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Feynman-Kac formula

Theorem 1 (Trotter Product Formula). Let A and B be d x d matrices. Then
n

eArB) = lim (eEeF
n—oQ

Proof: By the chain rule,
dilgh) log(e1eB) = A + B.
Hence by Taylor’s theorem with remainder,
log(e**e™P) = e (A + B) + O (%)

which is equivalent to
o AetB — es(A+B)+o(52).

Taking € = 1/n and raising the result to the n" — power gives
(e'rflAe'rle)7L _ en*I(A+B)+O(n’2):| "

-1
— ATBHO(nY) _ o(A4B) g5y, o0,

Q.E.D.
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Fact (Trotter product formula). For “nice enough” V,
eTA27Y) = strong- lim [e%Ae_%V]". (1)
n—oo

See [1] for a rigorous statement of this type.

Lemma 2. Let V : R? — R be a continuous function which is bounded from below, then
TAa/9 Ty \"
(525" 1) (oo

= /p;(azo, xl)e_TTiV('m coopr(mp_y, xn)e_%v(”")f(xn)dxl .odxy,

Rdn
dn

n n
1 / ~or 3 w1 3 V()
e i=1 i=1

/ T
271—; (Rd)n

Notation 3. Given I’ > 0, and n € N, let W, 1 denote the set of piecewise C' - paths,
w:[0,7] — R such thatw (0) = Dand w” (1) = 0if 7 ¢ {{T}" =P, (T) - see
Figure 1. Further let dm,, denote the unique translation invariant measure on W, 7 which
is well defined up to a multiplicative constant.

flzp)dzy ... dx,. 2)

With this notation we may rewrite Lemma 2 as follows.
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Figure 1: A typical path in W, 7.

Theorem 4. LetT > 0 andn € N be given. ForT € [0,T], letT, = ,i;T if
T € (5T, LT). Then Eq. (2) may be written as,

((e%A/Qef%V) ' f) (x0)

1 TrLy, v 2
= — *fo [i‘w () +V(1L'0+w(7'+))]d7-f (
€ xo+w(T))dmy, (w
Z,(T) Jw, (T)) dmy, (w)

nT
where

Z,(T) = / e WP g, (w).
Wor

Moreover, by Trotter’s product formula,
TRV f ()

1 o .
= lim Zm/ e~ fOT[%‘W (7‘)|2+V<10+W(7'+))]d7'f (IO +w (T)) dm" (w) ) 3)
n—00 L, w

7
n,T
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Following Feynman, at an informal level (see Figure 2), W, + — Wy as n — oo, where
Wr={weC([0,T] - R :w(0)=0}.

Moreover, formally passing to the limit in Eq. (3) leads us to the following heuristic

7
Y
>
Y mccr T Tiwag,
\ s wr\"';r
| = 1
[ Vv v
T
)
| T T

Figure 2: A typical path in W may be approximated better and better by paths in 1, 1
as m — oo.

expression for (e”®/27V) f) (x) ;

(eT(A/Q—V)f> (1,0) _ uﬁ /w e_fUT[%W(T)\2+V(w0+w(7—))]d7f (550 +w (T)) D’ (4)

where Dw is the non-existent Lebesgue measure on Wy, and Z (T') is the
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“normalization” constant (or partition function) given by

Z(T)=- / e~ i WPy, »
\U%

T
This expression may also be written in the Feynman — Kac form as

eT(A/Q—V)f (z) = / e*fOT V(a:o+w(r))drf (zo+ w (T)) dp (w) ,
W,

where
1

dp(w) =" )

is the informal expression for Wiener measure on 1. Thus our immediate goal is to
make sense out of Eq. (5).

Let

e~ b Iy 1 (D Pdrpy (5)

Hp = {h e Wy /OT|h’(T)|2dT < oo}
with the convention that fOT |W ()|? d := oo if h is not absolutely continuous. Further let
(h, kY = /T h'(7)- K (7)drforall h,k € Hr
and X}, (w) = (h,w) forh € ;IT. Since
dp (w) = “%T)G%HUJH%TDW’ . (6)
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du (w) should be a Gaussian measure on Hy and hence we expect,

‘ 1
/ My (W) = exp (—2 hHiIT) . (7)
H'v
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Gaussian Measures “on” Hilbert spaces

Goal Given a Hilbert space H, we would ideally like to define a probability measure p on
B(H) such that
a(h) = /em’z)du(z) —e WP forall N e B (8)
H
so that, informally,

1 ]
du () = Ze’%szx. (9)
The next proposition shows that this is impossible when dim(H) = oco.
Proposition 5. Suppose that H is an infinite dimensional Hilbert space. Then there is no
probability measure p. on B = B(H) such that Eq. (8) holds.
Proof: Suppose such a Gaussian measure were to exist. Let {};}5°; be an orthonormal
setin H and for M > 0 andn € Nlet

WM ={xeH: |(\z)<Mfori=1,2...,n}
Let i, be the standard Gaussian measure on R",
dpn(y) = (2m) "2 vV 2dy.
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Then for all bounded measurable functions f : R” — R, we have

(g, 2), .0, (A, ) dp(x F@)dun(y
f -

pWMY =, ({y €R": |ys] < Mfori=1,...,n})
M n
= ((27r)_1/2/ e_éyZdy> — 0asn — oo.
-M

WM | Hy ={zxcH: | \,2)|<MVi=12...},
p(Hyp) = lim, oo u(WM) = 0forall M > 0. Since Hy; T H as M | oo we learn that
w(H) =limy o p(Hy) = 0,08, = 0. Q.E.D.
Moral: The measure i must be defined on a larger space. This is somewhat analogous

to trying to define Lebesgue measure on the rational numbers. In each case the measure
can only be defined on a certain completion of the naive initial space.

and therefore,

Because
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Guassian Measure for /2

Remark 6. Suppose that H = ¢? the space of square summable sequences {asn}zoz1 .In
this case the Gaussian measure that we are trying to construct is formally given by the
expression

du(z) = N (—22 a2 ) H dz;

where p1(dz) is the heat kernel defined by

()= = (52"
T)=—exp| —=—1z" ).
This suggests that we define p = p®N the infinite product measure on RY.

Theorem 7. Let ju = p{™ be the infinite product measure on (RN, F) where ji and F.
Also leta = (ay, as, ...) € (0,00)" be a sequence and define

=(a) ={r e RY: \/Zfila,ix? = [Jz]l, < oo}
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So X = L?(N, a) where a now denotes the measure on N determined by a ({i}) = a;
foralli € N. Then X, € F, Fx, = {ANX,: Ae F}=B(X,) (B(X,) is the Borel o
— field on X,) and
o0
1 if a; < 00
1(Xa) = ; ‘ (10)
0 otherwise.

Assuming that Z a; < 00, g = p|B(x B(X,) IS @ the unique probability measure on

(X, B(X, wh/ch satisfies

/f LI PR ) dﬂa

forall f € (B (]R”))b andn=1,2,3,...

/f X1y xp)pr(de) . opr(day,) (11)

Proof: For N € N, let gy : RN — R be defined by gy (z) = > ¥ a;2?. Then it is easily
seen that gy is F — measurable. Therefore, ¢ := sup ¢y gv (also notice that gy T ¢ as
N — o0) is F — measurable as well and hence
={z eRY : ¢(z) < o0} € F.
Similarly, if zo € X,, then (- — xp) = supyey qn(- — xo) is F — measurable and
therefore for r > 0,
Blxo,r) ={r € X, : ||z —mlla <7} ={zr € RY : q(- — 1) <’} € F
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which shows that 5(X,) C F and hence B(X,) C Fy,. To prove the reverse inclusion,
leti : X, — RN be the inclusion map and recall that

Fx, =1 ( ) = I(J(ﬂ' 1(B) jGNandBGBR))
=0 (i 17r '(B):j € Nand B € Bg)
:a((wjoz) (B):jeNandBeBR):a(ﬂjoz’:jEN).
Since 7; 01 € X for all j, we see from this expression that

Fx, Co(X)) =B(X,).

Let us now prove Eq. (10). Letting ¢ and gy be as defined above, for any ¢ > 0,

/ eiEQ/Qdu:/ lim e~*/2dy, MET lim / e ey
RN RN N—00 N—oo JpN

o d e
= lim e TT dz;
N—o0 /I%N Epl( L)
N
= lim H / e 2" py(dr) (12)
o i=1 /R
Using
A2 1 Atl,2 1 2m 1
e 2 p(x)der=—= [ e 2" dx = =
/ (@) V2m VorVA+L VA +1
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in Eq. (12) we learn that

] 1 ]
e 124y = lim —— =, | lim 1+ea;)t
/]RN # N—»oc];[ V1+eaq; N—oo | ( )

or equivalently that
1 o0
— log </RN esqﬂdg) =3 ZEZI In(1 + ea;). (13)

Notice that there is 6 > 0 such that
In(l1+2)<zVz>0and In(l+z)>z/2forz € [0,d]. (14)
If lim sup;_, ., a; # 0, then Z n(l+ea;) = oo foralle > 0. If lim; ., a; = 0 but
-1
ZT 1 @; = 00, then using Eq (14), In(1 + £a;) > ea;/2 for all i large and hence again
Zln(l + ea;) = 00. If Y77, a; < oo then by Eq. (14),

i=1

Zln(l—i—aai) SEZGiHOaSELO.
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In summary,

oo if Y0 a; =00
—limlog (/ egq/Qd,u> =
€l0 RN 0 i 00

it Yooy a; < oo
or equivalently,
0if >0 ai=00
lim/ e 12y =
=0 Jry Lif > a; < oo

Since e~°9/? < 1 and lim. g e~“%/? = 1y, the previous equation along with the
dominated convergence theorem shows that

_ ot Y ai =00
N(Xa) - /]RN 1Xad.u - { 1 if Z?il a; < 00.

proving Eq. (10inally Eq. (11) follows from the definition of ; and the fact that

/f(;cl,... D) dpta(z /f:cl,..., ().
Xa

Q.E.D.
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Classical Wiener Measure

Let W = {w € C([0,1] — R) : w(0) = 0} and let H denote the set of functions h € W
which are absolutely continuous and satisfy (h, h) = fo |I/(s)|ds < oo. The space H
is called the Cameron-Martin space and is a Hllbert space when equipped with the inner

product
(h, k) = / B(s

The space W is a Banach space when equipped with the sup-norm,
= max |f(x)].
171 = ma 1)
Theorem 8 (Wiener, 1923). There exists a unique Gaussian measure p. on W such that

/ €9 gy () = e~19)/2, 15)
w
where ¢ = (-, hy), and q(p, ) == (hy, hy) g is the dual inner product to H.

s)dsforallh,k € H.

Theorem 9 (Feynman-Kac Formula). Suppose that V : R? — R is a smooth function
such thatk := inf ,cga V (z) > —o0. Then for f € L*(m),

(e’t(’%AH/)f) (z) = /W e V@atendn ¢ (0 4 wy) dp (w) .
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