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1. Introduction

In these lecture notes we will generally be concerned with integral — differential
analysis on infinite dimensional spaces equipped with measures related to heat
kernels. As of yet, there is still no general theory within which to work. There
have been attempts at a general structure, for example abstract Wiener—Riemann
manifolds, but it has been hard to put interesting natural examples into this frame
work. So these lectures will be a case study when the infinite dimensional manifold
is either the paths or loops into a finite dimensional manifold and more specifically
a Lie group.
In section 2, we will introduce the notion of the heat kernel measures on finite

dimensional Riemannian manifolds. This notion will simply turn out to be the
usual heat kernel function times the Riemannian volume form.
Section 3 is devoted to a description of the smoothness properties of positive

measures on Rd without reference to Lebesgue measure. Although not technically
needed for the rest of these notes, this section motivates some of our later consid-
erations in the infinite dimensional setting.
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Sections 4 — 6 are devoted to defining and proving existence of heat kernel mea-
sures associated to an infinite dimensional Hilbert space. The most important of
these sections being Section 6 where classical Wiener measure on the space

W
¡
Rd
¢
=
©
ω ∈ C

¡
[0, 1],Rd

¢
: ω(0) = 0

ª
is considered as a heat kernel measure. Although the results in these sections are
very classical (see for example Kuo [45] or Bogachev [5]), we still give the proofs in
full detail. Our proofs will emphasizes the interpretation of Wiener measure as an
infinite dimensional heat kernel measure.
Section 7 describes analogous results to those in Section 6 in the case Rd is

replaced by a compact Lie group K. Results for the more complicated space of
loops, L(K), on K are also described. The results of Section 7 rely on an analysis
of Wiener measure on the path space of L(K). (Note this is a path space on a path
space, i.e. maps from [0, 1]×[0, T ] toK.) Section 8 briefly outlines the results needed
for Section 7 in the simpler setting where L (K) is replaced by a finite dimensional
Riemannian manifold M.
Appendix 9 gives some motivations for these notes. Some readers may want to

start here.
Acknowledgments: The author thanks the l’Institut Henri Poincaré for the

opportunity to present the lectures which gave rise to these notes. The author
is also greatly indebted to P. Auscher, G. Besson, T. Coulhon and A. Grigoryan
who made possible the trimester programme on “Heat kernels, random walks and
analysis to manifolds and graphs” held at IHP in Paris.

2. Finite Dimensional Heat Kernel Measures

Notation 2.1. Suppose (Md, g) is a smooth d — dimensional manifold with Rie-
mannian metric g. Let Ck(M) denote the collection of k — times continuously dif-
ferentiable functions f : M → R. As usual Ck

c (M) will denote those f ∈ Ck(M)
with compact support. Similarly, let BCk(M) denote those f ∈ Ck(M) such that
f, ∇f, . . . ,∇kf are all bounded, where ∇ denotes the Levi-Civita covariant deriva-
tive of g. As usual ∆ will be used to denote theRiemannian Laplacian associated
to g. In local coordinates,

∆f = tr(∇2f) =
dX

i,j=1

1√
g

∂

∂xi

µ√
ggij

∂f

∂xj

¶
where g =

Pd
i,j=1 gijdx

i ⊗ dxj ,
¡
gij
¢
is the matrix inverse of (gij) and

√
g =

det (gij) .

Notation 2.2. If µ is a probability measure on a measure space (Ω,F) and f ∈
L1 (µ) = L1 (Ω,F , µ) , we will often write µ(f) for the integral, R

Ω
fdµ.

Definition 2.3. Let (M,g) be a Riemannian manifold o ∈M be a fixed base point.
A sequence {νt}t>0 of positive measures is called a heat kernel sequence based
at o ∈M if:

(1) νt(M) ≤ 1 for all t > 0.
(2) For all f ∈ BC2(M) the function t → νt(f) :=

R
M
fdνt is continuously

differentiable,

(2.1)
d

dt
νt(f) =

1

2
νt(∆f) and lim

t↓0
νt(f) = f(o).
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Remark 2.4. If νt exists as in Definition 2.3, then necessarily νt(M) = 1 for all t.
This follows simply from the definition with f ≡ 1.
Proposition 2.5. Suppose M = Rd with the standard flat metric, so that ∆ =Pd

i=1
∂2

∂x2i
. For each point o ∈ Rd, there is exactly one sequence of positive measures

{νt}t>0 with νt(Rd) ≤ 1 such that Eq. (2.1) holds for all f ∈ C∞c
¡
Rd
¢
. Moreover

this sequence is given by

(2.2) νt(dx) = pt(o, x)dm(x)

where pt(x, y) := (2πt)
−d/2

e−
1
2t |x−y|2 is the heat kernel and m is Lebesgue measure

on Rd.

Proof. Uniqueness. By assumption νt satisfies

(2.3) νt(f) = f(o) +

Z t

0

1

2
ντ (∆f)dτ for all f ∈ C∞c

¡
Rd
¢
.

Now suppose f ∈ C2c
¡
Rd
¢
and ψ ∈ C∞c (Rd) such that

R
Rd ψ(x)dx = 1. Letting

ψn(x) := ndψ(nx), we have ψn ∗ f ∈ C∞c (Rd) and

ψn ∗ f → f and ψn ∗∆f → ∆f
boundedly as n→∞. Therefore passing to the limit, n→∞, in the equation,

νt(ψn ∗ f) = f(o) +

Z t

0

1

2
ντ (ψn ∗∆f)dτ,

shows Eq. (2.3) holds for all f ∈ C2c
¡
Rd
¢
.

Now suppose f ∈ C2
¡
Rd
¢
such that f,∇f and ∆f are bounded and let φ ∈

C∞c (B(0, 1), [0, 1]) such that φ = 1 in a neighborhood of 0 and set φn(x) := φ(x/n).
Then fn = φnf is in C2c (Rd) and hence for large n,

νt(φnf) = f(o) +

Z t

0

1

2
ντ (∆φnf + 2∇φn ·∇f + φn∆f)dτ

= f(o) +

Z t

0

1

2
ντ (

1

n2
(∆φ)n f +

2

n
(∇φ)n ·∇f + φn∆f)dτ.

Using the dominated convergence theorem to pass to the limit in this equation
allows us to conclude Eq. (2.3) holds for all f ∈ C2

¡
Rd
¢
such that f,∇f and ∆f

are bounded, i.e. {νt}t>0 is automatically heat kernel sequence based at o ∈ Rd.
For f ∈ C∞c (Rd) and T > 0 and t ∈ [0, T ), the function

Ft(x) = e(T−t)∆/2f(x) = P(T−t)f(x) :=
Z
Rd

pT−t(x, y)f(y)dy

satisfies

|Ft|+ |∇Ft|+ |∆Ft| ≤M := sup
x
[|f(x)|+ |∇f(x)|+ |∆f(x)|] .

Claim: The function νt(Fs) is C1 for s, t ∈ (0, T ) and
∂

∂s
νt(Fs) = −1

2
νt(∆Fs).
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Indeed, we have

|νt(Fs)− ντ (Fσ)| ≤ |νt(Fs − Fσ)|+ |νt(Fσ)− ντ (Fσ)|

= |νt(Fs − Fσ)|+
¯̄̄̄
1

2

Z t

τ

νr(∆Fσ)dr

¯̄̄̄
≤ |νt(Fs − Fσ)|+ 1

2
k∆fk∞ |t− τ |→ 0 as (σ, τ)→ (s, t)(2.4)

which shows νt(Fs) is continuous. Since

Fs − Fσ
s− σ

= − 1

2(s− σ)

Z s

σ

∆Frdr = −1
2

1

s− σ

Z s

σ

PT−r∆fdr,¯̄̄
Fs−Fσ
s−σ

¯̄̄
is bounded for s near σ and

Fs − Fσ
s− σ

→ −1
2
PT−σ∆f = −1

2
∆Fσ as s→ σ.

Thus, by the dominated convergence theorem,

νt(Fs)− νt(Fσ)

s− σ
= νt

µ
Fs − Fσ
s− σ

¶
→ −1

2
νt (∆Fσ) as s→ σ.

This shows that ∂
∂sνt(Fs) exists and

∂
∂sνt(Fs) = −12νt(∆Fs). Since ∆Fs = PT−s∆f

and ∆f ∈ C∞c (M), it follows from Eq. (2.4) with f replaced by ∆f that

(s, t)→ ∂

∂s
νt(Fs) = −1

2
νt(∆Fs) = − ∂

∂t
νt(Fs)

is continuous proving the claim.
By the chain rule,

∂

∂t
νt(Ft) =

1

2
νt(∆Ft)− 1

2
νt(∆Ft) = 0

and therefore,

(2.5) νT− (P f) = ν (PT− f) for all > 0.

Letting ψ(δ) := sup {|f(y)− f(x)| : |y − x| ≤ δ} , we have

|P f(x)− f(x)| =
¯̄̄̄Z
Rd

p (x, y) [f(y)− f(x)] dy

¯̄̄̄
≤
Z
|y−x|≤δ

p (x, y) |f(y)− f(x)| dy

+

Z
|y−x|>δ

p (x, y) |f(y)− f(x)| dy

≤ ψ(δ) + 2 kfk∞
Z
|y−x|>δ

p (x, y)dy = ψ(δ) + 2 kfk∞O( ),(2.6)

from which it follows lim ↓0 kP f − fk∞ ≤ ψ(δ) → 0 as δ ↓ 0. In particular this
implies

|νT− (P f)− νT− (f)| ≤ kP f − fk∞ → 0 as ↓ 0
and hence

(2.7) lim
↓0

νT− (P f) = lim
↓0

νT− (f) = νT (f).
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Moreover,

|ν (PT f)− ν (PT− f)| =
¯̄̄̄
¯ν
Ã
1

2

Z T

T−
∆Ptfdt

!¯̄̄̄
¯

=

¯̄̄̄
¯ν
Ã
1

2

Z T

T−
Pt∆fdt

!¯̄̄̄
¯ ≤ 12 k∆fk∞ → 0 as ↓ 0.

so that

(2.8) lim
↓0

ν (PT− f) = lim
↓0

ν (PT f) = PT f(o) =

Z
M

pT (o, y)f(y)dy.

The second equality in Eq. (2.8) requires a bit of explanation. By assumption
lim ↓0 ν (g) = g(o) for all g ∈ C∞c (Rd). Let δ > 0 and Bδ be the ball of radius
δ centered at o ∈ Rd. Choosing g ∈ C∞c (Bδ, [0, 1]) such that g(o) = 1 implies
lim ↓0 ν (Rd \ Bδ) = 0. From this it follows that lim ↓0 ν (g) = g(0) for all g ∈
BC

¡
Rd
¢
.

Combining Eqs. (2.5) — (2.8) shows νT (f) =
R
Rd pT (o, y)f(y)dy for all f ∈

C∞c (Rd). Since C∞c (Rd) is dense in L1(νT+pT (o, y)dy) and the latter space contains
all bounded measurable functions, it follows that

dνT (y) = pT (o, y)dy,

i.e. Eq. (2.2) must hold.
Existence. This completes the proof, since it is now a simple matter to verify

that νt defined as in Eq. (2.2) is a heat kernel sequence based at o ∈ Rd. This fact
will also follow from Theorem 2.6 below.
Recall (see for example Strichartz [56], Dodziuk [16] and Davies [14]) that if

(M, g) is a complete Riemannian manifold, then ∆ = ∆g acting on C∞c (M) is
essentially self-adjoint, i.e. the closure ∆̄ of ∆ is an unbounded self-adjoint operator
on L2(M,dV ). (Here dV =

√
gdx1 . . . dxn is being used to denote the Riemann

volume measure onM.)Moreover the semi-group Pt := et∆̄/2 has a smooth integral
kernel, pt(x, y), such that

pt(x, y) ≥ 0 for all x, y ∈MZ
M

pt(x, y)dV (y) ≤ 1 for all x ∈M and

Ptf(x) :=
³
et∆̄/2f

´
(x) =

Z
M

pt(x, y)f(y)dV (y) for all f ∈ L2(M).

Theorem 2.6. Let (M, g) be a complete Riemannian manifold with Ricci tensor
bounded from below (i.e. Ric ≥ −Cg for some C ≥ 0) and o ∈ M be a fixed
point. Then there exists a unique heat kernel sequence {νt}t>0 based at o ∈M. The
measure νt is given by

(2.9) νt(dx) = pt(o, x)dV (x)

and satisfy

(2.10) νt(f) :=

Z
M

fdνt =:
³
et∆̄/2f

´
(o) for all f ∈ C∞c (M).
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Proof. Uniqueness. Suppose νt exists as described above. For f ∈ C2c (M)

and T > 0 let Ft := e(T−t)∆̄/2f. Then ∂tFt =
1
2e
(T−t)∆̄/2∆f is a bounded function

depending continuously on t ∈ [0, T ] and x ∈M. Essentially the same argument as
used in the proof of Proposition 2.5, shows if {νt}t>0 exits it must be given by Eq.
(2.9). In doing this one should replace Rd by M and |y − x| by d(x, y) everywhere
in the argument. The only other point is to note that the standard Gaussian heat
kernel bounds along with volume growth estimates may be used in Eq. (2.6) to
again conclude

|P f(x)− f(x)| ≤ ψ(δ) + 2 kfk∞O( ).

Existence. According to Dodziuk [16]1, the kernel pt(x, y) may be written as
the increasing limit of heat kernels pΩkt (x, y) with Dirichlet boundary conditions for
relatively compact open subsets Ωk ⊂M with smooth boundary such that Ωk ↑M.
Now for f ∈ C2(M) we then have, letting Ω = Ωk and q = pΩ,

d

dt

Z
Ω

qt(x, y)f(y)dy =
1

2

Z
Ω

∆yqt(x, y)f(y)dy

= −1
2

Z
Ω

∇yqt(x, y) ·∇f(y)dy + 1
2

Z
∂Ω

n(y) ·∇yqt(x, y)f(y)dy

=
1

2

Z
Ω

qt(x, y) ·∆f(y)dy + 1
2

Z
∂Ω

n(y) ·∇yqt(x, y)f(y)dσ(y)

where σ is the surface measure and n is the outward pointing unit normal on ∂Ω
(the boundary of Ω). Integrating the previous equation on t givesZ

Ωk

pΩkt (x, y)f(y)dy = f(x) +
1

2

Z t

0

dτ

Z
Ωk

pΩkτ (x, y) ·∆f(y)dy

+
1

2

Z t

0

dτ

Z
∂Ωk

n(y) ·∇yp
Ωk
t (x, y)f(y)dσ(y)

and letting k →∞ in this equation impliesZ
M

pt(x, y)f(y)dy = f(x) +
1

2

Z t

0

dτ

Z
M

pτ (x, y) ·∆f(y)dy + lim
k→∞

Rk(f)

where

Rk(f) :=
1

2

Z t

0

dτ

Z
∂Ωk

n(y) ·∇yp
Ωk
τ (x, y)f(y)dσ(y).

We will now finish the proof by showing limk→∞Rk(f) = 0.

Since pΩkt (x, y) ≥ 0 and vanishes for y ∈ ∂Ω, n(y) ·∇yp
Ωk
t (x, y) ≤ 0 and hence

|Rk(f)| ≤ −1
2
kfk∞

Z t

0

dτ

Z
∂Ωk

n(y) ·∇yp
Ωk
τ (x, y)dσ(y)

= − kfk∞
1

2

Z t

0

dτ

Z
Ωk

∆yp
Ωk
τ (x, y)dy

= − kfk∞
Z t

0

dτ

Z
Ωk

∂

∂τ
pΩkτ (x, y)dy = kfk∞

·
1−

Z
Ωk

pΩkt (x, y)dy

¸
.

1Dodziuk also proves, under the condition that (M,g) is complete and the Ricci curvature is
bounded from below, that bounded solutions to the heat equation are uniquely determined by
their initial values at t = 0.
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Letting k →∞ in this expression then shows

lim
k→∞

|Rk(f)| ≤ kfk∞
·
1−

Z
M

pt(x, y)dy

¸
.

Thus limk→∞ |Rk(f)| = 0, since the lower bound on the Ricci curvature is sufficient
to show

R
M
pt(x, y)dy = 1, see for example Theorem 5.2.6 in Davies [14].

3. Describing Smooth Measures on Rd without reference to Lebesgue
Measure

One of the main goals in these lectures is to give some examples of heat kernel
sequences for infinite dimensional manifolds. Once we produce such a heat kernel
sequence we will want to show the resulting measures {νt}t>0 are “smooth.” How-
ever, in the infinite dimensional examples below there is no reasonable notion of
Lebesgue measure or the Riemann volume measure. Hence it will not be possible
to measure the smoothness of νt in terms of the smoothness of its density with re-
spect to the Riemann volume measure. In this section, we will explain an intrinsic
criteria for a finite measure on Rd to be smooth. This criteria will later be used as
a definition in the infinite dimensional settings below.

Notation 3.1. For a measure µ on Rd, let L∞−(µ) := ∩1≤p<∞Lp(µ).
Definition 3.2. A Radon measure µ on Rd is said to be smooth if for all multi
-indices α = (α1, . . . , αd) ∈ Nd0 (N = {1, 2 . . . } and N0 = N∪ {0}) there exists
functions gα ∈ C∞(Rd) ∩ L∞−(µ) such that,
(3.1)

Z
Rd
(−D)α fdµ =

Z
Rd

fgαdµ for all f ∈ C∞c (Rd),

where Dα :=
Qd

i=1

¡
∂
∂xi

¢αi
.

Theorem 3.3. A measure µ on Rd is smooth iff there exists ρ ∈ C∞(Rd, (0,∞))
such that dµ = ρdm where m is Lebesgue measure on Rd.

Proof. Let us begin by showing there are coefficients cα(β) ∈ N (in fact cα (β) =
α!

β!(α−β)! ) for 0 ≤ β ≤ α such that for f ∈ C∞c (Rd) and h ∈ C∞(Rd),

(3.2)
Z
Rd
(−D)α f · hdµ =

X
β≤α

cα(β)

Z
Rd

fDβh · gα−βdµ.

The proof of Eq. (3.2) will be by induction on |α| = α1 + · · ·+ αd. Equation (3.1)
with α = ei and f being replaced by fh impliesZ

Rd
−∂if · hdµ =

Z
Rd

f · (∂ih+ gih) dµ

which proves Eq. (3.2) for |α| = 1.
Equation (3.1) with f being replaced by −∂if along with the previous identity

shows Z
Rd

fgα+eidµ =

Z
Rd
(−D)α+ei fdµ = −

Z
Rd
(−D)α ∂ifdµ

=

Z
Rd
−∂if · gαdµ =

Z
Rd

f · [∂igα + g1gα] dµ.

This equation being true for all f ∈ C∞c
¡
Rd
¢
implies ∂igα + g1gα = gα+ei , µ — a.e.
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Now suppose Eq. (3.2) holds for all |α| ≤ n with n ≥ 1. ThenZ
Rd
(−D)α+ei f · hdµ =

Z
Rd
(−D)α (−∂if) · hdµ =

X
β≤α

cα (β)

Z
Rd
(−∂if)Dβh · gα−βdµ

=
X
β≤α

cα (β)

Z
Rd

f
¡
∂i
£
Dβh · gα−β

¤
+Dβh · gigα−β

¢
dµ

=
X
β≤α

cα (β)

Z
Rd

f
¡
Dβ+eih · gα−β +Dβh · [∂igα−β + gigα−β ]

¢
dµ

=

Z
Rd

X
β≤α

cα (β) f
¡
Dβ+eih · gα−β +Dβh · gα+ei−β

¢
dµ

which finishes the induction argument.
For φ ∈ C∞c (Rd) let lφ(f) :=

R
Rd φfdµ, then lφ is a distribution on Rd with

compact support. The Fourier transform of lφ is given by

l̂φ(k) =

Z
Rd

eik·xφ(x)dµ(x).

By Eq. (3.2),

kα l̂φ(k) =

Z
Rd

kαeik·xφ(x)dµ(x) =
Z
Rd

µ
1

i
Dx

¶α
eik·xφ(x)dµ(x)

=

Z
Rd

eik·x
X
β≤α

cα(β)

µ
−1
i
Dx

¶β
φ(x) · gα−β(x)dµ(x)

from which we learn supk
³
1 + |k|2

´N ¯̄̄
l̂φ(k)

¯̄̄
< ∞ for all N. Hence lφ may be

represented by a smooth function (still denoted by lφ), i.e.Z
Rd

φfdµ =

Z
Rd

lφfdm for all f ∈ C∞c (Rd).

Now choose φ ∈ C∞c (Rd, [0, 1]) such that φ = 1 on B(0, 1) and let φm(x) = φ(x/m).
Then one easily sees that lφm = lφn on B(0, n) for all m ≥ n. Thus we may define
ρ(x) = lφn(x) for all x ∈ B(0, n). Then ρ is a smooth function such that dµ = ρdm.
Since µ ≥ 0 it follows that ρ ≥ 0, so it only remains to prove that ρ is positive. By
Eq. (3.1),Z

Rd
fDαρdm =

Z
Rd
(−D)α fρdm =

Z
Rd
(−D)α fdµ =

Z
Rd

fgαdµ =

Z
Rd

fgαρdm

and hence Dαρ = gαρ. Let G = (g1, g2, . . . , gd) and fix a point x0 ∈ Rd such that
ρ(x0) > 0. Then for any y ∈ Rd,

(3.3)
d

dt
ln ρ(x0+ty) =

∇ρ(x0 + ty) · y
ρ(x0 + ty)

=
ρ(x0 + ty)G(x0 + ty) · y

ρ(x0 + ty)
= G(x0+ty)·y

which is valid for all t such that ρ(x0 + ty) > 0. In particular this is valid for all t
near zero. Integrating Eq. (3.3) on t implies

ρ(x0 + ty) = ρ(x0) exp

µZ t

0

G(x0 + τy) · ydτ
¶
.



HEAT KERNELS MEASURES AND INFINITE DIMENSIONAL ANALYSIS. 9

From this equation it follows that ρ(x0 + ty) > 0 for all t, that is ρ(x) > 0 for all x
and then taking x0 = 0 and t = 1 that

ρ(y) ≥ ρ(0) exp

µ
− |y|

Z 1

0

|G(τy)| dτ
¶
.

Corollary 3.4. All smooth measures on Rd are mutually absolutely continuous
relative to each other.

Corollary 3.5. If µ is a smooth measure on Rd and φ : Rd → Rd is a diffeomor-
phism, then φ∗µ is a smooth measure as well. In fact if dµ = ρdm, then

(3.4) d (φ∗µ) = ρ ◦ φ−1
¯̄̄¡
φ−1

¢0 ¯̄̄
dm.

Proof. Let f ∈ Cc(Rd), thenZ
Rd

fdφ∗µ =
Z
Rd

f ◦ φdµ =
Z
Rd

f(φ(x))ρ(x)dx.

So making the change of variables, y = φ(x) so that x = φ−1(y), dx =¯̄̄¡
φ−1

¢0
(y)
¯̄̄
dy and henceZ

Rd
fdφ∗µ =

Z
Rd

f(y)ρ(φ−1(y))
¯̄̄¡
φ−1

¢0
(y)
¯̄̄
dy

which proves Eq. (3.4).
These finite dimensional results in Corollaries 3.4 and 3.5 are in stark contrast to

what happens in infinite dimensional settings as we shall see below in Proposition
5.5 and Exercise 6.1. Also see Remark 6.22.

4. Infinite dimensional considerations

Let (H, (·, ·)) be a separable Hilbert space, |h| := p
(h, h) be the associate

Hilbertian norm and S ⊂ H be an orthonormal basis for H. As usual, for
f ∈ C2(H), let

∆Hf(x) = tr(D
2f(x)) =

X
h∈S

¡
∂2hf

¢
(x)

provided D2f(x) is trace class. Here ∂hf(x) := d
dt |0f(x + th), Df(x)h := ∂hf(x)

and D2f(x)(h, k) := (∂h∂kf) (x).

Example 4.1. Suppose P : H → H is a finite rank orthogonal projection and
F ∈ C2(PH) and f(x) := F (Px) for all x ∈ H. Then

∂hf(x) = (∂PhF ) (Px),

D2f(x)(h, k) = D2F (Px) (Ph, Pk)

and
∆Hf(x) = (∆PHF ) (x)

where ∆PH represents the usual finite dimensional Laplacian acting on C2(PH).

Notation 4.2. A function of the form f(x) = F (Px) with F ∈ Ck(PH) and
P : H → H is a finite rank orthogonal projection will be called a Ck — cylinder
function. The collection of Ck — cylinder functions will be denoted by FCk(H).
Also let FCk

c (H)
¡FBCk(H)

¢
denote those f = F ◦ P ∈ FCk(H) such that

F ∈ Ck
c (H)

¡
F ∈ BCk(H)

¢
.
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Proposition 4.3. There does not exist a heat kernel sequence based at 0 ∈ H.
More explicitly there is no collection {νt}t>0 of positive measures on H such that

(1) νt(H) ≤ 1 for all t > 0 and
(2) For all f ∈ FBC2(H) the function t → νt(f) :=

R
H
fdνt is continuously

differentiable and

d

dt
νt(f) =

1

2
νt(∆Hf) and lim

t↓0
νt(f) = f(0).

The following basic Gaussian integration lemma will be needed for the proof of
Proposition 4.3.

Lemma 4.4. For all α > 0 and β ∈ C,

(4.1)
Z
R
e−αx

2

eβxdx =

r
π

α
e

1
4αβ

2

.

More generally if V ⊂ H is a finite dimensional subspace, m := dim(V ), α > 0 and
u, v ∈ V, then

(4.2)
Z
V

e−α|y|
2

e(u,y)+i(v,y)dy =
³π
α

´m/2

e
1
4α (u+iv)

2

where dy denotes Lebesgue measure on V and (u+ iv)2 := |u|2− |v|2+2i(u, v). We
also have, for any u ∈ V,

(4.3)
Z
V

e−α|y|
2

(u, y)
2
dy =

³π
α

´m/2 1

2α
|u|2 .

and any p ∈ [1,∞),

(4.4)
³α
π

´m/2
Z
V

e−α|y|
2 |y|p dy = Γ(

p+m
2 )

Γ(m2 )
α−

p
2 .

Proof. The proof of this lemma is standard. We leave the proof of Eq. (4.1) to
the reader and note that Eq. (4.2) follows from Eq. (4.1) using Fubini’s theorem
after introducing an orthonormal basis on V. Equation (4.3) may be proved by
differentiating Eq. (4.2) in λ to findZ

V

e−α|y|
2

(u, y)
2
dy =

d2

dλ2
|λ=0

Z
V

e−α|y|
2

e(λu,y)dy

=
d2

dλ2
|λ=0

³π
α

´m/2

e
λ2

4α |u|2 =
³π
α

´m/2 1

2α
|u|2 .

Passing to polar coordinates, the left side of Eq. (4.4) satisfies

³α
π

´m/2
Z
V

e−α|y|
2 |y|p dy = σ

¡
Sm−1

¢ ³α
π

´m/2
Z ∞
0

e−αr
2

rprm−1dr,
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where σ
¡
Sm−1

¢
is the surface area of the unit sphere in Rm. Letting r =

p
u/α in

the last integral then shows³α
π

´m/2
Z
V

e−α|y|
2 |y|p dy = σ

¡
Sm−1

¢ ³α
π

´m/2
Z ∞
0

e−u(u/α)
p+m−1

2
1

2α
(u/α)−1/2du

=
σ
¡
Sm−1

¢
2πm/2

α−
p
2

Z ∞
0

u
p+m−1

2 − 1
2 e−udu

=
σ
¡
Sm−1

¢
2πm/2

α−
p
2

Z ∞
0

u
p+m
2 e−u

du

u

=
σ
¡
Sm−1

¢
2πm/2

α−
p
2Γ(

p+m

2
).(4.5)

Comparing this equation with p = 0 and Eq. (4.2) with u = v = 0, we find

1 =
σ(Sm−1)
2πm/2 Γ(

m
2 ) which put back into Eq. (4.5) proves Eq. (4.4).

Proof. Suppose {νt}t>0 were such a heat kernel sequence based at 0 ∈ H. Let
P : H → H be a finite rank orthogonal projection and νPt denote the measure on
PH defined by Z

PH

FdνPt :=

Z
H

F ◦ Pdνt
for all F : PH → PH which are bounded and measurable. The hypothesis on
νt now guarantees that

©
νPt
ª
t>0

is a heat kernel sequence based at 0 ∈ PH and
therefore by Proposition 2.5,

dνPt (y) =

µ
1

2πt

¶dim(PH)/2
e−

1
2t |y|2dy

where dy denotes Lebesgue measure on PH. By Eq. (4.2) of Lemma 4.4, for any
α > 0,Z
PH

e−α|y|
2

dνPt (y) =

µ
1

2πt

¶dim(PH)/2µ
π

α+ 1
2t

¶dim(PH)/2
=

µ
1

2tα+ 1

¶dim(PH)/2
.

Let Pn : H → H be a sequence of increasing finite rank orthogonal projections such
that Pn → I strongly as n→∞, then by the dominated convergence theorem,Z

H

e−α|x|
2

dνt(x) = lim
n→∞

Z
H

e−α|Pnx|
2

dνt(x) = lim
n→∞

Z
PnH

e−α|y|
2

dνPnHt (y)

= lim
n→∞

µ
1

2tα+ 1

¶dim(PnH)/2
= 0.

Since e−α|x|
2

is a positive function on H, it follows that νt must be the zero measure
for all t, which clearly violates the initial condition: limt↓0 νt(f) = f(0).

Remark 4.5. Another way to “understand” Proposition 4.3 is that if νt were to
exist as a measure on H it should be given by the formula

(4.6) “νt(dx) =
1

Zt
e−

1
2t |x|2HdmH(x), ”

where mH is “infinite dimensional Lebesgue measure,” and

Zt := (2πt)
dim(H)/2

=

½
0 if t < 1/2π
∞ if t > 1/2π.
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Clearly the expression in Eq. (4.6) has severe problems owing to the definition of Zt.
Moreover, it is well known that there is no reasonable notion of Lebesgue measure
on an infinite dimensional Hilbert space as you are asked to show in Exercise 4.1
below.

Exercise 4.1. Suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations and
satisfies, m(B(0, )) > 0 for all > 0. Show m(V ) = ∞ for all non-empty open
subsets V ⊂ H. Hint: Show B(0, ) contains a infinite number of disjoint balls of
radius δ = /

√
2.

L. Gross, in [38] and [39], describes how to characterize those “completions” of
H to a Banach space W such that the heat kernel measures may be constructed
on X. Rather than work in the full generality of Gross’ abstract Wiener spaces,
the discussion below will be restricted to two important special cases. The first is
when H = 2 and W is a certain Hilbertian extension of 2 and the second is in the
context of “classical Wiener space.”

5. Heat Kernel Measure associated to 2

When H = 2, the expression in Eq. (4.6) may be informally re-written as

νt(dx) = e−
t
2

P∞
n=1 x

2
n

∞Y
n=1

dxn√
2πt

=
∞Y
n=1

µ
e−

t
2x

2
n
dxn√
2πt

¶
=
∞Y
n=1

pt(dxn),

where pt(dx) := 1√
2πt

e−
t
2x

2

dx.

Fact 5.1. Recall that Kolmogorov’s existence theorem implies the existence of in-
finite products of probability measures. (See almost any graduate text book in
probability theory.)

As a consequence, there exists a unique probability measure νt on RN such that

(5.1)
Z
RN

F (x1, . . . , xN )dνt(x) =

Z
RN

F (x1, . . . , xN )
NY
n=1

pt(xn)dxn

holds for all F : RN → R which are bounded and measurable and for all N ∈ N.
From Proposition 4.3, we expect that 2 ⊂ RN is a set of νt — measure 0, i.e.
νt(

2) = 0. This is verified in the following theorem.

Theorem 5.2. For a = (a1, a2, . . . ) ∈ (0,∞)N, define

Xa =
2(a) = {x ∈ RN :

vuut ∞X
i=1

aix2i =: kxka <∞},

then for any t > 0,

(5.2) νt(Xa) =


1 if

∞P
i=1

ai <∞

0 if
∞P
i=1

ai =∞.

In particular νt( 2) = 0.
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Proof. The method of proof will be very similar to that of Proposition 4.3. Let
q(x) :=

P∞
i=1aix

2
i and for N ∈ N let qN (x) =

P
N
i=1aix

2
i . For any > 0, using the

monotone convergence theorem,Z
RN

e− q/2dνt =

Z
RN

lim
N→∞

e− qN/2dνt = lim
N→∞

Z
RN

e− qN/2dνt

= lim
N→∞

Z
RN

e
− 2

NP
1
aix

2
i

NY
i=1

pt(dxi)

= lim
N→∞

NY
i=1

Z
R
e− 2aix

2

pt(dx) = lim
N→∞

NY
i=1

q
π

2ai+
1
2t√

2πt

=
∞Y
1

1√
1 + ai

=

"∞Y
1

(1 + t ai)

#−1/2
.(5.3)

Taking logarithms of Eq. (5.3) and then letting ↓ 0 implies

(5.4) − log
µZ

RN
e− q/2dνt

¶
=
1

2

∞X
i=1

ln(1 + t ai)
↓0→
½ ∞ if

P∞
i=1 ai =∞

0 if
P∞

i=1 ai <∞

and hence

lim
↓0

Z
RN

e− q/2dνt =

½
0 if

P∞
i=1 ai =∞

1 if
P∞

i=1 ai <∞.

Since e− q/2 ≤ 1 and lim ↓0 e− q/2 = 1Xa , this result along with the dominated
convergence theorem proves Eq. (5.2).
For the rest of this section, fix a linear subspace W ⊂ RN such that 2 ⊂W and

νt(W ) = 1 for all t > 0. (For example W = Xa with
P∞

i=1 ai <∞.)

Notation 5.3. A function f : W → R of the form f(x) = F (x1, . . . , xn) for some
F ∈ Ck(Rn) will be called a cylinder function on W and the collection of such
functions will be denoted by FCk(W ). As before, if F ∈ Ck

c (Rn) of BCk(Rn), we
will say f ∈ FCk

c (W ) or f ∈ FBCk(W ) respectively.

Proposition 5.4. The measure {νt}t>0 form a heat kernel sequence based at 0 ∈W
in the sense that

(1) νt(W ) = 1 for all t > 0 and
(2) for all f ∈ FBC2(W ) the function t→ νt(f) is continuously differentiable,

d

dt
νt(f) =

1

2
νt(∆Hf) and lim

t↓0
νt(f) = f(0)

where

∆Hf(x) :=
∞X
n=1

∂2enf(x) = (∆RnF ) (x1, . . . , xn)

and {en}∞n=1 is the standard orthonormal basis for 2, i.e. en(i) = δni.

Moreover, {νt}t>0 is the unique heat kernel sequence on W satisfying items 1.
and 2. above.
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Proof. The fact the νt satisfies items 1. and 2. above is a simple exercise left
to the reader. For uniqueness, suppose {νt}t>0 is a heat kernel sequence based at
0 ∈W and n ∈ N, let νnt be the measure on Rn such thatZ

Rn
f(x1, . . . , xn)dν

n
t (x) =

Z
W

f(x1, . . . , xn)dνt(x)

for all bounded measurable functions f : Rn → R. Then one easily verifies {νnt }t>0
is a heat kernel sequence based at 0 ∈ Rn and hence by Proposition 2.5,

dνnt (x) = (2πt)
−n/2e−

1
2t |x|2Rndm(x)

which is equivalent to Eq. (5.1).

Proposition 5.5. If s, t > 0 and s 6= t then νt ⊥ νs.

Proof. For each t > 0, let

Wt :=

(
x ∈W : lim

N→∞
1

N

NX
i=1

x2i = t

)
.

Then the strong law of large numbers2 asserts νt(Wt) = 1 for all t > 0 and this
proves the theorem since Wt ∩Ws = ∅ for all s 6= t.
If a ∈ 2 and ai = 0 for i ≥ n for some n, thenZ

W

(a · x)2 dνt(x) =
Z
Rn

Ã
nX
i=1

aixi

!2
dνnt (x) = t kak22 .

This simple computation along with a standard limiting argument leads to the
following result.

Lemma 5.6. For a ∈ 2 and for N < ∞, let aNi = ai if i ≤ N and 0 if i > N.
Then limN→∞ aN ·x exits in L2(νt). By abuse of notation we will use a ·x to denote
this limit (even though the answer may depend on t). The limit a · x still satisfiesZ

W

(a · x)2 dνt(x) = t kak22
and Z

W

eia·xdνt(x) = e−
t
2kak22 .

The next proposition points out that even though νt is not supported on 2,
its quasi-invariance (and hence differentiability properties) are still intimately con-
nected with 2.

Proposition 5.7 (Cameron-Martin Type Theorem). For a ∈W, let νat := ν(·−a),
i.e.

(5.5)
Z
W

f(x)dνat (x) =

Z
W

f(x)νt (dx− a) :=

Z
W

f(x+ a)dνt (x) .

Then νat := νt(·− a)¿ νt iff a ∈ 2 and if a ∈ 2 then

(5.6)
dνat (x)

dνt(x)
= e

1
t a·x− 1

2t |a|2 .

2Also see Exercise 6.1 which essentially sketches a proof of the law of large numbers in this
context.
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Proof. At an informal level, we have

dνat (x)

dνt(x)
=

e−
1
2t |x−a|2

e−
1
2t |x|2

= e
1
t a·x− 1

2t |a|2

which clearly only makes sense if a ∈ 2.
For a rigorous proof, suppose first a, b ∈ 2. ThenZ

W

eib·xdνat (x) =
Z
W

eib·(x+a)dνt(x) = e−
t
2 |b|2+ib·a

while Z
W

eib·xe
1
t a·x− 1

2t |a|2dνt(x) = e
t
2 (t
−1a+ib)2− 1

2t |a|2 = e−
t
2 |b|2+ib·a.

and this suffices to prove Eq. (5.6).
Suppose that a ∈ W \ 2 and let kµk denotes the total variation norm of a

measure µ. We will make use of the fact if kνat − νtk = 2 then that νat ⊥ νt. (The
converse is true as well but is not needed here.) Indeed if kνat − νtk = 2 and P ∪P c

is the Jordan decomposition of νat − νt, then

2 = kνat − νtk = (νat − νt) (P )− (νat − νt) (P
c) ≤ νat (P ) + νt(P

c) ≤ 2
with equality iff νat (P ) = 1 and νt(P

c) = 1. Therefore νat ⊥ νt.

We now compute kνat − νtk formally. For this let z := e
1
2ta·x− 1

4t |a|2 then

kνat − νtk =
Z
W

¯̄̄
e
1
t a·x− 1

2t |a|2 − 1
¯̄̄
dν =

Z
W

|z − 1| |z + 1|dνt

≥
Z
W

|z − 1|2dνt =
Z
W

(z2 − 2z + 1)dνt = 2(1−
Z
W

zdνt).

Now Z
W

zdνt =

Z
W

e
1
2ta·x− 1

4t |a|2dνt = e
t
8 |a|2− 1

4t |a|2 = e−
1
8t |a|2

from which it follows that

(5.7) kνat − νtk ≥ 2(1− e−
1
8 |a|2).

This proof is of course not rigorous. However the idea is right and in fact the same
type of computations show

kνat − νtk = sup {(νat − νt) (f) : f bounded and measurable}
≥ sup {(νat − νt) (f) : f(x) = F (x1, . . . , xN ) bounded and measurable}
=

Z
W

¯̄̄
e
1
t a

N ·x− 1
2t |aN |2 − 1

¯̄̄
dνt(x) ≥ 2(1− e−

1
8t |aN |2).

Letting N → ∞ in this estimate shows that Eq. (5.7) is indeed valid and in
particular if a /∈ 2 we have kνat − νtk = 2.
Corollary 5.8 (A Cameron type integration by parts formula). For h1, . . . , hn ∈ 2

and f, g ∈ FC∞c (W ),

νt ((∂h1 . . . ∂hnf) · g) = νt
¡
f · ∂∗hn . . . ∂∗h1g

¢
where ∂∗h = −∂h + t−1Mh·x and ∂h (k · x) is to be interpreted as k · h.
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Proof. (Sketch.) From Eq. (5.5) and (5.6),Z
W

f(x+ sh)g(x+ sh)dνt (x) =

Z
W

f(x)g(x)e
s
t h·x− s2

2t |h|2dνt(x).

Differentiating this equation in s and evaluating at s = 0 showsZ
W

[∂hf(x)g(x) + f(x)∂hg(x)] dνt (x) =

Z
W

1

t
(h · x) f(x)g(x)dνt(x),

i.e. ∂∗h = −∂h + t−1Mh·x. The analytic details are left to the reader or see, for
example, [22].

6. Classical Wiener Measure

Notation 6.1 (Path Spaces). Given a pointed Riemannian manifold (M, g, o), let

(6.1) W (M) = {σ ∈ C ([0, 1]→M) |σ (0) = o} .
For those σ ∈W (M) which are absolutely continuous, let

(6.2) EM (σ) :=

Z 1

0

|σ0(s)|2g ds

denote the energy of σ. The space of finite energy paths H(M) is given by

(6.3) H(M) := {σ ∈W (M)|σ is absolutely continuous and EM (σ) <∞} .
Notation 6.2. IfM is an inner product space we will always take o = 0 ∈M and g
to be the Riemannian metric associated to the inner product onM. The supremum
norm,

kωk = max
s∈[0,1]

|ω(s)| ,
makes theWiener space W (M) into a Banach space. The Cameron — Martin
space H(M) becomes a Hilbert space when equipped with the inner product

(h, k) = (h, k)H(M) :=

Z 1

0

(h0(s), k0(s))M ds for all h, k ∈ H(M).

The associated Hilbertian norm h→p
(h, h) on H(M) will be denoted by |h| .

Definition 6.3. A function f : W (M) → C is a Ck — cylinder function (f ∈
FCk(W )) provided there exists a partition

(6.4) π := {0 = s0 < s1 < · · · < sn = 1}
of [0, 1] and a smooth function F ∈ Ck(Mn) such that

(6.5) f(σ) = F (σ(s1), . . . , σ(sn)) = F (σ|π).
As usual we will say f ∈ FCk

c (W (M)) or f ∈ FBCk(W (M)) if F ∈ Ck
c (M

n) or
F ∈ BCk(Mn) respectively.

For the rest of this section we are going to take M = Rd. (The case where M is
a more general manifold will be considered in Sections 7 and 8 below.)

Definition 6.4 (Differential Operators). For f ∈ C2(W (Rd)) and h ∈ H(Rd)
let ∂hf(ω) := d

dt |0f(ω + th) and gradf(ω) ∈ H(Rd) for the unique element in
H(Rd) such that ∂hf(ω) = (gradf(ω), h) for all h ∈ H(Rd). We also let S be an
orthonormal basis for H (Rn) and define 4H(Rd)f :=

P
h∈S ∂

2
hf whenever the sums

converge.
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See Proposition 6.11 below for an explicit description of gradf and 4H(Rd)f
when f is a cylinder function. The existence (and the hard) part of the following
theorem is due to N. Wiener [58].

Theorem 6.5 (Wiener 1923). There exits a unique heat kernel sequence3 {νt}t>0
based at 0 ∈W =W (Rd) satisfying

(1) νt(W ) = 1 for all t > 0 and
(2) for all f ∈ FBC2(W ), the function t→ νt(f) is continuously differentiable,

d

dt
νt(f) =

1

2
νt(4H(Rd)f) and lim

t↓0
νt(f) = f(0).

Remark 6.6. The existence proof in subsection 6.3 below will show that νt is con-
centrated on α — Hölder continuous paths for any α < 1/2. It is also well known
that νt — lives on the set of nowhere differentiable paths. It is not our aim here to
study the sample path properties of νt in any detail. The reader interested in such
matters is referred to the very nice survey article of Y. Peres’ [54].

Before going into the proof of Theorem 6.5 we need to pause to develop the
differential calculus onH(Rd). The uniqueness assertion will be proved in subsection
6.2 and the existence assertion will be proved in subsection 6.3 below.

6.1. Differential Calculus on H. In what follows, for notational simplicity, we
will often state and/or prove results in the special case, d = 1 in which case we
write W = W (R1) and H = H(R1). The reader is invited to fill in the details for
d > 1 which are omitted.

Proposition 6.7. Let G(s, t) = min(s, t) = s ∧ t. Then G is the reproducing
kernel for H, i.e. (G(s, ·), h) = h(s) for all s ∈ [0, 1] and h ∈ H.

Proof. For h ∈ H,

h(t) =

Z t

0

h0(s)ds =
Z 1

0

1s≤th0(s)ds = (G(s, ·), h)
where

∂G(s, t)/∂s = 1s≤t
and therefore G(s, t) =

R s
0
1r≤tdr = s ∧ t.

Remark 6.8. G(s, t) is the Green’s function for −d2/ds2 with Dirichlet boundary
conditions at 0 and Neumann boundary conditions at 1.

Corollary 6.9 (A simple Sobolev embedding Theorem). The inclusion map i :
H →W is continuous and in fact

khkW ≤ khkH for all h ∈ H.

Proof. By Proposition 6.7, for s ∈ [0, 1],
|h(s)| = |(G(s, ·), h)H | ≤ kG(s, ·)kH khkH .

This proves the Proposition since

kG(s, ·)k2H =
Z 1

0

(1t≤s)
2 dt = s ≤ 1.

3Wiener did not state the theorem this way, but the results are equivalent.
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Corollary 6.10. Let S ⊂ H be any Orthonormal basis for H. ThenX
h∈S

h(s)h(t) = G(s, t).

Proof. The proof is simply Parsavel’s equality along with the reproducing kernel
properties of G,X

h∈S
h(s)h(t) =

X
h∈S

(G(s, ·), h)(G(t, ·), h) = (G(s, ·), G(t, ·)) = G(s, t).

Proposition 6.11. Suppose that f ∈ FC2(W ), then

(6.6) gradf(ω) =
nX
i=1

∂iF (ω(s1), . . . , ω(sn))G(si, ·)

and

(6.7) ∆Hf(ω) =
nX

i,j=1

G(si, sj)∂i∂jF (ω(s1), . . . , ω(sn)) =: ∆πF (ω|π).

If f is expressed as

(6.8) f(ω) = F (δ1ω, . . . , δnω)

where δiω = ω(si)− ω(si−1) for i = 1, 2, . . . , n, then (with δi := si − si−1)

(6.9) ∆Hf(ω) =
nX
i=1

δi
¡
∂2i F

¢
(δ1ω, . . . , δnω).

Proof. By definition,

∂hf(ω) =
nX
i=1

h(si)∂iF (ω(s1), . . . , ω(sn)) =
nX
i=1

∂iF (ω(s1), . . . , ω(sn)) (G(si, ·), h)

and

∆Hf(ω) =
X
h∈S

∂2hf(ω) =
X
h∈S

nX
i,j=1

h(si)h(sj)∂i∂jF (ω(s1), . . . , ω(sn))

=
nX

i,j=1

G(si, sj)∂i∂jF (ω(s1), . . . , ω(sn))

which proves Eqs. (6.6) and (6.7). Similarly, if f is given as in Eq. (6.8), then

∂hf(ω) =
nX
i=1

(h(si)− h(si−1)) ∂iF (δ1ω, . . . , δnω)

gradf(ω) =
nX
i=1

∂iF (δ1ω, . . . , δnω) (G(si, ·)−G(si, ·))
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and

∆Hf(ω) =
X
h∈S

∂2hf(ω) =
X
h∈S

nX
i,j=1

(h(si)− h(si−1)) (h(sj)− h(sj−1)) ∂i∂jF (δ1ω, . . . , δnω)

=
nX

i,j=1

(si ∧ sj − si ∧ sj−1 − si−1 ∧ sj + si−1 ∧ sj−1) ∂i∂jF (δ1ω, . . . , δnω)

=
nX
i=1

δi∂
2
i F (δ1ω, . . . , δnω).

Remark 6.12. The operators ∆π are all elliptic. Indeed, if ξ = (ξi)
n
i=1 ∈ Rn then

nX
i,j=1

G(si, sj)ξiξj =
nX

i,j=1

(G(si, ·),G(si, ·))ξiξj =
°°°°°

nX
i=1

G(si, ·)ξi
°°°°°
2

≥ 0

with equality iff h(s) =
Pn

i=1G(si, s)ξi is zero. This would imply

0 = h0(s) =
nX
i=1

1s≤siξi for s /∈ π

from which it easily follows that ξ = 0.

Proposition 6.13. Let π be a partition of [0, 1] as in Eq. (6.4), F ∈ C2c (Rn), then

(6.10) et∆π/2F (0) =

Z
Rn

F (x1, . . . , xn)

"
nY
i=1

pt(si−si−1)(xi−1, xi)

#
dx1 · · · dxn

where p is the heat kernel on Rd as in Proposition 2.5 and ∆π is defined in Eq.
(6.7).

Proof. If F (x1, . . . , xn) = G(x1, x2 − x1 . . . , xn − xn−1) then

(6.11) ∆πF (x1, . . . , xn) =
nX
i=1

(si − si−1)
¡
∂2iG

¢
(x1, x2 − x1 . . . , xn − xn−1).

This may be deduced from Proposition 6.11 or proved directly as follows. By the
chain rule

∂iF (x1, . . . , xn) = [(∂i − ∂i+1)G] (x1, x2 − x1 . . . , xn − xn−1)

where by convention ∂n+1 = 0. Hence, with x = (x1, . . . , xn) and y = (x1, x2 −
x1 . . . , xn − xn−1)

∆πF (x) =
X
i,j

si ∧ sj [(∂i − ∂i+1) (∂j − ∂j+1)G] (y)

= 2
X
i<j

si [(∂i − ∂i+1) (∂j − ∂j+1)G] (y) +
X
i

si

h
(∂i − ∂i+1)

2G
i
(y)

= 2
X
i

si [(∂i − ∂i+1) ∂i+1G] (y) +
X
i

si

h
(∂i − ∂i+1)

2
G
i
(y)
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where we have used a telescoping series to compute the sum on j. Elementary
algebra now shows

∆πF (x) =
X
i

si [(∂i − ∂i+1) (∂i + ∂i+1)G] (y) =
X
i

si
£¡
∂2i − ∂2i+1

¢
G
¤
(y)

which is equivalent to Eq. (6.11) after re-indexing the second term in the last sum.
A consequence of Eq. (6.11) is³

et∆π/2F
´
(0) =

³
e
t
2

Pn
i=1(si−si−1)∂2iG

´
(0)

=

Z
(Rd)n

G(y1, . . . , yn)
kY
i=1

p(si−si−1)t(yi)dy1 · · · dyn.

=

Z
(Rd)n

F (y1, y1 + y2, . . . , xn)
kY
i=1

p(si−si−1)t(yi)dy1 · · · dyn.

Making the change of variable y = (x1, x2 − x1 . . . , xn − xn−1) in the previous
integral gives³
et∆π/2F

´
(0) =

Z
(Rd)n

G(x1, x2 − x1 . . . , xn − xn−1)
kY
i=1

p(si−si−1)t(xi − xi−1)dx1 · · · dxn

=

Z
(Rd)n

F (x1, x2 − x1 . . . , xn − xn−1)
kY
i=1

p(si−si−1)t(xi − xi−1)dx1 · · · dxn

as desired.

6.2. Properties of {νt}t>0. In this section we will develop some of the basic prop-
erties of the heat kernel sequence {νt}t>0 in Theorem 6.5.

Proposition 6.14 (Uniqueness of Heat Kernel Measures on W ). Suppose {νt}t>0
is a heat kernel sequence based at 0 ∈ W = W (Rd) as in Theorem 6.5 and f ∈
BFC2(W ) is a cylinder function as in Eq. (6.5) then

(6.12) νt(f) =

Z
(Rd)n

F (x1, . . . , xn)

"
nY
i=1

pt(si−si−1)(xi−1, xi)

#
dx1 · · · dxn.

In particular if {νt}t>0 exists then it is uniquely determined by Eq. (6.12).
Proof. The proof follows in the same manner as the proof of uniqueness in

Proposition 5.4 and making use of Proposition 6.13.
Let E(x) :=

R 1
0
|x0(s)|2 ds be the energy of a path x ∈ H(Rd), then (as in Remark

4.5) we have informally

(6.13) “νt(dx) =
1

Zt
e−

1
2tE(x)dmH(x).”

Proposition 6.17 below makes this formula precise.

Notation 6.15. To each partition π of [0, 1] let

Hπ(Rd) :=
©
ω ∈ H(Rd) : ω00(s) = 0 if s /∈ π

ª
and for ω ∈ W

¡
Rd
¢
let ωπ ∈ Hπ(Rd) denote the unique element of Hπ(Rd) such

that ωπ(s) = ω(s) for all s ∈ π.



HEAT KERNELS MEASURES AND INFINITE DIMENSIONAL ANALYSIS. 21

Lemma 6.16. The mapping h ∈ H
¡
Rd
¢ → hπ ∈ Hπ(Rd) ⊂ H(Rd) is orthogonal

projection onto Hπ(Rd).

Proof. Since it is clear that hπ = h for h ∈ Hπ

¡
Rd
¢
, we need only prove

(hπ, k) = (h, kπ) for all h, k ∈ H
¡
Rd
¢
. If π is a partition as in Eq. (6.4), then

h0π =
n−1X
i=0

h(si+1)− h(si)

si+1 − si
1(si,si+1]

and hence

(hπ, k) =
n−1X
i=0

h(si+1)− h(si)

si+1 − si
· (k(si+1)− k(si))

which is clearly symmetric in h and k.

Proposition 6.17. Suppose {νt}t>0 is a heat kernel sequence based at 0 ∈ W =

W (Rd), π is a partition of [0, 1] and f is a cylinder function written as f(ω) =
F (ωπ) with ωπ as in Notation 6.15. Let mπ denote a Lebesgue measure on Hπ(Rd)
(i.e. any non-trivial translation invariant measure on Hπ(Rd)) then

(6.14)
Z
W (Rd)

f(ω)dνt(ω) =
1

Zπ(t)

Z
Hπ(Rd)

f(h)e−
1
2tE(h)dmπ(h)

where Zπ(t) is a normalization constant chosen so that

(6.15) dνπt (h) :=
1

Zπ(t)
e−

1
2tE(h)dmπ(h)

is a probability measure.

Proof. First notice that the measure νπt is independent of the possible choices of
mπ since translation invariant measures are unique up to a multiplicative constant
and this ambiguity of the constant is cancelled by the normalization constant Zπ(t).
For each x ∈ ¡Rd¢n let hx denote the unique element ofH(Rd) such that hx(si) = xi
for i = 1, 2, . . . n. The mapping x ∈ ¡Rd¢n → hx ∈ Hπ(Rd) is a vector space
isomorphism with the property that (with δi := si − si−1 and δix := xi − xi−1)

E(hx) =
nX
i=1

|xi − xi−1|2
δ2i

δi =
nX
i=1

|δix|2
δi

and hence
nY
i=1

pt(si−si−1)(xi−1, xi) =
n−1Y
i=0

1

(2πtδi)
d/2

e
− 1
2t∆i

|δix|2

=
n−1Y
i=0

1

(2πtδi)
d/2

· e− 1
2tE(hx).

So if we now fix mπ by requiring mπ to be the push forward of Lebesgue measure
on
¡
Rd
¢n
under the map x→ hx we have shownZ

W (Rd)
f(ω)dνt(ω) =

Z
(Rd)n

F (x1, . . . , xn)
nY
i=1

pt(si−si−1)(xi−1, xi)dx1 · · · dxn

=

Z
Hπ(Rd)

f(h)
n−1Y
i=0

1

(2πtδi)
d/2

· e− 1
2tE(hx)dmπ(h).
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Corollary 6.18. Let f be a bounded and continuous function on W
¡
Rd
¢
relative

to the sup-norm topology, thenZ
W (Rd)

f(ω)dνt(ω) = lim
|π|→0

Z
Hπ(Rd)

f(h)dνπt (h).

Proof. For each partition π and ω ∈W (Rd) let ωπ ∈ Hπ(Rd) be as in Notation
6.15. Then by uniform continuity, ωπ(s) → ω(s) uniformly in s as |π| → 0 and so
by the dominated convergence theorem,Z

W (Rd)
f(ω)dνt(ω) = lim

|π|→0

Z
W (Rd)

f(ωπ)dνt(ω) = lim
|π|→0

Z
Hπ(Rd)

f(h)dνπt (h)

wherein we have used Proposition 6.17 for the second equality.

Exercise 6.1. Use the following outline to show νt ⊥ νs if s 6= t. To simplify
notation assume d = 1. For n ∈ N let πn := {k2−n : k = 0, 1, 2 . . . , 2n} and define

ξk(ω) =
¯̄
ω
¡
(k + 1) 2−n

¢− ω
¡
k2−n

¢¯̄2 − 2−nt
and

Sn(ω) :=
2n−1X
k=0

¯̄
ω
¡
(k + 1) · 2−n¢− ω

¡
k · 2−n¢¯̄2 .

(1) Show νt(ξk) = 0, νt(ξkξj) = 0 if k 6= j and νt(ξ
2
k) = 3 · 2−2nt2.

(2) Use 1. to conclude for any > 0,

νt (|Sn − t| > ) ≤ −2
Z
W

|Sn(ω)− t|2 dνt(ω) = 3 · 2−nt2 −2.

(3) Use 2. to conclude for any > 0 that
∞X
n=1

1|Sn(ω)−t|> <∞ for νt — a.e. ω.

(4) Use 3. to conclude that νt(Wt) = 1 where

Wt :=

(
ω ∈W (R) : lim

n→∞

2n−1X
k=0

¯̄
ω
¡
(k + 1) 2−n

¢− ω
¡
k2−n

¢¯̄2
= t

)
.

(5) Observe that Wt ∩Ws = ∅ if s 6= t.

Proposition 6.19 (Itô integral). Suppose h ∈ H(Rd), π is a partition of [0, 1] as
in Eq. (6.4) and for ω ∈ W

¡
Rd
¢
let ωπ ∈ Hπ

¡
Rd
¢
be as in Notation 6.15. Then

for each t > 0, the limit of the function, ω → (h, ωπ), exist in L2(νt) as |π| → 0.
By abuse of notation we will write this L2(νt) limit as

L2(νt) — lim
|π|→0

(h, ωπ) =: (h, ω) =

Z 1

0

h0(s) · dω(s).

(Warning: As in Lemma 5.6, the limit will in general depend on t > 0.) Further-
more, for all h ∈ H

¡
Rd
¢
and bounded measurable functions F : R→ R,

(6.16)
Z
W (Rd)

F ((h, ω)) dνt(ω) =
1√
2π

Z
R
F
³√

t |h|x
´
e−x

2/2dx.
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Proof. Before starting the proof let us notice that

(6.17) (h, ωπ) =

Z 1

0

h0(s) · ω0π(s)ds =
n−1X
i=0

·
h(si+1)− h(si)

si+1 − si

¸
· [ω(si+1)− ω(si)] .

For h ∈ ∪πHπ

¡
Rd
¢
(the union being over all partitions of [0, 1]) with

(6.18) h0(s) =
n−1X
i=0

ai1(si,si+1](s) for a.e. s

let

nh(ω) :=
n−1X
i=0

ai · [ω(si+1)− ω(si)] .

The reader is invited to check that nh(ω) is well defined independent of how h0 is
written in the form given in Eq. (6.18). Making use of Propositions 6.13 and 6.14,
we have for a, b ∈ Rd,Z

W (Rd)
a · [ω(si+1)− ω(si)] b · [ω(sj+1)− ω(sj)] dνt(ω) = tδija · b (si+1 − si) .

and therefore Z
W (Rd)

[nh(ω)]
2
dνt(ω) = t

n−1X
i=0

|ai|2 (si+1 − si) = t |h|2 .

This shows that the map

h ∈ ∪πHπ

¡
Rd
¢→ nh ∈ L2(νt)

is a bounded linear map and hence extends uniquely to H
¡
Rd
¢
= ∪πHπ (Rd). If

h ∈ H
¡
Rd
¢
is chosen so that hπ ∈ Hπ

¡
Rd
¢
with hπ(s) = h(s) for all s ∈ π, then

Eq. (6.17) shows nhπ(ω) = (h, ωπ) . So to finish the proof it suffices to prove, for
all h ∈ H, hπ → h in H as |π|→ 0.
When k ∈ C1

¡
[0, 1],Rd

¢ ∩H ¡
Rd
¢
, k0π → k0 uniformly and therefore kπ → k in

H as |π|→ 0. For general h ∈ H
¡
Rd
¢
and k ∈ C1

¡
[0, 1],Rd

¢ ∩H ¡
Rd
¢
we have

lim sup
|π|→∞

|h− hπ| ≤ lim sup
|π|→∞

(|h− k|+ |k − kπ|+ |(k − h)π|)

≤ |h− k|+ lim sup
|π|→∞

|(k − h)π| ≤ 2 |h− k|(6.19)

wherein the last equality we have used Lemma 6.16 to conclude |(k − h)π| ≤ |h− k| .
Letting k → h in Eq. (6.19) completes the proof of existence of the L2(νt) — limit.
Since probability measures on R are uniquely characterized by their Fourier

transform, it suffices to to prove Eq. (6.16) in the case that F (x) = eiλx for
some λ ∈ R. Now choose a sequence of partitions πn such that |πn| → 0 and
limn→∞ (h, ωπn) = (h, ω) for νt — a.e. ω. Then using Lemma 4.4 and Corollary
6.18,Z
W (Rd)

eiλ(h,ω)dνt(ω) = lim
n→∞

Z
W (Rd)

eiλ(h,ωπn )dνt(ω) = lim
n→∞

Z
Hπn (Rd)

eiλ(h,k)dνπnt (k)

= lim
n→∞ e−

t
2λ

2|hπn |2 = e−
t
2λ

2|h|2 =
1√
2π

Z
R
eiλ(

√
t|h|x)e−x

2/2dx.

Items 2. and 3. of the following theorem may be found in [7, 8, 9].
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Theorem 6.20 (Cameron — Martin Theorem and Integration by Parts Formula).
For h ∈W

¡
Rd
¢
, let νht := νt(·− h), i.e.Z

W (Rd)
f(ω)dνht (ω) =

Z
W (Rd)

f(ω)νt (dω − h) :=

Z
W (Rd)

f(ω + h)dνt (ω) .

(1) If h ∈W
¡
Rd
¢ \H ¡

Rd
¢
then νht ⊥ νt.

(2) If h ∈ H
¡
Rd
¢
then νht ¿ νt and

dνht
dνt

(ω) = e
1
t (h,ω)− 1

2t |h|2 = exp
µ
1

t

Z 1

0

h0(s) · dω(s)− 1

2t
|h|2

¶
.

(3) For all h ∈ H
¡
Rd
¢
, ∂∗h =

¡−∂h + 1
t (h, ω)

¢
, i.e.Z

W (Rd)
∂hf(ω) · g(ω)dνt(ω) =

Z
W (Rd)

f(ω)

µ
−∂h + 1

t
(h, ω)

¶
g(ω)dνt(ω).

In particular νt is a smooth measure.

Proof. We will not give the proof of item 1. here which is similar to the
proof of the corresponding result in Proposition 5.7. For item 2., first suppose
f ∈ BC(W

¡
Rd
¢
), h ∈ Hπ

¡
Rd
¢
for some partition π of [0, 1] and let πn be a

sequence of partitions containing π such that |πn| ↓ 0. Since Hπ

¡
Rd
¢ ⊂ Hπn

¡
Rd
¢
,

by Corollary 6.18 and the translation invariance of finite dimensional Lebesgue
measure,Z

W (Rd)
f(ω + h)dνt (ω) = lim

n→∞

Z
Hπn (Rd)

f(k + h)dνπnt (k)

= lim
n→∞

Z
Hπn (Rd)

f(k + h)
1

Zπn(t)
e−

1
2tE(k)dmπn(k)

= lim
n→∞

Z
Hπn (Rd)

f(k)
1

Zπn(t)
e−

1
2tE(k−h)dmπn(k)

= lim
n→∞

Z
Hπn (Rd)

f(k)e−
1
2t [−2(h,k)+|h|2]dνπnt (k)

=

Z
W (Rd)

f(ω)e−
1
2t [−2(h,ω)+|h|2]dνt (ω) .

For general h ∈ H
¡
Rd
¢
, the previous result proves

(6.20)
Z
W (Rd)

f(ω + hπ)dνt (ω) =

Z
W (Rd)

f(ω)e
1
t (hπ,ω)− 1

2t |hπ|2dνt (ω) .

By the dominated convergence theorem,

(6.21) lim
|π|→0

Z
W (Rd)

f(ω + hπ)dνt (ω) =

Z
W (Rd)

f(ω + h)dνt (ω)

while for any p ≥ 1,

π =

Z
W (Rd)

¯̄̄
e−

1
2t [−2(h,ω)+|h|2] − e−

1
2t [−2(hπ,ω)+|hπ|2]

¯̄̄p
dνt (ω)

=

Z
W (Rd)

e
p
t (h,ω)− p

2t |h|2
¯̄̄
1− e

p
t (hπ−h,ω)− p

2t [|hπ|2−|h|2]
¯̄̄p
dνt (ω) .
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Hence by the Cauchy Schwarz inequality and Eq. (6.16), 2
π ≤ ABπ where

A =

Z
W (Rd)

e
2p
t (h,ω)− 2p

2t |h|2dνt (ω) =
1√
2π

Z
R
e
2p
t

√
t|h|x− 2p

2t |h|2e−x
2/2dx <∞

and

Bπ =

Z
W (Rd)

¯̄̄
1− e

p
t (hπ−h,ω)− p

2t [|hπ|2−|h|2]
¯̄̄2p

dνt (ω)

=
1√
2π

Z
R

¯̄̄
1− e

p
t

√
t|hπ−h|x− p

2t [|hπ|2−|h|2]
¯̄̄2
e−x

2/2dx.

The dominated convergence theorem now shows lim|π|→0Bπ = 0 and hence π → 0
so that
(6.22)

lim
|π|→0

Z
W (Rd)

f(ω)e
1
t (hπ,ω)− 1

2t |hπ|2dνt (ω) =
Z
W (Rd)

f(ω)e
1
t (h,ω)− 1

2t |h|2dνt (ω) .

Combining Eqs. (6.20) — (6.22) shows

(6.23)
Z
W (Rd)

f(ω + h)dνt (ω) =

Z
W (Rd)

f(ω)e
1
t (h,ω)− 1

2t |h|2dνt (ω)

for all h ∈ H
¡
Rd
¢
and f ∈ BC

¡
W
¡
Rd
¢¢
. By general measure theoretic arguments

it now follows that Eq. (6.23) holds for all bounded measurable functions f on
W
¡
Rd
¢
and this proves item 2. Lastly item 3. is proved similarly to the proof of

Corollary 5.8.

Notation 6.21. It is customary to call the measure µ := ν1 —Wiener measure
on W

¡
Rd
¢
.

Remark 6.22. From Proposition 6.17, it is easily shown that dνt is the measure on
W
¡
Rd
¢
determined byZ

W (Rd)
f(ω)dνt(ω) =

Z
W (Rd)

f(
√
tω)dµ(ω)

and this equation clearly shows that

lim
t↓0

νt(f) = lim
t↓0

Z
W (Rd)

f(
√
tω)dµ(ω) = f(0)

for all f ∈ BC(W
¡
Rd
¢
). It is also interesting to note that we can deduce from

Theorem 6.20 that ∂tνt(f) = νt(
1
2∆Hf). Indeed let f ∈ FBC2(W ¡

Rd
¢
) be a

cylinder function and S be an orthonormal basis for H
¡
Rd
¢
, then

∂tνt(f) =

Z
W (Rd)

1

2
√
t
(∇f(√tω), ω)dµ(ω) =

X
h∈S

Z
W (Rd)

1

2
√
t
(∇f(√tω), h)(h, ω)dµ(ω)

=
X
h∈S

Z
W (Rd)

1

2
√
t
(∂hf) (

√
tω)∂∗h1dµ(ω) =

X
h∈S

Z
W (Rd)

1

2
√
t

√
t
¡
∂2hf

¢
(
√
tω)dµ(ω)

= νt(
1

2
∆Hf).
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6.3. Construction of {νt}t>0 on W
¡
Rd
¢
. Our construction of νt will be based

on the ideas in Proposition 6.17 and Corollary 6.18.

Notation 6.23. For each n ∈ N0 let
πn :=

©
k2−n : k = 0, 1, 2 . . . , 2n

ª
and let V0 := Hπ0

¡
Rd
¢
=
©
h ∈ H(Rd) : h00 = 0

ª
and for n ≥ 1 let Vn denote the

orthogonal complement of Hπn−1(Rd) in Hπn(Rd).

Figure 1. This function is a typical element of V3. It is the func-
tion h3 as described in Lemma 6.24 below with n = 3.

Lemma 6.24. Using the notation above:

(1) Suppose π is a partition of [0, 1] then h ∈ Hπ(Rd)⊥ iff h|π = 0.
(2) For n ≥ 1, Vn =

©
h ∈ Hπn(Rd) : h|πn−1 = 0

ª
.

(3) H
¡
Rd
¢
= ⊕∞n=0Vn with the sum being the Hilbert space orthogonal direct

sum.
(4) Given n ≥ 1 and 0 ≤ k < 2n−1, let hk ∈ Vn (R) be the unique “tent”

function (see Figure 1) such that

hk|[0,k2−n+1]∪[(k+1)2−n+1,1] = 0 and hk((k + 12)2
−n+1) = 2−

n+1
2 .

Then
©
hkej : 0 ≤ k < 2n−1, j = 1, . . . , d

ª
is an orthonormal basis for Vn

¡
Rd
¢
.

Proof. Items 1. and 2. Suppose h ∈ Hπ(Rd)⊥, s ∈ π and a ∈ Rd. Let
k(t) = G(s, t)a, then k ∈ Hπ(Rd) and hence 0 = (h, k) = h(s) · a from which it
follows h|π = 0. Any easy computation using the fundamental theorem of calculus
shows that if h|π = 0 and k ∈ Hπ(Rd), then (h, k) = 0.
Item 3. If m 6= n, Vn and Vm are orthogonal subspaces and Hπn

¡
Rd
¢
= ⊕nk=0Vk

by construction. If h ∈ H
¡
Rd
¢
and h ⊥ Vn for all n, then h ⊥ Hπn

¡
Rd
¢
for all n.

So by item 1., h(s) = 0 on all dyadic rationals in [0, 1]. Since the later set is dense
in [0, 1] and h is continuous, h ≡ 0 and this completes the proof of item 3.
Item 4. is a simple verification left to the reader.
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Lemma 6.25. Let {νnt }t>0 denote the heat kernel sequence on Vn := Vn (R) at 0
and for q ∈ [1,∞) let

(6.24) C(q) :=

µ
1√
2π

Z
R
|x|q e− 1

2x
2

dx

¶1/q
=
√
2

·
π−

1
2Γ

µ
q + 1

2

¶¸1/q
<∞.

Then for any ρ, p ∈ [1,∞),

(6.25)
µZ

Vn

khkp∞ dνnt (h)

¶1/p
≤ C(pρ)t1/22−n(

1
2− 1

ρp ).

Moreover for α ∈ (0, 1) let

khkα := sup
½ |h(t)− h(s)|

|t− s|α : t, s ∈ [0, 1] with t 6= s

¾
then we have

(6.26)
µZ

Vn

khkpα dνnt (h)
¶1/p

≤ C(pρ)t1/22−(n−1)(
1
2−α− 1

pρ).

Proof. Let
©
hk : k < 2n−1

ª
be as in Lemma 6.24 and set ξk (h) := (hk, h). Then

h =
P

k<2n−1 ξk (h)hk for all h ∈ Vn. Since the sets {hk 6= 0}2
n−1

k=0 are disjoint and

khkk∞ = 2−
n+1
2 , it follows that khk∞ = 2−

n+1
2 Mn(h) where

Mn(h) := max
©|ξk (h)| : k < 2n−1

ª
.

For any q ≥ 1,µZ
Vn

Mq
n(h)dν

n
t (h)

¶1/q
≤
ÃZ

Vn

X
k<2n−1

|ξk (h)|q dνnt (h)
!1/q

=

µ
2n−1

1√
2πt

Z
R
|x|q e− 1

2tx
2

dx

¶1/q
= C(q)t1/22(n−1)/q(6.27)

where C(q) is defined in Eq. (6.24). (The second equality in Eq. (6.24)is a conse-
quence of the integrand being even and the change of variables u = x2/2.)
Therefore for any ρ, p ≥ 1,µZ
Vn

khkp∞ dνnt (h)

¶1/p
≤
µZ

Vn

khkpρ∞ dνnt (h)

¶1/pρ
≤ 2−n+1

2

µZ
Vn

Mpρ
n (h)dν

n
t (h)

¶1/pρ
≤ C(pρ)t1/22

n−1
pρ 2−

n+1
2 ≤ C(pρ)t1/22

n
pρ 2−

n
2

which proves Eq. (6.25).

Since
°°°ḣk°°°∞ = 2−

n+1
2 /2−n = 2

n−1
2 , ḣ =

P
k<2n−1 ξk (h) ḣk, and {ḣk} have

essentially disjoint supports, it follows that
°°°ḣ°°°

∞
= 2

n−1
2 Mn(h). By the mean

value theorem,

(6.28)
|h(t)− h(s)|
|t− s|α ≤

°°°ḣ°°°
∞
|t− s|

|t− s|α = 2
n−1
2 Mn(h) |t− s|1−α .

From Eq. (6.28), if |t− s| ≤ 2−(n−1),
|h(t)− h(s)|
|t− s|α ≤ 2n−12 Mn(h)2

−(1−α)(n−1) =Mn(h)2
−(n−1)( 12−α)
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and if |t− s| ≥ 2−(n−1),
|h(t)− h(s)|
|t− s|α ≤ 2 khk∞

2−α(n−1)
≤ 22

−n+1
2 Mn(h)

2−α(n−1)
=Mn(h)2

−(n−1)( 12−α).

The previous two equations imply

khkα ≤Mn(h)2
−(n−1)( 12−α).

Therefore for any ρ ≥ 1 (working as above)µZ
Vn

khkpα dνnt (h)
¶1/p

≤ 2−(n−1)( 12−α)
µZ

Vn

Mpρ
n (h)dν

n
t (h)

¶1/pρ
≤ 2−(n−1)( 12−α)C(pρ)t1/22n−1pρ

which proves Eq. (6.26).

6.3.1. Existence proof of {νt}t>0 in Theorem 6.5. Again for simplicity of notation
we carry out the proof when d = 1. Let Ω :=

Q∞
n=0 Vn, Pt :=

Q∞
n=0 ν

n
t (see Fact

5.1) and for n ∈ N let Sn : Ω → Vn be the natural projection onto Vn. Then by
construction, {Sn}∞n=0 are all mutually independent and (Sn)∗ Pt = νnt for each
n ∈ N. If α < 1

2 and p ∈ [1,∞) we may choose ρ ∈ [1,∞) such that 12 −α− 1
pρ > 0.

Then by Lemma 6.25,°°°°°
∞X
n=0

kSnkα
°°°°°
Lp(Pt)

≤
∞X
n=0

kkSnkαkLp(Pt) ≤ C(pρ)t1/2
∞X
n=0

2−(n−1)(
1
2−α− 1

pρ) <∞.

This shows: 1)
∞P
n=0

kSnkα < ∞ for Pt — a.e. and hence S :=
∞P
n=0

Sn exists in

C0,α ([0, 1]) off a Pt — null set and 2) S :=
∞P
n=0

Sn converges in Lp(Ω, Pt, C0,α ([0, 1]))

for all p ∈ [1,∞).
Thus the measure νt := S∗Pt is a probability measure on W which is supported

on C0,α ([0, 1]) for any α < 1/2 and satisfiesZ
W

kωkpα dνt(ω) <∞ for all p ∈ [1,∞).

It now only remains to show {νt}t>0 is the desired heat kernel sequence. To this
end, suppose that f ∈ FC2c (W ) with f(ω) = F (ωπ) for some partition π of [0, 1].
For each n, let pn :W → Hπn (R) be defined by pn(ω) = ωπn as defined in Notation
6.15. and set

gn(t) =

Z
W

f ◦ pndνt =
Z
W

f ◦ pn(
√
tω)dν1(ω).

Then one shows using Proposition 6.14 and the semigroup pt ∗ ps = pt+s that

gn(t)→ g(t) =

Z
W

fdνt = νt(f) and

ġn(t) =
1

2

Z
W

∆H (f ◦ pn) dνt → 1

2

Z
W

∆Hfdνt =
1

2
νt(∆Hf)

uniformly for t in compact subsets of (0,∞). Hence g is differentiable and d
dtνt(f) =

1
2νt(∆Hf) as desired.
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7. Path and Loop Group Extensions

In this section we will discuss the analogues of the results in Section 6 when
W
¡
Rd
¢
is replaced by the path W (K) or the loop space L(K) on a compact Lie

group K. Our description of the results in this section will be rather brief com-
pared to the previous sections. This is because to understand these heat kernel
measures on W (K) and L(K) one must understand “Wiener measure” on the path
space of W (K) and L(K) respectively. Section 8, describes these type of results
in the simpler setting where W (K) and L(K) are replaced by a finite dimensional
Riemannian manifold M.

Notation 7.1. Let K be a connected compact Lie group, k := TeK be the Lie
algebra of K, h·, ·ik be an AdK-invariant inner product on k and let g := gk denote
the unique bi-invariant Riemannian metric on K which agrees with h·, ·ik on k :=
TeK. To simplify notation later we will assume that K is a matrix group in which
case k may also be viewed as a matrix Lie algebra. (Since K is compact, this is no
restriction, see for example Theorem 4.1 on p. 136 in [6].) Elements A ∈ k will be
identified with the unique left invariant vector field on K agreeing with A at the
identity in K, i.e. if f ∈ C∞(K) then

Af(x) =
d

dt
|0f(xetA).

Example 7.2. As an example, let K = SO(3) be the group of 3×3 real orthogonal
matrices with determinant 1. The Lie algebra of K is k = so(3), the set of 3×3 real
skew symmetric matrices, and the inner product hA,Bik := −tr(AB) is an example
of an AdK — invariant inner product on k.

Our main interest here is the path and loop spaces built on K. In this section,
let M = K and o = e (e ∈ K is the identity element) in Notation 6.1.

Notation 7.3. For a compact Lie group K let

(7.1) W (K) := {σ ∈ C ([0, 1]→ K) |σ (0) = e} ,

(7.2) L (K) := {σ ∈W (K) |σ (1) = e}
and e ∈L (K) ⊂ W (K) denote the constant path at e ∈ K. As in Notation 6.1,
H(K) and H0(K) are the finite energy paths in W (K) and L(K) respectively. In
this case the energy EK on H(K) is given explicitly by

(7.3) EK(σ) :=

Z 1

0

¯̄̄
[σ(s)]−1 σ0(s)

¯̄̄2
k
ds =

Z 1

0

¯̄
σ0(s)σ(s)−1

¯̄2
k
ds,

wherein the last equality is a consequence of the AdK — invariance of h·, ·ik.
As usual we will refer to H(k) equipped with the Hilbertian inner product,

(7.4) (h, k) :=

Z 1

0

hh0(s), k0(s)i ds,

as the Cameron — Martin Hilbert space.

Remark 7.4. It is well known that H(K) is a Hilbert Lie group under pointwise
multiplication and that the map

(x, h) ∈ H(K)×H(k)→ Lx∗h ∈ T (H (K))
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is a trivialization of the tangent bundle of H(K). (We are using Lx : H(K) →
H(K) to denote left multiplication by x.) This trivialization induces a left-invariant
Riemannian metric (·, ·) on H(K) given explicitly by

(7.5) (Lx∗h,Lx∗h) =
Z 1

0

hh0(s), h0(s)ik ds ∀x ∈ H(K) and h ∈ H(k).

See Appendix A in [20] and the references therein for more details.

Definition 7.5 (Differential Operators). For h ∈ H(k) (h ∈ H0(k)), let h̃ denote the
left invariant vector field onW (K) (L(K)) such that h̃(e) = h, i.e. if f ∈ C1(W (K))¡
f ∈ C1(L(K))¢ and x ∈W (K) (x ∈ L(K)) then

h̃f(x) =
d

dt

¯̄̄̄
0

f
¡
xeth

¢
,

where
¡
xeth

¢
(s) = x(s)eth(s) for all s ∈ [0, 1]. For those f ∈ C2(W (K)) for which

the following sums converge (for example smooth cylinder functions), let

kgradfk2 :=
X
h∈S

³
h̃f
´2

and 4H(K)f :=
X
h∈S

h̃2f.

and

kgrad0fk2 :=
X
h∈S0

³
h̃f
´2

and 4H0(K)f :=
X
h∈S0

h̃2f.

Here S and S0 are orthonormal bases for H (k) and H0 (k) respectively.

Theorem 7.6 (Heat Kernel Measure). There exists unique heat kernel sequences
{νt}t>0 and {νet }t>0 based at e on W (K) and L(K) respectively, i.e. for all f ∈
FC2(W (K)),

∂tνt(f) =
1

2
νt
¡4H(K)f

¢
and ∂tν

e
t (f) =

1

2
νet
¡4H0(K)f

¢
and

lim
t↓0

νt(f) = f(e) = lim
t↓0

νet (f).

The reader is referred to Malliavin [52], Driver and Lohrenz [21], and Driver and
[18] for the existence of νt and νet .

Theorem 7.7 (Quasi-invariance for heat kernel measure). For each k ∈ H0(G)
which is null homotopic, νet is quasi-invariant under the right and left translations
by k.

Proof. See Driver [18, 19] and Fang [32, 33]. The free loop space version of
these results was carried out by Trevor Carson in [10, 11]. The reader should also
see Inahama [43] for generalizations of Theorem 7.8 and Corollary 7.7 to include
“Hs — metrics” on L(K) for s > 1/2.
Theorem 7.8 (Heat Kernel Logarithmic Sobolev Theorem, [21]). There is a con-
stant C <∞ such that

(7.6)
Z
L(K)

f2 log
f2

νet (f
2)
dνet ≤ C

Z
L(K)

kgrad0fk2 dνet

for all smooth cylinder functions f : L(K)→ R. (Eq. (7.6) when K = Rd is Gross’
original Logarithmic Sobolev inequality.)
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Proof. See Driver and Lohrenz [21], Carson [10, 11] and Fang [33].

Remark 7.9. Similar results hold for νt and they are much easier to prove.

8. Wiener measure on W (M) and its properties

The proofs of the results in Section 7 rely on properties of “Wiener measure” on
W (L(K)) and W (W (K)) to deduce properties about the heat kernel measures νt
and νet respectively. This section will describe some of the relevant results needed
in the simpler setting where L(K) (W (K)) is replaced by a finite dimensional
Riemannian manifold M with a fixed base point o ∈ M. We will continue to use
the notation and results from Section 2. In particular pt(x, y) denotes the heat
kernel on M as described just before Theorem 2.6. To simplify the exposition, let
us assumeM is compact. (Most of the results are valid under the weaker assumption
that M is complete and the Ricci curvature is bounded from below.)

Notation 8.1. To each σ ∈ H(M) and s ∈ [0, 1] let //s(σ) : ToM → Tσ(s)M denote
parallel translation along σ|[0,s] relative to the Levi-Civita covariant derivative
∇, i.e. //s(σ) is the unique solution to the ordinary differential equation

∇
ds

//s(σ) = 0 with //0(σ) = IdToM .

Also let ϕ∇ : H(ToM) −→ H(M) denote Cartan’s rolling map, defined by
σ = φ∇(ω) where σ is the unique solution to the functional differential equation

(8.1) σ0(s) = //s(σ)ω
0(s) with σ(0) = o.

Remark 8.2. SupposeM is the boundary of a smooth convex region in R3 equipped
with the metric inherited from R3. Then the curve σ in (8.1) has the interpretation
of being the curve on M found by rolling M along the curve ω in ToM. The reader
is invited to try this by rolling a balloon along a curve, ω, drawn on a chalk board.

Theorem 8.3 (Wiener measure). There exists a unique probability measure µW (M)

on W (M) such that for all cylinder functions f ∈ FC(W (M)), as described in
Definition 6.3,
(8.2)Z

W (M)

f(σ)dµW (M)(σ) =

Z
Mn

F (x1, . . . , xn)
n−1Y
i=0

p(si+1−si)(xi, xi+1)dx1 · · · dxn.

where x0 = o and dx denotes the volume measure on M.

Remark 8.4 (Warning). Comparing Eq. (8.2) with Eq. (6.12) with t = 1, the
reader may be lead to think that µW (M) is a heat kernel measure on W (M). This
is however not the case for general Riemannian manifolds M. Of course µW (M) is
intimately connected to the heat Kernel measures νt on M based at o ∈M by the
formula

(8.3) νt(F ) =

Z
W (M)

F (σ(t))dµM (σ) for all F ∈ C(M).

It is this relationship which is exploited to prove the results in Section 7.

It turns out that there is another (often more useful) way to construct the mea-
sure µW (M) which involves solving a “stochastic differential” equation. We will hide
this stochastic differential equation in the formulation given in the next theorem.
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Theorem 8.5 (Eelles & Elworthy stochastic rolling construction of µW (M)). Let
µW (Rd) be Wiener measure on W

¡
Rd
¢
as in Notation 6.21 and for ω ∈W

¡
Rd
¢
and

a partition π of [0, 1] let ωπ ∈ Hπ

¡
Rd
¢
be as defined in Notation 6.15. Then φ̃(ω) :=

lim|π|→0 φ(ωπ) exists for µW (Rd) — a.e. ω and moreover µW (M) = φ̃∗µW (Rd) :=

µW (Rd) ◦ φ̃−1. In words, µW (M) is the push — forward of Wiener measure µW (Rd)

on W
¡
Rd
¢
by the “stochastic” extension φ̃ of Cartan’s rolling map.

Proof. The fact that φ̃ has a “stochastic extension” seems to have first been
observed by Eells and Elworthy [23] who used ideas of Gangolli [36]. The relation-
ship of the stochastic development map to stochastic differential equations on the
orthogonal frame bundle O(M) of M is pointed out in Elworthy [24, 25, 26]. The
frame bundle point of view has also been developed by Malliavin, see for example
[50, 49, 51]. For a more detailed history of the stochastic development map, see pp.
156—157 in Elworthy [26].

Proposition 8.6 (Stochastic parallel translation). There exists a continuous
process, (σ, s) ∈ W (M) × [0, 1] → f//s(σ) ∈ End (ToM,TM) , such that f//s(σ) ∈
End

¡
ToM,Tσ(s)M

¢
for all σ and s andf//s(φ̃(ω)) = µW (Rd)— lim|π|→0

//s(φ (ωπ)),

where the limit is taken in the sense of µW (Rd) — measure.

Theorem 8.7 (Cameron-Martin Theorem for M). Let h ∈ H(ToM) and Xh be
the µW (M) — a.e. well defined vector field on W (M) given by

(8.4) Xh
s (σ) = //s(σ)h(s) for s ∈ [0, 1].

Then Xh admits a flow etX
h

on W (M) and this flow leaves µW (M) quasi-invariant.

This theorem first appeared in Driver [17] when h ∈ H (ToM) ∩ C1([0, 1], ToM)
and was soon extended to all h ∈ H (ToM) by E. Hsu [40, 41]. Other proofs may
also be found in [30, 48, 53].

Corollary 8.8 (Integration by Parts for µW (M)). For h ∈ H(ToM) and f ∈
FC1(W (M)) be as in Eq. (6.5), let

(Xhf)(σ) =
d

dt
|0f(etXh

(σ)) =
nX
i=1

(∇if(σ),X
h
si(σ))g =

nX
i=1

(∇if)(σ),f//si(σ)h(si))g.
Then Z

W(M)

Xhf dµW (M) =

Z
W(Rd)

f (φ̃(ω))zh(ω) dµW (Rd)(ω)

where

zh(ω) :=

Z 1

0

hh0(s) + 1
2
Ric//̃s(φ̃(ω))h

0(s), dω(s)i

and Ric//̃s(σ) := //̃s(σ)
−1Ricσ(s)//̃s(σ) ∈ End(ToM) and Ric is the Ricci tensor

on TM.

Proof. A special case of this type of theorem for f(σ) = F (σ(s)) for some
F ∈ C∞(M) first appeared in Bismut [4]. The result stated here was proved in
[17]. Other proofs of this corollary may be found in [1, 2, 18, 28, 29, 27, 30, 31, 40,
41, 46, 47, 48, 53]
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Example 8.9. WhenM = Rd then //s(σ)vo = vσ(s) for all v ∈ Rd and σ ∈W (Rd).
Thus Xh

s (σ) = (h(s))σ(s) and etX
h

(σ) = σ + th and so Theorem 8.7 becomes the
classical Cameron-Martin Theorem, see Theorem 6.20 with t = 1.

8.1. Path Integral Interpretation. In this subsection we will state a couple of
analogues of Proposition 6.17.

Notation 8.10. Given a partition π of [0, 1], let

Hπ(M) = {σ ∈ H(M) ∩ C2(I \ π) : ∇σ0(s)/ds = 0 for s /∈ π}
be the piecewise geodesics paths in H(M) which change directions only at the
partition points.

It is possible to check that Hπ(M) is a finite dimensional submanifold of H(M)
which is in fact diffeomorphic to

¡
Rd
¢n

. For σ ∈ Hπ(M), the tangent space
TσHπ(M) can be identified with elements X ∈ TσHπ(M) satisfying the Jacobi
equations on I \ π.
Definition 8.11 (The π—Metrics). For each partition π of [0, 1] as in Eq. (6.4) let
G1π be the metric on THπ(M) given by

(8.5) G1π(X,Y ) :=
nX
i=1

µ∇X(si−1+)
ds

,
∇Y (si−1+)

ds

¶
g

(si − si−1)

for allX,Y ∈ TσHπ(M) and σ ∈ Hπ(M). (We are writing
∇X(si−1+)

ds as a shorthand

for lims↓si−1
∇X(s)
ds .) Similarly, let G0π be the degenerate metric on Hπ(M) given by

(8.6) G0π(X,Y ) :=
nX
i=1

(X(si), Y (si))g (si − si−1) ,

for all X,Y ∈ TσHπ(M) and σ ∈ Hπ(M).

Remark 8.12. Notice that G1π and G
0
π are the Riemann sum approximations to the

metrics,

G1(X,Y ) :=

Z 1

0

µ∇X(s)
ds

,
∇Y (s)
ds

¶
g

ds and G0(X,Y ) :=

Z 1

0

(X(s), Y (s))g ds.

If Np is an oriented manifold equipped with a possibly degenerate Riemannian
metric G, let VolG denote the p—form on N determined by

(8.7) VolG(v1, v2, . . . , vp) :=

r
det

³
{G(vi, vj)}pi,j=1

´
,

where {v1, v2, . . . , vp} ⊂ TnN is an oriented basis and n ∈ N. We will identify a p—
form on N with the Radon measure induced by the linear functional f ∈ Cc(N)→R
N
fVolG.

Definition 8.13 (π — Volume Forms). Let VolG0
π
and VolG1

π
denote the volume

forms on Hπ(M) determined by G0π and G1π in accordance with equation (8.7).

Given the above definitions, there are now two natural finite dimensional “ap-
proximations” to µW (M) in equation (7.4) given in the following definition.
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Definition 8.14 (Approximates to Wiener Measure). For each partition π = {0 =
s0 < s1 < s2 < · · · < sn = 1} of [0, 1], let µ0π and µ1π denote measures on Hπ(M)
defined by

µ0π :=
1

Z0π
e−

1
2EMVolG0

π

and

µ1π =
1

Z1π
e−

1
2EMVolG1

π
,

where EM : H(M)→ [0,∞) is the energy functional defined in equation (6.2) and
Z0π and Z1π are normalization constants given by

(8.8) Z0π :=
nY
i=1

(
√
2π (si − si−1))d and Z1π := (2π)

dn/2.

Theorem 8.15 (Path Integral interpretation of µW (M)). Suppose that f :
W (M)→ R is bounded and continuous, then

(8.9) lim
|π|→0

Z
Hπ(M)

f(σ)dµ1π(σ) =

Z
W(M)

f(σ)dµW(M)(σ)

and

(8.10) lim
|π|→0

Z
Hπ(M)

f(σ)dµ0π(σ) =

Z
W(M)

f(σ)e−
1
6

R 1
0
Scal(σ(s))dsdµW(M)(σ),

where Scal is the scalar curvature of (M,g).

There is a large literature pertaining to results of the type in Theorem 8.15, see
for example [12, 57, 55, 35, 13, 44, 42, 59]. The version given here is contained in
Andersson and Driver [3].

9. Motivations

9.1. Malliavin’s Method. Malliavin’s idea is to embed questions about heat
kernels on finite dimensional manifolds into questions about Wiener measure on
W
¡
Rd
¢
. In the elliptic (i.e. Riemannian geometry) setting, Equation (8.3) along

with Corollary 8.8 may be used as a basis for this method. Malliavin’s idea also ex-
tends to certain hypoelliptic settings as well. Although this is a strong motivation,
I am more motivated by problems related to quantum mechanics and quantum field
theories to be described next.

9.2. Canonical Quantization & Path Integral Quantization. Let q(t) ∈ Rd
describe the motion of a particle of mass m in the force due to a potential function
V (q). Then q satisfies Newton’s equations of motion,

mq̈(t) = −∇V (q(t)).
The Lagrangian density associated to this equation is L(q, v) := 1

2m |v|2 − V (q),

the momentum p conjugate to v is given by p = ∂L(q,v)
∂v = mv and the associated

Hamiltonian is given by

H(q, p) = p · v − L(q, v) where p = mv,

i.e.

(9.1) H(q, p) =
1

m
p2 − 1

2m
p2 + V (q) =

1

2m
p2 + V (q) = E(q, v)
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where E(q, v) = 1
2m |v|2+V (q) is the energy of the “state,” (q, v). To quantize this

system, we should take K = L2(Rd, dm) for the quantum Hilbert space and replace
q by Q = Mq and p by P = −i~∇q. These are the usual “canonical quantization”
rules one learns in a quantum mechanics class. Let us summarize the usual story
in the following table.

CONCEPT CLASSICAL QUANTUM

CONFIGURATION Rd No analogue
SPACE
STATE SPACE T ∗Rd ∼= Rd ×Rd K = PL2(Rd, dm), i.e.

(p, q) = Position × Momentum ψ ∈ L2(Rd, dm) 3 kψkK = 1
and ψ ∼ eiθψ.

OBSERVABLES Functions f : T ∗Rd −→ R Self adjoint operators
θ on K

Examples pk p̂k =
~
i

∂
∂qk

qk q̂k =Mqk

H(q, p) = 1
2mp2 + V (q) Ĥ = − ~2

2m∆+ V (q)

DYNAMICS Newtons Equations of Motion Shrödinger Equation
..
q(t) = −∇V (q(t)), q(t) ∈ Rd i~ψ̇(t) = Hψ(t)

ψ(t) ∈ K

MEASUREMENTS Evaluation of an observable hψ, θψi — expected value
on a state, i.e. f(q, p) of θ in the state ψ.

The formal “path integral quantization” of the system described by H in Eq.
(9.1) is given by

e−TĤf(x)“ = ”
1

ZT

Z
ω(0)=x

e−
R T
0
E(ω(t),ω̇(t))dtf(ω(T ))Dω

=
1

ZT

Z
ω(0)=0

e−
R T
0
E(x+ω(t),ω̇(t))dtf(x+ ω(T ))Dω(9.2)

where

“ZT :=
Z
ω(0)=0

e−
m
2

R T
0
|ω̇(t)|2dtDω”

is the “normalization constant” chosen so that

(9.3) dµ(ω)“ = ”
1

ZT
e−

m
2

R T
0
|ω(t)|2dtDω

is a probability “measure”. With this notation Eq. (9.2) states

e−TĤf(x) =
Z
ω(0)=x

f(x+ ω(T ))e−
R T
0
V (x+ω(t))dtdµ(ω)

which is the Feynman Kac formula. This last formula is in fact rigorous provided
one interprets µ as Wiener measure with variance m−1/2 onW

¡
Rd
¢
and some mild

restrictions are put on the potential V.
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The use of “path integrals” in physics including heuristic expressions like those
in equations (9.2) started with Feynman in [34] with very early beginnings being
traced back to Dirac [15]. See Section 6 for the correct interpretation of Eq. (9.3).

9.3. Quantization on Riemannian Manifolds. Now suppose M is a Riemann-
ian manifold with metric g and q(t) ∈ Md describe the motion of a particle in M
subject to the force due to a potential function V (q). Then q satisfies Newton’s
equations of motion,

(9.4)
∇q̇(t)
dt

= −∇V (q(t)).
As before, the Lagrangian density associated to this equations is given by

L(q, v) :=
1

2
|v|2 − V (q) =

1

2
gij(q)v

ivj − V (q)

where vi = dxi(v) in local coordinates. The corresponding Hamiltonian is given by
the Legendre transform,

H(q, p) = piv
i − L(q, v), where pi =

∂L(q, v)

∂vi
= gij(q)v

j

and pi is the conjugate momentum to vi. So vi = gij(x)pj and hence

H(q, p) = piv
i − L(q, v) = piv

i −
µ
1

2
gij(q)v

ivj − V (q)

¶
= piv

i −
µ
1

2
piv

i − V (q)

¶
=
1

2
piv

i + V (q)

=
1

2
gij(x)pipj + V (q).(9.5)

If q(t) solves Eq. (9.4) and qi(t) := xi(q (t)) and pi(t) := gij(q(t))q̇
j(t) then

q̇j(t) =
∂H(q, p)

∂pj
and ṗi(t) = −∂H(q, p)

∂qi
.

We now want to quantize H(q, p) by replacing:

pi → Pi :=
1

i

∂

∂xi
and qi → Qi :=Mxi

where Qi is multiplication by qi. Working formally from Eq. (9.5) we conclude

Ĥ = −1
2
gij(x)

∂2

∂xi∂xj
+ V (q).

This is not a very good answer since it is coordinate dependent. To remedy this,
notice at the classical level we could also write

H(q, p) =
1

2

1√
g
pi
√
ggij(x)pj + V (q)

which when quantized gives the operator,

Ĥ = −1
2

1√
g

∂

∂xi
√
ggij(x)

∂

∂xj
+ V (q) = −1

2
∆M +MV .

The latter expression has the virtue of at least being coordinate independent.
The formal path integral quantization of the above system is given by

(9.6) e−TĤf(x0) =
1

ZT

Z
σ(0)=x0

e−
R T
0
E(σ(t),σ̇(t))dtf(σ(T ))Dσ
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where E(x, v) = 1
2g(v, v) + V (x) is the energy. Possible rigorous interpretations of

the right side of Eq. (9.6) and its relationship to e−TĤ when V = 0 are discussed
in Theorem 8.15 above.

9.4. Quantization of infinite dimensional classical systems. Quantization
of infinite dimensional classical systems leads to infinite dimensional Shrödinger
Equations. The simplest of which are standard type heat equations.

9.4.1. Klein-Gordon Equations. A non-linear Klein-Gordon equation is a non-linear
wave equation of the form,

φtt + (−∆+m2)φ+ φ3 = 0

for some function φ : R×Rd → R. This may be phrased as φ̈ = −∇V (φ) where

V (φ) =

Z
Rd

µ
1

2
|∇φ|2 + m2

2
φ2 +

1

4
φ4
¶
dx

The quantization of this equation leads one to consider the partial differential equa-
tion in infinitely many variable,

∂tu(t, φ) =
1

2
∆L2(Rd)u(t, φ)− V (φ)u(t, φ).

The formal path integral quantization of this system is given by

et(
1
2∆L2(Rd)−V )f(φo) =

1

ZT

Z
φ(0)=φ0

e
− R T

0

·
1
2kφ̇(t)kL2(Rd)+V (φ(t))

¸
dt
f(φ(T ))Dφ.

See Glimm and Jaffe [37] and the references therein for more information about
this expression.

9.4.2. Yang — Mills Equations. The Yang — Mills equations are the Euler Lagrange
equations for

I(A) =

Z
R×Rd

hFAi2Ldtdx

where FA = dA + A ∧ A and A : Rd+1 → Rd+1 ⊗ g is a connection one form and
h·i2L is a non-degenerate quadratic form determined by the Lorhenzian metric on
Rd+1 and an inner product on g = Lie(G) and G is a compact Lie group. The
corresponding path integral quantization measure is given informally by

(9.7) dµ(A) =
1

Z
e−

1
2

R
R×Rd |FA|2dtdxDA.

Because of “gauge invariance” of the problem, this measure is really to be defined
on the non-linear space of connections modulo gauge transformations,M/G. Mak-
ing sense out of Eq. (9.7) is a part of the million dollar Clay Mathematics prize
pertaining to quantization of Yang—Mills fields.4

When d = 1 and Rd = R1 is replace by S1 the spaceM/G0 simply becomes G
itself and the path integral in (9.7) reduces to the one like that in Eq. (9.6) with
M = G and V = 0. See the Driver and Hall [20] for more on this point and the
relation to symplectic reduction.

4More information about this problem may be found at
http://www.claymath.org/Millennium_Prize_Problems/Yang-Mills_Theory/.



38 BRUCE K. DRIVER

9.5. Loop spaces. The loop spaces L(K) considered in Section 7 is a model of the
configuration space in “string theory.” The action used in physics is the relativistic
area swept out by the string which leads to considering the so called non-linear σ —
models in the path integral formulation. In Section 7 we considered a more tractable
action which leads to reasonable heat equation on L(K). The heat “kernels” for this
heat equation may be thought of as a replacements for the non-existent Lebesgue
measure on L(K). As such one would eventually like to understand the relationship
between the analysis on L(K) and the topology of L(K), i.e. something like a
Hodge deRham theory and index theory for loop spaces.
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