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Canonical Quantization

CONCEPT CLASSICAL QUANTUM

CONFIG. R
d ?

SPACE
STATE T ∗

R
d ∼= R

d × R
d � (p, q) K = PL2(Rd, dm)

SPACE ψ ∈ L2(Rd, dm) � ‖ψ‖K = 1.

OBSERVABLES Functions on T ∗
R
d S.A. ops. on K

pk p̂k = �

i
∂
∂qk

Examples qk q̂k = Mqk

H(q, p) = 1
2mp

2 + V (q) Ĥ = − �
2

2mΔ + V (q)

DYNAMICS Newtons Equations of Motion Schrödinger, Eq.
..
q(t) = −∇V (q(t)) i�ψ̇(t) = Ĥψ(t), ψ(t) ∈ K

MEASURMENTS Evaluation 〈ψ, θψ〉 – expected
f (q, p) value.
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The Path Integral Prescription on R
d

Notation 1. For x ∈ R
d and T > 0, let

W
(
R
d;x, T

)
:=

{
ω ∈ C

(
[0, T ] → R

d
)

: ω (0) = x
}

and let

H(Rd;T ) :=

{
ω ∈ W

(
R
d;T

)
:

∫ T

0

|ω′ (s)|2 ds <∞
}
.
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Theorem 2 (Meta-Theorem – Feynman (Kac) Quantization). Let V : R
d → R be a nice

function. Then

e−TĤf (x) = “
1

ZT

∫
H(Rd;x,T)

e−
∫ T
0 E(ω(t),ω̇(t))dtf (ω(T ))Dω” (1)

where E (x, v) = 1
2m |v|2 + V (x) is the classical energy and

“ZT :=

∫
H(Rd;x,T)

e−
1
2
∫ T
0 |ω̇(t)|2dtDω”.
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Kac’ s Formula (1949) (A Rigorous
Interpretation)

Theorem 3 (Kac’s Formula).

e−TĤf (x) =

∫
W(Rd;T)

e−
∫ T
0 V (x+ω(t))dtf (x + ω(T ))dμ (ω)

where μ is Wiener measure (1923).

Informally,

dμ(ω)“ = ”
1

Z
e−

1
2
∫ 1
0 |ω′(s)|2ds Dω.

Formally, μ is the unique measure on W
(
R
d;T

)
such that∫

W(Rd;T)
eiϕ(ω)dμ (ω) = exp

(
−1

2
(ϕ, ϕ)

H(Rd;T)
∗

)

for all ϕ ∈ W
(
R
d;T

)∗
.
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Classical Mechanics on a Manifold

• Let (M, g) be a Riemannian manifold.

• Newton’s Equations of motion

m
∇σ̇ (t)

dt
= −∇V (q(t)). (2)
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Classical Energy and Hamiltonian

• L(x, v) := 1
2m |v|2g − V (x) is the Lagrangian.

• E (x, v) := 1
2m |v|2g + V (x) is the energy.

• p = ∂L(x,v)
∂v = mg (v, ·) is the conjugate momentum to v.

• H(x, p) = 1
2m |p|2g∗ + V (x) is the Hamiltonian.

• H(x, p) = E (x, v) = p (v) − L (x, v) where p = ∂L(x,v)
∂v = mg (v, ·) .

.
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“Canonical” Quantization

We now set m = 1,
√
g =

√
det (gij), and dVol :=

√
gdx1 . . . dxd.

• In local coordinates,

H =
1

2
gij (q) pipj + Ṽ (q)

=
1

2

1√
g
pi
√
ggij(q)pj + Ṽ (q) .

• Quantize:

pi → p̂i :=
1

i

∂

∂qi
and qi → q̂i := Mqi.

• Then H → Ĥ acting on L2 (M,dVol) by

Ĥ = −1

2
gij(q)

∂2

∂qi∂qj
+ v(q).

or

Ĥ = −1

2

1√
g

∂

∂qi

(√
ggij(q)

∂

∂qj

)
+ v(q) = −1

2
ΔM +MV .
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Path Integral Quantization of Ĥ

(
e−TĤf

)
(x0) = “

1

ZT

∫
σ(0)=x0

e−
∫ T
0 E(σ(t),σ̇(t))dtf (σ(T ))Dσ” (3)

where E (x, v) is the classical energy as above;

E(x, v) :=
1

2
g(v, v) + V (x)

We now set T = 1.

Goal
Make sense out of the measureν, “defined” by

dν(σ)“ = ”
1

Z
e−

∫ 1
0 [1

2|σ̇(t)|2+V (σ(t))]dtDσ.
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A Motivation: Yang – Mills Equations

• The Yang – Mills equations are the Euler Lagrange equations for

I(A) =

∫
R×R

d
〈FA〉2Ldtdx.

• g = Lie(G) and G is a compact Lie group.

• A : R
d+1 → R

d+1 ⊗ g is a connection one form.

• FA = dA + A ∧ A is the curvature tensor.

• 〈·〉2L is a non-degenerate quadratic form determined by the Lorentzian metric on R
d+1

and an inner product on g.

• Path integral quantization measure is

dμ(A)“ = ”
1

Z
exp

(
−1

2

∫
R×R

d

∣∣FA
∣∣2 dtdx)DA. (4)

• μ is to be interpreted on M := M/G. (See http://www.claymath.org.)

• When d = 1 and R
d = R

1 is replace by S1 the space M/G0 simply becomes G itself
and the path integral in (4) reduces to the one like that in Eq. (3) with M = G and
V = 0. See Driver and Hall [ Comm. Math. Phys. 201 (1999).]

Bruce Driver 11 University of California, Berkeley, August 29, 2007

Some Background

If Ĥ is “defined” by

e−TĤf (x0) =
1

ZT

∫
σ(0)=x0

e−
∫ T
0 E(σ(t),σ̇(t))dtf (σ(T ))Dσ (5)

then various rigorous and not so rigorous results indicate:

Ĥ = −1

2
Δ +

1

κ
S

where

• S is the scalar curvature of M, and

• κ ∈ {6, 8, 12,∞} .
• For example, see Cheng 72 with κ = 6. Um 73, Atsuchi & Maeda 85, and Darling 85.

Geo. Quant. gives κ = 12. Also see Kärki, Topi, Niemi, Antti J, Phys. Rev. D (3) 56
(1997) – quoted below.

Remark 4 (Scalar Curvature).

Vol(Bε(m)) = |Bε(0)|
(

1 − ε2

6(d + 2)
S(m) +O(ε3)

)
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Path Spaces

Notation 5 (Path Spaces). Given a pointed Riemannian manifold (M, g, o), let

W (M) = {σ ∈ C ([0, 1] →M) |σ (0) = o} .
For those σ ∈ W (M) which are absolutely continuous, let

EM(σ) :=

∫ 1

0

|σ′(s)|2g ds

denote the energy of σ. The space of finite energy paths H(M) is given by

H(M) :=

{
σ ∈ W (M)|σ is absolutely continuous

and EM(σ) <∞
}
.
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Wiener Measure on W (M)

Notation 6. Let M be a Riemannian manifold with base point o ∈M.

Theorem 7 (Wiener measure). There exists a unique probability measure νW (M) on
W (M) such that∫

W (M)

F (σ(s1), . . . , σ(sn))dνW (M)(σ)

=

∫
Mn

F (x1, . . . , xn)

n−1∏
i=0

pΔis(xi, xi+1)dx1 · · · dxn.

where, Δis := si − si−1, x0 = o, dx denotes the volume measure on M, and
pt (x, y) = ker etΔ/2 (x, y) .

Example 1. When M = R
d,

pt (x, y) =

(
1

2πt

)d
2

exp

(
− 1

2t
|x− y|2

)
.

We call, μ := νW(Rd), classical Wiener Measure.
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Piecewise Geodesics

• P := {0 = s0 < s1 < s2 < ... < sn = 1}

• Δis := si − si−1

• Piecewise geodesics:

HP(M) = {σ ∈ H(M) : ∇σ′(s)/ds = 0 off P}
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Tangent Spaces

TσH(M) =

{
X : [0, 1] → TM : X (s) ∈ Tσ(s)M, X (0) = 0,

&
∫ 1

0

∣∣∣∇X(s)
ds

∣∣∣2 ds <∞

}
.

TσHP(M) = {X ∈ TσH(M) : X satisfies (Jacobi)}

∇2X (s)

ds2
= R (σ′ (s) , X (s))σ′ (s) for s /∈ P . (Jacobi)
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Example: M = R
d

HP(Rd) :=
{
ω ∈ H(Rd) : ω′′(s) = 0 if s /∈ P}

.

A tangent vector, X ∈ TσHP
(
R
d
)
.
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Metrics

Let σ ∈ HP(M), and X,Y ∈ TσHP(M). Metrics:

• H1–Metric on H(M)

G1(X,X) :=

∫ 1

0

〈∇X(s)

ds
,
∇X(s)

ds

〉
ds,

• H1–Metric on HP(M) (Riemannian Sum Approximation)

G1
P(X,Y ) :=

n∑
i=1

〈∇X(si−1+)

ds
,
∇Y (si−1+)

ds
〉Δis,

• H0–Metric on HP(M) (Riemannian Sum Approximation)

G0
P(X,Y ) :=

n∑
i=1

〈X(si), Y (si)〉Δis,

• H1–Metric restricted to HP(M) – G1|THP(M) (the hardest case).
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Approximating Measures

Definition 8 (Approximates to Wiener Measure to μW (M)). For each partition
P = {0 = s0 < s1 < s2 < · · · < sn = 1} of [0, 1], let ν0

P and ν1
P denote measures on

HP(M) defined by

dν0
P :=

1

Z0
P
e−

1
2EM · dVolG0

P
,

dν1
P =

1

Z1
P
e−

1
2EM · dVolG1

P
, and

dνP :=
1

Z1
P
e−

1
2EM · dVolG1|THP(M)

where EM : H(M) → [0,∞) is the energy functional

EM(σ) :=

∫ 1

0

|σ′(s)|2g ds
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and Z0
P and Z1

P are normalization constants given by

Z0
P :=

n∏
i=1

(
√

2π (si − si−1))
d and Z1

P := (2π)dn/2. (6)
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Flat Case (M = R
d) Example

• H1 and H0 – Metrics on H(Rd)

G1(h, k) :=

∫ 1

0

〈h′(s), k′(s)〉ds and G0(h, k) :=

∫ 1

0

〈h(s), k(s)〉ds

• H1–Metric on HP(Rd)

G1
P(h, k) :=

n∑
i=1

〈h′(si−1+), k′(si−1+)〉Δis

• H0–Metric on HP(Rd)

G0
P(h, k) :=

n∑
i=1

〈k(si), h(si)〉Δis
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Limiting Measures for M = R
d

Theorem 9 (Wiener 1923). Let

μ1
P =

1

Z1
P
e−

1
2ERdVolG1

P
, and

μ0
P =

1

Z0
P
e−

1
2ERdVolG0

P
,

where Z1
P and Z0

P are normalization constants;

Z1
P := (2π)dn/2, Z0

P :=

n∏
i=1

(
√

2πΔis)
d.

Then
μ = lim

|P|→0
μ1
P = lim

|P|→0
μ0
P,

where μ is standard Wiener measure on W (Rd).
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Proof

Let ∗ ∈ {0, 1} . For ω ∈ HP
(
R
d
)
, let xi := ω (si) . Then one shows;∫

HP(Rd)

f (ω) dμ∗P(ω) =

∫
W (Rd)

f (ωP) dμ(ω)

ωP in red where
P = {0 = s0 < s1 < . . . } .
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• Now suppose f is a bounded and continuous on W (Rd).

• Apply the dominated convergence theorem and uniform continuity to show

lim
|P|→0

∫
HP(Rd)

f (ω) dμ∗P(ω) = lim
|P|→0

∫
W (Rd)

f (ωP) dμ(ω)

=

∫
W (Rd)

f (ω) dμ(ω).
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Limits in the Manifold Case

Theorem 10 (Andersson and D. 1999.). Suppose that f : W (M) → R is a bounded and
continuous, then

lim
|P|→0

∫
HP(M)

f (σ)dν1
P(σ) =

∫
W(M)

f (σ)dνW(M)(σ) (7)

and

lim
|P|→0

∫
HP(M)

f (σ)dν0
P(σ) =

∫
W(M)

f (σ)e−
1
6
∫ 1
0 S(σ(s))dsdνW(M)(σ), (8)

where S is the scalar curvature of (M, g).

There is a large literature pertaining to results of the type in Theorem 10, see for example
Cheng72, Um74, Pinsky78, Fujiwara 80, Darling84, A. Inoue and Y. Maeda 85, W.
Ichinose 97 and Jyh-Yang Wu 98. The version given here is contained in Andersson and
Driver 98.

Notation 11. Let Rp be the curvature tensor at p ∈M and {ei}i=1,2,...,d is any
orthonormal basis in Tp(M).
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Adrian Lim’s Theorem

Theorem 12 (Adrian Lim 2006). Let (Md, g) be a d – dimensional compact Riemannian
manifold such that

0 ≤ Sectional-Curvatures ≤ ε (d) =
3

17d
,

and Pn = {0, 1
n,

2
n, . . . ,

n−1
n , 1}.

If f : W (M) → R is a bounded and continuous function, then

lim
|P|→0

∫
HP(M)

f (σ) dνP(σ)

=

∫
W (M)

f (σ)e−
1
6
∫ 1
0 S(σ(s)) ds

√
det

(
I +

1

12
Kσ

)
dν(σ).

where, for σ ∈ H (M) , Kσ is the integral operator acting on L2([0, 1]; Rd) defined by

(Kσf )(s) =

∫ 1

0

(s ∧ t) Γσ(t)f (t) dt

with

Γp =

d∑
i,j=1

(
Rp (ei, Rp(ei, ·)ej) ej +Rp (ei, Rp(ej, ·)ei) ej

+Rp (ei, Rp(ej, ·)ej) ei
)
.
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On the proofs.
Notation 13. To each σ ∈ H(M) and s ∈ [0, 1] let

• Parallel translation: //s(σ) : ToM → Tσ(s)M

∇
ds
//s(σ) = 0 with //0(σ) = IdToM.

• Cartan’s rolling map: ψ : H(ToM) −→ H(M) given by σ = ψ(ω) where

σ′(s) = //s(σ)ω′(s) with σ(0) = o. (9)
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Proof of the G1P – Theorem

On HP(M), let

ν1
P =

1

Z1
P

exp(
1

2
EM)VolG1

P
.

Then lim|P|→0 ν
1
P = νW (M).

Proof Sketch: Although the rolling map ψ : H(Rd) → H(M) is not an isomorphism, we
do have (with ψP := ψ|HP

(
R
d
)
):

1. det(DψP) = det(I + TP)2 = 1 because one shows that TP is nilpotent.

2. Equivalently: ψ∗
PVolMG1

P
= VolR

d

G1
P

3. ERd(ω) = EM(ψ(ω)) for ω ∈ H(Rd).

4. 2 & 3 imply that
ψ∗μ1

P = ν1
P.

5. Eelles & Elworthy (Gangolli) show

ψ̃∗μ = ν,

where ψ̃ : W (Rd) → W (M) is the stochastic version of ψ.

6. 4 & 5 along with Wong and Zakai approximation theorem shows lim|P|→0 ν
1
P = ν.
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Proof of the G0P – Theorem

On HP(M), let

ν0
P =

1

Z0
P
e−

1
2EMVolG0

P
.

Then

lim
|P|→0

dν0
P(σ) = exp

(
−1

6

∫ 1

0

S(σ(s))ds

)
dν(σ)

where S is the scalar curvature of M.

Proof: One shows that
dν0

P = ρPdν1
P

and that

lim
|P|→0

ρP(σ) = exp

(
−1

6

∫ 1

0

S(σ(s))ds

)

See De Witt (57), Cheng (72), Um (73), Pinski(78), Darling (84), Atsushi(85), ...
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Proof of Adrian Lim’s Theorem

Theorem 14 (Adrian Lim 2006).

lim
|P|→0

∫
HP(M)

f (σ) dνP(σ)

=

∫
W (M)

f (σ)e−
1
6
∫ 1
0 S(σ(s)) ds

√
det

(
I +

1

12
Kσ

)
dν(σ).

where, for σ ∈ H (M) , Kσ is the integral operator acting on L2([0, 1]; Rd) defined by

(Kσf )(s) =

∫ 1

0

(s ∧ t) Γσ(t)f (t) dt

with

Γp =

d∑
i,j=1

(
Rp (ei, Rp(ei, ·)ej) ej +Rp (ei, Rp(ej, ·)ei) ej

+Rp (ei, Rp(ej, ·)ej) ei
)
.

Bruce Driver 30 University of California, Berkeley, August 29, 2007

Proof of Adrian Lim’s Theorem

Let P = Pn =
{
sl = l

n : l = 0, . . . , n
}
,

b′i :=
b (si) − b (si−1)

1/n
= n · Δib.

Define ρP (σ) so that
dνPn (σ) = ρn (σ) dν1

Pn
(σ) .

Two Steps

1. Show {ρn}∞n=1 is a uniformly integrable sequence, by showing there exists p > 1
such that

sup
n

∫
HPn(M)

ρpn (σ) dν1
Pn

(σ) <∞.

2. Show limn→∞ ρn exists a.s. and identify the limit.
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Proposition 15 (Formula for ρn). Let hi,a(s) solve

d2h(s)

ds2
= Ωu(s)(b

′
i, h (s))b′i with (10)

hi,a(0) = 0, and
h′i,a(sj−1+) = δijea for j = 1, . . . , n. (11)

Let Qn denote the dn× dn matrix which is given in d× d blocks, Qn := {(Qn
mk)}nm,k=1 ,

with

(Qn
mkea, ec) :=

∫ 1

0

〈h′ma (s) , h′kc (s)〉 ds for a, c = 1, 2, . . . , d.

Then
ρ2
P = det (nQn) .

Proposition 16. Suppose that M is a symmetric positive definite N ×N matrix and
α ≥ 1. Then

det (M) ≤ αNetr(α−1M−I) ≤ αNeα
−1 tr(M−I). (12)

• Now do 60+ pages of analysis!
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Corollary 17. For α ≥ 1,

det(nQn) ≤ αnd exp
(
α−1 tr (nQn − Ind×nd)

)
= αnd exp

(
α−1

n∑
m=1

tr
(
nQn

m,m − Id×d
))

≤ αnd exp

(
α−1d

n∑
m=1

∥∥nQn
m,m − Id×d

∥∥)
.

Qn
mm =

∫ 1/n

0

S ′
m (b, s)T S ′

m (b, s) ds

+

n∑
j=m+1

V T
mj

[∫ 1/n

0

C ′
j(b, s)

TC ′
j(b, s)ds

]
Vmj.

where

Vmj :=

[
j−1∏

k=m+1

Ck(b,Δks)

]
Sm(b,Δms)

and Cj and Sj are certain fundamental solutions to Jacobi’s equation,

d2h(s)

ds2
= Ωu(s)(b

′
i, h (s))b′i.
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Applications

Corollary 18 (Trotter Product Formula for etΔ/2). For s > 0 let Qs be the symmetric
integral operator on L2(M,dx) defined by the kernel

Qs(x, y) = (2πs)−d/2 exp

(
− 1

2s
d2(x, y) +

s

12
S(x) +

s

12
S(y)

)
for all x, y ∈M. Then for all continuous functions F : M → R and x ∈M,

(e
s
2ΔF )(x) = lim

n→∞(Qn
s/nF )(x).

See also Chorin, McCracken, Huges, Marsden (78) and Wu (98).

Proof. This is a special case of the L2 – limit theorem. The main points are:

• ν0
P is essentially product measure on Mn.

• From this one shows that

(Qn
s/nF )(x) ∼=

∫
HP(M)

e
1
6
∫ 1
0 S(σ(s))dsF (σ (s)) dν0

P(σ)
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Corollary 2: Integration by Parts for ν on W (M)

See Bismut, Driver, Enchev, Elworthy, Hsu, Li, Lyons, Norris, Stroock, Taniguchi,
...............

Let k ∈ PC1, and z solve:

z′(s) +
1

2
Ric//̃s(σ)z(s) = k′(s), z(0) = 0.

and f be a cylinder function on W(M). Then∫
W(M)

Xzf dν =

∫
W(M)

f

∫ 1

0

〈k′, db̃〉 dν,

where

(Xzf )(σ) =

n∑
i=1

〈∇if )(σ), Xz
si
(σ)〉

=

n∑
i=1

〈∇if )(σ), //̃si(σ)z(si, σ)〉

and (∇if )(σ) denotes the gradient F in the ith variable evaluated at
(σ(s1), σ(s2), . . . , σ(sn)).
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Proof

Integrate by parts in on HP (M) and then pass to the limit as |P| → 0.
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Quasi-Invariance Theorem for νW (M)

Theorem 19 (D. 92, Hsu 95). Let h ∈ H(ToM) and Xh be the νW (M) – a.e. well defined
vector field on W (M) given by

Xh
s (σ) = //s(σ)h(s) for s ∈ [0, 1]. (13)

Then Xh admits a flow etX
h

on W (M) and this flow leaves νW (M) quasi-invariant. (Ref:
D. 92, Hsu 95, Enchev-Strook 95, Lyons 96, Norris 95, ...)

Bruce Driver 37 University of California, Berkeley, August 29, 2007


