

Path integrals over Euclidean spaces

Bruce Driver

Visiting Miller Professor (Permanent Address) Department of Mathematics, 0112 University of California at San Diego, USA http://math.ucsd.edu/~driver

Student Topology Seminar

Fact (Trotter product formula). For "nice enough" V,

$$e^{T(\Delta/2-V)} = \operatorname{strong-} \lim_{n \to \infty} [e^{\frac{T}{2n}\Delta} e^{-\frac{T}{n}V}]^n.$$
(1)

See [1] for a rigorous statement of this type.

Lemma 2. Let $V : \mathbb{R}^d \to \mathbb{R}$ be a continuous function which is bounded from below, then

$$\left(\left(e^{\frac{T}{n}\Delta/2} e^{-\frac{T}{n}V} \right)^n f \right)(x_0) \\
= \int_{\mathbb{R}^{dn}} p_{\frac{T}{n}}(x_0, x_1) e^{-\frac{T}{n}V(x_1)} \dots p_{\frac{T}{n}}(x_{n-1}, x_n) e^{-\frac{T}{n}V(x_n)} f(x_n) dx_1 \dots dx_n \\
= \left(\frac{1}{\sqrt{2\pi\frac{T}{n}}} \right)^{dn} \int_{(\mathbb{R}^d)^n} e^{-\frac{n}{2T}\sum_{i=1}^n |x_i - x_{i-1}|^2 - \frac{T}{n}\sum_{i=1}^n V(x_i)} f(x_n) dx_1 \dots dx_n.$$
(2)

Notation 3. Given T > 0, and $n \in \mathbb{N}$, let $W_{n,T}$ denote the set of piecewise C^1 – paths, $\omega: [0,T] \to \mathbb{R}^d$ such that $\omega(0) = 0$ and $\omega''(\tau) = 0$ if $\tau \notin \left\{\frac{i}{n}T\right\}_{i=0}^n =: \mathcal{P}_n(T)$ – see Figure 1. Further let dm_n denote the unique translation invariant measure on $W_{n,T}$ which is well defined up to a multiplicative constant.

With this notation we may rewrite Lemma 2 as follows.

University of California, Berkeley, August 29, 2007

Bruce Driver

Wiener Measure Heuristics and the **Feynman-Kac formula**

Theorem 1 (Trotter Product Formula). Let A and B be $d \times d$ matrices. Then $e^{(A+B)} = \lim_{n \to \infty} \left(e^{\frac{A}{n}} e^{\frac{B}{n}} \right)^n.$

Proof: By the chain rule,

$$\frac{d}{d\varepsilon}|_0 \log(e^{\varepsilon A} e^{\varepsilon B}) = A + B.$$

Hence by Taylor's theorem with remainder.

$$\log(e^{\varepsilon A}e^{\varepsilon B}) = \varepsilon \left(A + B\right) + O\left(\varepsilon^2\right)$$

which is equivalent to

$$e^{\varepsilon A}e^{\varepsilon B} = e^{\varepsilon(A+B) + O\left(\varepsilon^2\right)}.$$

Taking $\varepsilon = 1/n$ and raising the result to the n^{th} – power gives

$$e^{n^{-1}A}e^{n^{-1}B})^n = \left[e^{n^{-1}(A+B)+O(n^{-2})}\right]^n$$
$$= e^{A+B+O(n^{-1})} \to e^{(A+B)} \text{ as } n \to \infty.$$

2

Q.F.D.

University of California, Berkeley, August 29, 2007

Theorem 4. Let T > 0 and $n \in \mathbb{N}$ be given. For $\tau \in [0, T]$, let $\tau_+ = \frac{i}{n}T$ if $\tau \in (\frac{i-1}{n}T, \frac{i}{n}T]$. Then Eq. (2) may be written as,

$$\left(\left(e^{\frac{T}{n}\Delta/2} e^{-\frac{T}{n}V} \right)^n f \right) (x_0)$$

= $\frac{1}{Z_n(T)} \int_{W_{n,T}} e^{-\int_0^T \left[\frac{1}{2} |\omega'(\tau)|^2 + V(x_0 + \omega(\tau_+)) \right] d\tau} f(x_0 + \omega(T)) \, dm_n(\omega)$

where

$$Z_{n}\left(T\right) := \int_{W_{n,T}} e^{-\frac{1}{2}\int_{0}^{T}\left|\omega'(\tau)\right|^{2}d\tau} dm_{n}\left(\omega\right).$$

Moreover, by Trotter's product formula,

$$e^{T(\Delta/2-V)}f(x_{0}) = \lim_{n \to \infty} \frac{1}{Z_{n}(T)} \int_{W_{n,T}} e^{-\int_{0}^{T} \left[\frac{1}{2}|\omega'(\tau)|^{2} + V(x_{0}+\omega(\tau_{+}))\right]d\tau} f(x_{0}+\omega(T)) dm_{n}(\omega).$$
(3)

Bruce Driver

Following Feynman, at an informal level (see Figure 2), $W_{n,T} \rightarrow W_T$ as $n \rightarrow \infty$, where

$$W_T := \left\{ \omega \in C\left([0,T] \to \mathbb{R}^d \right) : \omega\left(0 \right) = 0 \right\}.$$

Moreover, formally passing to the limit in Eq. (3) leads us to the following heuristic

$$\begin{array}{c} \mathbb{R}^{n^{d}} \\ \overline{\mathbb{T}_{n}} & \mathbb{T}_{n} & \mathbb{T}_{n} \\ \mathbb{T}_{n} & \mathbb{T}_{n} & \mathbb{T}_{n} \\ \mathbb{T}_{n} & \mathbb{T}_{n} & \mathbb{T}_{n} \\ \mathbb{T}_{n}$$

Figure 2: A typical path in W_T may be approximated better and better by paths in $W_{m,T}$ as $m \to \infty$.

$$\begin{aligned} & \text{expression for } \left(e^{T(\Delta/2-V)} f \right)(x_0) \,; \\ & \left(e^{T(\Delta/2-V)} f \right)(x_0) = "\frac{1}{Z\left(T\right)} \int_{W_T} e^{-\int_0^T \left[\frac{1}{2} |\omega'(\tau)|^2 + V(x_0 + \omega(\tau)) \right] d\tau} f\left(x_0 + \omega\left(T\right)\right) \mathcal{D}\omega" \quad \text{(4)} \end{aligned}$$

5

where $\mathcal{D}\omega$ is the **non-existent** Lebesgue measure on W_T , and $Z\left(T
ight)$ is the

Bruce Driver

University of California, Berkeley, August 29, 2007

 $d\mu\left(\omega\right)$ should be a Gaussian measure on H_{T} and hence we expect,

$$\int_{H_T} e^{i\langle h,\omega\rangle_T} d\mu\left(\omega\right) = \exp\left(-\frac{1}{2} \|h\|_{H_T}^2\right).$$
(7)

"normalization" constant (or partition function) given by

$$Z(T) = "\int_{W_T} e^{-\frac{1}{2}\int_0^T |\omega'(\tau)|^2 d\tau} \mathcal{D}\omega."$$

This expression may also be written in the Feynman - Kac form as

$$e^{T\left(\Delta/2-V\right)}f\left(x_{0}\right) = \int_{W_{T}} e^{-\int_{0}^{T} V\left(x_{0}+\omega\left(\tau\right)\right)d\tau} f\left(x_{0}+\omega\left(T\right)\right) d\mu\left(\omega\right),$$

where

$$d\mu\left(\omega\right) = \frac{1}{Z\left(T\right)} e^{-\frac{1}{2}\int_{0}^{T} |\omega'(\tau)|^{2} d\tau} \mathcal{D}\omega"$$
(5)

is the informal expression for **Wiener measure** on W_T . Thus our immediate goal is to make sense out of Eq. (5).

Let

$$H_T := \left\{ h \in W_T : \int_0^T \left| h'(\tau) \right|^2 d\tau < \infty \right\}$$

with the convention that $\int_0^T |h'(\tau)|^2 d\tau := \infty$ if h is not absolutely continuous. Further let

$$\langle h,k \rangle_T := \int_0^T h'(\tau) \cdot k'(\tau) \, d\tau$$
 for all $h,k \in H_T$

and $X_{h}\left(\omega
ight):=\langle h,\omega
angle_{T}$ for $h\in H_{T}.$ Since

$$d\mu\left(\omega\right) = \frac{1}{Z\left(T\right)}e^{-\frac{1}{2}\|\omega\|_{H_{T}}^{2}}\mathcal{D}\omega,$$
(6)

University of California, Berkeley, August 29, 2007

Gaussian Measures "on" Hilbert spaces

Goal Given a Hilbert space H, we would ideally like to define a probability measure μ on $\mathcal{B}(H)$ such that

$$\hat{\mu}(h) := \int_{H} e^{i(\lambda, x)} d\mu(x) = e^{-\frac{1}{2}\|\lambda\|^2} \text{ for all } \lambda \in H$$
(8)

so that, informally,

$$d\mu(x) = \frac{1}{Z} e^{-\frac{1}{2}|x|_{H}^{2}} \mathcal{D}x.$$
 (9)

The next proposition shows that this is impossible when $\dim(H) = \infty$.

Proposition 5. Suppose that *H* is an infinite dimensional Hilbert space. Then there is no probability measure μ on $\mathcal{B} = \mathcal{B}(H)$ such that Eq. (8) holds.

Proof: Suppose such a Gaussian measure were to exist. Let $\{\lambda_i\}_{i=1}^{\infty}$ be an orthonormal set in H and for M > 0 and $n \in \mathbb{N}$ let

$$W_n^M = \{x \in H : |(\lambda_i, x)| \le M \text{ for } i = 1, 2, \dots, n\}.$$

Let μ_n be the standard Gaussian measure on \mathbb{R}^n ,

$$d\mu_n(y) = (2\pi)^{-n/2} e^{-y \cdot y/2} dy.$$

Then for all bounded measurable functions $f : \mathbb{R}^n \to \mathbb{R}$, we have

$$\int\limits_{H} f((\lambda_1,x),\ldots,(\lambda_n,x)) \ d\mu(x) = \int\limits_{\mathbb{R}^n} f(y) d\mu_n(y)$$

and therefore,

$$\mu(W_n^M) = \mu_n(\{y \in \mathbb{R}^n : |y_i| \le M \text{ for } i = 1, \dots, n\})$$

= $\left((2\pi)^{-1/2} \int_{-M}^M e^{-\frac{1}{2}y^2} dy\right)^n \to 0 \text{ as } n \to \infty.$

Because

$$\begin{split} W^M_n \downarrow H_M &:= \{x \in H : |(\lambda_i, x)| \leq M \; \forall \; i = 1, 2, \dots \}, \\ \mu(H_M) &= \lim_{n \to \infty} \mu(W^M_n) = 0 \text{ for all } M > 0. \text{ Since } H_M \uparrow H \text{ as } M \uparrow \infty \text{ we learn that } \\ \mu(H) &= \lim_{M \to \infty} \mu(H_M) = 0, \text{ i.e. } \mu \equiv 0. \end{split}$$

Moral: The measure μ must be defined on a larger space. This is somewhat analogous to trying to define Lebesgue measure on the rational numbers. In each case the measure can only be defined on a certain completion of the naive initial space.

Bruce Driver

University of California, Berkeley, August 29, 2007

So $X = L^2(\mathbb{N}, a)$ where a now denotes the measure on \mathbb{N} determined by $a(\{i\}) = a_i$ for all $i \in \mathbb{N}$. Then $X_a \in \mathcal{F}$, $\mathcal{F}_{X_a} := \{A \cap X_a : A \in \mathcal{F}\} = \mathcal{B}(X_a)$ ($\mathcal{B}(X_a)$ is the Borel σ – field on X_a) and

$$\mu(X_a) = \begin{cases} 1 & \text{if} \quad \sum_{i=1}^{\infty} a_i < \infty \\ 0 & \text{otherwise.} \end{cases}$$
(10)

Assuming that $\sum_{i=1}^{\infty} a_i < \infty$, $\mu_a := \mu|_{\mathcal{B}(X_a)}$ is a the unique probability measure on $(X_a, \mathcal{B}(X_a))$ which satisfies

$$\int_{X_a} f(x_1,\ldots,x_n)d\mu_a(x) = \int_{\mathbb{R}^n} f(x_1,\ldots,x_n)p_1(dx_i)\ldots p_1(dx_n)$$
(11)

for all $f \in (\mathcal{B}(\mathbb{R}^n))_b$ and $n = 1, 2, 3, \dots$

Proof: For $N \in \mathbb{N}$, let $q_N : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}$ be defined by $q_N(x) = \sum_{i=1}^N a_i x_i^2$. Then it is easily seen that q_N is \mathcal{F} – measurable. Therefore, $q := \sup_{N \in \mathbb{N}} q_N$ (also notice that $q_N \uparrow q$ as $N \to \infty$) is \mathcal{F} – measurable as well and hence

$$X_a = \{ x \in \mathbb{R}^{\mathbb{N}} : q(x) < \infty \} \in \mathcal{F}.$$

Similarly, if $x_0 \in X_a$, then $q(\cdot - x_0) = \sup_{N \in \mathbb{N}} q_N(\cdot - x_0)$ is \mathcal{F} – measurable and therefore for r > 0,

$$B(x_0, r) = \{x \in X_a : \|x - x_0\|_a < r\} = \{x \in \mathbb{R}^{\mathbb{N}} : q(\cdot - x_0) < r^2\} \in \mathcal{F}$$

Bruce Driver

University of California, Berkeley, August 29, 2007

Guassian Measure for ℓ^2

Remark 6. Suppose that $H = \ell^2$ the space of square summable sequences $\{x_n\}_{n=1}^{\infty}$. In this case the Gaussian measure that we are trying to construct is formally given by the expression

$$d\mu(x) = \frac{1}{(\sqrt{2\pi})^{\infty}} \exp\left(-\frac{1}{2}\sum_{i=1}^{\infty}x_i^2\right) \prod_{i=1}^{\infty} dx_i$$
$$= \prod_{i=1}^{\infty} \left(\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x_i^2} dx_i\right) =: \prod_{i=1}^{\infty} p_1(dx_i),$$

where $p_1(dx)$ is the heat kernel defined by

$$p_t(x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{1}{2t}x^2\right).$$

This suggests that we define $\mu = p_1^{\otimes \mathbb{N}}$, the infinite product measure on $\mathbb{R}^{\mathbb{N}}$. **Theorem 7.** Let $\mu = p_1^{\otimes \mathbb{N}}$ be the infinite product measure on $(\mathbb{R}^{\mathbb{N}}, \mathcal{F})$ where μ and \mathcal{F} . Also let $a = (a_1, a_2, \ldots) \in (0, \infty)^{\mathbb{N}}$ be a sequence and define

$$X_a = \ell^2(a) = \{ x \in \mathbb{R}^{\mathbb{N}} : \sqrt{\sum_{i=1}^{\infty} a_i x_i^2} := \|x\|_a < \infty \}.$$

University of California, Berkeley, August 29, 2007

which shows that $\mathcal{B}(X_a) \subset \mathcal{F}$ and hence $\mathcal{B}(X_a) \subset \mathcal{F}_{X_a}$. To prove the reverse inclusion, let $i : X_a \to \mathbb{R}^{\mathbb{N}}$ be the inclusion map and recall that

$$\begin{split} \mathcal{F}_{X_a} &= i^{-1}\left(\mathcal{F}\right) = i^{-1}\left(\sigma\left(\pi_j^{-1}(B) : j \in \mathbb{N} \text{ and } B \in \mathcal{B}_{\mathbb{R}}\right)\right) \\ &= \sigma\left(i^{-1}\pi_j^{-1}(B) : j \in \mathbb{N} \text{ and } B \in \mathcal{B}_{\mathbb{R}}\right) \\ &= \sigma\left(\left(\pi_j \circ i\right)^{-1}(B) : j \in \mathbb{N} \text{ and } B \in \mathcal{B}_{\mathbb{R}}\right) = \sigma\left(\pi_j \circ i : j \in \mathbb{N}\right) \end{split}$$

Since $\pi_i \circ i \in X_a^*$ for all j, we see from this expression that

$$\mathcal{F}_{X_a} \subset \sigma(X_a^*) = \mathcal{B}(X_a).$$

Let us now prove Eq. (10). Letting q and q_N be as defined above, for any $\varepsilon > 0$,

$$\int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q/2} d\mu = \int_{\mathbb{R}^{\mathbb{N}}} \lim_{N \to \infty} e^{-\varepsilon q_N/2} d\mu \stackrel{\text{M.C.T.}}{=} \lim_{N \to \infty} \int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q_N/2} d\mu$$
$$= \lim_{N \to \infty} \int_{\mathbb{R}^{N}} e^{-\frac{\varepsilon}{2} \sum_{1}^{N} a_i x_i^2} \prod_{i=1}^{N} p_1(dx_i)$$
$$= \lim_{N \to \infty} \prod_{i=1}^{N} \int_{\mathbb{R}} e^{-\frac{\varepsilon}{2} a_i x^2} p_1(dx).$$
(12)

Using

$$\int e^{-\frac{\lambda}{2}x^2} p_1(x) dx = \frac{1}{\sqrt{2\pi}} \int e^{-\frac{\lambda+1}{2}x^2} dx = \frac{1}{\sqrt{2\pi}} \sqrt{\frac{2\pi}{\lambda+1}} = \frac{1}{\sqrt{\lambda+1}}$$

Bruce Driver

University of California, Berkeley, August 29, 2007

in Eq. (12) we learn that

$$\int_{\mathbb{R}^N} e^{-\varepsilon q/2} d\mu = \lim_{N \to \infty} \prod_1^N \frac{1}{\sqrt{1 + \varepsilon a_i}} = \sqrt{\lim_{N \to \infty} \prod_1^N (1 + \varepsilon a_i)^{-1}}$$

or equivalently that

$$-\log\left(\int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q/2} d\mu\right) = \frac{1}{2} \sum_{i=1}^{\infty} \ln(1 + \varepsilon a_i).$$
(13)

Notice that there is $\delta>0$ such that

$$\ln(1+x) \le x \ \forall x \ge 0 \text{ and } \ln(1+x) \ge x/2 \text{ for } x \in [0,\delta]. \tag{14}$$

If $\limsup_{i\to\infty} a_i \neq 0$, then $\sum_{i=1}^{\infty} \ln(1+\varepsilon a_i) = \infty$ for all $\varepsilon > 0$. If $\lim_{i\to\infty} a_i = 0$ but $\sum_{i=1}^{\infty} a_i = \infty$, then using Eq. (14), $\ln(1+\varepsilon a_i) \ge \varepsilon a_i/2$ for all i large and hence again $\sum_{i=1}^{\infty} \ln(1+\varepsilon a_i) = \infty$. If $\sum_{i=1}^{\infty} a_i < \infty$ then by Eq. (14),

$$\sum_{i=1}^{\infty} \ln(1 + \varepsilon a_i) \le \varepsilon \sum_{i=1}^{\infty} a_i \to 0 \text{ as } \varepsilon \downarrow 0.$$

13

In summary,

$$\lim_{\varepsilon \downarrow 0} \log \left(\int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q/2} d\mu \right) = \begin{cases} \infty \text{ if } \sum_{i=1}^{\infty} a_i = \infty \\ 0 \text{ if } \sum_{i=1}^{\infty} a_i < \infty \end{cases}$$

or equivalently,

$$\lim_{\varepsilon \downarrow 0} \int_{\mathbb{R}^{\mathbb{N}}} e^{-\varepsilon q/2} d\mu = \begin{cases} 0 \text{ if } \sum_{i=1}^{\infty} a_i = \infty \\ 1 \text{ if } \sum_{i=1}^{\infty} a_i < \infty. \end{cases}$$

Since $e^{-\varepsilon q/2} \leq 1$ and $\lim_{\varepsilon \downarrow 0} e^{-\varepsilon q/2} = 1_{X_a}$, the previous equation along with the dominated convergence theorem shows that

$$\mu(X_a) = \int_{\mathbb{R}^N} \mathbf{1}_{X_a} d\mu = \begin{cases} 0 \text{ if } \sum_{i=1}^{\infty} a_i = \infty \\ 1 \text{ if } \sum_{i=1}^{\infty} a_i < \infty. \end{cases}$$

proving Eq. (10inally Eq. (11) follows from the definition of μ and the fact that

$$\int_{X_a} f(x_1, \dots, x_n) d\mu_a(x) = \int_{\mathbb{R}^N} f(x_1, \dots, x_n) d\mu(x).$$

14

Q.E.D.

Bruce Driver

University of California, Berkeley, August 29, 2007

Bruce Driver

University of California, Berkeley, August 29, 2007

REFERENCES

Classical Wiener Measure

Let $W = \{\omega \in C([0,1] \to \mathbb{R}) : \omega(0) = 0\}$ and let H denote the set of functions $h \in W$ which are absolutely continuous and satisfy $(h,h) = \int_0^1 |h'(s)|^2 ds < \infty$. The space H is called the Cameron-Martin space and is a Hilbert space when equipped with the inner product

$$(h,k) = \int_0^1 h'(s)k'(s)ds \text{ for all } h,k \in H.$$

The space \boldsymbol{W} is a Banach space when equipped with the sup-norm,

$$||f|| = \max_{x \in [0,1]} |f(x)|.$$

Theorem 8 (Wiener, 1923). There exists a unique Gaussian measure μ on W such that

$$\int_{W} e^{i\varphi(x)} d\mu(x) = e^{-q(\varphi)/2},$$
(15)

where $\varphi = (\cdot, h_{\varphi})$, and $q(\varphi, \psi) := (h_{\varphi}, h_{\psi})_H$ is the dual inner product to H. **Theorem 9** (Feynman-Kac Formula). Suppose that $V : \mathbb{R}^d \to \mathbb{R}$ is a smooth function such that $k := \inf_{x \in \mathbb{R}^d} V(x) > -\infty$. Then for $f \in L^2(m)$,

$$\left(e^{-t\left(-\frac{1}{2}\Delta+V\right)}f\right)(x) = \int_{W} e^{-\int_{0}^{t} V(x+\omega_{\tau})d\tau} f(x+\omega_{t}) d\mu(\omega) d\mu(\omega)$$

References

 Barry Simon, *Functional integration and quantum physics*, second ed., AMS Chelsea Publishing, Providence, RI, 2005. MR MR2105995 (2005f:81003)

Bruce Driver