Math 217: Topics in Applied Math
Optimal Transport
Spring 2022,
Instructor: Bo Li
Lectures: 1:00-1:50, MWF, AP&M 542

Lecture 1. Monday, 3/28/2022

- Brief description of the course.
- Discrete optimal transport (OT)
 Monge's formulation

About Optimal Transport: A subject of optimization, PDEs, the calculus of variations, probability, geometry, etc. with applications in economics, imaging science, molecular modeling, machine learning, etc.

About this course

- Applied math/comput. math aspects of optimal transport (OT)
- Introduction of the subject
- Highlight some research areas/projects
Topics to be covered

- Monge and Kantorovich formulations, equivalence, duality, existence, etc.
- Wasserstein metric
- Discrete OT, regularization, numerical methods, stability, and convergence
- Gradient flow with Wasserstein metric, Fokker-Planck equation and other evolution equations
- Applications in machine learning and molecular dynamics

References See the course web page.

Expect Participation in class discussions. Possibly read some papers/presentations.
Part I Discrete Optimal Transport (OT)

Monge's formulation of discrete OT problem

\[x_1 a_1 \rightarrow y_1 b_1 \]
\[x_2 a_2 \rightarrow y_2 b_2 \]
\[\vdots \]
\[x_m a_m \rightarrow y_n b_n \]

Given/consider:
\[X = \{x_1, \ldots, x_m\}, \]
\[a_1, \ldots, a_m \in (0,1), \sum_i a_i = 1 \]
\[Y = \{y_1, \ldots, y_n\}, \]
\[b_1, \ldots, b_n \in (0,1), \sum_j b_j = 1. \]

Amount \(a_i\) of raw material at warehouse \(X_i\).
Amount \(b_j\) of raw material to be transported to factory \(Y_j\).

Possible/feasible transport map
\[T: X \rightarrow Y \text{ such that} \]
\[\begin{align*}
 b_j &= \sum_{i: T x_i = y_j} a_i \\
 \quad (j=1,\ldots,n) \tag{*}
\end{align*} \]

Denote
\[J = \{ \text{all } T: X \rightarrow Y \text{ satisfying (*)} \} \]
Cost function

\[C : X \times Y \rightarrow [0, \infty) \]

\[C(x_i, y_j) : \text{the cost to transport a unit product from } x_i \text{ to } y_j. \]

E.g., \(C(x_i, y_j) = \rho(x_i, y_j) \) if \(X, Y \)

are subsets of a metric space with metric \(\rho \).

The total cost for \(T \in T \) is

\[E[T] = \sum_{i=1}^{m} a_i C(x_i, T(x_i)). \]

Monge's (discrete) OT problem

Find \(\hat{T} \in T \) s.t.

\[E[\hat{T}] = \min_{T \in T} E[T]. \]

Call \(\hat{T} \) an optimal transport map.

Remarks The constraint (\(\rho \)) is crucial.

\(T \) soln \(\iff \) \(T \neq \emptyset \).

Soln may not be unique.

Exercise Example of nonuniqueness?

Since each \(b_j > 0 \), we have \(T \) is onto (i.e., surjective). Hence, \(m \geq n \).
Consider the case \(N = n \).

Each \(T \) is a bijection \((1-1, \text{onto})\).

If all \(a_i \) are distinct, then \(T \) is unique. \(T x_i = y_j \) with \(b_j = a_i \).

If some \(a_i \) are the same, then the problem can be decomposed into some subproblems.

\[
\begin{align*}
T_1 : & \{ a_1, x_1 \} \rightarrow \{ a_1, y_1 \} \\
T_2 : & \{ a_2, x_2 \} \rightarrow \{ a_2, y_2 \} \\
& \vdots \\
T_k : & \{ a_k, x_{k+1} \} \rightarrow \{ a_k, y_{k+1} \}
\end{align*}
\]

\[
\sum_{k=1}^{n} \text{Ne} = n. \quad \text{Find } T_j.
\]

Two steps:
1. Relabel \(x_i \) and \(y_j \).
2. For each group of \(x_i \) with same \(a \)-value, solve the OT problem.

The optimal assignment problem (as a

Given: \(X = Y = \{ 1, 2, \ldots, n \} \).

\(a_i = b_i = \frac{1}{n} \) \((i = 1, \ldots, n)\). Marge's prob

of discret OT)
$$C = [C_{ij}] \subset \mathbb{R}^{m \times n}, \text{ all } C_{ij} \geq 0.$$

Notation: $\mathbb{R}^{m \times n} = \{ \text{ all } m \times n \text{ real matrices} \}$

$S_n = \{ \text{ all permutations of } (1 \ldots n) \}$

E.g. $S_3 = \{ (123), (132), (213), (231), (312), (321) \}$

A permutation is a bijective function.

The (optimal) assignment problem (in Monge form)

Find $\hat{\sigma} \in S_n$ s.t.

$$\hat{\sigma} = \arg \min_{\sigma \in S_n} \frac{1}{n} \sum_{i=1}^{n} C_{i, \sigma(i)}$$

- Hence, the cost function is

 $$C(i, j) = C_{ij}, \quad i, j = 1, \ldots, n.$$

- $c(x_i, T(x_i)) = c(x_i, y_{\sigma i}) = C_{i, \sigma i}.$

- So σs exist but often non-unique. But $\text{card}(S_n) = n!$

 $$5! = 120, \quad 8! = 40,320, \quad 10! = 3,628,800$$
 $$12! = 479,001,600, \quad 25! = 5,551,840, \quad 70! = 1,982,600,269,404,490,276,687,090,270,186,096,000$$

We will revisit this problem later.

The case $m > n$. More complicated.

But, interesting?

Exercise Solve this problem.
Kantorovich’s formulation of the
(discrete) OT problem

- Allowing the split of a_i into pieces
- Probabilistic approach

\[\begin{align*}
x_1 & \to b_1 \quad y_1 \\
x_2 & \to b_2 \quad y_2 \\
\vdots & \quad \vdots \\
x_m & \to b_n \quad y_n
\end{align*}\]

Given/consider:

- $X = \{x_1, \ldots, x_m\}$, $Y = \{y_1, \ldots, y_n\}$
 $a_i \geq 0$, $\sum a_i = 1$, $b_j \geq 0$, $\sum b_j = 1$
- $c_{ij} (\geq 0) =$ cost for transporting a unit product from x_i to y_j
 $C = [C_{ij}] \in \mathbb{R}^{m \times n}$: cost matrix
- Feasible transport plans
 $P = [P_{ij}] \in \mathbb{R}^{m \times n}$, all $P_{ij} \geq 0$
 $P_{ij} =$ amount of product i (i.e., part of a_i) at x_i transported to y_j, becoming part of b_j.
\[\sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} = b_j \quad (j = 1, \ldots, n), \quad \text{col. sum of } P = b \]
\[\sum_{j=1}^{n} p_{ij} = a_i \quad (i = 1, \ldots, m), \quad \text{row sum of } P = a \]

Note: \(\sum_{i,j} p_{ij} = 1 \).

The feasible set of transport plans:
\[A(a,b) = \{ P = [p_{ij}] \in \mathbb{R}_{\geq 0}^{m \times n} : \text{ all } p_{ij} \geq 0, \quad \sum_i p_{ij} = b_j, \quad \forall j, \quad \sum_j p_{ij} = a_i, \quad \forall i \} \]

Call \(E(P) := \sum_{i,j} p_{ij} c_{ij} \) the total cost of the plan \(P \).

\underline{Kantorovich’s formulation}

Find \(\hat{P} \in A(a,b) \) s.t.
\[\hat{P} = \arg \min_{P \in A(a,b)} \sum_{i,j} p_{ij} c_{ij} \]