Chapter 7

Notation: For a group \(G \), \(S \leq G \), and \(a \in G \) define
\[
\begin{align*}
 aS &= \{ as : s \in S \} & \text{left coset of } S \\
 Sa &= \{ sa : s \in S \} & \text{right coset of } S \\
 aS^{-1} &= \{ asa^{-1} : s \in S \} & \text{in additive notation}
\end{align*}
\]
\(|S| = \) number of elements in \(S \)

Definition: Let \(G \) be a group, \(H \leq G \) a subgroup, and \(a \in G \)
- \(aH \) is the left coset of \(H \) containing \(a \)
- \(a \) is called a coset representative of \(aH \)
- \(Ha \) is the right coset of \(H \) containing \(a \)
- \(a \) is called a coset representative of \(Ha \)

Lemma 7.4: Let \(G \) be a group, \(H \leq G \) a subgroup, and \(a, b \in G \).
Then \(aH = bH \) or \(aH \cap bH = \emptyset \).
Moreover, \(aH = bH \iff a \in bH \iff b^{-1}a \in H \)
(Similarly, either \(Ha = Hb \) or \(Ha \cap Hb = \emptyset \).
Moreover, \(Ha = Hb \iff a \in Hb \iff a^{-1}b \in H \)

Proof: We prove "Moreover..." first by showing \(1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 0 \).
- \(1 \Rightarrow 2 \): Assume \(aH = bH \). Since \(e \in H \),
 \[a = ae \in aH = bH. \]
- \(2 \Rightarrow 3 \): Assume \(a \in bH \). Then there is \(h \in H \) with
 \[a = bh. \] Then \(b^{-1}a = b^{-1}bh = eh = h \in H. \]
- \(3 \Rightarrow 0 \): Assume \(b^{-1}a \in H \). Set \(h_0 = b^{-1}a \in H \).
 Note \(b^{-1}a = \) since \(h \in H \)
 \(ah \in bH \) For any \(h \) we have \(ah = (bh^{-1})ah = b(h^{-1}a)h = bh_0h \in bH. \)
 \(bh \in aH \) For any \(h \) we have \(bh = (a^{-1}b)h = a(a^{-1}bh) = ah_0h \in aH. \)
Lastly, we prove $ah = bh$ or $ah \cap bh = \emptyset$.

Case 1: $ah \cap bh = \emptyset$. Done.

Case 2: $ah \cap bh \neq \emptyset$. Pick any $c \in ah \cap bh$.

By the "Moreover..." part, we have $cH = ah$ and $cH = bh$. Therefore $ah = bh$. □

Lemma 7.8: The collection of left cosets $\{ah : a \in G\}$
partition G. Also $|ah| = |H|$ for all $a \in G$
(Similarly, the right cosets $\{Ha : a \in G\}$ partition G)
and $|Ha| = |H|$ for all $a \in G$.

Proof: Since $e \in H$, we have $a = ae = aH$. So the union of the
sets $ah (a \in G)$ is equal to G. By Lem 7.6a, the sets
$ah (a \in G)$ are disjoint when they are not equal. This
proves that $\{ah : a \in G\}$ is a partition of G.
Lastly, $|H| = |ah|$ because the map $h \in H \mapsto ah \in H$
is one-to-one and onto. □

Warning: Generally $ah \neq Ha$. However...

Lemma 7.9: $aH = Ha \iff aHa^{-1} = H$

Proof: Multiplication on the right by a^{-1} is a
one-to-one operation that sends
ah to aHa^{-1} and Ha to H. □
Ex: Set \(H = \{ e, (23) \} \leq S_3 \). (\(H \) is a subgroup of \(S_3 \)).

The left cosets of \(H \) are

\[
(12)H = \{ (12), (123) \} = (123)
\]
\[
(13)H = \{ (13), (132) \} = (132)
\]
\[
(2)H = \{ (2), (23) \} = (23)
\]

The right cosets of \(H \) are

\[
H(12) = \{ (12), (132) \} = H(132) = \{ (13), (13) \} = (132)
\]
\[
H(13) = \{ (13), (123) \} = H(123) = \{ (2), (23) \} = (23)
\]

Lagrange's Theorem:

If \(G \) is a finite group and \(H \) is a subgroup then \(|H| \) divides \(|G| \). Moreover, the number of left (or right) cosets of \(H \) in \(G \) is denoted \(|G:H| \) and is equal to \(\frac{|G|}{|H|} \).

Proof: Let \(a_1H, a_2H, \ldots, a_rH \) be the distinct left cosets of \(H \) in \(G \), where \(r = |G:H| \) (by definition of \(|G:H| \)). Since these cosets are disjoint and have union \(G \), we have

\[
|G| = |a_1H| + |a_2H| + \cdots + |a_rH| = r|H|
\]

Therefore, \(r = \frac{|G|}{|H|} \) and \(|H| |G| \).

Warning: \(|G| \) does not imply \(G \) has a subgroup of order \(k \).
Let G be a finite group.

Cor A For every $a \in G$, the order of a divides $|G|$.

Proof: By Lagrange Thm. $|a| | |G|$.
Now recall $(\text{order of } a) = |<a>|$.

Cor B Let G be a finite group. Then
\[a^{\frac{|G|}{n}} = e \text{ for all } a \in G \]

Proof: Set $n = (\text{order of } a)$. By Cor A, $n | |G|$.
Say $k = \frac{|G|}{n}$. Then
\[a^{\frac{|G|}{n}} = a^k = (a^n)^k = e^k = e. \]

Cor C: If G is any group and $|G| = p$ is prime, then G is cyclic and $G \cong \mathbb{Z}/p\mathbb{Z}$.

Proof: Pick any $a \in G \setminus \{e\}$. Then the order of
a is greater than 1 and divides p, so it must be equal to p. So $|<a>| = p = |G|$ and we must have $G = <a>$. Finally,
every cyclic group of order p must be isomorphic to $\mathbb{Z}/p\mathbb{Z}$.

Cor (Fermat's Little Theorem):
For every integer a and prime p, $a^p \text{ mod } p = a \text{ mod } p$.

Proof: Set $r = a \text{ mod } p$. Then $a^p \text{ mod } p = r^p \text{ mod } p$ (lem. 0.8).
If $r = 0$ the result is trivial. So assume $r \neq 0$.
Then $r \in \mathbb{U}(p)$ since p is prime. So by Cor. B
\[r^{\omega(p)} \mod p = 1. \] Since \[|\omega(p)| = p-1, \] this gives
\[r^{\omega(p)} \mod p = r \cdot r^{p-1} \mod p = r \cdot r^{\omega(p)} \mod p = r \cdot 1 \mod p = r \]

Therefore, \[a^p \mod p = r^p \mod p = r = a \mod p \] \[\square \]