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Prologue

• This joint work with my Ph.D. student, Pun Wai Tong.

• The new results presented here are based on two papers in preparation,
[Driver & Tong, 2014a, Driver & Tong, 2014b].

• Our original motivation came from trying to understand a paper by Rodnianski and
Schlein [Rodnianski & Schlein, 2009] and many others.

• This lead us back to the pioneering paper of Hepp [Hepp, 1974].

• Although versions of the results to be presented are true in any dimension including
infinite dimensions, we will be restricting our attention to d = 1.

• There are way too many papers relating to semi-classical analysis to list. To get a
foothold into this literature the reader might start by looking at
[Hagedorn, 1985, Zworski, 2012] and the references therein.
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Hamiltonian Mechanics on R2

• Configuration = (position space) = R,
• State space = (position,momentum)-space = R2 ∼= C (T ∗R) .

• State = a point (a, b) in state space.

• Coordinates on states space are (q, p), i.e. q (a, b) = a and p (a, b) = b.

• Observables are (real) functions, f, on state space.

• Observation is evaluation of an observable, f, on a state, (a, b) .

• A key observable should be the energy of the theory, H : R2 → R.
• The evolutions of states is by Hamilton’s equations,

q̇ =
∂H

∂p
(q, p) and ṗ = −∂H

∂q
(q, p) .

More precisely, let

XH (q, p) =
∂H

∂p
(q, p)

∂

∂q
− ∂H

∂q
(q, p)

∂

∂p
,

then α (t) ∈ R2 satisfies Hamilton’s equations of motion if

α̇ (t) = XH (α (t)) with α (0) = α0 ∈ R2 given. (1)
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Complex Notation

Let

z :=
1√
2

(q + ip) and z̄ =
1√
2

(q − ip) so that

∂ :=
∂

∂z
:=

1√
2

(∂q − i∂p) and ∂̄ :=
∂

∂z̄
:=

1√
2

(∂q + i∂p) . (2)

Theorem 1. α (t) ∈ C ∼= R2 satisfies Hamilton’s equations of motion iff

iα̇ (t) =

(
∂

∂z̄
H

)
(α (t)) with α (0) = α0 ∈ C. (3)

Proof: If

α (t) =
1√
2

(p (t) + iq (t)) ∈ C,

Eq. (3) states,

i
1√
2

(q̇ (t) + iṗ (t)) =
1√
2

(∂qH + i∂pH) (α (t))

which is equivalent to
q̇ = ∂pH and ṗ = −∂qH.

Q.E.D.
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Examples H and their flows

1. Translation generator. If w ∈ C, and

Hw (z, z̄) = 2 Im (w̄z) = i (wz̄ − w̄z) ,

then
iα̇ (t) = iw with α (0) = α0 =⇒ α (t) = α0 + tw.

So Hw generates translation along w in phase space, C.

2. Newton’s equations of motion. If

H =
p2

2
+ V (q) = −1

4
(z − z̄)2 + V

(
z + z̄√

2

)
then Hamilton’s equations are

q̇ = ∂pH = p and ṗ = −∂qH = −V ′ (q) .

3. Circular Motion. If V (q) = 1
2q

2, then

H = −1

4
(z − z̄)2 +

1

4
(z + z̄)2 = zz̄

and
iα̇ (t) = α (t) =⇒ α (t) = e−itα0.
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Complex form of Poisson Brackets (Skip)

Proposition 2. The Poisson bracket may be computed using

{f, g} = i
[
∂̄f · ∂g − ∂f · ∂̄g

]
. (4)

Proof: We first solve Eq. (2) for ∂q and ∂p using

∂ + ∂̄ =
√

2∂q and ∂ − ∂̄ = −i
√

2∂p.

This then gives

∂q =
1√
2

(
∂ + ∂̄

)
and ∂p =

i√
2

(
∂ − ∂̄

)
,

and hence

{f, g} =
∂f

∂q

∂g

∂p
− (f ←→ g)

=
i

2

(
∂ + ∂̄

)
f ·
(
∂ − ∂̄

)
g − (f ←→ g)

=
i

2

(
−∂f · ∂̄g + ∂̄f · ∂g

)
− (f ←→ g)

= i
[
∂̄f · ∂g − ∂f · ∂̄g

]
.

Q.E.D.
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Spectral Lines of Hydrogen

Figure 1: 1
λ = R

(
1
n21
− 1

n22

)
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Heisenberg Enters the Picture

Yeomen Warder (alias Beefeater at Tower of London):

“Of course Newton invented gravity in England.”

That may be but nevertheless, the previous slide presents a problem for Newton. The
next two slides are excerpts from the Wikipedia site;

http://en.wikipedia.org/wiki/Matrix mechanics

In 1925 Werner Heisenberg was working in Göttingen on the problem of calculating the
spectral lines of hydrogen. By May 1925 he began trying to describe atomic systems by
observables only. On June 7, to escape the effects of a bad attack of hay fever,
Heisenberg left for the pollen free North Sea island of Helgoland. While there, in between
climbing and learning by heart poems from Goethe’s West-östlicher Diwan,1 he continued
to ponder the spectral issue and eventually realized that adopting non-commuting
observables might solve the problem, and he later wrote:2

Heisenberg: “It was about three o’ clock at night when the final result of the calculation
lay before me. At first I was deeply shaken. I was so excited that I could not think of
sleep. So I left the house and awaited the sunrise on the top of a rock.”

1West-östlicher Diwan ("West-Eastern Diwan", original title: West-östlicher Divan) is a diwan, or collection of lyrical poems, by the German poet Johann Wolfgang
von Goethe. It was inspired by the Persian poet Hafez.

2W. Heisenberg, "Der Teil und das Ganze", Piper, Munich, (1969)The Birth of Quantum Mechanics.
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Heisenberg and Born

After Heisenberg returned to Göttingen, he showed Wolfgang Pauli his calculations,
commenting at one point:

"Everything is still vague and unclear to me, but it seems as if the electrons will no more
move on orbits."

On July 9 Heisenberg gave the same paper of his calculations to Max Born, saying,

"...he had written a crazy paper and did not dare to send it in for publication, and that
Born should read it and advise him on it..." prior to publication.

When Born read the paper, he recognized the formulation as one which could be
transcribed and extended to the systematic language of matrices, which he had learned
from his study under Jakob Rosanes at Breslau University.

Wiki: “Up until this time, matrices were seldom used by physicists; they were considered
to belong to the realm of pure mathematics.”
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Abstract Quantum Mechanics: Kinematics

• State space is a Hilbert space K

• State is a unit vector, ψ ∈ K

• Observables are self-adjoint operators, A, on K

Definition 3. Given an operator A on K and a unit vector ψ ∈ D (A) let

〈A〉ψ := 〈Aψ,ψ〉
denote the expectation of A relative to the state ψ. The variance of A relative to the
state ψ ∈ D

(
A2
)

is then defined as

Varψ (A) :=
〈
A2
〉
ψ
− 〈A〉2ψ .

Remark 4. If A = A∗, then the spectral theorem guarantees there exists a unique
probability measure µ on R such that

〈f (A)ψ, ψ〉 =

∫
R
f (x) dµ (x) .

This measure, µ, is called the law of A relative to ψ and is denoted by Lawψ (A) .
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Abstract Quantum Mechanics: Dynamics

• The energy operator is, Ĥ, self-adjoint operator bounded from below.

• The evolution of a state is governed by the Schrödinger equation,

i~ ∂
∂t
ψ (t) = Ĥψ (t) with ψ (0) = ψ0 ∈ K. (5)

As usual we denote the unique solution by ψ (t) = e−i
t
~Ĥψ0.

• Heisenberg picture: if A is an observable (i.e. operator on K), then

A (t) := ei
t
~ĤAe−i

t
~Ĥ. (6)

• Note that
〈A〉ψ(t) = 〈A (t)〉ψ0

.

Theorem 5. Formally we have,

Ȧ (t) = i
1

~
[
Ĥ, A (t)

]
= i

1

~
[
Ĥ, A

]
(t)

and therefore,

d

dt
〈A〉ψ(t) =

d

dt
〈A (t)〉ψ0

= i
1

~
〈[
Ĥ, A

]
(t)
〉
ψ0

=

〈
i
1

~
[
Ĥ, A

]〉
ψ0

.
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Quantum observables for a 1 D – particle

Definition 6. When we say we are considering the quantum mechanics of a particle in
R1 we mean, given ~ > 0, our Hilbert space K is equipped with a pair of self-adoint
operators q̂~ and p̂~ such that

1. {q̂~, p̂~} act irreducibly on K, and

2. they satisfy the canonical commutation relations: [q̂~, p̂~] = i~I.3

Remark 7. Morally speaking, the irreducibility assumption guarantees that all
observables on K should be “functions” of (q̂~, p̂~) . Compare with Burnside’s theorem.

Theorem 8 ([Burnside, 1905]). If {A1, . . . , Ak} ⊂ End
(
Cd
)

act irreducibly on Cd, then
every A ∈ End

(
Cd
)

can be written as a non-commutative polynomial function of
(A1, . . . , Ak) .

Theorem 9 (Stone–von Neumann theorem (1931)). Up to unitary equivalence, there is
only one pair of self-adjoint operators satisfying Definition 6.4

3The following formula needs more care since the operators involved are all unbounded!
4See the Wikipedia site on the “Stone–von Neumann theorem,” for references.
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Examples of
(
q̂~, p̂~

)
We now take K = L2 (R,m) where m is Lebesgue measure,

〈f, g〉 :=

∫
R
f (x) ḡ (x) dm (x) ∀ f, g ∈ L2 (m) .

Example 1. Here are some choices for (q̂~, p̂~)

1. Canonical Quantization I:

q̂~ = Mx and p̂~ =
~
i

∂

∂x
.

2. Canonical Quantization II:

q̂~ =
~
i

∂

∂x
and p̂~ = −Mx.

The unitary operator connecting this two is the Fourier transform.

3. Hepp (egalitarian) quantization,

q̂~ =
√
~Mx and p̂~ =

√
~
i

∂

∂x
.
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• All operators are taken to be their closures on S := S (R) ⊂ L2 (m) – the Schwartz
test function space.

Lemma 10. For ~ > 0, let S~ : L2 (R)→ L2 (R) be the unitary map defined by

(S~f ) (x) := ~1/4f
(√

~x
)

for x ∈ R.

Then

Mx = S∗~

(√
~Mx

)
S~ and

~
i

∂

∂x
= S∗~

(√
~
i

∂

∂x

)
S~.
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Creation and annihilation operators

We now change to a complex basis.

Definition 11 (Creation and annihilation operators). For ~ > 0, let a~ and a∗~ be the
creation and annihilation operators acting on L2 (m) defined by

a~ =
1√
2

(q̂~ + ip̂~) =

√
~
2

(Mx + ∂x)

a∗~ =
1√
2

(q̂~ − ip̂~) =

√
~
2

(Mx − ∂x) .

Notice: a~ =
√
~a and a∗~ =

√
~a∗ where a := a1.

Lemma 12. The operators a~ and a∗~ satisfy the canonical commutation relations

[a~, a
∗
~] = ~I.

Notation 1. The class of observables we consider are of the form

{P (a~, a
∗
~) : P ∈ C 〈θ, θ∗〉} ,

where or C 〈θ, θ∗〉 is the space of polynomials in two non-commuting indeterminates,
{θ, θ∗} .
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Example Hamiltonian I
Example 2. Suppose that w = 1√

2
(ξ + iπ) ∈ C, and set

H (θ, θ∗) = i (wθ∗ − w̄θ) .

Then
H (a~, a

∗
~) = i (wa∗~ − w̄a~) =

√
~ (iπMx − ξ∂x) .

We then set

U~ (w) := e−
1
i~Hw(a~,a∗~) = exp

(
1

~ (w · a∗~ − w̄ · a~)

)
. (7)

Proposition 13. For ~ > 0 and w = (ξ + iπ) /
√

2 ∈ C, then

(U~ (w) f ) (x) = exp

(
i
π√
~

(
x− 1

2
√
~
ξ

))
f

(
x− 1√

~
ξ

)
(8)

and more importantly
U~ (w)∗ a~U~ (w) = a~ + w. (9)

Proof: Use the method of characteristics to find Eq. (8) then prove Eq. (9) by direct
computation. Another way to prove Eq. (9) is to integrate the identity,

d

dt
U~ (tw)∗ a~U~ (tw) = −U~ (tw)∗

[
1

~ (w · a∗~ − w · a~) , a~

]
U~ (tw) = w,

with respect to t. Q.E.D.

Bruce Driver 16



Example Hamiltonian II

Example 3. Suppose that H (θ, θ∗) = θ∗θ, then

N~ := H (a~, a
∗
~) := a∗~a~ =

~
2

(Mx − ∂x) (Mx + ∂x) =
~
2

(
−∂2x + M 2

x − 1
)

(10)

is the Harmonic Oscillator Hamiltonian (or Number operator when ~ = 1) number
operator.

Fact.N~ has a complete orthonormal basis of the form{
Hn (x) exp

(
−1

2
x2
)}∞

n=0

where {Hn}∞n=0 are properly normalized Hermite polynomials.

Fact. e−
t
~N~ is given by integration against at Gaussian kernel function (Mehler Kernel).
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Harmonic Oscillator Evolution

Proposition 14. If a~ (t) := e
i
~tN~a~e

− i
~tN~, then

ȧ~ (t) = −ia~ (t) =⇒ a~ (t) = e−ita~

just as in the Classical Mechanics case.

Proof: We need only make use of the evolution equation for the Heisenberg picture and
the commutation relations;

ȧ~ (t) =
i

~e
i
~tN~ [N~, a~] e−

i
~tN~ =

i

~e
i
~tN~ [a∗~a~, a~] e−

i
~tN~

= − i~e
i
~tN~
~ a~e

− i
~tN~ = −ia~ (t) .

Q.E.D.
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Operator Evolution Facts

Definition 15. The symbol (or classical residue) of P ∈ C 〈θ, θ∗〉 is the function
P cl : C→ C defined by P cl (α) := P (α, ᾱ) where we view C as a commutative algebra
with involution given by complex conjugation.

• Fact: If H (θ, θ∗) has degree 2 or less, then

a~ (t) := e
i
~tH(a~,a∗~)a~e

− i
~tH(a~,a∗~)(

a~ (t) , a~ (t)∗
)

is related to
(
a~, a

∗
~
)

by the same affine transformation that is

determined by the flow of XHcl
where Hcl (z) := H (z, z̄) .

• Fact: in general q̂~ (t) satisfies Newton’s equations of motion when H = p2

2 + V (q) .
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Algebra of C
〈
θ, θ∗
〉

Notation 2 (Taylor Expansion). If α ∈ C and H (θ, θ∗) ∈ C 〈θ, θ∗〉 with d = degH, then

H (θ + α, θ∗ + ᾱ) =

d∑
k=0

Hk (α : θ, θ∗) (11)

where

Hk (α : θ, θ∗) =
1

k!

(
d

dt

)k

|t=0H (tθ + α, tθ∗ + ᾱ) . (12)

is homogeneous of degree k in {θ, θ∗} .
Theorem 16. If H (θ, θ∗) is symmetric, {Hk} are as in Eq. (11), then

H0 (α : θ, θ∗) = Hcl (α)

H1 (α : θ, θ∗) =
[(
∂Hcl

)
(α) θ +

(
∂̄Hcl

)
(α) θ∗

]
and

H2 (α : θ, θ∗) =
1

2
∂2Hcl (α) θ2 +

1

2
∂̄2Hcl (α) θ∗2

+ u (α) θ∗θ + v (α) θθ∗

where u, v ∈ R [α] are polynomials (depending on H) such that

u (α) + v (α) = ∂∂̄Hcl (α) .
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Example 4. Suppose that H (θ, θ∗) = θ2θ∗θ + θ∗θθ∗2 so that

Hcl (α) = ᾱα3 + ᾱ3α,

H (θ + α, θ∗ + ᾱ) = (θ + α)2 (θ∗ + ᾱ) (θ + α)

+ (θ∗ + ᾱ) (θ + α) (θ∗ + ᾱ)2

and
H2 (α; θ, θ∗) =

[
α2 + ᾱ2

]
θ∗θ + 2

[
α2 + ᾱ2

]
θθ∗.

Notice that
∂∂̄Hcl (α) = 3

(
α2 + ᾱ2

)
=
[
α2 + ᾱ2

]
+ 2
[
α2 + ᾱ2

]
.

Corollary 17. For all H ∈ C 〈θ, θ∗〉 symmetric and ~ > 0,

H2 (α : a~, a
∗
~) =

1

2
∂2Hcl (α) · a2~ +

1

2
∂̄2Hcl (α) · a∗2~

+ ∂∂̄Hcl (α) · a∗~a~ + ~ · vH (α) I.
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Squeezing States

Corollary 18 (Concentrated states). Let P (θ, θ∗) ∈ C 〈θ, θ∗〉 , ψ ∈ S, ~ > 0, and
α ∈ C, then

〈P (a~, a
∗
~)〉U~(α)ψ

= P (α, ᾱ) + O
(√

~
)

(13)

VarU~(α)ψ (P (a~, a
∗
~)) = O

(√
~
)
, (14)

and

lim
~↓0

〈
P

(
a~ − α√

~
,
a∗~ − ᾱ√

~

)〉
U~(α)ψ

= 〈P (a, a∗)〉ψ . (15)

[In fact, the equality in the last equation holds before taking the limit as ~→ 0.]

Remark 19 (Moral). Consequently, U~ (α)ψ is a state which is concentrated in phase
space near the α and are therefore reasonable quantum mechanical approximations of
the classical state α.
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Proof of Squeezing

Proof: Since
U~ (w)∗ a~U~ (w) = a~ + w =

√
~a + w,

we conclude,
U~ (α)∗ P (a~, a

∗
~)U~ (α) = P (a~ + α, a∗~ + ᾱ) .

Therefore,

〈P (a~, a
∗
~)〉U~(α)ψ

= 〈U~ (α)∗ P (a~, a
∗
~)U~ (α)〉ψ = 〈P (a~ + α, a∗~ + ᾱ)〉ψ

=

〈
d∑

k=0

Pk (α; a~, a
∗
~)

〉
ψ

= P0 (α) +

d∑
k=0

~k/2 〈Pk (α; a, a∗)〉ψ

= P0 (α) + O
(√

~
)
.
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Similarly, 〈
P 2 (a~, a

∗
~)
〉
U~(α)ψ

=
(
P 2
)
0

(α) +

2d∑
k=1

~k/2
〈(
P 2
)
k

(α; a, a∗)
〉
ψ

=
(
P 2
0

)
(α) +

2d∑
k=1

~k/2
〈(
P 2
)
k

(α; a, a∗)
〉
ψ

=
(
P 2
0

)
(α) + O

(√
~
)
.

This then implies

VarU~(α)ψ (P (a~, a
∗
~)) :=

〈
P 2 (a~, a

∗
~)
〉
U~(α)ψ

− 〈P (a~, a
∗
~)〉2U~(α)ψ

= O
(√

~
)
.

Equation (15) is even simpler,〈
P

(
a~ − α√

~
,
a∗~ − ᾱ√

~

)〉
U~(α)ψ

=

〈
P

(
a~ + α− α√

~
,
a∗~ + ᾱ− ᾱ
√
~

)〉
ψ

= 〈P (a, a∗)〉ψ .

Q.E.D.
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Assumptions

Assumption 1. We assume H (θ, θ∗) ∈ R 〈θ, θ∗〉 be a non-commutative polynomial with
real coefficients satisfying;

1. H (θ, θ∗) ∈ R 〈θ, θ∗〉 is symmetric and d = degH is even. 5

2. There exists η > 0 such that for all ~ ∈ (0, η) and n ∈ N,

(a) Hn(a~, a
∗
~) =

[
H
(
a~, a

∗
~
)]n

is essentially self-adjoint on S(R), and

(b) ∃ Cn > 0 such that

〈ψ,N n
~ψ〉 ≤ Cn〈ψ, (H (a~, a

∗
~) + I)nψ〉 ∀ ψ ∈ S(R). (16)

whereN~ = a∗~a~.

5See [Chernoff, 1973, Kato, 1973] for a large class of example of potentials for which the standard Schrödinger operator satisfies item 1 of the assumption.
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Theorem 20 (Example Hamiltonians [Driver & Tong, 2014a]). Assumption 1 holds if;

1. For all m > 0 and V ∈ R [x] such that deg V ∈ 2N such that limx→∞ V (x) =∞,
the non-commutative polynomial,

H (θ, θ∗) = m (θ − θ∗)2 + V

(
1√
2

(θ + θ∗)

)
, (17)

satisfies Assumption 1.

2. More generally we can take

H (θ, θ∗) =

m∑
l=0

(−2)l (θ − θ∗)l bl
(

1√
2

(θ + θ∗)

)
(θ − θ∗)l (18)

where bl ∈ R [x] are polynomials satisfying;

(a) each bl is an even polynomial with positive leading order coefficient, b1, bm > 0,

(b) deg b0 ≥ 2 and deg(bl) ≤ deg(bl−1) for 1 ≤ l ≤ m.

Remark 21. If H is as in Eq. (18), then

H (a~, a~
∗) =

m∑
l=0

(−1)l ~lDlMbl(
√
~(·))D

l.
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Classical Equations
Lemma 22. Letting C1 denote the constant appearing in Eq. (16), then
Hcl (α) := H (α, ᾱ) satisfies

|α|2 ≤ C1

(
Hcl (α) + 1

)
for all α ∈ C. (19)

Proof: By Assumption 1 with n = 1 and ψ replaced by U~ (α)ψ, we find

〈a∗~a~〉U~(α)ψ
≤ C1

[
〈H (a~, a

∗
~)〉U~(α)ψ

+ 1
]

which is equivalent to

〈(a∗~ + ᾱ) (a~ + α)〉ψ ≤ C1

[
〈H ((a~ + α) , (a∗~ + ᾱ))〉ψ + 1

]
.

The result follows by letting ~ ↓ 0. Q.E.D.

Corollary 23. For all α0 ∈ C, there exists a unique global solution, α (t) = α (t;α0) to
Hamilton’s ODE,

iα̇ (t) =
∂Hcl

∂z̄
(α (t)) with α (0) = α0 ∈ C. (20)

Notation 3. For z ∈ C, let γ (t) and δ (t) be the unique C – valued functions such that

α′ (t, α0) z :=
d

ds
α (t, α0 + sz) = γ (t) z + δ (t) z̄.

[To γ (t) and δ (t) carry the information about the linearization of Eq. (20).]
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A Semi-Classical Limit Theorem
Theorem 24. Suppose H (θ, θ∗) is a non-commutative polynomial in two indeterminates
which satisfies Assumptions 1. For α0 ∈ C and a L2 (m) – normalized state ψ ∈ S let;

1. α (t) ∈ C be the solution to Hamilton’s classical equations of motion (20),

2. a (t) ∈ Ops
(
L2 (m)

)
be defined by

a (t) = γ (t) a1 + δ (t) a∗1,

3. for ~ > 0 let
ψ~ (t) := e−i

t
~H(a∗~,a~)U~ (α0)ψ (21)

be the Shrödinger evolution of the state U~ (α0)ψ (which is concentrated near α0).

Then for all t ∈ R the following weak limits (in the sense of non-commutative probability)
hold;

Lawψ~(t) [a~]→ α (t) as ~ ↓ 0 (22)

and

Lawψ~(t)

[
a~ − α (t)√

~

]
→ Lawψ [a (t)] as ~ ↓ 0. (23)
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Intuitive Meaning

The meaning of the limits in Eqs. (22) and (23) are as follows; for all
P (θ, θ∗) ∈ C 〈θ, θ∗〉 ,

lim
~↓0
〈P (a~, a

∗
~)〉ψ~(t) = P (α (t) , ᾱ (t)) (24)

and

lim
~↓0

〈
P

(
a~ − α (t)√

~
,
a∗~ − ᾱ (t)
√
~

)〉
ψ~(t)

= 〈P (a (t) , a∗ (t))〉ψ . (25)

respectively.

Remark 25. More intuitively,

Lawψ~(t) [a~] ∼= Lawψ

[
α (t) +

√
~a (t)

]
for 0 < ~� 1, (26)

i.e. for all P ∈ C 〈θ, θ∗〉

〈P (a~, a
∗
~)〉ψ~(t) =

〈
P
(
α (t) +

√
~a1 (t) , ᾱ (t) +

√
~a∗ (t)

)〉
ψ

+ o
(√

~
)
. (27)
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Motivations for the Proof

• Let H~ := H
(
a∗~, a~

)
.

• U~ (α0)ψ is a state in L2 (m) “concentrated” near α0 ∈ C.

• The hope is that ψ~ (t) := e−iH~t/~U~ (α0)ψ is a state concentrated near α (t) ∈ C.

• For any unitary operator W0 (t) , U~ (α (t))W0 (t)ψ is a state concentrated near
α (t) ∈ C.

• Consequently we might hope that if we choose W0 (t) properly, then

e−iH~t/~U~ (α0)ψ ∼ U~ (α (t))W0 (t)ψ.

• This motivates us to consider

V~ (t) := U~ (−α (t)) e−iH~t/~U~ (α0) = U~ (α (t))∗ e−iH~t/~U~ (α0) . (28)
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Computing some Derivatives
Lemma 26. If α ∈ C1 (R→ C) and

V~ (t) = U~ (α (t))∗ e−iH~t/~U~ (α0) ,

then
∂tV~ (t)ψ = Γ~ (t)V~ (t)ψ

where

Γ~ (t) :=
1

~

(
α̇ (t)a~ − α̇ (t) a∗~ + i Im

(
α (t) α̇ (t)

)
− iH (a~ + α (t) , a∗~ + ᾱ (t))

)
.

(29)

Proof: Rather direct computation shows,

∂tV~ (t) =∂tU~ (−α (t)) · e−iH~t/~U~ (α0)−
i

~U~ (−α (t))H~e
−iH~t/~U~ (α0)

=

(
−α̇ (t)√

~
a∗ +

α̇ (t)√
~
a +

i

~ Im
(
α (t) α̇ (t)

))
V~ (t)

− i

~U~ (−α (t))H~U~ (α (t))V~ (t)

=Γ~ (t)V~ (t) .

Q.E.D.
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Removing the ~−1/2 – terms

Remark 27. Recall that

H (a~ + α (t) , a∗~ + ᾱ (t))

= Hcl (α (t)) +
(
∂Hcl

)
(α (t)) a~ +

(
∂̄Hcl

)
(α (t)) a∗~

+ H2 (α (t) : a~, a
∗
~) + H≥3 (α (t) : a~, a

∗
~) . (30)

so that

~Γ~ (t) := i
[

Im
(
α (t) α̇ (t)

)
−Hcl (α (t))

]
+
[
α̇ (t)− i

(
∂Hcl

)
(α (t))

]
a~ +

[
α̇ (t) + i

(
∂̄Hcl

)
(α (t))

]
a∗~

− iH2 (α (t) : a~, a
∗
~)− iH≥3 (α (t) : a~, a

∗
~) .

Key point: if α (t) solves Hamilton’s equations of motion,

iα̇ (t) =
(
∂̄Hcl

)
(α (t)) ,

then

Γ~ (t) :=
i

~

[
Im
(
α (t) α̇ (t)

)
−Hcl (α (t))

]
− iH2 (α (t) : a, a∗)− i

~H≥3 (α (t) : a~, a
∗
~) .
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Remark 28. The highly oscillatory phase factor in

i

~

[
Im
(
α (t) α̇ (t)

)
−Hcl (α (t))

]
is inessential and is easily removed.
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Hepp’s Method
Corollary 29. If

W~ (t) = e
i
~f(t)V~ (t) = e

i
~f(t)U~ (−α (t)) e−iH~t/~U~ (α0)

where

f (t) :=

∫ t

0

(
Hcl (α (τ ))− Im

(
α (τ ) α̇ (τ )

))
dτ, (31)

then

i∂tW~ (t) =

[
H2 (α (t) : a, a∗) +

1

~H≥3 (α (t) : a~, a
∗
~)

]
W~ (t) with W~ (0) = I.

(32)

Remark 30 (The heart of [Hepp, 1974]’s method.). Observe that
i

~H≥3 (α (t) : a~, a
∗
~) = i

√
~
∑
l≥3

~(l−3)/2Hl (α (t) , a, a∗)

and so
i

~H≥3 (α (t) : a~, a
∗
~)ψ = “O

(√
~
)
→ 0” as ~ ↓ 0.

Formally letting ~ ↓ 0 in Eq. (32) should imply that W~ (t)→ W0 (t) where

i
∂

∂t
W0 (t) = H2 (α (t) : a, a∗)W0 (t) with W0 (0) = I. (33)
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The Key Limiting Result

Theorem 31. For any continuous function α : R→ C there exists a unique one
parameter strongly continuous family of unitary operators {W0 (t)}t∈R satisfying Eq. (33).

Theorem 32 (Strong(er) Convergence Theorem). Continuing the previous notation,

W~ (t)
s→ W0 (t) as ~ ↓ 0.

Moreover we have the following stronger convergence, if n ∈ N0 there exists
K = Kn <∞ such that

‖N n (W0 (t)−W~ (t))ψ‖ ≤ K
√
~ ·
∥∥∥(I +N )d(2n+1)ψ

∥∥∥ ∀ ψ ∈ D (N d(2n+1)
)
. (34)

Proof: The fact that W~ (t)
s→ W0 (t) as ~ ↓ 0 is quite plausible. Proving this statement

along with Eq. (34) is fairly technical and the interested reader is referred to
[Driver & Tong, 2014b]. Q.E.D.
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Proof of the Classical Limit Theorem

Let P ∈ C 〈θ, θ∗〉 and recall that

ψ~ (t) := e−iH(a∗~,a~)t/~U~ (α0)ψ and

W~ (t) = e
i
~f(t)U~ (−α (t)) e−iH~t/~U~ (α0) .

Therefore, given Theorem 32,

〈P (a~, a
∗
~)〉ψ~(t)

=
〈
U~ (α0)

∗ eiH~t/~P (a~, a
∗
~) e−iH~t/~U~ (α0)

〉
ψ

= 〈W~ (t)∗U~ (α (t))∗ P (a~, a
∗
~)U~ (α (t))W~ (t)〉ψ

= 〈W~ (t)∗ P (a~ + α (t) , a∗~ + ᾱ (t))W~ (t)〉ψ

= P (α (t) , ᾱ (t)) +

n∑
k=1

~k/2 〈W~ (t)∗ Pk (α (t) ; a, a∗)W~ (t)〉ψ

= P (α (t) , ᾱ (t)) + O
(√

~
)
. (35)

Remark 33. So we have now shown that the quantum expectations,
〈
P
(
a~, a

∗
~
)〉

ψ~(t)
,

closely track their classical counterparts, P (α (t) , ᾱ (t)) .
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Proof of the Quantum Fluctuation Eq. (23)

From Eq. (35) with

P (θ, θ∗) P

(
1√
~

(θ − α (t)) ,
1√
~

(
θ∗ − α (t)

))
we find〈

P

(
a~ − α (t)√

~
,
a∗~ − α (t)
√
~

)〉
ψ~(t)

=

〈
W~ (t)∗ P

(
a~√
~
,
a∗~√
~

)
W~ (t)

〉
ψ

= 〈W~ (t)∗ P (a, a∗)W~ (t)〉ψ
→〈W0 (t)∗ P (a, a∗)W0 (t)〉ψ

=
〈
P
(
a (t) , a (t)∗

)〉
ψ

wherein we have used the next lemma for the last equality.

Remark 34. This result gives the next order quantum corrections to the classical theory.
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Interpreting W0 (t)∗ aW0 (t)

Lemma 35. Keeping the notation as above,

W0 (t)∗ aW0 (t) = a (t) = γ (t) a1 + δ (t) a∗1.

Proof: If a (t) := W0 (t)∗ aW0 (t) , then from the definition of W0 (t) (see Theorem 31),

iȧ (t) = i
d

dt

(
W0 (t)∗ aW0 (t)

)
= −W0 (t)∗ [H2 (α (t) : a, a∗) , a]W0 (t) . (36)

From Corollary 17 above,

H2 (α : a~, a
∗
~) =

1

2
∂2Hcl (α) · a2~ +

1

2
∂̄2Hcl (α) · a∗2~

+ ∂∂̄Hcl (α) · a∗~a~ + ~ · vH (α) I

and hence using the commutation relations,

− [H2 (α (t) : a, a∗) , a] =
(
∂̄2Hcl

)
(α (t)) a∗ +

(
∂∂̄Hcl

)
(α (t)) .

Using this in Eq. (36) then shows

iȧ (t) =
(
∂̄2Hcl

)
(α (t)) a (t)∗ +

(
∂∂̄Hcl

)
(α (t)) a (t)

which is precisely the linearization of Hamilton’s equations. Q.E.D.
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In Summary

For α0 ∈ C, let α (t) = α (t, α0) be the solution to Hamilton’s equations,

iα̇ (t) =

(
∂

∂z̄
Hcl

)
(α (t)) with α (0) = α0 ∈ C.

Let γ (α0, t) and δ (α0, t) be determined by

α′ (t, α0) z :=
d

ds
α (t, α0 + sz) = γ (α0, t) z + δ (α0, t) z̄.

Let W0 (α0, t) = W0 (t) be the one parameter family of unitary operators satisfying,

i
∂

∂t
W0 (t) = H2 (α (t) : a, a∗)W0 (t) with W0 (0) = I.

Further let A~ (t) be the evolution of a~ in the Heisenberg picture, i.e.

A~ (t) := eiH(a∗~,a~)t/~a~e
−iH(a∗~,a~)t/~.

Theorem 36 (Summary). If H (θ, θ∗) satisfies Assumption 1, α0 ∈ C, and ~ small, then

U~ (α0)
∗A~ (t)U~ (α0) = α (t) +

√
~W~ (α0, t)

∗ aW~ (α0, t) (37)
∼= α (t) +

√
~W0 (α0, t)

∗ aW0 (α0, t) (38)

= α (t) +
√
~ a (α0, t) . (39)
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End
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