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Abstract5

Coarse-grained modeling and efficient computer simulations are critical to the study of6

complex molecular processes with many degrees of freedom and multiple spatiotemporal7

scales. Variational implicit-solvent model (VISM) for biomolecular solvation is such a8

modeling framework, and its initial success has been demonstrated consistently. In9

VISM, an effective free-energy functional of solute-solvent interfaces is minimized, and10

the surface energy is a key component of the free energy. In this work, we extend VISM11

to include the solute mechanical interactions, and develop fast algorithms and GPU12

implementation for the extended variational explicit-solute implicit-solvent (VESIS)13

molecular simulations to determine the underlying molecular equilibrium conformations.14

We employ a fast binary level-set method for minimizing the solvation free energy of15

solute-solvent interfaces and construct an adaptive–mobility gradient descent method16

for solute atomic optimization. We also implement our methods on the integrated GPU.17

Numerical tests and applications to several molecular systems verify the accuracy,18

stability, and efficiency of our methods and algorithms. It is found that our new19

methods and GPU implementation improve the efficiency of the molecular simulation20

significantly over the CPU implementation. Our fast computational techniques may21

enable us to simulate very large systems such as protein-protein interactions and22

membrane dynamics for which explicit-solvent all-atom molecular dynamics simulations23

can be very expensive.24
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1 Introduction27

Computer simulations are basic tools in the study of complex biomolecular processes with28

multiple temporal and spatial scales and many-body interactions. Efficiency and computational29

costs, however, are bottlenecks in such simulations for large systems with long time scales of30

biological interest. Examples of such systems include protein-protein interactions, membrane31

dynamics, and aggregation of biopolymer networks. The development of coarse-grained32

biophysical and mathematical modeling, together with fast numerical algorithms and computer33

implementation, is therefore critical to the success of computational studies of complex34

biomolecular systems.35

Implicit-solvent models are a class of coarse-grained models in which solvent is efficiently36

treated in comparison with explicit-solvent all-atom molecular dynamics simulations. In37

recent years, variational implicit-solvent model (VISM) has shown its initial success in38

efficient modeling of biomolecular conformations and recognition. VISM is a mesoscale39

description of the solvation of charged molecules, particularly biomolecules such as proteins,40

in an aqueous environment [6, 7]. The central quantity of such a model is a macroscopic41

free-energy functional of all possible solute-solvent interfaces each of which separates the42

solute molecules from the aqueous solvent (i.e., water or salted water). Minimizing such43

a functional leads to an equilibrium molecular conformation that is often metastable, and44

the corresponding minimum free energy. The free energy consists mainly of the solute-45

solvent interfacial energy, solute-solvent van der Waals (vdW) interaction energy, and the46

electrostatic interaction energy that can be described by a continuum electrostatics model.47

Implemented by the level-set method, a numerical method for interface motion, VISM48

is capable of capturing qualitatively or semi-quantitatively many key features of charged49

molecular processes, such as the dry and wet solvation states and the effect of electrostatic50

interactions, and providing reasonably good estimates of the solvation free energy [3, 11, 12,51

25,30,33,34]. We note that several other solvation models have been developed [1, 20,24].52

In this work, we extend VISM to include the flexibility of solute atoms, and develop fast53

algorithms and GPU implementation for the extended variational explicit-solute implicit54

solvent (VESIS) simulations of molecular conformational change and binding process. This55

study is motivated by our recent work that couples VISM with Monte Carlos (MC) method56

to simulate the binding of proteins p53 and MDM2 that are treated as rigid bodies, where57

each MC move is followed by a solvation free-energy calculation [32]. A new and fast binary58

level-set algorithm that we have developed enables us to carry out such intensive MC-VISM59

simulations with hundreds of thousands MC moves. Clearly, the rigid-body approximation60

can hardly make our MC-VISM simulations reach the final p53-MDM2 bound complex.61

However, explicit-solvent all-atom molecular dynamics (MD) simulations starting from our62

MC-VISM conformations reach quickly to the final complex. It is therefore naturally for us63

to further develop our mesoscale molecular simulation approach to allow the solute atoms to64

move around as in the real system. This is what we do in our current study.65

Our main results include the following:66

(1) We extend VISM to include the solute-solute atomic interactions with a usual force67

field to construct our VESIS model. Such interactions include the mechanical bonding,68
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bending, and torsion, vdW interactions modeled by Lennard-Jones (LJ) potentials,69

and the electrostatic interactions by Coulomb’s law. The coupling between these solute70

interactions and the implicit solvent is through the solute-solvent interactions described71

by a sum of integrals over the solvent region, summing over all the solute atoms.72

(2) We design an adaptive-mobility gradient descent optimization method to relax all the73

solute atoms, and couple it with our fast binary level-set method to minimize the VESIS74

free-energy functional.75

(3) We implement our methods and algorithms on the integrated GPU, and test our code76

to verify its accuracy, stability, and efficiency.77

(4) We apply our VESIS model and GPU implementation to simulate several molecular78

systems, including the protein BphC and the protein complex p53-MDM2, to demonstrate79

the significant improvement of efficiency of our new algorithms and implementation over80

the CPU implementation.81

First introduced in [32], the binary level-set method is based on the approximation of82

surface area of an interface separating two regions by the convolution of the characteristic83

functions of these regions with a compactly supported kernel. This combines two steps,84

diffusion and threshold, in the method of threshold dynamics [23] (cf. also [8, 26–29]) into85

one step. An energy functional of the interface that includes the surface area and other86

related quantities can then be expressed as the sum over finite-difference gird cells. Cells in87

the two regions separated by the interface are marked by −1 and and +1. Equivalently, the88

interface is determined by a binary level-set function taking the value −1 or +1 on all the89

grid cells. The approximated total free-energy value can then be expressed as the sum of90

those values over all the grid cells. When a given interface is spatially perturbed, the energy91

change only occurs from those cells around the interface. The method then proceeds with92

flipping the cells (i.e., changing the sign of the binary level-set function on the cells) near the93

interface and only accept the change of sign when the energy is decreased. The algorithm94

is seemingly simple yet is significantly more efficient than the classical continuous level-set95

method [32]. A key factor contributing to such efficiency is that the flipping is done only96

locally around the interface instead of globally in the computational box [10,18,19].97

Our new, adaptive-mobility gradient descent optimization method is designed to efficiently98

optimize a multi-variable objective function that may have many local minima and saddle99

points and that the gradient may vary significantly. The method is of the type of the100

gradient descent. But the descent is not uniform for all the iteration steps. Instead, mobility101

constants are adaptively changed during the iteration steps. This way, one may speed up102

the convergence.103

In section 2, we describe our VESIS modeling framework. In section 3, we present our104

fast binary level-set method for interface motion and adaptive-mobility optimization method105

for relaxing atomic positions, as well as the simulation algorithm. Section 4 is devoted106

to the description of our GPU implementation. In section 5, we present the numerical107

tests and applications to several molecular systems, and demonstrate the efficiency of our108

methods and implementation. Finally, in section 6, we draw conclusions and discuss our109

future work. Appendix collects some calculations and formulas that are used in our modeling110

and numerical methods.111
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2 A Variational Explicit-Solute Implicit-Solvent Model112

We consider a few molecules immersed in an aqueous solvent (i.e., water or salted water). This113

system of molecular solvation is confined spatially in a bounded region Ω ⊂ R3; cf. Figure 1.114

We assume that there are N atoms of these solute molecules, located at r1, . . . , rN ∈ Ω and115

carrying partial charges Q1, . . . , QN , respectively. A closed surface Γ inside Ω and enclosing116

all the solute atoms ri (1 ≤ i ≤ N) is called a solute-solvent interface or dielectric boundary.117

Such an interface, which may have several disjoint connected components, divides the entire118

solvation region Ω into two parts. One is the solute region, denoted Ωm (m stands for119

molecule), which is the interior of the surface Γ, and the other is the solvent region, denoted120

Ωw (w stands for water) and defined by Ωw = Ω \ Ωm (a bar denotes the closure of a set).121

Figure 1: A schematic view of a solvation system with explicit solute and implicit solvent.
The entire system region Ω is divided by a solute-solvent interface into the solvent region Ωw

and the solute region Ωm containing all the solute atoms at ri (1 ≤ i ≤ N). Two different
solute-solvent interfaces are shown. One is a tight interface Γtight (solid line) and the other
a loose interface Γloose (dashed line).

Our basic assumption is that an experimentally observed equilibrium solvation system is
determined by its solute-solvent interface and solute atomic positions that together minimize
an effective free-energy functional [4]

G[Γ,R] = GVISM[Γ,R] +Gss[R], (2.1)

over all possible solute-solvent interfaces Γ and solute atomic positions R = (r1, . . . , rN).122

Here, the first part is the solvation free energy approximated by the VISM free energy and123

the second part is the solute-solute interaction potential or force field.124

The VISM free energy is given by [6, 7, 30, 33]

GVISM[Γ,R] = γ0Area (Γ) + ρw

N∑
i=1

∫
R3\Ωm

U
(i)
LJ (|r− ri|)dVr

+
1

32π2ε0

(
1

εw
− 1

εm

)∫
R3\Ωm

∣∣∣∣∣
N∑
i=1

Qi(r− ri)

|r− ri|3

∣∣∣∣∣
2

dVr. (2.2)
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The first term here is the solute-solvent interfacial energy, where γ0 is the surface tension
constant. The second term describes the van der Waals (vdW) type interactions between the
solute atoms located at ri (1 ≤ i ≤ N) and solvent molecules that are treated as a continuum,

where ρw is the bulk solvent density and each U
(i)
LJ is a Lennard-Jones (LJ) potential of the

form

ULJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2.3)

where the length parameter σ and energy parameter ε can depend on individual solute125

atoms. The last term in (2.2) is the Coulomb-field approximation (CFA) of the electrostatic126

interaction energy, where ε0 is the vacuum permittivity, and εw and εm are the relative127

permittivities of the solvent and solute, respectively. Note that the integrals in (2.2) are over128

the region R3 \ Ωm, instead of Ωw which is bounded. This is to account for the long-range129

effect of the vdW and Coulomb interactions.130

We remark that one can include more terms in the VISM free energy. However, to keep131

our numerical implementation robust, we shall focus on this version of VISM free-energy132

functional.133

The solute-solute interaction potential in (2.1) is given by

Gss[R] =
∑
(i,j)

1

2
Aij(rij − r0ij)

2 +
∑
(i,j,k)

1

2
Bijk(θijk − θ0ijk)

2

+
∑

(i,j,k,l)

6∑
n=0

Cn[1 + cos(nτi,j,k,l − ψn)] +
∑
(i,j)′

U
(i,j)
LJ (rij) +

∑
(i,j)′

QiQj

4πε0εwrij
. (2.4)

Here, the first three terms account for the mechanical interaction energy from bonded solute134

atoms. The first term is the bonding energy of solute atoms, where the sum is taken over all135

pairs (i, j) of bounded solute atoms, rij = |ri − rj|, and r0ij and Aij are the corresponding136

equilibrium distance and spring constant, respectively. The second term in (2.4) is the137

bending energy of solute atoms, where the sum is taken over all triplets (i, j, k) such that138

both pairs of solute atoms (ri, rj) and (rj, rk) are bonded. For such a triplet, θijk is the angle139

between the vectors ri − rj and rk − rj, θ0ijk ∈ [0, π] is the corresponding equilibrium angle,140

and Bijk is a constant parameter. The third term in (2.4) accounts for the torsion energy of141

solute atoms [15]. The sum is taken over all quadruples (i, j, k, l) such that (ri, rj), (rj, rk),142

and (rk, rl) are all bonded. For such a quadruple (i, j, k, l), τijkl is the torsion angle that is143

the angle between the plane determined by (ri, rj, rk) and that determined by (rj, rk, rl), n144

is the multiplicity, ψn is the phase factor, and all Cn are constants.145

The last two terms in (2.4) account for the interaction energies from non-bonded solute146

atoms indicated by (i, j)′ in the summation. The fourth term is the solute-solute vdW147

interaction energy, where each U
(i,j)
LJ is an LJ potential of the form (2.3). The last term is148

the solute-solute Coulomb interaction energy.149
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3 Numerical Methods150

We minimize the free-energy functional G[Γ,R] defined in (2.1) numerically by an iteration151

scheme. Each iteration step consists of two parts. In the first part, we fix the solute atomic152

positions and minimize numerically the VISM solvation free-energy functional (2.2) by a153

binary level-set method to obtain an optimal solute-solvent interface. In the second part, we154

fix the interface obtained in the first part, and minimize the energy functional G[Γ,R] that155

is a multi-variable function of the solute atomic positions R = (r1, . . . , rN) by an adaptive-156

mobility gradient descent method. The binary level-set method was introduced and used157

in our rigid-body MC-VISM simulations of protein binding [32]. Here, we briefly recall the158

method, referring to [32] for more details. We also describe in details our new, adaptive-159

mobility gradient descent optimization method for minimizing the function G[Γ,R] with Γ160

fixed. We present our step-by-step algorithm at the end of this section.161

3.1 A Binary Level-Set Method162

We set the solvation system region to be Ω = (−L,L)3 for some L > 0. The side length L is163

chosen to be large enough so that the region Ω includes all the solute atoms ri (1 ≤ i ≤ N)164

whose geometrical center can be shifted to the origin, if necessary; cf. Figure 1. This region165

Ω is also our computational box. We cover it by a uniform finite-difference grid of size h.166

A solute-solvent interface Γ = ∂Ωm is approximated by a binary level-set function ϕ that is167

defined on all the grid cells with ϕ = −1 and ϕ = +1 on cells interior and exterior to Γ,168

respectively.169

We discretize the VISM solvation free-energy functional (2.2) with all the solute atoms
fixed at ri (1 ≤ i ≤ N). Let us first rewrite this functional as

GVISM[Γ,R] = γ0Area (Γ) +

∫
Ω\Ωm

U(r) dVr +

∫
R3\Ω

U(r) dVr, (3.1)

where

U(r) = ρw

N∑
i=1

U
(i)
LJ (|r− ri|) +

1

32π2ε0

(
1

εw
− 1

εm

) ∣∣∣∣∣
N∑
i=1

Qi(r− ri)

|r− ri|3

∣∣∣∣∣
2

. (3.2)

Approximation of the surface energy. The surface area of the solute-solvent interface
Γ can be expressed as [32]

Area(Γ) =
C0

δ4

∫
x∈Ωm

∫
y∈Ωw

K

(
x− y

δ

)
dydx+O(δ2) for 0 < δ ≪ 1, (3.3)

where

C0 =

(∫ 1

0

∫
B(0,1)∩{y3>s}

K(y) dy ds

)−1

is a constant, B(0, A) for any A > 0 is the ball centered at the origin 0 with radius A, and170

y3 is the third component of the position vector y. The kernel function K = K(x) (x ∈ R3)171
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is chosen to be non-negative, compactly supported in the closure of the unit ball B1(0) of172

R3, and spherically symmetric (i.e., it is a function of |x|). In our implementation, we set173

K(x) = sin2(π|x|) if |x| ≤ 1 and 0 elsewhere. The small parameter δ > 0 is the rescaled174

kernel radius, defined as the radius of the ball of the support of K(|x|/δ).175

Discretization of the VISM free energy in the solvation region. By employing176

the center-point numerical integration rule, one can discretize the double-integral in (3.3)177

with an optimal choice δ = λ
√
h, where λ > 0 is a constant. Consequently, we obtain the178

following expression of an approximation of the surface energy, the first term in (3.1) [32]:179

γ0Area (Γ) =
γ0C0h

4

λ4

∑
xj∈Ωm

∑
xk∈Ωw

|xk−xj |≤λ
√
h

K(xj − xk) +O(h),

where xj ∈ Ωm and xk ∈ Ωw are the centers of grid cells in Ωm and Ωw, respectively. The
second term in (3.1) can be approximated by the center-point integration rule:∫

Ω\Ωm

U(r) dVr = h3
∑

xj∈Ωw

U(xj) +O(h).

Therefore, these approximations and (3.1) lead to the approximation

GVISM[Γ,R] ≈ γ0C0h
4

λ4

∑
xj∈Ωm

∑
xk∈Ωw

|xk−xj |≤λ
√
h

K(xj − xk)

+ h3
∑

xj∈Ωw

U(xj) +

∫
R3\Ω

U(r) dVr. (3.4)

The last integral can be written analytically as iterated integrals using the spherical coordinates180

and evaluated by one-dimensional numerical quadrature; cf. [5].181

Flipping grid cells to decrease the energy. Given a solute-solvent interface defined182

by a binary level-set function, we relax its VISM free energy (3.4) by flipping the grid cells,183

i.e., by changing the sign of the binary level-set function on the grid cells. The flipping is184

only done for grid cells that around the interface. This is because that any grid cells centered185

at xj ∈ Ωm and xk ∈ Ωw with |xj − xk| > λ
√
h do not contribute to the first term in (3.4).186

We pick up a grid cell that is immediate next to be the interface, flip its sign, and calculate
the change of the approximate energy based on (3.4). Note that the last term in (3.4) does
not change if we flip a grid cell. If the cell is centered at xj ∈ Ωm, so the sign of the cell is
−1, then the flip of the cell leads to the change of energy

∆(Gsolv)j =
γ0C0h

4

λ4

∑
xk∈Ωm

|xk−xj |≤λ
√
h

K(xj − xk)−
γ0C0h

4

λ4

∑
xk∈Ωw

|xk−xj |≤λ
√
h

K(xj − xk) + U(xj). (3.5)
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Otherwise, if the cell is centered at xj ∈ Ωw, so the sign of the cell is +1, then the flip of the
cell leads to the change of energy

∆(Gsolv)j =
γ0C0h

4

λ4

∑
xk∈Ωw

|xk−xj |≤λ
√
h

K(xj − xk)−
γ0C0h

4

λ4

∑
xk∈Ωm

|xk−xj |≤λ
√
h

K(xj − xk)− U(xj). (3.6)

After calculating ∆(Gsolv)j by flipping grid cells near the interface, we put ∆(Gsolv)j in a187

Min-Heap. We flip the grid cell with the smallest ∆(Gsolv)j in the heap if ∆(Gsolv)j < 0.188

With the new interface, we add energy changes for new grid cells near the new interface189

to the heap, delete old grid cells in the heap which are not near the new interface, update190

∆(Gsolv)j for old grid cells near the new interface in the heap, then we sort the Min-Heap.191

This flipping process stops until all ∆(Gsolv)j ≥ 0, indicating the energy reaches a minimum.192

Initial surfaces. Our method for minimizing the VISM free-energy functional is of
steepest descent type. It starts with an initial surface and iteratively moves it with the free
energy decreased in each step of the iteration. The final free-energy minimizing surface is a
local minimizer of the functional and depends on the initial surface. Different initial surfaces
can lead to different (meta)stable equilibrium conformations that are of interest; see Figure 1.
In order to capture multiple local minimizers, we often use two types of initial surfaces. One
is a loose initial surface that can be a large sphere enclosing all the solute atoms. The other
is a tight initial surface that wraps up all the solute atoms tightly with vdW radii. Such a
surface is the zero level-set of the continuous function

φ(r) = min
1≤i≤N

(|r− ri| − di),

where di > 0 is the vdW radius of the ith solute atom located at ri (i = 1, · · · , N). The193

binary level-set function for the surface can then be obtained by setting its value at the194

center of a grid cell to be the sign of φ-value at that center. Figure 2 shows a tight surface195

constructed by both a continuous and the corresponding binary level-set function.196

Figure 2: A tight initial solute-solvent interface constructed as the union of vdW spheres
centered at solute atoms (black dots) by a continuous level-set function (Left) and a binary
level-set function (Right), respectively.
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3.2 Adaptive-Mobility Gradient Descent Method for the Relaxation197

of Solute Atoms198

With a fixed solute-solvent interface Γ, we minimize the free energy G[Γ,R] defined in (2.1),
(2.2), and (2.4) as a function of R = (r1, . . . , rN) by solving for a steady-state solution to
the system of the gradient descent equations

d(rn(t))l
dt

= −Mnl(∇rnG[Γ,R])l, n = 1, · · · , N, l = 1, 2, 3, (3.7)

where (a)l denotes the lth component of a vector a ∈ R3 (1 ≤ l ≤ 3) and all Mnl > 0 are199

constants (called mobility constants). The formula of the gradient ∇rnG[Γ,R] is given in200

(A.1) in Appendix. We use the forward Euler method to solve these equations iteratively201

with a fixed time step.202

Due to the complex molecular interactions of an underlying system, the gradient of203

G[Γ,R] can vary significantly with solute atoms and with different components. If the204

mobility constant Mnl is too large, then the motion of the particle rn in its gradient descent205

direction may possibly overshoot and increase the free energy. If Mnl is too small, the206

free energy may decrease very slowly. To improve the stability and efficiency, we therefore207

adaptively change the mobility constantsMnl in each step of iteration based on the magnitude208

of gradient and the total free-energy value.209

In our implementation, the mobility constants are chosen to be ωM , where the “base”210

mobility ω is updated in each interaction step of the forward Euler method and M is also211

adjustable. The adjustment of M is based on the decrease or increase of the energy with212

a high energy threshold. It is controlled by a relative energy value δG∗ > 0 depending on213

iteration steps, and a shrinking parameter α ∈ (0, 1) that shrinks M if the energy increases214

too much and too often tracked by a counting number Ncnt which has a threshold value N∗
cnt.215

Initially, we set M = 1 and Ncnt = 0.216

Given all the atomic positions after a forward Euler iteration step, with some M > 0
and 0 ≤ Ncnt < N∗

cnt, and the corresponding energy G[Γ,R] calculated and denoted Gold. We
calculate all the gradient of G[Γ,R] at those positions and set

ω =
1

max1≤m≤N,1≤k≤3 |(∇rm(G[Γ,R])k|
. (3.8)

We then move the atomic positions in one time step by the forward Euler iteration for solving217

(3.7) with all Mnl = ωM . We also calculate the energy for the new atomic positions and218

denote it by Gnew. If Gnew < Gold, then we accept the moved solute atomic positions, do219

not change the value of M , increase Ncnt by 1, and continue the iteration. If Gnew > Gold,220

then we choose the threshold δG∗ to be some fraction of Gold and consider two cases. If221

Gnew ≥ Gold + δG∗, then we do not update the atomic positions but shrink M to M := αM222

reset Ncnt = 0 and start over with the next iteration step. If Gnew < Gold + δG∗, then we223

check the counting number Ncnt and consider two cases:224

(1) If Ncnt≥N∗
cnt, which means that the same M has been used for N∗

cnt times, then we do225

not accept the new positions, shrink M to M := αM , and reset Ncnt = 0.226
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(2) If Ncnt < N∗
cnt, we accept the new atomic positions, keep the same M , and increase227

Ncnt by 1.228

Note that Ncnt is the number of steps where the same M is used consecutively. In our229

implementation, we choose α = 1/
√
2, N∗

cnt = 5, and δG∗ to be 5% of Gold.230

3.3 Numerical Algorithm231

Step 1. Initialization. Input all the model parameters from (2.2)–(2.4). In particular, position232

N solute atoms with the center of geometry at the origin by a coordinate translation233

if necessary. Set the computational box Ω = (−L,L)3 and discretize the box with a234

uniform finite-difference grid. Set an initial binary level-set function ϕ(0) to define the235

initial solute-solvent interface Γ0, solute region Ω0
m, and solvent region Ω0

w.236

Set counter Ncnt = 0, count tolerance N∗
cnt = 5, an initial uniform mobility constant237

M = 1, and the time step dt = 1. Set the initial iteration number k = 0 and kmax=238

3000. Set the shrinking parameter α = 1/
√
2. Set the error tolerance Tol1 = 1e-4 for239

the gradient and Tol2 = 1e-5 for atomic positions update.240

Step 2. Get the optimal solute-solvent interface Γk+1 with atomic positions Rk by the binary241

level-set method.242

Step 2.1. Calculate by (3.5) and (3.6) the change of solvation free energy ∆(Gsolv)j on243

all grid cells next to the interface Γk. Sort solvation energy change ∆(Gsolv)j in a244

Min-Heap.245

Step 2.2. Flipping Process:246

while (Smallest ∆(Gsolv)j < 0) do247

Flip : flip the corresponding grid cell with smallest ∆(Gsolv)j.248

Update : check for new grid cells next to the new interface, calculate ∆(Gsolv)j249

for new grid cells, and update ∆(Gsolv)j for old grid cells in the heap.250

Sort : sort solvation energy change ∆(Gsolv)j in a Min-Heap.251

endwhile252

Step 2.3. Define Γk+1 to be the optimal solute-solvent interface from the flipping process.253

Step 3. Update the solute atomic positions by solving the system of equations (3.7).254

Step 3.1. Calculate by (A.1) the gradient ∇rnG[Γ
k+1,Rk] for all n = 1, · · · , N.255

Step 3.2. Test the convergence. If absolute values of ∇rnG[Γ
k+1,Rk] for each solute256

atom in each coordinate < Tol1, then stop the algorithm.257

Step 3.3. Update positions of all moving solute atoms according to equation (3.7) and258

(3.8). Calculate the total free energy change δG[Γk+1,Rk+1] = G[Γk+1,Rk+1] −259

G[Γk+1,Rk]. Set δG∗ = 5%G[Γk+1,Rk].260

Step 3.4. Check the total free energy change:261

if (δG[Γk+1,Rk+1] > δG∗) or ( Ncnt ≥ N∗
cnt and 0 < δG[Γk+1,Rk+1] ≤ δG∗)262

Put all moving solute atoms back to Rk.263

M = αM , Ncnt = 0, go to Step 3.3.264

else265

Ncnt = Ncnt + 1;266

endif267
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Step 4. Calculate the absolute error ∆G[Γk+1,Rk+1]abs and relative error ∆G[Γk+1,Rk+1]rel.268

Step 5. Test the convergence. If either ∆G[Γk+1,Rk+1]rel < Tol2 or ∆G[Γ
k+1,Rk+1]abs < Tol2269

stays continuously for 100 steps, or if the number of iterations reaches to kmax, stop270

the algorithm. Otherwise, go to Step 2.271

We remark that there are two error tolerances and stopping criteria: One is a small272

tolerance 1e-4 for the gradient descent for updating the solute atomic positions. The other273

stop criterion is a small tolerance of relative difference or absolute difference of the total274

free energy. In our experiments, we set the relative difference stop criterion to be 1e-5,275

and absolute difference stop criteria to be 1e-5. To avoid the situation that the free energy276

functional decreases slowly because of small mobility factor Mnl, we determine that the277

system stops only when the relative difference stop criterion or the absolute difference stop278

criterion is satisfied continuously for 100 steps.279

4 GPU Implementation280

In this section, we discuss the parallel implementation of aspects of our free-energy functional281

minimization algorithm for the fast execution of our programs.282

Parallel computing concerns strategies for performing simultaneous computations, usually283

through the use of multiple processors. This approach has become more and more important284

as the abilities of individual processors reach their limits under Moore’s law. Integrated285

GPUs are nearly ubiquitous in today’s client devices such as laptops and desktops. Much286

like dedicated GPUs, the integrated GPUs are also capable of general–purpose computation287

in addition to the traditional graphics role. Furthermore, modern integrated GPUs work the288

same way as those dedicated cards with the exception that they use system memory that is289

shared with the CPU [9]. The recent advent of the use of the graphics processing unit (GPU)290

for general purpose parallel computing, instead of traditionally multiple central processing291

units (CPU’s), has allowed for algorithms that can take advantage of its high throughput292

and hundreds or thousands of cores to achieve new heights in speed. This has, for example,293

revolutionized the subject of deep learning in artificial intelligence.294

We introduce parallel programming, using OpenCL, employing the integrated GPU for295

operations in our free-energy functional minimization algorithm. The operations that are296

particularly amenable to this kind of parallelization are usually made up of a large number297

of smaller, simpler ones, to take advantage of the large number of cores in the GPU that,298

alternatively, must work in lockstep. We find such operations in our computations of the299

LJ and CFA of the electrostatics in the VISM free energy (2.2), the solute-solute interaction300

energy (2.4), and all of their derivatives, combined in (A.1). We separate the parallelization301

into two cases that are treated differently, one handling VISM LJ and electrostatic terms, and302

their derivatives, and the other handling solute-solute interaction terms and their derivatives.303

For the first case, we begin by describing the procedure introduced in [32] for the LJ and
CFA contributions, though in more general terms. These contributions notably both contain
integrals of the form ∫

R3\Ωm

f(r) dVr,
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where f has some complexity in the computation of its values; in the case of LJ, f(r) =∑N
i=1 ULJ(|r − ri|), which requires some computation when the number of solute atoms is

large. With far-field approximations handling the integral outside the computational box Ω,
numerical quadrature for the rest takes the general form∑

k∈I

αkf(rk)∆xk,

where xk are grid points of a grid in Ω, and for some αk ∈ R. This summation is computationally304

intensive as f needs to be evaluated over the grid; in fact, in our problem this needs to305

be performed each time step, when the atoms move. A GPU parallel implementation is306

introduced in [32] to handle the evaluation of f over the grid which parallelizes over the grid307

points, passing out the computation of f at each to the cores. This works especially well308

because there of the large number of grid points, typically hundreds of thousands or millions,309

the GPU cores can work on. Note, in the parlance of OpenCL, the grid points form the310

work-items, which are instead known as threads under CUDA.311

We apply this idea here not only to LJ and electrostatic terms, but also to their derivative312

terms found in the gradient of the VISM free-energy (A.1). These terms also have integrands313

that grow in complexity with the number of solute atoms, thus slowing down computations314

in the case of large numbers of moving atoms. Thus, the same parallelization techniques can315

be adopted to improve runtimes.316

For the solute-solute interaction terms and their derivatives, no integration is present
and no grid points are involved. Instead, all terms involve a summation of some interaction
between solute atoms. Consider, for example, a system’s solute-solute LJ interactions:∑

1≤i≤N

∑
j ̸=i

ULJ(|ri − rj|).

For our parallel implementation, we consider separately the terms∑
j ̸=i

ULJ(|ri − rj|),

and parallelize by passing out these computations for each 1 ≤ i ≤ N to the cores. Note,317

however, there are far fewer solute atoms, typically in the hundreds or thousands, compared318

to the hundreds of thousands or millions of grid points. Thus, the parallelization may not319

be as efficient in comparison with that of our first case.320

One additional note is that while double-precision machine numbers and their arithmetic321

are commonly available in CPU architectures, they are not universally supported on GPU’s,322

where, for traditional graphical purposes, single-precision has been adequate. And though323

more and more GPU architectures now do support double-precision, due to the expansion324

of GPU’s for general purpose computing, single-precision and even half-precision arithmetic325

operations are still used for faster calculations. The drawback in the use of single-precision326

instead of double-precision is in increased round-off error. This especially is of concern327

when performing a large number of operations, where round-off errors can accumulate to328
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intolerable levels. In our application, we find such large numbers of operations in our sums,329

with sums over solute atoms, which can be in the thousands, and over grid points, which can330

be in the millions. For our sums, we adopt the strategy of summing-by-pairs [31], a binary331

tree-based approach to order the operations in such a way as to reduce round-off error.332

In our applications, we find this to result in a nearly negligible amount of error compared333

to double-precision results, allowing us to take advantage of the speed afforded by single-334

precision computations. In future work, we may consider computing with mixed-precision335

machine numbers to better balance round-off error and speed.336

As we shall show below (cf. Tables 2, 3, and 7), the combined results of our choices337

in parallelization and operation orders for sums for single-precision arithmetic significantly338

improve in runtimes even in comparison to a ported CPU parallelization, where the program339

for parallelization using the GPU instead uses available CPU cores. In addition, the table340

reveals that there are few negative effects in our use of single-precision machine numbers341

rather than double-precision. Our resulting parallel GPU implementation serves as the342

linchpin of our computations, as without it, we would not be able to obtain results in any343

reasonable amount of time due to the requirements of the moving atoms.344

All calculations are performed on a 2017 iMac, with 3.50 GHz Intel (R) Core (TM) i5-345

7600 CPU, and the integrated GPU is AMD Radeon Pro 575, where the maximum number346

of compute units is 32. In our work, all sequential computations are executed on 1 CPU347

core, and all parallel computations are executed on the integrated GPU with OpenCL 1.2348

using all 32 compute units.349

5 Numerical Experiments and Applications350

We first apply the binary level-set method and its GPU implementation to two molecular351

systems with fixed solute particles, a system of two parallel charged plates, and the protein352

BphC, and show that the binary level-set method is accurate in qualitatively reproducing the353

known results of those two systems. We then consider the full application of our model and354

numerical methods to two small molecular systems, a two-particle system and the ethane355

molecule, to show the convergence of our algorithm. Finally, we study the p53-MDM2 binding356

process with solute mechanical interactions to demonstrate the efficiency of our methods and357

GPU implementation. Table 1 summarizes the continuum model parameters used in all these358

numerical computations.359

Table 1: Model parameters.

Parameter Symbol Value Unit

temperature T 298 K
solvent number density ρw 0.0333 Å−3

surface tension γ0 0.174 kBT/Å
2

solute dielectric constant εm 1
solvent dielectric constant εw 80
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5.1 Free-energy minimization with fixed solute atoms360

We consider two molecular systems each with fixed solute atomic positions, and apply the361

binary level-set method with GPU implementation to minimize the solvation free-energy362

functional (2.2) of solute-solvent interfaces Γ with all atomic positions ri (1 ≤ i ≤ N)363

fixed. Both systems have been studied extensively with continuous level-set method and364

CPU computations [30,33,35]. Here we show the qualitative accuracy, and efficiency, of our365

new algorithm and implementation.366

Two parallel charged plates. Each of these two plates consists of 6×6 CH2 atoms with a367

square length of about 3 nm. The two plates are placed at a center-to-center distance d. In the368

following, we investigate how (a) the capillary evaporation, (b) the hydrophobic attraction,369

and (c) a possible hysteresis in the free energy are affected by charging up the plates. To370

this end, we assign central charges q1 and q2 to the first and second plates, respectively, with371

|q1| = |q2|. The total charges of these two plates are 36q1 and 36q2, respectively. We study372

like-charged and oppositely charged plates by choosing the values of (q1, q2) to (+0.2e,+0.2e),373

and (+0.2e,−0.2e). The atom-water LJ parameters are ε = 0.262 kBT , σ = 3.15365 Å, and374

the atom-atom LJ are ε = 0.265 kBT and σ = 3.54 Å.375

We first investigate the VISM surfaces of the two plates at different distances with the like-376

charge (+0.2e, +0.2e) with different initial configurations. Figure 3 shows a few snapshots377

of stable 3D equilibrium solute-solvent surfaces of the two parallel charged plates system378

obtained by the binary level set VISM calculations with loose or tight initial interface at379

d = 9 Å, d = 13 Å, and d = 16 Å. In the top row of Figure 3, with the loose initial interface,380

a stable capillary bubble remains between the two charged parallel plates at d = 9 Å and381

d = 13 Å, and the bubble becomes tighter along the enlarging distance. At d = 16 Å, the382

bubble disappears. Comparatively, with the tight initial interface, the equilibrium state is383

wet at d = 9 Å, d = 13 Å, and d = 16 Å.384
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d = 9 Å loose d = 13 Å loose d = 16 Å loose

d = 9 Å tight d = 13 Å tight d = 16 Å tight

Figure 3: Stable 3D equilibrium solute-solvent surfaces of the two parallel charged plates
obtained by the binary level set VISM calculations with loose (top row) or tight (bottom
row) initial interface at d = 9 Å, d = 13 Å, and d = 16 Å. Atomic charges are (+0.2e,+0,2e).

We now examine the potential of mean force (PMF) of the two-plate system with respect385

to the plate-plate separation distance d. This is the VISM free-energy value as a function386

of d, with an additive constant such that the free energy is 0 at the infinite plate-plate387

separation. For a given d, we may have two VISM free-energy minimizing solute-solvent388

interfaces corresponding to a tight and a loose initial surface, respectively. We denote by389

Gpmf
VISM(d) the corresponding minimum free energy of one of the two branches, and denote390

by Gpmf
geom(d), G

pmf
vdW(d), and Gpmf

elec (d) the components of the PMF, corresponding to the first,391

second, and third terms in (2.2), respectively. Precise definition is given in Appendix.392

Figure 4 displays the bimodal behavior and hysteresis of the two different PMF branches393

stemming from the equilibria of wet and dry states, i.e., the VISM free-energy minimizing394

surfaces corresponding to initial tight and loose surfaces. Atomic charges considered here are395

(+0.2e,-0,2e) and (+0,2e, +0,2e), respectively. We can see that like-charged and oppositely396

charged plates give different free-energy branches and hysteresis. For the like-charged cases397

in Figure 4, a strong hysteresis is presented for 8 ≲ d ≲ 15Å. For the oppositely charged398

plates, strong hysteresis is presented for 6 ≲ d ≲ 8Å.399
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Figure 4: Different parts of the PMF of the two parallel charged plates with respect to the
separation distance d, with loose and tight initial surfaces. (a) The geometrical part Gpmf

geom.

(b) The vdW part Gpmf
vdW. The solute-solute vdW interactions are excluded in the curves in

the main frame but included in those in the inset. (c) The electrostatic part Gpmf
elec . The

solute charge-charge interactions are excluded in the curves in the main frame but included
in those in the inset. (d) The total PMF Gpmf

tot . The values of (+0.2e,−0, 2e) with tight
initial interface are used as reference values to show the difference.

In Table 2, we show a comparison of the calculation speed and different parts of the400

free energy using the binary level-set method between GPU single precision code and CPU401

double precision code of the two charged parallel plates system. Three different grid sizes are402

shown. We can observe that the results for free-energy estimates from CPU double precision403

code and GPU single precision code are nearly the same. The improvement of speed using404

GPU can be obtained by comparing the time. The cost time of CPU code is around 5 times405

of the GPU code with three different grid sizes.406

The protein BphC. In this example, we consider biphenyl-2, 3-diol-1, 2-dioxygenase (BphC),407

an enzyme protein (PDB code: 1dhy).408

The functional unit of this protein is a homo-octamer, and each subunit consists of409

two domains. We set up a series of configurations where the two domains are increasingly410

separated from d = 0 to d = 20 Å apart, perpendicular to their interface. The domain411

separation d is chosen here to be the reaction coordinate. Note that the zero domain412

separation corresponds to the native configuration in the crystal structure.413
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Table 2: Comparison of GPU (single precision) and CPU (double precision) for free energy
(kBT ) and its components of two parallel charged plates with different charges (+0.2e,−0, 2e)
at distance d = 10Å. The unit of time is second.

Grid Total Energy Surface Energy vdW Energy CFA Total Time
Points GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU

723 -2099.5 -2099.5 631.8 631.8 -98.3 -98.3 -2632.9 -2633.0 0.6 3.0

1443 -2090.8 -2090.8 640.3 640.3 -97.9 -97.9 -2633.1 -2633.2 4.0 21.2

2883 -2082.0 -2082.0 648.3 648.3 -110.4 -110.4 -2619.9 -2619.9 29.9 163.9

Three pairs of stable equilibrium solute-solvent interfaces of BphC at d = 8 Å, d = 12 Å,414

and d = 16 Å with tight or loose initial interfaces are presented in Figure 5. The top row415

is with the loose initial interfaces, and the bottom row is with the tight initial interfaces.416

We observe that the equilibria of the loose initial interface wrap the two domains of BphC417

at d = 8 Å and d = 12 Å, and the equilibria surface becomes tighter along the increasing418

distance. At d = 16 Å, the interfaces of two domains separate, changing to the wet state. In419

contract, with the tight initial interface, all equilibria states are wet.420

In Figure 6, different parts of the PMF of BphC with respect to the separation of two421

domains, from d = 0 to d = 20Å obtained by our binary level set calculations using tight and422

loose initial surfaces are displayed. These PMFs exclude the solute-solute vdW interactions.423

We observe the bimodal hydration behavior: the branches of different parts of the PMF of424

BphC between 4 Å and 14 Å, indicating that initial interfaces can strongly affect the PMF425

of BphC.426

d = 8Å loose d = 12Å loose d = 16Å loose

d = 8Å tight d = 12Å tight d = 16Å tight

Figure 5: Stable 3D equilibrium solute-solvent surfaces of the BphC system obtained by the
binary level set VISM calculations with loose (top) or tight (bottome) initial interface at
d = 8 Å, d = 12 Å, and d = 16 Å.
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Figure 6: Different parts of the PMF of BphC with respect to the domain separations, with
loose and tight initial surfaces. (a) The geometrical part Gpmf

geom. (b) The vdW part Gpmf
vdW.

The solute-solute vdW interactions are excluded in the curves in the main frame but included
in those in the inset. (c) The electrostatic part Gpmf

elec . The solute charge-charge interactions
are excluded in the curves in the main frame but included in those in the inset. (d) The
total PMF Gpmf

tot . The solute-solute vdW interactions are excluded in the curves in the main
frame but included in those in the inset.

In Table 3, we show a comparison of the calculation speed and different parts of the free427

energy with the binary level-set method between GPU single precision code and CPU double428

precision code of the BphC. Three different grid sizes are shown. We observe that the results429

from CPU double precision code and GPU single precision code are nicely consistent. With430

the grid size of 503, 1003, and 2003, the time cost of CPU code is around 15 times, 78 times,431

and 216 times correspondingly to the time cost of the GPU code.432

5.2 Explicit-solute implicit-sovent free-energy minimization433

In this section, we conduct numerical experiments on two molecuales that are treated as434

nonpolar systems (i.e., no charges) to demonstrate the efficiency of our free-energy minimization435

algorithm.436

A two-atom molecule. We consider an artificial molecular system of two atoms. The437

solute-water LJ parameters are σ = 3.57 Å and ε = 0.431 kBT . We additionally assume438
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Table 3: Comparison of GPU (single precision) and CPU (double precision) for free energy
(kBT ) and its components of BphC with the native configuration in the crystal structure.
The unit of time is second.

Grid Total Energy Surface Energy vdW Energy CFA Total Time
Points GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
503 52133.7 52134.2 1588.2 1588.2 53116.8 53117.4 -2571.2 -2571.3 4.1 60.6
1003 52251.8 52252.3 1658.3 1658.3 53130.4 53131.0 -2537.0 -2537.0 4.9 381.1
2003 52303.7 52304.2 1654.3 1654.3 53146.7 53147.3 -2497.3 -2497.3 13.5 2911.0

that the two atoms are bonded, with the spring constant in the bond stretching energy439

A = 800 kBT/Å
2. We set the computational box to be (−8, 8)3 Å3.440

We design two sets of experiments on the optimization process and equilibria with different441

initial configurations. In the first set of experiments, Experiment 1.1.a and Experiment 1.1.b,442

we set the equilibrium bond length r0 = 3 Å. In the second set of experiments, Experiment443

1.2.a and Experiment 1.2.b, we set the equilibrium bond length r0 = 8 Å. In each set of444

experiments, we test two types of initial configurations. In Experiment 1.1.a and Experiment445

1.2.a, we place initially the two solute atoms far away from each other so that their distance446

is much larger than the equilibrium bond length. We place the two solute atoms at positions447

(7, 0, 0) and (−7, 0, 0), respectively. In Experiment 1.1.b and Experiment 1.2.b, we place448

initially the two solute atoms very close to each other so that their distance is smaller than449

the equilibrium distance. Specifically, we place the two solute atoms initially at positions450

(0.5, 0, 0) and (−0.5, 0, 0), respectively.451

In Figure 7, the minimization processes of Experiment 1.1.a and Experiment 1.1.b are452

displayed. The red dots represent two atoms, and the blue segment represents the bond. In453

the top row of Figure 7, we can see that initially surface consists of two disconnected spheres,454

then two atoms get closer, and spheres merge, until the system reaches an equilibrium state.455

In the bottom row of Figure 7, initially, the two atoms are very close to each other, then the456

atoms are pushed apart due to the force from strong bonding energy, the interface is moved457

accordingly, and then the system reaches to an equilibrium state.458

We observe from Table 4 that that atoms have the exact same positions and free energy459

in the equilibrium from the two experiments 1.1.a and 1.1.b, indicating that the molecular460

system in the two simulations reached the same equilibrium.461

462
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(a) (b) (c) (d)

(e) (f) (g) (h)

463

Figure 7: The free-energy minimization for a two-atom system. Top: Experiment 1.1.a.
The snapshots are taken at (a) initial stage step 0, (b) step 5, (c) step 10, and (d) step 63,
reaching nearly the steay state. Bottom: Experiment 1.1.b. The snapshots are taken at (e)
initial stage step 0, (f) step 2, (g) step 4, and (h) step 53, reaching nearly the steay state.

Table 4: Comparison of experiments 1.1.a and 1.1.b of a two-atom system.

Experiment Initial position Final position Bond length Free Energy
1.1.a (7,0,0) (-7,0,0) (1.50,0,0) (-1.498,0,0) 3.00 21.85
1.1.b (0.5,0,0) (-0.5,0,0) (1.50,0,0) (-1.498,0,0) 3.00 21.85

464

(a) (b) (c) (d)

(e) (f) (g) (h)

465

Figure 8: The free-energy functional minimization algorithm for a two-atom system. Top:
Experiment 1.2.a. The screenshots are taken at (a) initial stage step 0, (b) step 2, (c) step5,
and (d) the steay state step 62. Bottom: Experiment 1.2.b. The screenshots are taken at
(e) initial stage step 0, (f) step 3, (g) step 7, and (h) the steay state step 64.
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Figure 8 shows the minimization processes of Experiment 1.2.a and Experiment 1.2.b. In466

the top row of Figure 8, we can see that initially surface consists of two disconnected spheres,467

then two atoms get closer, until the system reaches an equilibrium state. Comparing with468

the equilibrium of Experiment 1.1.a, the spheres are not merged due to a larger bond length469

8Å. In the bottom row of Figure 8, initially, the two atoms are very close to each other,470

then the atoms are pushed apart due to the force from strong bonding energy, the interface471

moves and then splits apart, then the system reaches to an equilibrium state with which the472

interface consists of two separate spheres. Table 5 shows that the two experiments 1.2.a and473

1.2.b reach the same equilibrium.474

Table 5: Comparison of Experiments 1.2.a and 1.2.b of a two-atom system.

Experiment Initial position Final position Bond length Free Energy
1.2.a (7,0,0) (-7,0,0) (4.00,0,0) (-4.00,0,0) 8.00 33.93
1.2.b (0.5,0,0) (-0.5,0,0) (4.00,0,0) (-4.00,0,0) 8.00 33.93

An ethane molecule. We consider an ethane molecule C2H6 in water and take from475

[13, 14, 17] the solute atomic positions and force field parameters. Other parameters are as476

follows: the carbon-water LJ parameters σ = 3.4767 Å and ε = 0.2311 kBT , the hydrogen-477

water LJ parameters σ = 3.1017 Å and ε = 0.0989 kBT , the carbon-carbon LJ parameters478

σ = 3.4 Å and ε = 0.344 kBT , the carbon-hydrogen LJ parameters σ = 3.025 Å and ε =479

0.147kBT , and the hydrogen-hydrogen LJ parameters σ = 2.650 Å and ε = 0.063 kBT .480

In the ethane molecule, each atom is connected to other atoms through bonding, bending,481

and torsion structure. The effect of vdW interaction energy among unbonded pairs of solute482

atoms is relatively less important when compared with molecular mechanical interactions, so483

in our simulation experiment of the ethane molecule, we neglect the vdW interaction energy484

among unbonded pairs of solute atoms.485

We design three different initial configurations of the ethane molecule from its equilibrium:486

• In Experiment 2.1.a, we stretch all hydrogen-carbon bonds to be 2Å.487

• In Experiment 2.1.b, we stretch or shrink all hydrogen-carbon bonds such that hydrogen-488

carbon bonds have the length of 1 Å, 1.25 Å, 1.5 Å, 1.75 Å, 2 Å, and 2.25 Å.489

• In Experiment 2.2, we introduce a small fluctuation, then rotate one set of three490

hydrogen-carbon bonds 50 degrees with respect to the carbon-carbon bond.491

In Table 6, the bond lengths of hydrogen-carbon bonds and the carbon-carbon bond in492

their equilibrium of Experiment 2.1.a, Experiment 2.1.b, and Experiment 2.2 are compared.493

It is clear that in the equilibrium, all hydrogen-carbon bonds in three experiments have the494

same length, which is consistent with the reference length of hydrogen-carbon bond 1.093 Å.495

The carbon-carbon bond in each of the three experiments is the same as the reference length496

1.508 Å. This verifies the accuracy of our free-energy minimization algorithm.497
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Table 6: Comparison of bond lengths (Å) of ethane in equilibrium from different initial
configurations. Remark: H3, H4, and H5 are hydrogen atoms bonded with the carbon atom
C1, H6, H7, and H8 are hydrogen atoms bonded with the carbon atom C2.

Experiments Experiment 2.1.a Experiment 2.1.b Experiment 2.2
Bond list Initial Length Final Length Initial Length Final Length Initial Length Final Length

C1-H3 2 1.093 1 1.093 1.090 1.093
C1-H4 2 1.093 1.25 1.093 1.090 1.093
C1-H5 2 1.093 1.5 1.093 1.090 1.093
C2-H6 2 1.093 1.75 1.093 1.090 1.093
C2-H7 2 1.093 2 1.093 1.090 1.093
C2-H8 2 1.093 2.25 1.093 1.090 1.093
C1-C2 1.77 1.508 1.77 1.508 1.540 1.508

Figure 9 displays the snapshots of minimization process of Experiment 2.2. The red498

dots represent carbon atoms, the blue dots represent the hydrogen atoms, the light blue499

segments and green segments represent the hydrogen-carbon bonds, and the black segment500

represents the carbon-carbon bond. It is captured that during the relaxation, the set of501

three hydrogen-carbon bonds rotated back to their equilibrium, and all hydrogen-carbon502

bonds have the same length. Free energy of steady state in Experiment 2.1.a is 3.692 kBT ,503

the free energy of steady state in Experiment 2.1.b is 3.685 kBT , and the free energy of504

steady state in Experiment 2.2 is 3.687 kBT . Thus, the three experiments get to the same505

equilibria. We remark that the free energy here does not include the vdW interaction energy506

among unbonded pairs of solute atoms.507

Figure 9: The free-energy minimization for ethane from Experiment 2.2. Snapshot taken at
step 0 (Left), step 200 (Middle), and step 1500, reaching to a steady state (Right).

In Figure 10, we plot the free energy vs. iteration steps in numerical computations for508

Experiment 2.1.a and Experiment 2.2. In Experiment 2.1.a, initially, the free energy is very509

large, that is because the stretch or shrink of the initial bond length causes a large value of510

the bonding energy. We can see that the free energy decays very fast in the first few steps,511

which is caused by the dominant force from the bonding energy. It takes around 1000 steps512

to adjust positions of solute atoms in ethane molecule to reach the equilibrium. In contract,513
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Figure 10: The free energy (kBT ) vs. the computational step in the free-energy minimization
for an ethane molecule in Experiment 2.1.a and Experiment 2.2. First 15 (50) computational
steps are specified in the inset of each subfigure.

the initial free energy of Experiment 2.2 in Figure 10 is a relatively small value, as we only514

introduced a small fluctuation to the initial atomic positions and the rotation of a set of three515

hydrogen-carbon bonds did not cause large free energy change. We observe that the rate516

of free-energy change at around the 3rd step and 200th computational step becomes slower517

and slower, which indicates that our free-energy minimization algorithm was adjusting the518

suitable mobility factor M during the minimization process. Although the initial free energy519

is small, it takes more than 1400 steps to rotate the hydrogen-carbon bonds back to the right520

position and reach the equilibrium.521

5.3 Simulation of protein-protein interactions522

In this section, we choose a biologically important and realistic system, the p53/MDM2523

protein complex, and investigate the binding behavior using our free-energy minimization524

model and algorithm. To make the calculations of molecular movement easier, the receptor525

protein MDM2 here is fixed.526

We use the CHARMM36 force field [2,16,21,22] for our VISM simulations for the binding527

of p53 and MDM2.528

Table 7 shows the solvation free energy and its components obtained by our VISM529

simulations for the bound complex p53/MDM2, and the computational times of the simulations530

with the GPU single precision and the CPU double precision, respectively.531

During those simulations, we relax the relative difference stop criterion and absolute532

difference stop criteria to be 1e-3, just for the efficiency comparison of the GPU code and533

the CPU code. We set the initial configuration of p53/MDM2 to be a tight initial interface534

for atomic position with small fluctuations of p53/MDM2 in the bound complex, where the535

bound complex is taken from the Protein Data Bank (PDB code: 1ycr.pdb). It can be536

observed in Table 7 that the difference between GPU code with single precision data type537

and CPU with double precision data type is less than 1%, but the cost time of CPU is more538

than 78 times, and 307 times slower than the cost time of GPU with number of grid points539
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503, and 1003, correspondingly.540

Table 7: Comparison of GPU (single precision) and CPU (double precision) for free energy
(kBT ) and its components of p53/MDM2 in the steady state. The unit of time is minute.

Grid Total Energy Surface Energy vdW Energy CFA Total Time
Points GPU CPU GPU CPU GPU CPU GPU CPU GPU CPU
503 -214.0 -212.0 800.7 802.7 -453.1 -453.0 -561.6 -561.7 10.0 784.7
1003 -157.3 -159.1 833.8 834.0 -441.9 -440.6 -549.2 -552.4 16.7 5128.6
2003 -140.9 - 836.5 - -434.4 - -543.0 - 62.6 -

We further investigate the binding behavior of p53 and MDM2 with our free-energy541

minimization method and algorithm. Note that, here we use a grid size h = 0.5 Å, the542

relative difference stop criterion and absolute difference stop criterion are 1e-5. We construct543

the initial configuration with a tight initial interface by pulling p53 away from the MDM2544

pocket in the bound complex along the line passing through the geometrical centers.545

In Figure 11, a few snapshots of numerical results of p53/MDM2 are displayed, showing546

the minimization process. The position of the protein MDM2 is fixed, positions of p53547

atoms are adjusted by the free-energy minimization process. We color each piece of surface548

according to whether its closet solute atom comes from MDM2 (red) or p53 (blue) to show549

the relative positions of MDM2 and p53. In the initial configuration, the protein p53 and550

the receptor protein MDM2 are separated as we can observe a hole between them; that is a551

small region filled with water. In the process, the relative positions of p53 and MDM2 are552

adjusted, p53 and MDM2 become closer and closer. In the equilibrium, the hole disappears,553

and the two proteins are combined together.554

Figure 11: The free-energy minimization for p53/MDM2. The snapshots are taken at (a)
initial stage, i.e., step 0, (b) step 100, (c) step 200, and (d) step 377, reaching nearly the
steady state. Note that, in order to show the relative positions of MDM2 and p53, we color
each piece of surface according to whether its closest solute atom comes from MDM2 (red)
or p53 (blue).

6 Conclusions555

This work presents the development of a GPU parallel free-energy minimization method and556

algorithm with the fast binary level-set method and an adaptive-mobility gradient descent557
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method for the variational explicit-solute implicit-solvent (VESIS) molecular simulations.558

Minimization of the free-energy functional determines an equilibrium interface and an equilibrium559

molecular structure.560

Our free-energy minimization is an iterative process with two stages. In the first stage,561

we fix solute atoms, then minimize the solvation free energy to obtain an optimal solute-562

solvent interface. In the second stage, with a fixed interface, we relax the solute atoms using563

a gradient descent type method. The proposed minimization algorithm is implemented in564

parallel on GPUs with single precision.565

We have presented a series of numerical experiments and have demonstrated the accuracy566

and efficiency of our numerical methods and algorithm for the free-energy minimization. In567

particular, our numerical experiments of potentials of mean force for two charged systems, two568

charged parallel plates, and the protein BphC, have shown that VISM with the binary level-569

set method can capture well the sensitive response of capillary evaporation to the charge in570

hydrophobic confinement and the polymodal hydration behavior. Moreover, our numerical571

experiments for small molecular systems, the two-atom system and an ethane molecule,572

have demonstrated that our algorithm can capture topological changes of the solute-solvent573

interfaces as well as describe the equilibrium molecular structure. A key application of our574

algorithm is for large biomolecular simulations. We have applied our free-energy minimization575

method and algorithm to a realistic system, the p53/MDM2 protein complex. Our model576

and method describes the relaxation process of the binding of these two molecules.577

To verify the performance of our algorithm with the parallel implementation on the578

integrated GPU, we have compared for different molecular systems our computational results579

and computational times with both of the CPU with double precision and the GPU with580

single precision. We observe that the GPU implementation is much more efficient than the581

CPU implementation. The GPU with single precision combining the pairwise summation582

can efficiently limit the grow of round-off errors. For small molecular systems such as the583

two charged parallel plates the computational time with the CPU is around 5 times of that584

with the GPU. For a relatively large molecular system, such as p53/MDM2, and fine finite-585

difference grids, our GPU implementation works especially well, reaching a speed about 100586

times faster than that of the CPU implementation. In the meantime, both implementations587

lead to the same minimum free energies and even their individual components.588

To speed up the computations further, our immediate next step is to construct a hybrid589

CPU-GPU architecture to combine CPU parallel computing and the integrated GPU parallel590

computing together. For the CPU parallel computing, we can use a standard domain591

decomposition approach. The communication between sub-domains is based on the message-592

passing interface (MPI). Additionally, we would like to explore the high performance efficiency593

and good scaling of parallel computing on dedicated GPUs.594

With our fast algorithm and GPU code, we can now carry out flexible VESIS-Monte595

Carlo simulations for the binding of two proteins in which both the solute-solvent interface596

and the set of solute atomic positions change in each step of the Monte Carlo move.597
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Appendix598

Gradient of G[Γ,R]. Fix n with 1 ≤ n ≤ N. We have

∇rnG[Γ,R] =
1

8π2ε0

(
1

εw
− 1

εm

)∫
Ωw

(
N∑
i=1

Qi(r− ri)

|r− ri|3

)(
Qn

|r− rn|3

)
dVr

+ ρ0

∫
Ωw

U ′
sw(|rn − r|) rn − r

|rn − r|
dVr +

∑
(i,j)′

δniG
′ss
elec(|ri − rj|)

ri − rj
|ri − rj|

+
∑
(i,j)′

δniU
′
ss(|ri − rj|)

ri − rj
|ri − rj|

+
∑
(i,j)

δniAij(|rij − r0ij|)
ri − rj
|ri − rj|

+
∑
(i,j,k)

∇rnWbend(ri, rj, rk) +
∑

(i,j,k,l)

∇rnWtorsion(ri, rj, rk, rl), (A.1)

where δni = 1 if n = i and 0 otherwise.599

Force calculations of molecular mechanical interactions. For fixed ri, rj, and rk,
denote the vector from rj to ri by qji = ri − rj for any i and j and the length of qji by
qji = |qji|. We have

∇rnWbend(ri, rj, rk) = Bijk(θijk − θ0ijk)∇rnθijk, n = i, j, k,

where

∇riθijk =
1

sin θijk

(
qji · qjk

q3jiqjk
qji −

1

qjiqjk
qjk

)
,

∇rkθijk =
1

sin θijk

(
qji · qjk

q3jkqji
qji −

1

qjiqjk
qji

)
,

∇rjθijk =
1

sin θijk

[(
1

qjiqjk
− cos θijk

q2ji

)
rji +

(
1

qjiqjk
− cos θijk

q2jk

)
rjk

]
.

Recall for for fixed ri, rj, rk, and rl that

Wtorsion(ri, rj, rk, rl) =
6∑

n=0

Cn[1 + cos(nτ − ψn)],

where ψn is the phase factor, which is introduced to shift the zero of the torsion potential.
The phase angles ψn are usually chosen so that terms with positive Cn has minima at 180◦

(i.e., for odd n, ψn = 0◦ and for even n, ψn = 180◦ ). We denote

q1 = qij, q2 = qjk, q3 = qkl,
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u = q1 × q2, v = q2 × q3,

τ = τijkl, Λ = Λijkl = cos τ =
u · v
|u||v|

,

Cn = Cn,ijkl, n = 1, 2, 3, 4, 5, 6.

Due to the fact that ψn = 0◦ or 180◦, we derive

∇rnWtorsion(ri, rj, rk, rl)

= ∇rnΛ[(C1 cos(ψ1)− 3C3 cos(ψ3) + 5C5 cos(ψ5))

+ Λ(4C2 cos(ψ2)− 16C4 cos(ψ4) + 36C6 cos(ψ6)) + Λ2(12C3 cos(ψ3)− 60C5 cos(ψ5))

+ Λ3(32C4 cos(ψ4)− 192C6 cos(ψ6)) + Λ4(80C5 cos(ψ5)) + Λ5(192C6 cos(ψ6))],

where

∇riΛ = −∇q1Λ,

∇rjΛ = ∇q1Λ−∇q2Λ,

∇rkΛ = ∇q2Λ−∇q3Λ,

∇rlΛ = ∇q3Λ,

and

∇q1Λ =
(q2 × v)|u|2 − (u · v)(q2 × u)

|u|3|v|
,

∇q2Λ =
(−q1 × v)|u|2 + (u · v)(q1 × u)

|u|3|v|
+

(q3 × u)|v|2 − (u · v)(q3 × v)

|u||v|3
,

∇q3Λ =
(−q2 × u)|v|2 + (u · v)(q2 × v)

|u||v|3
.

Potentials of Mean Force. The potential of mean force (PMF) is a general term for the600

effective interaction between solutes that stems from direct solute-solute interactions and601

that is mediated by the solvent. It is usually defined with respect to a reaction coordinate as602

the difference between the free energy of solvated state at a given coordinate d and that at603

a fixed, reference coordinate dref . Here, we recall the definition of PMF for our VISM [30].604

For a solute-solvent interface Γ, we denote by Ggeom[Γ], GvdW[Γ], and Gelec[Γ] the first,
second, and last term in GVISM[Γ] (2.2), respectively. Fix now a finite coordinate d. Denote
by Γd a corresponding VISM optimal surface, i.e., a stable equilibrium solute-solvent interface
minimizing locally the VISM solvation free-energy functional. We define the (total) PMF to
be the sum of its separate contributions

Gpmf
tot (d) = Gpmf

geom(d) +Gpmf
vdW(d) +Gpmf

elec (d),

where

Gpmf
geom(d) = Ggeom[Γd]−Ggeom[Γ∞],
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Gpmf
vdW(d) = GvdW[Γd]−GvdW[Γ∞] +

M∑
i=1

N∑
j=M+1

Ui,j(|xi − xj|),

Gpmf
elec (d) = Gelec[Γd]−Gelec[Γ∞] +

1

4πεmε0

M∑
i=1

N∑
j=M+1

QiQj

|xi − xj|
.

Here a quantity at∞ is understand as the limit of that quantity at a coordinate d′ as d′ → ∞.605

The double-sum terms above are the solute-solute vdW and charge-charge interactions.606

As d becomes large, the VISM optimal solute solvent interface Γd becomes the union of607

two separate VISM optimal solute-solvent interface ΓI and ΓII , both independent of d. They608

are obtained by minimizing the VISM free energy functional for the corresponding groups609

of fixed, solute atoms. If we denote by GΓI
and GΓII

the corresponding minimum VISM610

free energies for these individual groups of atoms, then GΓ∞ = GΓI
+ GΓII

Similarly, each611

component of the VISM free energy is the sum of that for the two groups of solute atoms,612

i.e., G in the above equation can be replaced by Ggeom, or GvdW or Gelec.613
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