Path Integrals over a Manifold

with Lars Andersson and Adrian Lim

Bruce Driver

Visiting Miller Professor
(Permanent Address) Department of Mathematics, 0112
University of California at San Diego, USA
http://math.ucsd.edu/~driver

Topology Seminar
University of California, Berkeley, August 29, 2007

Canonical Quantization

CONCEPT	CLASSICAL	QUANTUM		
CONFIG. SPACE	\mathbb{R}^{d}	$?$		
STATE SPACE	$T^{*} \mathbb{R}^{d} \cong \mathbb{R}^{d} \times \mathbb{R}^{d} \ni(p, q)$	$K=P L^{2}\left(\mathbb{R}^{d}, d m\right)$ $\psi \in L^{2}\left(\mathbb{R}^{d}, d m\right) \ni\\|\psi\\|_{K}=1$. Examples		
OBSERVABLES	Functions on $T^{*} \mathbb{R}^{d}$ p_{k} q_{k} $H(q, p)=\frac{1}{2 m} p^{2}+V(q)$	S.A. ops. on K $\hat{p}_{k}=\frac{\hbar}{i} \frac{\partial}{\partial q_{k}}$ $\hat{q}_{k}=M$ $\hat{H}=-\frac{\hbar^{2}}{2 m}$		
DYNAMICS	Newtons Equations of Motion $\ddot{q}(t)=-\nabla V(q)$			
MEASURMENTS	Schrödinger, Eq. $i \hbar \dot{\psi}(t)=\hat{H} \psi(t), \psi(t) \in K$ 	$\langle\psi, \theta \psi\rangle-\operatorname{expected}$ value.		

The Path Integral Prescription on \mathbb{R}^{d}

Notation 1. For $x \in \mathbb{R}^{d}$ and $T>0$, let

$$
W\left(\mathbb{R}^{d} ; x, T\right):=\left\{\omega \in C\left([0, T] \rightarrow \mathbb{R}^{d}\right): \omega(0)=x\right\}
$$

and let

$$
H\left(\mathbb{R}^{d} ; T\right):=\left\{\omega \in W\left(\mathbb{R}^{d} ; T\right): \int_{0}^{T}\left|\omega^{\prime}(s)\right|^{2} d s<\infty\right\}
$$

Theorem 2 (Meta-Theorem - Feynman (Kac) Quantization). Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a nice function. Then

$$
\begin{equation*}
e^{-T \hat{H}} f(x)=" \frac{1}{Z_{T}} \int_{H\left(\mathbb{R}^{d} ; x, T\right)} e^{-\int_{0}^{T} E(\omega(t), \dot{\omega}(t)) d t} f(\omega(T)) \mathcal{D} \omega " \tag{1}
\end{equation*}
$$

where $E(x, v)=\frac{1}{2} m|v|^{2}+V(x)$ is the classical energy and

$$
" Z_{T}:=\int_{H\left(\mathbb{R}^{d} ; x, T\right)} e^{-\frac{1}{2} \int_{0}^{T}|\dot{\omega}(t)|^{2} d t} \mathcal{D} \omega "
$$

Kac' s Formula (1949) (A Rigorous Interpretation)

Theorem 3 (Kac's Formula).

$$
e^{-T \hat{H}} f(x)=\int_{W\left(\mathbb{R}^{d} ; T\right)} e^{-\int_{0}^{T} V(x+\omega(t)) d t} f(x+\omega(T)) d \mu(\omega)
$$

where μ is Wiener measure (1923).
Informally,

$$
d \mu(\omega)^{\prime \prime}=" \frac{1}{Z} e^{-\frac{1}{2} \int_{0}^{1}\left|\omega^{\prime}(s)\right|^{2} d s} \mathcal{D} \omega .
$$

Formally, μ is the unique measure on $W\left(\mathbb{R}^{d} ; T\right)$ such that

$$
\int_{W\left(\mathbb{R}^{d} ; T\right)} e^{i \varphi(\omega)} d \mu(\omega)=\exp \left(-\frac{1}{2}(\varphi, \varphi)_{H\left(\mathbb{R}^{d} ; T\right)^{*}}\right)
$$

for all $\varphi \in W\left(\mathbb{R}^{d} ; T\right)^{*}$

Classical Energy and Hamiltonian

- $L(x, v):=\frac{1}{2} m|v|_{g}^{2}-V(x)$ is the Lagrangian
- $E(x, v):=\frac{1}{2} m|v|_{g}^{2}+V(x)$ is the energy
- $p=\frac{\partial L(x, v)}{\partial v}=m g(v, \cdot)$ is the conjugate momentum to v.
- $H(x, p)=\frac{1}{2 m}|p|_{g^{*}}^{2}+V(x)$ is the Hamiltonian.
- $H(x, p)=E(x, v)=p(v)-L(x, v)$ where $p=\frac{\partial L(x, v)}{\partial v}=m g(v, \cdot)$.

"Canonical" Quantization

We now set $m=1, \sqrt{g}=\sqrt{\operatorname{det}\left(g_{i j}\right)}$, and $d \operatorname{Vol}:=\sqrt{g} d x^{1} \ldots d x^{d}$.

- In local coordinates,

$$
\begin{aligned}
H & =\frac{1}{2} g^{i j}(q) p_{i} p_{j}+\tilde{V}(q) \\
& =\frac{1}{2} \frac{1}{\sqrt{g}} p_{i} \sqrt{g} g^{i j}(q) p_{j}+\tilde{V}(q)
\end{aligned}
$$

- Quantize:

$$
p_{i} \rightarrow \hat{p}_{i}:=\frac{1}{i} \frac{\partial}{\partial q^{i}} \text { and } q_{i} \rightarrow \hat{q}_{i}:=M_{q^{i}} .
$$

- Then $H \rightarrow \hat{H}$ acting on $L^{2}(M, d \mathrm{Vol})$ by

$$
\hat{H}=-\frac{1}{2} g^{i j}(q) \frac{\partial^{2}}{\partial q^{i} \partial q^{j}}+v(q) .
$$

or

$$
\hat{H}=-\frac{1}{2} \frac{1}{\sqrt{g}} \frac{\partial}{\partial q^{i}}\left(\sqrt{g} g^{i j}(q) \frac{\partial}{\partial q^{j}}\right)+v(q)=-\frac{1}{2} \Delta_{M}+M_{V} .
$$

A Motivation: Yang - Mills Equations

- The Yang - Mills equations are the Euler Lagrange equations for

$$
I(A)=\int_{\mathbb{R} \times \mathbb{R}^{d}}\left\langle F^{A}\right\rangle_{L}^{2} d t d x
$$

- $\mathfrak{g}=\operatorname{Lie}(G)$ and G is a compact Lie group.
- $A: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d+1} \otimes \mathfrak{g}$ is a connection one form.
- $F^{A}=d A+A \wedge A$ is the curvature tensor.
- $\langle\cdot\rangle_{L}^{2}$ is a non-degenerate quadratic form determined by the Lorentzian metric on \mathbb{R}^{d+1} and an inner product on \mathfrak{g}.
- Path integral quantization measure is

$$
\begin{equation*}
d \mu(A) "=" \frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R} \times \mathbb{R}^{d}}\left|F^{A}\right|^{2} d t d x\right) \mathcal{D} A \tag{4}
\end{equation*}
$$

- μ is to be interpreted on $M:=\mathcal{M} / \mathcal{G}$. (See http://www.claymath.org.)
- When $d=1$ and $\mathbb{R}^{d}=\mathbb{R}^{1}$ is replace by S^{1} the space $\mathcal{M} / \mathcal{G}_{0}$ simply becomes G itself and the path integral in (4) reduces to the one like that in Eq. (3) with $M=G$ and $V=0$. See Driver and Hall [Comm. Math. Phys. 201 (1999).]

Path Integral Quantization of \hat{H}

$$
\begin{equation*}
\left(e^{-T \hat{H}} f\right)\left(x_{0}\right)=" \frac{1}{Z_{T}} \int_{\sigma(0)=x_{0}} e^{-\int_{0}^{T} E(\sigma(t), \dot{\sigma}(t)) d t} f(\sigma(T)) \mathcal{D} \sigma " \tag{3}
\end{equation*}
$$

where $E(x, v)$ is the classical energy as above;

$$
E(x, v):=\frac{1}{2} g(v, v)+V(x)
$$

We now set $T=1$.

Goal

Make sense out of the measure ν, "defined" by

$$
d \nu(\sigma)^{\varkappa}=" \frac{1}{Z} e^{-\int_{0}^{1}\left[\frac{1}{2}|\dot{\sigma}(t)|^{2}+V(\sigma(t))\right] d t} \mathcal{D} \sigma .
$$

Some Background

If \hat{H} is "defined" by

$$
\begin{equation*}
e^{-T \hat{H}} f\left(x_{0}\right)=\frac{1}{Z_{T}} \int_{\sigma(0)=x_{0}} e^{-\int_{0}^{T} E(\sigma(t), \dot{\sigma}(t)) d t} f(\sigma(T)) \mathcal{D} \sigma \tag{5}
\end{equation*}
$$

then various rigorous and not so rigorous results indicate:

$$
\hat{H}=-\frac{1}{2} \Delta+\frac{1}{\kappa} \mathrm{~S}
$$

where

- S is the scalar curvature of M, and
- $\kappa \in\{6,8,12, \infty\}$.
- For example, see Cheng 72 with $\kappa=6$. Um 73, Atsuchi \& Maeda 85, and Darling 85. Geo. Quant. gives $\kappa=12$. Also see Kärki, Topi, Niemi, Antti J, Phys. Rev. D (3) 56 (1997) - quoted below.

Remark 4 (Scalar Curvature).

$$
\operatorname{Vol}\left(B_{\epsilon}(m)\right)=\left|B_{\epsilon}(0)\right|\left(1-\frac{\epsilon^{2}}{6(d+2)} \mathrm{S}(m)+O\left(\epsilon^{3}\right)\right)
$$

Path Spaces

Notation 5 (Path Spaces). Given a pointed Riemannian manifold (M, g, o), let

$$
W(M)=\{\sigma \in C([0,1] \rightarrow M) \mid \sigma(0)=o\} .
$$

For those $\sigma \in W(M)$ which are absolutely continuous, let

$$
E_{M}(\sigma):=\int_{0}^{1}\left|\sigma^{\prime}(s)\right|_{g}^{2} d s
$$

denote the energy of σ. The space of finite energy paths $H(M)$ is given by

$$
H(M):=\left\{\begin{array}{c}
\sigma \in W(M) \mid \sigma \text { is absolutely continuous } \\
\text { and } E_{M}(\sigma)<\infty
\end{array}\right\}
$$

Piecewise Geodesics

- $\mathcal{P}:=\left\{0=s_{0}<s_{1}<s_{2}<\ldots<s_{n}=1\right\}$
- $\Delta_{i} s:=s_{i}-s_{i-1}$
- Piecewise geodesics:

$$
H_{\mathcal{P}}(M)=\left\{\sigma \in H(M): \nabla \sigma^{\prime}(s) / d s=0 \text { off } \mathcal{P}\right\}
$$

Wiener Measure on $W(M)$

Notation 6. Let M be a Riemannian manifold with base point $o \in M$.
Theorem 7 (Wiener measure). There exists a unique probability measure $\nu_{W(M)}$ on $W(M)$ such that

$$
\begin{aligned}
\int_{W(M)} & F\left(\sigma\left(s_{1}\right), \ldots, \sigma\left(s_{n}\right)\right) d \nu_{W(M)}(\sigma) \\
& =\int_{M^{n}} F\left(x_{1}, \ldots, x_{n}\right) \prod_{i=0}^{n-1} p_{\Delta_{i} s}\left(x_{i}, x_{i+1}\right) d x_{1} \cdots d x_{n} .
\end{aligned}
$$

where, $\Delta_{i} s:=s_{i}-s_{i-1}, x_{0}=o, d x$ denotes the volume measure on M, and $p_{t}(x, y)=\operatorname{ker} e^{t \Delta / 2}(x, y)$.
Example 1. When $M=\mathbb{R}^{d}$,

$$
p_{t}(x, y)=\left(\frac{1}{2 \pi t}\right)^{\frac{d}{2}} \exp \left(-\frac{1}{2 t}|x-y|^{2}\right)
$$

We call, $\mu:=\nu_{W\left(\mathbb{R}^{d}\right)}$, classical Wiener Measure.

Tangent Spaces

$T_{\sigma} \mathrm{H}(M)=\left\{\begin{aligned} X:[0,1] \rightarrow & T M: X(s) \in T_{\sigma(s)} M, \quad X(0)=0, \\ & \& \int_{0}^{1}\left|\frac{\nabla X(s)}{d s}\right|^{2} d s<\infty\end{aligned}\right\}$.

$$
\begin{gathered}
T_{\sigma} \mathrm{H}_{\mathcal{P}}(M)=\left\{X \in T_{\sigma} \mathrm{H}(M): X \text { satisfies (Jacobi) }\right\} \\
\frac{\nabla^{2} X(s)}{d s^{2}}=R\left(\sigma^{\prime}(s), X(s)\right) \sigma^{\prime}(s) \text { for } s \notin \mathcal{P} . \quad \text { (Jacobi) }
\end{gathered}
$$

Example: $M=\mathbb{R}^{d}$

$$
H_{\mathcal{P}}\left(\mathbb{R}^{d}\right):=\left\{\omega \in H\left(\mathbb{R}^{d}\right): \omega^{\prime \prime}(s)=0 \text { if } s \notin \mathcal{P}\right\} .
$$

A tangent vector, $X \in T_{\sigma} H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)$.

Approximating Measures

Definition 8 (Approximates to Wiener Measure to $\mu_{W(M)}$). For each partition $\mathcal{P}=\left\{0=s_{0}<s_{1}<s_{2}<\cdots<s_{n}=1\right\}$ of $[0,1]$, let $\nu_{\mathcal{P}}^{0}$ and $\nu_{\mathcal{P}}^{1}$ denote measures on $H_{\mathcal{P}}(M)$ defined by

$$
\begin{gathered}
d \nu_{\mathcal{P}}^{0}:=\frac{1}{Z_{\mathcal{P}}^{0}} e^{-\frac{1}{2} E_{M}} \cdot d \operatorname{Vol}_{G_{\mathcal{P}}^{0}}, \\
d \nu_{\mathcal{P}}^{1}=\frac{1}{Z_{\mathcal{P}}^{1}} e^{-\frac{1}{2} E_{M}} \cdot d \operatorname{Vol}_{G_{\mathcal{P}}^{1}}, \text { and } \\
d \nu_{\mathcal{P}}:=\left.\frac{1}{Z_{\mathcal{P}}^{1}} e^{-\frac{1}{2} E_{M}} \cdot d \operatorname{Vol}_{G^{1}}\right|_{T H_{\mathcal{P}}(M)}
\end{gathered}
$$

where $E_{M}: H(M) \rightarrow[0, \infty)$ is the energy functional

$$
E_{M}(\sigma):=\int_{0}^{1}\left|\sigma^{\prime}(s)\right|_{g}^{2} d s
$$

Flat Case $\left(M=\mathbb{R}^{d}\right)$ Example

- H^{1} and H^{0} - Metrics on $H\left(\mathbb{R}^{d}\right)$

$$
G^{1}(h, k):=\int_{0}^{1}\left\langle h^{\prime}(s), k^{\prime}(s)\right\rangle d s \text { and } G^{0}(h, k):=\int_{0}^{1}\langle h(s), k(s)\rangle d s
$$

- H^{1}-Metric on $H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)$

$$
G_{\mathcal{P}}^{1}(h, k):=\sum_{i=1}^{n}\left\langle h^{\prime}\left(s_{i-1}+\right), k^{\prime}\left(s_{i-1}+\right)\right\rangle \Delta_{i} s
$$

- $H^{0}-$ Metric on $H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)$

$$
G_{\mathcal{P}}^{0}(h, k):=\sum_{i=1}^{n}\left\langle k\left(s_{i}\right), h\left(s_{i}\right)\right\rangle \Delta_{i} s
$$

Proof

Let $* \in\{0,1\}$. For $\omega \in H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)$, let $x_{i}:=\omega\left(s_{i}\right)$. Then one shows;

$$
\int_{H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)} f(\omega) d \mu_{\mathcal{P}}^{*}(\omega)=\int_{W\left(\mathbb{R}^{d}\right)} f\left(\omega_{\mathcal{P}}\right) d \mu(\omega)
$$

$$
\mathcal{P}=\left\{0=s_{0}<s_{1}<\ldots\right\}
$$

Limiting Measures for $M=\mathbb{R}^{d}$

Theorem 9 (Wiener 1923). Let

$$
\begin{aligned}
& \mu_{\mathcal{P}}^{1}=\frac{1}{Z_{\mathcal{P}}^{1}} e^{-\frac{1}{2} E_{\mathbb{R}^{d}} \operatorname{Vol}_{G_{\mathcal{P}}^{1}}, \quad \text { and }} \\
& \mu_{\mathcal{P}}^{0}=\frac{1}{Z_{\mathcal{P}}^{0}} e^{-\frac{1}{2} E_{\mathbb{R}^{d}} \operatorname{Vol}_{G_{\mathcal{P}}^{0}},}
\end{aligned}
$$

where $Z_{\mathcal{P}}^{1}$ and $Z_{\mathcal{P}}^{0}$ are normalization constants;

$$
Z_{\mathcal{P}}^{1}:=(2 \pi)^{d n / 2}, \quad Z_{\mathcal{P}}^{0}:=\prod_{i=1}^{n}\left(\sqrt{2 \pi} \Delta_{i} s\right)^{d} .
$$

Then

$$
\mu=\lim _{|\mathcal{P}| \rightarrow 0} \mu_{\mathcal{P}}^{1}=\lim _{|\mathcal{P}| \rightarrow 0} \mu_{\mathcal{P}}^{0}
$$

where μ is standard Wiener measure on $W\left(\mathbb{R}^{d}\right)$.

- Now suppose f is a bounded and continuous on $W\left(\mathbb{R}^{d}\right)$.
- Apply the dominated convergence theorem and uniform continuity to show

$$
\begin{aligned}
\lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)} f(\omega) d \mu_{\mathcal{P}}^{*}(\omega) & =\lim _{|\mathcal{P}| \rightarrow 0} \int_{W\left(\mathbb{R}^{d}\right)} f\left(\omega_{\mathcal{P}}\right) d \mu(\omega) \\
& =\int_{W\left(\mathbb{R}^{d}\right)} f(\omega) d \mu(\omega)
\end{aligned}
$$

Limits in the Manifold Case

Theorem 10 (Andersson and D. 1999.). Suppose that $f: W(M) \rightarrow \mathbb{R}$ is a bounded and continuous, then

$$
\begin{equation*}
\lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}^{1}(\sigma)=\int_{\mathrm{W}(M)} f(\sigma) d \nu_{\mathrm{W}(M)}(\sigma) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}^{0}(\sigma)=\int_{\mathrm{W}(M)} f(\sigma) e^{-\frac{1}{6} \int_{0}^{1} S(\sigma(s)) d s} d \nu_{\mathrm{W}(M)}(\sigma) \tag{8}
\end{equation*}
$$

where S is the scalar curvature of (M, g).
There is a large literature pertaining to results of the type in Theorem 10, see for example Cheng72, Um74, Pinsky78, Fujiwara 80, Darling84, A. Inoue and Y. Maeda 85, W. Ichinose 97 and Jyh-Yang Wu 98. The version given here is contained in Andersson and Driver 98.
Notation 11. Let R_{p} be the curvature tensor at $p \in M$ and $\left\{e_{i}\right\}_{i=1,2, \ldots, d}$ is any orthonormal basis in $T_{p}(M)$.

On the proofs.

Notation 13. To each $\sigma \in H(M)$ and $s \in[0,1]$ let

- Parallel translation: //s $(\sigma): T_{o} M \rightarrow T_{\sigma(s)} M$

$$
\begin{equation*}
\frac{\nabla}{d s} / /_{s}(\sigma)=0 \text { with } / /_{0}(\sigma)=I d_{T_{o} M} \tag{9}
\end{equation*}
$$

- Cartan's rolling map: $\psi: H\left(T_{o} M\right) \longrightarrow H(M)$ given by $\sigma=\psi(\omega)$ where $\sigma^{\prime}(s)=/ / s(\sigma) \omega^{\prime}(s)$ with $\sigma(0)=o$.

Adrian Lim's Theorem

Theorem 12 (Adrian Lim 2006). Let $\left(M^{d}, g\right)$ be a d - dimensional compact Riemannian manifold such that

$$
0 \leq \text { Sectional-Curvatures } \leq \varepsilon(d)=\frac{3}{17 d}
$$

and $\mathcal{P}_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$.
If $f: W(M) \rightarrow \mathbb{R}$ is a bounded and continuous function, then

$$
\begin{aligned}
& \lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}(\sigma) \\
& \quad=\int_{W(M)} f(\sigma) e^{-\frac{1}{6} \int_{0}^{1} \mathrm{~S}(\sigma(s)) d s} \sqrt{\operatorname{det}\left(I+\frac{1}{12} K_{\sigma}\right)} d \nu(\sigma)
\end{aligned}
$$

where, for $\sigma \in H(M), K_{\sigma}$ is the integral operator acting on $L^{2}\left([0,1] ; \mathbb{R}^{d}\right)$ defined by

$$
\left(K_{\sigma} f\right)(s)=\int_{0}^{1}(s \wedge t) \Gamma_{\sigma(t)} f(t) d t
$$

with

$$
\Gamma_{p}=\sum_{i, j=1}^{d}\binom{R_{p}\left(e_{i}, R_{p}\left(e_{i}, \cdot\right) e_{j}\right) e_{j}+R_{p}\left(e_{i}, R_{p}\left(e_{j}, \cdot\right) e_{i}\right) e_{j}}{+R_{p}\left(e_{i}, R_{p}\left(e_{j}, \cdot\right) e_{j}\right) e_{i}} .
$$

Bruce Driver
26
University of California, Berkeley, August 29, 2007

Proof of the $G_{\mathcal{P}}^{1}$ - Theorem

On $H_{\mathcal{P}}(M)$, let

$$
\nu_{\mathcal{P}}^{1}=\frac{1}{Z_{\mathcal{P}}^{1}} \exp \left(\frac{1}{2} E_{M}\right) \operatorname{Vol}_{G_{\mathcal{P}}^{1}} .
$$

Then $\lim _{|\mathcal{P}| \rightarrow 0} \nu_{\mathcal{P}}^{1}=\nu_{W(M)}$.
Proof Sketch: Although the rolling map $\psi: H\left(\mathbb{R}^{d}\right) \rightarrow H(M)$ is not an isomorphism, we do have (with $\psi_{\mathcal{P}}:=\left.\psi\right|_{\mathcal{H}_{\mathcal{P}}}\left(\mathbb{R}^{d}\right)$):

1. $\operatorname{det}\left(D \psi_{\mathcal{P}}\right)=\operatorname{det}\left(I+T_{\mathcal{P}}\right)^{2}=1$ because one shows that $T_{\mathcal{P}}$ is nilpotent.
2. Equivalently: $\psi_{\mathcal{P}}^{*} \operatorname{Vol}_{G_{\mathcal{P}}^{1}}^{M}=\operatorname{Vol}_{G_{\mathcal{P}}^{1}}^{\mathbb{R}^{d}}$
3. $E_{\mathbb{R}^{d}}(\omega)=E_{M}(\psi(\omega))$ for $\omega \in H\left(\mathbb{R}^{d}\right)$.
4. 2 \& 3 imply that

$$
\psi_{*} \mu_{\mathcal{P}}^{1}=\nu_{\mathcal{P}}^{1}
$$

5. Eelles \& Elworthy (Gangolli) show

$$
\tilde{\psi}_{*} \mu=\nu
$$

where $\tilde{\psi}: W\left(\mathbb{R}^{d}\right) \rightarrow W(M)$ is the stochastic version of ψ.
6. 4 \& 5 along with Wong and Zakai approximation theorem shows $\lim _{|\mathcal{P}| \rightarrow 0} \nu_{\mathcal{P}}^{1}=\nu$.

Proof of the $G_{\mathcal{P}}^{0}$ - Theorem

On $H_{\mathcal{P}}(M)$, let

$$
\nu_{\mathcal{P}}^{0}=\frac{1}{Z_{\mathcal{P}}^{0}} e^{-\frac{1}{2} E_{\mathrm{M}} \operatorname{Vol}_{G_{\mathcal{P}}^{0}} .}
$$

Then

$$
\lim _{|\mathcal{P}| \rightarrow 0} d \nu_{\mathcal{P}}^{0}(\sigma)=\exp \left(-\frac{1}{6} \int_{0}^{1} \mathrm{~S}(\sigma(s)) d s\right) d \nu(\sigma)
$$

where S is the scalar curvature of M.
Proof: One shows that

$$
d \nu_{\mathcal{P}}^{0}=\rho_{\mathcal{P}} d \nu_{\mathcal{P}}^{1}
$$

and that

$$
\lim _{|\mathcal{P}| \rightarrow 0} \rho_{\mathcal{P}}(\sigma)=\exp \left(-\frac{1}{6} \int_{0}^{1} \mathrm{~S}(\sigma(s)) d s\right)
$$

See De Witt (57), Cheng (72), Um (73), Pinski(78), Darling (84), Atsushi(85), ...

Proof of Adrian Lim's Theorem

$$
\begin{aligned}
& \text { Let } \mathcal{P}=\mathcal{P}_{n}=\left\{s_{l}=\frac{l}{n}: l=0, \ldots, n\right\}, \\
& \qquad b_{i}^{\prime}:=\frac{b\left(s_{i}\right)-b\left(s_{i-1}\right)}{1 / n}=n \cdot \Delta_{i} b .
\end{aligned}
$$

Define $\rho_{\mathcal{P}}(\sigma)$ so that

$$
d \nu_{\mathcal{P}_{n}}(\sigma)=\rho_{n}(\sigma) d \nu_{\mathcal{P}_{n}}^{1}(\sigma)
$$

Two Steps

1. Show $\left\{\rho_{n}\right\}_{n=1}^{\infty}$ is a uniformly integrable sequence, by showing there exists $p>1$ such that

$$
\sup _{n} \int_{H_{\mathcal{P}_{n}}(M)} \rho_{n}^{p}(\sigma) d \nu_{\mathcal{P}_{n}}^{1}(\sigma)<\infty .
$$

2. Show $\lim _{n \rightarrow \infty} \rho_{n}$ exists a.s. and identify the limit.

Proof of Adrian Lim's Theorem

Theorem 14 (Adrian Lim 2006).

$$
\begin{aligned}
& \lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}(\sigma) \\
& \quad=\int_{W(M)} f(\sigma) e^{-\frac{1}{6} \int_{0}^{1} S(\sigma(s)) d s} \sqrt{\operatorname{det}\left(I+\frac{1}{12} K_{\sigma}\right)} d \nu(\sigma) .
\end{aligned}
$$

where, for $\sigma \in H(M), K_{\sigma}$ is the integral operator acting on $L^{2}\left([0,1] ; \mathbb{R}^{d}\right)$ defined by

$$
\left(K_{\sigma} f\right)(s)=\int_{0}^{1}(s \wedge t) \Gamma_{\sigma(t)} f(t) d t
$$

with

$$
\Gamma_{p}=\sum_{i, j=1}^{d}\binom{R_{p}\left(e_{i}, R_{p}\left(e_{i}, \cdot\right) e_{j}\right) e_{j}+R_{p}\left(e_{i}, R_{p}\left(e_{j}, \cdot\right) e_{i}\right) e_{j}}{+R_{p}\left(e_{i}, R_{p}\left(e_{j}, \cdot\right) e_{j}\right) e_{i}} .
$$

Proposition 15 (Formula for ρ_{n}). Let $h_{i, a}(s)$ solve

$$
\begin{align*}
\frac{d^{2} h(s)}{d s^{2}} & =\Omega_{u(s)}\left(b_{i}^{\prime}, h(s)\right) b_{i}^{\prime} \text { with } \tag{10}\\
h_{i, a}(0) & =0, \text { and } \\
h_{i, a}^{\prime}\left(s_{j-1}+\right) & =\delta_{i j} e_{a} \text { for } j=1, \ldots, n . \tag{11}
\end{align*}
$$

Let \mathcal{Q}^{n} denote the $d n \times d n$ matrix which is given in $d \times d$ blocks, $\mathcal{Q}^{n}:=\left\{\left(\mathcal{Q}_{m k}^{n}\right)\right\}_{m, k=1}^{n}$, with

$$
\left(\mathcal{Q}_{m k}^{n} e_{a}, e_{c}\right):=\int_{0}^{1}\left\langle h_{m a}^{\prime}(s), h_{k c}^{\prime}(s)\right\rangle d s \text { for } a, c=1,2, \ldots, d
$$

Then

$$
\rho_{\mathcal{P}}^{2}=\operatorname{det}\left(n \mathcal{Q}^{n}\right)
$$

Proposition 16. Suppose that M is a symmetric positive definite $N \times N$ matrix and $\alpha \geq 1$. Then

$$
\begin{equation*}
\operatorname{det}(M) \leq \alpha^{N} e^{\operatorname{tr}\left(\alpha^{-1} M-I\right)} \leq \alpha^{N} e^{\alpha^{-1} \operatorname{tr}(M-I)} \tag{12}
\end{equation*}
$$

- Now do 60+ pages of analysis!

Corollary 17. For $\alpha \geq 1$,

$$
\begin{aligned}
\operatorname{det}\left(n \mathcal{Q}^{n}\right) & \leq \alpha^{n d} \exp \left(\alpha^{-1} \operatorname{tr}\left(n \mathcal{Q}^{n}-I_{n d \times n d}\right)\right) \\
& =\alpha^{n d} \exp \left(\alpha^{-1} \sum_{m=1}^{n} \operatorname{tr}\left(n \mathcal{Q}_{m, m}^{n}-I_{d \times d}\right)\right) \\
& \leq \alpha^{n d} \exp \left(\alpha^{-1} d \sum_{m=1}^{n}\left\|n \mathcal{Q}_{m, m}^{n}-I_{d \times d}\right\|\right) . \\
\mathcal{Q}_{m m}^{n}= & \int_{0}^{1 / n} S_{m}^{\prime}(b, s)^{T} S_{m}^{\prime}(b, s) d s \\
& +\sum_{j=m+1}^{n} V_{m j}^{T}\left[\int_{0}^{1 / n} C_{j}^{\prime}(b, s)^{T} C_{j}^{\prime}(b, s) d s\right] V_{m j} .
\end{aligned}
$$

where

$$
V_{m j}:=\left[\prod_{k=m+1}^{j-1} C_{k}\left(b, \Delta_{k} s\right)\right] S_{m}\left(b, \Delta_{m} s\right)
$$

and C_{j} and S_{j} are certain fundamental solutions to Jacobi's equation,

$$
\frac{d^{2} h(s)}{d s^{2}}=\Omega_{u(s)}\left(b_{i}^{\prime}, h(s)\right) b_{i}^{\prime}
$$

Corollary 2: Integration by Parts for ${ }_{\nu}$ on $W(M)$

See Bismut, Driver, Enchev, Elworthy, Hsu, Li, Lyons, Norris, Stroock, Taniguchi,
Let $k \in P C^{1}$, and z solve:

$$
z^{\prime}(s)+\frac{1}{2} \operatorname{Ric}_{/_{s}(\sigma)} z(s)=k^{\prime}(s), \quad z(0)=0
$$

and f be a cylinder function on $\mathrm{W}(M)$. Then

$$
\int_{\mathrm{W}(M)} X^{z} f d \nu=\int_{\mathrm{W}(M)} f \int_{0}^{1}\left\langle k^{\prime}, d \tilde{b}\right\rangle d \nu
$$

where

$$
\begin{aligned}
\left(X^{z} f\right)(\sigma) & \left.=\sum_{i=1}^{n}\left\langle\nabla_{i} f\right)(\sigma), X_{s_{i}}^{z}(\sigma)\right\rangle \\
& \left.=\sum_{i=1}^{n}\left\langle\nabla_{i} f\right)(\sigma), / \tilde{/}_{s_{i}}(\sigma) z\left(s_{i}, \sigma\right)\right\rangle
\end{aligned}
$$

and $\left(\nabla_{i} f\right)(\sigma)$ denotes the gradient F in the $\mathrm{i}^{\text {th }}$ variable evaluated at $\left(\sigma\left(s_{1}\right), \sigma\left(s_{2}\right), \ldots, \sigma\left(s_{n}\right)\right)$.

Quasi-Invariance Theorem for $\nu_{W}(M)$

Theorem 19 (D. 92, Hsu 95). Let $h \in H\left(T_{o} M\right)$ and X^{h} be the $\nu_{W(M)}$ - a.e. well defined vector field on $W(M)$ given by

$$
\begin{equation*}
X_{s}^{h}(\sigma)=/ /{ }_{s}(\sigma) h(s) \text { for } s \in[0,1] . \tag{13}
\end{equation*}
$$

Then X^{h} admits a flow $e^{t X^{h}}$ on $W(M)$ and this flow leaves $\nu_{W(M)}$ quasi-invariant. (Ref: D. 92, Hsu 95, Enchev-Strook 95, Lyons 96, Norris 95, ...)

