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Theorem 1 (Trotter Product Formula). Let A and B be d× d matrices. Then

e(A+B) = lim
n→∞

(
e

A
ne

B
n

)n
.

Proof: By the chain rule,
d

dε
|0 log(eεAeεB) = A +B.

Hence by Taylor’s theorem with remainder,

log(eεAeεB) = ε (A +B) +O
(
ε2
)

which is equivalent to
eεAeεB = eε(A+B)+O(ε2).

Taking ε = 1/n and raising the result to the nth – power gives

(en
−1Aen

−1B)n =
[
en

−1(A+B)+O(n−2)
]n

= eA+B+O(n−1) → e(A+B) as n→ ∞.

Q.E.D.
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Fact (Trotter product formula). For “nice enough” V,

eT (Δ/2−V ) = strong– lim
n→∞[e

T
2nΔe−

T
nV ]n. (1)

See [1] for a rigorous statement of this type.

Lemma 2. Let V : R
d → R be a continuous function which is bounded from below, then((

e
T
nΔ/2e−

T
nV
)n
f
)

(x0)

=

∫
Rdn

pT
n
(x0, x1)e

−T
nV (x1) . . . pT

n
(xn−1, xn)e

−T
nV (xn)f (xn)dx1 . . . dxn

=

⎛
⎜⎝ 1√

2πTn

⎞
⎟⎠
dn ∫

(Rd)n

e
− n

2T

n∑
i=1

|xi−xi−1|2−T
n

n∑
i=1

V (xi)
f (xn)dx1 . . . dxn. (2)

Notation 3. Given T > 0, and n ∈ N, let Wn,T denote the set of piecewise C1 – paths,
ω : [0, T ] → R

d such that ω (0) = 0 and ω′′ (τ ) = 0 if τ /∈ { inT}ni=0
=: Pn (T ) – see

Figure 1. Further let dmn denote the unique translation invariant measure on Wn,T which
is well defined up to a multiplicative constant.

With this notation we may rewrite Lemma 2 as follows.
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Figure 1: A typical path in Wm,T .

Theorem 4. Let T > 0 and n ∈ N be given. For τ ∈ [0, T ] , let τ+ = i
nT if

τ ∈ (i−1
n T,

i
nT ]. Then Eq. (2) may be written as,((
e

T
nΔ/2e−

T
nV
)n
f
)

(x0)

=
1

Zn (T )

∫
Wn,T

e−
∫ T
0 [1

2|ω′(τ)|2+V (x0+ω(τ+))]dτf (x0 + ω (T )) dmn (ω)

where

Zn (T ) :=

∫
Wn,T

e−
1
2
∫ T
0 |ω′(τ)|2dτdmn (ω) .

Moreover, by Trotter’s product formula,

eT (Δ/2−V )f (x0)

= lim
n→∞

1

Zn (T )

∫
Wn,T

e−
∫ T
0 [1

2|ω′(τ)|2+V (x0+ω(τ+))]dτf (x0 + ω (T )) dmn (ω) . (3)
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Following Feynman, at an informal level (see Figure 2), Wn,T → WT as n→ ∞, where

WT :=
{
ω ∈ C

(
[0, T ] → R

d
)

: ω (0) = 0
}
.

Moreover, formally passing to the limit in Eq. (3) leads us to the following heuristic

Figure 2: A typical path in WT may be approximated better and better by paths in Wm,T

as m→ ∞.

expression for
(
eT (Δ/2−V )f

)
(x0) ;

(
eT (Δ/2−V )f

)
(x0) = “

1

Z (T )

∫
WT

e−
∫ T
0 [1

2|ω′(τ)|2+V (x0+ω(τ))]dτf (x0 + ω (T ))Dω” (4)

where Dω is the non-existent Lebesgue measure on WT, and Z (T ) is the
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“normalization” constant (or partition function) given by

Z (T ) = “

∫
WT

e−
1
2
∫ T
0 |ω′(τ)|2dτDω.”

This expression may also be written in the Feynman – Kac form as

eT (Δ/2−V )f (x0) =

∫
WT

e−
∫ T
0 V (x0+ω(τ))dτf (x0 + ω (T )) dμ (ω) ,

where

dμ (ω) = “
1

Z (T )
e−

1
2
∫ T
0 |ω′(τ)|2dτDω” (5)

is the informal expression for Wiener measure on WT. Thus our immediate goal is to
make sense out of Eq. (5).

Let

HT :=

{
h ∈ WT :

∫ T

0

|h′ (τ )|2 dτ <∞
}

with the convention that
∫ T

0 |h′ (τ )|2 dτ := ∞ if h is not absolutely continuous. Further let

〈h, k〉T :=

∫ T

0

h′ (τ ) · k′ (τ ) dτ for all h, k ∈ HT

and Xh (ω) := 〈h, ω〉T for h ∈ HT. Since

dμ (ω) = “
1

Z (T )
e−

1
2‖ω‖2

HTDω, ” (6)
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dμ (ω) should be a Gaussian measure on HT and hence we expect,∫
HT

ei〈h,ω〉Tdμ (ω) = exp

(
−1

2
‖h‖2

HT

)
. (7)
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Gaussian Measures “on” Hilbert spaces

Goal Given a Hilbert space H , we would ideally like to define a probability measure μ on
B(H) such that

μ̂(h) :=

∫
H

ei(λ,x)dμ(x) = e−
1
2‖λ‖2

for all λ ∈ H (8)

so that, informally,

dμ (x) =
1

Z
e−

1
2|x|2HDx. (9)

The next proposition shows that this is impossible when dim(H) = ∞.

Proposition 5. Suppose that H is an infinite dimensional Hilbert space. Then there is no
probability measure μ on B = B(H) such that Eq. (8) holds.

Proof: Suppose such a Gaussian measure were to exist. Let {λi}∞i=1 be an orthonormal
set in H and for M > 0 and n ∈ N let

WM
n = {x ∈ H : |(λi, x)| ≤M for i = 1, 2, . . . , n}.

Let μn be the standard Gaussian measure on R
n,

dμn(y) = (2π)−n/2e−y·y/2dy.
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Then for all bounded measurable functions f : R
n → R, we have∫

H

f ((λ1, x), . . . , (λn, x)) dμ(x) =

∫
Rn

f (y)dμn(y)

and therefore,

μ(WM
n ) = μn({y ∈ R

n : |yi| ≤M for i = 1, . . . , n})
=

(
(2π)−1/2

∫ M

−M
e−

1
2y

2
dy

)n
→ 0 as n→ ∞.

Because
WM

n ↓ HM := {x ∈ H : |(λi, x)| ≤M ∀ i = 1, 2, . . . },
μ(HM) = limn→∞ μ(WM

n ) = 0 for all M > 0. Since HM ↑ H as M ↑ ∞ we learn that
μ(H) = limM→∞ μ(HM) = 0, i.e. μ ≡ 0. Q.E.D.

Moral: The measure μ must be defined on a larger space. This is somewhat analogous
to trying to define Lebesgue measure on the rational numbers. In each case the measure
can only be defined on a certain completion of the naive initial space.
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Guassian Measure for �2

Remark 6. Suppose that H = �2 the space of square summable sequences {xn}∞n=1 . In
this case the Gaussian measure that we are trying to construct is formally given by the
expression

dμ(x) =
1

(
√

2π)∞
exp

(
−1

2
Σ∞
i=1x

2
i

) ∞∏
i=1

dxi

=

∞∏
i=1

(
1√
2π
e−

1
2x

2
i dxi

)
=:

∞∏
i=1

p1(dxi),

where p1(dx) is the heat kernel defined by

pt (x) =
1√
2πt

exp

(
− 1

2t
x2

)
.

This suggests that we define μ = p⊗N

1 , the infinite product measure on R
N.

Theorem 7. Let μ = p⊗N

1 be the infinite product measure on
(
R

N,F) where μ and F .
Also let a = (a1, a2, . . . ) ∈ (0,∞)N be a sequence and define

Xa = �2(a) = {x ∈ R
N :
√∑

∞
i=1aix

2
i := ‖x‖a <∞}.

Bruce Driver 10 University of California, Berkeley, August 29, 2007

So X = L2(N, a) where a now denotes the measure on N determined by a ({i}) = ai
for all i ∈ N. Then Xa ∈ F , FXa := {A ∩Xa : A ∈ F} = B(Xa) (B(Xa) is the Borel σ
– field on Xa) and

μ(Xa) =

⎧⎨
⎩

1 if
∞∑
i=1

ai <∞
0 otherwise.

(10)

Assuming that
∞∑
i=1

ai <∞, μa := μ|B(Xa) is a the unique probability measure on

(Xa,B(Xa)) which satisfies∫
Xa

f (x1, . . . , xn)dμa(x) =

∫
Rn

f (x1, . . . , xn)p1(dxi) . . . p1(dxn) (11)

for all f ∈ (B(Rn))b and n = 1, 2, 3, . . .

Proof: For N ∈ N, let qN : R
N → R be defined by qN(x) =

∑
N
i=1aix

2
i . Then it is easily

seen that qN is F – measurable. Therefore, q := supN∈N qN (also notice that qN ↑ q as
N → ∞) is F – measurable as well and hence

Xa = {x ∈ R
N : q(x) <∞} ∈ F .

Similarly, if x0 ∈ Xa, then q(· − x0) = supN∈N qN(· − x0) is F – measurable and
therefore for r > 0,

B(x0, r) = {x ∈ Xa : ‖x− x0‖a < r} = {x ∈ R
N : q(· − x0) < r2} ∈ F
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which shows that B(Xa) ⊂ F and hence B(Xa) ⊂ FXa. To prove the reverse inclusion,
let i : Xa → R

N be the inclusion map and recall that

FXa = i−1 (F) = i−1
(
σ
(
π−1
j (B) : j ∈ N and B ∈ BR

))
= σ
(
i−1π−1

j (B) : j ∈ N and B ∈ BR

)
= σ
(
(πj ◦ i)−1 (B) : j ∈ N and B ∈ BR

)
= σ (πj ◦ i : j ∈ N) .

Since πj ◦ i ∈ X∗
a for all j, we see from this expression that

FXa ⊂ σ(X∗
a) = B(Xa).

Let us now prove Eq. (10). Letting q and qN be as defined above, for any ε > 0,∫
RN

e−εq/2dμ =

∫
RN

lim
N→∞

e−εqN/2dμ M.C.T.
= lim

N→∞

∫
RN

e−εqN/2dμ

= lim
N→∞

∫
RN

e
−ε

2

N∑
1
aix

2
i
N∏
i=1

p1(dxi)

= lim
N→∞

N∏
i=1

∫
R

e−
ε
2aix

2
p1(dx). (12)

Using ∫
e−

λ
2x

2
p1(x)dx =

1√
2π

∫
e−

λ+1
2 x2

dx =
1√
2π

√
2π

λ + 1
=

1√
λ + 1
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in Eq. (12) we learn that

∫
RN

e−εq/2dμ = lim
N→∞

N∏
1

1√
1 + εai

=

√√√√ lim
N→∞

N∏
1

(1 + εai)−1

or equivalently that

− log

(∫
RN

e−εq/2dμ
)

=
1

2

∞∑
i=1

ln(1 + εai). (13)

Notice that there is δ > 0 such that

ln(1 + x) ≤ x ∀x ≥ 0 and ln(1 + x) ≥ x/2 for x ∈ [0, δ]. (14)

If lim supi→∞ ai �= 0, then
∞∑
i=1

ln(1 + εai) = ∞ for all ε > 0. If limi→∞ ai = 0 but∑∞
i=1 ai = ∞, then using Eq. (14), ln(1 + εai) ≥ εai/2 for all i large and hence again

∞∑
i=1

ln(1 + εai) = ∞. If
∑∞

i=1 ai <∞ then by Eq. (14),

∞∑
i=1

ln(1 + εai) ≤ ε
∞∑
i=1

ai → 0 as ε ↓ 0.
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In summary,

− lim
ε↓0

log

(∫
RN

e−εq/2dμ
)

=

⎧⎨
⎩

∞ if
∑∞

i=1 ai = ∞

0 if
∑∞

i=1 ai <∞
or equivalently,

lim
ε↓0

∫
RN

e−εq/2dμ =

⎧⎨
⎩

0 if
∑∞

i=1 ai = ∞

1 if
∑∞

i=1 ai <∞.

Since e−εq/2 ≤ 1 and limε↓0 e−εq/2 = 1Xa, the previous equation along with the
dominated convergence theorem shows that

μ(Xa) =

∫
RN

1Xadμ =

{
0 if
∑∞

i=1 ai = ∞
1 if
∑∞

i=1 ai <∞.

proving Eq. (10inally Eq. (11) follows from the definition of μ and the fact that∫
Xa

f (x1, . . . , xn)dμa(x) =

∫
RN

f (x1, . . . , xn)dμ(x).

Q.E.D.
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Classical Wiener Measure

Let W = {ω ∈ C([0, 1] → R) : ω(0) = 0} and let H denote the set of functions h ∈ W

which are absolutely continuous and satisfy (h, h) =
∫ 1

0 |h′(s)|2ds <∞. The space H
is called the Cameron-Martin space and is a Hilbert space when equipped with the inner
product

(h, k) =

∫ 1

0

h′(s)k′(s)ds for all h, k ∈ H.

The space W is a Banach space when equipped with the sup-norm,

‖f‖ = max
x∈[0,1]

|f (x)| .
Theorem 8 (Wiener, 1923). There exists a unique Gaussian measure μ on W such that∫

W

eiϕ(x)dμ(x) = e−q(ϕ)/2, (15)

where ϕ = (·, hϕ) , and q(ϕ, ψ) := (hϕ, hψ)H is the dual inner product to H.

Theorem 9 (Feynman-Kac Formula). Suppose that V : R
d → R is a smooth function

such that k := infx∈Rd V (x) > −∞. Then for f ∈ L2 (m) ,(
e−t(−

1
2Δ+V )f

)
(x) =

∫
W

e−
∫ t
0 V (x+ωτ )dτf (x + ωt) dμ (ω) .
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