Talk 2: "Quantized Yang-Mills (d=2) and the Segal-Bargmann-Hall Transform"

Bruce Driver
Department of Mathematics, 0112
University of California at San Diego, USA
http://math.ucsd.edu/~bdriver

Nelder Talk 2.
1pm-2:30pm, Wednesday 5th November, Room 139, Huxley
Imperial College, London

Gaussian Measures on Hilbert spaces

Goal: Given a Hilbert space H, we would ideally like to define a probability measure μ on $\mathcal{B}(H)$ such that

$$
\begin{equation*}
\hat{\mu}(h):=\int_{H} e^{i(\lambda, x)} d \mu(x)=e^{-\frac{1}{2}\|\lambda\|^{2}} \text { for all } \lambda \in H \tag{1}
\end{equation*}
$$

so that, informally,

$$
\begin{equation*}
d \mu(x)=\frac{1}{Z} e^{-\frac{1}{2}|x|_{H}^{2}} \mathcal{D} x . \tag{2}
\end{equation*}
$$

The next proposition shows that this is impossible when $\operatorname{dim}(H)=\infty$.
Proposition 1. Suppose that H is an infinite dimensional Hilbert space. Then there is no probability measure μ on the Borel σ - algebra, $\mathcal{B}=\mathcal{B}(H)$, such that Eq. (1) holds.

Proof: Suppose such a Gaussian measure were to exist. If $\left\{e_{i}\right\}_{i=1}^{\infty}$ is an ON basis for H, then $\left\{\left\langle e_{i}, \cdot\right\rangle\right\}_{i=1}^{\infty}$ would be i.i.d. normal random variables. By SSLN,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left\langle e_{i}, \cdot\right\rangle^{2}=1 \mu-\text { a.s. }
$$

which would imply

$$
\infty>\|x\|^{2}=\sum_{i=1}^{\infty}\left\langle e_{i}, x\right\rangle^{2}=\infty \text { a.s. }
$$

Moral: The measure μ must be defined on a larger space. This is somewhat analogous to trying to define Lebesgue measure on the rational numbers. In each case the measure can only be defined on a certain completion of the naive initial space.

A Non-Technicality

Theorem 2. Let \mathbb{Q} be the rational numbers.

1. There is no translation invariant measure (m) on \mathbb{Q} which is finite on bounded sets.
2. Similarly there is no measure (m) on \mathbb{Q} such that

$$
m(\{x \in \mathbb{Q}: a<x<b\})=b-a .
$$

Proof: In either case one shows that $m(\{r\})=0$ and then by countable additivity

$$
m(\mathbb{Q})=\sum_{r \in \mathbb{Q}} m(\{r\})=0
$$

For example if m existed as in item 2., then $m(\{r\}) \leq b-a$ for any choice of $a<r<b$ which can only be if $m(\{r\})=0$.
Q.E.D.

MORAL: To construct desirable countably additive measures the underlying set must be sufficiently "big."

Measures on Hilbert Spaces

Theorem 3. Suppose that H and K are separable Hilbert spaces, H is a dense subspace of K, and the inclusion map, $i: H \rightarrow K$ is continuous. Then there exists a Gaussian measure, ν, on K such that

$$
\begin{equation*}
\int_{K} e^{\lambda(x)} d \nu(x)=\exp \left(\frac{1}{2}(\lambda, \lambda)_{H^{*}}\right) \text { for all } \lambda \in K^{*} \subset H^{*} \tag{3}
\end{equation*}
$$

iff $i: H \rightarrow K$ is Hilbert Schmidt. Recalling the Hilbert Schmidt norm of i and its adjoint, i^{*}, are the same, the following conditions are equivalent;

1. $i: H \rightarrow K$ is Hilbert Schmidt,
2. $i^{*}: K \rightarrow H$ is Hilbert Schmidt,
3. $\operatorname{tr}\left(i i^{*}\right)<\infty$
4. $\operatorname{tr}\left(i^{*} i\right)<\infty$.

Proof: We only prove here; if $i: H \rightarrow K$ is Hilbert Schmidt, then there exists a measure ν on K such that Eq. (3) holds. For the converse direction, see [Bogachev, 1998, Da Prato \& Zabczyk, 1992, Kuo, 1975].

- $A:=i^{*} i: H \rightarrow H$, is a self-adjoint trace class operator.
- By the spectral theorem, there exists an orthonormal basis, $\left\{e_{j}\right\}_{j=1}^{\infty}$ for H such that $A e_{j}=a_{j} e_{j}$ with $a_{j}>0$ and $\sum_{j=1}^{\infty} a_{j}<\infty$.
- $\left(e_{j}, e_{k}\right)_{K}=\left(i e_{j}, i e_{k}\right)_{K}=\left(i^{*} i e_{j}, e_{k}\right)_{H}=\left(A e_{j}, e_{k}\right)_{H}=a_{j} \delta_{j k}$.
- Let $\left\{N_{j}\right\}_{j=1}^{\infty}$ be i.i.d. standard normal random variables and set

$$
S:=\sum_{j=1}^{\infty} N_{j} e_{j}
$$

- Notice that

$$
\mathbb{E}\left[\|S\|_{K}^{2}\right]=\sum_{j=1}^{\infty}\left\|e_{j}\right\|_{K}^{2}=\sum_{j=1}^{\infty} a_{j}<\infty
$$

- Now take $\nu=$ Law (S).
Q.E.D.

Wiener Measure Example

Example 1 (Wiener measure). Let

$$
H=\left\{h:[0, T] \rightarrow \mathbb{R}^{d} \mid h(0)=0 \text { and }\langle h, h\rangle_{H}=\int_{0}^{1}\left|h^{\prime}(s)\right|^{2} d s<\infty\right\}
$$

and take $K=L^{2}\left([0, T], \mathbb{R}^{d}\right)$. On then shows;

1. $\left(i^{*} f\right)(\tau)=\int_{0}^{T} \min (t, \tau) f(\tau) d \tau$
2. $\operatorname{tr}\left(i i^{*}\right)=d \cdot \int_{0}^{T} \min (t, t) d t=d \cdot T^{2} / 2<\infty$.

Euclidean Free Field

Definition 4. For $f \in C^{\infty}\left(\mathbb{T}^{d}\right)$, let

$$
\|f\|_{s}^{2}:=\left\langle\left(-\Delta+m^{2}\right)^{s} f, f\right\rangle=\left\|\left(-\Delta+m^{2}\right)^{s / 2} f\right\|_{L^{2}}^{2}
$$

and set H_{s} be the closure inside of $\left[C^{\infty}\left(\mathbb{T}^{d}\right)\right]^{\prime}$. [We normalize Lebesgue measure to have volume 1 on \mathbb{T}^{d}.]
Theorem 5. The measure,

$$
d \mu(\varphi)=\frac{1}{Z} e^{-\int_{\mathbb{T}^{d}}\left[\frac{1}{2}|\nabla \varphi(x)|^{2}+m^{2} \varphi^{2}(x)\right] d x} \mathcal{D} \varphi
$$

exists on H_{s} iff $s<1-\frac{d}{2}$.
Proof: For $n \in \mathbb{Z}^{d}$, let $\chi_{n}(\theta):=e^{i n \cdot \theta}$ for $\theta \in \mathbb{T}^{d}$. Then

$$
\left\langle\chi_{n}, \chi_{m}\right\rangle_{s}=\left\langle\left(-\Delta+m^{2}\right)^{s} \chi_{n}, \chi_{m}\right\rangle=\left[|n|^{2}+m^{2}\right]^{s} \delta_{m n}
$$

Therefore,

$$
\left\{\frac{\chi_{n}}{\sqrt{|n|^{2}+m^{2}}}\right\}_{n \in \mathbb{Z}^{d}} \quad \text { is an ON basis for } H_{1}
$$

The result now follows since

$$
\sum_{n \in \mathbb{Z}^{d}}\left\|\frac{\chi_{n}}{\sqrt{|n|^{2}+m^{2}}}\right\|_{s}^{2}=\sum_{n \in \mathbb{Z}^{d}} \frac{1}{\left(|n|^{2}+m^{2}\right)^{1-s}}
$$

which is finite iff $2(1-s)>d \Longleftrightarrow s<1-\frac{d}{2}$.
Q.E.D.

Stochastic Quantization (Skipped)

Let V be a nice potential,

$$
\begin{aligned}
& H=-\frac{1}{2} \Delta+V \\
& \lambda_{0}=\inf \sigma(H) \text { and } \Omega>0 \ni H \Omega=\lambda_{0} \Omega
\end{aligned}
$$

By making sense of

$$
\begin{equation*}
d \mu(\omega)=\frac{1}{Z} e^{-\int_{-\infty}^{\infty}\left\{\frac{1}{2}\left(\omega^{\prime}(s)\right)^{2}+V(\omega(s))\right\} d s} \mathcal{D} \omega \tag{4}
\end{equation*}
$$

We learn knowledge of Ω and $\widehat{H}:=\Omega^{-1}\left(H-\lambda_{0}\right) \Omega$ via:

$$
\begin{aligned}
\int_{W} f(\omega(0)) d \mu(\omega) & =\int \Omega^{2}(x) f(x) d x \\
\int_{W} f(\omega(0)) g(\omega(t)) d \mu(\omega) & =\left(e^{t\left(H-\lambda_{0}\right)} \Omega f, \Omega g\right)_{L^{2}(d x)} \\
& =\left(e^{t \widehat{H}} f, g,\right)_{L^{2}\left(\Omega^{2} d x\right)}
\end{aligned}
$$

Quantized Non-Linear Klein-Gordon Equation (Skipped)

$$
\varphi_{t t}+\left(-\Delta+m^{2}\right) \varphi+\varphi^{3}=0
$$

where $\varphi: \mathbb{R} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$. Equivalently,

$$
\varphi_{t t}=-\nabla V(\varphi)
$$

where

$$
V(\varphi)=\int_{\mathbb{R}^{d}}\left(\frac{1}{2}|\nabla \varphi|^{2}+\frac{m^{2}}{2} \varphi^{2}+\frac{1}{4} \varphi^{4}\right) d x .
$$

Quantization leads to the equation

$$
\partial_{t} u(t, \varphi)=\frac{1}{2} \Delta_{H} u(t, \varphi)-V(\varphi) u(t, \varphi)
$$

where $H:=L^{2}\left(\mathbb{R}^{d}\right)$ with formal path integral quantization:

$$
e^{T\left(\frac{1}{2} \Delta_{H}-V\right)} f\left(\varphi_{0}\right)=\frac{1}{Z_{T}} \int_{\varphi(0)=\varphi_{0}} e^{-\int_{0}^{T}\left[\frac{1}{2}\|\dot{\varphi}(t)\|_{H}^{2}+V(\varphi(t))\right] d t} f(\varphi(T)) \mathcal{D} \varphi .
$$

See Glimm and Jaffe's Book, 1987.

The appearance of infinities

For "interacting" quantum field theories one would like to make sense of

$$
d \mu_{v}(\varphi):=\frac{1}{Z} e^{-\int_{\mathbb{T}^{d}}\left[\frac{1}{2}|\nabla \varphi(x)|^{2}+m^{2} \varphi^{2}(x)+v(\varphi(x))\right] d x} \mathcal{D} \varphi
$$

where $v(s)$ is a polynomial in s like $v(s)=s^{4}$. The obvious way to do this is to write,

$$
\begin{aligned}
d \mu_{v}(\varphi) & :=e^{-\int_{\mathbb{T}^{d}} v(\varphi(x)) d x} \frac{1}{Z} e^{-\int_{\mathbb{T}^{d}}\left[\frac{1}{2}|\nabla \varphi(x)|^{2}+m^{2} \varphi^{2}(x)\right] d x} \mathcal{D} \varphi \\
& =\frac{1}{Z_{v}} e^{-\int_{\mathbb{T}^{d}} v(\varphi(x)) d x} \cdot d \mu_{0}(\varphi)
\end{aligned}
$$

where $d \mu_{0}(\varphi)$ is given in Theorem 5. However, μ_{0} is only supported on $H_{1-\frac{d}{2}-\varepsilon}-\mathrm{a}$ space of distributions and therefore $v(\varphi(x))$ is not well defined!

Path Integral Quantized Yang-Mills Fields (Skipped)

- A \$1,000,000 question, http://www.claymath.org/millennium-problems
- ". . . Quantum Yang-Mills theory is now the foundation of most of elementary particle theory, and its predictions have been tested at many experimental laboratories, but its mathematical foundation is still unclear. . . ."
- Roughly speaking one needs to make sense out of the path integral expressions above when $[0, T]$ is replaced by $\mathbb{R}^{4}=\mathbb{R} \times \mathbb{R}^{3}$:

$$
\begin{equation*}
d \mu(A) "=" \frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R} \times \mathbb{R}^{3}}\left|F^{A}\right|^{2} d t d x\right) \mathcal{D} A \tag{5}
\end{equation*}
$$

- New problem: gauge invariance.
- We are going to discuss quantized Yang-Mills from the "Canonical quantization" point of view.

Gauge Theory Notation

- $K=S U(2)$ or S^{1} or a compact Lie Group

$$
S U(2)=\left\{g:=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]: a, b \in \mathbb{C} \ni|a|^{2}+|b|^{2}=1\right\}
$$

- $\mathfrak{k}=\operatorname{Lie}(K)$, e.g. $\operatorname{Lie}(S U(2))=s u(2)$

$$
s u(2)=\left\{A:=\left[\begin{array}{cc}
i \alpha & -\bar{\beta} \\
\beta & -i \alpha
\end{array}\right]: \alpha \in \mathbb{R} \text { and } \beta \in \mathbb{C}\right\}
$$

- Lie bracket: $[A, B]=A B-B A=: a d_{A} B$
- $\langle A, B\rangle=-\operatorname{tr}(A B)=\operatorname{tr}\left(A^{*} B\right)$
(a fixed Ad - K - invariant inner product)
- $M=\mathbb{R}^{d}$ or $T^{d}=\left(S^{1}\right)^{d}$.
- $\mathcal{A}=L^{2}\left(M, \mathfrak{k}^{d}\right)$ - the space of connection 1 -forms.
- For $A \in \mathcal{A}$ and $1 \leq i, k \leq d$, let

$$
\begin{aligned}
& \nabla_{k}^{A}:=\partial_{k}+a d_{A_{k}} \text { (covariant differential) } \\
& \quad \text { and } \\
& F_{k i}^{A}:=\partial_{k} A_{i}-\partial_{i} A_{k}+\left[A_{k}, A_{i}\right] \text { (Curvature of } A \text {) }
\end{aligned}
$$

Newton Form of the Y. M. Equations

Define the potential energy functional, $V(A)$, by

$$
V(A):=\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j<k \leq d}\left|F_{j, k}^{A}(x)\right|^{2} d x
$$

Then the dynamics equation may be written in Newton form as

$$
\ddot{A}(t)=-\left(\operatorname{grad}_{\mathcal{A}} V\right)(A) .
$$

The conserved energy is thus

$$
\begin{equation*}
\text { Energy }(A, \dot{A})=\frac{1}{2}\|\dot{A}\|_{\mathcal{A}}^{2}+V(A) \tag{6}
\end{equation*}
$$

The weak form of the constraint equation,

$$
\begin{aligned}
& 0=\nabla^{A} \cdot E=\sum_{k=1}^{d} \nabla_{k}^{A} E_{k} \text { is } \\
& 0=\left(E, \nabla^{A} h\right)_{\mathcal{A}} \forall h \in C_{c}^{\infty}(M, \mathfrak{k}) .
\end{aligned}
$$

Formal Quantization of the Y. M. - Equations

When $d=3$, "Quantize" the Yang - Mills equations and show the resulting quantum mechanical Hamiltonian has a mass gap. See www.claymath.org. Formally we have,

- Raw quantum Hilbert Space: $\mathbb{H}=L^{2}(\mathcal{A}$, " $\mathcal{D} A$ " $)$.
- Energy operator: $\hat{E}:=-\frac{1}{2} \Delta_{\mathcal{A}}+M_{V}$ where

$$
V(A):=\frac{1}{2} \int_{\mathbb{R}^{d}} \sum_{1 \leq j<k \leq d}\left|F_{j, k}^{A}(x)\right|^{2} d x
$$

- This must all be restricted to the physical Hilbert space coming from the constraints.
- Some possible references of interest are; [Driver \& Hall, 2000, Driver \& Hall, 1999, Driver et al., 2013, Hall, 2003, Hall, 2002, Hall, 2001, Hall, 1999] and the references therein.

Wilson Loop Variables

Let $\mathcal{L}=\mathcal{L}(M)$ loops on M based at $o \in M$.

Definition 6. Let $/ /^{A}(\sigma) \in K$ be parallel translation along $\sigma \in \mathcal{L}$, that is $/ /^{A}(\sigma):=/ /{ }_{1}^{A}(\sigma)$, where

$$
\frac{d}{d t} / /_{t}^{A}(\sigma)+\sum_{i=1}^{d} \dot{\sigma}_{i}(t) A_{i}(\sigma(t)) / /_{t}^{A}(\sigma)=0 \text { with } / /_{0}^{A}(\sigma)=i d .
$$

[Very ill defined unless $d=1!!$]

- Physical quantum Hilbert Space

$$
\mathbb{H}_{\text {physical }}=\left\{F \in L^{2}(\mathcal{A}, \mathcal{D} A): F=F\left(\left\{/ /^{A}(\sigma): \sigma \in \mathcal{L}\right\}\right)\right\}
$$

Restriction to $d=1$

$S^{1}=[0,1] /(0 \sim 1) \ni \theta$ and write $\partial_{\theta}=\frac{\partial}{\partial \theta}$

In this case,

- $\mathcal{A}=L^{2}\left(S^{1}, \mathfrak{k}\right)$,
- $\mathcal{G}_{0}=\left\{g \in H^{1}\left(S^{1} \rightarrow K\right): g(0)=g(1)=i d \in K\right\}$,
- $A^{g}=A d_{g^{-1}} A+g^{-1} g^{\prime}$
- $\mathbb{H}={ }^{\prime} L^{2}(\mathcal{A}, \mathcal{D} A) "$
- $\mathbb{H}_{\text {physical }}=\left\{F \in \mathbb{H}: F_{\varphi}(A)=\varphi(/ / 1(A)), \varphi: K \rightarrow \mathbb{C}\right\}$, where $/ / \theta(A) \in K$ is the solution to

$$
\frac{d}{d \theta} / /_{\theta}(A)+A(\theta) / /_{\theta}(A)=0 \text { with } / / 0(A)=i d \in K
$$

$/ / 1(A) \in K$ is the holonomy of A.

- $H=-\frac{1}{2} \Delta_{\mathcal{A}} \quad$ (Quantum Hamiltonian)

Remark 7. $F^{A} \equiv 0$ when $d=1$ and therefore, $V(A) \equiv 0$.

A Physics Idea

Theorem 8 (Heuristic: c.f. Witten 1991, CMP 141.). Suppose K is simply connected and for φ let $F_{\varphi}(A):=\varphi\left(/ /{ }_{1}(A)\right)$, then

$$
\begin{equation*}
\varphi \in L^{2}(K, d \text { Haar }) \rightarrow F_{\varphi} \in \mathbb{H}_{\text {physical }} \tag{7}
\end{equation*}
$$

is a "Unitary" map which intertwines $\Delta_{\mathcal{A}}$ and Δ_{K}, i.e.

$$
\begin{equation*}
\Delta_{\mathcal{A}}\left[\varphi \circ / /_{1}\right]=\Delta_{\mathcal{A}} F_{\varphi}=F_{\Delta_{K} \varphi}=\left(\Delta_{K} \varphi\right) \circ / /_{1} . \tag{8}
\end{equation*}
$$

Proof:

- Use $\langle\cdot, \cdot\rangle$ on \mathfrak{k} to construct a bi-invariant metric on $T K$.
- Let $H(K)$ be the space of finite energy paths on K starting at $e \in K$.
- Equip $H(K)$ with the right invariant metric induced from the metric on

$$
H(\mathfrak{k}):=\operatorname{Lie}(H(K)) .
$$

- The "Cartan Rolling Map, $\psi: \mathcal{A} \rightarrow H(K)$ defined by

$$
\psi(A):=/ / .(A)
$$

is an isometric isomorphism of Riemannian manifolds.

- Consequently we may "conclude" that ψ intertwines the Laplacian, $\Delta_{\mathcal{A}}$ on \mathcal{A} with the Laplacian, $\Delta_{H(K)}$ on $H(K)$, i.e.

$$
\begin{equation*}
\Delta_{\mathcal{A}}(f \circ \psi)=\left(\Delta_{H(K)} f\right) \circ \psi \tag{9}
\end{equation*}
$$

When $f(g)=\varphi(g(1))$, one can show

$$
\Delta_{H(K)} f(g)=\left(\Delta_{K} \varphi\right)(g(1))
$$

and therefore Eq. (9) implies,

$$
\Delta_{\mathcal{A}}\left(\varphi \circ / /_{1}\right)=\left(\Delta_{K} \varphi\right) \circ / /{ }_{1}
$$

- Other geometric arguments show formally,

$$
\int F(A) \mathcal{D} A=\int_{K} d k \int_{\psi_{1}^{-1}(k)} F(A) d \lambda_{k}(A)
$$

where $d k$ is Haar measure on K, λ_{k} is the formal Riemannian volume measure on $\psi_{1}^{-1}(k)$, and $\lambda_{k}\left(\psi_{1}^{-1}(k)\right)$ is constant independent of k.
Q.E.D.

A more precise Version of Theorem 8

- For $s>\frac{t}{2}>0$ let

$$
\begin{aligned}
d \tilde{P}_{s}(A) & =\frac{1}{Z_{s}} \exp \left(-\frac{1}{2 s}|A|_{\mathcal{A}}^{2}\right) \mathcal{D} A \text { and } \\
d \tilde{M}_{s, t}(A+i B) & =\frac{1}{Z_{s, t}} \exp \left(-\frac{1}{2 s-t}|A|_{\mathcal{A}}^{2}-\frac{1}{t}|B|_{\mathcal{A}}^{2}\right) \mathcal{D} A \mathcal{D} B
\end{aligned}
$$

- As we have seen one has to intpret these as Gaussian measures living on fattened up spaces, $\overline{\mathcal{A}}$ and $\overline{\mathcal{A}}_{\mathbb{C}}=\overline{\mathcal{A}}+i \overline{\mathcal{A}}$ respectively.
- $\lim _{s \rightarrow \infty} d \tilde{P}_{s}(A)=c \cdot \mathcal{D} A$."

Theorem 9 (Segal- Bargmann). There exists an isometry

$$
S_{t}: L^{2}\left(\mathcal{A}, \tilde{P}_{s}\right) \rightarrow L^{2}\left(W\left(\mathfrak{k}_{\mathbb{C}}\right), M_{s, t}\right)
$$

such that

$$
\left(S_{t} f\right)(c)=\int f_{\mathbb{C}}(c+a) d P_{t}(a)=\left(e^{\frac{t}{2} \Delta_{\mathcal{A}}} f\right)_{a}(c)
$$

For all polynomial cylinder functions f. Moreover $\operatorname{Ran}\left(S_{t}\right)=$ closure of Holomorphic cylinder functions.

Main Theorem

Theorem 10 (Main Theorem, [Driver \& Hall, 1999]). Let

$$
\frac{d}{d \theta} / /_{\theta}+A(\theta) / /_{\theta}=0 \text { with } / /_{0}=I d
$$

and

$$
\frac{d}{d \theta} / /_{\theta}^{\mathbb{C}}+(A(\theta)+i B(\theta)) / /_{\theta}^{\mathbb{C}}=0 \text { with } / /_{0}^{\mathbb{C}}=I d
$$

as "Stratonovich SDE's" relative to P_{s} and $M_{s, t}$ respectively. Then for all $f \in L^{2}(K, d x)$,

$$
S_{t}[f(/ / 1)]=F\left(/ /{ }_{1}^{\mathbb{C}}\right)
$$

where F is the unique Holomorphic function on $K_{\mathbb{C}}$ such that

$$
\left.F\right|_{K}=e^{\frac{t}{2} \Delta_{K}} f
$$

Moral Interpretation

- $\left(e^{\frac{t}{2} \Delta_{\mathcal{A}}} f(/ / 1)\right)_{a}=\left(e^{\frac{t}{2} \Delta_{K}} f\right)_{a}\left(/ / /_{1}^{\mathbb{C}}\right)$
- So "restricting" to \mathcal{A} and differentiating in t gives $\triangle_{\mathcal{A}}[f(/ / 1)]=\left(\triangle_{K} f\right)\left(/ /{ }_{1}\right)$.
- Moreover,

$$
\lim _{s \rightarrow \infty} \int_{\overline{\mathcal{A}}} f(/ / 1(A)) d \tilde{P}_{s}(A)=\int_{K} f(k) d k
$$

showing Haar measure on K is the correct choice.

Corollary: Extended Hall's Transform

Let $\rho_{s}(d x)=\operatorname{Law}(/ / 1)$ and $m_{s, t}(d g)=\operatorname{Law}\left(/ /_{1}^{\mathbb{C}}\right)$ so that

$$
\begin{aligned}
\rho_{s}(x) & =\left(e^{s \Delta_{K} / 2} \delta_{e}\right)(x) \text { for } x \in K \quad \& \\
m_{s, t}(g) & =\left(e^{A_{s, t} / 2} \delta_{e}\right)(g) \text { for } g \in K_{\mathbb{C}}
\end{aligned}
$$

Corollary 11 (A One Parameter family of Hall's Transforms). The map

$$
f \in L^{2}\left(K, \rho_{s}\right) \rightarrow\left(e^{t \Delta_{K} / 2} f\right)_{a} \in \mathcal{H} L^{2}\left(K_{\mathbb{C}}, m_{s, t}\right)
$$

is unitary. Note that $m_{s, t}$ is the convolution heat kernel for $e^{A_{s, t} / 2}$.
This theorem interpolates between the two previous versions of Hall's transform corresponding to $s=\infty$ and $s=\frac{t}{2}$.

Key Ingredients of the Proof 9

- Compute the action of the Segal-Bargmann transform on multiple Wiener integrals.
- Use the [Veretennikov \& Krylov, 1976] formula twice to develop $f\left(/ /{ }_{1}\right)$ and $F\left(/ /{ }_{1}^{\mathbb{C}}\right)$ into an infinite sum of multiple Wiener integrals (the Itô chaos expansion).
- Use these two items together to show $S_{t}[f(/ / 1)]=F\left(/ /_{1}^{\mathbb{C}}\right)$.

Remark 12. See Dimock 1996, and Landsman and Wren ($\cong 1998$) for other approaches to "canonical quantization" of $Y M_{2}$.

Non - Closability of Δ_{H} when $d=\infty$

- $\|a\|_{H}^{2}:=\int_{0}^{1} \dot{a}(t)^{2} d t$ where $a(0)=0$,
- Let μ be standard Wiener measure - so "informally"

$$
d \mu(a)=\frac{1}{Z} \exp \left(-\frac{1}{2}\|a\|_{H}^{2}\right) \mathcal{D} a .
$$

- Let $f(a)=2 \int_{0}^{1} a_{\theta} d a_{\theta}=a_{1}^{2}-1$ (ltô integral).
- On one hand,

$$
\Delta_{H(\mathfrak{k})} f(a)=\sum_{h \in S_{0}} 2 h_{1}^{2}=2 .
$$

- On the other hand, we have $f(a)=\lim _{|\mathcal{P}| \rightarrow 0} f_{\mathcal{P}}(a)$ where $f_{\mathcal{P}}(a)$ is the cylinder function

$$
f_{\mathcal{P}}(a)=2 \sum_{s_{i} \in \mathcal{P}} a_{s_{i}}\left(a_{s_{i+1}}-a_{s_{i}}\right)
$$

which are all Harmonic, i.e.

$$
\Delta_{H(\mathfrak{k})} f_{\mathcal{P}}(a)=0!
$$

(Compare with the harmonic function

$$
\left.\left(x_{1}+x_{2}+\cdots+x_{n}\right) x_{n+1} \text { on } \mathbb{R}^{n+1} .\right)
$$

Therefore $\lim _{|\mathcal{P}| \rightarrow 0} f_{\mathcal{P}}=f$ while

$$
0=\lim _{|\mathcal{P}| \rightarrow 0} \Delta_{H(\mathfrak{k})} f_{\mathcal{P}}(a) \neq \Delta_{H(\mathfrak{k})} f=2
$$

The Segal-Bargmann Transform

- $\mathcal{A}:=\mathbb{R}^{d}$ and $\mathcal{A}_{\mathbb{C}}:=\mathbb{C}^{d}$ with coordinate, $x \in \mathcal{A}$ and $z=x+i y \in \mathcal{A}_{\mathbb{C}}$.
- Let $\Delta_{x}=\sum_{\ell=1}^{d} \frac{\partial^{2}}{\partial x_{\ell}^{2}}$ and $\Delta_{y}=\sum_{\ell=1}^{d} \frac{\partial^{2}}{\partial y_{\ell}^{2}}$
- $A_{s, t}=(s-t / 2) \partial_{x}^{2}+\frac{t}{2} \partial_{y}^{2}$
- Let $r=2(s-t / 2), x^{2}=|x|^{2}, y^{2}=|y|^{2}$,

$$
\begin{aligned}
& \rho_{s}(x)=\left(e^{s \Delta / 2} \delta_{0}\right)(x) \\
& \text { and } \\
& m_{s, t}(z)\left.=\left(e^{A_{s, t} / 2} \delta_{0}\right)(z)=\left(\frac{1}{\pi \sqrt{r t}}\right)^{d}\right)^{d} e^{-x^{2} / 2 s-y^{2} / t} .
\end{aligned}
$$

Theorem 13 (Segal - Bargmann). For all $s>t / 2, z \in \mathbb{C}$ and $f \in L^{2}\left(\mathcal{A}, p_{s}(x) d x\right)$ let

$$
S_{t} f:=(\text { Analytic Continuation }) \circ e^{t \Delta / 2} f,
$$

more explicitly,

$$
\left(S_{t} f\right)(z)=\int_{\mathcal{A}} f(y) p_{t}(z-y) d y=\left(e^{t \Delta / 2} f\right)_{a}(z)
$$

Then

$$
S_{t}: L^{2}\left(\mathcal{A}, p_{s}(x) d x\right) \rightarrow \mathcal{H} L^{2}\left(\mathcal{A}_{\mathbb{C}}, m_{s, t}(z) d z\right)
$$

is a unitary map.

Sketch of the isometry proof

- Let $\partial_{j}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right)$ and $\bar{\partial}_{j}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)$
- Let $f(x)$ be a polynomial in $x \in \mathcal{A}$,
- Let $f(z)$ be its analytic continuation to $z \in \mathcal{A}_{\mathbb{C}}$,
- Define $F_{t}(z):=\left(e^{-t \Delta_{x} / 2} f\right)(z)$ so that $f=e^{-\frac{t}{2} \Delta_{x}} F_{t}=e^{-\frac{t}{2} \partial^{2}} F_{t}$.
- So

$$
\begin{aligned}
|f|^{2} & =f \cdot \bar{f}=e^{-\frac{t}{2} \partial^{2}} F_{t} \cdot e^{-\frac{t}{2} \bar{\partial}^{2}} \bar{F}_{t} \\
& =e^{-\frac{t}{2} \partial^{2}} e^{-\frac{t}{2} \bar{\partial}^{2}}\left[F_{t} \cdot \bar{F}_{t}\right]=e^{-\frac{t}{2}\left(\partial^{2}+\bar{\partial}^{2}\right)}\left|F_{t}\right|^{2}
\end{aligned}
$$

- Next observe that

$$
\begin{aligned}
\left(\partial^{2}+\bar{\partial}^{2}\right) & =\frac{1}{4}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right)^{2}+\frac{1}{4}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)^{2} \\
& =\frac{1}{2}\left(\Delta_{x}-\Delta_{y}\right)
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
e^{\frac{s}{2} \Delta_{x}}|f|^{2} & =e^{\frac{s}{2} \Delta_{x}} e^{-\frac{t}{2}\left(\partial^{2}+\bar{\partial}^{2}\right)}\left|F_{t}\right|^{2}=e^{\frac{s}{2} \Delta_{x}-\frac{t}{4}\left(\Delta_{x}-\Delta_{y}\right)}\left|F_{t}\right|^{2} \\
& =e^{\frac{1}{2}\left(\left(s-\frac{t}{2}\right) \Delta_{x}+\frac{t}{2} \Delta_{y}\right)}\left|F_{t}\right|^{2} .
\end{aligned}
$$

- Conclusion,

$$
\begin{aligned}
\int_{\mathcal{A}}|f|^{2} d \rho_{s} & =\left(e^{\frac{s}{2} \Delta_{x}}|f|^{2}\right)(0)=\left(e^{\frac{1}{2}\left(\left(s-\frac{t}{2}\right) \Delta_{x}+\frac{t}{2} \Delta_{y}\right)}\left|F_{t}\right|^{2}\right)(0) \\
& =\int_{\mathcal{A}_{\mathbb{C}}}\left|\left(e^{\frac{t}{2} \Delta_{x}} f\right)_{a}\right|^{2} d m_{s, t}
\end{aligned}
$$

Abstract Itô Chaos Expansion

For completeness, let me state (a bit informally) an abstract form of the Itô Chaos expansion.

Theorem 14 (Abstract Itô-Chaos Expansion). If μ is a Gaussian measure on a Banach space W, informally given by

$$
d \mu(x)=\frac{1}{Z} \exp \left(-\frac{1}{2}\|x\|_{H}^{2}\right) \mathcal{D} x
$$

where $H \subset W$, then every $f \in L^{2}(W, \mu)$ has an orthogonal direct sum decomposition as

$$
\begin{equation*}
f=\sum_{n=0}^{\infty} I_{n}(f) \tag{10}
\end{equation*}
$$

where

$$
I_{n}(f):=\frac{1}{n!} e^{-\frac{1}{2} \Delta_{H}}\left[x \rightarrow\left(\partial_{x}^{n} e^{\frac{1}{2} \Delta_{H}} f\right)(0)\right] .
$$

Proof Ideas

1. $f=e^{-\frac{1}{2} \Delta_{H}} e^{\frac{1}{2} \Delta_{H}} f$,
2. $e^{\frac{1}{2} \Delta_{H}} f$ is smooth and so

$$
\left(e^{\frac{1}{2} \Delta_{H}} f\right)(x)=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\partial_{x}^{n} e^{\frac{1}{2} \Delta_{H}} f\right)(0)
$$

3. Combing items 1. and 2. explains Eq. (10).
4. By more elementary Taylor theorem arguments, on may show

$$
\int_{\bar{H}} I_{m}(f) \overline{I_{n}(f)} d \mu=0 \text { if } m \neq n .
$$

5. This is based on the identity,

$$
\mathbb{E}\left[\left(e^{-\frac{1}{2} \Delta} p\right) \cdot\left(e^{-\frac{1}{2} \Delta} \bar{q}\right)\right]=\sum_{n=0}^{\infty} \frac{1}{n!}\left\langle\left(D^{n} p\right)(0),\left(D^{n} q\right)(0)\right\rangle_{\left(H^{*}\right)^{\otimes n}}
$$

which is valid for any polynomials p and q.
End

References

[Bogachev, 1998] Bogachev, Vladimir I. 1998. Gaussian measures. Mathematical Surveys and Monographs, vol. 62. Providence, RI: American Mathematical Society.
[Da Prato \& Zabczyk, 1992] Da Prato, Giuseppe, \& Zabczyk, Jerzy. 1992. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge: Cambridge University Press.
[Driver \& Hall, 1999] Driver, Bruce K., \& Hall, Brian C. 1999. Yang-Mills theory and the Segal-Bargmann transform. Comm. math. phys., 201(2), 249-290.
[Driver \& Hall, 2000] Driver, Bruce K., \& Hall, Brian C. 2000. The energy representation has no non-zero fixed vectors. Pages 143-155 of: Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999). CMS Conf. Proc., vol. 29. Amer. Math. Soc., Providence, RI.
[Driver et al., 2013] Driver, Bruce K., Hall, Brian C., \& Kemp, Todd. 2013. The large- N limit of the Segal-Bargmann transform on \mathbb{U}_{N}. J. funct. anal., 265(11), 2585-2644.
[Hall, 1999] Hall, Brian C. 1999. A new form of the Segal-Bargmann transform for Lie groups of compact type. Canad. j. math., 51(4), 816-834.
[Hall, 2001] Hall, Brian C. 2001. Coherent states and the quantization of $(1+1)$-dimensional Yang-Mills theory. Rev. math. phys., 13(10), 1281-1305.
[Hall, 2002] Hall, Brian C. 2002. Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type. Comm. math. phys., 226(2), 233-268.
[Hall, 2003] Hall, Brian C. 2003. The Segal-Bargmann transform and the Gross ergodicity theorem. Pages 99-116 of: Finite and infinite dimensional analysis in honor of Leonard Gross (New Orleans, LA, 2001). Contemp. Math., vol. 317. Amer. Math. Soc., Providence, RI.
[Kuo, 1975] Kuo, Hui Hsiung. 1975. Gaussian measures in Banach spaces. Berlin: Springer-Verlag. Lecture Notes in Mathematics, Vol. 463.
[Veretennikov \& Krylov, 1976] Veretennikov, A. Ju., \& Krylov, N. V. 1976. Explicit formulae for the solutions of stochastic equations. Mat. sb. (n.s.), 100(142)(2), 266-284, 336.

