the thickness of a “buffer” region in which the inductive
construction takes place.

Let C0 be the absolute constant given by Lemma 6.6. We assume henceforth
that in our construction ϵd1 ≫ 40(K + 3)C0w

2.
For each k, if A is a k-atom of the orthogonal decomposition, then we define the

corresponding w-buffered atom A(w) = {x ∈ A : ρ(x, ∂A) ≥ w}. Also let ∂w(A) =
A−A(w) denote the buffer region. Note from the construction of Lemmas 6.13 and
6.14, all the line segments forming the boundary of A have lengths at least 40w,
thus the buffer region takes the shape of a “rectangular polygonal pipe” of thickness
w, as illustrated in Figure 20. We refer to ∂A(w) as the buffered boundary, and
each line segment of ∂A(w) still has length at least 30w. Moreover, ∂A consists of
path segments each of which is contained entirely on Xℓ for some ℓ ≥ k, and we
refer to each of the path segments as being on level ℓ; there are corresponding path
segments of ∂A(w) which are also referred to as being on level ℓ.

In particular, since the k-atoms are topologically of the form as in Figure 8 and
are homeomorphic to disks with boundaries being simple closed curves consisting
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A

∂A

A

∂A

Figure 20. The buffer region.

of paths of horizontal and vertical line segments of lengths > 30w. From this it
easily follows that the buffered atoms A(w) also have these properties.

We now proceed by induction on k to define a partial matching on
⋃
{A(w) : A ∈

Ak}, where Ak is the set of all k-atoms. We assume the following inductive hy-
pothesis at level k − 1.

Induction Hypothesis Hk−1: We have defined a Borel partial matching Mk−1

of F (2Z
2

) with domain dom(Mk−1) = Dk−1 ⊆
⋃
{A(w) : A ∈ Ak−1}. For each

(k− 1)-atom A ∈ Ak−1, denote Ek−1(A) = A(w)−Dk−1. Then Ek−1(A) is a finite
set of size ≤ K and Ek−1(A) ⊆ ∂A(w). Furthermore, every point of Ek−1(A) is
at least C0w

2 from the endpoint of a line segment containing it which is part of
∂A(w) and also every such point is within w of Xk−1 = ∂Rk−1.

The set Ek−1(A) is the set of unmatched (by Mk−1) points of A(w). In view
of Figure 8, the boundary of each atom A ∈ Rk−1 consists of path segments from
some Xℓ where ℓ ∈ {k − 1,m0,m1} for some m0,m1 > k − 1. The last part of the
induction hypothesis Hk−1 says that these unmatched points of Ek−1(A) in the
buffered (k − 1)-atom A(w), for A ∈ Ak−1, are part of the buffered boundary for
the lowest level Xℓ (i.e., ℓ = k − 1) which forms part of the boundary of A.

Lemma 6.15. H1 holds.

Proof. Let A ∈ A1 be a 1-atom. By the construction of the orthogonal decomposi-
tion in Section 5, particularly by Figure 8, there is an R1

1 region A0 such that one
of the following holds:

(1) A = A0;
(2) A = A0 ∩R, where R is an Rk

1 region for some k > 1;
(3) A = A0 ∩ R1 ∩ R2, where R1 is an Rk

1 region and R2 is an Rℓ
1 region for

ℓ > k > 1.

Let A′
0, R

′, R′
1, R

′
2 denote the corresponding regions before the adjustments per-

formed in the proof of Lemma 6.13 and 6.14. Since the constant K ≥ 4 in Lem-
mas 6.13 and 6.14, no adjustments took place for the boundaries of A′

0, and and
thus A0 = A′

0 remains a rectangle of side lengths between 1
2αd1 and αd1 by (H1).

Note that the side lengths of line segments consistituting ∂R′, ∂R′
1 or ∂R′

2 are at
least ϵ1d1 by the orthogonality assumption (H3). Since α < ϵ1, we conclude that
A0 ∩ ∂R′ is either a line segment or a path segment with two (perpendicular) line
segments in Case (2), and A0 ∩ ∂R′

1 and A0 ∩ ∂R′
2 are line segments in Case (3).

Therefore, after the adjustments from the proof of Lemmas 6.13 and 6.14 are per-
formed, all possible geometric shapes of A are illustrated in Figure 21, where the
small structures along the line segments represent the results after adding or re-
moving various Sj ’s of dimensions (40w + 1)× 40w. The line segments other than
from these small structures all have lengths at least 1

3ϵd1 ≫ 10C0w
2.
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Figure 21. The possible geometric shapes of a 1-atom.

Consider the buffered 1-atom B = A(w). Then B has similar properties as A,
and in particular Figure 21 continues to represent all possible geometric shapes of
B. Let E be a line segment on the boundary of B with length ≥ 1

3ϵd1. We will
define a partial matching M1 of B with E1(A) = B − dom(M1) ⊆ E and E1(A) at
least C0w

2 from the endpoints of E.
We give the remaining proof for one of the possible shapes (the last one in

Figure 21); the proof for the rest of them is similar. By direct observation we note
that B can be decomposed into no more than 6 rectangles R0–R5. Let R0 be the
rectangle such that E ⊆ ∂R0, and let E0 be the line segment of ∂R0 containing
E. We describe an algorithm to define E1(A) ⊆ E and a partial matching M1 of
B − E1(A).

R0

E0

E

R1
R2

R3

R4

R5

Figure 22. Defining a partial matching on a buffered 1-atom.

For example, if the rectangles are named as in Figure 22, we first compute the
total charge qi of each of the rectangles Ri for i = 0, . . . , 5. By Lemma 6.11,
qi ∈ {0, 1,−1} for each i. Let q be the sum of all qi. Then |q| ≤ 6.

For two adjacent rectangles R and R∗, we define a set E0(R,R∗) of unordered
pairs {x, x∗} where x ∈ R, x∗ ∈ R∗, x and x∗ are adjacent in the Schreier graph.
For example, for R2 and R3, let E0(R2, R3) be a set of |q3| many unordered pairs
{x, x∗} where x ∈ R2, x

∗ ∈ R3, x and x∗ are adjacent in the Schreier graph, and
q(x∗) = q3 (which implies that q(x) = −q3). Thus E0(R2, R3) is either empty (if
q3 = 0) or contains only one pair (if q3 = ±1). For R1 and R2, let E0(R1, R2)
contain |q2 + q3| many pairs {x, x∗} with q(x∗) = sgn(q2 + q3). Similarly one can
define E0(R0, R1), E0(R4, R5), E0(R0, R4), etc. By Lemma 6.11, there are perfect
matchings of R3 − E0(R2, R3), R2 − E0(R2, R3) − E0(R1, R2), R5 − E0(R4, R5),
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R4 − E0(R4, R5) − E0(R1, R4), etc. Finally, let E1(A) ⊆ E be a set of |q| many
elements x with q(x) = sgn(q). Then by Lemma 6.11, there is a perfect matching
of R0 − E0(R0, R4) − E0(R0, R1) − E1(A). The desired partial matching M1 is
obtained by putting all these perfect matchings together, plus matching points of
E0(R,R∗) according to their natural pairing. We note that Lemma 6.11 can be
applied since the side lengths of all these rectangles are greater than 6. Given that
the length of E is ≥ 1

3ϵd1 ≫ C0w
2, the set E1(A) can be chosen to be at least C0w

2

from the endpoints of E. □

Assuming now that a Borel partial matching Mk−1 with domain Dk−1 has been
defined which satisfies Hk−1, we extend Mk−1 to a Borel partial matching Mk with
domain Dk satisfying Hk.

Consider a k-atom A ∈ Ak and the corresponding w-buffered atom A(w) ⊆ A.
Let S denote the set of (k − 1)-atoms S ∈ Ak−1 which are contained within A.
For each S ∈ S, we also have its w-buffered counterpart S(w). By Hk−1, Mk−1

matches all points of S ∈ S except for a finite set Ek−1(S) of size at most K.
Consider the following “adjacency graph” G on S. We set (S1, S2) ∈ G iff there
are x1 ∈ ∂S1 ∩ Xk−1 and x2 ∈ ∂S2 ∩ Xk−1 with x1 (respectively x2) at least
1
6ϵd1 ≫ 3C0w

2 from the endpoints of the line segment containing it and forming
part of ∂S1 (respectively ∂S2), and with ρ(x1, x2) = 1. Note that the points x1, x2

are necessarily not in ∂w(A) by the above distance requirement. In fact, by our
orthogonal marker region construction, two (k− 1)-atoms are adjacent in G if they
contain adjacent line segments of lengths at least 1

3ϵd1 ≫ 6C0w
2 on their (k − 1)-

level boundaries.
We note that G is a connected graph on S. To see this, consider any two

S1, S2 ∈ S. Let z1 ∈ S1 and z2 ∈ S2 be arbitrary. Since A is homeomorphic to a
disk, there is a path p from z1 to z2 that is contained within A− ∂A. Let x1, y1 be
the first pair of consecutive points on p such that x1 ∈ S1 and y1 ̸∈ S1. Then we
have ρ(x1, y1) = 1 and x1, y1 ∈ Xk−1. Suppose y1 ∈ S′

1 ∈ S. Then we may modify
the part of p from z1 to y1 to become a path p′ from S1 to S′

1 so that any pair of
consecutive points on p′ crossing the boundaries of (k − 1)-atoms are at least 1

6ϵd1
from the endpoints of the line segments containing them respectively and forming
part of the boundaries of the respective (k − 1)-atoms. If S1 and S′

1 are adjacent
in G, then this modification involves only adding points from S1 ∪ S′

1; otherwise it
involves adding points from a third S′′

1 ∈ S which is adjacent to both S1 and S′
1.

The modified path gives rise to a path in the adjacency graph G from S1 to S′
1.

Repeating this process for the rest of the points on p will result in a path p′ that
satisfies the 1

6ϵd1 distance requirement for all of its points, and therefore showing
that S1 and S2 are connected in the graph G.

Choose a particular S0 ∈ S such that some line segment E0 forming part of ∂S0

is on Xk (i.e. E0 is part of a k-level boundary of S0). Let T ⊆ G be a maximal
spanning tree in G with S0 as its root. For any S0 ̸= S ∈ T , if S′ is the parent node
of S in T , then there are adjacent line segments E ∈ ∂S and E′ ∈ ∂S′ of lengths
at least 1

3ϵd1 on their (k − 1)-boundaries. Fix such a line segment ES for ∂S and
call it the exit segment for the region S.

Now that T is a rooted tree, we may define the rank of S ∈ S with respect to T
by induction as usual: if S is a terminal node of T , define r(S) = 0; for non-terminal



BOREL COMBINATORICS OF ABELIAN GROUP ACTIONS 49

S, letting P1, . . . , Pm be all the child nodes of S, define

r(S) = 1 +max{r(Pi) : i = 1, . . . ,m}.
Also let r(T ) = r(S0). In addition, for S ∈ S, let t(S) be the number of nodes in T
which are equal to S or below S (not just immediately below). Also let t(T ) = |T |,
the size of T .

By a subinduction on the rank of S ∈ S with respect to T we successively extend
the partial matching Mk−1. We assume the following subinduction hypothesis.

Subinduction Hypothesis Hk−1(r−1): For each S ∈ S with r(S) ≤ r−1, the
partial matching Mk−1 has been extended to Mk−1(r − 1), with its domain from
S(w) − Ek−1(S) to (S ∩ A(w)) − E′

k−1(S) where E′
k−1(S) ⊆ ES is a set of size at

most K · t(S) and consists of points of distance at least C0w
2 from the endpoints

of ES . If r(S) < r − 1 then the points of E′
k−1(S) are matched in Mk−1(r − 1).

We first verify the base case for the subinduction.

Lemma 6.16. Hk−1(0) holds.

Proof. Let S ∈ S be a terminal node of T . First we consider the case where all
of the boundary of S is on the k − 1 level. In this case S ∩ A(w) = S, and since
S is homeomorphic to a disk and its boundary consists of horizontal and vertical
line segments of lengths at least 40w, S(w) has similar properties. We only need to
extend the partial matchingMk−1 toMk−1(0) with its domain from S(w)−Ek−1(S)
to S−E′

k−1(S) for some E′
k−1(S) ⊆ ES of size at most K. Moreover, every element

of E′
k−1(S) will be at least C0w

2 from the endpoints of ES . By our inductive

hypothesis Hk−1, all points of Ek−1(S) are at least C0w
2 from the endpoints of

their line segment. Note that in this case ∂w(S) forms a closed loop of rectangular
polygonal pipes with thickness w around the region S(w). This is illustrated in
Figure 23.

S(w)

ES

→
R R′

↑R′′

Figure 23. The construction of Mk−1(0) for a terminal node of
T . The black dots are umatched points of Mk−1, the red dots are
unmatched points of Mk−1(0).

In preparation for the construction ofMk−1(0), we divide the buffer region ∂w(S)
into three regions. First let R0 (not shown in Figure 21) be a rectangular region
along the line segment ES that is at least C0w

2 from the endpoints of ES , has length
at least 6C0w

2, and does not contain any point adjacent to a point of Ek−1(S).
Such an R0 exists since the size of Ek−1(S) is at most K, but ES has length at least
1
3ϵd1 ≫ 4(K + 3)C0w

2. Next we divide R0 into two adjacent regions R and R′,
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with the length of R at least 2C0w
2 and the length of R′ at least 2C0w

2. Assign an
orientation for R so that R′ follows R in this orientation. Let R′′ = ∂w(B)−R−R′

and assign an orientation for R′′ that is opposite of the orientation of R. Note that,
by our construction, all the unmatched points of S(w), when matched by Mk−1(0)
to an adjcent point in ∂w(S), create “charges” in R′′.

We now define a partial matching of R′′ by following the orientation assigned to
it, starting with the canonical matching, which has current 0. We use Lemma 6.8
as we turn corners, and use Lemma 6.10 as we absorb new charges. After absorbing
a number of charges we always apply Lemma 6.6 to turn the pattern back to the
standard form. Since our charges are at least C0w2 from the endpoints, there is
enough room to perform the standardization along a line segment. Because of
Lemma 6.14, and because w > 10K, R′′ has sufficiently large thickness to allow all
charges to be absorbed. Thus we obtain a full partial matching of R′′, and the end
current has absolute value ≤ K. Suppose the current is κ.

Now we turn to the region R, and similarly define a partial matching of R by
following the orientation assigned to it, starting with the canonical matching, which
has current 0. As we move along, we create exactly |κ| many charges, with the total
charge −κ, and use Lemma 6.10 to absorb all these charges to create current −κ.
Since |κ| ≤ K and the lengths of R is at least 2C0w

2, we have enough room to
absorb all the charges and to conclude this part of the construction with a partial
mathcing of the standard form.

Finally, we come to the region R′, which is of length at least 2C0w
2. We use

Lemma 6.7 to join the partial matchings on R and R′′ to obtain a full partial
matching of the entire ∂w(S). This gives the partial matching Mk−1(0) as required.

We next consider the case where ∂S contains a part on a higher level Xℓ with
ℓ > k− 1. In this case, the key observation is that, from Figure 8, S ∩A(w) is still
a connected rectagular polygonal pipe. In this case we can easily modify the above
construction to obtain the extension Mk−1(0) as required. □

For the general subinduction, we assume Hk−1(r − 1) for r < r(T ), and extend
Mk−1(r − 1) to Mk−1(r) satisfying Hk−1(r). Fix an S ∈ S with r(S) = r. Let
P1, . . . , Pm be all the child nodes of S. In particular, each of P1, . . . , Pm is adjacent
to S in the graph G, and therefore topologically adjacent to S as a region. By the
subinduction hypothesis Hk−1(r − 1), E′

k−1(Pj) ⊆ EPj
for each j = 1, . . . ,m, and

each EPj is adjacent to a line segment Fj ⊆ ∂S. Note that F1, . . . , Fm, ES are all
disjoint.

In the first step of the extension from Mk−1(r − 1) to Mk−1(r), we match the
points of EPj

to their corresponding points on Fj for all j = 1, . . . ,m. Now we are in
a situation similar to Lemma 6.16 (see Figure 24), and with a similar construction
as in the proof of Lemma 6.16 we obtain the extension Mk−1(r) on S.

We verify that the resulting partial matching satisfy the subinductive require-
ments. By the subinduction hypothesis Hk−1(r − 1), for each j = 1, . . . ,m, the
size of each E′

k−1(Pj) is at most K · t(Pj). Let q be total charge of ∂w(S). By
Lemma 6.14, q ≤ K. Thus the size of E′

k−1(S) is at most

q +

m∑
j=1

K · t(Pj) ≤ K(1 +

m∑
j=1

t(Pj) = K · t(S).
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S(w)

E′
k−1(S)

E′
k−1(Pj)

E′
k−1(Pj′)

Figure 24. Constructing the partial matching Mk−1(r) for r <
r(T ). The black dots are initially umatched, and we extend the
matching to them and the shaded region except for the final un-
matched red dots.

Moreover, since K ·t(S) ≤ KC ′′ < 1
2w ≪ 1

3ϵd1, the thickness of ∂w(S) is sufficiently
large for the applications of Lemmas 6.6, 6.7, 6.8, and 6.10.

This completes the subinduction establishing Hk−1(r) for r < r(T ).

S0(w)

E′
k−1(S0)

E′
k−1(Pj)

E′
k−1(Pj′)

∂w(A)

Figure 25. Constructing the partial matching Mk−1(r) for r =
r(T ).

For r = r(T ), there is no exit segment ES0
; instead, the “exit points” E′

k−1(S0)
need to be a part of ∂A(w) to maintain the induction hyothesis Hk (see Figure 25).
Here the extension Mk−1(r) is still constructed similar to the proof of Lemma 6.16.
In fact, noting that ∂w(S0) ∩ A(w) is a connected rectangular polygonal pipe, we
arbitrarily fix an orientation for it. Then we define the partial matching Mk−1(r)
again by starting from the canonical matching, turning corners, and absorbing
charges. Along the way we also put the partial matching into the standard form
whenever we can. At the end of the construction the charges will show up at the
end of the pipe as unmatched points. By a similar computation as above, we have
K · t(T ) = K · |T | ≤ KC ′′ < 1

2w ≪ 1
3ϵ1d1, and thus the thickness of ∂w(S0), which

is w, is large enough for the algorithms to be applied.
To show that the inductive hypothesis Hk is maintained, we need to verify that

E′
k−1(S0) = Ek(A) has size ≤ K and that the charges in E′

k−1(S0) are at least

C0w
2 from the endpoints of their line segment as a part of ∂A(w). For the size of

E′
k−1(S0), note that the total charge of A is at most K from Lemma 6.14. Since

A(w) has the same shape, the total charge of A(w) is at most K. Now Mk−1(r)
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has matched all the points of A(w) except the points of E′
k−1(S0), we have that

E′
k−1(S0) has size ≤ K.

We next verify that the charges in E′
k−1(S0) are at least C0w

2 from the endpoints
of their line segment as a part of ∂A(w). For this pick any point x0 ∈ E′

k−1(S),
and note that any other point of E′

k−1(S) is within distance w of x0. Let F be a
line segment of ∂S that is within distance w of x0 and E be a line segment of ∂A
that is within distance w of x0. Since w ≪ ϵd1, F and E meets perpendicularly
at a point y0 that is within distance w of x0. By the construction in the proof of
Lemma 6.13, since E is on level k and F is on level k − 1, the endpoints of E is at
least 1

3ϵd1 from y0. Since 1
3ϵd1 ≫ C0w

2, it follows that all points of E′
k−1(S) are

at least C0w
2 from the endpoints of E.

This completes the subinduction and hence the induction establishing Hk for all
k, giving the Borel partial matchings Mk. Letting M =

⋃
k Mk gives the desired

matching of F (2Z
2

), and completes the proof of Theorem 6.1.

7. Borel Linings

In this section we show that there exists a Borel lining of F (2Z
2

). By a lining

we mean a subgraph of the Schreier graph of F (2Z
2

) which is a Hamiltonian path
on each equivalence class. More generally, consider a free action of Zn on a Polish
space X and the associated Schreier graph on X. Following [11], a line section is a
subgraph S of the Schreier graph on X where each vertex in S has degree 2. If S
is a line section, we call each connected component of S an S-line. A line section
S is complete if S ∩ [x] ̸= ∅ for all x ∈ X. A line section S is single if for each
x ∈ X, S ↾ [x] is a nonempty single S-line. Thus a lining S is a single line section
where the vertex set of S is the entire space, and in particular it is a complete line
section.

A line section S on X is Borel (clopen, resp.) if for each generator e of Zn, the
set {x ∈ X : (x, e ·x) ∈ S} is Borel (clopen, resp.). In [11] the authors showed that

there do not exist clopen single line sections of F (2Z
2

); in particular, there are no

clopen linings of F (2Z
2

). Here, in contrast, we prove the following theorem.

Theorem 7.1. Every free action of the group Z2 on a Polish space has a Borel
lining.

The rest of this section is devoted to a proof of Theorem 7.1. The proof is similar
in spirit to that for Borel matchings, Theorem 6.1, and as with that proof we must
establish some combinatorial facts about line sections that we will need for the
proof.

The notions of line section and lining extend naturally to the Cayley graph of
Z2, and more generally finite subsets of Z2. So for a finite subset S of Z2, a lining
of S means a finite simple path in the Cayley graph of Z2 which passes through
each element of S.

As is the case with matchings, we fix a parity on the points of Z2 in discussing
the combinatorial facts below. In our construction of a Borel lining, all of our
arguments will be local and not depend on which of the two possible parities on the
class we consider. We fix odd positive integers p0, q0 > 1 and consider a rectangle
of dimensions p0 × q0. This will have a total charge of +1 or −1. Such a rectangle
will be called a “parity change” region, and will be used frequently in the following
arguments. So, by adding or subtracting such a region from a rectangle R, we can



BOREL COMBINATORICS OF ABELIAN GROUP ACTIONS 53

change the total charge of the region by either 1 or −1, depending on the placement
of the parity change region.

The following fact is the main techical tool we need.

Theorem 7.2. There is a constant a0 such that the following holds. Suppose
R ⊆ Z2 is a finite rectangle and R′ is obtained from R by adding or subtracting at
most k many p0 × q0 parity change regions along the boundary of R, and with the
distance between any two such parity change regions at least a0, and the distance
between any paritty change region and a corner of R at least ka0. Suppose R′ has
total charge 0. Then given two adjacent points x, y on the boundary of R′ at least
a0 away from a corner, there is a lining of R′ which starts at x and ends at y.

Figure 26 illustrates the statement of Theorem 7.2.

+ +

+

+

−

−

xy

(a) A region R′ as in The-
orem 7.2.

xy

(b) A lining of a region with 2 parity change regions
added.

Figure 26. An illustration of Theorem 7.2.

An easy consequence of Theorem 7.2 is the following.

Corollary 7.3. There is a constant a0 such that if R, R′ are as in Theorem 7.2, and
if the total charge of R′ is 0, then for any two adjacent points x, y on the boundary
of R′ at least ka0 away from a corner of R, and a point z on the boundary at least
ka0 away from a corner or a point in {x, y}, there are two disjoint line sections L1,
L2 of R′ such that L1 starts at x, L2 starts at y, every vertex of R′ is on L1 ∪ L2,
and L1, L2 end at adjacent vertices on the boundary of R′ one of which is the point
z.

Proof. Let L be a line section for R′ which begins at x and ends at y. One of
the edges of L contains the point z and connects z to an adjacent point on the
boundary of R′. If we remove this edge from L, we obtain two disjoint line section
of R′, say L1 and L2 which start at x and y respectively, and one of which ends at
z. □

We note that the statement of Corollary 7.3 immediately implies the statement
of Theorem 7.2 as well, simply by adding an edge between the terminating vertices
of L1 and L2. So, in the following constructions it suffices to show either version.

First we note that if R′ is a rectangle (equivalently k = 0), then the result is
easy to see directly. In this case, since R′ has total charge 0, it must have an
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even number of nodes. A proof by picture is given in Figure 27. Without loss of
generality we assume x, y are on the lower horizontal edge of R′. Note that x, y
can be any pair of adjacent points on that edge. In the case of an even-by-odd
rectangle, also note that the method works equally well if the adjacent points x, y
are on either of the vertical edges.

(a) An even-by-odd rectangle.
(b) An even-by-even rectangle.

Figure 27. Proof of Theorem 7.2 for a rectangle R′.

Although not needed for the proof of Theorem 7.2, for this k = 0 case we would
like to state a stronger result which we will need later.

Lemma 7.4. Let R be a rectangle of total charge 0. Given any two disjoint pairs
of adjacent points x, y and x′, y′ on the boundary of R, there exist two disjoint line
sections L1 and L2 of R such that every vertex of R is on L1 ∪ L2, L1 starts with
x and ends with one of x′, y′ and L2 starts with y and ends with the other one of
x′, y′.

Proof. For this lemma we need more symmetry than noted above. In Figure 27
(a), by symmetry, we may assume neither pair is the pair of points on the upper
edge that are not adjacent in the lining. Then it is obvious that L1 and L2 can
be obtained by omitting the edges in between x and y and in between x′ and y′.
For Figure 27 (b), by symmetry we may assume neither pair is one of the pairs of
adjacent points on the right edge that are not adjacent in the lining. For bigger
values of side lengths the proof can be generalized. For smaller values of side lengths
the statement can be checked directly. □

Next we consider the case k = 1. In this case R′ is obtained from an odd-by-odd
rectangle R with one parity change region added or subtracted (so the total charge
of R′ is 0). A proof by picture is presented in Figure 28. The red lines indicate
linings of R′ with end points x, y on the lower horizontal edges. When x, y are
at a different position on the edge of R′, we use blue lines to illustrate alternative
linings.

The case k = 2, where R′ is an even rectangle with two parity change regions
added or removed (these parity change regions must have opposite parities so that
R′ has total charge 0), is also not difficult, and is illustrated in Figure 26b. Finding
alternative linings for different pairs of endpoints x, y takes a moment of reflection
but is not difficult. We note that this result holds provided the minimum side
length of the rectangle R exceeds a fixed small value a0.

Next we treat the general case k > 2. As a tool, we show that if R′ is a rectangle
with a number of parity change regions along one side, then we may “rearrange”
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Figure 28. An odd-by-odd rectangle with one parity region sub-
tracted or added.

the locations of the parity change regions along that side. More precisely, consider
a region R′ as shown in Figure 29a. Along the bottom edge of R′ we have parity
change regions in arbitrary locations, but along the top edge we have placed the
regions far to the left (but still consistent with the requirements on R′). In Fig-
ure 29b we have just moved one of the parity change regions to the left. We show
that in these cases we can prove Theorem 7.2.

(a) Rearranging the parity change
regions.

(b) Moving just one parity change
region.

Figure 29

Note the total charge of the regions R′ shown in Figure 29 is the same as the
underlying rectangle R. We assume the total charge of R is 0, that is, R has even
size (this will be the case in our applications; if R has odd size, then a similar
argument can be given where we add one more parity change region to the top
edge of R′).

First we consider the case of moving a single parity change region as shown in
Figure 29b. A lining for such an R′ is easily obtained from the argument for ≤ 2
parity change regions as illustrated in Figure 30. We start with the terminals x, y
and move left to right through the subregions using Corollary 7.3 to end in a pair of
adjacent terminals of the boundary of the next subregion. For the last subregion,
we use Theorem 7.2 for the ≤ 2 parity change region case to get a complete line
section for it.

To accomplish the more general parity change rearrangement as in Figure 29a, we
vertically stack the appropriate number of rectangles (equal to the numer of parity
change regions) and appply the algorithm of Figure 29b in succession. The first
two steps of this procedure for the region R′ of Figure 29a are shown in Figure 31.
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Figure 30. Moving just one parity change region.

Figure 31. The general parity rearrangement algorithm.

We summarize this discussion into the following lemma.

Lemma 7.5. There is a constant a0 such that the following holds. Suppose R is a
rectangle with total charge 0 and with minimum side length ≥ a0, and R′ is obtained
from R by adding or subtracting ≤ k parity change regions from opposite edges of
R, and that the parities of these corresponding regions (from left to right) are the
same for each of these two edges. If all of the parity change regions are at least ka0
from a corner of R, then there is a lining of R′.

Proof. We use ≤ k applications of the algorithm described above as shown in Fig-
ure 31. If the width of the rectangle R is at least ka0, then the procedure will give
a lining of R′. □

We next prove a parity cancellation lemma.

Lemma 7.6. There is a constant a0 such that the following holds. Suppose R
is a rectangle with total charge 0 and with minimum side length ≥ a0, and R′ is
obtained from R by adding or subtracting ≤ k parity change regions from one side
of R, and subtracting or adding parity change regions on the opposite edge of the
same parities (left to right) except that we delete a pair of adjacent parity change
regions of opposite parities. Then there is a lining of R′.

Proof. Let R and R′ be as in the statement, see Figure 32 for an illustration. As
in the proof of Lemma 7.5, we divide R′ into subregions and proceed from left to
right using the result for regions with ≤ 2 parity change regions.

□

As with Lemma 7.5, we also have the version of Lemma 7.6 where we exit the
final subregion at adjacent points on the boundary of R′. In this way, as with
Lemma 7.5, we may vertically stack such regions to perform a succession of these
parity cancellation operations.

We now give the proof of Theorem 7.2. We assume first that R has total charge
0 (which will be the case in our applications), and let R′ be obtained from R by
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+ −

(a) A region R′ as in Lemma 7.6.

+ −

(b) The proof of Lemma 7.6.

Figure 32

adding or subtracting at most k parity change regions along the boundary of R
as in Figure 26a. We are assuming that R′ has total charge 0. We proceed by
induction of the number of parity change regions that are used in forming R′ from
R, which we call k. The base cases when k ≤ 2 have been verified. We consider the
inductive case.

First assume that for some edge of R there are two adjacent parity change regions
of opposite parity. Partition R′ into two subregions as shown in Figure 33, and add
parity change regions so that the bottom subregion has total charge 0, and the
top edge of the bottom subregion has fewer parity change regions than the bottom
edge.

+ −

Figure 33. The case of adjacent regions of opposite parity.

By Lemma 7.6 for the bottom region, and by induction for the top region, each
of these two subregions has a lining. As in Corollary 7.3, these can be combined
into a lining for the region R′, and we may start and exit at any pair of adjacent
points on the boundary of R′ (possibly adjusting the location of the subdividing
line). Note that the top region still satisfies the hypotheses of Theorem 7.2 as the
side lengths have decreased by at most a0 and number of parity change regions for
the top has strictly decreased.

Now suppose that all of the parity change regions along a given edge of R have
the same parity. There must be two adjacent edges of R where these parity change
regions along these two edges have opposite parities. Suppose, for example, the
regions along the bottom and left edges have opposite parities, as illustrated in
Figure 34. Using Lemma 7.5 we may rearrange the bottom-most parity change
region on the left edge to be within a0 of the bottom edge. We subdivide R′ into
subregions as shown in Figure 34. The bottom-left subregion is handled by the
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≤ 2 parity region case, the bottom-right subregion by Lemma 7.5, and the top
subregion by induction. Note that the number of parity change regions for the top
subregion is strictly less than k. The hypotheses on the region of Theorem 7.2 are
easily satisfied for the top subregion since the the height of the bottom subregions
is a0.

+ ++ +

−

−

+ + +

Figure 34. The proof of Theorem 7.2.

This completes the proof of Theorem 7.2.
We now turn to the proof of Theorem 7.1. The proof is similar to that for

matchings, Theorem 6.1, using Theorem 7.2 instead of the lemmas on matchings.
As the argument is similar, we will just sketch the argument and highlight the
differences.

We begin with the sequence of distances d1 < d2 < · · · of intermediate growth as

before, that is, C1 < dk+1

dk
< C2 for some fixed constants C1, C2. We fix a sufficiently

large even integer w which, as before, will be the width of the buffer regions in our
construction. In particular, we take w > 4a0(p0 + q0)(C

′′K)2 where C ′′, as before,
is an upper bound on the number of k-atoms that can be contained in a (k + 1)-
atom, and K is as in Lemma 6.14. As in the proof of Theorem 6.1, C ′′K represents
the possible accumulation of charge as we extend the linings from the k-atoms in a
given (k + 1)-atom to the buffered (k + 1)-atom. Loosely speaking, now this extra
charge will be carried by a set of p0 × q0 parity change regions at certain locations.
We again choose d1 so that ϵd1 ≫ w, where ϵ = αϵ2 is the orthogonality constant
as explained in Remark 5.1. We define the buffered k-atoms as in Theorem 6.1,
that is, for every k-atom A we let A(w) = {x ∈ A : ρ(x, ∂A) ≥ w} be the w-buffered
atom.

In our construction below, a partial lining is a Borel subgraph L of the Schreier

graph of F (2Z
2

) such that each connected component of S is a finite simple path
of length at least 1. Let V (L) denote the vertex set of L. Then for each x ∈ V (L),
the degree of x is either 1 or 2. Let T (L) be the set of end points of L, that is, all
x ∈ V (L) where the degree of x is 1.

Our slightly modified induction hypothesis is as follows.
Induction Hypothesis Hk−1: We have defined a partial lining Lk−1 with each

connected component of Lk−1 being a subset of a (k − 1)-atom. For each (k − 1)-
atom A ∈ Ak−1, denote Ek−1(A) = A(w)\V (Lk−1). Then the following conditions
hold for all A ∈ Ak−1:
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(i) Lk−1 restricted to A is a single connected component of Lk−1 with the
two endpoints (forming the set T (Lk−1) ∩A) being adjacent points on the
boundary of A(w);

(ii) Ek−1(A) is a disjoint union of at most K many parity change regions along
the boundary of A(w);

(iii) Each of the parity change regions in Ek−1(A) is at least C ′′Ka0 from a
corner of A(w) and at least C ′′Ka0 from T (Lk−1) ∩ A, and the distance
between them is at least C ′′Ka0, where a0 is as in Theorem 7.2;

(iv) Each of the parity change regions in Ek−1(A) is within distance w ofXk−1 =
∂Rk−1.

Lemma 7.7. H1 holds.

Proof. Similar to Lemma 6.15, we consider a buffered 1-atom B and define a partial
lining L of B to satisfy the above conditions (i)–(iv). Our strategy of proof is still
to divide B into rectangular subregions (as illustrated in the example in Figure 22),
define partial linings on each of them, and then connect these linings together. By
Lemma 6.13 the total charge of B is bounded by K, thus we need to subtract no
more than K many parity change regions to make the resulting region B′ of total
charge 0. Let E be an edge of a subregion at the end (say R5 in Figure 22) so
that E is within distance w to X1. Pick an appropriate number of parity change
regions and pick adjacent points x, y along E so that the parity change regions
are at least C ′′Ka0 from the end of E and are at least C ′′Ka0 from x, y, and the
distance between any two of them are at least C ′′Ka0. Now we are ready to apply
Theorem 7.2 and Corollary 7.3 to obtain a lining of B′ with x, y as endpoints. More
specifically, we start with the rectangular subregion that contains x, y and extend
the partial linings through the rest of the subregions. In the example in Figure 22
we follow the order R5, R4, R0, R1, R2, R3. As we extend the partial lining from one
subregion to the next, we substract a number of parity change regions as appropriate
to make the current subregion of total charge 0. These parity change regions will
be added or subtracted along the common edge between the current subregion and
the next one. Then we use Corollary 7.3 to extend the partial lining to the next
one. Repeating this until we reach the rectangular region on the other end (in our
case R3 in Figure 22), in which case the region must have total charge 0 already,
we apply Theorem 7.2 to complete the lining. The strategy works because the
lengths of the common edges between any two neighboring subregions is at least
ϵd1 ≫ w > 2(K + 1) · (2C ′′Ka0). □

Consider the inductive step where we assume Hk−1 and show Hk. As in the
proof of Theorem 6.1 we let S denote the set of (k − 1)-atoms in a given k-atom
A which we are considering. We again define the adjacency graph G on S and a
rooted spanning tree T for the graph G. For each S ∈ S we also fix an exit segment
ES , which has distance 1 to the atom S′ ∈ S which is the parent node of S in
T . Also, for each S ∈ S let TS be the subtree of T with the root S, that is, TS

consists of S together with all nodes of T below S (not just immediately below).
We denote t(S) = |TS |. As before, we proceed by induction on the rank r(S) of the
atom S ∈ S in T . We maintain the following subinduction hypothesis.

Subinduction Hypothesis Hk−1(r − 1): For each S ∈ S with r(S) ≤ r − 1,
the partial lining Lk−1 has been extended to Lk−1(r−1) with V (Lk−1(r−1))∩S =
(A(w) ∩ S)− E′

k−1(S), where the following conditions hold:
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(i’) Lk−1(r − 1) restricted to

QS =
⋃

S′∈TS

S′ ∩A(w)

is a single connected component of Lk−1(r − 1) with the two endpoints
xS , yS being adjacent points on ES ;

(ii’) E′
k−1(S) is a disjoint union of at most K · t(S) many parity change regions

along ES ;
(iii’) Each of the parity change regions in E′

k−1(S) is at least C ′′Ka0 from the
end of ES , at least C

′′Ka0 from xS , yS , and the distance between them is
at least C ′′Ka0.

Lemma 7.8. Hk−1(0) holds.

Proof. Similar to the proof of Lemma 6.16, we consider two cases. The first case is
when all of the boundary of S are on the k − 1 level. By the induction hypothesis
Hk−1, Ek−1(S) is a disjoint union of at most K many parity change regions along
the boundary of S(w). We need to extend the partial lining Lk−1 to Lk−1(0) with
V (Lk−1(0)) ∩ S = S − E′

k−1(S) where (i’)–(iii’) hold.

S(w)

ES

Figure 35. The construction of Lk−1(0) for a terminal node of T .
The black dots represent parity change regions in Ek−1(S), the red
dots represent parity change regions E′

k−1(S), and the blue dots
represent endpoints of partial linings.

The strategy of our construction is to divide ∂w(S) into rectangular regions and
apply Theorem 7.2 and Corollary 7.3 to “transport” the necessary parity change
regions to be along ES . In order to keep each region of total charge 0, we add or
substract parity change regions as appropriate along the common edge between the
current region and the next one. This strategy works because w is even and so
the total charge of ∂w(S) is 0. Thus at the end there are no more than K many
parity change regions needed to be placed along ES to form E′

k−1(S). Also, because

w > 4a0(p0 + q0)(C
′′K)2, up to K many parity change regions can be placed on

the common edge (of length w) between any two rectangular regions in the middle
of our construction, which is sufficient to accommodate the acumulation of charges
along any path segment of ∂Xk−1.

The second case is when some part of the boundary of S are on higher levels.
In this case we work with the region ∂w(S) − ∂w(A), which is not a loop but still
connected. By the induction hypothesis Hk−1 the parity change regions in Ek−1(S)
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are connected with ∂w(S)− ∂w(A). Hence our strategy of construction above still
works. □

Next we assume the subinduction hypothesis Hk−1(r − 1) and show Hk−1(r).
Suppose r(S) = r. Let S′ denote the parent atom of S in the tree T , and P1, . . . , Pm

denote the children of S in T . Let L1, . . . , Lm be the partial linings of QP1
, . . . , QPm

given by Hk−1(r− 1). Let Lm+1 be the partial lining Lk−1 restricted to S(w). We
need to extend L1, . . . , Lm, Lm+1 to a partial lining of QS .

We give the construction first for the case that all of the boundary of S is on the
k− 1 level. Figure 36 illustrates this step. In this figure, the shaded area in gray is
the region to which we must extend the partial linings L0∪L1∪· · ·∪Lm, where in the
figure we use m = 2. The central region in white is the buffered atom S(w) except
for some parity change regions along the top edge of S(w) shown in gray. The small
gray squares along the left and bottom represent the parity change regions from
the child atoms P1 and P2. The three pairs of red dots represent the endpoints of
the partial linings of P1, P2, and S. The pair of green dots represents the terminal
points of the partial lining we will construct at this stage of the subinduction.

S(w)

P1

P2

ES

Figure 36. The inductive proof of Hk−1(r) from Hk−1(r − 1).

Let

B(w) = ∂w(S) ∪ Ek−1(S) ∪
m⋃
i=1

E′
k−1(Pi).

B(w) is illustrated by the grey area in Figure 36, which is the w-buffer of the
(k − 1)-atom S together with the parity change regions from S(w), P1 and P2.

By the subinduction hypothesis Hk−1(r − 1), there are at most K · t(Pi) many
parity change regions in E′

k−1(Pi). Also, by the induction hypothesis Hk−1, there
are at most K many parity change regions in Ek−1(S).

We partition ∂w(S) into rectangular subregions by imposing vertical or horizontal
boundary lines in between neighboring subregions. This is illustrated in Figure 37.
The partition is done in a way so that each subregion in the partition does not
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split the endpoints of Li for i = 1, . . . ,m,m+ 1, no subregion contains more than
one pair of endpoints of Li, and the dividing lines do not come within distance
C ′′Ka0 of any of the parity change regions in Ek−1(S) or E

′
k−1(Pi). Without loss

of generality we may assume that the endpoints of Li for i = 1, . . . ,m,m+1 appear
on the boundary of ∂w(S) in the counter clockwise order as L1, . . . , Lm, Lm+1. For
each i = 1, . . . ,m,m + 1, let Wi denote the rectangular subregion containing the
endpoints of Li together with any parity change regions connecting to it. By refining
the partition if necessary, we assume in addition that in between Wi and Wi+1 for
1 ≤ i ≤ m, there is a rectangular subregion W ′

i in the partition not connecting to
any parity change regions (in other words W ′

i is a rectangle).

S(w)

P1

P2

ES

W1

W ′
1

W2

W ′
2

Figure 37. A partition of B(w) into rectangular subregions with
parity change regions.

Because w is even, the total charge of ∂w(S) is 0. Thus the total charge of B(w)
is bounded by

K +

m∑
i=1

K · t(Pi) = K · t(S).

We place an appropriate number of parity change regions along ES so that the
adjusted region B′(w) has total charge 0. In Figure 37 these parity change regions
are illustrated as small blue regions.

We are now ready to construct a partial lining L′ of B′(w) that connects the
existing linings L1, . . . , Lm, Lm+1. After this lining L′ is constructed, we find two
adjacent points on ES that are also adjacent in L′ and have distance at least
C ′′Ka0 from the ends of ES and at least C ′′Ka0 from the parity change regions,
and designate them xS , yS as required.

The basic strategy of our construction is still to start from W1 and, going counter
clockwise, successively extend the partial lining from one subregion in the partition
of B′(w) to the next, while “transporting” the total charges to the next region by
adding or subtracting an appropriate number of parity change regions along the
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common edge between the current subregion and the next one. Our parameters
are sufficiently large to carry out this strategy. For instance, by Lemma 6.13 the
accumulation of charges along the way is bounded by C ′′K+K, and thus there are
no more than (C ′′ + 1)K many parity change regions needed during the construc-
tion of the extension of the partial lining from one subregion to another. Because
w > 4a0(p0 + q0)(C

′′K)2, the necessary number of parity change regions can be
appropriately placed on the edge between the current subregion and the next one.
However, this strategy will become problematic when the next subregion is W2,
since Corollary 7.3 does not guarantee the existence of a lining of W2 with the
endpoints of L2 connected by an edge. For this we will adopt an modification as
follows.

To simplify notation we assume thatW1,W
′
1 andW2 are adjacent in the partition

of B′(w). This is illustrated in Figure 38. We first divide W ′
1 further into two

rectangular regions both connected to W1 and W2. The side lengths of U1 only
need to be at least 4. This will make the side lengths of U0 sufficiently large for our
construction below. We first place an appropriate number of parity change regions
on the edge between W1 and U0 so that the modified region W1 has total charge 0.
Pick an end point z on the boundary between W1 and U0 and apply Corollary 7.3
to obtain two line sections in W1 with exit points z and z′, where z′ is adjacent to
z and is also on the boundary between W1 and U0. Then we place an appropriate
number of parity change regions on the boundary between U0 and W2 so that the
total charge of the modified U0 is 0. Apply Theorem 7.2 to obtain a lining of U0

with z, z′ as endpoints.
In W2 place an appropriate number of parity change regions on the edge between

W2 and the next subregion in the partition so that the total charge of the modified
W2 region is 0. Apply Theorem 7.2 to obtain a lining of W2 with the endpoints of
L2 as endpoints.

L1 L2

W1 W2W ′
1

U0

U1

z

Figure 38. Connecting L1 with L2.

Now find two adjacent points x0, x1 on the boundary between W1 and U1 which
are also adjacent in the lining. Let y0, y1 be the corresponding points on the bound-
ary of U1. Similarly find two adjacent points x′

0, x
′
1 on the boundary between W2

and U1. Let y′0, y
′
1 be the corresponding points on the boundary of U1. Apply

Lemma 7.4 to obtain two line sections in U1 with x′
0, x

′
1 and y′0, y

′
1 as endpoints.

Remove the edge in between x0 and x1, and connect x0 with x′
0 and x1 with x′

1.
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Similarly, remove the edge in between y0 and y1, and connect y0 with y′0 and y1
with y′1. The resulting lining is as required.

Finally, find two adjacent points (not shown in Figure 38) on the boundary
between W2 and the next subregion, remove the edge in between them, and desig-
nate them as the terminal points of the lining. We are now ready to continue the
algorithm and extend the lining to the next subregion.

Repeating the same algorithm, we obtain a lining of the entire region from W1

to Wm+1. If there are more subregions between Wm+1 and W1, we continue the
algorithm to cover them as well, except that there will not be any more parity
change regions necessary beyond Wm+1. Hence we are able to extend the lining to
B′(w) as required. This finishes the construction of the lining as a subinduction
step. It is easy to see that the subinduction hypothesis is maintained.

Next we consider the case where some part of the boundary of S is not on the
k−1 level. In this case we need to extend the linings L1, . . . , Lm, Lm+1 to the cover
the region ∂w(S)− ∂w(A), which is not topologically a loop but still connected. In
this case we need to modify our algorithm as follows. After we divide the region
∂w(S) − ∂w(A) into rectangular subregions, the one containing the endpoints of
Lm+1, Wm+1, might be in the middle rather than at one end. In this case we apply
our algorithm from the two far ends of the partition and work our way toward the
middle, ending inWm+1 as the last region to be dealt with. Noting that we still have
∂w(S)−∂w(A) has total charge 0 as w is even, the number of parity change regions
that are needed to be placed on ES is predetermined, and so when our construction
reaches Wm+1, it automatically will have total charge 0. So the above algorithm
conneting L1 with L2 can be performed on three regions simultaneously with Wm+1

in the middle. The resulting lining satisfies the subinduction hypothesis.
Now we have completed the subinduction and have obtained a lining for the

entire buffered k-atom A except for a final set E of parity change regions coming
from the (k − 1)-atom corresponding to the root of the tree T . Superficially, it
seems that we have as many as C ′′K many parity changes required for the set E.
However, by Lemma 6.13 again, the total charge of A is still at most K. Since
we have now defined a partital lining of A except for the points in E, we in fact
have that the number of parity change regions in E is bounded by K. This is
the key point, that the number of parity change regions required as we exit to the
higher level atom (the k-atom A in our notation) is bounded by a fixed constant
independent of the level k of the construction (which is necessary as the width w
of the buffers is a fixed number).

This established the inductive hypothesis Hk for all k. Since

F (2Z
2

) =
⋃
k

⋃
{A(w) : A is a k-atom},

we have constructed a Borel lining for F (2Z
2

). This completes the proof of Theo-
rem 7.1.
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