
Heat equations on loop groups

(AMS Sectional meeting at LSU)

March 15, 2003

http://math.ucsd.edu/~driver

Bruce K. Driver
Department of Mathematics, 0112
9500 Gilman Drive, Dept. 0112
University of California, San Diego
La Jolla, CA 92093-0112

1



1 Heat Kernel Measures on
Riemannian Manifolds
Notation 1 Suppose (Md, g) is a smooth d – dimensional
manifold with Riemannian metric g and ∇ denotes the
Levi-Civita covariant derivative of g and ∆ is the Rie-
mannian Laplacian.

∆f = tr(∇2f) =
dX

i,j=1

1√
g

∂

∂xi

µ√
ggij

∂f

∂xj

¶
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Definition 2 Let (M, g) be a Riemannian manifold o ∈
M be a fixed base point. A sequence {νt}t>0 of positive
measures is called a heat kernel sequence based at o ∈M
if:
1. νt(M) ≤ 1 for all t > 0.
2. For all f ∈ BC2(M) the function t → νt(f) :=R

M fdνt ∈ C1(0,∞) and
d

dt
νt(f) =

1

2
νt(∆f)

and
lim
t↓0

νt(f) = f(o).

Remark 1 If νt exists as in Definition 2, then necessarily
νt(M) = 1 for all t. Just take f ≡ 1 in the definition.
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2 The Case M = Rd.

Proposition 3 Suppose

M = Rd, o = 0 and ∆ =
dX

i=1

∂2

∂x2i
Then there is exactly one sequence of positive measures
{νt}t>0 .Moreover this sequence is given by

νt(dx) = pt(x)dm(x) (1)
where

pt(x) := (2πt)
−d/2 e−

1
2t|x|2

is the heat kernel andm is Lebesgue measure on Rd.
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2.1 Proof.

Existence. Define νt as in Eq. (1), then
∂

∂t
νt(f) =

Z
Rd

f(x)
∂

∂t
pt(x)dx =

1

2

Z
Rd

f(x)∆pt(x)dx

=
1

2

Z
Rd

∆f(x)pt(x)dx =
1

2
νt(∆f).

Uniqueness. By assumption νt satisfies

νt(f) = f(0) +

Z t

0

1

2
ντ(∆f)dτ for all f ∈ C∞c

¡
Rd
¢
.

(2)

Taking T > 0 and

Ft(x) = e(T−t)∆/2f(x) = P(T−t)f(x) :=
Z
Rd

pT−t(x−y)f(y)dy
then

∂

∂t
Ft = −1

2
∆Ft with FT = f and F0 = PTf.

So by the chain rule
∂

∂t
νt(Ft) =

1

2
νt(∆Ft)− 1

2
νt(∆Ft) = 0

and thus

νT (f) = νT (FT ) = ν0(F0) = PTf(0).
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3 General finite dimensional
Riemannian Manifolds M

Theorem 4 Let o ∈M be a fixed point and suppose
• (M, g) is a complete Riemannian manifold
• There exists C ≥ 0 such that Ricci ≥ −Cg.
Then there exists a unique heat kernel sequence {νt}t>0

based at o ∈M. The measure νt is given by
νt(dx) = pt(o, x)dV (x) (3)

and satisfy

νt(f) :=

Z
M

fdνt =:
³
et∆̄/2f

´
(o) for all f ∈ C∞c (M)

(4)
where

pt(o, x) :=
³
et∆/2δo

´
(x).

See Strichartz (1983) , Dodziuk (1983) and Davies

(1990) for the existence of pt.
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4 Aside: Smooth Measure on Rn

Definition 5 ARadonmeasure µ onRd is said to be smooth
if for all multi -indicesα = (α1, . . . , αd) ∈ Nd

0 (N = {1, 2 . . . }
and N0 = N∪ {0}) there exists functions gα ∈ C∞(Rd) ∩
L∞−(µ) such that,Z

Rd

(−D)α fdµ =
Z
Rd

fgαdµ for all f ∈ C∞c (Rd), (5)

whereDα :=
Qd

i=1

¡
∂
∂xi

¢αi .

Theorem 6 A measure µ on Rd is smooth iff there exists
ρ ∈ C∞(Rd, (0,∞)) such that dµ = ρdm where m is
Lebesgue measure on Rd.

Corollary 7 All smooth measures on Rd are mutually ab-
solutely continuous relative to each other.

Corollary 8 If µ is a smooth measure onRd and φ : Rd→
Rd is a diffeomorphism, then φ∗µ is a smooth measure as
well. In fact if dµ = ρdm, then

d (φ∗µ) = ρ ◦ φ−1
¯̄̄¡
φ−1
¢0¯̄̄

dm. (6)
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5 Infinite dimensional considera-
tions
• Let (H, (·, ·)) be a separable Hilbert space,
• |h| :=p(h, h) be the associate Hilbertian norm and
• ∂hf(x) := d

dt|0f(x + th), Df(x)h := ∂hf(x)

• D2f(x)(h, k) := (∂h∂kf) (x).

• S ⊂ H be an orthonormal basis forH.

• As usual, for f ∈ C2(H) we will set
∆Hf(x) = tr(D

2f(x)) =
X
h∈S

¡
∂2hf

¢
(x)

providedD2f(x) is trace class.

Proposition 9 There does not exists a heat kernel sequence
based at 0 ∈ H, i.e. there is no collection {νt}t>0 of posi-
tive measures onH such that
• νt(H) ≤ 1 for all t > 0 and
• d

dtνt(f) =
1
2νt(∆Hf) with limt↓0 νt(f) = f(0).
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5.1 Heuristic Proof.

Formally,

“νt(dx) =
1

Zt
e−

1
2t|x|2HdmH(x), ” (7)

where mH is “infinite dimensional Lebesgue measure,”

and

Zt := (2πt)
dim(H)/2 =

½
0 if t < 1/2π
∞ if t > 1/2π.

5.2 Rigorous Proof.

Let α > 0, then one showsZ
H

e−α|x|
2

dνt(x) = lim
n→∞

Z
H

e−α|Pnx|2dνt(x)

= lim
n→∞

Z
PnH

e−α|y|
2

dνPnH
t (y)

= lim
n→∞

µ
1

2tα + 1

¶dim(PnH)/2

= 0.

Since e−α|x|
2

> 0 for all x ∈ H, this implies that

νt ≡ 0. This clearly contradicts the assumption that
lim
t↓0

νt(f) = f(0).

9



6 Path Spaces
Notation 10 (Path Spaces) Given a pointed Riemannian
manifold (M, g, o), let

W (M) = {σ ∈ C ([0, 1]→M) |σ (0) = o} .
For those σ ∈ W (M) which are absolutely continuous,
let

EM(σ) :=

Z 1

0

|σ0(s)|2g ds
denote the energy of σ. The space of finite energy paths
H(M) is given by

H(M) :=

½
σ ∈W (M)|σ is absolutely continuous

and EM(σ) <∞
¾
.
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Definition 11 A function f :W (M)→ C is aCk – cylin-
der function (f ∈ FCk(W )) provided there exists a par-
tition

π := {0 = s0 < s1 < · · · < sn = 1}
of [0, 1] and a smooth function F ∈ Ck(Mn) such that

f(σ) = F (σ(s1), . . . , σ(sn)) = F (σ|π). (8)
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7 Classical Wiener Measure as a
Heat Kernel Measure

Theorem 12 (Wiener 1923) There exits a unique heat ker-
nel sequence1 {νt}t>0 based at 0 ∈ W = W (Rd) satisfy-
ing
1. νt(W ) = 1 for all t > 0 and
2. for all f ∈ FBC2(W ), the function t→ νt(f) is con-
tinuously differentiable,
d

dt
νt(f) =

1

2
νt(4H(Rd)f) and lim

t↓0
νt(f) = f(0)

where
4H(Rd)f :=

X
h∈S

∂2hf

and S is an orthonormal basis forH
¡
Rd
¢
.

1 Wiener did not state the theorem this way, but the results are equivalent.
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Notation 13 To each partition
π := {0 = s0 < s1 < · · · < sn = 1}

let
Hπ(Rd) :=

©
ω ∈ H(Rd) : ω00(s) = 0 if s /∈ π

ª
and {νπt }t>0 denote the heat kernel sequence onHπ(Rd),

dνπt (h) :=
1

Zπ(t)
e−

1
2tE(h)dmπ(h)

where Zπ(t) is a normalization constant.

Proposition 14 (Path Integral intepretation) Suppose {νt}t>0
is the heat kernel sequence based at 0 ∈ W = W (Rd).
For each f :W → R which is bounded and continuous,Z
W (Rd)

f(ω)dνt(ω) = lim
|π|→0

1

Zπ(t)

Z
Hπ(Rd)

f(h)e−
1
2tE(h)dmπ(h).

(9)
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8 Cameron – Martin Theorem and
Integration by Parts Formula
Definition 15 For h ∈ W, let νht := νt(· − h), i.e. νht is
such thatZ

W

f(ω)dνht (ω) =

Z
W

f(ω + h)dνt (ω) .

Theorem 16 (Cameron-Martin 44, Cameron-Martin 49 and
Cameron 51.)
1. If h ∈W \H then νht ⊥ νt.

2. If h ∈ H then νht ¿ νt and
dνht
dνt
(ω) = e

1
t (h,ω)− 1

2t|h|2

= exp

µ
1

t

Z 1

0

h0(s)dω(s)− 1

2t
|h|2
¶
.

3. For all h ∈ H, ∂∗h =
¡−∂h + 1

t(h, ω)
¢
, i.e.Z

W

∂hf(ω) · g(ω)dνt(ω)

=

Z
W

f(ω)

µ
−∂h + 1

t
(h, ω)

¶
g(ω)dνt(ω).

In particular νt is a smooth measure.
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9 Replacing W
³
Rd
´
by W (K) and

L(K)
Notation 17 • K be a connected compact Lie group (which
we take to be a matrix group.)

• k := TeK be the Lie algebra ofK
• h·, ·ik be an AdK-invariant inner product on k
• g denote the unique bi-invariant Riemannian metric on
K.

• For A ∈ k and f ∈ C∞(K) let

Af(x) =
d

dt
|0f(xetA).

Example 1 K = SO(3) be the group of 3×3 real orthog-
onal matrices with determinant 1. The Lie algebra ofK is
k = so(3), the set of 3 × 3 real skew symmetric matrices,
and the inner product hA,Bik := −tr(AB).
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Notation 18 For a compact Lie groupK let
•W (K) := {σ ∈ C ([0, 1]→ K) |σ (0) = e}
• L (K) := {σ ∈W (K) |σ (1) = e}
• e ∈L (K) ⊂ W (K) denote the constant path at e ∈
K.

• H(K) andH0(K) are the finite energy paths inW (K)
and L(K) respectively.

• EK(σ) is the energy of σ.

EK(σ) :=

Z 1

0

¯̄̄
[σ(s)]−1 σ0(s)

¯̄̄2
k
ds =

Z 1

0

¯̄
σ0(s)σ(s)−1

¯̄2
k
ds,

(10)
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Definition 19 (Differential Operators) For h ∈ H(k) and
f :W (K)→ R let

h̃f(σ) =
d

dt

¯̄̄̄
0

f
¡
σeth

¢
for σ ∈W (K)

where
¡
σeth

¢
(s) = σ(s)eth(s) for all s ∈ [0, 1]. Also let

• S0 be an orthonormal basis forH0 (k)

• 4H0(K)f :=
P

h∈S0 h̃
2f.

• kgrad0fk2 :=
P

h∈S0
³
h̃f
´2
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9.1 Heat Kernel Measure

Theorem 20 (Malliavin 90, Driver and Lohrenz 96, Driver 97)
There exists unique heat kernel sequences {νt}t>0 and {νet}t>0
based at e on W (K) and L(K) respectively, i.e. for all
f ∈ FC2(W (K)),
∂tνt(f) =

1

2
νt
¡4H(K)f

¢
and ∂tνet (f) =

1

2
νet
¡4H0(K)f

¢
and

lim
t↓0

νt(f) = f(e) = lim
t↓0

νet (f).
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9.2 Heat Kernel Logarithmic Sobolev
Theorem

Theorem 21 (D. Lohrenz 1996, Carson 97 & 99, Fang 99)
There is a constant C <∞ such thatZ

L(K)
f 2 log

f 2

νet (f
2)
dνet ≤ C

Z
L(K)

kgrad0fk2 dνet (11)

for all smooth cylinder functions f : L(K)→ R.

• Eq. (11) whenK = Rd is Gross’ original Logarithmic
Sobolev inequality.

• This is analogous to Gross’ Logarithmic Sobolev
inequality for “Pinned Wiener Measure.

• Eq. (11) is an analogue of a similar result by Bakry,
Ledoux, Emery for Riemannian manifolds M with
Ricci curvature bounded below.

• The Ricci curvature was computed by D. Freed ∼= (86)
in this example.
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9.3 Quasi-invariance for heat kernel
measure

Notation 22 For each k ∈ H0(K) let νkt denote the unique
measure on L(K) such thatZ

L(K)
f(σ)dνkt (σ) =

Z
L(K)

f(kσ)dνet (σ)

Theorem 23 (D. 97, Fang 99) For each k ∈ H0(G)which
is null homotopic, νet quasi-invariant under the right and
left translations by k, i.e. there is a function Zk(σ) such
that Z

L(K)
f(kσ)dνet (σ) =

Z
L(K)

f(σ)Zk(σ)dνet (σ).

• This is proved by proving theorems about the L(K) –
valued Brownian motion.

• The free loop space version of these results was carried
out by Trevor Carson 97 & 99 and also see Inahama
2001 for generalizations to include “Hs – metrics” on
L(K) for s > 1/2.
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10 Wiener Measure on W (M)

Notation 24 LetM be a Riemannian manifold with base
point o ∈M.

Theorem 25 (Wiener measure) There exists a unique prob-
ability measure µW (M) onW (M) such thatZ
W (M)

F (σ(s1), . . . , σ(sn))dµW (M)(σ)

=

Z
Mn

F (x1, . . . , xn)
n−1Y
i=0

p(si+1−si)(xi, xi+1)dx1 · · · dxn.
where x0 = o and dx denotes the volume measure onM.
Moreover, µW (M) is the pushforward of µW (ToM) under
stochastic version of Cartan’s Rolling map.
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Notation 26 To each σ ∈ H(M) and s ∈ [0, 1] let
• Parallel translation: //s(σ) : ToM → Tσ(s)M

∇
ds
//s(σ) = 0 with //0(σ) = IdToM.

• Cartan’s rolling map: ϕ∇ : H(ToM) −→ H(M)
given by σ = φ∇(ω) where

σ0(s) = //s(σ)ω
0(s) with σ(0) = o. (12)
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11 Quasi-Invariance Theorem for
µW (M)

Theorem 27 (D. 92, Hsu 95) Let h ∈ H(ToM) and Xh

be the µW (M) – a.e. well defined vector field on W (M)
given by

Xh
s (σ) = //s(σ)h(s) for s ∈ [0, 1]. (13)

ThenXh admits a flow etXh onW (M) and this flow leaves
µW (M) quasi-invariant. (Ref: D. 92, Hsu 95, Enchev-
Strook 95, Lyons 96, Norris 95, ...)
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Corollary 28 (Integration by Parts for µW (M)) For h ∈
H(ToM) and f ∈ FC1(W (M)) be as in Eq. (8), let
(Xhf)(σ) =

d

dt
|0f(etXh

(σ)) =
nX
i=1

(∇if(σ), X
h
si
(σ))g

=
nX
i=1

(∇if)(σ), e//si(σ)h(si))g.
Then

Z
W(M)

Xhf dµW (M) =

Z
W(Rd)

f zh dµW (M)

where

zh(σ) :=

Z 1

0

hh0(s) + 1
2
Ric//s(σ)h

0(s), dσ(s)i
and

Ric//s(σ) := //s(σ)
−1Ricσ(s)//s(σ) ∈ End(ToM).
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12 Path Integral Representations
Definition 29 (The π–Metrics) For each partition π =
{0 = s0 < s1 < s2 < · · · < sn = 1} of [0, 1] let
• Hπ(M) =

n
σ ∈ H(M) : ∇σ

0(s)
ds = 0 for s /∈ π

o
• ForX,Y ∈ THπ(M) let

G1π(X,Y ) :=
nX
i=1

h∇X(si−1+)
ds

,
∇Y (si−1+)

ds
i (si − si−1)

• G0π(X,Y ) :=
Pn

i=1hX(si), Y (si)i (si − si−1) .
• G1π and G0π are the Riemann sum approximations to

G1(X,Y ) :=

Z 1

0

h∇X(s)
ds

,
∇Y (s)
ds

ids and

G0(X,Y ) :=

Z 1

0

hX(s), Y (s)ids
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Definition 30 (π – Volume Forms) Let VolG0π and VolG1π
denote the volume forms onHπ(M) determined byG0π and
G1π.

Definition 31 (Approximates to Wiener Measure to µW (M))
For each partition π = {0 = s0 < s1 < s2 < · · · < sn =
1} of [0, 1], let µ0π and µ1π denote measures onHπ(M) de-
fined by

µ0π :=
1

Z0π
e−

1
2EMVolG0π

and
µ1π =

1

Z1π
e−

1
2EMVolG1π,

where EM : H(M)→ [0,∞) is the energy functional
EM(σ) :=

Z 1

0

|σ0(s)|2g ds
and Z0π and Z1π are normalization constants given by

Z0π :=
nY
i=1

(
√
2π (si − si−1))d and Z1π := (2π)

dn/2. (14)
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Theorem 32 (Andersson and D. 1999.) Suppose that f :
W (M)→ R is a bounded and continuous, then

lim
|π|→0

Z
Hπ(M)

f(σ)dµ1π(σ) =

Z
W(M)

f(σ)dµW(M)(σ)

(15)
and
lim
|π|→0

Z
Hπ(M)

f(σ)dµ0π(σ) =

Z
W(M)

f(σ)e−
1
6

R 1
0 Scal(σ(s))dsdµW(M)(σ),

(16)
where Scal is the scalar curvature of (M, g).

Proof. There is a large literature pertaining to results

of the type in Theorem 32, see for example Cheng72,

Um74, Pinsky78, Fujiwara 80, Darling84, A. Inoue and

Y. Maeda 85, W. Ichinose 97 and Jyh-Yang Wu 98. The

version given here is contained in Andersson and Driver

98.
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