Path integrals over Euclidean spaces

Bruce Driver

Visiting Miller Professor
(Permanent Address) Department of Mathematics, 0112
University of California at San Diego, USA
http://math.ucsd.edu/~driver

Student Topology Seminar
University of California, Berkeley, August 29, 2007

Wiener Measure Heuristics and the

Feynman-Kac formula

Theorem 1 (Trotter Product Formula). Let A and B be $d \times d$ matrices. Then $e^{(A+B)}=\lim _{n \rightarrow \infty}\left(e^{\frac{A}{n}} e^{\frac{B}{n}}\right)^{n}$.

Proof: By the chain rule,

$$
\left.\frac{d}{d \varepsilon}\right|_{0} \log \left(e^{\varepsilon A} e^{\varepsilon B}\right)=A+B
$$

Hence by Taylor's theorem with remainder,

$$
\log \left(e^{\varepsilon A} e^{\varepsilon B}\right)=\varepsilon(A+B)+O\left(\varepsilon^{2}\right)
$$

which is equivalent to

$$
e^{\varepsilon A} e^{\varepsilon B}=e^{\varepsilon(A+B)+O\left(\varepsilon^{2}\right)}
$$

Taking $\varepsilon=1 / n$ and raising the result to the $n^{\text {th }}$ - power gives

$$
\begin{aligned}
\left(e^{n^{-1} A} e^{n^{-1} B}\right)^{n} & =\left[e^{n^{-1}(A+B)+O\left(n^{-2}\right)}\right]^{n} \\
& =e^{A+B+O\left(n^{-1}\right)} \rightarrow e^{(A+B)} \text { as } n \rightarrow \infty
\end{aligned}
$$

Fact (Trotter product formula). For "nice enough" V,

$$
\begin{equation*}
e^{T(\Delta / 2-V)}=\text { strong }-\lim _{n \rightarrow \infty}\left[e^{\frac{T}{2 n} \Delta} e^{-\frac{T}{n} V}\right]^{n} \tag{1}
\end{equation*}
$$

See [1] for a rigorous statement of this type.
Lemma 2. Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a continuous function which is bounded from below, then

$$
\begin{align*}
& \left(\left(e^{\frac{T}{n} \Delta / 2} e^{-\frac{T}{n} V}\right)^{n} f\right)\left(x_{0}\right) \\
& =\int_{\mathbb{R}^{d n}} p_{\frac{T}{n}}\left(x_{0}, x_{1}\right) e^{-\frac{T}{n} V\left(x_{1}\right)} \ldots p_{\frac{T}{n}}\left(x_{n-1}, x_{n}\right) e^{-\frac{T}{n} V\left(x_{n}\right)} f\left(x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\left(\frac{1}{\sqrt{2 \pi \frac{T}{n}}}\right)_{\left(\mathbb{R}^{d}\right)^{n}}^{d n} \int^{-\frac{n}{2 T} \sum_{i=1}^{n}\left|x_{i}-x_{i-1}\right|^{2}-\frac{T}{n} \sum_{i=1}^{n} V\left(x_{i}\right)} f\left(x_{n}\right) d x_{1} \ldots d x_{n} \tag{2}
\end{align*}
$$

Notation 3. Given $T>0$, and $n \in \mathbb{N}$, let $W_{n, T}$ denote the set of piecewise C^{1} - paths, $\omega:[0, T] \rightarrow \mathbb{R}^{d}$ such that $\omega(0)=0$ and $\omega^{\prime \prime}(\tau)=0$ if $\tau \notin\left\{\frac{i}{n} T\right\}_{i=0}^{n}=: \mathcal{P}_{n}(T)$-see Figure 1. Further let $d m_{n}$ denote the unique translation invariant measure on $W_{n, T}$ which is well defined up to a multiplicative constant.

With this notation we may rewrite Lemma 2 as follows.

Following Feynman, at an informal level (see Figure 2), $W_{n, T} \rightarrow W_{T}$ as $n \rightarrow \infty$, where

$$
W_{T}:=\left\{\omega \in C\left([0, T] \rightarrow \mathbb{R}^{d}\right): \omega(0)=0\right\}
$$

Moreover, formally passing to the limit in Eq. (3) leads us to the following heuristic

Figure 2: A typical path in W_{T} may be approximated better and better by paths in $W_{m, T}$ as $m \rightarrow \infty$.
expression for $\left(e^{T(\Delta / 2-V)} f\right)\left(x_{0}\right)$;

$$
\begin{equation*}
\left(e^{T(\Delta / 2-V)} f\right)\left(x_{0}\right)=" \frac{1}{Z(T)} \int_{W_{T}} e^{-\int_{0}^{T}\left[\frac{1}{2}\left|\omega^{\prime}(\tau)\right|^{2}+V\left(x_{0}+\omega(\tau)\right)\right] d \tau} f\left(x_{0}+\omega(T)\right) \mathcal{D} \omega " \tag{4}
\end{equation*}
$$

where $\mathcal{D} \omega$ is the non-existent Lebesgue measure on W_{T}, and $Z(T)$ is the
$d \mu(\omega)$ should be a Gaussian measure on H_{T} and hence we expect,

$$
\begin{equation*}
\int_{H_{T}} e^{i\langle h, \omega\rangle_{T}} d \mu(\omega)=\exp \left(-\frac{1}{2}\|h\|_{H_{T}}^{2}\right) \tag{7}
\end{equation*}
$$

"normalization" constant (or partition function) given by

$$
Z(T)=" \int_{W_{T}} e^{-\frac{1}{2} \int_{0}^{T}\left|\omega^{\prime}(\tau)\right|^{2} d \tau} \mathcal{D} \omega . "
$$

This expression may also be written in the Feynman - Kac form as

$$
e^{T(\Delta / 2-V)} f\left(x_{0}\right)=\int_{W_{T}} e^{-\int_{0}^{T} V\left(x_{0}+\omega(\tau)\right) d \tau} f\left(x_{0}+\omega(T)\right) d \mu(\omega)
$$

where

$$
\begin{equation*}
d \mu(\omega)=" \frac{1}{Z(T)} e^{-\frac{1}{2} \int_{0}^{T}\left|\omega^{\prime}(\tau)\right|^{2} d \tau} \mathcal{D} \omega " \tag{5}
\end{equation*}
$$

is the informal expression for Wiener measure on W_{T}. Thus our immediate goal is to make sense out of Eq. (5).
Let

$$
H_{T}:=\left\{h \in W_{T}: \int_{0}^{T}\left|h^{\prime}(\tau)\right|^{2} d \tau<\infty\right\}
$$

with the convention that $\int_{0}^{T}\left|h^{\prime}(\tau)\right|^{2} d \tau:=\infty$ if h is not absolutely continuous. Further let

$$
\langle h, k\rangle_{T}:=\int_{0}^{T} h^{\prime}(\tau) \cdot k^{\prime}(\tau) d \tau \text { for all } h, k \in H_{T}
$$

and $X_{h}(\omega):=\langle h, \omega\rangle_{T}$ for $h \in H_{T}$. Since

$$
\begin{equation*}
d \mu(\omega)=" \frac{1}{Z(T)} e^{-\frac{1}{2}\|\omega\|_{H_{T}}^{2} \mathcal{D} \omega} \tag{6}
\end{equation*}
$$

Bruce Driver
6
University of California, Berkeley, August 29, 2007

Gaussian Measures "on" Hilbert spaces

Goal Given a Hilbert space H, we would ideally like to define a probability measure μ on $\mathcal{B}(H)$ such that

$$
\begin{equation*}
\hat{\mu}(h):=\int_{H} e^{i(\lambda, x)} d \mu(x)=e^{-\frac{1}{2}\|\lambda\|^{2}} \text { for all } \lambda \in H \tag{8}
\end{equation*}
$$

so that, informally,

$$
\begin{equation*}
d \mu(x)=\frac{1}{Z} e^{-\frac{1}{2}|x|_{H}^{2}} \mathcal{D} x \tag{9}
\end{equation*}
$$

The next proposition shows that this is impossible when $\operatorname{dim}(H)=\infty$.
Proposition 5. Suppose that H is an infinite dimensional Hilbert space. Then there is no probability measure μ on $\mathcal{B}=\mathcal{B}(H)$ such that Eq. (8) holds.

Proof: Suppose such a Gaussian measure were to exist. Let $\left\{\lambda_{i}\right\}_{i=1}^{\infty}$ be an orthonormal set in H and for $M>0$ and $n \in \mathbb{N}$ let

$$
W_{n}^{M}=\left\{x \in H:\left|\left(\lambda_{i}, x\right)\right| \leq M \text { for } i=1,2, \ldots, n\right\}
$$

Let μ_{n} be the standard Gaussian measure on \mathbb{R}^{n},

$$
d \mu_{n}(y)=(2 \pi)^{-n / 2} e^{-y \cdot y / 2} d y
$$

Then for all bounded measurable functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, we have

$$
\int_{H} f\left(\left(\lambda_{1}, x\right), \ldots,\left(\lambda_{n}, x\right)\right) d \mu(x)=\int_{\mathbb{R}^{n}} f(y) d \mu_{n}(y)
$$

and therefore,

$$
\begin{aligned}
\mu\left(W_{n}^{M}\right) & =\mu_{n}\left(\left\{y \in \mathbb{R}^{n}:\left|y_{i}\right| \leq M \text { for } i=1, \ldots, n\right\}\right) \\
& =\left((2 \pi)^{-1 / 2} \int_{-M}^{M} e^{-\frac{1}{2} y^{2}} d y\right)^{n} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Because

$$
W_{n}^{M} \downarrow H_{M}:=\left\{x \in H:\left|\left(\lambda_{i}, x\right)\right| \leq M \forall i=1,2, \ldots\right\},
$$

$\mu\left(H_{M}\right)=\lim _{n \rightarrow \infty} \mu\left(W_{n}^{M}\right)=0$ for all $M>0$. Since $H_{M} \uparrow H$ as $M \uparrow \infty$ we learn that $\mu(H)=\lim _{M \rightarrow \infty} \mu\left(H_{M}\right)=0$, i.e. $\mu \equiv 0$.
Q.E.D.

Moral: The measure μ must be defined on a larger space. This is somewhat analogous to trying to define Lebesgue measure on the rational numbers. In each case the measure can only be defined on a certain completion of the naive initial space.

Guassian Measure for ℓ^{2}

Remark 6. Suppose that $H=\ell^{2}$ the space of square summable sequences $\left\{x_{n}\right\}_{n=1}^{\infty}$. In this case the Gaussian measure that we are trying to construct is formally given by the expression

$$
\begin{aligned}
d \mu(x) & =\frac{1}{(\sqrt{2 \pi})^{\infty}} \exp \left(-\frac{1}{2} \sum_{i=1}^{\infty} x_{i}^{2}\right) \prod_{i=1}^{\infty} d x_{i} \\
& =\prod_{i=1}^{\infty}\left(\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{i}^{2}} d x_{i}\right)=: \prod_{i=1}^{\infty} p_{1}\left(d x_{i}\right)
\end{aligned}
$$

where $p_{1}(d x)$ is the heat kernel defined by

$$
p_{t}(x)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{1}{2 t} x^{2}\right)
$$

This suggests that we define $\mu=p_{1}^{\otimes \mathbb{N}}$, the infinite product measure on $\mathbb{R}^{\mathbb{N}}$.
Theorem 7. Let $\mu=p_{1}^{\otimes \mathbb{N}}$ be the infinite product measure on $\left(\mathbb{R}^{\mathbb{N}}, \mathcal{F}\right)$ where μ and \mathcal{F}. Also let $a=\left(a_{1}, a_{2}, \ldots\right) \in(0, \infty)^{\mathbb{N}}$ be a sequence and define

$$
X_{a}=\ell^{2}(a)=\left\{x \in \mathbb{R}^{\mathbb{N}}: \sqrt{\sum_{i=1}^{\infty} a_{i} x_{i}^{2}}:=\|x\|_{a}<\infty\right\}
$$

Bruce Driver
10
University of California, Berkeley, August 29, 2007
which shows that $\mathcal{B}\left(X_{a}\right) \subset \mathcal{F}$ and hence $\mathcal{B}\left(X_{a}\right) \subset \mathcal{F}_{X_{a}}$. To prove the reverse inclusion, let $i: X_{a} \rightarrow \mathbb{R}^{\mathbb{N}}$ be the inclusion map and recall that

$$
\begin{aligned}
\mathcal{F}_{X_{a}} & =i^{-1}(\mathcal{F})=i^{-1}\left(\sigma\left(\pi_{j}^{-1}(B): j \in \mathbb{N} \text { and } B \in \mathcal{B}_{\mathbb{R}}\right)\right) \\
& =\sigma\left(i^{-1} \pi_{j}^{-1}(B): j \in \mathbb{N} \text { and } B \in \mathcal{B}_{\mathbb{R}}\right) \\
& =\sigma\left(\left(\pi_{j} \circ i\right)^{-1}(B): j \in \mathbb{N} \text { and } B \in \mathcal{B}_{\mathbb{R}}\right)=\sigma\left(\pi_{j} \circ i: j \in \mathbb{N}\right)
\end{aligned}
$$

Since $\pi_{j} \circ i \in X_{a}^{*}$ for all j, we see from this expression that

$$
\mathcal{F}_{X_{a}} \subset \sigma\left(X_{a}^{*}\right)=\mathcal{B}\left(X_{a}\right)
$$

Let us now prove Eq. (10). Letting q and q_{N} be as defined above, for any $\varepsilon>0$,

$$
\begin{align*}
\int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q / 2} d \mu & =\int_{\mathbb{R}^{\mathbb{N}}} \lim _{N \rightarrow \infty} e^{-\varepsilon q_{N} / 2} d \mu \stackrel{\text { M.C.T. }}{=} \lim _{N \rightarrow \infty} \int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q_{N} / 2} d \mu \\
& =\lim _{N \rightarrow \infty} \int_{\mathbb{R}^{N}} e^{-\frac{\varepsilon}{2} \sum_{1}^{N} a_{i} x_{i}^{2}} \prod_{i=1}^{N} p_{1}\left(d x_{i}\right) \\
& =\lim _{N \rightarrow \infty} \prod_{i=1}^{N} \int_{\mathbb{R}} e^{-\frac{\varepsilon}{2} a_{i} x^{2}} p_{1}(d x) \tag{12}
\end{align*}
$$

Using

$$
\int e^{-\frac{\lambda}{2} x^{2}} p_{1}(x) d x=\frac{1}{\sqrt{2 \pi}} \int e^{-\frac{\lambda+1}{2} x^{2}} d x=\frac{1}{\sqrt{2 \pi}} \sqrt{\frac{2 \pi}{\lambda+1}}=\frac{1}{\sqrt{\lambda+1}}
$$

in Eq. (12) we learn that

$$
\int_{\mathbb{R}^{N}} e^{-\varepsilon q / 2} d \mu=\lim _{N \rightarrow \infty} \prod_{1}^{N} \frac{1}{\sqrt{1+\varepsilon a_{i}}}=\sqrt{\lim _{N \rightarrow \infty} \prod_{1}^{N}\left(1+\varepsilon a_{i}\right)^{-1}}
$$

or equivalently that

$$
\begin{equation*}
-\log \left(\int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q / 2} d \mu\right)=\frac{1}{2} \sum_{i=1}^{\infty} \ln \left(1+\varepsilon a_{i}\right) \tag{13}
\end{equation*}
$$

Notice that there is $\delta>0$ such that

$$
\begin{equation*}
\ln (1+x) \leq x \forall x \geq 0 \text { and } \ln (1+x) \geq x / 2 \text { for } x \in[0, \delta] . \tag{14}
\end{equation*}
$$

If $\lim \sup _{i \rightarrow \infty} a_{i} \neq 0$, then $\sum_{i=1}^{\infty} \ln \left(1+\varepsilon a_{i}\right)=\infty$ for all $\varepsilon>0$. If $\lim _{i \rightarrow \infty} a_{i}=0$ but $\sum_{\infty}^{\infty} a_{i}=\infty$, then using Eq. (14), $\ln \left(1+\varepsilon a_{i}\right) \geq \varepsilon a_{i} / 2$ for all i large and hence again $\sum_{i=1}^{\infty} \ln \left(1+\varepsilon a_{i}\right)=\infty$. If $\sum_{i=1}^{\infty} a_{i}<\infty$ then by Eq. (14),

$$
\sum_{i=1}^{\infty} \ln \left(1+\varepsilon a_{i}\right) \leq \varepsilon \sum_{i=1}^{\infty} a_{i} \rightarrow 0 \text { as } \varepsilon \downarrow 0
$$

Classical Wiener Measure

Let $W=\{\omega \in C([0,1] \rightarrow \mathbb{R}): \omega(0)=0\}$ and let H denote the set of functions $h \in W$ which are absolutely continuous and satisfy $(h, h)=\int_{0}^{1}\left|h^{\prime}(s)\right|^{2} d s<\infty$. The space H is called the Cameron-Martin space and is a Hilbert space when equipped with the inner product

$$
(h, k)=\int_{0}^{1} h^{\prime}(s) k^{\prime}(s) d s \text { for all } h, k \in H
$$

The space W is a Banach space when equipped with the sup-norm,

$$
\|f\|=\max _{x \in[0,1]}|f(x)|
$$

Theorem 8 (Wiener, 1923). There exists a unique Gaussian measure μ on W such that

$$
\begin{equation*}
\int_{W} e^{i \varphi(x)} d \mu(x)=e^{-q(\varphi) / 2} \tag{15}
\end{equation*}
$$

where $\varphi=\left(\cdot, h_{\varphi}\right)$, and $q(\varphi, \psi):=\left(h_{\varphi}, h_{\psi}\right)_{H}$ is the dual inner product to H.
Theorem 9 (Feynman-Kac Formula). Suppose that $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a smooth function such that $k:=\inf _{x \in \mathbb{R}^{d}} V(x)>-\infty$. Then for $f \in L^{2}(m)$,

$$
\left(e^{-t\left(-\frac{1}{2} \Delta+V\right)} f\right)(x)=\int_{W} e^{-\int_{0}^{t} V\left(x+\omega_{\tau}\right) d \tau} f\left(x+\omega_{t}\right) d \mu(\omega)
$$

