Chapter 3

Defn: • The order of a group G, denoted $|G|$, is the number of elements in the group (the cardinality of the set G).
• The order of an element g of a group G is the least positive integer n satisfying $g^n = e$. If no such n exists, g has infinite order.

Ex: • $|D_4| = 8$
• $|\mathbb{Z}_{12}| = 12$
• $|U(10)| = 4, U(10) = \{1, 3, 7, 9\}$
• $R_{90} \in D_4$ has order 4
• $R_{180}, H \in D_4$ each have order 2
• $1 \in \mathbb{Z}$ has infinite order
• $1 \in \mathbb{Z}_{28}$ has order 28
• $14 \in \mathbb{Z}_{28}$ has order 2
• $4 \in \mathbb{Z}_6$ has order 3
• $2 \in U(7)$ has order 3 ($2^1 = 2, 2^2 = 4, 2^3 = 1 \text{ in } U(7)$)
• $3 \in U(7)$ has order 6 ($3^1 = 3, 3^2 = 2, 3^3 = 6, 3^4 = 4, 3^5 = 5, 3^6 = 1 \text{ in } U(7)$)

Note: Usually we use multiplicative notation. But for abelian groups we sometimes use additive notation (such as for \mathbb{Z} and \mathbb{Z}_n).

<table>
<thead>
<tr>
<th>Multiplication</th>
<th>ab</th>
<th>a^n</th>
<th>a^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>$a+b$</td>
<td>na</td>
<td>$-a$</td>
</tr>
</tbody>
</table>
Warning: \(g^n = e \) does not imply \(g \) has order \(n \).
The order of \(g \) is the least positive \(n \) with this property.

Defn: Let \(G \) be a group and let \(H \leq G \). If \(H \) is itself a group with respect to the binary operation on \(G \), then \(H \) is called a subgroup of \(G \) and we write \(H \leq G \).
- \(H \) is a proper subgroup if \(H \neq G \). We write \(H < G \) when \(H \) is a proper subgroup of \(G \).
- \(\{e\} \) is the trivial subgroup.

Thm 3.1 (One-Step Subgroup Test):
Let \(G \) be a group and \(H \leq G \). If \(ab^{-1} \in H \)
whenever \(a, b \in H \) and \(H \neq \emptyset \) then \(H \) is a subgroup of \(G \).

Pf: (Associative) Holds in \(H \) since it holds in \(G \).
(Identity) Since \(H \neq \emptyset \) we can pick some \(a \in H \).
Set \(b = a \). Then \(a, b \in H \) so \(ab^{-1} \in H \). But \(ab^{-1} = aa^{-1} = e \), so \(e \in H \).
(Inverses) If \(b \in H \) then \(b^{-1} = e, b \in H \) since \(e, b \in H \).
Finally, we must check \(H \) is closed under the binary operation. If \(x, y \in H \) then \(a = x \) and \(b = y^{-1} \) belong to \(H \), so \(xy = ab^{-1} \) belongs to \(H \)
Ex: \(\{1, -1, i, -i^2\} \) is a subgroup of the multiplicative group \(\mathbb{C} \setminus \{0\} \)
- \(\{0, 2, 4, 6\} \) is a subgroup of \(\mathbb{Z}_6 \)
- \(\{0, 3, 6\} \) is a subgroup of \(\mathbb{Z}_6 \)
- \(\mathbb{Z}_n \cong \mathbb{Z} \) but \(\mathbb{Z}_n \) is not a subgroup of \(\mathbb{Z} \)
 (\(\mathbb{Z}_n \) uses a different binary operation)
- \(\{R_0, R_90, R_180, R_270, 3\} \) is a subgroup of \(D_4 \)

Ex: \(H = \{n \in \mathbb{Z} : 3 \mid n^3 \} \) is a subgroup of \(\mathbb{Z} \)

3 \mid 0 \) so \(0 \in H \) and \(H \neq \emptyset \).

Now suppose \(a, b \in H \), meaning \(3 \mid a \) and \(3 \mid b \).
Say \(a = 3p, \ b = 3q \). Then \(a - b = 3(p - q) = 3(p - q) \)
so \(3 \mid (b - a) \) and \(b - a \in H \). Thus \(H \) is a
subgroup by the One-Step Subgroup Test.

Ex: let \(G \) be an abelian group. Then \(H = \{x \in G : x^2 = e\} \)
is a subgroup

\(e^2 = e \) so \(e \in H \) and \(H \neq \emptyset \). Now suppose
\(a, b \in H \), meaning \(a^2 = e = b^2 \). Since \(G \) is
abelian, we have
\[(ab^{-1})^2 = a(b^{-1}a)b^{-1} = ab^{-1}b^{-1}b = a^2(b^2)^{-1} = ee^{-1} = e\]
thus \(ab^{-1} \in H \). So \(H \) is a subgroup by the
One-Step Subgroup Test.
Thm 3.2 (Two-Step Subgroup Test): Let G be a group and let $H \subseteq G$. If:

1. $H \neq \emptyset$
2. $ab \in H$ whenever $a, b \in H$, and
3. $a^{-1} \in H$ whenever $a \in H$

then H is a subgroup of G.

Proof: Suppose $x, y \in H$. By 3, $y^{-1} \in H$. So $x, y^{-1} \in H$ and therefore 2 implies $xy^{-1} \in H$. Thus $xy^{-1} \in H$ whenever $x, y \in H$ and $H \neq \emptyset$ by 1. So H is a subgroup by the One-Step Subgroup Test.

Example: Let G be an abelian group and let $H = \{x \in G : x \text{ has finite order}\}$. Then H is a subgroup of G.

e has order 1 ($e^{1} = e$) so $e \in H$ and $H \neq \emptyset$.

Suppose $a, b \in H$. Say a has order n, b has order m.

Then $(ab)^{nm} = a^{nm}b^{nm} = (a^{m})^{n}(b^{m})^{n} = e^{m}e^{n} = e$

So G is abelian.

So $a, b \in H$ (the order of ab is at most nm, so is finite).

Lastly, if $a \in H$ and n is the order of a then $(a^{n})^{-1} = (a \cdot a \cdot ... \cdot a)^{-1} = (aa \cdot a \cdot ... \cdot a)^{-1} = (a^{-1})^{n} = e^{-1} = e$

So a^{-1} has order at most n and $a \in H$. Thus H is a subgroup by the Two-Step Subgroup Test.
Ex: Let G be an abelian group and $H, K \leq G$ (subgroups).

Then $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G.

Since e belongs to H and K, $ee = e$ belongs to HK.

Thus $HK \neq \emptyset$.

Next suppose $a, b \in HK$, meaning there are $h_1, h_2 \in H$ and $k_1, k_2 \in K$ with $a = h_1 k_1$ and $b = h_2 k_2$.

Since G is abelian

$$ab = h_1 k_1 h_2 k_2 = h_1 h_2 k_1 k_2$$

Also $h_1 h_2 \in H$ since $h_1, h_2 \in H$ and H is a subgroup. Similarly $k_1 k_2 \in K$. Therefore $ab = (h_1 h_2)(k_1 k_2)$ belongs to HK.

Lastly, consider any $a \in H$. Say $a = h k$ with $h \in H$, $k \in K$. Then $a^{-1} = k^{-1} h^{-1}$ and since G is abelian

$$a^{-1} = k^{-1} h^{-1} = h^{-1} k^{-1}$$

Also $h^{-1} \in H$, $k^{-1} \in K$ since H, K are subgroups.

So $a^{-1} = h^{-1} k^{-1} \in HK$. By the Two-Step Subgroup Test HK is a subgroup.

How to check $H \leq G$ is not a subgroup:

- Show $e \notin H$,
- Find $a \in H$ with $a^{-1} \notin H$, or
- Find $a, b \in H$ with $ab \notin H$.

Ex: 9 \in \mathbb{R}: r < 0^3 \text{ is not a subgroup of } \mathbb{R} \setminus \{0\}

since it does not contain 1 (and it is not closed under multiplication).

\bullet \ \emptyset \subseteq \mathbb{Z}: n \geq 0^3 \text{ is not a subgroup of } \mathbb{Z} \text{ since it is not closed under taking inverses.}

Thm 3.3 (Finite Subgroup Test):

Let G be a finite group and let $H \leq G$ be nonempty. If H is closed under the operation of G then H is a subgroup.

Pf: To apply Two-step Subgroup Test, we only need to check that $a^{-1} \in H$ when $a \in H$.

Consider any $a \in H$. If $a = e$ then $a^{-1} = e = a \in H$
and we are done. So assume $a \neq e$. By closure of H,

$$a, a^2, a^3, a^4, \ldots \in H.$$

Since G is finite there must be $0 \leq i < j$ with $a^i = a^j$.

Then, multiplying both sides by a^{-i} we get $e = a^{j-i}$. In particular, $a \cdot a^{j-i-1} = a^{j-i} = e$
so $a^{j-i-1} = a^{-1}$. Since $j-i \geq 2$, $a^{-1} \in H$, and $a^{j-i} = e$, we must have $j-i \geq 2$. Therefore $j-i-1 \geq 1$ and $a^{j-i-1} \in H$. So $a^{-1} = a^{j-i-1} e H$, which is what we wanted to show.

Defn: For a group G and $a \in G$, set

$$\langle a \rangle = \{a^n : n \in \mathbb{Z}\}$$

Note this includes negative exponents of a as well as $a^0 = e$.

Thm 3.4: For any group G and $a \in G$,
\[\langle a \rangle \text{ is a subgroup of } G \]

Pf: $a \in \langle a \rangle$ so $\langle a \rangle \neq \emptyset$. If $a^i a^m \in \langle a \rangle$ then
\[(a^i)(a^m)^{-1} = a^i a^{-m} = a^{i-m} \in \langle a \rangle. \] By the One-Step Subgroup Test $\langle a \rangle$ is a subgroup. \square

Defn:
- $\langle a \rangle$ is the cyclic subgroup of G generated by a.
- If $G = \langle a \rangle$ we call a a generator of G.
- G is cyclic if $G = \langle a \rangle$ for some $a \in G$.

Note: Cyclic groups are abelian since
\[a^i a^j = a^{i+j} = a^{j+i} = a^j a^i. \]

Ex: In \mathbb{Z}_{12}, $\langle 3 \rangle = \{0, 3, 6, 9\}$

- In \mathbb{Z}, $\langle -1 \rangle = \langle 1 \rangle = \mathbb{Z}$
 so \mathbb{Z} is cyclic. 1 and -1 are generators.
 - For each n, \mathbb{Z}/n is cyclic with generator 1

- In $U(7)$, $\langle 4 \rangle = \{1, 2, 4, 3\}$ since
 $4^0 = 1, 4^1 = 4, 4^2 = 16 \mod 7 = 2, 4^3 = 64 = 1, 4^4 = 4, 4^5 = 2, 4^6 = 1, \ldots$
 $4^{-1} = 2 \text{ (since } 2 \cdot 4 = 1), 4^{-2} = 4 \text{ (since } 4^2 \cdot 4 = 1), 4^{-3} = 1, 4^{-4} = 2, \ldots$

 Multiplication by 4

\[\begin{array}{c|cccc}
 & 1 & 2 & 3 & 4 \\
\hline
 1 & 1 & 2 & 3 & 4 \\
 2 & 2 & 4 & 1 & 3 \\
 3 & 3 & 1 & 4 & 2 \\
 4 & 4 & 3 & 2 & 1 \\
\end{array} \]
In D_8, \(<R_{200}\> = \{R_i \cdot R_{200} : 0 \leq i < 8, i \in \mathbb{Z}\}

Note: \(\langle a \rangle\) is the smallest subgroup containing \(a\).
Since every subgroup containing a must contain
\(\varepsilon, a, a^{-1}, a^2, a^3, \ldots\)
\(\langle a \rangle\)

Defn: For a group \(G\) and \(S \subseteq G\) we write
\(\langle S \rangle\) for the smallest subgroup containing \(S\)
and call \(\langle S \rangle\) the subgroup generated by \(S\).
If \(G = \langle S \rangle\) we say \(G\) is generated by \(S\)
or that \(S\) is a generating set for \(G\).

Ex: \(\langle 3, \pi, \sqrt{2} \rangle = \{3a + b\pi + c\sqrt{2} : a, b, c \in \mathbb{Z}\}
\(\langle 1, i \rangle = \{1, -1, i, -i\} = \langle i \rangle\)
\(\langle 1, i \rangle \subseteq \mathbb{C}\setminus{0}\)
\(\langle 1, i \rangle = \{1, -1, i, -i\} = \langle i \rangle\)

In D_4, \(<H, V> = \{R_0, H, V, R_{180}\}\)
Since \(HV = VH = R_{180}\), \(HR_{180} = R_{180}H = V\)
\(VR_{180} = R_{180}V = H\), \(H^2 = V^2 = R_0\), \(R_{180}^2 = R_0\)

\(D_4 = \langle R_{90}, H \rangle\) Since
\(R_0 = R_9^0\)
\(R_{90} = R_{90}\)
\(R_{180} = R_{90}\)
\(R_270 = R_{90}\)

Defn: The center of a group \(G\) is
\(Z(G) = \{a \in G : ax = xa\ \text{for all} \ x \in G\}\)
Thm 3.5 \(Z(G) \) is a subgroup of \(G \).

Proof: We have \(e \in Z(G) \) since \(ex = xe = x \) for all \(x \in G \).

Thus \(Z(G) \neq \emptyset \). Next suppose \(a, b \in Z(G) \), meaning \(ax = xa \) and \(bx = xb \) for all \(x \in G \).

Then for all \(x \in G \) we have

\[
(ab)x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab)
\]

and hence \(ab \in Z(G) \). Finally, suppose \(a \in Z(G) \).

Then for all \(x \in G \) we have

\[
ax = xa
\]

Multiply both sides on left and right by \(a^{-1} \) maintaining left/right position.

\[
(a^{-1})(ax)a^{-1} = (a^{-1}xa)a^{-1} \quad \text{OR} \quad x^{-1}a^{-1} = x^{-1}a^{-1}
\]

\[
(a^{-1}a)x^{-1} = a^{-1}x(a^{-1})
\]

\[
e x a^{-1} = a^{-1} x e
\]

\[
x a^{-1} = a^{-1} x
\]

By reasoning in either of the two above ways, we see that \(a^{-1}x = xa^{-1} \) for all \(x \in G \) and thus \(a^{-1} \in Z(G) \). We conclude \(Z(G) \) is a subgroup of \(G \) by the Two-Step Subgroup Test. \(\square \)
Ex: For $n \geq 3$

\[Z(D_n) = \begin{cases} \mathbb{Z} & \text{if } n \text{ even} \\ \mathbb{Z}_2 \times \mathbb{Z}_2 & \text{if } n \text{ odd} \end{cases} \]

D_n consists of n rotations $\in \mathbb{R}^2$ and n reflections (reflections over any line joining the center of the regular n-gon with any corner or any midpoint of an edge).

Let F be any reflection and R be any rotation. We claim that if $FR = RF$ then $R = R_0$ (when n odd) or $R = R_0, R_{180}, R_{360}$ (when n even).

Note if $FR = R'$ for some rotation R' then $F = R'R^{-1}$ would be a rotation, contradicting the fact that F is a reflection. So FR must be a reflection.

Since FR is a reflection, $(FR)^2 = R_0$.

Meaning $FR = (FR)^{-1}$. So

\[FR = (FR)^{-1} = R^{-1}F^{-1} = R^{-1}F \]

But we are assuming $FR = RF$ so

\[RF = FR = \cdots = R^{-1}F \]

Applying right-cancellation to $RF = R^{-1}F$ we get $R = R^{-1}$, meaning $R^2 = RR = RR^{-1} = R_0$.

Thus either $R = R_0$ or n is even and $R = R_{180}$.
The above argument shows $Z(D_n)$ does not contain any reflections (for every reflection F we can find a rotation $R + R_0, R_{180}$ so that $FR = RF$). Also, while all rotations commute with one another, the only rotations that commute with reflections are R_0 when n is odd and R_0, R_{180} when n is even. Thus $Z(D_n)$ is as described.

Defn: Let G be a group and $a \in G$. The centralizer of a is

$$C(a) = \{ g \in G : ga = ag \}$$

Ex: In D_4

- $C(R_0) = D_4 = C(R_{180})$
- $C(R_{90}) = \{ R_0, R_{180}, R_{270}, R_{360} \} = C(R_{270})$
- $C(H) = \{ R_0, R_{180}, H, V^3 \} = C(V)$
- $C(D) = \{ R_0, R_{180}, D, D^2 \} = C(D')$

Thm 3.6: $C(a)$ is a subgroup of G for every $a \in G$

Q1: Exercise. Similar to Thm 3.5.

Note: $Z(G) \leq C(a)$ and $\langle a \rangle \leq C(a)$ for all $a \in G$.