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PASSING FROM DISCRETE TO CONTINUUM MODELS OF
ELECTROSTATIC ENERGY\ast 

BENJAMIN CIOTTI\dagger AND BO LI\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We analyze the passage from discrete (i.e., point) charges and the corresponding
discrete electrostatic energies to a continuum charge density and the corresponding continuum elec-
trostatic energy in the limit of a large number of point charges. Given a continuous function on a
bounded region that represents a continuum charge density, we construct a sequence of point charges
and prove that the corresponding discrete electrostatic energies converge to the continuum counter-
part. In a more general setting, we consider a given, compactly supported, signed Radon measure
in the three-dimensional space representing the distribution of charges. We construct a sequence of
point charges that converge to the given signed Radon measure and show that the corresponding
discrete energies converge to the continuum one defined by the signed Radon measure. Conversely,
for any sequence of point charges that satisfy certain reasonable assumptions on local geometry and
excluded volumes, we prove that there exists a subsequence converging to a signed Radon measure
and that the corresponding discrete energies converge to the continuum one defined by the limit-
ing signed Radon measure. Tools used in our analysis include the explicit constructions of point
charges from a given signed Radon measure as well as approximation properties of signed Radon
measures. Finally, we apply our discrete-to-continuum analysis to the minimization of electrostatic
energy related to the classical balayage problem in the potential theory. Such minimization can be
potentially applied to the modeling of charged molecular systems with heterogeneously distributed
charges embedded in a continuum solvent.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . electrostatic energy, discrete-to-continuum passage, signed Radon measures, con-
vergence, energy minimization
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1. Introduction. The continuum electrostatic energy is defined to be [15, 19,
21, 25] \int 

\BbbR 3

1

2
\rho \psi dx,

where the dielectric coefficient is taken to be unity in certain units. Here, \rho : \BbbR 3 \rightarrow \BbbR 
is a given function representing a continuum charge density and \psi : \BbbR 3 \rightarrow \BbbR is
the electrostatic potential determined uniquely by Poisson's equation together with
boundary conditions

\Delta \psi =  - \rho in \BbbR 3 and \psi (\infty ) = 0.

With some assumptions, the potential \psi can be expressed as (cf. p. 23 in [12] and
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ELECTROSTATIC ENERGY 4569

section 1.7 in [21])

\psi (x) =
1

4\pi 

\int 
\BbbR 3

\rho (y)

| x - y| 
dy \forall x \in \BbbR 3,

and the corresponding electrostatic energy can be expressed as

(1.1)

\int 
\BbbR 3

1

2
\rho \psi dx =

1

8\pi 

\int \int 
\BbbR 3\times \BbbR 3

\rho (x)\rho (y)

| x - y| 
dxdy.

In contrast, given a set of point charges Qi \in \BbbR 3 located at xi \in \BbbR 3 (i = 1, . . . , N),
which determine a discrete charge density

\mu =

N\sum 
i=1

Qi\delta xi
,

where \delta a is the Dirac measure concentrated at a \in \BbbR 3, the discrete electrostatic energy,
the Coulomb energy, is given by [15, 19, 21, 25]

(1.2)
1

8\pi 

\sum 
1\leq i,j\leq N,i\not =j

QiQj

| xi  - xj | 
.

Both the continuum and discrete descriptions of electric charges and electrostatic
energies are widely used in many areas of science and engineering, such as molecu-
lar biology, colloidal science, and chemical engineering. The discrete description of
electrostatics is a main part of an interaction potential (i.e., force field) for a macro-
molecular system in molecular dynamics and Monte Carlo simulations that have been
extensively developed in recent decades [10, 17, 20, 22, 23, 31, 35]. In implicit-solvent
models for biological molecules, both discrete and continuum descriptions of charge
densities are used [8, 34, 36, 39, 40].

Intuitively, the passage from the discrete to continuum description is clear: if the
number of point charges is large enough, then the discrete charge density and the
discrete electrostatic energy should be close to the continuum charge density and the
continuum electrostatic energy, respectively. This is indeed true, as we justify here
such a statement in several settings.

Our main results are as follows:
(1) Assume \Omega is a bounded region in \BbbR 3 and \rho \in C(\Omega ). We can decompose

the region \Omega into the union of many small regions \omega i and define charges
Qi = \rho (xi)| \omega i| with xi and | \omega i| a point in \omega i and the volume of \omega i, respectively.
Then as the number of charges increases to infinity and the volume of each
small region decreases to zero, the discrete electrostatic energies (cf. (1.2))
converge to the continuum one (cf. (1.1)); cf. Theorem 2.1.

(2) Given a compactly supported signed Radon measure \mu on \BbbR 3, we construct
a sequence of point charges

(1.3) \mu n =
1

Nn

Nn\sum 
i=1

Qi
n\delta xi

n

that converge in a weak sense to the signed Radon measure \mu and that the
corresponding discrete energies converge to the energy defined by the given
signed Radon measure; cf. Theorem 3.1.

(3) Conversely, given a sequence of point charges as in (1.3) such that their
locations are nearly evenly distributed in a bounded region in \BbbR 3 and that
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4570 BENJAMIN CIOTTI AND BO LI

their values are uniformly bounded (i.e., supn,i | Qi
n| < \infty ), we show that

there exists a subsequence that converges to a limiting signed Radon measure,
and the corresponding discrete energies converge to the continuum one; cf.
Theorem 4.1. We also give an example to show the nonuniqueness of such a
subsequence.

In addition, we apply our analysis to an electrostatic energy minimization problem
related to the classical balayage problem in the potential theory; cf. Theorem 5.1.
Such an application can potentially be developed into a model for the charged mol-
ecules embedded in a continuum solvent, where the charge distributions are often
heterogeneous [7, 8, 39, 41].

Let us make several remarks on our results. First, our result on the discrete-
to-continuum passage with a given continuous and bounded function representing a
charge density (cf. part (1) above) is a special case with a given signed Radon measure
(cf. part (2) above), as any continuous and bounded function uniquely defines such a
measure. However, with a continuous function, the construction of discrete charges
is explicit, and the proof of the discrete-to-continuum passage is also more intuitive,
allowing us to better understand such a passage. Second, our results are not complete
and there are still some open questions. One of them is whether or not the results in
part (3) above can be generalized to the case where the sequences of discrete charges
are not quite evenly distributed in the entire region but are rather concentrated only
on a measurable subset that may be very irregular. Another related question is to
identify conditions under which the density of a limiting measure is continuous or even
differentiable. Third and finally, we only prove the discrete-to-continuum convergence
of charge densities and electrostatic energies, but provide no quantitative convergence
rates. In particular, since we do not consider effects of charge sizes, correlations,
and fluctuations, our analysis does not justify the use of continuum electrostatics in
certain circumstances where the discreteness is strong.

The mathematical analysis of the discrete-to-continuum passage is a common task
in understanding an underlying physical system. Often, one begins with a pairwise
interaction potential, augmented by some external potential, defined on lattices, and
derives a continuum energy in the limit of vanishing lattice size. For instance, in
recent studies on problems arising from solid mechanics and materials, the interaction
potential can be the Lennard-Jones potential or some potential modeling material
defects (e.g., dislocations), and the techniques of analysis include homogenization
and \Gamma -convergence; cf., e.g., [1, 2, 3, 5, 18, 30].

Relevant to our work are the studies presented in [6, 11, 32, 37, 38] (cf. also the
references therein). In [6], the authors considered the discrete electrostatic energy of
the interaction of N ( - 1)-charges and between these ``electrons"" and M positively
charged ``atomic nuclei"" with a hard core and a total charge Z. They show the \Gamma -
convergence as N,Z \rightarrow \infty with M fixed and N/Z asymptotically equal to a constant
\lambda of these discrete energy functionals to a continuum energy functional I defined on
all the Radon measures \mu on \BbbR 3 given by

I(\mu ) =
1

2

\int \int 
(\BbbR 3\setminus \Omega )\times (\BbbR 3\setminus \Omega )

d\mu (x)d\mu (y)

| x - y| 
+

\int 
\BbbR 3\setminus \Omega 

V (x) d\mu (x),

if the total mass of \mu is bounded above by \lambda and I(\mu ) = +\infty otherwise, where
V describes the Coulomb interaction between the nuclei and electrons through their
limiting distributions and where \Omega is the hardcore region of all the nuclei. The large-N
analysis further shows charge screening. Some parts of the analysis in [32, 37, 38] (cf.
also the references therein) obtain a similar \Gamma -convergence for a sequence of discrete

D
ow

nl
oa

de
d 

09
/2

6/
22

 to
 3

8.
14

0.
15

0.
10

6 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ELECTROSTATIC ENERGY 4571

energies as the number of charges tends to infinity. Each energy results from the
interaction among finitely many (+1)-charges together with an external potential on
each of these charges. A growth assumption on the external potential is made to show
that the infimum of the \Gamma -limit is finite and the convergence of the discrete minimizers
and minimum values to their continuum counterparts.

In contrast, we consider charges of different signs and different values (partial
charges) confined in an arbitrary bounded region (with some regularities), and our
results are for any sequence of discrete charge configurations not necessary energy-
minimizing ones. We also consider a general question on the construction of discrete
quantities from a given continuum one and obtain the discrete-to-continuum passage,
not just inequalities as in the \Gamma -convergence analysis. In addition, our renewed result
on the classical balayage problem (cf. section 5) may possibly be applied to the study
of charged macromolecules that often have heterogenous charge distributions.

Our analysis relies on several techniques. One of them is the construction of point
charges from a given signed Radon measure. Such constructions have been initially
developed in [6]; cf. also [37]. The other is to construct a family of diffeomorphisms
to ``flow"" the charges on the boundary of an underlying bounded open set into the
interior of such an open set so that various smoothing and approximating methods
can be used to define the point charges that are supported inside the open set. This
technique may be used to smooth out surface charges. In studying the continuum
limit of a sequence of discrete charges, we identify geometrical conditions that imply
the existence of an L\infty -density.

The rest of the paper is organized as follows. In section 2, we are given a contin-
uous function on a bounded region and define discrete charges from such a function.
We then prove the convergence of the corresponding discrete energies to the contin-
uum one. In section 3, we consider the general case in which a compactly supported
signed Radon measure is given to represent a distribution of charges. We construct
discrete charges and show that they converge to the signed Radon measure and that
the corresponding discrete energies converge to the continuum one defined by the
signed Radon measure. In section 4, we prove the converse: given a sequence of point
charges satisfying certain geometrical conditions, there exists a subsequence of such
charges that converges to a signed Radon measure. Moreover, the corresponding ener-
gies also converge to the one defined by the limiting signed Radon measure. Finally, in
section 5, we prove the existence and uniqueness of the minimizer of the electrostatic
energy functional defined on signed Radon measures with an external field, and also
prove that the minimizer can be approximated by point charges that are supported
in a small neighborhood of the boundary of the underlying bounded region.

2. Convergence of discrete energies with a given continuous function of
charge density. In this section, we construct a sequence of discrete charges from a
given continuum charge density. We prove that the corresponding sequence of discrete
energies converge to the continuum energy defined by the given charge density.

Let \Omega be a nonempty, bounded, open subset of \BbbR 3 with a Lipschitz-continuous
boundary \partial \Omega . Let \rho \in C(\Omega ) represent a charge density. The corresponding (contin-
uum) electrostatic energy is given by [21]

(2.1)
1

8\pi 

\int \int 
\Omega \times \Omega 

\rho (x)\rho (y)

| x - y| 
dxdy,

where the dielectric coefficient is taken to be unity in certain units.
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4572 BENJAMIN CIOTTI AND BO LI

We now define a sequence of discrete charges from the density \rho . We call a class
of finitely many subsets of \Omega a partition of \Omega , if each of these subsets is a domain in
\BbbR 3 with a Lipschitz-continuous boundary, these subsets are pairwise disjoint, and the
union of the closures of these subsets is \Omega . We call these subsets cells of the partition.
A sequence of partitions, \{ \scrP n\} \infty n=1, of \Omega is admissible if there exist natural numbers
Nn \nearrow +\infty and real numbers rn \searrow 0 such that each \scrP n consists of two parts: \omega i

n

(i = 1, . . . , Nn) (called regular cells) and the remaining cells, if any (called irregular
cells), that satisfy the following two conditions:

\bullet The uniform size condition: There exists a constant \gamma \in (0, 1), and for each
n \geq 1 and each i (1 \leq i \leq Nn), there exists xin \in \omega i

n (a point of charge) such
that

(2.2) B(xin, rn) \subseteq \omega i
n \subseteq B

\biggl( 
xin,

rn
\gamma 

\biggr) 
.

\bullet The almost covering condition:

(2.3) lim
n\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \bigm| \Omega \setminus 

\Biggl( 
Nn\bigcup 
i=1

\omega i
n

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| = 0.

Here and below, we denote by | A| the Lebesgue measure of a Lebesgue-measurable
set A. Since rn \searrow 0, the uniform size condition implies that

(2.4) \| \scrP n\| reg := max
1\leq i\leq Nn

diam (\omega i
n) \leq 

2rn
\gamma 

\rightarrow 0 as n\rightarrow \infty .

A typical example of an admissible sequence of partitions \scrP n (n = 1, 2, . . . ) of \Omega 
is as follows: all the regular cells of \scrP n consist of all the cubes that are subsets of \Omega 
and that have their sides 2 - n and faces on coordinate planes with values j + k2 - n,
where j and k are integers and 0 \leq k \leq 2n  - 1. We have rn = 2 - n - 1. The points
xin are the centers of the regular cells. The uniform size condition is satisfied with
\gamma = 2/

\surd 
3. Since the boundary \partial \Omega is Lipschitz-continuous,

lim
\eta \rightarrow 0

| \{ x \in \Omega : dist (x, \partial \Omega ) \leq \eta \} | = 0;

cf., e.g., [27]. Therefore, the almost covering condition (2.3) is satisfied.
Given an admissible sequence of partitions \{ \scrP n\} \infty n=1 of \Omega as above, we define the

sequence of discrete charges \{ Qi
n\delta xi

n
\} Nn
i=1 (n = 1, 2, . . . ) (i.e., we place the charge Qi

n

at point xin) corresponding to the given charge density \rho by

(2.5) Qi
n = \rho (xin)| \omega i

n| , i = 1, . . . , Nn; n = 1, 2, . . . .

This means that the discrete charge density for each n is

\mu n =

Nn\sum 
i=1

Qi
n\delta xi

n
=

1

Nn

Nn\sum 
i=1

\^Qi
n\delta xi

n
,

where \^Qi
n = NnQ

i
n. By (2.2) and (2.3), we see that \^Qi

n and \rho (xin) are of the same
order, i.e., the ratio \^Qi

n/\rho (x
i
n) (if \rho (xin) \not = 0) is bounded above and below by two

positive constants that are independent of i and n, if n is large enough. Note in
particular that the total charge in the limit of large number of charges is

lim
n\rightarrow \infty 

Nn\sum 
i=1

Qi
n =

\int 
\Omega 

\rho (x) dx.
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ELECTROSTATIC ENERGY 4573

By Coulomb's law [21], the corresponding discrete electrostatic energy for each n is
given by

(2.6)
1

8\pi 

Nn\sum 
i,j=1,i\not =j

Qi
nQ

j
n\bigm| \bigm| \bigm| xin  - xjn

\bigm| \bigm| \bigm| .
The main result of this section is Theorem 2.1 below. It states that the discrete

electrostatic energies converge to the continuum one given by (2.1). This is a special
case of Lemma 3.2 in terms of the discrete-to-continuum passage. But the construction
of nearly evenly distributed discrete charges here is natural and explicit, and is a
stronger result.

Theorem 2.1. Let \Omega \subset \BbbR 3 be nonempty, bounded, and open with a Lipschitz-
continuous boundary \partial \Omega . Let \rho \in C(\Omega ). Let \{ \scrP n\} \infty n=1 be a sequence of admissible par-
titions of \Omega with regular cells \omega i

n and charges Qi
n at points xin \in \omega i

n (i = 1, . . . , Nn;n =
1, 2, . . . ), all as defined above. We have

(2.7) lim
n\rightarrow \infty 

Nn\sum 
i,j=1,i\not =j

Qi
nQ

j
n\bigm| \bigm| \bigm| xin  - xjn

\bigm| \bigm| \bigm| =
\int \int 

\Omega \times \Omega 

\rho (x)\rho (y)

| x - y| 
dxdy.

We need the following lemma to prove the theorem. (This lemma will also be
used in proving Lemma 3.2.)

Lemma 2.1. If x0, y0 \in \BbbR 3 and R, S > 0 satisfy B(x0, R) \cap B(y0, S) = \emptyset , then

1

| x0  - y0| 
=

1

| B(x0, R)| | B(y0, S)| 

\int 
B(x0,R)

\int 
B(y0,S)

1

| x - y| 
dydx.

Proof. Note that 1/| z| is a harmonic function for z \in \BbbR 3 \setminus \{ 0\} . Note also that
x \not \in B(y0, S) if x \in B(x0, R). Thus it follows from the (volumetric) mean-value
theorem for a harmonic function that

1

| x0  - y0| 
=

1

| B(x0, R)| 

\int 
B(x0,R)

1

| x - y0| 
dx

=
1

| B(x0, R)| 

\int 
B(x0,R)

\Biggl[ 
1

| B(y0, S)| 

\int 
B(y0,S)

1

| x - y| 
dy

\Biggr] 
dx

=
1

| B(x0, R)| | B(y0, S)| 

\int 
B(x0,R)

\int 
B(y0,S)

1

| x - y| 
dydx.

The proof is complete.

Proof of Theorem 2.1. We denote

f(x, y) =
\rho (x)\rho (y)

| x - y| 
\forall x, y \in \Omega .

Clearly, f \in L1(\Omega \times \Omega ). We also denote

E =

\int \int 
\Omega \times \Omega 

f(x, y) dxdy and En =

Nn\sum 
i,j=1,i\not =j

Qi
nQ

j
n\bigm| \bigm| \bigm| xin  - xjn

\bigm| \bigm| \bigm| .
We need to prove limn\rightarrow \infty En = E, and we divide our proof into three steps.
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4574 BENJAMIN CIOTTI AND BO LI

Step 1. Treatment of irregular cells. For each n \geq 1, let us denote by Rn and In
the class of all regular cells and irregular cells of the partition \scrP n, and by \cup Rn and
\cup In their unions, respectively. Since f(x, y) = f(y, x), for each n we have by (2.1)
that

E =

\int \int 
\Omega \times \Omega 

f(x, y) dxdy

=

\biggl( \int 
\cup Rn

+

\int 
\cup In

\biggr) \biggl[ \biggl( \int 
\cup Rn

+

\int 
\cup In

\biggr) 
f(x, y) dx

\biggr] 
dy

=

\int 
\cup Rn

\int 
\cup Rn

f(x, y) dxdy +

\int 
\cup In

\int 
\cup In

f(x, y) dxdy + 2

\int 
\cup In

\int 
\cup Rn

f(x, y) dxdy

=

\int \int 
(\cup Rn)\times (\cup Rn)

f(x, y) dxdy +

\int \int 
(\cup In)\times (\cup In)

f(x, y) dxdy

+ 2

\int \int 
(\cup In)\times (\cup Rn)

f(x, y) dxdy.

It then follows from the almost covering condition (2.3) that limn\rightarrow \infty | \cup In| = 0, which
implies that limn\rightarrow \infty | (\cup In)\times (\cup In)| = 0 and limn\rightarrow \infty | (\cup In)\times (\cup Rn)| = 0. Hence,

E = lim
n\rightarrow \infty 

\int \int 
(\cup Rn)\times (\cup Rn)

f(x, y) dxdy.

It therefore suffices to show that, for any \varepsilon > 0, there exists a natural number N such
that

(2.8)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \int 

(\cup Rn)\times (\cup Rn)

f(x, y) dxdy  - En

\bigm| \bigm| \bigm| \bigm| \bigm| < \varepsilon \forall n \geq N.

Step 2. Treatment of pairs of regular cells in a small neighborhood of the diagonal
region D := \{ (x, y) \in \Omega \times \Omega : x = y\} . By the integrability of f(x, y) and that of
1/| x - y| on \Omega \times \Omega , there exists \delta > 0 such that for any measurable subset A \subseteq \Omega \times \Omega \int \int 

A

| f(x, y)| dxdy < \varepsilon 

3
and

\int \int 
A

dxdy

| x - y| 
<

\varepsilon \gamma 6

3(\| \rho \| 2\infty + 1)
if | A| < \delta ,(2.9)

where \gamma is the same as in (2.2). Denote

D\alpha = \{ (x, y) \in \Omega \times \Omega : dist ((x, y), D) < \alpha \} 

for any \alpha > 0. Since \Omega is bounded, | D\alpha | \rightarrow 0 as \alpha \rightarrow 0. Thus, there exists \eta > 0 such
that

(2.10) | D2\eta | < \delta .

For each n \geq 1, let us denote

Tn,\eta = \{ \omega i
n \times \omega j

n : 1 \leq i, j \leq n, (\omega i
n \times \omega j

n) \cap D\eta \not = \emptyset \} ,
Sn,\eta = \{ \omega i

n \times \omega j
n : 1 \leq i, j \leq n, (\omega i

n \times \omega j
n) \cap D\eta = \emptyset \} .

Note that Sn,\eta and Tn,\eta are disjoint. Moreover,

(2.11) (\cup Rn)\times (\cup Rn) = (\cup Sn,\eta ) \cup (\cup Tn,\eta ).
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By (2.4), there exists \~N such that

(2.12) \cup Tn,\eta \subseteq D2\eta if n \geq \~N.

This, together with (2.10) and (2.9), implies that

\int \int 
\cup Tn,\eta 

| f(x, y)| dxdy < \varepsilon 

3
and

\int \int 
\cup Tn,\eta 

dxdy

| x - y| 
<

\varepsilon \gamma 6

3(\| \rho \| 2\infty + 1)
if n \geq \~N.

(2.13)

Now, let \omega i
n \times \omega j

n \in Tn,\eta with i \not = j. It follows from the definition of Qi
n and Qj

n

(cf. (2.5)), Lemma 2.1, and the uniform size condition (cf. (2.2)) that

| Qi
nQ

j
n| 

| xin  - xjn| 
\leq \| \rho \| 2\infty | \omega i

n| | \omega j
n| 

| xin  - xjn| 

=
\| \rho \| 2\infty | \omega i

n| | \omega j
n| 

| B(xin, rn)| | B(xjn, rn)| 

\int \int 
B(xi

n,rn)\times B(xj
n,rn)

dxdy

| x - y| 

\leq \| \rho \| 2\infty 
\gamma 6

\int \int 
\omega i

n\times \omega j
n

dxdy

| x - y| 
if n \geq \~N.

This and (2.13) then imply that

(2.14)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\omega i
n\times \omega j

n\in Tn,\eta ,i\not =j

Qi
nQ

j
n

| xin  - xjn| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \| \rho \| 2\infty 
\gamma 6

\int 
\cup Tn,\eta 

dxdy

| x - y| 
<
\varepsilon 

3
if n \geq \~N.

Step 3. Treatment of pairs of regular cells away from the diagonal region D. The
uniform continuity of f on \Omega \times \Omega \setminus D\eta implies the existence of \sigma > 0 such that

(2.15) | f(x, y) - f(x\prime , y\prime )| < \varepsilon 

3| \Omega \times \Omega | 
if | (x, y) - (x\prime , y\prime )| < \sigma .

By (2.4), there exists a natural number \^N such that \| \scrP n\| reg < \sigma if n \geq \^N. Note that
if \omega i

n\times \omega j
n \in Sn,\eta , then we must have i \not = j. Therefore, it follows from (2.5) and (2.15)

that \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int \int 

\cup Sn,\eta 

f(x, y) dxdy  - 
\sum 

\omega i
n\times \omega j

n\in Sn,\eta 

Qi
nQ

j
n

| xin  - xjn| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\sum 
\omega i

n\times \omega j
n\in Sn,\eta 

\int \int 
\omega i

n\times \omega j
n

\bigm| \bigm| f(x, y) - f(xin, x
j
n)
\bigm| \bigm| dxdy

<
\varepsilon 

3
if n \geq \^N.(2.16)

Finally, let N = max\{ \~N, \^N\} . We have by (2.11), (2.13), (2.14), and (2.16) that\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \int 

(\cup Rn)\times (\cup Rn)

f(x, y) dxdy  - En

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int \int 

\cup Tn,\eta 

| f(x, y)| dxdy +

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 

\omega i
n\times \omega j

n\in Tn,\eta ,i\not =j

Qi
nQ

j
n

| xin  - xjn| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
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+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int \int 

\cup Sn,\eta 

f(x, y) dxdy  - 
\sum 

\omega i
n\times \omega j

n\in Sn,\eta 

Qi
nQ

j
n

| xin  - xjn| 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
< \varepsilon if n \geq N,

leading to (2.8).

3. Convergence of discrete energies with a given signed radon measure
of charge density. In this section, we consider a given charge density represented
by a compactly supported signed Radon measure on \BbbR 3. We construct a sequence of
discrete charges such that they converge to the given signed Radon measure and that
the corresponding discrete energies converge to the continuum energy defined by the
given signed Radon measure.

We first recall some definitions and notation. For any nonnegative Radon mea-
sures \alpha and \beta on \BbbR 3, we set

E[\alpha , \beta ] :=

\int \int 
\BbbR 3\times \BbbR 3

d(\alpha \times \beta )(x, y)

| x - y| 
=

\int 
\BbbR 3

\int 
\BbbR 3

d\alpha (x)d\beta (y)

| x - y| 
=

\int 
\BbbR 3

\int 
\BbbR 3

d\beta (y)d\alpha (x)

| x - y| 
.

The second and third equalities follow from the Fubini--Tonelli theorem. In general
E[\alpha , \beta ] \in [0,\infty ]. For any signed Radon measure \mu on \BbbR 3, let \mu = \mu +  - \mu  - be the
unique Jordan decomposition of \mu into nonnegative Radon measures \mu + and \mu  - on
\BbbR 3, respectively. If E[\mu +, \mu  - ] <\infty , then we define

E[\mu ] = E[\mu +, \mu +] + E[\mu  - , \mu  - ] - 2E[\mu +, \mu  - ].

If \mu is a positive Radon measure on \BbbR 3, then E[\mu ] = E[\mu , \mu ].
For any nonempty, bounded, open set \Omega \subseteq \BbbR 3, we denote

(3.1) \scrM (\Omega ) = \{ all signed Radon measures \mu on \BbbR 3 such that supp (\mu ) \subseteq \Omega \} .

If \mu \in \scrM (\Omega ) then the total variation of \mu is \| \mu \| = | \mu | (\BbbR 3) = | \mu | (\Omega ) < \infty . We also
denote

(3.2) \scrA (\Omega ) =

\biggl\{ 
1

N

N\sum 
i=1

Qi\delta xi
: Qi \in \BbbR , xi \in \Omega , and xi \not = xj if i \not = j,N = 1, 2, . . .

\biggr\} 
.

For any \lambda > 0, we denote

\scrM \lambda (\Omega ) = \{ \mu \in \scrM (\Omega ) : \| \mu \| \leq \lambda \} ,

(3.3)

\scrA \lambda (\Omega ) =

\biggl\{ 
1

N

N\sum 
i=1

Qi\delta xi
: | Qi| \leq \lambda , xi \in \Omega , and xi \not = xj if i \not = j,N = 1, 2, . . .

\biggr\} 
.

(3.4)

We define the discrete energy

(3.5) Ed[\mu ] =
1

N2

\sum 
1\leq i,j\leq N,i\not =j

QiQj

| xi  - xj | 
if \mu =

1

N

N\sum 
i=1

Qi\delta xi
,
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where Qi \in \BbbR and xi \in \BbbR 3 with xi \not = xj if i \not = j. Since \delta a \times \delta b = \delta (a,b) for any
a, b \in \BbbR 3 we have

(3.6) Ed[\mu ] =

\int \int 
\{ (x,y)\in \BbbR 3\times \BbbR 3:x \not =y\} 

d(\mu \times \mu )(x, y)

| x - y| 
.

Note that we drop the factor 1/2 in our definition of E[\alpha , \beta ], E[\mu ], and Ed[\mu ].
For any signed Radon measure \mu on \BbbR 3 and any g \in C0(\BbbR 3), we denote

\langle \mu , g\rangle =
\int 
\BbbR 3

g d\mu .

When no confusion arises, we also use \langle \cdot , \cdot \rangle to denote the L2(\BbbR 3)-inner product. If
\mu n, \mu (n = 1, 2, . . . ) are all signed Radon measures on \BbbR 3, then the vague convergence

(i.e., the weak-\ast convergence) of \mu n to \mu , denoted \mu n
\ast 
\rightharpoonup \mu , is defined by \langle \mu n, g\rangle \rightarrow 

\langle \mu , g\rangle for any g \in C0(\BbbR 3).
Our main result of this section is the following.

Theorem 3.1. Let \Omega \subset \BbbR 3 be a nonempty, bounded, open subset with a C2 bound-
ary. Let \lambda > 0. Assume \mu \in \scrM \lambda (\Omega ) with E[| \mu | ] < \infty . Then there exist \mu n \in \scrA \lambda (\Omega )
(n = 1, 2, . . . ) such that

\mu n
\ast 
\rightharpoonup \mu and Ed[\mu n] \rightarrow E[\mu ] as n\rightarrow \infty .

Moreover, if supp (\mu ) \subseteq \partial \Omega and \varepsilon > 0, then the measures \mu n can be constructed so
that

supp (\mu n) \subseteq \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon \} (n = 1, 2, . . . ).

To prove the theorem, we need two lemmas. The first lemma states that the charge
distribution represented by a signed Radon measure that is compactly supported in
\Omega can be approximated by those with C\infty -densities (with respect to the Lebesgue
measure) that are compactly supported inside \Omega . The approximation is carried out
by a family of diffeomorphisms that flow the support of the given measure into the
interior of \Omega , providing space for smoothing. Such diffeomorphisms are vector fields
(cf. Chapter 9 of [9]), and are determined here locally by the gradient of signed
distance to the boundary \partial \Omega .

Lemma 3.1. Let \Omega , \lambda , and \mu be the same as in Theorem 3.1. There exist \nu n \in 
\scrM \lambda (\Omega ) (n = 1, 2 . . . ) that satisfy the following:

(1) For each n, \nu n is absolutely continuous with respect to the Lebesgue measure
with a C\infty -density, and supp (\nu n) \subset \Omega . Moreover, if supp (\mu ) \subseteq \partial \Omega and
\varepsilon > 0, then the measures \nu n can be constructed so that

supp (\nu n) \subseteq \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon \} (n = 1, 2, . . . ).

(2) \nu n
\ast 
\rightharpoonup \mu and E[\nu n] \rightarrow E[\mu ] as n\rightarrow \infty .

Proof. We divide our proof into four steps. In Step 1, we use the gradient of the
signed distance function (with the distance to the boundary \partial \Omega ) to construct a family
of diffeomorphisms that can flow the points on the boundary \partial \Omega into the interior of
\Omega . In Step 2, we use the diffeomorphisms to construct the corresponding push-forward
measures that are compactly supported inside \Omega and prove the desired convergence
properties. In Step 3, we mollify those push-forward measures to construct signed
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4578 BENJAMIN CIOTTI AND BO LI

Radon measures supported inside \Omega with C\infty -densities. Finally, in Step 4, we con-
struct the desired sequence of signed Radon measures \{ \nu n\} \infty n=1 and prove the related
convergence properties.

Step 1. Construction of a family of diffeomorphisms. We define the signed dis-
tance function

(3.7) d(x) =

\Biggl\{ 
dist(x, \partial \Omega ) if x \in \Omega ,

 - dist(x, \partial \Omega ) if x \in \BbbR 3 \setminus \Omega .

For r > 0, set Tr := \{ x \in \BbbR 3 : | d(x)| < r\} . Since \partial \Omega is C2, there exists \delta > 0 such
that

(3.8) d \in C2(T\delta ) and | \nabla d| = 1 in T\delta .

Moreover, for every x \in T\delta there exists a unique x\prime \in \partial \Omega such that | x  - x\prime | =
dist(x, \partial \Omega ) (cf. Theorem 3 in [24]). Since \partial \Omega = \{ x \in \BbbR 3 : d(x) = 0\} , at each point
on \partial \Omega , \nabla d is the unit normal to \partial \Omega , and is oriented toward the interior of \Omega . Let
\xi \in C\infty 

c (\BbbR 3) be such that \xi = 1 on T\delta /2 and supp (\xi ) \subset T\delta . Define

(3.9) \~d(x) = d(x)\xi (x) \forall x \in \BbbR 3.

Note that \~d \in C2
c (\BbbR 3), supp ( \~d) \subset T\delta , and \~d = d on T\delta /2. The vector field \nabla \~d : \BbbR 3 \rightarrow 

\BbbR 3 is Lipschitz-continuous with the Lipschitz constant

(3.10) L = sup
x,y\in \BbbR 3,x \not =y

| \nabla \~d(x) - \nabla \~d(y)| 
| x - y| 

<\infty .

The global Lipschitz continuity of \nabla \~d ensures the existence of a unique family of
diffeomorphisims \Phi t : \BbbR 3 \rightarrow \BbbR 3 defined by

(3.11)
d

dt
\Phi t(x) = \nabla \~d(\Phi t(x)) and \Phi 0(x) = x.

We have the following properties:
\bullet The family of transformations \{ \Phi t\} t\in \BbbR form a group of diffeomorphisms with

\Phi t \circ \Phi s = \Phi t+s for any t, s \in \BbbR , and in particular, \Phi t \circ \Phi  - t = \Phi 0 = id, where
id : \BbbR 3 \rightarrow \BbbR 3 is the identity map. These follow from the definition (3.11).

\bullet Since \~d \in C2
c (\BbbR 3) and \Omega is bounded, there exists R > 0 such that

(3.12) \Omega \subseteq B(0, R) and \Phi t(x) = x \forall x \in \BbbR 3 \setminus B(0, R) and \forall t \in \BbbR .

\bullet We have
(3.13)
e - L| t| | x - y| \leq | \Phi t(x) - \Phi t(y)| \leq eL| t| | x - y| \forall x, y \in \BbbR 3 and \forall t \in \BbbR .

To show (3.13), let us first consider t \geq 0. By (3.11) and (3.10), we have

| \Phi t(x) - \Phi t(y)| =
\bigm| \bigm| \bigm| \bigm| x - y +

\int t

0

\Bigl[ 
\nabla \~d(\Phi s(x)) - \nabla \~d(\Phi s(y))

\Bigr] 
ds

\bigm| \bigm| \bigm| \bigm| 
\leq | x - y| +

\int t

0

\bigm| \bigm| \bigm| \nabla \~d(\Phi s(x)) - \nabla \~d(\Phi s(y))
\bigm| \bigm| \bigm| ds

\leq | x - y| +
\int t

0

L | \Phi s(x) - \Phi s(y)| ds.
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Gronwall's inequality then leads to the second inequality in (3.13) for t \geq 0. Similarly,

| \Phi  - t(x) - \Phi  - t(y)| \leq eLt| x - y| .

Note that \Phi  - t(\Phi t(x)) = x for any t and x. So, replacing x and y above by \Phi t(x) and
\Phi t(y), respectively, we obtain

| x - y| \leq eLt| \Phi t(x) - \Phi t(y)| ,

which leads to the first inequality in (3.13) for t \geq 0. If t < 0, then we can replace x
and y in (3.13) for t > 0 by \Phi  - t(x) and \Phi  - t(y), respectively, to obtain the inequalities
in (3.13) for t < 0. We have thus proved (3.13).

Step 2. Construction of signed Radon measures supported inside \Omega with the desired
convergence properties. For the given \mu \in \scrM \lambda (\Omega ) in the lemma, we consider the
family of push-forward measures \{ \mu \circ \Phi  - 1

t \} t\in \BbbR , where (\mu \circ \Phi  - 1
t )(A) = \mu (\Phi  - 1

t (A)) for
any Borel set A \subseteq \BbbR 3. We claim the following:

(2.1) For any t \in \BbbR , \mu \circ \Phi  - 1
t is a signed Radon measure on \BbbR 3 with \| \mu \circ \Phi  - 1

t \| = \| \mu \| 
and

supp (\mu \circ \Phi  - 1
t ) \subseteq \Phi t(supp (\mu )) \subseteq \Phi t(\Omega ) \subseteq B(0, R),

where R is the same as in (3.12).

(2.2) As t\rightarrow 0, \mu \circ \Phi  - 1
t

\ast 
\rightharpoonup \mu and E[\mu \circ \Phi  - 1

t ] \rightarrow E[\mu ].
(2.3) If t > 0, then supp (\mu \circ \Phi  - 1

t ) \subset \Omega and \mu \circ \Phi  - 1
t \in \scrM \lambda (\Omega ). Moreover, if

supp (\mu ) \subseteq \partial \Omega and \varepsilon > 0, then there exists t\varepsilon > 0 such that

supp (\mu \circ \Phi  - 1
t ) \subset \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon /2\} , provided that 0 < t \leq t\varepsilon .

Proof of claim (2.1). Fix t \in \BbbR . Since \Phi t : \BbbR 3 \rightarrow \BbbR 3 is a homeomorphism,
\BbbR 3 = P \cup N is a Hahn decomposition for \mu (i.e., P and N are disjoint Borel subsets
of \BbbR 3, and they are positive and negative sets for \mu , respectively) if and only if
\BbbR 3 = \Phi t(P ) \cup \Phi t(N) is a Hahn decomposition for \mu \circ \Phi  - 1

t . Consequently,\bigm\| \bigm\| \mu \circ \Phi  - 1
t

\bigm\| \bigm\| =
\bigm| \bigm| \mu \circ \Phi  - 1

t

\bigm| \bigm| (\BbbR 3) =
\bigl( 
\mu \circ \Phi  - 1

t

\bigr) 
(\Phi t(P )) - 

\bigl( 
\mu \circ \Phi  - 1

t

\bigr) 
(\Phi t(N))

= \mu (P ) - \mu (N) = | \mu | (\BbbR 3) = \| \mu \| .

Thus, \mu \circ \Phi  - 1
t is a signed Radon measure on \BbbR 3 with \| \mu \circ \Phi  - 1

t \| = \| \mu \| \leq \lambda . Let
A be a Borel subset of \BbbR 3. If A \cap \Phi t(supp (\mu )) = \emptyset , then \Phi  - 1

t (A) \cap supp(\mu ) = \emptyset 
and hence (\mu \circ \Phi  - 1

t )(A) = \mu (\Phi  - 1
t (A)) = 0. Thus, supp (\mu \circ \Phi  - 1

t ) \subseteq \Phi t(supp(\mu )) \subseteq 
\Phi t(\Omega ). If x \in B(0, R) but \Phi t(x) \in \BbbR 3 \setminus B(0, R) for some t, then by (3.12) x =
\Phi  - t(\Phi t(x)) \in \BbbR 3 \setminus B(0, R), a contradiction. Thus, \Phi t(B(0, R)) \subseteq B(0, R). Hence
\Phi t(\Omega ) \subseteq \Phi t(B(0, R)) \subseteq B(0, R). The proof of claim (2.1) is complete.

Proof of claim (2.2). Let g \in Cc(\BbbR 3). Let R > 0 be the same as in (3.12). Choose
\~R > R so that supp (g) \subseteq B(0, \~R). If x \in \BbbR 3 and | x| > \~R, then g(\Phi t(x)) = g(x) = 0
for all t \in \BbbR . Thus, | g \circ \Phi t| \leq \| g\| \infty \chi B(0, \~R) on \BbbR 3 for all t \in \BbbR . Since each \Phi t :

\BbbR 3 \rightarrow \BbbR 3 is a homeomorphism and \| \mu \| \leq \lambda , we have by the change of variables
(cf. Theorem 3.6.1 in [4]), the dominated convergence theorem, and the fact that
\Phi 0(x) = x for all x \in \BbbR 3 that

lim
t\rightarrow 0

\int 
\BbbR 3

g d
\bigl( 
\mu \circ \Phi  - 1

t

\bigr) 
= lim

t\rightarrow 0

\int 
\BbbR 3

g \circ \Phi t d\mu =

\int 
\BbbR 3

lim
t\rightarrow 0

g \circ \Phi t d\mu =

\int 
\BbbR 3

g d\mu .

Thus, \mu \circ \Phi  - 1
t

\ast 
\rightharpoonup \mu as t\rightarrow 0.
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Now let \mu = \mu + - \mu  - be the Jordan decomposition of \mu corresponding to the Hahn
decomposition \BbbR 3 = P \cup N , where P and N are disjoint Borel subsets of \BbbR 3, positive
and negative for \mu , respectively. We have \mu +(A) = \mu (A\cap P ) and \mu  - (A) =  - \mu (A\cap N)
for any Borel subset A \subseteq \BbbR 3. Thus, for each t \in \BbbR , \BbbR 3 = \Phi t(P ) \cup \Phi t(N) is a
Hahn decomposition for \mu \circ \Phi  - 1

t , and \mu \circ \Phi  - 1
t = \mu + \circ \Phi  - 1

t  - \mu  - \circ \Phi  - 1
t is the Jordan

decomposition for \mu , i.e., (\mu \circ \Phi  - 1
t )+ = \mu + \circ \Phi  - 1

t and (\mu \circ \Phi  - 1
t ) - = \mu  - \circ \Phi  - 1

t . If
h \in C(\BbbR 3 \times \BbbR 3) is nonnegative and bounded, then by the fact that \| (\mu \circ \Phi t)

+\| \leq 
\| \mu \circ \Phi t\| = \| \mu \| \leq \lambda and \| (\mu \circ \Phi t)

 - \| \leq \| \mu \circ \Phi t\| = \| \mu \| \leq \lambda , the change of variables,
and Fubini's theorem, we have\int \int 

\BbbR 3\times \BbbR 3

h(x, y) d((\mu \circ \Phi  - 1
t )+ \times (\mu \circ \Phi  - 1

t ) - )(x, y)

=

\int 
\BbbR 3

\biggl[ \int 
\BbbR 3

h(x, y) d(\mu + \circ \Phi  - 1
t )(x)

\biggr] 
d(\mu  - \circ \Phi  - 1

t )(y)

=

\int 
\BbbR 3

\biggl[ \int 
\BbbR 3

h(\Phi t(x), y) d\mu 
+(x)

\biggr] 
d(\mu  - \circ \Phi  - 1

t )(y)

=

\int 
\BbbR 3

\biggl[ \int 
\BbbR 3

h(\Phi t(x),\Phi t(y)) d\mu 
+(x)

\biggr] 
d\mu  - (y)

=

\int \int 
\BbbR 3\times \BbbR 3

h(\Phi t(x),\Phi t(y)) d(\mu 
+ \times \mu  - )(x, y).

Define hn(x, y) = min(1/| x - y| , n) (n = 1, 2, . . . ). Then each hn \in C(\BbbR 3 \times \BbbR 3) is
nonnegative and bounded, and hn \leq hn+1 (n = 1, 2, . . . ). Replacing h above with hn
and applying the monotone convergence theorem, we obtain that

E[(\mu \circ \Phi  - 1
t )+, (\mu \circ \Phi  - 1

t ) - ]

=

\int \int 
\BbbR 3\times \BbbR 3

d((\mu \circ \Phi  - 1
t )+ \times (\mu \circ \Phi  - 1

t ) - )(x, y)

| x - y| 

= lim
n\rightarrow \infty 

\int \int 
\BbbR 3\times \BbbR 3

hn(x, y) d((\mu \circ \Phi  - 1
t )+ \times (\mu \circ \Phi  - 1

t ) - )(x, y)

= lim
n\rightarrow \infty 

\int \int 
\BbbR 3\times \BbbR 3

hn(\Phi t(x),\Phi t(y)) d(\mu 
+ \times \mu  - )(x, y)

=

\int \int 
\BbbR 3\times \BbbR 3

d(\mu + \times \mu  - )(x, y)

| \Phi t(x) - \Phi t(y)| 
.(3.14)

It follows from (3.13) that

(3.15)
e - L| t| 

| x - y| 
\leq 1

| \Phi t(x) - \Phi t(y)| 
\leq eL| t| 

| x - y| 
\forall t \in \BbbR .

We can replace | t| in the exponent by some T > 0 so that the inequalities hold true for
all t \in [ - T, T ]. Since E[| \mu | ] <\infty , the function 1/| x - y| and, hence, 1/| \Phi t(x) - \Phi t(y)| 
for each t, is integrable against the product measure \mu + \times \mu  - . Therefore, by (3.14)
and the dominated convergence theorem,

lim
t\rightarrow 0

E[(\mu \circ \Phi  - 1
t )+, (\mu \circ \Phi  - 1

t ) - ] =

\int \int 
\BbbR 3\times \BbbR 3

d(\mu + \times \mu  - )(x, y)

| x - y| 
= E[\mu +, \mu  - ].

Similarly,

E[(\mu \circ \Phi  - 1
t )+] \rightarrow E[\mu +] and E[(\mu  - \circ \Phi  - 1

t ) - ] \rightarrow E[\mu  - ] as t\rightarrow 0.

The proof of claim (2.2) is complete.
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Proof of claim (2.3). We first show that there exists t0 > 0 such that

(3.16) d(x) < d(\Phi t(x)) <
\delta 

2
if 0 \leq d(x) \leq \delta 

4
and 0 < t \leq t0,

where \delta > 0 is the same as in (3.8). Let x \in \BbbR 3 and assume 0 \leq d(x) \leq \delta /4. (This
implies that x \in \Omega .) Recall from (3.9) that \~d \in C2(\BbbR 3), supp ( \~d) \subset T\delta , and \~d = d on
T\delta /2. Taylor expanding \Phi t(x) at t = 0, we have by (3.8) and (3.11) that

\Phi t(x) = \Phi 0(x) + t
d

dt
\Phi t(x)

\bigm| \bigm| \bigm| \bigm| 
t=0

+
t2

2

d2

dt2
(\Phi t(x))

\bigm| \bigm| \bigm| \bigm| 
t=\tau 

= x+ t\nabla d(x) + t2

2
\nabla 2 \~d(\Phi \tau (x))\nabla \~d(\Phi \tau (x)) \forall t > 0,(3.17)

where \tau = \tau (x, t) \in [0, t] and \nabla 2 \~d denotes the Hessian matrix of \~d. Thus, since
| \nabla d(x)| = 1,

| \Phi t(x) - x| \leq t+
t2

2
\| \nabla 2 \~d\| \infty \| \nabla \~d\| \infty .

Consequently, since 0 \leq d(x) \leq \delta /4, the distance function is Lipschitz-continuous
with the Lipschitz constant 1 (cf. the proof of Lemma 3.2.34 in [14] and section 1.1
of [42]), which implies that

d(\Phi t(x)) \leq d(x) + | \Phi t(x) - x| \leq \delta 

4
+ | \Phi t(x) - x| ,

and \Phi t(x) is continuous in t, there exists t1 > 0 such that d(\Phi t(x)) < \delta /2 if 0 < t \leq t1.
Now, denoting

w(x, t) = (1/2)\nabla 2 \~d(\Phi \tau (x))\nabla \~d(\Phi \tau (x)),

Taylor expanding d(\Phi t(x)) with \Phi t(x) given in (3.17), and noting that d = \~d on T\delta /2,
we obtain

d(\Phi t(x)) = \~d(\Phi t(x))

= \~d
\bigl( 
x+ t\nabla d(x) + t2w(x, t)

\bigr) 
= \~d(x) +\nabla \~d(x) \cdot 

\bigl[ 
t\nabla d(x) + t2w(x, t)

\bigr] 
+

1

2
\nabla 2 \~d(\^xt)

\bigl[ 
t\nabla d(x) + t2w(x, t)

\bigr] 
\cdot 
\bigl[ 
t\nabla d(x) + t2w(x, t)

\bigr] 
= d(x) + t+ u(x, t),

where \^xt \in \BbbR 3 lies on the line segment connecting x and \Phi t(x) and

| u(x, t)| \leq C
\bigl( 
t2 + t3 + t4

\bigr) 
with C = C(\| \nabla 2 \~d\| \infty , \| \nabla \~d\| \infty ) > 0 a constant independent of x and t. Therefore,
there exists t0 \in (0, t1] such that (3.16) is true.

We now claim the following:
(2.3.1) d(\Phi t(x)) > d(x) for any x \in \Omega with 0 \leq d(x) \leq \delta /8 and any t > 0; and
(2.3.2) d(\Phi t(x)) \geq \delta /8 for any x \in \Omega with d(x) > \delta /8 and for any t > 0.
If these are proved, then \Phi t(\Omega ) \subset \Omega for any t > 0. By claim (2.1), we have for any
t > 0 that supp (\mu \circ \Phi  - 1

t ) \subseteq \Phi t(supp (\mu )) \subseteq \Phi t(\Omega ). This, together with claim (2.1)
again, implies that \mu \circ \Phi  - 1

t \in \scrM \lambda (\Omega ). Moreover, assume supp (\mu ) \subseteq \partial \Omega and \varepsilon > 0.
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4582 BENJAMIN CIOTTI AND BO LI

Then, replacing \delta > 0 in (3.16) by \varepsilon and setting t\varepsilon = t0 there, we have by claim (2.1)
and (3.16) that

supp (\mu \circ \Phi  - 1
t ) \subseteq \Phi t(supp (\mu )) \subseteq \Phi t(\partial \Omega ) \subset \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon /2\} ,

provided that 0 < t < t\varepsilon . Claim (2.3) will then be true.
To prove claim (2.3.1), we assume on the contrary that there existed some x with

0 \leq d(x) \leq \delta /8 and some t\prime > 0 such that d(\Phi t\prime (x)) \leq d(x). By (3.16), t\prime > t0 and
d(x) < d(\Phi t0(x)) < \delta /2. Let dc = min(d(\Phi t0(x)), \delta /4). Since d(\Phi t(x)) is continuous
in t, d(\Phi t0(x)) \geq dc, and d(\Phi t\prime (x)) \leq d(x) < dc, the set \{ t \in [t0, t

\prime ] : d(\Phi t(x)) = dc\} 
is nonempty and compact and, hence, has a maximum value tm \in [t0, t

\prime ). It satisfies
d(\Phi tm(x)) = dc \leq \delta /4 and

(3.18) d(\Phi t(x)) < dc if tm < t \leq t\prime .

Now, let t\prime \prime \in (0, t0] be such that tm + t\prime \prime \leq t\prime . Then, we have by (3.16) with \Phi tm(x)
replacing x that d(\Phi tm+t\prime \prime (x)) = d(\Phi t\prime \prime (\Phi tm(x))) > d(\Phi tm(x)) = dc. This contradicts
(3.18). Thus, claim (2.3.1) is true. Claim (2.3.2) can be proved similarly: if d(x) > \delta /8
but d(\Phi t(x)) < \delta /8 for some t > 0, then there would exist t\prime m \in (0, t) such that
d(\Phi s(x)) \geq \delta /8 for all s \in [0, t\prime m] but d(\Phi s(x)) < \delta /8 if s \in (t\prime m, t). Again by (3.16)
with \Phi t\prime m

(x) replacing x, it would lead to a contradiction. The proof of claim (2.3) is
complete.

Step 3. Construction of signed Radon measures supported inside \Omega with C\infty -
densities and the desired convergence properties. Let \varphi \in C\infty 

c (\BbbR 3) be nonnegative
and radially symmetric with supp (\varphi ) \subset B(0, 1) and

(3.19)

\int 
\BbbR 3

\varphi dx =

\int 
B(0,1)

\varphi dx = 1.

Define
\varphi \alpha (x) = \alpha  - 3\varphi 

\Bigl( x
\alpha 

\Bigr) 
\forall \alpha > 0 \forall x \in \BbbR 3.

For any t \in \BbbR and any \alpha > 0, we consider the function \varphi \alpha \ast (\mu \circ \Phi  - 1
t ) : \BbbR 3 \rightarrow \BbbR . Since

\mu \circ \Phi  - 1
t is a signed Radon measure with \| \mu \circ \Phi  - 1

t \| = \| \mu \| \leq \lambda (cf. claim (2.1) in Step
2), by the definition of partial derivatives and the dominated convergence theorem,
we have \varphi \alpha \ast (\mu \circ \Phi  - 1

t ) \in C\infty (\BbbR 3). Moreover, since

(3.20) supp (\varphi \alpha \ast (\mu \circ \Phi  - 1
t )) \subseteq supp (\varphi \alpha ) + supp (\mu \circ \Phi  - 1

t ) \subseteq B(0, \alpha ) +B(0, R),

where R is the same as in (3.12), the function \varphi \alpha \ast (\mu \circ \Phi  - 1
t ) is compactly supported.

Hence, \varphi \alpha \ast (\mu \circ \Phi  - 1
t ) \in C\infty 

c (\BbbR 3).
For any \alpha > 0 and any t \in \BbbR , we define the signed measure \nu \alpha ,t on the Borel

subsets of \BbbR 3 by d\nu \alpha ,t = \varphi \alpha \ast (\mu \circ \Phi  - 1
t ) dx, i.e.,

\nu \alpha ,t(A) =

\int 
A

\varphi \alpha \ast (\mu \circ \Phi  - 1
t ) dx for any Borel set A \subseteq \BbbR 3.

We claim the following:
(3.1) For any t \in \BbbR and any \alpha > 0, \nu \alpha ,t is a signed Radon measure with a com-

pact support and a C\infty 
c -density (with respect to the Lebesgue measure), and

\| \nu \alpha ,t\| \leq \| \mu \| \leq \lambda .
(3.2) For each t \in \BbbR ,

\nu \alpha ,t
\ast 
\rightharpoonup \mu \circ \Phi  - 1

t and E[\nu \alpha ,t] \rightarrow E[\mu \circ \Phi  - 1
t ] as \alpha \rightarrow 0+.
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(3.3) For any t > 0, there exists \alpha t > 0 such that \nu \alpha ,t \in \scrM \lambda (\Omega ) with supp (\nu \alpha ,t) \subset 
\Omega for all \alpha \in (0, \alpha t]. If supp (\mu ) \subseteq \partial \Omega and \varepsilon > 0, then there exists \alpha \varepsilon > 0
such that

(3.21) supp (\nu \alpha ,t) \subset \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon \} \forall \alpha \in (0, \alpha \varepsilon ], \forall t \in (0, t\varepsilon ],

where t\varepsilon > 0 is the same as that in claim (2.3) in Step 2.
Proof of claim (3.1). Since the density \varphi \alpha \ast (\mu \circ \Phi  - 1

t ) \in C\infty 
c (\BbbR 3), the measure \nu \alpha ,t

has a compact support and also a C\infty 
c -density. Noting that d| \nu \alpha ,t| = | \varphi \alpha \ast (\mu \circ \Phi  - 1

t )| dx,
we have by Fubini's theorem that

\| \nu \alpha ,t\| =

\int 
\BbbR 3

| \varphi \alpha \ast (\mu \circ \Phi  - 1
t )| dx

=

\int 
\BbbR 3

\bigm| \bigm| \bigm| \bigm| \int 
\BbbR 3

\varphi \alpha (x - y) d(\mu \circ \Phi  - 1
t )(y)

\bigm| \bigm| \bigm| \bigm| dx
\leq 
\int 
\BbbR 3

\int 
\BbbR 3

\varphi \alpha (x - y) d| \mu \circ \Phi  - 1
t | (y) dx

=

\int 
\BbbR 3

\biggl[ \int 
\BbbR 3

\varphi \alpha (x - y) dx

\biggr] 
d| \mu \circ \Phi  - 1

t | (y)

=

\int 
\BbbR 3

d| \mu \circ \Phi  - 1
t | (y)

= \| \mu \circ \Phi  - 1
t \| .

Thus, \| \nu \alpha ,t\| \leq \| \mu \| \leq \lambda (cf. claim (2.1) in Step 2). The proof of claim (3.1) is
complete.

Proof of claim (3.2). Fix t \in \BbbR and g \in C0(\BbbR 3). Note that \varphi \alpha \ast g \rightarrow g uniformly
on \BbbR 3 as \alpha \rightarrow 0+. We have by Fubini's theorem that\int 

\BbbR 3

g(x) d\nu \alpha ,t(x) =

\int 
\BbbR 3

g(x)

\biggl[ \int 
\BbbR 3

\varphi \alpha (y  - x) d(\mu \circ \Phi  - 1
t )(y)

\biggr] 
dx

=

\int 
\BbbR 3

(\varphi \alpha \ast g)(y) d(\mu \circ \Phi  - 1
t )(y)

\rightarrow 
\int 
\BbbR 3

g(y) d(\mu \circ \Phi  - 1
t )(y) as \alpha \rightarrow 0+.

Hence, \nu \alpha ,t
\ast 
\rightharpoonup \mu \circ \Phi  - 1

t as \alpha \rightarrow 0+.
Since E[| \mu | ] <\infty , it follows from (3.14) and (3.15) that E[(\mu \circ \Phi  - 1

t )+, (\mu \circ \Phi  - 1
t ) - ] <

\infty . Similarly, E[(\mu \circ \Phi  - 1
t )+, (\mu \circ \Phi  - 1

t )+] < \infty and E[(\mu \circ \Phi  - 1
t ) - , (\mu \circ \Phi  - 1

t ) - ] < \infty .
Hence, E[| \mu \circ \Phi  - 1

t | ] < \infty . Consequently, by the definition of \nu \alpha ,t for \alpha > 0 and
Lemma A1 in [6] (cf. also Step 2.3 in the proof of Theorem 4.1), E[\nu \alpha ,t] \rightarrow E[\mu \circ \Phi  - 1

t ]
as \alpha \rightarrow 0+. The proof of claim (3.2) is complete.

Proof of claim (3.3). Let t > 0 and Kt = supp (\mu \circ \Phi  - 1
t ). By the claim (2.3) in

Step 2, Kt is a compact subset of \Omega . Let \alpha t = dist(Kt, \partial \Omega )/4 > 0. Then, for any
\alpha \in (0, \alpha t], we have by the first inclusion in (3.20) that

supp (\varphi \alpha \ast (\mu \circ \Phi  - 1
t )) \subseteq B(0, \alpha ) +Kt =

\bigcup 
x\in Kt

B(x, \alpha ) \subset \Omega .

This, together with the definition of \nu \alpha ,t and claim (3.1), implies that \nu \alpha ,t \in \scrM \lambda (\Omega )
with supp (\nu \lambda ,t) \subset \Omega for all \alpha \in (0, \alpha t]. Assume supp (\mu ) \subseteq \partial \Omega and \varepsilon > 0. Let t\varepsilon > 0
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be the same as in claim (2.3) of Step 2. Then Kt \subset \{ x \in \Omega : dist(x, \partial \Omega ) < \varepsilon /2\} if
t \in (0, t\varepsilon ]. By choosing \alpha \varepsilon \in (0, \varepsilon /2), we obtain (3.21) by the same argument and the
definition of \nu \alpha ,t. The proof of claim (3.3) is complete.

Step 4. Construction of the desired sequence \{ \nu n\} \infty n=1 of signed Radon measures
and proof of the related convergence properties. Since C(\Omega ) is a separable Banach
space, the closed unit ball of the dual space [C(\Omega )]\ast is metrizable with respect to the
vague (i.e., weak-star) topology (cf. Lemma 3.101 in [13]). But [C(\Omega )]\ast is isometrically
isomorphic to the space of signed Radon measures on \Omega (cf., e.g., Theorem 7.18 in
[16]). By identifying measures on \Omega with their zero extensions to \BbbR 3, we find the closed
unit ball of the set of signed Radon measures on \Omega to be isometrically isomorphic
to \scrM 1(\Omega ). Therefore, \scrM 1(\Omega ) and, hence, \scrM \lambda (\Omega ), is metrizable with respect to
the vague topology. Let us denote this metric by D\lambda : \scrM \lambda (\Omega ) \times \scrM \lambda (\Omega ) \rightarrow \BbbR . If

\xi , \xi n \in \scrM \lambda (\Omega ) (n = 1, 2, . . . ), then \xi n
\ast 
\rightharpoonup \xi if and only if D\lambda (\xi n, \xi ) \rightarrow 0.

Let \^\nu n = \mu \circ \Phi  - 1
1/n (n = 1, 2, . . . ). By Step 2 (cf. claims (2.2) and (2.3)), each

\^\nu n \in \scrM \lambda (\Omega ) and supp (\^\nu n) \subset \Omega , and

D\lambda (\^\nu n, \mu ) \rightarrow 0 and E[\^\nu n] \rightarrow E[\mu ] as n\rightarrow \infty .

Now, by Step 3 (cf. claims (3.1)--(3.3)), for each n, there exists \alpha (n) > 0 such that
\nu n := \nu \alpha (n),1/n = \varphi \alpha (n) \ast \^\nu n \in \scrM \lambda (\Omega ), \nu n is absolutely continuous with respect to the
Lebesgue measure with a C\infty 

c (\BbbR 3)-density, supp (\nu n) \subset \Omega ,

D\lambda (\nu n, \^\nu n) \leq 1/n and | E[\nu n] - E[\^\nu n]| \leq 1/n (n = 1, 2, . . . ).

In the case that supp (\mu ) \subseteq \partial \Omega and \varepsilon > 0, set \^\nu n = \mu \circ \Phi  - 1
t\varepsilon /n

(n = 1, 2, . . . ), where t\varepsilon 

is given in claim (2.3) of Step 2. Then, similarly, for each n, \^\nu n \in \scrM \lambda (\Omega ) and

supp (\^\nu n) \subset \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon /2\} .

Moreover,

D\lambda (\^\nu n, \mu ) \rightarrow 0 and E[\^\nu n] \rightarrow E[\mu ] as n\rightarrow \infty .

Now, by Step 3 (cf. claims (3.1)--(3.3)), for each n, there exists \alpha (n) \in (0, \alpha \varepsilon ), where
\alpha \varepsilon is given in (3.21), such that \nu n := \nu \alpha (n),t\varepsilon /n = \varphi \alpha (n)\ast \^\nu n \in \scrM \lambda (\Omega ), \nu n is absolutely
continuous with respect to the Lebesgue measure with a C\infty 

c (\BbbR 3)-density, and

supp (\nu n) \subset \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon \} .

Moreover,

D\lambda (\nu n, \^\nu n) \leq 1/n and | E[\nu n] - E[\^\nu n]| \leq 1/n (n = 1, 2, . . . ).

In both cases, we have

D\lambda (\nu n, \mu ) \leq D\lambda (\nu n, \^\nu n) +D\lambda (\^\nu n, \mu ) \leq 
1

n
+D\lambda (\^\nu n, \mu ) \rightarrow 0,

| E[\nu n] - E[\mu ]| \leq | E[\nu n] - E[\^\nu n]| + | E[\^\nu n] - E[\mu ]| \leq 1

n
+ | E[\^\nu n] - E[\mu ]| \rightarrow 0,

as n\rightarrow \infty . This concludes the proof of Lemma 3.1.
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The second lemma states that the result of Theorem 3.1 holds true if the given
signed Radon measure has an L\infty (\Omega )-density with respect to the Lebesgue measure.
Note that the smoothness of the boundary \partial \Omega is relaxed here. In proving the lemma,
we apply the method in [6] (with some modifications) to construct the sequence of
discrete charges. For any \rho \in L\infty (\Omega ), we denote

(3.22) Ec[\rho ] =

\int \int 
\Omega \times \Omega 

\rho (x)\rho (y)

| x - y| 
dxdy.

Lemma 3.2. Let \Omega \subset \BbbR 3 be a nonempty, bounded, open set with a Lipschitz-
continuous boundary \partial \Omega . Let \rho \in L\infty (\Omega ) with \lambda := \| \rho \| L1(\Omega ) > 0. Set \rho = 0 on

\BbbR 3 \setminus \Omega . There exist \mu n \in \scrA \lambda (\Omega ) (n = 1, 2, . . . ) such that

lim
n\rightarrow \infty 

\langle \mu n, g\rangle = \langle \rho , g\rangle \forall g \in C0(\BbbR 3) and lim
n\rightarrow \infty 

Ed[\mu n] = Ec[\rho ].

Moreover, if \varepsilon > 0 and \rho = 0 on \{ x \in \Omega : dist (x, \partial \Omega ) > \varepsilon \} , then \mu n can be constructed
so that

supp(\mu n) \subset \{ x \in \Omega : dist (x, \partial \Omega ) < 2\varepsilon \} (n = 1, 2, . . . ).

Proof. For convenience, let us denote by \mu the signed Radon measure on \BbbR 3 with
the density \rho , i.e., d\mu = \rho dx. Thus, for any Borel set A \subseteq \BbbR 3,

\mu (A) =

\int 
A

\rho (x) dx, | \mu | (A) =
\int 
A

| \rho | (x) dx, and E[\mu ] = Ec[\rho ].

Note that supp (\mu ) \subseteq \Omega and \| \mu \| = | \mu | (\BbbR 3) = | \mu | (\Omega ) = \lambda . So, \mu \in \scrM \lambda (\Omega ).
We now proceed in three steps.
Step 1. Construction of discrete densities. Since \Omega is bounded in \BbbR 3, there exists

a natural number L0 > 0 such that \Omega \subseteq [ - L0, L0]
3. We divide the cube [ - L0, L0]

3

into (2L0)
3 (open) cubes of side 1 and vertices (k1, k2, k3) with each kj an integer and

 - L0 \leq kj \leq L0. Bisecting sides of those cubes to divide each of them into 8 small
cubes, we obtain a new collection of small cubes of side 2 - 1. Continuing this process,
we obtain a sequence of collections of open cubes. All cubes in the same nth collection
have the same side 2 - n; and each of such cubes is one of those 8 cubes composed of a
cube of side 2 - n+1 in the preceding collection. Since \Omega is open, there exists a smallest
integer n0 \geq 0 such that at least one of those cubes of side h0 := 2 - n0 is contained
in \Omega . In the case that \rho = 0 on \{ x \in \Omega : dist (x, \partial \Omega ) > \varepsilon \} , we choose n0 to be large
enough so that

\surd 
3h0 < \varepsilon /2.

For each integer n \geq 1, we denote by \scrC n the subcollection of cubes in \BbbR 3 of side
h02

 - n that are completely contained in \Omega . We denote by mn the total number of
cubes in the collection \scrC n, and enumerate these cubes as \scrC n = \{ \omega n,1, . . . , \omega n,mn

\} .
Since \partial \Omega is Lipschitz-continuous, we have mn \rightarrow \infty as n\rightarrow \infty and

lim
n\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \bigm| \Omega \setminus 

\Biggl( 
mn\bigcup 
i=1

\omega n,i

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| = 0.(3.23)

Let \{ pn\} \infty n=1 be an increasing sequence of natural numbers such that pn \rightarrow \infty as
n\rightarrow \infty . For each integer n \geq 1, we set \^Nn = mnpn. Fix n and i \in \{ 1, . . . ,mn\} . Since
| \mu | (\omega n,i)/| \mu | (\Omega ) \in [0, 1], there exists a unique integer Nn,i \in [0, \^Nn] such that

(3.24) 0 \leq Nn,i

\^Nn

 - | \mu | (\omega n,i)

| \mu | (\Omega )
<

1

\^Nn

.
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4586 BENJAMIN CIOTTI AND BO LI

Note that Nn,i = 0 if and only | \mu | (\omega n,i) = 0. Assume i \in \{ 1, . . . ,mn\} and
| \mu | (\omega n,i) > 0. Let ln,i \geq 1 be the smallest integer that is greater than or equal to

[1+ \^Nn| \mu | (\omega n,i)/| \mu | (\Omega )]1/3. We divide each side of the cube \omega n,i which has the length
h02

 - n into ln,i small intervals each of which has the length an,i := h02
 - n/ln,i. We

have thus decomposed \omega n,i into a collection of disjoined small cubes with side an,i.
The total number of such small cubes is l3n,i, which is larger than Nn,i by (3.24). We

choose Nn,i such small cubes and denote their centers by xjn,i (j = 1, . . . , Nn,i). At
each of these points, which are all inside \omega n,i and have the spacing an,i, we place a
charge of the value Qn,i defined to be

(3.25) Qn,i =
\mu (\omega n,i)| \mu | (\Omega )

| \mu | (\omega n,i)
.

For convenience, we set Qn,i = 0 if | \mu | (\omega n,i) = 0 (i.e., if Nn,i = 0). Setting Nn =\sum mn

i=1Nn,i, we define

(3.26) \mu n =
1

Nn

mn\sum 
i=1,Nn,i\geq 1

Nn,i\sum 
j=1

Qn,i\delta xj
n,i
.

Clearly, \mu n \in \scrA \lambda (\Omega ) (where \lambda = \| \rho \| L1(\Omega )). In the case \rho = 0 on \{ x \in \Omega :

dist (x, \partial \Omega ) > \varepsilon \} , we have
\surd 
3h0 < \varepsilon /2. Thus, each \mu n is supported in \{ x \in \Omega :

dist (x, \partial \Omega ) < 2\varepsilon \} . Summing over i \in \{ 1, . . . ,mn\} in (3.24), we obtain

0 \leq Nn

\^Nn

 - | \mu | (\cup mn
i=1\omega n,i)

| \mu | (\Omega )
<

1

pn
.

This and (3.23) lead to

(3.27) lim
n\rightarrow \infty 

Nn

\^Nn

= 1.

Noting that (a+ b)p \leq 2p(ap + bp) for any a, b > 0 and p \in [1,\infty ), we have from our
definition of ln,i and the fact that | \mu | (\omega n,i \leq \| \rho \| L\infty (\Omega )| \omega n,i| that

l3n,i \leq 

\left[  \Biggl( 1 + \^Nn| \mu | (\omega n,i)

| \mu | (\Omega )

\Biggr) 1/3

+ 1

\right]  3

\leq 8

\Biggl[ 
1 + \^Nn| \mu | (\omega n,i)

| \mu | (\Omega )
+ 1

\Biggr] 

\leq 8

\Biggl[ 
1 + \| \rho \| L\infty (\Omega )

\^Nn| \omega n,i| 
| \mu | (\Omega )

+ 1

\Biggr] 
.

This, together with (3.23) and (3.27), leads to

(3.28) lim sup
n\rightarrow \infty 

max
1\leq i\leq mn

l3n,i \leq 8

\biggl( 
1 + \| \rho \| L\infty (\Omega ) +

1

| \mu | (\Omega )

\biggr) 
.

Step 2. Prove the convergence \langle \mu n, g\rangle \rightarrow \langle \rho , g\rangle = \langle \mu , g\rangle for any g \in C0(\BbbR 3), i.e.,

\mu n
\ast 
\rightharpoonup \mu . Fix g \in C0(\BbbR 3). For each n and i \in \{ 1, . . . ,mn\} , we denote by cn,i the center
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of the cube \omega n,i. We have by the definition of \mu n, Qn,i, and xjn,i (j = 1, . . . , Nn,i)
above that

\langle \mu n, g\rangle  - \langle \rho , g\rangle =
mn\sum 

i=1,Nn,i\geq 1

Qn,i

Nn

Nn,i\sum 
j=1

\Bigl[ 
g
\Bigl( 
xjn,i

\Bigr) 
 - g(cn,i)

\Bigr] 

+

mn\sum 
i=1,Nn,i\geq 1

\Biggl[ 
Nn,iQn,i

Nn
g(cn,i) - g(cn,i)

\int 
\omega n,i

\rho (x) dx

\Biggr] 

+

mn\sum 
i=1,Nn,i\geq 1

\int 
\omega n,i

[g(cn,i) - g(x)] \rho (x) dx

 - 
\int 
\Omega \setminus (\cup mn

i=1\omega n,i)

g(x)\rho (x) dx

= In + Jn +Kn  - \varepsilon n,(3.29)

where we used the fact that Nn,i = 0 if and only if | \mu | (\omega n,i) = 0.
Denoting for any \sigma > 0

\omega g(\sigma ) = sup\{ | g(x) - g(y)| : x, y \in \Omega and | x - y| \leq \sigma \} ,

the modulus of continuity for g on \Omega , we have \omega g(\sigma ) \rightarrow 0 as \sigma \rightarrow 0+ since g \in C(\Omega ).
Noting that Nn =

\sum mn

i=1Nn,i, diam(\omega n,i) =
\surd 
3h02

 - n, and | Qn,i| \leq \| \rho \| L1(\Omega ) by
(3.25), we have

(3.30) | In| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
mn\sum 

i=1,Nn,i\geq 1

Qn,i

Nn

Nn,i\sum 
j=1

\Bigl[ 
g
\Bigl( 
xjn,i

\Bigr) 
 - g(cn,i)

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \omega g

\Biggl( \surd 
3h0
2n

\Biggr) 
\| \rho \| L1(\Omega ) \rightarrow 0

as n\rightarrow \infty . Similarly,

(3.31) | Kn| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
mn\sum 

i=1,Nn,i\geq 1

\int 
\omega n,i

[g(cn,i) - g(x)] \rho (x) dx

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq \omega g

\Biggl( \surd 
3h0
2n

\Biggr) 
\| \rho \| L1(\Omega ) \rightarrow 0

as n\rightarrow \infty . It follows from (3.23) and the fact that g\rho \in L1(\Omega ) that

(3.32) | \varepsilon n| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega \setminus (\cup mn

i=1\omega n,i)

g(x)\rho (x) dx

\bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0 as n\rightarrow \infty .

By the definition of Qn,i (cf. (3.25)), we have

| Jn| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
mn\sum 

i=1,Nn,i\geq 1

\Biggl[ 
Nn,iQn,i

Nn
g(cn,i) - g(cn,i)

\int 
\omega n,i

\rho (x) dx

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \| g\| \infty 

mn\sum 
i=1,Nn,i\geq 1

\bigm| \bigm| \bigm| \bigm| Nn,i\mu (\omega n,i)| \mu | (\Omega )
Nn| \mu | (\omega n,i)

 - \mu (\omega n,i)

\bigm| \bigm| \bigm| \bigm| 
\leq \| g\| \infty | \mu | (\Omega )

mn\sum 
i=1,Nn,i\geq 1

| \mu (\omega n,i)| 
| \mu | (\omega n,i)

\bigm| \bigm| \bigm| \bigm| Nn,i

Nn
 - | \mu | (\omega n,i)

| \mu | (\Omega )

\bigm| \bigm| \bigm| \bigm| D
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4588 BENJAMIN CIOTTI AND BO LI

\leq \| g\| \infty | \mu | (\Omega )
mn\sum 
i=1

\bigm| \bigm| \bigm| \bigm| Nn,i

Nn
 - | \mu | (\omega n,i)

| \mu | (\Omega )

\bigm| \bigm| \bigm| \bigm| 
\leq \| g\| \infty | \mu | (\Omega )

\Biggl[ 
mn\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| Nn,i

Nn
 - 

\^Nn| \mu | (\omega n,i)

Nn| \mu | (\Omega )

\bigm| \bigm| \bigm| \bigm| \bigm| +
mn\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \bigm| \^Nn

Nn
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| | \mu | (\omega n,i)

| \mu | (\Omega )

\Biggr] 
(3.24)
= \| g\| \infty | \mu | (\Omega )

\Biggl[ 
1

Nn

mn\sum 
i=1

\Biggl( 
Nn,i  - 

\^Nn| \mu | (\omega n,i)

| \mu | (\Omega )

\Biggr) 
+

\bigm| \bigm| \bigm| \bigm| \bigm| \^Nn

Nn
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| | \mu | (\cup mn
i=1\omega n,i)

| \mu | (\Omega )

\Biggr] 

= \| g\| \infty | \mu | (\Omega )

\Biggl( 
1 - 

\^Nn

Nn

| \mu | (\cup mn
i=1\omega n,i)

| \mu | (\Omega )
+

\bigm| \bigm| \bigm| \bigm| \bigm| \^Nn

Nn
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| | \mu | (\cup mn
i=1\omega n,i)

| \mu | (\Omega )

\Biggr) 

\rightarrow 0 as n\rightarrow \infty ,
(3.33)

where the last step follows from (3.23) and (3.27).
Combining all (3.29)--(3.33), we obtain the desired convergence.
Step 3. Prove the convergence Ed[\mu n] \rightarrow E[\mu ]. Denote the Coulomb potential

v(x) = 1/| x| . For \alpha > 0, define the \alpha -cutoff Coulomb potential

v\alpha (x) =

\Biggl\{ 
1/| x| if | x| \geq \alpha ,

1/\alpha if | x| < \alpha .

Denoting
D = \{ (x, y) \in \Omega \times \Omega : x = y\} 

and noting that all \mu n and \mu are supported in \Omega , we then have by (3.5) and (3.6) that
for any \alpha > 0

Ed[\mu n] - E[\mu ] =

\int \int 
(\Omega \times \Omega )\setminus D

v(x - y) d(\mu n \times \mu n)(x, y) - 
\int \int 

\Omega \times \Omega 

v(x - y) d(\mu \times \mu )(x, y)

=

\int \int 
(\Omega \times \Omega )\setminus D

[v(x - y) - v\alpha (x - y)] d(\mu n \times \mu n)(x, y)

+

\int \int 
\Omega \times \Omega 

v\alpha (x - y) d(\mu n \times \mu n)(x, y) - 
\int \int 

\Omega \times \Omega 

v\alpha (x - y) d(\mu \times \mu )(x, y)

 - 
\int \int 

D

v\alpha (x - y) d(\mu n \times \mu n)(x, y)

 - 
\int \int 

\Omega \times \Omega 

[v(x - y) - v\alpha (x - y)] d(\mu \times \mu )(x, y)

= An(\alpha ) +Bn(\alpha ) - Cn(\alpha ) - D(\alpha ).

We estimate the terms D(\alpha ), Cn(\alpha ), Bn(\alpha ), and finally An(\alpha ). Let \varepsilon > 0. Denote

S\alpha = \{ (x, y) \in \Omega \times \Omega : | x - y| < \alpha \} .

Then the \BbbR 3 \times \BbbR 3-Lebesgue measure of S\alpha tends to 0 as \alpha \rightarrow 0. Since d\mu = \rho dx, we
have

d| \mu \times \mu | (x, y) = d| \mu | \times | \mu | (x, y) = | \rho (x)| | \rho (y)| dxdy.
Note that \rho = 0 outside \Omega . We thus have

| D(\alpha )| =
\bigm| \bigm| \bigm| \bigm| \int \int 

\Omega \times \Omega 

[v(x - y) - v\alpha (x - y)] d(\mu \times \mu )(x, y)

\bigm| \bigm| \bigm| \bigm| 
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\leq 
\int \int 

\Omega \times \Omega 

| v(x - y) - v\alpha (x - y)| | \rho (x)| | \rho (y)| dxdy

=

\int \int 
S\alpha 

[v(x - y) - v\alpha (x - y)] | \rho (x)| | \rho (y)| dxdy

\leq 
\int \int 

S\alpha 

| \rho (x)| | \rho (y)| 
| x - y| 

dxdy

\rightarrow 0 as \alpha \rightarrow 0.

Thus, there exists \alpha D > 0 such that | D(\alpha )| < \varepsilon if 0 < \alpha \leq \alpha D.
For any fixed \alpha > 0, we have by (3.25) and the fact that Nn =

\sum mn

i=1Nn,i that

| Cn(\alpha )| =
\bigm| \bigm| \bigm| \bigm| \int \int 

D

v\alpha (x - y) d(\mu n \times \mu n)(x, y)

\bigm| \bigm| \bigm| \bigm| 
=

1

\alpha N2
n

mn\sum 
i=1

Nn,i\sum 
j=1

(Qn,j)
2

\leq 
\| \rho \| 2L1(\Omega )

\alpha Nn

\rightarrow 0 as n\rightarrow \infty .

From Step 2, we have \mu n
\ast 
\rightharpoonup \mu . Thus, \mu n\times \mu n

\ast 
\rightharpoonup \mu \times \mu . Since v\alpha is continuous, we

can modify its values outside a large ball containing \Omega so that the modified function
is in C0(\BbbR 3). Thus, we have for any fixed \alpha > 0 that

Bn(\alpha ) =

\int \int 
\Omega \times \Omega 

v\alpha (x - y) d(\mu n \times \mu n)(x, y) - 
\int \int 

\Omega \times \Omega 

v\alpha (x - y) d(\mu \times \mu )(x, y)

\rightarrow 0 as n\rightarrow \infty .

We now estimate An(\alpha ) for any \alpha > 0. By (3.26), we have

| \mu n| =
1

Nn

mn\sum 
i=1,Nn,i\geq 1

Nn,i\sum 
j=1

| Qn,i| \delta xj
n,i
.

It then follows from Lemma 2.1 that

| An(\alpha )| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \int 

(\Omega \times \Omega )\setminus D
[v(x - y) - v\alpha (x - y)] d(\mu n \times \mu n)(x, y)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int \int 

(\Omega \times \Omega )\setminus D
| v(x - y) - v\alpha (x - y)| d(| \mu n| \times | \mu n| )(x, y)

=

\int \int 
\{ x\in \Omega \times \Omega :0<| x - y| <\alpha \} 

[v(x - y) - v\alpha (x - y)] d(| \mu n| \times | \mu n| )(x, y)

\leq 
\int \int 

\{ x\in \Omega \times \Omega :0<| x - y| <\alpha \} 
v(x - y) d(| \mu n| \times | \mu n| )(x, y)

=
1

N2
n

mn\sum 
i=1,Nn,i\geq 1

mn\sum 
j=1,Nn,j\geq 1

\sum 
1\leq k\leq Nn,i,1\leq l\leq Nn,j ,0<| xk

n,i - xl
n,j | <\alpha 

| Qn,i| | Qn,j | 
| xkn,i  - xln,j | 
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=
1

N2
n

mn\sum 
i=1,Nn,i\geq 1

mn\sum 
j=1,Nn,j\geq 1

\sum 
1\leq k\leq Nn,i,1\leq l\leq Nn,j ,0<| xk

n,i - xl
n,j | <\alpha 

| Qn,i| | Qn,j | 
| B(0, an,i/2)| | B(0, an,j/2)| 

\cdot 
\int 
B(xk

n,i,an,i/2)

\int 
B(xl

n,j ,an,j/2)

dxdy

| x - y| 
.

Denoting an = maxmn
i=1 an,i and ln = maxmn

i=1 ln,i, and noting that 1/| B(0, an,i/2)| =
6l3n,i/(\pi | \omega n,i| ) and that \omega n := \omega n,i is independent of i = 1, . . . ,mn, we continue to
have by (3.25) that

| An(\alpha )| \leq 
36\| \rho \| 2L1(\Omega )l

6
n

\pi 2N2
n\omega 

2
n

mn\sum 
i=1,Nn,i\geq 1

mn\sum 
j=1,Nn,j\geq 1

\sum 
1\leq k\leq Nn,i,1\leq l\leq Nn,j ,0<| xk

n,i - xl
n,j | <\alpha 

\cdot 
\int 
B(xk

n,i,an,i/2)

\int 
B(xl

n,j ,an,j/2)

dxdy

| x - y| 

\leq 
36\| \rho \| 2L1(\Omega )l

6
n

\pi 2N2
n\omega 

2
n

\int \int 
\{ (x,y)\in \Omega \times \Omega :0<| x - y| <\alpha +an\} 

dxdy

| x - y| 
.

For the given \varepsilon > 0, by the integrability of 1/| x - y| , there exists \alpha A > 0 such that\int \int 
\{ (x,y)\in \Omega \times \Omega :0<| x - y| <2\alpha \} 

dxdy

| x - y| 
< \varepsilon if 0 < \alpha < \alpha A.

Consequently, by (3.28) and (3.23), we have

lim sup
n\rightarrow \infty 

| An(\alpha )| \leq C0\varepsilon if 0 < \alpha < \alpha A,

where C0 is a constant given by

C0 =
36 \cdot 86\| \rho \| 2L1(\Omega )

\bigl[ 
1 + \| \rho \| L\infty (\Omega ) + 1/| \mu | (\Omega )

\bigr] 6
\pi 2| \Omega | 2

.

Finally, by choosing \alpha \in (0,min(\alpha D, \alpha A)), we have

lim sup
n\rightarrow \infty 

| Ed[\mu n] - E[\mu ]| \leq lim sup
n\rightarrow \infty 

| An(\alpha ) +Bn(\alpha ) - Cn(\alpha ) - D(\alpha )| 

\leq (1 + C0)\varepsilon .

Thus, Ed[\mu n] \rightarrow E[\mu ].

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let \mu \in \scrM \lambda (\Omega ) with E[| \mu | ] <\infty . By Lemma 3.1, there ex-
ist \nu k \in \scrM \lambda (\Omega ) (k = 1, 2, . . . ) such that each \nu k has a C\infty 

c (\Omega )-density and supp (\nu k) \subseteq 
\Omega , and

\nu k
\ast 
\rightharpoonup \mu and Ed[\nu k] \rightarrow E[\mu ] as k \rightarrow \infty .

By Lemma 3.2, for each k, there exist \nu k,n \in \scrA \lambda (\Omega ) (n = 1, 2, . . . ) such that

\nu k,n
\ast 
\rightharpoonup \nu k and Ed[\nu k,n] \rightarrow E[\nu k] as n\rightarrow \infty .
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Note that the weak-\ast topology of \scrM \lambda (\Omega ) is metrizable; cf. Step 4 in the proof of
Lemma 3.1. Denote this metric by D\lambda . By induction, we can choose a sequence of
increasing integers nk \geq 1 such that

D\lambda (\nu k,nk
, \nu k) < 1/k and | Ed[\nu k,nk

] - E[\nu k]| < 1/k for all k = 1, 2, . . . .

Therefore, setting \mu k = \nu k,nk
\in \scrA \lambda (\Omega ) (k = 1, 2, . . . ), we have

D\lambda (\mu k, \mu ) \leq D\lambda (\nu k,nk
, \nu k) +D\lambda (\nu k, \mu ) \rightarrow 0,

| Ed[\mu k] - E[\mu ]| \leq | Ed[\mu k,nk
] - E[\nu k]| + | E[\nu k] - E[\mu ]| \rightarrow 0,

as k \rightarrow \infty . Hence, \mu k
\ast 
\rightharpoonup \mu and Ed[\mu k] \rightarrow E[\mu ] as k \rightarrow \infty .

If supp(\mu ) \subseteq \partial \Omega and \varepsilon > 0, then by Lemma 3.1, the measures \nu k above can be
constructed so that

supp (\nu k) \subseteq \{ x \in \Omega : dist(x, \partial \Omega ) < \varepsilon /2\} (k = 1, 2, . . . ).

By Lemma 3.2, the measures \nu k,n above can be constructed so that

supp (\nu k,n) \subseteq \{ x \in \Omega : dist(x, \partial \Omega ) < \varepsilon \} (k, n = 1, 2, . . . ).

Thus, since \mu k = \nu k,nk
, we have

supp (\mu k) \subseteq \{ x \in \Omega : dist(x, \partial \Omega ) < \varepsilon \} (k = 1, 2, . . . ).

The proof is complete.

4. Continuum limit of a given sequence of discrete charges. We now
study the continuum limit of a given sequence of sets of point charges and the corre-
sponding limit of electrostatic energies. Let Nn be an increasing sequence of natural
numbers such that Nn \rightarrow \infty as n \rightarrow \infty . For each n \in \{ 1, 2, . . .\} , let x1n, . . . , xNn

n be
Nn distinct points in \Omega and let Q1

n, . . . , Q
Nn
n \in [ - 1, 1]. (The particular bound 1 of

all the charges Qi
n is not essential; we can replace 1 by any given positive number.)

Define \mu n \in \scrA 1(\Omega ) (cf. (3.4)) by

(4.1) \mu n =
1

Nn

Nn\sum 
i=1

Qi
n\delta xi

n
.

Recall that the corresponding discrete energies Ed[\mu n] are defined in (3.5). We con-
sider the following geometric conditions: for each n = 1, 2, . . . , there exists a radius
rn > 0 such that

\bullet B(xin, rn) \subset \Omega for all i = 1, . . . , Nn;
\bullet B(xin, rn) \cap B(xjn, rn) = \emptyset for all i, j = 1, . . . , Nn with j \not = i; and
\bullet \tau := infn\geq 1Nn| Brn | > 0, where B\lambda denotes an open ball of radius \lambda > 0.

Since \Omega is bounded, a consequence of these conditions is that rn \rightarrow 0 as n\rightarrow \infty .

Theorem 4.1. Let \Omega \subset \BbbR 3 be a nonempty, bounded, open set with a Lipschitz-
continuous boundary \partial \Omega . For each natural number n \geq 1, let \mu n \in \scrA 1(\Omega ) be given in
(4.1) with distinct xin \in \Omega and Qi

n \in [ - 1, 1] (i = 1, . . . , Nn;n = 1, 2, . . . ). Assume the
geometrical conditions hold true. Then, there is a subsequence of \{ \mu n\} , not relabeled,
such that \mu n

\ast 
\rightharpoonup \mu on \BbbR 3 for some Radon measure \mu , given by d\mu = \rho dx for some

\rho \in L\infty (\BbbR 3) with \rho = 0 a.e. on \Omega 
c
. Moreover, E[| \mu | ] <\infty , and

(4.2) lim
n\rightarrow \infty 

Ed[\mu n] = E[\mu ].
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4592 BENJAMIN CIOTTI AND BO LI

We remark that the geometrical conditions imply that the discrete charges are
nearly evenly distributed in the entire region. A limit measure (if it exists) may
not have an L\infty (\Omega )-density if the geometrical conditions are not satisfied. A simple
example is \Omega = (0, 1)3, Nn = n, xin = (i/n, 0, 0), and Qi

n = 1. The geometrical
conditions with respect to \Omega are violated. The limit measure is the Dirac measure
concentrated on [0, 1]\times 0\times 0 \subset \Omega , which does not have a density (with respect to the
Lebesgue measure). We also remark that there may exist different subsequences of
\{ \mu n\} \infty n=1 that converge vaguely to different limits, and the corresponding subsequences
of rescaled discrete energies converge to different limits. We shall give an example to
show such nonuniqueness at the end of this section.

We need two lemmas to prove our theorem. The first lemma below is a variation of
Newton's theorem. The second lemma is similar to a known result (cf., e.g., the proof
of Proposition 2.1 in [6]). For R \in (0,\infty ], we say that a function \phi : B(0, R) \rightarrow \BbbR is
radially symmetric if there exists a function \phi 0 : [0, R] \rightarrow \BbbR such that \phi (x) = \phi 0(| x| )
for all x \in \BbbR 3 with | x| \leq R.

Lemma 4.1. Let R > 0. If \phi \in C(B(0, R)) is radially symmetric, then\int 
B(0,R)

\phi (x)

| y  - x| 
dx =

1

| y| 

\int 
B(0,R)

\phi (x) dx \forall y \in \BbbR 3 with | y| > R.

Proof. With abuse of notation, \phi (| y| ) = \phi (y), using the spherical coordinates,
and by the mean-value property for a harmonic function, we have\int 

B(0,R)

\phi (x)

| y  - x| 
dx =

\int R

0

\phi (r)

\int 
\partial B(0,r)

dS\omega 

| y  - \omega | 
dr

=

\int R

0

\phi (r)
4\pi r2

| y| 
dr

=
1

| y| 

\int 
B(0,R)

\phi (x) dx,

completing the proof.

Lemma 4.2. If \phi \in C(\BbbR 3) \cap L1(\BbbR 3) is radially symmetric, then\int 
\BbbR 3

\phi (x)

| x - y| 
dx =

\int 
\BbbR 3

min

\biggl( 
1

| x| 
,
1

| y| 

\biggr) 
\phi (x) dx \forall y \in \BbbR 3.

Proof. If y = 0, then the two integrals are the same. Assume y \in \BbbR 3 and y \not = 0.
By the dominated ccnvergence theorem and Lemma 4.1, we have\int 

B(0,| y| )

\phi (x)

| x - y| 
dx = lim

\varepsilon \rightarrow 0+

\int 
B(0,| y|  - \varepsilon )

\phi (x)

| x - y| 
dx

= lim
\varepsilon \rightarrow 0+

\int 
B(0,| y|  - \varepsilon )

\phi (x)

| y| 
dx

=

\int 
B(0,| y| )

\phi (x)

| y| 
dx.

Define

h(z) =

\int 
\BbbR 3\setminus B(0,| y| )

\phi (x)

| x - z| 
dx \forall z \in \BbbR 3.
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Since \phi is radially symmetric and the Lebesgue measure is rotationally invariant,
h(z) = h(y) for any z \in \partial B(0, | y| ). Moreover, h is harmonic in the region | z| \leq | y| 
(see, e.g., Theorem 1.4 in [26]). Therefore, by the mean-value property for a harmonic
function, the integral of h over the sphere \partial B(0, | y| ) divided by the area of that sphere
is just h(0). Hence h(y) = h(0). Therefore,\int 

\BbbR 3

\phi (x)

| x - y| 
dx =

\int 
B(0,| y| )

\phi (x)

| x - y| 
dx+

\int 
\BbbR 3\setminus B(0,R)

\phi (x)

| x - y| 
dx

=

\int 
B(0,| y| )

\phi (x)

| y| 
dx+

\int 
\BbbR 3\setminus B(0,| y| )

\phi (x)

| x| 
dx

=

\int 
\BbbR 3

min

\biggl( 
1

| x| 
,
1

| y| 

\biggr) 
\phi (x) dx.

The proof is complete.

Proof of Theorem 4.1. We divide the proof into two steps.
Step 1. We prove the existence of a subsequence of \{ \mu n\} \infty n=1 that converges

vaguely to some Radon measure \mu with an L\infty (\BbbR 3) density vanishing a.e. on \Omega 
c
and

E[| \mu | ] < \infty . It suffices to consider the case that all Qi
n \geq 0, since in general we have

the Jordan decomposition \mu n = \mu +
n  - \mu  - 

n with

\mu +
n =

1

Nn

Nn\sum 
i=1

max(Qi
n, 0)\delta xi

n
and \mu  - 

n =
1

Nn

Nn\sum 
i=1

max( - Qi
n, 0)\delta xi

n
,

and we can first extract a vaguely convergent subsequence from \{ \mu +
n \} \infty n=1 and then

a further vaguely convergent subsequence from \{ \mu  - 
n \} \infty n=1, with the limiting Radon

measures having L\infty (\BbbR 3) densities vanishing a.e. on \Omega 
c
.

Since 0 \leq Qi
n \leq 1 for all i and n, we have \| \mu n\| \leq 1 for all n \geq 1. Thus, it follows

from the Banach--Alaoglu theorem that there exists a subsequence of \{ \mu n\} \infty n=1, not

relabeled, such that \mu n
\ast 
\rightharpoonup \mu for some nonnegative Radon measure \mu on \BbbR 3.

For any open ball B\lambda of radius \lambda > 0, we have

(4.3) \mu n(B\lambda ) \leq 
1

Nn
Card (\{ i : xin \in B\lambda \} ),

where Card (A) denotes the cardinality of a set A. For each natural number n, we
denote by B\lambda +rn the ball of radius \lambda + rn that is concentric with the ball B\lambda . Since
B(xin, rn) \subset B\lambda +rn if xin \in B\lambda and B(xin, rn) \cap B(xjn, rn) = \emptyset if i \not = j, we have from
volume considerations that

Card(\{ i : xin \in B\lambda \} ) \leq Card(\{ i : B(xin, rn) \subset B\lambda +rn\} ) \leq 
| B\lambda +rn | 
| Brn | 

.

This, together with (4.3) and the definition of \tau in the geometrical conditions, implies
that

\mu n(B\lambda ) \leq 
| B\lambda +rn | 
Nn| Brn | 

\leq 1

\tau 
| B\lambda +rn | \rightarrow 

1

\tau 
| B\lambda | as n\rightarrow \infty ,

since rn \rightarrow 0. Consequently, for any open ball B \subset \BbbR 3, we have

(4.4) lim inf
n\rightarrow \infty 

\mu n(B) \leq 1

\tau 
| B| .
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4594 BENJAMIN CIOTTI AND BO LI

Suppose A \subset \BbbR 3 is bounded with | A| = 0 and \varepsilon > 0. It follows from Vitali's cover-
ing lemma that there exist countably many open balls Bi covering A with

\sum 
i | Bi| < \varepsilon .

Since \mu n
\ast 
\rightharpoonup \mu , we have

(4.5) \mu (U) \leq lim inf
n\rightarrow \infty 

\mu n(U)

for any open set U \subseteq \BbbR 3; cf. Theorem 1.24 in [29]. This and (4.4) imply that

\mu (A) \leq \mu 

\Biggl( \bigcup 
i

Bi

\Biggr) 
\leq 
\sum 
i

\mu (Bi) \leq 
1

\gamma 

\sum 
i

| Bi| <
1

\gamma 
\varepsilon .

Hence, it follows from the Radon--Nikodym theorem that d\mu = \rho dx for some \rho \in 
L1(\BbbR 3). Since all \mu n \geq 0, we have \mu \geq 0 and, hence, \rho \geq 0 a.e. in \BbbR 3. The Lebesgue
differentiation theorem now gives that

\rho (x) = lim
r\rightarrow 0+

1

| B(x, r)| 

\int 
B(x,r)

\rho (y) dy a.e. x \in \BbbR 3.

But it follows from (4.4) and (4.5) that

1

| B(x, r)| 

\int 
B(x,r)

\rho (y) dy =
1

| B(x, r)| 
\mu (B(x, r))

\leq 1

| B(x, r)| 
lim inf
n\rightarrow \infty 

| \mu n| (B(x, r))

\leq 1

\tau 
.

Hence, 0 \leq \rho (x) \leq 1/\tau for a.e. x \in \BbbR 3; hence \rho \in L\infty (\BbbR 3). Since (4.5) holds for any
U \subset \Omega 

c
and \mu n(\Omega 

c
) = 0, we have supp (\mu ) \subseteq \Omega . This implies that \rho = 0 a.e. on \Omega 

c
.

Note that d| \mu | = | \rho | dx = \rho dx. Thus E[| \mu | ] <\infty .
Step 2. We prove the convergence (4.2), assuming all Qi

n \in [ - 1, 1] and d\mu = \rho dx
with \rho \in L\infty (\BbbR 3) vanishing at a.e. x \in \Omega 

c
.

Let \varphi \in C\infty 
c (\BbbR 3) be nonnegative and radially symmetric, satisfying supp (\varphi ) \subset 

B(0, 1) and (3.19). Define \varphi \lambda (x) = \lambda  - 3\varphi (x/\lambda ) for any \lambda > 0 and x \in \BbbR 3. Recall for
any Radon measure \nu on \BbbR 3 and any \xi \in Cc(\BbbR 3) that the convolution \nu \ast \xi \in C\infty 

c (\BbbR 3)
is defined by (\nu \ast \xi )(x) = \langle \nu , \xi (x - \cdot )\rangle (x \in \BbbR 3). Hence,

(\mu n \ast \varphi \lambda )(x) =
1

Nn

Nn\sum 
i=1

Qi
n\varphi \lambda (x - xin) \forall x \in \BbbR 3 and \forall n \geq 1,

(\mu \ast \varphi \lambda )(x) =

\int 
\BbbR 3

\varphi \lambda (x - y) d\mu (y) =

\int 
\BbbR 3

\varphi \lambda (x - y)\rho (y) dy \forall x \in \BbbR 3.

We now write

| Ed[\mu n] - E[\mu ]| 

\leq | Ed[\mu n] - Ec[\mu n \ast \varphi \lambda ]| + | Ec[\mu n \ast \varphi \lambda ] - Ec[\mu \ast \varphi \lambda ]| + | Ec[\mu \ast \varphi \lambda ] - E[\mu ]| ,
(4.6)

where Ec is defined in (3.22). We estimate these three terms in three substeps and
combine all the estimates to obtain the desired convergence result in the fourth and
last substep.
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Step 2.1. We claim that there exists a constant C > 0 such that

(4.7) | Ed[\mu n] - Ec[\mu n \ast \varphi \lambda ]| \leq C

\biggl( 
\lambda 2 + r2n +

1

Nn\lambda 

\biggr) 
\forall n \geq 1 and \forall \lambda > 0,

where rn is given in the geometrical conditions.
Proof of the claim. It follows from the Fubini--Tonelli theorem that

Ec[\mu n \ast \varphi \lambda ] =

\int \int 
\BbbR 3\times \BbbR 3

(\mu n \ast \varphi \lambda )(x)(\mu n \ast \varphi \lambda )(y)

| x - y| 
dxdy

=

\int \int 
\BbbR 3\times \BbbR 3

1

| x - y| 

\Biggl[ 
1

Nn

Nn\sum 
i=1

Qi
n\varphi \lambda (x - xin)

\Biggr] \left[  1

Nn

Nn\sum 
j=1

Qj
n\varphi \lambda (y  - xjn)

\right]  dxdy
=

1

N2
n

\sum 
1\leq i,j\leq Nn

Qi
nQ

j
n

\int \int 
\BbbR 3\times \BbbR 3

\varphi \lambda (x - xin)\varphi \lambda (y  - xjn)

| x - y| 
dxdy.

Making the change of variables y \mapsto \rightarrow y + xnj gives

Ec[\mu n \ast \varphi \lambda ] =
1

N2
n

\sum 
1\leq i,j\leq Nn

Qi
nQ

j
n

\int 
\BbbR 3

\int 
\BbbR 3

\varphi \lambda (x - xin)\varphi \lambda (y)

| x - y  - xjn| 
dxdy,

and the further change of variables x \mapsto \rightarrow y  - x+ xin gives

Ec[\mu n \ast \varphi \lambda ] =
1

N2
n

\sum 
1\leq i,j\leq Nn

Qi
nQ

j
n

\int 
\BbbR 3

\int 
\BbbR 3

\varphi \lambda (y  - x)\varphi \lambda (y)

| xin  - xjn  - x| 
dxdy

=
1

N2
n

\sum 
1\leq i,j\leq Nn

Qi
nQ

j
n

\int 
\BbbR 3

1

| xin  - xjn  - x| 

\biggl[ \int 
\BbbR 3

\varphi \lambda (y  - x)\varphi \lambda (y) dy

\biggr] 
dx

=
1

N2
n

\sum 
1\leq i,j\leq Nn

Qi
nQ

j
n

\int 
\BbbR 3

\vargamma \lambda (x)

| xin  - xjn  - x| 
dx,(4.8)

where \vargamma \lambda = \varphi \lambda \ast \varphi \lambda \in C\infty 
c (\BbbR 3). Consequently,

Ed[\mu n] - Ec[\mu n \ast \varphi \lambda ]

=
1

N2
n

\sum 
1\leq i,j\leq Nn,i\not =j

Qi
nQ

j
n

1

| xin  - xjn| 
 - 1

N2
n

\sum 
1\leq i,j\leq Nn

Qi
nQ

j
n

\int 
\BbbR 3

\vargamma \lambda (x)

| xin  - xjn  - x| 
dx

=
1

N2
n

\sum 
1\leq i,j\leq Nn,i\not =j

Qi
nQ

j
n

\int 
\BbbR 3

\Biggl( 
1

| xin  - xjn| 
 - 1

| xin  - xjn  - x| 

\Biggr) 
\vargamma \lambda (x) dx

 - 1

N2
n

Nn\sum 
i=1

(Qi
n)

2

\int 
\BbbR 3

\vargamma \lambda (x)
1

| x| 
dx

=: \alpha n(\lambda ) - \beta n(\lambda ).
(4.9)

We first estimate the second term \beta n(\lambda ). Let us denote

c0 =

\int 
\BbbR 3

\vargamma (x)
1

| x| 
dx =

\int 
\BbbR 3

(\varphi \ast \varphi )(x) 1

| x| 
dx.
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This is a positive number by the local integrability of 1/| x| and it depends only on \varphi .
The integral in \beta n(\lambda ) is then found to equal c0/\lambda . Since | Qi

n| \leq 1 for all n and i, we
have

(4.10) | \beta n(\lambda )| =
1

N2
n

Nn\sum 
i=1

(Qi
n)

2

\int 
\BbbR 3

\vargamma \lambda (x)
1

| x| 
dx =

1

N2
n

Nn\sum 
i=1

(Qi
n)

2 c0
\lambda 

\leq c0
Nn\lambda 

.

We now estimate the first term \alpha n(\lambda ) in (4.9). Note that \vargamma \lambda = \varphi \lambda \ast \varphi \lambda \in C\infty 
c (\BbbR 3)

is nonnegative, radially symmetric, and supported on B(0, 2\lambda ). Moreover,

(4.11)

\int 
\BbbR 3

\vargamma \lambda (x) dx =

\int 
\BbbR 3

\varphi \lambda (x) dx

\int 
\BbbR 3

\varphi \lambda (x) dx = 1.

If | xin  - xjn| > 2\lambda , then Lemma 4.1 implies that\int 
\BbbR 3

\Biggl( 
1

| xin  - xjn| 
 - 1

| xin  - xjn  - x| 

\Biggr) 
\vargamma \lambda (x) dx = 0.

For 0 < | xin  - xjn| \leq 2\lambda , we have that\bigm| \bigm| \bigm| \bigm| \bigm| 1

| xin  - xjn| 
 - 1

| xin  - xjn  - x| 

\bigm| \bigm| \bigm| \bigm| \bigm| \leq | x| 
| xin  - xjn| | xin  - xjn  - x| 

,

and by Lemma 4.2 that\int 
\BbbR 3

| x| \vargamma \lambda (x)dx
| xin  - xjn  - x| 

=

\int 
\BbbR 3

min

\Biggl( 
1

| x| 
,

1

| xin  - xjn| 

\Biggr) 
| x| \vargamma \lambda (x) dx

\leq 
\int 
\BbbR 3

1

| x| 
| x| \vargamma \lambda (x) dx

= 1.

Therefore, since | Qi
n| \leq 1 for all n and i, we obtain from (4.9) that

| \alpha n(\lambda )| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1

N2
n

\sum 
1\leq i,j\leq Nn,i\not =j

Qi
nQ

j
n

\int 
\BbbR 3

\Biggl( 
1

| xin  - xjn| 
 - 1

| xin  - xjn  - x| 

\Biggr) 
\vargamma \lambda (x)dx

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 1

N2
n

\sum 
1\leq i,j\leq N,0<| xi

n - xj
n| \leq 2\lambda 

1

| xin  - xjn| 

\int 
\BbbR 3

| x| \vargamma \lambda (x)
| xin  - xjn  - x| 

dx

=
1

N2
n

\sum 
1\leq i,j\leq N,0<| xi

n - xj
n| \leq 2\lambda 

1

| xin  - xjn| 
.(4.12)

Since the balls B(xin, rn) (i = 1, . . . , Nn) (introduced in the geometrical conditions)
are pairwise disjoint, the mean-value theorem for a harmonic function implies that

1

| xin  - xjn| 
=

1

(4/3)\pi r3n

\int 
B(xj

n,rn)

dy

| xin  - y| 
if i \not = j.

By the geometrical conditions, Nnr
3
n \geq 3\tau /(4\pi ) (n = 1, 2, . . . ). Consequently, we
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obtain from (4.12) that

| \alpha n(\lambda )| \leq 
1

N2
n

Nn\sum 
i=1

\sum 
1\leq j\leq N,0<| xi

n - xj
n| \leq 2\lambda 

1

(4/3)\pi r3n

\int 
B(xj

n,rn)

dy

| xni  - y| 

\leq 3

4\pi Nnr3n

\int 
B(0,2\lambda +rn)

dy

| y| 

\leq 8\pi 

\tau 

\bigl( 
2\lambda 2 + r2n

\bigr) 
.

This, together with (4.9) and (4.10), implies (4.7). The claim is proved.
Step 2.2. We prove for any \lambda > 0 that

(4.13) lim
n\rightarrow \infty 

Ec[\mu n \ast \varphi \lambda ] = Ec[\mu \ast \varphi \lambda ].

We have for any n and x that

| \mu n \ast \varphi \lambda (x)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 1

Nn

Nn\sum 
i=1

Qi
n\varphi \lambda (x - xin)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 1

Nn

Nn\sum 
i=1

| Qi
n| \| \varphi \lambda \| \infty \leq \| \varphi \lambda \| \infty = \lambda  - 3\| \varphi \| \infty .

Hence,

(\mu n \ast \varphi \lambda )(x)(\mu n \ast \varphi \lambda )(y)

| x - y| 
\leq (\lambda  - 3\| \varphi \| \infty )2

| x - y| 
a.e. (x, y) \in \BbbR 3 \times \BbbR 3.

The right-hand side of this inequality is locally integrable in \BbbR 3 \times \BbbR 3. Since \mu n
\ast 
\rightharpoonup \mu 

and \varphi \lambda (x - \cdot ) \in C\infty 
c (\BbbR 3), we have

(4.14) lim
n\rightarrow \infty 

(\mu n \ast \varphi \lambda )(x) = (\mu \ast \varphi \lambda )(x) \forall x \in \BbbR 3.

It then follows from the dominated convergence theorem that

lim
n\rightarrow \infty 

\int \int 
\BbbR 3\times \BbbR 3

(\mu n \ast \varphi \lambda )(x)(\mu n \ast \varphi \lambda )(y)

| x - y| 
dxdy =

\int \int 
\BbbR 3\times \BbbR 3

(\mu \ast \varphi \lambda )(x)(\mu \ast \varphi \lambda )(y)

| x - y| 
dxdy.

This is exactly (4.13).
Step 2.3. We have

(4.15) lim
\lambda \rightarrow 0+

Ec[\mu \ast \varphi \lambda ] = E[\mu ].

This is a known result; cf., e.g., Lemma A1 in [6]. Here for completeness we provide
some details of the proof in our setting.

We have by (4.14) that

Ec[\mu \ast \varphi \lambda ] =

\int \int 
\BbbR 3\times \BbbR 3

(\mu \ast \varphi \lambda )(x)(\mu \ast \varphi \lambda )(y)

| x - y| 
dxdy

=

\int \int 
\BbbR 3\times \BbbR 3

1

| x - y| 

\biggl[ \int 
\BbbR 3

\varphi \lambda (x - x\prime )d\mu (x\prime )

\biggr] \biggl[ \int 
\BbbR 3

\varphi \lambda (y  - y\prime )d\mu (y\prime )

\biggr] 
dxdy

=

\int \int 
\BbbR 3\times \BbbR 3

\biggl[ \int \int 
\BbbR 3\times \BbbR 3

\varphi \lambda (x - x\prime )\varphi \lambda (y  - y\prime )

| x - y| 
dxdy

\biggr] 
d\mu (x\prime )d\mu (y\prime ).
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4598 BENJAMIN CIOTTI AND BO LI

By Lemma 4.2, we have for y \in \BbbR 3 and y \not = 0 that\int 
\BbbR 3

\varphi \lambda (x) dx

| x - y| 
\leq 1

| y| 

\int 
\BbbR 3

\varphi \lambda (x) dx =
1

| y| 
.

Since \varphi \lambda \geq 0, it follows that\int \int 
\BbbR 3\times \BbbR 3

\varphi \lambda (x - x\prime )\varphi \lambda (y  - y\prime )

| x - y| 
dxdy =

\int 
\BbbR 3

\varphi \lambda (y  - y\prime )

\biggl[ \int 
\BbbR 3

\varphi \lambda (x - x\prime ) dx

| x - y| 

\biggr] 
dy

=

\int 
\BbbR 3

\varphi \lambda (y  - y\prime )

\biggl[ \int 
\BbbR 3

\varphi \lambda (x) dx

| x - (y  - x\prime )| 

\biggr] 
dy

\leq 
\int 
\BbbR 3

\varphi \lambda (y  - y\prime )

| y  - x\prime | 
dy

=

\int 
\BbbR 3

\varphi \lambda (y)

| y  - (x\prime  - y\prime )| 
dy

\leq 1

| x\prime  - y\prime | 
if x\prime \not = y\prime .(4.16)

Since d\mu = \rho dx with \rho \in L\infty (\BbbR 3) and \rho = 0 a.e. on \Omega 
c
, 1/| x\prime  - y\prime | is integrable on

\BbbR 3 \times \BbbR 3 against d(\mu \times \mu )(x\prime , y\prime ). Similarly to the calculation leading to (4.8), we can
write \int \int 

\BbbR 3\times \BbbR 3

\varphi \lambda (x - x\prime )\varphi \lambda (y  - y\prime )

| x - y| 
dxdy =

\int 
\BbbR 3

\vargamma \lambda (z) dz

| x\prime  - y\prime  - z| 
.

Since \vargamma is radially symmetric, nonnegative, and of unit mass (cf. (4.11)),

lim
\lambda \rightarrow 0+

\int 
\BbbR 3

g(z)\vargamma \lambda (z) dz = g(0) \forall g \in C0(\BbbR 3).

In particular, if x\prime \not = y\prime and if g(\cdot ) is equal to 1/| x\prime  - y\prime  - \cdot | multiplied by a smooth
cutoff function equal to 1 in a neighborhood of the origin and supported in a ball of
radius less than | x\prime  - y\prime | , we get that

lim
\lambda \rightarrow 0+

\int 
\BbbR 3

\vargamma \lambda (z)dz

| x\prime  - y\prime  - z| 
=

1

| x\prime  - y\prime | 
.

Hence,

lim
\lambda \rightarrow 0+

\int \int 
\BbbR 3\times \BbbR 3

\varphi \lambda (x - x\prime )\varphi \lambda (y  - y\prime )

| x - y| 
dxdy =

1

| x\prime  - y\prime | 
a.e. (x\prime , y\prime ) \in \BbbR 3 \times \BbbR 3.

This and (4.16), together with the dominated convergence theorem, imply (4.15).
Step 2.4. We finally prove the limit (4.2). Given \varepsilon > 0. By (4.7) and (4.15), there

exists \lambda > 0 such that

| Ed[\mu n] - Ec[\mu n \ast \varphi \lambda ]| \leq 
\varepsilon 

2
+ C

\biggl( 
r2n +

1

Nn\lambda 

\biggr) 
\forall n \geq 1,

| Ec[\mu \ast \varphi \lambda ] - Ec[\mu ]| <
\varepsilon 

2
.

These, together with (4.6) and (4.13), the fact that Nn \rightarrow \infty and rn \rightarrow 0, imply that

lim sup
n\rightarrow \infty 

| Ed[\mu n] - E[\mu ]| \leq \varepsilon ,

leading to (4.2). The proof is complete.
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We now provide an example to show the convergent subsequence stated in Theo-
rem 4.1 is not unique. Let \Omega be a bounded open set as in the theorem. We partition
\Omega into two parts A and B such that A and B are nonempty open subsets of \BbbR 3,
\Omega = A \cup B, A \cap B = \emptyset , and | A \cap B| = 0. Let Yn = (2 - n\BbbZ 3) \cap \Omega and define

Xn =

\Biggl\{ 
(Yn \cap B) \cup (Yn+1 \cap A) if n is even,

(Yn \cap A) \cup (Yn+1 \cap B) if n is odd.

Denote by Nn the number of distinct points in Xn and set

\mu n =
1

Nn

\sum 
xi\in Xn

\delta xi
(n = 1, 2, . . . ).

We observe that Xn \subset Xn+1 for each n \geq 1 and that the geometrical conditions are
satisfied. Moreover, since Xn is uniformly distributed on each of A and B, but has
23 = 8 times as many points per unit volume in one than the other, hence 8 times
the density, we have

\mu 2n
\ast 
\rightharpoonup \mu even and \mu 2n - 1

\ast 
\rightharpoonup \mu odd,

where \mu even and \mu odd are two Radon measures supported on \Omega with distinct densities

\rho even =
8

8| A| + | B| 
\chi A +

1

8| A| + | B| 
\chi B ,

\rho odd =
1

8| B| + | A| 
\chi A +

8

8| B| + | A| 
\chi B ,

respectively, where \chi S denotes the characteristic function of a set S. Note that
\| \mu n\| = 1 for all n and \| \mu even\| = \| \mu odd\| = 1. Note also that these two densities
are always different.

If we set specifically

\Omega = \{ x \in \BbbR 3 : | x| < 2\} , A = \{ x \in \BbbR 3 : | x| < 1\} , and B = \{ x \in \BbbR 3 : 1 < | x| < 2\} ,

then the densities are

\rho even =
2

5\pi 2
\chi A +

1

20\pi 2
\chi B and \rho odd =

1

76\pi 2
\chi A +

2

19\pi 2
\chi B ,

respectively. We now calculate the energies E[\mu even] and E[\mu odd]. Note that \chi A and
\chi B are radially symmetric. By approximations by smooth and radially symmetric
functions, we have by Lemma 4.2 that\int \int 

\BbbR 3\times \BbbR 3

\chi A(x)\chi A(y) dxdy

| x - y| 
=

\int 
\BbbR 3

\biggl[ \int 
\BbbR 3

\chi A(x) dx

| x - y| 

\biggr] 
\chi A(y) dy

=

\int 
\BbbR 3

\biggl[ \int 
\BbbR 3

min

\biggl( 
1

| x| 
,
1

| y| 

\biggr) 
\chi A(x) dx

\biggr] 
\chi A(y) dy

=

\int 
A

\biggl[ \int 
A

min

\biggl( 
1

| x| 
,
1

| y| 

\biggr) 
dx

\biggr] 
dy

= (4\pi )2
\int 1

0

\biggl[ \int 1

0

min

\biggl( 
1

s
,
1

t

\biggr) 
s2 ds

\biggr] 
t2 dt
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= (4\pi )2
\int 1

0

\biggl[ \int t

0

s2t ds+

\int 1

t

st2 ds

\biggr] 
dt

=
32

15
\pi 2.

Similarly,\int \int 
\BbbR 3\times \BbbR 3

\chi B(x)\chi B(y) dxdy

| x - y| 
=

\int 
B

\biggl[ \int 
B

min

\biggl( 
1

| x| 
,
1

| y| 

\biggr) 
dx

\biggr] 
dy

= (4\pi )2
\int 2

1

\biggl[ \int 2

1

min

\biggl( 
1

s
,
1

t

\biggr) 
s2 ds

\biggr] 
t2 dt

=
752

15
\pi 2

and \int \int 
\BbbR 3\times \BbbR 3

\chi A(x)\chi B(y) dxdy

| x - y| 
=

\int 
B

\biggl[ \int 
A

min

\biggl( 
1

| x| 
,
1

| y| 

\biggr) 
dx

\biggr] 
dy

= (4\pi )2
\int 2

1

\biggl[ \int 1

0

min

\biggl( 
1

s
,
1

t

\biggr) 
s2 ds

\biggr] 
t2 dt

= (4\pi )2
\int 2

1

\biggl( \int 1

0

s2t ds

\biggr) 
dt

= 8\pi 2.

Therefore, since d\mu even = \rho even dx and d\mu odd = \rho odd dx, we obtain by a series of
calculations that

E[\mu even] =

\int \int 
\BbbR 3\times \BbbR 3

\rho even(x) \rho even(y) dxdy

| x - y| 

=

\int \int 
\BbbR 3\times \BbbR 3

\biggl[ 
2

5\pi 2
\chi A(x) +

1

20\pi 2
\chi B(x)

\biggr] \biggl[ 
2

5\pi 2
\chi A(y) +

1

20\pi 2
\chi B(y)

\biggr] 
dxdy

| x - y| 

=
59

75
.

Similarly, E[\mu odd] = 626/1083. Note that E[\mu even] \not = E[\mu odd].
By Theorem 4.1, there exists a subsequence \{ \mu \prime 

n\} of \{ \mu 2n\} and a subsequence \{ \mu \prime \prime 
n\} 

of \{ \mu 2n - 1\} such that \mu \prime 
n

\ast 
\rightharpoonup \mu even and \mu \prime \prime 

n
\ast 
\rightharpoonup \mu odd. Moveover, E[\mu \prime 

n] \rightarrow E[\mu even] and
E[\mu \prime \prime 

n] \rightarrow E[\mu odd], respectively. Note that the sequence \{ \mu \prime 
n\} is different from \{ \mu \prime \prime 

n\} ,
\mu even \not = \mu odd, and E[\mu even] \not = E[\mu odd]. Therefore, the subsequence in Theorem 4.1 is
not unique,

5. Minimization of electrostatic energy in the presence of an external
field. Let \Omega \subseteq \BbbR 3 be a bounded open set. Given a finite, signed Radon measure \nu 
on \BbbR 3 and assume it is compactly supported in \Omega 

c
= \BbbR 3 \setminus \Omega . We consider minimizing

the energy E[\mu + \nu ] among all \mu \in \scrM (\Omega ) (cf. (3.1)). Such a minimization has
various applications, particularly in an implicit-solvent model of the charged molecules
occupying the region \Omega in an aqueous (i.e., water or salted water) environment; cf.
[7, 8, 28, 33, 39, 41].

Formally,
E[\mu + \nu ] = E[\mu ] + 2E[\mu , \nu ] + E[\nu ].
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Since \nu is given and fixed, we consider the first two terms here. We define U\nu : \Omega \rightarrow \BbbR 
by

U\nu (x) :=

\int 
\BbbR 3

d\nu (y)

| x - y| 
\forall x \in \Omega .

Since \| \nu \| <\infty and supp (\nu ) \subset \Omega 
c
, U\nu (x) is well defined and is finite for each x \in \Omega .

If we denote \delta = dist (supp (\nu ),\Omega ) > 0, then

(5.1) | U\nu (x)| \leq 
\int 
\BbbR 3

d| \nu | (y)
| x - y| 

\leq 
\int 
supp (\nu )

d| \nu | (y)
\delta 

=
\| \nu \| 
\delta 

\forall x \in \Omega .

Moreover, for any x, z \in \Omega ,

| U\nu (x) - U\nu (z)| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 3

d\nu (y)

| x - y| 
 - 
\int 
\BbbR 3

d\nu (y)

| z  - y| 

\bigm| \bigm| \bigm| \bigm| 
\leq 
\int 
supp (\nu )

| x - z| d| \nu | (y)
| x - y| | z  - y| 

\leq \| \nu \| 
\delta 2

| x - z| .(5.2)

Hence, U\nu is Lipschitz continuous on \Omega . Therefore, if \mu \in \scrM (\Omega ), then E[\mu , \nu ] is well
defined and is finite. In fact, it follows from the Fubini--Tonelli theorem and (5.1)
that

(5.3) | E[\mu , \nu ]| =
\bigm| \bigm| \bigm| \bigm| \int 

\BbbR 3

U\nu (x)d\mu (x)

\bigm| \bigm| \bigm| \bigm| \leq \int 
\BbbR 3

| U\nu (x)| d| \mu | (x) \leq \| \mu \| \| \nu \| 
\delta 

.

We define J : \scrM (\Omega ) \rightarrow \BbbR \cup \{ +\infty \} by

J [\mu ] =

\Biggl\{ 
E[\mu ] + 2E[\mu , \nu ] if E[| \mu | ] <\infty ,

\infty otherwise
\forall \mu \in \scrM (\Omega ).

Similarly, we define Jd : \scrA (\Omega ) \rightarrow \BbbR \cup \{ +\infty \} by

Jd[\mu ] = Ed[\mu ] + 2E[\mu , \nu ] \forall \mu \in \scrA (\Omega ),

where Ed[\mu ] for \mu \in \scrA (\Omega ) is defined in (3.5).

Theorem 5.1. Let \Omega be a nonempty, bounded, open subset of \BbbR 3 with a C2

boundary \partial \Omega . Let \nu be a compactly supported signed Radon measure on \BbbR 3 with
supp (\nu ) \subset \Omega 

c
.

(1) There exists a unique \mu \in \scrM (\Omega ) such that

J [\mu ] = inf
\mu \in \scrM (\Omega )

J [\mu ].

Moreover, supp (\mu ) \subseteq \partial \Omega .

(2) For any \varepsilon > 0 there exist \mu n \in \scrA (\Omega ) (n = 1, 2, . . . ) such that

supp (\mu n) \subseteq \{ x \in \Omega : dist(x, \partial \Omega ) < \varepsilon \} (n = 1, 2, . . . )

and
\mu n

\ast 
\rightharpoonup \mu and Jd[\mu n] \rightarrow J [\mu ] as n\rightarrow \infty .
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Proof. Let G = \BbbR 3 \setminus \Omega = \Omega 
c
. Since \partial G = \partial \Omega is C2, it satisfies the exterior cone

condition: every point x \in \partial G is accessible from outside of G by a finite cone that
does not otherwise intersect G. Therefore, there exists a unique Radon measure \nu \prime 

on \BbbR 3 with supp(\nu \prime ) \subseteq \partial \Omega and \| \nu \prime \| \leq \| \nu \| such that U\nu = U\nu \prime 
on \Omega ; cf. Chapter 4

of [26]. Note that \nu \prime \in \scrM (\Omega ).
Both E[\nu \prime ] and E[\mu , \nu \prime ] with \mu \in \scrM (\Omega ) are well defined and finite. In fact,

similarly to (5.3), we have for \delta = dist (supp (\nu ), \partial \Omega ) > 0 that

E[\nu \prime ] =

\int 
\BbbR 3

U\nu \prime 
d\nu \prime =

\int 
\partial \Omega 

U\nu (x) d\nu \prime (x) =

\int 
\partial \Omega 

\int 
\BbbR 3\setminus \Omega 

d\nu \prime (x) d\nu (y)

| x - y| 

\leq \| \nu \prime \| \| \nu \| 
\delta 

\leq \| \nu \| 2

\delta 
<\infty .(5.4)

Moreover, since supp (\mu ) \subseteq \Omega , we have

E[\mu , \nu \prime ] =

\int 
\Omega 

U\nu \prime 
d\mu =

\int 
\Omega 

U\nu d\mu = E[\mu , \nu ],

which is finite by (5.3). Thus, for \mu \in \scrM (\Omega ) with E[| \mu | ] <\infty ,

J [\mu ] = E[\mu ] + 2E[\mu , \nu ] = E[\mu ] + 2E[\mu , \nu \prime ] + E[\nu \prime ] - E[\nu \prime ] = E[\mu + \nu \prime ] - E[\nu \prime ].

Since \mu + \nu \prime is compactly supported, we have (cf. Theorem 3.10 of [29])

J [\mu ] = E[\mu + \nu \prime ] = (2\pi ) - 3

\int 
\BbbR 3

4\pi 

| \xi | 2
\bigm| \bigm| \bigm| \widehat \mu (\xi ) + \widehat \nu \prime (\xi )\bigm| \bigm| \bigm| 2 d\xi \geq 0,

where \widehat \alpha is the Fourier transform of a signed Radon measure \alpha . The integral vanishes if
and only if \widehat \mu + \widehat \nu \prime = 0 identically on \BbbR 3, which is true if and only if \mu +\nu \prime = 0 (the zero
measure) by the uniqueness of the Fourier transform of compactly supported finite
measures [29]. Therefore, the functional J is uniquely minimized at \mu =  - \nu \prime \in \scrM (\Omega ),
establishing (1). Note the minimum value is then given by J [ - \nu \prime ] =  - E[\nu \prime ].

To prove (2), we note that E[| \nu \prime | ] <\infty , which is similar to (5.4). Since supp (\mu ) =
supp (\nu \prime ) \subseteq \partial \Omega , we obtain by Theorem 3.1 a sequence of discrete charge distributions
\mu n \in \scrA (\Omega ) such that

supp (\mu n) \subseteq \{ x \in \Omega : dist (x, \partial \Omega ) < \varepsilon \} (n = 1, 2, . . . )

and
\mu n

\ast 
\rightharpoonup \mu =  - \nu \prime and Ed[\mu n] \rightarrow E[\mu ] = E[ - \nu \prime ] as n\rightarrow \infty .

Since U\nu is continuous on \Omega (cf. (5.2)), all \mu n (n = 1, 2, . . . ) and \nu \prime are supported on
\Omega , and U\nu = U\nu \prime 

on \Omega , we find that

lim
n\rightarrow \infty 

E[\mu n, \nu ] = lim
n\rightarrow \infty 

\int 
\Omega 

U\nu d\mu n =  - 
\int 
\Omega 

U\nu d\nu \prime =  - 
\int 
\Omega 

U\nu \prime 
d\nu \prime =  - E[\nu \prime ].

Therefore,

lim
n\rightarrow \infty 

Jd[\mu n] = lim
n\rightarrow \infty 

\Bigl( 
Ed[\mu n] + 2E[\mu n, \nu ]

\Bigr) 
= E[ - \nu \prime ] - 2E[\nu \prime ]

= E[\nu \prime ] - 2E[\nu \prime ] =  - E[\nu \prime ] = J [ - \nu \prime ] = J [\mu ] = inf
\mu \in \scrM (\Omega )

J [\mu ].

The proof is complete.
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