Lecture 13, Monday, 4/25/2022

Given: \(X, Y\): Polish spaces, \(\mu \in \mathcal{P}(X), \nu \in \mathcal{P}(Y)\),
\(C: X \times Y \to [0, \infty]\) measurable.

Denote \(T(\mu, \nu) = \{ T: X \to Y: \text{measurable}: T#\mu = \nu \}\)
\(A(\mu, \nu) = \{ \gamma \in \mathcal{P}(X \times Y): \pi_X^* \gamma = \mu, \pi_Y^* \gamma = \nu \}\)

Monge's OT: \(\inf_{T \in T(\mu, \nu)} E_{\mu}[T], \quad E_{\mu}[T] = \int_X c(x, T(x)) \, d\mu(x)\)

Kantorovich's OT: \(\inf_{\gamma \in A(\mu, \nu)} E_{\gamma}[\gamma], \quad E_{\gamma}[\gamma] = \int_{X \times Y} c(x, y) \, d\gamma(x, y)\)

\(T \in T(\mu, \nu): \) transport map,
\(\gamma \in A(\mu, \nu): \) transport plan,

\(\bullet\) If \(T(\mu, \nu) \neq \emptyset\) and \(T \in T(\mu, \nu)\) then
\(Y_T = (\text{Id}_X \times T)#\mu \in A(\mu, \nu),\) where \(\text{Id}_X \times T(x) = (x, T(x))\),
defines \(\text{Id}_X \times T: X \to X \times Y,\) and \(E_{\mu}[T] = E_{\gamma}[\gamma_T].\)

Def. A measure \(\mu\) on \(X\) is non-atomic or contains no atoms if \(\mu(\{x\}) = 0\) \(\forall x \in X.\)

Theorem (Pratelli) Let \(X, Y\) be Polish, and \(\mu \in \mathcal{P}(X)\)
and \(\nu \in \mathcal{P}(Y).\) Assume \(C: X \times Y \to [0, \infty]\) is continuous,
Assume also that \(\mu\) is non-atomic. Then
\(\inf_{T(\mu, \nu)} E_{\mu}[\cdot] = \inf_{A(\mu, \nu)} E_{\gamma}[\cdot]. \quad \square \)
Today 1. More about transport maps and transport plans.
 (2) Existence of minimizers for the K-OT problem.
 (3) Direct methods in the calculus of variations.

Proposition Let \(X, Y \) be Polish, \(\mu \in P(X) \), and \(T : X \to Y \) Borel measurable.
\begin{enumerate}
\item \(T^\# \mu \in P(Y) \).
\item Let \(\nu \in P(Y) \). Then \(T^\# \mu = \nu \) if and only if for any bounded and measurable \(\varphi : Y \to \mathbb{R} \),
 \[\int_Y \varphi(y) \, d\nu(y) = \int_X \varphi(T(x)) \, d\mu(x). \tag{X} \]
\end{enumerate}

Corollary (Change of variables) Let \(X, Y \) be Polish, \(\mu \in P(X) \), and \(T : X \to Y \) Borel measurable. Then for any bounded and measurable \(\varphi : Y \to \mathbb{R} \),
\[\int_Y \varphi \, d(T^\# \mu) = \int_X \varphi \circ T \, d\mu. \tag{QED} \]

Proof of Proposition
\begin{enumerate}
\item By definition, \(T^\# \mu \) is a measure, and a probability measure on \(Y \).
\item \(\forall B \in \mathcal{B}(Y) \). Set \(\varphi = X_B \) (\(X_B \) = 1 on \(B \) and 0 on \(B^c = X \setminus B \)). Note that \(X_B \circ T = X_{T^{-1}(B)} \).
\end{enumerate}
Now \((\mathcal{X} \times Y) \Rightarrow \mathcal{V}(B) = \int (X_\beta \circ T)(x) \, d\mu(x) = \mu(T^{-1}(B)) = T_\# \mu(B). \) Hence, \(T_\# \mu = \nu. \)

Conversely, assume \(T_\# \mu = \nu. \) If \(\varphi = X_\beta \) for \(\beta \in \mathcal{B}(Y) \) then
\[
\int_Y \varphi \, d\nu = \nu(B) = \mu(T^{-1}(B)) = \int_X X_\beta^{-1} \, d\mu = \int_X (X_\beta \circ T) \, d\mu.
\]
Hence \((\ast)\) is true for simple functions \(\varphi. \)

Now, for any bounded and Borel (i.e., Borel measurable) \(\varphi : X \to \mathbb{R}, \) there simple functions \(\varphi_k : X \to \mathbb{R} \) s.t. \(\| \varphi_k - \varphi \|_\infty \to 0. \) Hence,
\[
\int_Y \varphi \, d\nu = \lim_{k \to \infty} \int_Y \varphi_k \, d\nu = \lim_{k \to \infty} \int_X \varphi_k \circ T \, d\mu = \int_X \varphi \circ T \, d\mu. \quad \text{QED}
\]

Now, study \(\mathcal{A}(\mu, \nu) \subseteq \mathcal{P}((X \times Y). \) Given \(\gamma \in \mathcal{P}(X \times Y). \) What are the conditions that \(\gamma \in \mathcal{A}(\mu, \nu)? \)

Proposition Let \(X \) and \(Y \) be Polish. Let \(\gamma \in \mathcal{P}(X \times Y). \)

Then the following are equivalent:

1. \(\gamma \in \mathcal{A}(\mu, \nu); \)
2. \(\gamma(A \times Y) = \mu(A) \forall A \in \mathcal{B}(X), \gamma(X \times B) = \nu(B) \forall B \in \mathcal{B}(Y); \)
3. \(\int_{X \times Y} \varphi d\gamma = \int_X \varphi d\mu \forall \varphi : X \to \mathbb{R} : \text{Borel measurable}, \)
\[
\int \int_{x \times y} \varphi \, dy \cdot dx = \int \int_{x \times y} \varphi \, dx \cdot dy.
\]

\text{Proof: We show (1) } \iff \text{ (2) } \implies \text{ (3) } \implies \text{ (4) } \implies \text{ (5) } \implies \text{ (2).}

(1) \implies (2). \forall A \in \mathcal{B}(X).

\[
\mu(A) = (\mathcal{T}^X \times \gamma)(A) = \gamma(\mathcal{T}^X(A)) = \gamma(A \times Y).
\]

Similarly, \(\nu(B) = \gamma(X \times B) \) for any \(B \in \mathcal{B}(Y) \).

(2) \implies (1). \forall A \in \mathcal{B}(X).

\[
(\mathcal{T}^X \times \gamma)(A) = \gamma(\mathcal{T}^X(A)) = \gamma(A \times Y) = \mu(A).
\]

Hence, \(\mathcal{T}^X \times \gamma = \mu \). Similarly, \(\mathcal{T}^X \gamma = \nu \).

(2) \implies (3). If \(\varphi = 1_A \) for some \(A \in \mathcal{B}(X) \) then by (2),

\[
\int \int_{x \times y} \varphi \, dx \cdot dy = \int_{A \times Y} dy = \int_{A \times Y} \varphi \, dy.
\]

We have then

\[
\int \int_{x \times y} \varphi \, dx \cdot dy = \int \int_{x \times y} \varphi \, dy \cdot dx \quad (\ast)
\]

If \(\varphi \) is a simple Borel function on \(X \), but a nonnegative Borel function can be approximated by a sequence of nonnegative increasing simple functions. So, the
monotone convergence theorem, and the decomposition \(\varphi = \varphi_+ - \varphi_- \) imply that \((\ast)\) is true for any Borel function \(\varphi \).

\((3) \Rightarrow (4)\) This is obvious.

\((4) \Rightarrow (5)\) This is obvious.

\((5) \Rightarrow (2)\) Let \(A \in \mathcal{B}(X) \). Since \(X, Y \) and \(X \times Y \) are Polish probability measures on these spaces are regular (see next lecture). Thus, \(\forall \varepsilon > 0 \), \(\exists \) open \(U \in Z \) and compact \(K \subseteq Z \) such that \(K \subseteq A \subseteq U \) and \(\mu(U \setminus K) < \varepsilon \).

Similarly, \(\exists \) open \(\widetilde{U} \subseteq X \times Y \) and compact \(\widetilde{K} \subseteq X \times Y \) such that \(\widetilde{K} \subseteq A \times Y \subseteq \widetilde{U} \) and \(\mu(\widetilde{U} \setminus \widetilde{K}) < \varepsilon \). Let \(K_0 = \pi^X(\widetilde{K}) \cup K \subseteq X \) and \(U_0 = \pi^X(\widetilde{U}) \cap U \subseteq X \). \(\pi^X(\widetilde{U}) \) is compact in \(X \). So, \(K_0 \) is compact in \(X \). Also, \(\pi^X(\widetilde{U}) \subseteq X \) is open. So, \(U_0 \) is open in \(X \). Moreover, \(U_0 \subseteq A \subseteq U_0 \) and \(\mu(U_0 \setminus K_0) < \varepsilon \).

Define \(\varphi : X \to \mathbb{R} \) by \(\varphi(x) = \frac{d_X(x, U_0^c)}{d_X(x, K_0) + d_X(x, U_0)} \) for any \(x \in X \), where \(d_X \) is the metric of \(X \) and \(U_0^c = X \setminus U_0 \). Clearly, \(\varphi \) is continuous, the denominator \(\neq 0 \), since \(x \in X \) and \(d_X(x, K_0) + d_X(x, U_0^c) = 0 \Rightarrow d_X(x, K_0) = 0 \Rightarrow x \in K_0 \Rightarrow d_X(x, U_0^c) > 0 \), contradiction.

Clearly \(0 \leq \varphi \leq 1 \). So, \(\varphi \in C_b(X) \). Note that \(\varphi = 0 \) on \(U_0^c \) and \(\varphi = 1 \) on \(K_0 \). We have now

\[
\int_X \varphi \, d\mu = \int_{K_0} \varphi \, d\mu = \mu(K_0) \geq \mu(A) - \varepsilon.
\]

\[
\int_X \varphi \, d\mu = \int_{U_0} \varphi \, d\mu = \mu(U_0) \leq \mu(A) + \varepsilon.
\]

Since \(K_0 \times Y = \left(\pi^X(\widetilde{K}) \cup K \right) \times Y \subseteq \pi^X(\widetilde{U}) \times Y \subseteq \widetilde{U}, \)
\[\sum \varphi d\gamma = \sum_{x \in X} \varphi d\gamma = \sum_{y \in Y} \varphi d\gamma = \gamma(K \times Y) \geq \gamma(\hat{K}) \geq \gamma(A \times Y) + \varepsilon. \]

Note that for \((x, y) \in X \times Y\), \((x, y) \in \hat{U} \Rightarrow x \notin \pi_X(\hat{U}) \Rightarrow x \notin U\). So \(\varphi(x) = 0\) if \((x, y) \in \hat{U}\). Hence
\[\int_X \varphi d\mu = \int_{X \times Y} \varphi d\gamma \text{ by (1)}, \]
\[|\gamma(A \times Y) - \mu(A)| \leq |\gamma(A \times Y) - \int_X \varphi d\gamma| + |\int_X \varphi d\mu - \mu(A)| \leq 2 \varepsilon. \]
Thus \(\gamma(A \times Y) = \mu(A)\). Similarly, \(\gamma(X \times B) = \nu(B)\) \(\forall B \in \mathcal{B}(Y)\). QED

Theorem. Let \(X\) and \(Y\) be Polish spaces, \(\mu \in \mathcal{P}(X)\) and \(\nu \in \mathcal{P}(Y)\), and \(\varphi : X \times Y \to [0, \infty]\) be lower-semicontinuous. Then there exists \(\hat{\varphi} \in \mathcal{A}(\mu, \nu)\) such that \(E_{\mu}[\hat{\varphi}] = \min_{\gamma \in \mathcal{A}(\mu, \nu)} E_{\mu}[\gamma]\).

Def. If \((Z, d)\) is a metric space, then \(f : Z \to \mathbb{R} \cup \{+\infty\}\) is weak-lower semi-continuous means that
\[\liminf_{k \to \infty} f(x_k) \geq f(x) \text{ if } x_k \to x. \]

Note. Continuity \(\Rightarrow\) lower semi-continuity.

To prove the theorem, we need to prove the following lemma which is itself important:

Lemma. Let \(X\) be a metric space, \(G \subseteq X\) an open subset, and \(f : X \to [0, \infty]\) a lower semi-continuous function. Suppose \(\mu \to \mu\) narrowly
in \(P(X) \), then
\[
\liminf_{n \to \infty} \int_I f \, d\mu_n \geq \int_I f \, d\mu.
\]
In particular, \(\liminf_{n \to \infty} \int_X f \, d\mu_n \geq \int_X f \, d\mu \).

Proof Let \(g(x) = \mathbb{1}_G(x) f(x) \) \((x \in X) \). Let \(x_k \to x \) in \(X \).
Then \(\liminf_{k \to \infty} f(x_k) \geq f(x) \). If \(x \notin G \), then for \(k \) large,
\(x_k \in G \). Hence \(\liminf_{k \to \infty} g(x_k) = \liminf_{k \to \infty} f(x_k) \geq f(x) = g(x) \).
If \(x \notin G \) then \(g(x) = 0 \) but \(g(x_k) \geq 0 \). So \(\liminf_{k \to \infty} g(x_k) \geq g(x) \).
Hence, \(g \) is lower semi-continuous. So, we can assume \(G = X \).

Define for each \(k \in \mathbb{N} \)
\[
f_k(x) = \inf_{y \in X} \{ f(y) \wedge k + k \, d(x, y) \}, \quad x \in X.
\]
Then \(0 \leq f_k \leq f_{k+1} \leq \ldots \leq f \wedge k \). Moreover, each \(f_k \) is
Lipschitz continuous, as it is the infimum of a family
(parameterized by \(y \)) of equi-Lipschitz functions on \(X \).

Claim: \(f_k \uparrow f \), i.e. \(f = \sup_k f_k \).Fix \(x \in X \). Assume without loss of generality that \(\sup_k f_k(x) < \infty \). Fix \(x \in X \).s.t.
\[
f(x_k) \wedge k + k \, d(x, x_k) \leq f_k(x) + \frac{1}{k}
\]
This implies that \(d(x, x_k) \to 0 \). Moreover, \(f(x_k) \wedge k \leq f_k(x) + \frac{1}{k} \).
So, by the lower semi-continuity of \(f \),
\[
\sup_{k \geq 1} f_k(x) \geq \liminf_{k \to \infty} (f_k(x) + \frac{1}{k}) \geq \liminf_{k \to \infty} f(x_k) \wedge k \geq f(x).
\]
Now, for each \(k \), since \(d \) is \(\mu \)-narrowly
\[
\liminf_{n \to \infty} \int_X f \, d\mu_n \geq \liminf_{k \to \infty} \int_X f_k \, d\mu_n = \int_X f_k \, d\mu.
\]
Hence, by the monotone convergence theorem,
\[
\liminf_{n \to \infty} \int_X f \, d\mu_n \geq \lim_{k \to \infty} \int_X f_k \, d\mu_n = \int_X f \, d\mu. \quad \Box \]
How to prove the existence of a minimizer of $f \in C(\mathbb{R}^d)$ with $f(\infty) = \infty$?

Direct Method in the Calculus of Variations

Step 1 f is bounded below. So $\alpha := \inf_{x \in \mathbb{R}^d} f > -\infty$.

Step 2 $f(\infty) = \infty$. So, $\exists M > 0 \text{ s.t. } ||x|| \leq M \forall x \in \mathbb{R}^d$.

Step 3 Compactness of $B(0,M) \Rightarrow \exists$ sub-reg. x_{k_j}

$\rightarrow x_{\infty} \in \mathbb{R}^d$. Continuity $\Rightarrow f(x_{\infty}) = f(\infty) = \alpha$.

Theorem Let Z be a reflexive Banach space and K a non-empty, convex, and (strongly) closed subset of Z. Assume $f : K \rightarrow (\mathbb{R} \cup \{+\infty\})$ satisfies the following:

- $\inf_K f > -\infty$;
- $\exists c > 0, c \in \mathbb{R}$, s.t. $f(x) \geq c \cdot ||x|| + c_2 \forall x \in K$;
- $f : K \rightarrow \mathbb{R}$ is sequentially weakly lower semicontinuous.

Then $\exists \hat{x} \in K$ s.t. $f(\hat{x}) = \inf_{x \in K} f(x)$.

Proof Let $\alpha := \inf_{x \in K} f > -\infty$. So, $\exists x_k \in K$ s.t. $f(x_k) \rightarrow \alpha$. Since $f(x_k) \geq c_1 \cdot ||x_k|| + c_2 (\forall k)$,
\{x_k\} is bounded. Thus, it has a subsequence not relabeled, such that \(x_k \to \tilde{x}\) weakly for some \(\tilde{x} \in K\). Since \(K\) is convex and (strongly) closed, it is weakly closed. Hence, \(\tilde{x} \in K\). Since \(f\) is weakly lower semi-continuous, \(\liminf_{k \to \infty} f(x_k) \geq f(\tilde{x})\). Hence \(\alpha \geq f(\tilde{x}) \geq \alpha\) and \(-f(\tilde{x}) = \alpha\). \(\boxempty\)

Proof of the existence theorem for the K-OT problem.

Proof. Note \(A(\mu, \nu) \neq \emptyset\). Since \(c \geq 0\), \(\alpha := \inf_{\gamma \in A(\mu, \nu)} \int E_k[\gamma] \geq 0\). If \(\alpha = \infty\), then any \(\gamma \in A(\mu, \nu) \neq \emptyset\) is a minimizer. Assume \(0 \leq \alpha < \infty\). Then, since \(A(\mu, \nu)\) is narrowly compact (cf. next lectures), \(\exists \gamma_k \in A(\mu, \nu)\) s.t. \(E_k[\gamma_k] \to \alpha\).

Since \(E_k : A(\mu, \nu) \to [0, \infty]\) is lower semi-continuous w.r.t. narrow convergence (cf. next lectures),

\[\alpha = \liminf_{j \to \infty} E_k[\gamma_j] \geq E_k[\tilde{\gamma}] \geq \alpha.\] \(\boxempty\)

Questions:

- Narrow convergence/topology?
- \(A(\mu, \nu)\) is narrowly compact?
- \(E_k\) is lower semi-cont. w.r.t. the narrow topology?