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IMMERSED-INTERFACE FINITE-ELEMENT METHODS FOR
ELLIPTIC INTERFACE PROBLEMS WITH NONHOMOGENEOUS

JUMP CONDITIONS∗
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Abstract. In this work, a class of new finite-element methods, called immersed-interface
finite-element methods, is developed to solve elliptic interface problems with nonhomogeneous jump
conditions. Simple non–body-fitted meshes are used. A single function that satisfies the same non-
homogeneous jump conditions is constructed using a level-set representation of the interface. With
such a function, the discontinuities across the interface in the solution and flux are removed, and
an equivalent elliptic interface problem with homogeneous jump conditions is formulated. Special
finite-element basis functions are constructed for nodal points near the interface to satisfy the homo-
geneous jump conditions. Error analysis and numerical tests are presented to demonstrate that such
methods have an optimal convergence rate. These methods are designed as an efficient component
of the finite-element level-set methodology for fast simulation of interface dynamics that does not
require remeshing.
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1. Introduction. We consider numerical solution of the elliptic interface prob-
lem

−∇ · β−∇u = f in Ω−,(1.1)

−∇ · β+∇u = f in Ω+,(1.2)

[u]Γ = w,(1.3) [
β
∂u

∂n

]
Γ

= Q,(1.4)

u = g on ∂Ω.(1.5)

Here, Ω ⊂ R
2 is a bounded domain with its boundary ∂Ω. Both Ω− and Ω+ are sub-

domains of Ω such that Ω−∩Ω+ = ∅ and Ω−∪Ω+ = Ω, where an overline denotes the
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closure; see Figure 1.1 for an illustration. For simplicity, we assume that Ω−∩∂Ω = ∅.
We denote Γ = Ω− ∩ Ω+ and call it the interface separating Ω− and Ω+. We shall
assume that Γ is sufficiently smooth. We also denote by n the unit vector normal to
Γ pointing from Ω− to Ω+, or the unit exterior normal to ∂Ω, and by ∂/∂n or ∂n the
corresponding normal derivative.

Γ

Ω n

Ω

Ω

+

_

Fig. 1.1. The geometry of an elliptic interface problem.

All the functions β, f : Ω → R, w, Q : Γ → R, and g : ∂Ω → R are given. As
usual, for any function ξ : Ω → R, we denote the restrictions of ξ on Ω− and Ω+ by

ξ− = ξ|Ω− and ξ+ = ξ|Ω+ ,

respectively, and we denote by

[ξ]Γ (x) = lim
y→x,y∈Ω+

ξ+(y) − lim
y→x,y∈Ω−

ξ−(y)

the jump of ξ across the interface Γ at x ∈ Γ, when the unique limiting values on Γ
of ξ from both sides of Γ exist. We assume that β− and β+ are smooth and bounded
on Ω− and Ω+, respectively,

(1.6) β(x) ≥ β0 ∀x ∈ Ω,

for some constant β0 > 0, f ∈ L2(Ω), all w, Q, and g are smooth and bounded.
Equations (1.3) and (1.4) are nonhomogeneous interface or jump conditions.

Elliptic interface problems (1.1)–(1.5) with such jump conditions arise in many areas.
For example, in a Burton–Cabrera–Frank-type model for epitaxial growth of thin
films, the adatom (adsorbed atom) density that solves the diffusion equation on ter-
races, and the corresponding flux, can have jumps across interfaces that represent
atomic steps [3, 5, 6]. Another example is that the reaction potential of electrostatics
of a solvation energy satisfies a nonhomogeneous jump condition for the flux [13].

If the jump conditions are homogeneous, i.e., w = 0 and Q = 0 on Γ (cf. (1.3)
and (1.4)), then the problem (1.1)–(1.5) is equivalent to that of finding u ∈ H1(Ω)
with u = g on ∂Ω such that∫

Ω

β∇u · ∇v dx =

∫
Ω

fv dx ∀v ∈ H1
0 (Ω).

In general, we can extend the nonhomogeneous jump w : Γ → R to a piecewise smooth
function ŵ : Ω → R such that

[ŵ]Γ = w and ŵ = g on ∂Ω.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Then, the problem (1.1)–(1.5) is equivalent to the problem for u = q + ŵ with q ∈
H1

0 (Ω) uniquely determined by

(1.7)

∫
Ω

β∇q · ∇v dx =

∫
Ω

fv dx−
∫

Γ

Qv ds−
∫

Ω

β∇ŵ · ∇v dx ∀v ∈ H1
0 (Ω).

In a standard body-fitted finite-element method for solving the problem in the
weak formulation (1.7), the interface is covered by a low dimensional finite-element
mesh, and the extension of w : Γ → R to ŵ : Ω → R can be made by finite-element
approximations.

In this work, we develop a class of finite-element methods based on non–body-
fitted finite-element meshes to solve the elliptic interface problem (1.1)–(1.5). Such a
method has the following distinguished features.

(a) A fixed finite-element mesh that allows the interface to cut through edges of
elements is used.

(b) Both the jumps w : Γ → R and Q : Γ → R are extended locally by a single
function using a level-set representation of the interface Γ. The extensions
are necessary to transfer the original problem to a new one with homogeneous
jump conditions so that the immersed finite-element methods developed in
[18] can be applied. The new methods make it possible to maintain second
order accuracy on the elements near the interface; see sections 2 and 5.

(c) Special finite-element basis functions for nodal points near the interface are
constructed to satisfy the homogeneous jump conditions; see section 4.

(d) The resulting linear system of discretization is symmetric positive definite.
(e) Optimal convergence rates, the same as those for a body-fitted finite-element

method, are achieved; see section 3 for basic error estimates and section 6 for
numerical results on such convergence properties.

Our methods incorporate the finite-element discretization into the framework of
an immersed-interface method for interface problems, and we therefore call them
immersed-interface finite-element methods. The basic idea of an immersed-interface
method is to incorporate the jump conditions in constructing basis functions. In a
finite-difference immersed-interface method, the jump conditions are enforced through
finite-difference equations on grid points near the interface. In our immersed-interface
finite-element methods, the jump conditions are enforced through the construction of
special finite-element basis functions that satisfy the homogeneous interface condi-
tions. Clearly, such basis functions depend on the interface location and the jump w.
Some of the related work can be found in [7, 12].

The development of our methods is strongly motivated by the need for a fast and
accurate solver of elliptic interface problems that is required in each time step in a
long-time level-set simulation of interface dynamics without remeshing. Such simu-
lation has been a powerful numerical approach in understanding material properties,
biological processes, and many other important phenomena in science and engineering
[20, 21, 22].

The finite-element spaces constructed in this paper are conforming ones that
contain piecewise P1 polynomials. The interpolation error is therefore of second order.
If the solution to the elliptic interface problem is piecewise smooth, or, more precisely,
u± ∈ C2(Ω±), which is true for many applications, then the standard convergence
results are true for our finite-element methods. This means that our finite-element
solution is first order accurate in the H1 norm and second order accurate in the
L2 norm. In this work, we construct only some two-dimensional linear and quadratic
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triangular immersed-interface finite elements. However, our framework described here
can be used for high order immersed-interface finite elements and for more general
elliptic interface problems in two and three space dimensions.

We use the zero level set of a Lipschitz continuous function particularly, a good
approximation of the signed distance function, to represent the interface Γ. For such
a level-set function, the interface can cut the interface only once between two grid
lines. The resolution of the interface Γ is determined by the level-set function. We
note that there are plenty of discussions in the literature about how to construct the
level-set function for an interface Γ; see, e.g., [20, 22]. If the interface is complicated
in reference to a mesh, then it may not be resolved well by the level-set function.
Consequently, the finite-element solution obtained from our method may not resolve
all the fine details of the solution. A finer mesh is then needed to resolve the geometry
and the solution.

Our work combines the development of a new formulation of underlying prob-
lems, construction of new elements, basic error estimates, and numerical experiments.
The analysis in our work focuses on two parts: one is the algorithm of removing
source singularities, and the other is the interpolation error estimate for some of the
immersed-interface finite-element approximations. We have not tried to deal in this
paper with the analysis of other errors, such as those of the approximation of the
interface Γ by Γh, numerical quadrature, round-off errors, etc.

In section 2, we present a new weak formulation of the elliptic interface problem
(1.1)–(1.5) with a special treatment of nonhomogeneous jump conditions. In section 3,
we describe the framework of our immersed-interface finite-element methods and pro-
vide basic error estimates. In section 4, we construct several linear or quadratic
immersed-interface finite-element spaces and obtain their corresponding interpolation
errors. In section 5, we give some details of implementation of our methods. In
section 6, we present numerical results. Finally, in section 7, we draw conclusions.

2. Weak formulation. We first review the level-set representation of the inter-
face Γ which is assumed to be smooth. Let ϕ : Ω → R be a continuous function that
satisfies

(2.1) ϕ(x)

⎧⎪⎪⎨
⎪⎪⎩

< 0 if x ∈ Ω−,

= 0 if x ∈ Γ,

> 0 if x ∈ Ω+.

We call such a function ϕ : Ω → R a level-set function that represents the interface
Γ. For ρ > 0, we denote the ρ-neighborhood of Γ in Ω by

N(Γ, ρ) = {x ∈ Ω : dist (x,Γ) < ρ},

where dist (x,Γ) is the distance from x to Γ. We assume that there exists ρ0 > 0 such
that N(Γ, ρ0) ⊂ Ω, and

(2.2) ϕ is smooth and |∇ϕ| > 0 in N(Γ, ρ0).

We note that the unit normal n to Γ, pointing from Ω− to Ω+, is given by

(2.3) n =
∇ϕ

|∇ϕ| .
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The signed distance function

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

− dist (x,Γ) if x ∈ Ω−,

0 if x ∈ Γ,

+ dist (x,Γ) if x ∈ Ω+

is a typical level-set function that satisfies our assumptions.
We now turn to the description of our treatment of nonhomogeneous jump con-

ditions. We first need the following lemma.
Lemma 2.1. Let ρ > 0 be small enough. Then, for any x ∈ N(Γ, ρ), there exists

a unique x̂ ∈ Γ such that

(2.4) |x− x̂| = dist (x,Γ).

Moreover,

(2.5)
x− x̂

|x− x̂| =

{
− n(x̂) if x ∈ Ω−,

+ n(x̂) if x ∈ Ω+,

where n(x̂) is the unit normal to Γ at x̂, pointing from Ω− to Ω+.
Proof. Without loss of generality, let us assume that, in a local Cartesian coordi-

nate system, x = (0, 0) is the origin, and the interface nearby is a graph of a smooth
function η = η(s) that is nonzero for any s in a certain range. The distance from the
origin to any point (s, η(s)) on the interface is then given by

√
I(s) < ρ with

I(s) = s2 + [η(s)]2.

Setting I ′(s) = 0, we get η′(s) = −s/η(s). This implies (2.5), since (−1, η′(s)) is
parallel to the normal at (s, η(s)). Moreover,

I ′′(s) = 2 + 2[η′(s)]2 + 2η(s)η′′(s)

is positive, since I(s), and hence η(s), is small enough, whenever ρ > 0 is small
enough. Thus, there exists a unique s that minimizes I(s). This implies the existence
and uniqueness of x̂ that satisfies (2.4).

In what follows, we fix ρ0 > 0 as in (2.2). We let ρ ∈ R be given as in the above
lemma and assume that 0 < ρ < ρ0. We define wρ : Ω → R and Qρ : Ω → R to be
the extensions of w : Γ → R and Q : Γ → R, respectively, that satisfy the following.

E1. Both wρ and Qρ are smooth on Ω.
E2. wρ(x) = w(x̂) and Qρ(x) = Q(x̂) for any x ∈ N(Γ, ρ), where x̂ is defined as

in Lemma 2.1.
E3. wρ(x) = g(x) for any x ∈ ∂Ω, and Qρ(x) = 0 for any x ∈ Ω \N(Γ, ρ).

To see the existence of wρ, we first apply Lemma 2.1 to define a function, say, w1, by
w1(x) = w(x̂) for any x ∈ N(Γ, 2ρ) for ρ > 0 small enough, and w1 = 0 elsewhere
in Ω. Using the lifting operator [2, 11], there exists a smooth function, say, w2, on
Ω such that the restriction of w2 on ∂Ω is g. (The smoothness depends on that of
∂Ω.) Now, assume that N(Γ, 2ρ) and A := N(∂Ω, ε) = {x ∈ Ω : dist (x, ∂Ω) < ε} are
disjoint for some small ε > 0. Then, by applying mollifiers to w1 + χAw2, we obtain
the desired wρ. The existence of Qρ is seen similarly.
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We define uρ : Ω → R by

(2.6) uρ(x) = χΩ+(x)

(
wρ(x) +

Qρ(x)

β+(x)

ϕ(x)

|∇ϕ(x)|

)
∀x ∈ Ω,

where χΩ+ is the characteristic function of Ω+. Note by E3 that Qρ = 0 outside
N(Γ, ρ0) in which ϕ may not be smooth. Thus, implicitly, the second term in uρ is
defined to be 0 outside N(Γ, ρ0).

The following statement summarizes some useful properties of uρ : Ω → R.
Lemma 2.2. Both u−

ρ and u+
ρ are smooth on Ω− and Ω+, respectively. Moreover,

uρ = g on ∂Ω, and

[uρ]Γ = w,

[
β
∂uρ

∂n

]
Γ

= Q.

Proof. Since β+ is smooth and bounded on Ω+, it follows from (1.6), E1, and
(2.2) that u+

ρ is smooth on Ω+. Obviously, u−
ρ = 0 is smooth on Ω−. By E3, uρ = g

on ∂Ω. By (2.1) and E2,

[uρ]Γ = u+
ρ − u−

ρ = w.

Now, fix x ∈ Γ. It follows from Lemma 2.1 and E2 that ∂nwρ = 0. Moreover, ϕ(x) = 0
by (2.1). Therefore, for any x ∈ Γ, we obtain by E2, (2.6), (2.3), and the fact that
ϕ(x) = 0 that[
β(x)

∂uρ(x)

∂n

]
Γ

= β+(x)
∂u+

ρ (x)

∂n

= β+(x)
∂wρ(x)

∂n
+ β+(x)

∂

∂n

(
Qρ(x)

β+(x)|∇ϕ(x)|

)
ϕ(x) +

Qρ(x)

|∇ϕ(x)|
∂ϕ(x)

∂n

= Q(x)
n(x) · ∇ϕ(x)

|∇ϕ|(x)

= Q(x).

The proof is completed.
Theorem 2.3. There exists a unique q ∈ H1

0 (Ω) such that

(2.7)

∫
Ω

β∇q · ∇v dx =

∫
Ω

fv dx−
∫

Γ

Qv ds−
∫

Ω+

β+∇uρ · ∇v dx ∀v ∈ H1
0 (Ω).

This is equivalent to

(2.8)

∫
Ω

β∇q · ∇v dx =

∫
Ω

fv dx +

∫
Ω+

(∇ · β+∇uρ) v dx ∀v ∈ H1
0 (Ω).

Moreover, u = q+uρ solves the problem (1.1)–(1.5). In particular, q ∈ H1
0 (Ω) satisfies

the homogeneous jump conditions

(2.9) [q]Γ = 0 and

[
β
∂q

∂n

]
Γ

= 0.

Proof. Note that the line integral in (2.7) defines a continuous, linear functional
on H1

0 (Ω). The existence and uniqueness of q ∈ H1
0 (Ω) satisfying (2.7) follow therefore
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from the Lax–Milgram theorem. By integration by parts, (2.6), and Lemma 2.2, we
imply that (2.7) and (2.8) are equivalent.

Choosing v ∈ H1
0 (Ω) with supp v ⊂ Ω− and supp v ⊂ Ω+, respectively, applying

the regularity theory of elliptic problems, we obtain from (2.7) that u = q+uρ satisfies
(1.1) and (1.2). The jump condition (1.3) follows from Lemma 2.2. Now, integrating
by parts, we obtain by (1.1), (1.2), (2.6), and (2.7) that∫

Γ

([
β
∂u

∂n

]
Γ

−Q

)
v ds = 0 ∀v ∈ H1

0 (Ω).

This leads to (1.4). Clearly, the function u = q + uρ satisfies (1.5).
Finally, since q = u− uρ, we have

[q]Γ = [u]Γ − [uρ]Γ = w − w = 0

from (1.3) and Lemma 2.2. We also have[
β
∂q

∂n

]
Γ

=

[
β
∂u

∂n

]
Γ

−
[
β
∂uρ

∂n

]
Γ

= Q−Q = 0

from (1.4) and Lemma 2.2.

3. Immersed-interface finite-element approximations. In this section, we
first state practically reasonable assumptions on how the interface can cut edges of
elements in a finite-element mesh. We then define immersed-interface finite-element
approximations of our underlying problem formulated in Theorem 2.3. Finally, we
give rigorous error estimates for our method.

Let Th be a finite-element mesh with mesh size h that covers Ω. We assume that
the elements in Th are all triangles. For simplicity, we shall assume that Ω is a convex
polygonal domain and the mesh covers Ω exactly. Standard finite-element techniques
can be applied to treat a curved boundary without affecting our approximation prop-
erties. We remark that in practice the computational domain Ω can often be chosen as
a rectangular domain with sides parallel to the coordinate axes; and the finite-element
mesh can be uniform.

We call an element T ∈ Th an interface element if Γ ∩ intT �= ∅. Note that
an element is a noninterface element if one of its edges is part of the interface. We
assume, for any interface element T ∈ Th, that the set Γ ∩ ∂T consists of exactly two
points that are on different edges of T .

We define an immersed-interface finite-element space Vh with respect to the mesh
Th to be a finitely dimensional subspace of L2(Ω) that consists of all the linear com-
binations of the corresponding basis functions φ1, . . . , φN for some integer N ≥ 1:

(3.1) Vh = span {φ1, . . . , φN}.

The basis functions are the usual finite-element basis functions on a noninterface
element and are piecewise polynomials on each interface element that is determined
by the element and the interface Γ. All the basis functions satisfy the homogeneous
jump conditions for both the function and flux. Moreover, there exists an interpola-
tion operator from some functional space to Vh that enjoys the usual approximation
properties.

To be more precise, we define a conforming immersed-interface finite-element
space Vh for the approximation of a second order elliptic interface problem to be a
subspace of H1(Ω) that satisfies the following properties.
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FE1. All the functions in Vh restricted onto the union of all noninterface elements
form a usual finite-element space of piecewise polynomials of degree ≤ k for
some integer k ≥ 1, such as a Pk-type Lagrange finite-element space when
Th is a triangular mesh, or a Qk- or Q′

k-type Lagrange finite-element space
when Th is a quadrilateral mesh [4, 8]. On each interface element T ∈ Th, all
functions in Vh are piecewise polynomials. The support of each basis function
is a union of a few elements.

FE2. All the basis functions, and hence all the functions in Vh, satisfy the homo-
geneous jump conditions

(3.2) [vh]Γh
= 0 and

[
β(x̂)

∂vh
∂n

]
Γh

= 0 ∀vh ∈ Vh,

where Γh denotes the union of line segments approximating the interface Γ,
and the normal derivatives of vh ∈ Vh from each side of the interface are
assumed to exist; x̂ is the orthogonal projection on the interface of the

midpoint of Γh within the triangle.1 Note that
[
β(x̂)∂vh

∂n

]
Γh

= β+(x̂)
∂v+

h

∂n −

β−(x̂)
∂v−

h

∂n .
FE3. There exists an interpolation operator Ih : D(Ω) → Vh such that

(3.3) ‖Ihv − v‖H1(Ω) ≤ Chσ(k)‖v‖Hk+1(Ω\Γ) ∀v ∈ D(Ω),

where D(Ω) ⊂ H1(Ω) is an infinite-dimensional space of functions that are
smooth and bounded on both Ω− and Ω+, respectively, k̄ is a constant such
that 0 < σ(k) ≤ k, and C > 0 denotes a generic constant independent of h
and v.

The homogeneous jump condition for vh ∈ Vh in (3.2) is a consequence of the fact
that Vh ⊂ H1(Ω). Often the interpolation error in FE3 can be the same as usual, i.e.,
k̄ = k. But, it can be slightly worse due to the approximation of Γ by Γh.

We can similarly define a nonconforming immersed-interface finite-element space
Vh ⊂ L∞(Ω) with Vh �⊂ H1(Ω). For a nonconforming immersed-interface finite-
element space Vh that is used to solve our underlying problem with the boundary
condition (1.5), we also need to assume that a discrete Poincaré inequality,

‖vh‖2
L2(Ω) ≤ C

∑
T∈Th

‖∇vh‖2
L2(T\Γh) ∀vh ∈ Vh,

is satisfied. Several examples of conforming and nonconforming, linear or quadratic,
immersed-interface finite elements will be presented in the next section.

We consider now immersed-interface finite-element approximations of the solution
q ∈ H1

0 (Ω) defined by (2.7). Let uρ : Ω → R be as given in (2.6) for some ρ > 0 small
enough. Now let Vh ⊂ H1

0 (Ω) be a conforming immersed-interface finite-element space
of piecewise polynomials of degree ≤ k as in FE1–FE3 that accounts for the boundary
condition (1.5). To be precise, we assume in our analysis below that the domain of
the interpolation operator Ih is

D(Ω) =
{
v ∈ H1

0 (Ω) : v− ∈ Hk+1(Ω−) ∩ C(Ω−) and v+ ∈ Hk+1(Ω+) ∩ C(Ω+)
}
.

1Alternatively, we can approximate β±(x̂) using β±(X̂), where X̂ ∈ Γ ∩ Th is any point on the
interface and in the triangle.
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Theorem 3.1. There exists a unique qh ∈ Vh such that

(3.4)

∫
Ω

β∇qh · ∇vh dx =

∫
Ω

fvh dx +

∫
Ω+

(∇ · β+∇uρ) vh dx ∀v ∈ Vh.

Moreover, if the solution q ∈ H1
0 (Ω) of (2.7) satisfies that q− ∈ Hk+1(Ω−) ∩ C(Ω−)

and q+ ∈ Hk+1(Ω+) ∩ C(Ω+), then

‖q − qh‖H1(Ω) ≤ Chσ(k)‖q‖Hk+1(Ω\Γ),(3.5)

‖q − qh‖L2(Ω) ≤ Chσ(k)+σ(1)‖q‖Hk+1(Ω\Γ),(3.6)

where σ(k) is defined in FE3 and C > 0 is a constant independent of h and q.
Proof. Since Vh ⊂ H1

0 (Ω), the existence and uniqueness of qh ∈ Vh satisfying
(3.4) follow from the Lax–Milgram theorem. Moreover, by (2.8), which is equivalent
to (2.7) by Theorem 2.3, and (3.4), we obtain

(3.7)

∫
Ω

β∇(q − qh) · ∇vh dx = 0 ∀vh ∈ Vh.

The error estimate (3.5) can be obtained by a standard argument using a Poincaré
inequality, the ellipticity indicated by (1.6), the error equation (3.7), and the interpo-
lation error estimate (3.3); see [4, 8].

To obtain the L2 error estimate (3.6), we use the standard dual argument (cf.,
e.g., [4, 8]) with slight modification taking care of the lack of global regularity of a
solution. Let r ∈ H1

0 (Ω) be the unique function satisfying

(3.8)

∫
Ω

β∇r · ∇v dx =

∫
Ω

(q − qh)v dx ∀v ∈ H1
0 (Ω).

Since β− and β+ are smooth and bounded in Ω− and Ω+, respectively, we see that
r− ∈ H2(Ω) and r+ ∈ H2(Ω). Moreover, it follows from (3.8) that [β∂nr]Γ = 0.
Therefore, we have (cf. Theorem 2.1 in [7]) that

(3.9) ‖r±‖H2(Ω±) ≤ C‖q − qh‖L2(Ω).

Setting v = q − qh ∈ H1
0 (Ω) in (3.8), we have by (3.8), (3.7) with vn = Ihr, the

Cauchy–Schwarz inequality, (3.3) with k = 1, (3.5), and (3.9) that

‖q − qh‖2
L2(Ω) =

∫
Ω

β∇r · ∇(q − qh) dx

=

∫
Ω

β∇(r − Ihr) · ∇(q − qh) dx

≤ C‖r − Ihr‖H1(Ω)‖q − qh‖H1(Ω)

≤ Chσ(k)+σ(1)‖r‖H2(Ω\Γ)‖q‖Hk+1(Ω\Γ)

≤ Chσ(k)+σ(1)‖q‖Hk+1(Ω\Γ)‖q − qh‖L2(Ω),

leading to (3.6).
We remark that the removal of both jumps w and Q using a single function leads

to finite-element equation (3.4) which does not involve line integrals as in (2.7). This
much simplifies numerical implementation.
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4. Construction of basis functions. We now describe how to construct some
new classes of triangular immersed-interface finite-element basis functions that satisfy
the homogeneous jump conditions.

Let z1, . . . , zN be all the vertices of triangular elements in the mesh Th. We
define our linear or quadratic linear immersed-interface finite-element basis functions
φi associated with zi (i = 1, . . . , N) to be functions on Ω that satisfy the following
properties.

B1. Each φi (1 ≤ i ≤ N) is linear on a noninterface element and is piecewise
linear or quadratic on an interface element.

B2. φi(zj) = δij for i, j = 1, . . . , N, where δij = 1 if i = j and 0 if i �= j.
B3. All φi (1 ≤ i ≤ N) satisfy the approximate homogeneous jump conditions

[φi]Γh
= 0,

[
β(x̂)

∂φi

∂n

]
Γh

= 0.

The corresponding finite-element space Vh is given by (3.1).
We call a vertex an irregular vertex or irregular node if it is a vertex of an interface

element and a regular vertex or regular node otherwise. For a regular node zi, we define
φi to be the usual conforming linear finite-element basis function associated with zi,
i.e., φi ∈ C(Ω) ∩ H1

0 (Ω), φi is a linear polynomial on each element T ∈ Th, and
φi(zj) = δij for j = 1, . . . , N.

For an irregular node zi, we construct the corresponding basis function by mod-
ifying the usual linear finite-element basis function to satisfy the properties B1–B3.
We need only to construct a local basis (or shape) function on an interface element
for an irregular node.

4.1. A nonconforming linear element. This nonconforming immersed-inter-
face finite element was first constructed in [18]; see also [12]. We briefly review it,
since it will be used to construct our new linear and quadratic elements.

Fix an interface element T ∈ Th; cf. Figure 4.1. As in the common practice, we
approximate the interface in T , Γ∩ T , by a line segment connecting the intersections
of the interface and the edges of the triangle T . This line segment is DE in Figure 4.1.
The line segment divides T into two parts T+ and T−, one triangular and the other
quadrilateral. Note that there is a small region Tr in T ,

Tr = T − Ω+ ∩ T+ − Ω− ∩ T−,

whose area is of order O(h3).
We now consider the element T in Figure 4.1 as a reference interface element T

and define local basis functions for each vertex of T . The local basis function for
a general interface element in the mesh Th can be defined through the usual affine
transformation. We denote

T = {(x1, x2) : 0 ≤ x1 ≤ h, 0 ≤ x2 ≤ hx1 + x2 ≤ h}

and assume that the coordinates at A, B, C, D, and E are

(0, h), (0, 0), (h, 0), (0, y1), (h− y2, y2),

respectively; cf. Figure 4.1.
Each of the three local basis functions corresponding to the nodes A, B, or C

takes value 1 at one node and 0 at the other two. Once the values at nodes A, B, and
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Fig. 4.1. A typical interface element T = �ABC. The arc DME is the part of the interface
Γ in T . It is approximated by the line segment DE. T+ = �ADE, T− = T − T+, and Tr is the
region enclosed by the DE and the arc DME.

C are specified, a local nonconforming finite-element basis function φ for this interface
triangle is determined by

(4.1) φ(x) =

{
φ+(x) = a0 + a1x1 + a2(x2 − h) if x = (x1, x2) ∈ T+,

φ−(x) = b0 + b1x1 + b2x2 if x = (x1, x2) ∈ T−.

The coefficients ai and bi (i = 0, 1, 2) are determined by the conditions (cf. [18])

(4.2) φ+(D) = φ−(D), φ+(E) = φ−(E), β+ ∂φ

∂n

+

= β− ∂φ

∂n

−
,

where n is the unit normal direction of the line segment DE. It is shown in [18]
that this function φ is uniquely determined. Note that basis functions defined in
this way can be discontinuous across edges of interface elements. So, this defines a
nonconforming finite element.

4.2. A conforming linear element. This conforming element was proposed
in [18]. Both error estimates and numerical experiments in [18] show that the cor-
responding interpolation errors that can depend on an angle condition are of second
order, which is optimal [18].

Let T = ΔABC be an interface element; cf. Figure 4.2. As before, we assume
that the interface meets edges of this element at D and E. To construct a local basis
function that is globally continuous, we extend the previously defined basis function
at the same node (vertex) to one more triangle along the interface (cf. Figure 4.2 (b)).
We require that the local basis functions in two adjacent interface elements, such
as ΔABC and ΔAFB, take the same value at the interface point on their common
edge, such as the point D. This will achieve the global continuity of a basis function
associated with an irregular node.

We construct a local basis function φ by assigning its values at the vertices A, B,
C, F , and I, respectively. This construction consists of the following five steps.

P1. Use the values at the nodes A, B, C, F , and I to construct the three non-
conforming finite-element basis functions defined as in subsection 4.1 on the
elements ΔABC, ΔAFB, and ΔACI, respectively.
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Fig. 4.2. (a) The support of a local basis function. (b) A diagram for the construction of a
local basis function on �ABC.

P2. Set the value at D as the average of the values at D of the nonconforming
piecewise linear basis functions defined on ΔABC and ΔAFB constructed
in P1.

P3. Similarly, set the value at E as the average of values at E of the nonconforming
piecewise linear basis functions defined on the elements ΔABC and ΔACI
constructed in P1.

P4. Partition the element ΔABC into three subtriangles by an auxiliary line, say,
line segment BE, or DC. We choose the auxiliary line in such a way that at
least one of angles (or complimentary angles if the angle is more than π/4) is
bigger than or equal to π/2.

P5. Define the basis function to be the piecewise linear function in the three
subtriangles determined by the values at the points A,B,C,D, and E.

For this type of conforming finite-element space and homogeneous jump condi-
tions, i.e., w = 0 and Q = 0, we have the following error estimates of the interpolation
function:

‖Ihu− u‖∞ ≤ Ch2‖D2u‖∞,Ω\(∪Tr),(4.3)

‖Ihu− u‖H1(Ω) ≤ Ch‖D2u‖∞,Ω\(∪Tr),(4.4)

assuming that β(x) is a piecewise constant and the solution is piecewise smooth in
Ω− and Ω+, where C > 0 is a generic constant independent of h and ∪Tr is the region
of mismatched regions between Γ and Γh; see [18] for the proof.

4.3. A conforming quadratic element. We now construct a conforming quad-
ratic element. As before, the basis functions associated with regular nodes are the
standard conforming linear finite-element basis functions. But, the basis functions
associated with irregular nodes are piecewise quadratic. All the basis functions are
globally continuous. The idea is to average the tangential derivatives in the construc-
tion in subsection 4.2. Referring the reader to Figure 4.2, we describe this procedure
as follows.

P1. Use the values at the nodes A, B, C, F , and I to construct the three non-
conforming linear finite-element basis functions defined in subsection 4.1 on
the elements ΔABC, ΔAFB, and ΔACI, respectively.

P2. Set the value at D as the average of the values at D of the nonconforming
linear finite-element basis functions defined ΔABC and ΔAFB constructed
in P1. Assign the tangential derivative at D along AD to be the average
of the values of the tangential derivatives (along AD) of the nonconforming
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linear finite-element basis functions on ΔABC and ΔAFB constructed in
P1. Similarly, assign the tangential derivative at D along DB as the average
of the values of the tangential derivatives (along DB) of the nonconforming
finite-element basis functions on ΔABC and ΔAFB constructed in P1.

P3. Repeat to set the value at E as the average of values at E of the nonconform-
ing linear finite-element basis functions defined on the elements ΔABC and
ΔACI in P1. Also assign the tangential derivatives along AE and EC as the
average of those from the nonconforming finite-element basis functions along
the same edge.

P4. Partition the element ΔABC into three subtriangles by an auxiliary line.
We choose the auxiliary line in such a way that at least one of the angles
(or complimentary angles if the angle is bigger than π/4) is bigger than or
equal to π/2. In Figure 4.2, for example, the angles are ∠EDB, ∠DEB, and
∠EBD, where the complimentary angle of ∠EDB is bigger than π/4.

P5. Assign the tangential derivatives along DE and BE exactly the same (no
average) as those from the nonconforming finite-element basis functions.

P6. Set the values of the tangential derivatives along BE and BC exactly the same
as those from the nonconforming finite-element basis function on ΔABC.

P7. Define the basis function ψi to be the piecewise quadratic function in the
three subtriangles determined by the values at the points A, B, C, D, and
E, respectively, and the tangential derivatives from each side of the triangles;
see Figure 4.3 for an illustration.

D

A

E

B

E

D

B

E

C

Fig. 4.3. Three triangles on which piecewise continuous quadratic functions can be determined.
The symbol “−→” indicates a tangential derivative.

We now give an error estimate for the interpolation error of this element for a
given piecewise smooth function v. We first show that a quadratic function on a
triangle is uniquely determined by its values at the three vertices and its tangential
derivatives along the three sides at some particular points.

Lemma 4.1. Referring to the geometry in Figure 4.4, there is a unique quadratic
polynomial

(4.5) Ihv(x, y) = vA + a10x + a01y + a20x
2 + a11xy + a02y

2

that interpolates the values of vA, vD, and vE, and three tangential derivatives v′AE,
v′AD, and v′ED defined at the three vertices A, E, and D, respectively.
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D

45

A(0,0)

E(a,a)

ο

Fig. 4.4. An illustration of determining the quadratic interpolation function.

Proof. Using the undetermined coefficient method, we find the unique expression
of the coefficients2

a10 =
h̃v′AD + 2vD − 2vA

h̃
,

a01 = − h̃v′AD −
√

2v′AE h̃ + 2vD − 2vA

h̃
,

a20 = − h̃v′AD + vD − vA

h̃2
,

a11 = −−2h̃αv′AD − 2αvD + 2αvA + h̃2v′AD + 2h̃vD

h̃2α

−
√
h̃2 − 2h̃α + 2α2v′EDh̃ + h̃α

√
2v′AE − 2h̃vE

h̃2α
,

a02 =
h̃2v′ADα + 2h̃αvD − h̃2α

√
2v′AE − h̃v′ADα2 − α2vD + α2vA

h̃2α2

+
vE h̃

2 − vAh̃
2 +

√
h̃2 − 2h̃α + 2α2v′EDh̃α + h̃α2

√
2v′AE − 2vE h̃α

h̃2α2
,

where h̃ is the distance from A to D, and the coordinates at E are (α, α).
There are two steps in obtaining the interpolation error. First, the values of the

quadratic function according to our algorithm at vertices either are directly copied
from the conforming linear basis function (at the vertices of the right triangles) or are
the average of values of the conforming linear basis function from the two adjacent
triangles. Therefore, those values are O(h2) perturbations to v from the reference [18].
Similarly, the values of the tangential derivatives are O(h) perturbations to that of v.
Second, from the above reasoning, we can conclude that the values at the mid-points
of each side of the triangle are O(h2) perturbations to v. Since the quadratic function
can also be uniquely determined from its values at vertices and the three midpoints

2We use Maple to get the coefficients.
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and it is insensitive to perturbations of those values (see [14]), we conclude that the
interpolation function is an O(h2) perturbation to v(x) in the entire triangle.

The second part of the argument is a direct consequence of the interpolation error
estimate for the standard conforming P2 finite element. The first part of the argument
is a consequence of the following result.

Lemma 4.2. Let a, b ∈ R with h := b−a > 0. Let v ∈ C1[a, b]. Then, there exists
a unique quadratic polynomial p such that p(a) = v(a), p(b) = v(b), and p′(a) = v′(a).
Moreover, if v is smooth, then

‖v − p‖L∞(a, b) ≤ Ch3,

‖v′ − p′‖L∞(a, b) ≤ Ch2,

where C > 0 is a constant independent of h.

Proof. Note that any quadratic polynomial q can be written as

q(x) = q(a) + q′(a)(x− a) +
q(b) − q(a) − q′(a)(b− a)

(b− a)2
(x− a)2.

Therefore, the unique quadratic polynomial that interpolates v(a), v(b), and v′(a) is
given by

p(x) = v(a) + v′(a)(x− a) +
v(b) − v(a) − v′(a)(b− a)

(b− a)2
(x− a)2.

Now an application of the Bramble–Hilbert lemma [8] concludes the proof.

The lemma is still true if we replace p′(a) by p′(b).

By the lemma, we see that if p(a) = v(a) + O(h2), p(b) = v(b) + O(h2), and
p′(a) = v′(a) + O(h), then |v(x) − p(x)| = O(h2) and |v′(x) − p′(x)| = O(h) in the
entire interval [a, b] including the midpoint.

With the same local angle constraint given in [18] (e.g., at least one angle or
complementary angle is larger than or equal to π/4), we have the following error
estimates for the interpolation.

Proposition 4.3. Assume that w = Q = 0, β(x) is a piecewise constant, and
the solution u is piecewise C2, i.e., u± ∈ C(Ω±). Then the following error estimates
hold:

‖Ihu− u‖∞ ≤ Ch2‖D2u‖∞,Ω\
∑

Tr
,(4.6)

‖Ihu− u‖H1(Ω) ≤ Ch‖D2u‖∞,Ω\
∑

Tr
.(4.7)

For the conforming linear finite-element space, the proof is given in [18]. So we just
need to discuss the conforming quadratic finite-element space. The proof of the first
inequality is straightforward, as has been discussed above. The proof of the second
inequality is quite technical and tedious with different geometric configurations. This
proof, though, is quite similar to that for the nonconforming immersed finite-element
method (cf. [18]); we give only a sketch here. Taking the geometry in Figure 4.4
as an example, we have analytic expression of the interpolation function given in
Lemma 4.1 in terms of its values and the tangential derivatives (averaging those
of the nonconforming interpolation function). From the analytic expression of the
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interpolation, it is easy to get ‖∇Ihu − ∇Ihũ‖∞ ≤ Ch, where Ihũ is any quadratic
function when we perturb vA, vD, and vE by O(h2), and v′AD, v′AE , and v′ED by O(h).

Our numerical tests reported in section 6 confirm such an estimate for the in-
terpolation error. Note that, while the error bounds for the linear and quadratic
basis functions are the same, numerical examples of our test problems show that the
quadratic one behaves better numerically. Since the quadratic basis function is a con-
forming one, we can conclude that the finite-element solution is first order in the H1

norm from the standard finite element theory.
Remark 1. Consider a uniform triangular mesh. For both conforming linear and

conforming quadratic elements, the basis function φi associated with the ith node is
nonzero only on the six surrounding triangular elements if the interface does not cut
through any of these triangles. Otherwise, the support of a basis function includes
two more triangular elements along the direction of the interface if the interface cuts
through any of the surrounding triangle. A corresponding finite-difference scheme,
however, generally has a nonstandard nine-point stencil.

Remark 2. If the coefficient β is continuous across the interface, i.e., [β]Γ = 0,
then both the linear and quadratic basis functions become the standard linear basis
functions.

5. Implementation. In this section, we give details about the numerical exten-
sion of the jumps w and Q, the assembly of the stiffness matrix and load vector, and
the evaluation of certain integrals on part of an interface element.

5.1. Numerical extension of the jumps w and Q. We use a Gaussian
quadrature to compute the stiffness matrix and the load vector in each triangle
�ADE, �DEB, and �BEC in Figure 4.2. Let x be such a Gaussian point which is
close to the interface. We need to extend the jumps w and Q to this Gaussian point
by the definition of wρ and Qρ given in E2 and E3 in section 2. This is done in two
steps. The first step is to find an approximation of the orthogonal projection x̂ of x
on the interface Γ; see Lemma 2.1. The second step is to define the extensions of w
and Q at x as w(x̂) and Q(x̂), respectively.

The orthogonal projection can be approximated by

x̂ = x + αp,

where

p =

[
ϕx(x)

ϕy(x)

]
.

Here, a subscript denotes a partial derivative. The scalar α is determined from the
following quadratic equation:

ϕ(x) + (∇ϕ(x) · p)α +
1

2

(
pTHe(ϕ(x)) p

)
α2 = 0,

where

pTHe(ϕ) p = ϕ2
x ϕxx + 2ϕxϕyϕxy + ϕ2

y ϕyy.

The sign of α is chosen to be opposite that of ϕ(x). If the underlying mesh is uniform,
formulated from a Cartesian grid, then, the partial derivatives ∇ϕ(x) and the Hessian
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matrix He(ϕ) can be computed at x using the standard centered five-point finite-
difference formula. Using the method above, the computed projections have third
order accuracy.

Note that in our implementation, we use the orthogonal projections x̂ ∈ Γ. It is
also possible to use the orthogonal projections x̂ ∈ Γh. The difference in the finite-
element solution using the two different implementations is small since the area of
the mismatched region

∑
Tr is small. If the level set function is the signed distance

function, or a good approximation of the signed distance function, then the error in
approximating x̂ would be O(h3); see [19]. We also refer the reader to [9,10] for some
of the recent discussions on computing orthogonal projections.

Note that when one uses a finite number of piecewise linear basis functions φ′
hs ∈

Vh to seek the finite-element solution, we have introduced an error in substituting V =
H1(Ω) by Vh which is often O(h2). Other approximating errors, such as numerical
integration, approximating orthogonal projections, have little effect on the finite-
element solutions as long as they are higher order terms of h3.

In practice, we need only to extend both jumps w and Q to N(Γ, 2h), the 2h
neighborhood of the interface Γ. This is described in (5.4), where the last two terms
are identical but differ by a sign for noninterface triangles.

5.2. Assembly of stiffness matrix and load vector. On noninterface ele-
ments where the interface does not cut through, we can use the standard way in
computing the contribution to the stiffness matrix and the load vector. On inter-
face elements where the interface cuts through, we need to modify the load vector
(the right-hand side); but the computation for the stiffness matrix remains the same
as in the case of homogeneous jump conditions.

To fix this idea, let us focus on the quadratic conforming element (cf.
subsection 4.3). We rewrite the finite-element equation (3.4) in terms of uh = qh+uρ:

∫
Ω

β∇uh · ∇vh dx =

∫
Ω

f vh dx

(5.1)

+

∫
Ω

β∇uρ · ∇vh dx +

∫
Ω

H(ϕ)∇ · (β∇ũρ) vh dx ∀vh ∈ Vh,

where H is the Heaviside function and ũρ is given by

ũρ(x) = wρ(x) +
Qρ(x)

β+(x)

ϕ(x)

|∇ϕ(x)| , x ∈ Ω.(5.2)

Note that ũρ is smooth in a neighborhood of Γ and that uρ = χΩ+ ũρ and its corre-
sponding flux have nonhomogeneous jumps across the interface.

Let {φj(x)} be the basis functions of the modified conforming finite-element space.
Then, we define

(5.3)

uh(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j

αjφj(x) if x belongs to a noninterface triangle,

∑
j

αjφj(x) +
∑
j

uρ(xj)φj(x) otherwise,
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where φj(x) is the jth basis function centered at xj . The left-hand side is exactly the
same as in the case of the homogeneous jump condition. The entries of the stiffness
matrix are

aij =

∫
Ω

β∇φi · ∇φj dx.

Only the right-hand side of the system of equation needs to be modified for certain
triangles near the interface.

At a noninterface triangle that is entirely in Ω−, the last two terms of integration
over the triangle are zero, since H(ϕ(x)) = 0 and uρ = 0. The situation is a little more
complicated for triangles in Ω+. If all the nonzero basis functions over a triangle in
Ω+ have no support from interface triangles, then the last two terms in (5.1) are
canceled out. To see this, let Tk be such a triangle, and let φl be such a basis function
with Ωl being its support. We have∫

Ωl

β∇uρ · ∇φl dx +

∫
Ωl

H(ϕ)∇ · (β∇ũρ)φl dx

=

∫
Ωl

β∇uρ · ∇φl dx +

∫
Ωl

∇ · (β∇ũρ)φl dx

=

∫
Ωl

β∇uρ · ∇φl dx +

∫
∂Ωl

∂ũρ

∂n
φl ds−

∫
Ωl

β∇ũρ · ∇φl dx = 0,

since ũρ = uρ and φl = 0 along ∂Ωl. In other words, the total contribution of the line
integral along the boundary of each triangle summed up to be zero. The right-hand
side of the load vector can be summarized as

Fi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ωi

fφi dx if Ωs(φi) ∩ Γ = ∅,
∫

Ωi

fφi dx +

∫
Ωs

H(ϕ)∇ · (β∇ũρ)φi dx

+
∑
j

uρ(xj)

∫
Ωi

β∇φi · ∇φj dx otherwise,

(5.4)

where Ωs(φi) is the support of φi.

5.3. Evaluation of
∫∫∫

Ωs H(ϕ)∇· (β∇ũρ)φi dx. Take Figure 4.1 as an exam-
ple. There are two ways to evaluate the integral. One way is to use∫

Tj

H(ϕ)∇ · (β∇ũρ)φi dx =

∫
∂	ADE

β
∂ũρ

∂n
φ ds−

∫
	ADE

∇ũρ · ∇φdx.(5.5)

The line integral is evaluated using a Gaussian quadrature formula or some other
numerical quadrature.

The second approach is to evaluate the double integral directly over the triangle
using a quadrature formula, say, the four-point formula [14]. The coefficient β is
approximated by a constant in the triangle. In order to evaluate the values of the
integrand at a given point x, we first find a square [xi, xi+1]× [yj , yj+1] that contains
the point x. The Laplacian at the vertices (xi±1, yj±1) is computed using the standard
three-point central finite difference formula. Finally, the Laplacian at the point x is
interpolated using the bilinear interpolation; see [17].
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6. Numerical results. We report two examples of numerical calculations using
our conforming quadratic immersed-interface finite-element method. In each of the
calculations, we used ITPACK [23] to solve the resulting linear system of equations.

Example 1. Homogeneous jump conditions. This example is from [18]. We con-
sider the problem (1.1)–(1.5) with Ω = (−1, 1)×(−1, 1), Γ being the circle centered at
point (0, 0) with radius R = 0.5, β− = 1, and β+ = 100. The source term f(x, y) and
the Dirichlet boundary data u0(x, y) are calculated from the exact solution u(x, y):

u(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r3

β− if r ≤ R,

r3

β+
+

(
1

β− − 1

β+

)
R3 otherwise,

where r =
√
x2 + y2. The exact solution satisfies the homogeneous jump conditions.

In Table 6.1 (a), we show a grid refinement analysis of our computations. The
first column EN = ‖u− uh‖∞ is the error of the finite-element solution measured in
the L∞ norm, and the second column is the estimate of the order of accuracy using
the formula

order =
log (‖EN‖∞/‖E2N‖∞)

log 2
.

The sixth and eighth columns are defined as

ex,∞ =

∥∥∥∥∂u∂x − ∂Ihu

∂x

∥∥∥∥
Ω′,∞

, ey,∞ =

∥∥∥∥∂u∂y − ∂Ihu

∂y

∥∥∥∥
Ω′,∞

,

respectively. We see clearly the second order accuracy. The fourth to the last columns
are the interpolation errors. We see that the interpolation errors are of second order
and its derivatives are of first order. These are optimal.

In Table 6.1 (b), we show the results and comparison of the finite-element solution
in L∞, L2, and H1 norms. We see second order convergence in L∞ and L2 norms
and first order in the H1 norm as expected.

Example 2. A complicated interface and nonhomogeneous jump conditions. We
consider the problem (1.1)–(1.5) with Ω = (−1, 1)× (−1, 1) and the interface Γ being
the zero level set of the function

ϕ(x, y) =
√

x2 + y2 − 0.1 sin(5θ − π/5) − 0.5,

where tan θ = x/y and 0 ≤ θ ≤ 2π; see Figure 6.1 for the geometry. The function β
is defined by

β(x, y) =

{
x2 + y2 + 1 if (x, y) ∈ Ω−,

b otherwise,

where b > 0 is a parameter. The function f is defined by

f(x, y) =

{
−4

(
2x2 + 2y2 + 1

)
if (x, y) ∈ Ω−,

2 sinx cos y otherwise.
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Table 6.1

A grid refinement analysis for Example 1, where pi are the approximated convergence order

and the norms that involve the partial derivatives, ex,∞ = ‖ ∂u
∂x

− ∂Ihu
∂x

‖Ω′,∞ and ey,∞ = ‖ ∂u
∂y

−
∂Ihu
∂y

‖Ω′,∞. (a) The finite-element solution error and the interpolation error. (b) Results and

comparison of the finite-element solution errors in L∞(Ω′), L2(Ω′), and H1(Ω′) norms, where
Ω′ = Ω \

∑
Tr.

(a)

N ‖u− uh‖∞ p1 ‖u− Ihu‖∞ p2 ex,∞ p3 ey,∞ p4

32 1.314 10−3 2.590 10−3 1.056 10−1 1.043 10−1

64 4.215 10−4 1.64 6.799 10−4 1.93 5.351 10−2 0.98 5.351 10−2 0.96

128 1.008 10−4 2.06 1.780 10−4 1.93 2.754 10−2 0.96 2.754 10−2 0.96

256 2.729 10−5 1.88 4.501 10−5 1.99 1.391 10−2 0.99 1.393 10−2 0.99

512 7.697 10−6 2.03 1.138 10−5 1.99 6.999 10−3 0.99 6.999 10−3 0.99

(b)

N ‖u− uh‖∞ p5 ‖u− uh‖L2 p6 ‖u− uh‖H1 p7

32 1.314 × 10−3 6.500 × 10−4 5.777 × 10−2

64 4.215 × 10−4 1.64 1.597 × 10−4 2.03 2.661 × 10−2 1.12

128 1.008 × 10−4 2.06 4.001 × 10−5 2.00 1.345 × 10−2 0.99

256 2.729 × 10−5 1.88 9.899 × 10−6 2.01 6.593 × 10−3 1.03

512 6.697 × 10−6 2.03 2.489 × 10−6 1.99 3.289 × 10−3 1.00

20 40 60 80 100 120 140 160 180 200
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Fig. 6.1. The domain and the interface for Example 2.

Both β and f have nonzero jumps across the interface Γ. The exact solution is

u(x, y) =

⎧⎨
⎩

x2 + y2 if(x, y) ∈ Ω−,

1

b

(
sinx cos y + log

√
x2 + y2

)
otherwise.

Notice that both the solution u and the normal flux β∂nu have nonzero jumps across
the interface Γ.

We remark that the solution behavior depends on the magnitude of the parameter
b. If b is large, then the solution is close to a piecewise quadratic function. If b is
small, then the jumps of the solution and its normal flux across the interface are
very large. Numerically, this gives rise to difficulties in achieving optimal convergence
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properties [1,16]. We test our method for various b and analyze the computed results.

In Table 6.2, we show a grid refinement analysis for b = 100. We see clearly the
second order accuracy in L∞ and L2 norms and first order accuracy in the H1 norm.

Table 6.2

A grid refinement analysis for Example 2 with b = 100, where pi are the approximated conver-
gence order and the norms that involve the partial derivatives. Second order accuracy in L∞ norm
is observed.

N ‖u− uh‖∞/‖u‖∞ p1 ‖u− uh‖L2 p2 ‖u− uh‖H1 p3

32 1.1995 × 10−1 1.6705 × 10−2 3.9175 × 10−1

64 2.4397 × 10−2 2.30 1.8542 × 10−3 3.17 1.9551 × 10−1 1.00

128 5.3913 × 10−3 2.18 3.2668 × 10−4 2.51 9.8144 × 10−2 0.99

256 1.1218 × 10−3 2.27 5.1452 × 10−5 2.66 4.9894 × 10−2 0.94

512 2.7480 × 10−4 2.03 9.4668 × 10−6 2.44 2.5310 × 10−2 0.98
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Fig. 6.2. The linear regression analysis in the L∞ norm in log-log scale with the mesh varying
according to N = 40 + 20k, k = 0, 1, . . . , 23. (a) b = 1; the slope (convergence order) is 2.8122.
(b) b = 0.1; the slope is 2.4061.

Where b gets smaller, the jumps in the solution and flux get larger. For interface
problems, the errors obtained from non–body-fitted meshes usually do not decrease
monotonically as we refine the mesh; see, for example, [15]. For small b, it is thus
more realistic to find the asymptotic convergence rate as the slope of the line fitting
of the experimental data (log(hi), log(Ei)).

In Figure 6.2, we show the linear regression analysis for b = 1 and b = 0.1 for
the computed finite-element solution. For these two cases, the convergence orders are
2.8122 and 2.4061. As the mesh gets finer, the linear regression analyses (by deleting
the results from coarse meshes) get closer to number two, indicating a second order
accuracy. In Figure 6.3, we also show the linear regression analysis in the L2 and H1

norms. The convergence orders are 1.9906 and 0.9135, respectively.
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Figure 6.4 shows the result for b = 0.01 that is quite small, and hence there
is a large ratio in the coefficient from both sides of the interface. The convergence
order from the sample meshes ranging from 40 to 500 with 10 increments is 1.8875;
see Figure 6.4(a). But as the mesh gets finer, the linear regression analyses done by
cutting the results from coarse meshes get closer to number two, again indicating a
second order accuracy. Figure 6.4(b) shows the convergence order to be 1.9811.

(a)

−8 −7 −6 −5 −4 −3 −2 −1
−10

−9
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−6
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−3

(b)

−6.5 −6 −5.5 −5 −4.5 −4 −3.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 6.3. The linear regression analysis in the L2 norm (a), and in H1 norm (b), in log-
log scale with the mesh varying according to N = 40 + 20k, k = 0, 1, . . . , 23, b = 1. The slope
(convergence order) is 1.9906 and 0.9135, respectively.

(a)
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(b)
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Fig. 6.4. The linear regression analysis in the L∞ norm in log-log scale for b = 0.01. (a) N =
40+20k, k = 0, 1, . . . , 23; the slope (convergence order) is 1.8875. (b) N = 40+20k, k = 1, 15, . . . , 23;
the slope is 1.9811.
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7. Conclusions. We have developed a class of immersed-interface finite-element
methods for solving elliptic interface problems with nonhomogeneous jump conditions.
These methods consist of three parts:

(a) a weak formulation of the problem in which the nonhomogeneous jump con-
ditions are removed by using the level-set representation of the interface;

(b) construction of immersed-interface finite-element basis functions for irregular
nodes that satisfy the homogeneous jump conditions; and

(c) several techniques of numerical implementation for the resulting finite-element
equations.

Our methods have several advantages. For instance, they result in symmetric
positive definite systems of linear equations. Moreover, they can be used with the
level-set method for fast simulations of interface dynamics. Our basic error anal-
ysis and numerical tests demonstrate that such methods have optimal convergence
properties.
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