Well Ordering Principle:
Every nonempty set of positive integers contains a smallest element.

Def: For \(s, t \in \mathbb{Z} \) we say \(t \) divides \(s \) or \(t \) is a divisor of \(s \) (and write \(t | s \)) if \(\frac{s}{t} \in \mathbb{Z} \). When \(\frac{s}{t} \notin \mathbb{Z} \) we write \(t \nmid s \).

- A prime is an integer greater than 1 whose only positive divisors are 1 and itself.

Thm 0.1 (The Division Algorithm):
If \(a, b \in \mathbb{Z} \) with \(b > 0 \) then there exist unique integers \(q, r \) such that \(0 \leq r < b \) and \(a = bq + r \).

Pf: (Existence) Set
\[S = \{ a - bk : k \in \mathbb{Z} \text{ and } a - bk \geq 0 \} \]
Notice \(S \neq \emptyset \) since:
- When \(a \geq 0 \), \(a - b \cdot 0 \in S \)
- When \(a < 0 \), \(a - b \cdot (2a) = a(1 - 2b) \) is positive and thus belongs to \(S \).

By W.O.P. \(S \) contains a least element \(r \).
Since all elements of \(S \) are non-negative, \(r \geq 0 \).
Since \(r \in S \), there is \(q \in \mathbb{Z} \) with \(r = a - bq \), meaning \(a = bq + r \).
Finally, we must have \(r < b \) as otherwise \(r - b = a - b(q+1) \) would belong to \(S \) but be smaller than \(r \) (contradicting that \(r \) is smallest element of \(S \)).

(Uniqueness) Suppose \(a = bq + r = bq' + r' \) with \(q, q', r, r' \in \mathbb{Z} \), \(0 \leq r, r' < b \).

Notice that \(bq + r = bq' + r' \) implies \(b(q - q') = r' - r \).

Also note \(-b < r' - r < b \). If \(q \neq q' \) then

\[
|r' - r| = |b(q - q')| = |b| \cdot |q - q'| \leq |b| > |r' - r|,
\]

a contradiction. So \(q = q' \) and thus \(r = r' \) since \(r' - r = b(q - q') = 0 \). \(\Box \)

Ex: \(a = 32, b = 5 \quad \rightarrow \quad 32 = 5 \cdot 6 + 2 \)

\(a = -24, b = 7 \quad \rightarrow \quad -24 = 7 \cdot (-4) + 4 \)

Written galley

Def: The greatest common divisor (gcd) of \(a, b \in \mathbb{Z} \setminus \{0\} \)

is the largest integer that divides both \(a \) and \(b \).

\(a, b \in \mathbb{Z} \setminus \{0\} \) are relatively prime if gcd\((a, b) = 1\)

Thm 0.2: For any \(a, b \in \mathbb{Z} \setminus \{0\} \) there are \(s, t \in \mathbb{Z} \) with gcd\((a, b) = as + bt \). Moreover, gcd\((a, b) \) is the least positive member of \(S = \{am + bn : m, n \in \mathbb{Z} \} \) where \(am + bn > 0 \).

Use \(n = 0, m = \pm 1 \)

Pf: Easy to check \(S \neq \emptyset \). By W.O.P. \(S \) has a least element \(d = as + bt \).
Claim: \(d\) is a common divisor of \(a\) and \(b\).

By division alg. \(a = dq + r\), \(0 \leq r < d\).

Notice \(r = a - dq = a - (as + bt)q = a(1 - sq) + b(-qt)\).

So \(r\) cannot be positive, otherwise it would be an element of \(\mathbb{Z}\) smaller than \(d\).

Thus \(r = 0\) and \(d\mid a\).

By symmetry, \(d\mid b\) as well.

Claim: \(d\) is the greatest common divisor of \(a\) and \(b\).

If \(d'\) is any common divisor of \(a\) and \(b\), then there are \(h, k \in \mathbb{Z}\) with \(a = d'h\), \(b = d'k\). Then

\[d = as + bt = d'(hs + kt) = d'(hs + kt)\]

So \(d'\mid d\), and thus \(d = \|d\| = |d'| \leq d'\) \(\Box\)

Ex: \(\gcd(8, 11) = 1 = 8 \cdot (-4) + 11 \cdot 3\)

\(\gcd(21, 15) = 3 = 21 \cdot (-2) + 15 \cdot 3\)

\(\gcd(6, 12) = 6 = 6 \cdot 1 + 12 \cdot 0\)

Euclid's lem: If \(p\) prime and \(p\mid ab\) then

\(p\mid a\ or\ p\mid b\)

Pf: Assume \(p\mid ab\). If \(p\mid a\) we're done.

If \(p\nmid a\) then \(\gcd(p, a) = 1\) so \(3s + te = 1 = ps + at\). Then \(b = psb + atb\) and \(p\) divides \(psb + atb\) so \(p\mid b\). \(\Box\)
Then 0.3 (Fundamental Theorem of Arithmetic):
Every integer \(n > 1 \) can be written as a product of primes, and the prime factors are unique up to permuting their order.

Defn: The least common multiple of \(a, b \in \mathbb{Z} \setminus \{0\} \), denoted \(\text{lcm}(a, b) \), is the smallest positive integer that is a multiple of both \(a \) and \(b \).

Defn: let \(a, b \in \mathbb{Z} \) with \(b > 0 \). We write
\[
a \mod b = r \text{ if } 0 \leq r < b \text{ and there is } q \in \mathbb{Z} \text{ with } a = bq + r.
\]
In other words, \[
\frac{a}{b} = b \frac{q}{b} + r = q + \frac{r}{b}
\]
is an integer plus the non-negative remainder \(\frac{r}{b} \).

Ex: \[
4 \mod 3 = 1
\]
\[
-4 \mod 3 = 2
\]
\[
38 \mod 11 = 5
\]
\[
20897 \mod 2 = 1
\]
\[
10 \mod 5 = 0
\]

Lem: let \(a_1, a_2, n \in \mathbb{Z} \) with \(n > 0 \).
Then \(a_1 \mod n = a_2 \mod n \) iff \(n \mid (a_1 - a_2) \).

Prf: Pick \(q_1, q_2, r_1, r_2 \in \mathbb{Z} \) with \(a_1 = nq_1 + r_1 \), \(a_2 = nq_2 + r_2 \), and \(0 \leq r_1, r_2 < n \).
Then \(a_1 - a_2 = a(q_1 - q_2) + r_1 - r_2\) is divisible by \(n\) iff \(r_1 - r_2\) is divisible by \(n\). Since \(0 \leq r_1, r_2 < n\) and \(-n < r_1 - r_2 \leq 0\), we have \(-n < r_1 - r_2 < n\) so \(n\) divides \(r_1 - r_2\) iff \(r_1 - r_2 = 0\) (i.e. \(r_1 = r_2\)). This completes the proof since \(a_1 \mod n = r_1\) and \(a_2 \mod n = r_2\) \(\blacksquare\)

Lemma: Let \(a_1, a_2, b_1, b_2, n \in \mathbb{Z}\) with \(n > 0\).

If \(a_1 \mod n = a_2 \mod n\) and \(b_1 \mod n = b_2 \mod n\) then

1. \(a_1 + b_1 \mod n = a_2 + b_2 \mod n\)

2. \(a_1 \cdot b_1 \mod n = a_2 \cdot b_2 \mod n\)

Proof: From previous lemma, we know \(n \mid (a_1 - a_2)\) and \(n \mid (b_1 - b_2)\). Therefore, \(n\) divides

\[(a_1 - a_2) + (b_1 - b_2) = (a_1 + b_1) - (a_2 + b_2)\]

so 1 holds by previous lemma. Similarly,

\[a_1 \cdot b_1 - a_2 b_2 = (a_1 b_1 - a_1 b_2 + a_1 b_2 - a_2 b_2)
= a_1 (b_1 - b_2) + (a_1 - a_2) b_2\]

is divisible by \(n\), so 2 holds. \(\blacksquare\)

Ex.: \(38 \cdot 51 \mod 11 = 5 \cdot 7 \mod 11 = 35 \mod 11 = 2\)

\(19^5 \mod 17 = 2^5 \mod 17 = 32 \mod 17 = 15\)
Ex: Calculate last digit of 3^{403}

Fact: If $n > 0$, the last digit of n is $n \mod 10$

$3^2 \mod 10 = 9 \mod 10 = 9$
$3^3 \mod 10 = 27 \mod 10 = 7$
$3^4 \mod 10 = 81 \mod 10 = 1$

\[3^{403} = (3^4)^{100} \cdot 3^3 \quad \text{so} \]
\[3^{403} \mod 10 = (3^4)^{100} \cdot 3^3 \mod 10 \]
\[= 1^{100} \cdot 3^3 \mod 10 \]
\[= 3^3 \mod 10 = 7 \]

Fact: If $a^h \mod n = 1$ and $k = hq + r$
with $h, k, q, r \geq 0$ then $a^k \mod n = a^r \mod n$.

Ex: Prove that $x^2 - y^2 = 1002$ has no solutions with $x, y \in \mathbb{Z}$

Consider the equation $\mod 4$.

\[
\begin{array}{c|ccc}
 & x \mod 4 & x^2 \mod 4 \\
\hline
 0 & 0 & 0 \\
 1 & 1 & \quad x^2 \mod 4 \text{ and } y^2 \mod 4 \text{ are each either 0 or 1} \\
 2 & 0 & \text{} \\
 3 & 1 & \text{}
\end{array}
\]
Consider all possible cases
\[
\begin{array}{c|c|c}
 x^2 \mod 4 & y^2 \mod 4 & x^2 - y^2 \mod 4 \\
 0 & 0 & 0 \\
 0 & 1 & 3 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]
So for all \(x, y \in \mathbb{Z} \), \(x^2 - y^2 \mod 4 \neq 2 = 1002 \mod 4 \)
and thus \(x^2 - y^2 \neq 1002 \)

Equivalence relations generalize the concept of equality

Defn: An equivalence relation \(R \) on a set \(S \) is
1. a set of ordered pairs of elements of \(S \) such that:
 1. (Reflexive) \(\forall a \in S \) \((a, a) \in R \)
 2. (Symmetric) \(\forall a, b \in S \) \((a, b) \in R \iff (b, a) \in R \)
 3. (Transitive) \(\forall a, b, c \in S \) \([(a, b) \in R \land (b, c) \in R] \Rightarrow (a, c) \in R \)

In this setting, we typically write \(a \sim b \) to mean \((a, b) \in R \)

We often use symbols such as \(\sim, \approx, \equiv \) to denote the equivalence relation \(R \).

When \(R \) is an equivalence relation on \(S \) and \(a \in S \)

we define
\[
[a] = [a]_R = \{ b \in S : a \sim b \}
\]

Ex: The following are equivalence relations
- \(S = P(\mathbb{N}) \), \(R = \{ (A, B) : A, B \in P(\mathbb{N}) \} \) \(|A| = |B| \)
- \(S = P(\mathbb{N}) \setminus \emptyset \), \(R = \{ (A, B) : A \cup B \subseteq \mathbb{N} \} \) \(\min A = \min B \)
- \(S = \mathbb{Z} \), \(R = \{ (n, m) \in \mathbb{Z}^2 : n \cdot m > 0 \text{ or } n = m = 0 \} \)
\(S = \mathbb{R}, R = \{ (a, b) \in \mathbb{R}^2 : \exists q \in \mathbb{Z} \ a = b + 2\pi q \} \)
\(\text{Fix } n \in \mathbb{Z}, n > 0. S = \mathbb{Z}, R = \{ (a, b) \in \mathbb{Z}^2 : a \equiv b \pmod{n} \} \)

Defn: A partition of a set \(S \) is a collection of nonempty subsets of \(S \) that are pairwise disjoint and that have union \(S \).

Ex: \(\{ 2, 3, 5, 6, 7 \} \) is a partition of \(S = \{ 1, 2, 3, 4, 5, 6, 7 \} \)

Thm 0.7: If \(R \) is an equivalence relation on \(S \), then \(P = \{ [a]_R : a \in S \} \) is a partition of \(S \).

- If \(P \) is a partition of \(S \), then \(R = \{ (a, b) \in S \times S : \exists p \in P \ a, b \in [a]_P \} \) is an equivalence relation on \(S \).

Pf: (Pairwise Disjoint) Suppose \([a]_R \cap [b]_R \neq \emptyset \).

We claim \([a]_R \cap [b]_R = \emptyset \). Suppose not, say \(c \in [a]_R \cap [b]_R \) (meaning \((a, c), (b, c) \in E \)).

For any \(x \in [a]_R \) we have \((a, x) \in E \) hence \((x, c) \in E \) (symmetry).

Since \((x, c), (a, c) \in E \), we have \((a, c) \in E \) (transitivity)

hence \((a, x) \in E \) (symmetry). Finally, since \((c, x), (b, c) \in E \)

we have \((b, x) \in E \) (transitivity) meaning \(x \in [b]_R \).

Therefore \([a]_R \cap [b]_R = [a]_R \) and by symmetry \([b]_R \subseteq [a]_R \).

So \([a]_R \cap [b]_R = \emptyset \), contradiction. We conclude \([a]_R \cap [b]_R = \emptyset \)

(Union is \(S \)) Clearly \(UP = S \). Conversely, for every \(a \in S \)

\(a \in [a]_R \) so \(a \in [a]_R \) and \(UP = \bigcup_{a \in S} [a]_R \) is a partition of \(S \).
Clearly there are \((a,a) \in R\) and \((b,b) \in R\). Now let \((a,b, c,c) \in S\) and assume \((a,b), (b,c) \in R\). Pick \(D, D' \in P\) with \(a, b \in D, b, c \in D'\). Since \(P\) is a partition, either \(D = D'\) or \(D \cap D' = \emptyset\). But \(b \in D \cap D'\), so we must have \(D = D'\). Therefore \(a, c \in D\) and \((a,c) \in R\). □