Path integrals on Riemannian Manifolds

Bruce Driver

Department of Mathematics, 0112
University of California at San Diego, USA
http://math.ucsd.edu/~bdriver

Nelder Talk 1.
1pm-2:30pm, Wednesday 29th October, Room 340, Huxley
Imperial College, London

Newtonian Mechanics on \mathbb{R}^{d}

Given a potential energy function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ we look to solve

$$
m \ddot{q}(t)=-\nabla V(q(t)) \text { for } q(t) \in \mathbb{R}^{d}
$$

that is

$$
\text { Force }=\text { mass } \cdot \text { acceleration }
$$

Recall that $p=m \dot{q}$ and

$$
\begin{aligned}
H(q, p) & =\frac{1}{2 m} p \cdot p+V(q) \\
& =\text { Conserved Energy } \\
& =E(q, \dot{q}):=\frac{1}{2} m|\dot{q}|^{2}+V(q)
\end{aligned}
$$

Q.M. and Canonical Quantization on \mathbb{R}^{d}

We want to find

$$
\psi(t, x)=\left(e^{\frac{t}{i h} \hat{H}} \psi_{0}\right)(x)
$$

i.e. solve the Schrödinger equation

$$
\begin{aligned}
i \hbar \frac{\partial \psi}{\partial t}=\hat{H} \psi(t) & \text { for } \psi(t) \in L^{2}\left(\mathbb{R}^{d}\right) \\
& \text { with } \psi(0, x)=\psi_{0}(x)
\end{aligned}
$$

where by "Canonical Quantization,"

$$
\begin{gathered}
q \rightsquigarrow \hat{q}=M_{q}, p \rightsquigarrow \hat{p}=\frac{\hbar}{i} \nabla=\frac{\hbar}{i} \frac{\partial}{\partial q} \text { and } \\
H(q, p) \rightsquigarrow H(\hat{q}, \hat{p})=-\frac{\hbar^{2}}{2 m} \nabla^{2}+M_{V(q)} .
\end{gathered}
$$

Feynman Path Integral

Feynman explained that the solution to the Schrödinger equation should be given by

$$
\begin{equation*}
\left(e^{\frac{T}{\hbar \hbar} \hat{H}} \psi_{0}\right)(x)=\frac{1}{Z(T)} \int_{W_{x, T}\left(\mathbb{R}^{3}\right)} e^{\frac{i}{\hbar} \int_{0}^{T}(\text { K.E. - P.E.) })(t) d t} \psi_{0}(\omega(T)) d \operatorname{vol}(\omega) \tag{1}
\end{equation*}
$$

where $\psi_{0}(x)$ is the initial wave function,

$$
(\text { K.E. - P.E. })(t)=\frac{m}{2}|\dot{\omega}(t)|^{2}-V(\omega(t))
$$

and

$$
Z(T)=\int_{W_{x_{0}, T}\left(\mathbb{R}^{3}\right)} e^{\frac{i}{h} \int_{0}^{T}(\mathrm{~K} . \mathrm{E} .)(t) d t} d \operatorname{vol}(\omega) .
$$

Figure 1: $W_{x, T}\left(\mathbb{R}^{d}\right)=$ the paths in \mathbb{R}^{d} starting at x which are parametrized by $[0, T]$.

The Path Integral Prescription on \mathbb{R}^{d}

Theorem 1 (Meta-Theorem - Feynman (Kac) Quantization). Let $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a nice function and

$$
W\left(\mathbb{R}^{d} ; x, T\right):=\left\{\omega \in C\left([0, T] \rightarrow \mathbb{R}^{d}\right): \omega(0)=x\right\}
$$

Then

$$
\begin{equation*}
\left(e^{-T \hat{H}} f\right)(x)=" \frac{1}{Z_{T}} \int_{W\left(\mathbb{R}^{d} ; x, T\right)} e^{-\int_{0}^{T} E(\omega(t), \dot{\omega}(t)) d t} f(\omega(T)) \mathcal{D} \omega^{\prime \prime} \tag{2}
\end{equation*}
$$

where $E(x, v)=\frac{1}{2} m|v|^{2}+V(x)$ is the classical energy and

$$
" Z_{T}:=\int_{W\left(\mathbb{R}^{d} ; x, T\right)} e^{-\frac{1}{2} \int_{0}^{T}|\dot{\omega}(t)|^{2} d t} \mathcal{D} \omega^{\prime \prime}
$$

Proof of the Path Integral Prescription

Theorem 2 (Trotter Product Formula). Let A and B be $n \times n$ matrices. Then

$$
e^{(A+B)}=\lim _{n \rightarrow \infty}\left(e^{\frac{A}{n}} e^{\frac{B}{n}}\right)^{n}
$$

Proof: Since

$$
\begin{gathered}
\left.\frac{d}{d \varepsilon}\right|_{0} \log \left(e^{\varepsilon A} e^{\varepsilon B}\right)=A+B \\
\log \left(e^{\varepsilon A} e^{\varepsilon B}\right)=\varepsilon(A+B)+O\left(\varepsilon^{2}\right)
\end{gathered}
$$

i.e.

$$
e^{\varepsilon A} e^{\varepsilon B}=e^{\varepsilon(A+B)+O\left(\varepsilon^{2}\right)}
$$

and therefore

$$
\begin{aligned}
\left(e^{n^{-1} A} e^{n^{-1} B}\right)^{n} & =\left[e^{n^{-1} A+n^{-1} B+O\left(n^{-2}\right)}\right]^{n} \\
& =e^{A+B+O\left(n^{-1}\right)} \rightarrow e^{(A+B)} \text { as } n \rightarrow \infty
\end{aligned}
$$

- Let $A:=\frac{1}{2} \Delta$;

$$
\left(e^{t \Delta / 2} f\right)(x)=\int_{\mathbb{R}^{d}} p_{t}(x, y) f(y) d y
$$

where

$$
p_{t}(x, y)=\left(\frac{1}{2 \pi t}\right)^{d / 2} \exp \left(\frac{1}{2 t}|x-y|^{2}\right)
$$

- Let $B=-M_{V}$ - multiplication by $V ; e^{-t M_{V}}=M_{e^{-t V}}$
- By Trotter $\left(x_{0}:=x\right)$,

$$
\begin{align*}
& \left(\left(e^{\frac{T}{n} \Delta / 2} e^{-\frac{T}{n} V}\right)^{n} f\right)(x) \\
& \quad=\int_{\left(\mathbb{R}^{d}\right)^{n}} p_{\frac{T}{n}}\left(x_{0}, x_{1}\right) e^{-\frac{T}{n} V\left(x_{1}\right)} \ldots p_{\frac{T}{n}}\left(x_{n-1}, x_{n}\right) e^{-\frac{T}{n} V\left(x_{n}\right)} f\left(x_{n}\right) d x_{1} \ldots d x_{n} \\
& \quad=\frac{1}{Z_{n}(T)} \int_{\left(\mathbb{R}^{d}\right)^{n}} e^{-\frac{n}{2 T} \sum_{i=1}^{n}\left|x_{i}-x_{i-1}\right|^{2}-\frac{T}{n} \sum_{i=1}^{n} V\left(x_{i}\right)} f\left(x_{n}\right) d x_{1} \ldots d x_{n} \\
& \quad=\frac{1}{Z_{n}(T)} \int_{H_{n}} e^{-\int_{0}^{T}\left[\frac{1}{2}\left|\omega^{\prime}(s)\right|^{2}+V\left(\omega\left(s_{+}\right)\right)\right] d s} f(\omega(T)) d m_{H_{n}}(\omega)
\end{align*}
$$

where $Z_{n}(T):=(2 \pi T / n)^{d n / 2}, \mathcal{P}_{n}=\left\{\frac{k}{n} T\right\}_{k=0}^{n}$, and

$$
H_{n}=\left\{\omega \in W\left(\mathbb{R}^{d} ; x, T\right): \omega^{\prime \prime}(s)=0 \text { for } s \notin \mathcal{P}_{n}\right\} .
$$

Q.E.D.

Euclidean Path Integral Quantization on \mathbb{R}^{d}

Theorem 3 (Meta-Theorem - Path integral quantization). We can define \hat{H} by;

$$
\begin{equation*}
\left(e^{-T \hat{H}} \psi_{0}\right)(x)^{\star}=" \frac{1}{Z_{T}} \int_{\omega(0)=x} e^{-\int_{0}^{T} E(\omega(t), \dot{\omega}(t)) d t} \psi_{0}(\omega(T)) \mathcal{D} \omega \tag{4}
\end{equation*}
$$

where

$$
" Z_{T}:=\int_{\omega(0)=0} e^{-\frac{1}{2} \int_{0}^{T}|\dot{\omega}(t)|^{2} d t} \mathcal{D} \omega^{\prime} .
$$

and

$$
\mathcal{D} \omega=\text { "Infinite Dimensional Lebesgue Measure." }
$$

- Question: what does this formula really mean?

1. Problems, $Z_{T}=\lim _{n \rightarrow \infty} Z_{n}(T)=0$.
2. There is not Lebesgue measure in infinite dimensions.
3. The paths ω appearing in Eq. (4) are very rough and in fact nowhere differentiable.

Summary of Flat Results

- Let $\mathcal{P}:=\left\{0=t_{0}<t_{1}<\cdots<t_{n}=T\right\}$ be a partition of $[0, T]$.
- Let $H_{\mathcal{P}}\left(\mathbb{R}^{d}\right):=\left\{\omega:[0, T] \rightarrow \mathbb{R}^{d}: \omega(0)=0\right.$ and $\left.\ddot{\omega}(t)=0 \forall t \notin \mathcal{P}\right\}$
- $\lambda_{\mathcal{P}}$ be Lebesgue measure on $H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)$
- $Z_{\mathcal{P}}:=\int_{H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)} \exp \left(-\frac{1}{2} \int_{0}^{T}|\dot{\omega}(t)|^{2} d t\right) d \lambda_{\mathcal{P}}(\omega)$
- $d \mu_{\mathcal{P}}:=\frac{1}{Z_{\mathcal{P}}} \exp \left(-\frac{1}{2} \int_{0}^{T}|\dot{\omega}(t)|^{2} d t\right) d \lambda_{\mathcal{P}}(\omega)$

Theorem 4 (Wiener 1923). There exist a measure μ on $W\left([0, T], \mathbb{R}^{d}\right)$ such that $\mu_{\mathcal{P}} \Longrightarrow \mu$ as $|\mathcal{P}| \rightarrow 0$.

Theorem 5 (Feynman Kac). If $E(x, v)=\frac{1}{2}|v|^{2}+V(x)$ where V is a nice potential, then

$$
\frac{1}{Z_{\mathcal{P}}} \exp \left(-\int_{0}^{T} E(\omega(t), \dot{\omega}(t)) d t\right) d \lambda_{\mathcal{P}}(\omega) \Longrightarrow e^{-\int_{0}^{T} V(\omega(s)) d s} d \mu(\omega)
$$

and morever,

$$
\begin{aligned}
\left(e^{-t \hat{H}} f\right)(0) & =\lim _{|\mathcal{P}| \rightarrow 0} \frac{1}{Z_{\mathcal{P}}} \int_{H_{\mathcal{P}}\left(\mathbb{R}^{d}\right)} \exp \left(-\int_{0}^{T} E(\omega(t), \dot{\omega}(t)) d t\right) f(\omega(T)) d \lambda_{\mathcal{P}}(\omega) \\
& =\int_{W\left([0, T], \mathbb{R}^{d}\right)} e^{-\int_{0}^{T} V(\omega(s)) d s} f(\omega(T)) d \mu(\omega) .
\end{aligned}
$$

Norbert Wiener

Figure 2: Norbert Wiener (November 26, 1894 - March 18, 1964). Graduated High School at 11, BA at Tufts College at the age of 14, and got his Ph.D. from Harvard at 18.

Classical Mechanics on a Manifold

- Let (M, g) be a Riemannian manifold.

- Newton's Equations of motion

$$
\begin{equation*}
m \frac{\nabla \dot{\sigma}(t)}{d t}=-\nabla V(q(t)) \tag{5}
\end{equation*}
$$

i.e.

$$
\text { Force }=\text { mass } \cdot \text { tangential acceleration }
$$

- In local coordinates $\left(q^{1}, \ldots, q^{d}\right)$;

$$
\begin{aligned}
H(q, p) & =\frac{1}{2 m} g^{i j}(q) p_{i} p_{j}+V(q) \text { where } \\
d s^{2} & =g_{i j}(q) d q^{i} d q^{j}
\end{aligned}
$$

(Not) Canonical Quantization on M

$$
\begin{aligned}
H(q, p) & =\frac{1}{2} g^{i j}(q) p_{i} p_{j}+V(q) \\
& =\frac{1}{2} \frac{1}{\sqrt{g}} p_{i} \sqrt{g} g^{i j}(q) p_{j}+V(q) .
\end{aligned}
$$

- To quantize $H(q, p)$, let

$$
q_{i} \rightsquigarrow \hat{q}_{i}:=M_{q^{i}}, \quad p_{i} \rightsquigarrow \hat{p}_{i}:=\frac{1}{i} \frac{\partial}{\partial q^{i}}, \text { and } H(q, p) \stackrel{?}{\rightsquigarrow} H(\hat{q}, \hat{p}) .
$$

- Is

$$
\hat{H}=-\frac{1}{2} g^{i j}(q) \frac{\partial^{2}}{\partial q^{i} \partial q^{j}}+V(q)
$$

- or is it

$$
\hat{H}=-\frac{1}{2} \frac{1}{\sqrt{g}} \frac{\partial}{\partial q^{i}} \sqrt{g} g^{i j}(q) \frac{\partial}{\partial q^{j}}+V(q)=-\frac{1}{2} \Delta_{M}+M_{V}
$$

- or something else?

Path Integral Quantization of \hat{H}

The previous formulas on \mathbb{R}^{d} suggest we can define \hat{H} in the manifold setting by;

$$
\begin{equation*}
\left(e^{-T \hat{H}} \psi_{0}\right)\left(x_{0}\right)=\frac{1}{Z_{T}} \int_{\sigma(0)=x_{0}} e^{-\int_{0}^{T} E(\sigma(t), \dot{\sigma}(t)) d t} \psi_{0}(\sigma(T)) \mathcal{D} \sigma \tag{6}
\end{equation*}
$$

where

$$
E(x, v)=\frac{1}{2} g(v, v)+V(x)
$$

is the classical energy.

- Formally, there no longer seems to be any ambiguity as there was with canonical quantization.
- On the other hand what does Eq. (6) actually mean?

Back to Curved Space Path Integrals

- Recall we now wish to mathematically interpret the expression;

$$
d \nu(\sigma) "=" \frac{1}{Z(T)} e^{-\int_{0}^{T}\left[\frac{1}{2}|\dot{\sigma}(t)|^{2}+V(\sigma(t))\right] d t} \mathcal{D} \sigma
$$

Figure 3: A path in $W_{o, T}(M)$.

- To simplify life (and w.o.l.o.g.) set $V=0, T=1$ so that we will now consider,

$$
\frac{1}{Z} \int_{W_{o}(M)} e^{-\frac{1}{2} \int_{0}^{1}|\dot{\sigma}(t)|^{2} d t} \psi_{0}(\sigma(1)) \mathcal{D} \sigma
$$

- We need introduce (recall) six geometric ingredients.

I. Geometric Wiener Measure (ν) over M

Fact (Cartan's Rolling Map). Relying on Itô to handle the technical (non-differentiability) difficulties, we may transfer Wiener's measure, μ, on $W_{0, T}\left(\mathbb{R}^{d}\right)$ to a measure, ν, on $W_{o, T}(M)$.

Figure 4: Cartan's rolling map gives a one to one correspondance between, $W_{0, T}\left(\mathbb{R}^{d}\right)$ and $W_{o, T}(M)$.

II. Riemannian Volume Measures

- On any finite dimensional Riemannian manifold (M, g) there is an associated volume measure,

$$
\begin{equation*}
d \operatorname{Vol}_{g}=\sqrt{\operatorname{det}\left(g\left(\frac{\partial \Sigma}{\partial t_{i}}, \frac{\partial \Sigma}{\partial t_{j}}\right)\right)} d t_{1} \ldots d t_{n} \tag{7}
\end{equation*}
$$

where $\mathbb{R}^{n} \ni\left(t_{1}, \ldots, t_{n}\right) \rightarrow \Sigma\left(t_{1}, \ldots, t_{n}\right) \in M$ is a (local) parametrization of M.
Example 1. Suppose M is 2 dimensional surface, then we teach,

$$
\begin{equation*}
d S=\left\|\partial_{t_{1}} \Sigma\left(t_{1}, t_{2}\right) \times \partial_{t_{2}} \Sigma\left(t_{1}, t_{2}\right)\right\| d t_{1} d t_{2} \tag{8}
\end{equation*}
$$

Combining this with the identity,

$$
\begin{aligned}
\|a \times b\|^{2} & =\|a\|^{2}\|b\|^{2}-(a \cdot b)^{2} \\
& =\operatorname{det}\left[\begin{array}{ll}
a \cdot a & a \cdot b \\
a \cdot b & b \cdot b
\end{array}\right]
\end{aligned}
$$

shows,

$$
d S=\sqrt{\operatorname{det}\left[\begin{array}{l}
\partial_{t_{1}} \Sigma \cdot \partial_{t_{1}} \Sigma \partial_{t_{1}} \Sigma \cdot \partial_{t_{2}} \Sigma \\
\partial_{t_{1}} \Sigma \cdot \partial_{t_{2}} \Sigma \partial_{t_{2}} \Sigma \cdot \partial_{t_{2}} \Sigma
\end{array}\right]} d t_{1} d t_{2}
$$

that is Eq. (7) reduces to Eq. (8) for surfaces in \mathbb{R}^{3}.

III. Scalar Curvature

- On any finite dimensional Riemannian manifold (M, g) there is an associated function called scalar curvatue,

$$
\text { Scal : } M \rightarrow \mathbb{R}
$$

such that at a point $m \in M$,

$$
\operatorname{Vol}_{g}\left(B_{\varepsilon}(m)\right)=\left|B_{\varepsilon}^{\mathbb{R}^{d}}(0)\right|\left(1-\frac{\varepsilon^{2}}{6(d+2)} \operatorname{Scal}(m)+O\left(\varepsilon^{3}\right)\right) \text { for } \varepsilon \sim 0
$$

where $\left|B_{\varepsilon}^{\mathbb{R}^{d}}(0)\right|$ is the volume of a ε - Euclidean ball in \mathbb{R}^{d}.

IV. Tangent Vectors in Path Spaces

- The space

$$
H(M)=\left\{\sigma \in W_{o}(M): E(\sigma):=\int_{0}^{1}|\dot{\sigma}(t)|^{2} d t<\infty\right\}
$$

is an infinite dimensional Hilbert manifold.

- The tangent space to $\sigma \in H(M)$ is

$$
T_{\sigma} H(M)=\left\{\begin{aligned}
X:[0,1] & \rightarrow T M: X(t) \in T_{\sigma(t)} M \text { and } \\
G^{1}(X, X) & :=\int_{0}^{1} g\left(\frac{\nabla X(t)}{d t}, \frac{\nabla X(t)}{d t}\right) d t<\infty
\end{aligned}\right\}
$$

Figure 5: A tangent vector at $\sigma \in H(M)$.

V. Piecewise Geodesics Approximations

- Given a partition \mathcal{P} of $[0,1]$ the space

$$
H_{\mathcal{P}}(M)=\left\{\sigma \in W_{o}(M): \frac{\nabla}{d t} \dot{\sigma}(t)=0 \text { for } t \notin \mathcal{P}\right\}
$$

is a smooth finite dimensional embedded sub-manifold of $H(M)$.

VI. Four Riemannian Metrics on $H_{\mathcal{P}}(M)$

Let $\sigma \in \mathrm{H}_{\mathcal{P}}(M)$, and $X, Y \in T_{\sigma} \mathrm{H}_{\mathcal{P}}(M)$. Metrics:

- H^{0}-Metric on $H(M)$

$$
G^{0}(X, X):=\int_{0}^{1}\langle X(s), X(s)\rangle d s
$$

- H^{1}-Metric on $H(M)$

$$
G^{1}(X, X):=\int_{0}^{1}\left\langle\frac{\nabla X(s)}{d s}, \frac{\nabla X(s)}{d s}\right\rangle d s
$$

- H^{1}-Metric on $H_{\mathcal{P}}(M)$ (Riemannian Sum Approximation)

$$
G_{\mathcal{P}}^{1}(X, Y):=\sum_{i=1}^{n}\left\langle\frac{\nabla X\left(s_{i-1}+\right)}{d s}, \frac{\nabla Y\left(s_{i-1}+\right)}{d s}\right\rangle \Delta_{i} s
$$

- H^{0}-"Metric" on $H_{\mathcal{P}}(M)$ (Riemannian Sum Approximation)

$$
G_{\mathcal{P}}^{0}(X, Y):=\sum_{i=1}^{n}\left\langle X\left(s_{i}\right), Y\left(s_{i}\right)\right\rangle \Delta_{i} s
$$

Riemann Sum Metric Results

Theorem 6 (Andersson and D. JFA 1999.). Suppose that $f: W(M) \rightarrow \mathbb{R}$ is a bounded and continuous and

$$
d \nu_{\mathcal{P}}^{*}(\sigma)=\frac{1}{Z_{\mathcal{P}}} e^{-\frac{1}{2} \int_{0}^{1}|\dot{\sigma}(t)|^{2} d t} d \operatorname{vol}_{G_{\mathcal{P}}^{*}}(\sigma) \text { for } * \in\{0,1\}
$$

Then

$$
\begin{aligned}
\lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}^{1}(\sigma) & =\int_{\mathrm{W}(M)} f(\sigma) d \nu(\sigma) \\
\Longrightarrow \hat{H}=-\frac{1}{2} \Delta_{M} & =-\frac{1}{2} \Delta_{M}+\frac{1}{\infty} \text { Scal. }
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{|\mathcal{P}| \rightarrow 0} & \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}^{0}(\sigma) \\
& =\int_{\mathrm{W}(M)} f(\sigma) e^{-\frac{1}{6} \int_{0}^{1} \operatorname{Scal}(\sigma(s)) d s} d \nu(\sigma) \\
& \Longrightarrow \hat{H}=-\frac{1}{2} \Delta_{M}+\frac{1}{6} \text { Scal. }
\end{aligned}
$$

Some Other (Markovian) Results

If \hat{H} is "defined" by

$$
\begin{equation*}
e^{-T \hat{H}} f\left(x_{0}\right)=\frac{1}{Z_{T}} \int_{\sigma(0)=x_{0}} e^{-\int_{0}^{T} E(\sigma(t), \dot{\sigma}(t)) d t} f(\sigma(T)) \mathcal{D} \sigma \tag{9}
\end{equation*}
$$

then

$$
\hat{H}=-\frac{1}{2} \Delta+\frac{1}{\kappa} \mathrm{~S}
$$

where

- S is the scalar curvature of M, and
- $\kappa \in\{6,8,12, \infty\}$.
- $\kappa=6$ Cheng 72 .
- $\kappa=12$, De Witt 1957, Um 73, Atsuchi \& Maeda 85, and Darling 85. Geometric Quantization. (AIDA says to check these names: Atsuchi \& Maeda as at least one is a given name rather than the family name.)
- $\kappa=8$ Marinov 1980 and De Witt 1992.
- Inahama (2005) Osaka J. Math.
- Semi-group proofs and extensions of AD1999;
- Butko (2006)
- O. G. Smolyanov, Weizsäcker, Wittich, Potential Anal. 26 (2007).
- Bär and Frank Pfäffle, Crelle 2008.
- Fine and Sawin CMP (2008) - supersymmetic version.
- In the real Feynman case see for example S. Albeverio and R. Hoegh-Krohn (1976),

Lapidus and Johnson, etc. etc.

Continuum H^{1} - Metric Result

Now let

$$
d \nu_{\mathcal{P}}^{1}(\sigma)=\frac{1}{Z_{\mathcal{P}}} e^{-\frac{1}{2} \int_{0}^{1}|\dot{\sigma}(t)|^{2} d t} d \operatorname{vol}_{\left.G^{1}\right|_{H_{\mathcal{P}}(M)}}(\sigma) .
$$

Theorem 7 (Adrian Lim 2006). (Reviews in Mathematical Physics 19 (2007), no. 9, 967-1044.) Assume (M, g) satisfies,

$$
0 \leq \text { Sectional-Curvatures } \leq \frac{1}{2 d}
$$

If $f: W(M) \rightarrow \mathbb{R}$ is a bounded and continuous function, then

$$
\begin{aligned}
& \lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}(M)}} f(\sigma) d \nu_{\mathcal{P}}^{1}(\sigma) \\
& \quad=\int_{W(M)} f(\sigma) e^{-\frac{1}{6} \int_{0}^{1} \operatorname{Scal}(\sigma(s)) d s} \sqrt{\operatorname{det}\left(I+\frac{1}{12} K_{\sigma}\right)} d \nu(\sigma)
\end{aligned}
$$

where, for $\sigma \in H(M), K_{\sigma}$ is a certain integral operator acting on $L^{2}\left([0,1] ; \mathbb{R}^{d}\right)$.

- K_{σ} is defined by

$$
\left(K_{\sigma} f\right)(s)=\int_{0}^{1}(s \wedge t) \Gamma_{\sigma(t)} f(t) d t
$$

where

$$
\Gamma_{m}=\sum_{i, j=1}^{d}\binom{R_{m}\left(e_{i}, R_{m}\left(e_{i}, \cdot\right) e_{j}\right) e_{j}+R_{m}\left(e_{i}, R_{m}\left(e_{j}, \cdot\right) e_{i}\right) e_{j}}{+R_{m}\left(e_{i}, R_{m}\left(e_{j}, \cdot\right) e_{j}\right) e_{i}}
$$

Here R_{m} is the curvature tensor at $m \in M$ and $\left\{e_{i}\right\}_{i=1,2, \ldots, d}$ is any orthonormal basis in $T_{m}(M)$.

- Adrian Lim's limiting measure has lost the Markov property and no nice \hat{H} in this case. See "Fredholm Determinant of an Integral Operator driven by a Diffusion Process," Journal of Applied Mathematics and Stochastic Analysis, Vol. 2008, Article ID 130940.

Continuum H^{0} - Metric Result

Theorem 8 (Tom Laetsch: JFA 2013). If

$$
d \nu_{\mathcal{P}}^{0}(\sigma)=\frac{1}{Z_{\mathcal{P}}} e^{-\frac{1}{2} \int_{0}^{1}|\dot{\sigma}(t)|^{2} d t} d \operatorname{vol}_{\left.G^{0}\right|_{H_{\mathcal{P}}(M)}}(\sigma),
$$

then

$$
\lim _{|\mathcal{P}| \rightarrow 0} \int_{H_{\mathcal{P}}(M)} f(\sigma) d \nu_{\mathcal{P}}^{0}(\sigma)=\int_{W(M)} f(\sigma) e^{-\frac{2+\sqrt{3}}{20 \sqrt{3}} \int_{0}^{1} \operatorname{Scal}(\sigma(s)) d s} d \nu(\sigma)
$$

- The quantization implication of this result is that we should take

$$
\hat{H}=-\frac{1}{2} \Delta_{M}+\frac{2+\sqrt{3}}{20 \sqrt{3}} \text { Scal. }
$$

Summary: Quantization of Free Hamiltonian

$$
\hat{H}=-\frac{1}{2} \Delta_{M}+\frac{1}{\kappa} \text { Scal. }
$$

- $\kappa \in\{8,12\} \cup\{\infty, 6, \emptyset, 10\}$.

Non Intrinsic Considerations

- Sidorova, Smolyanov, Weizsäcker, and Olaf Wittich, JFA2004, consider squeezing a ambient Brownian motion onto an embedded submanifold. This then result in

$$
\hat{H}=-\frac{1}{2} \Delta_{M}-\frac{1}{4} S+V_{\mathrm{SF}}
$$

where V_{SF} is a potential depending on the embedding through the second fundamental form.

Applications

Corollary 9 (Trotter Product Formula for $e^{t \Delta / 2}$). For $s>0$ let Q_{s} be the symmetric integral operator on $L^{2}(M, d x)$ defined by the kernel

$$
Q_{s}(x, y)=(2 \pi s)^{-d / 2} \exp \left(-\frac{1}{2 s} d^{2}(x, y)+\frac{s}{12} S(x)+\frac{s}{12} S(y)\right)
$$

for all $x, y \in M$. Then for all continuous functions $F: M \rightarrow \mathbb{R}$ and $x \in M$,

$$
\left(e^{\frac{s}{2} \Delta} F\right)(x)=\lim _{n \rightarrow \infty}\left(Q_{s / n}^{n} F\right)(x)
$$

See also Chorin, McCracken, Huges, Marsden (78) and Wu (98).
Proof. This is a special case of the L^{2} - limit theorem. The main points are:

- $\nu_{\mathcal{P}}^{0}$ is essentially product measure on M^{n}.
- From this one shows that

$$
\left(Q_{s / n}^{n} F\right)(x) \cong \int_{H_{\mathcal{P}}(M)} e^{\frac{1}{6} \int_{0}^{1} \mathrm{~S}(\sigma(s)) d s} F(\sigma(s)) d \nu_{\mathcal{P}}^{0}(\sigma)
$$

Corollary 2: Integration by Parts for ${ }_{\nu}$ on $W(M)$

See Bismut, Driver, Enchev, Elworthy, Hsu, Li, Lyons, Norris, Stroock, Taniguchi,

Let $k \in P C^{1}$, and z solve:

$$
z^{\prime}(s)+\frac{1}{2} \operatorname{Ric}_{/_{s}(\sigma)} z(s)=k^{\prime}(s), \quad z(0)=0 .
$$

and f be a cylinder function on $\mathrm{W}(M)$. Then

$$
\begin{aligned}
\int_{\mathrm{W}(M)} X^{z} f d \nu & =\int_{\mathrm{W}(M)} f \int_{0}^{1}\left\langle k^{\prime}, d \tilde{b}\right\rangle d \nu, \text { where } \\
\left(X^{z} f\right)(\sigma) & \left.=\sum_{i=1}^{n}\left\langle\nabla_{i} f\right)(\sigma), X_{s_{i}}^{z}(\sigma)\right\rangle \\
& \left.=\sum_{i=1}^{n}\left\langle\nabla_{i} f\right)(\sigma), / \tilde{/}_{s_{i}}(\sigma) z\left(s_{i}, \sigma\right)\right\rangle
\end{aligned}
$$

and $\left(\nabla_{i} f\right)(\sigma)$ denotes the gradient F in the $\mathrm{i}^{\text {th }}$ variable evaluated at $\left(\sigma\left(s_{1}\right), \sigma\left(s_{2}\right), \ldots, \sigma\left(s_{n}\right)\right)$. Proof. Integrate by parts on $H_{\mathcal{P}}(M)$ and then pass to the limit as $|\mathcal{P}| \rightarrow 0$.

More Detailed Proof

Proof. Given $k \in C^{1} \cap H\left(T_{o} M\right)$, let X P $(\sigma) \in T_{\sigma} H_{\mathcal{P}}(M)$ such that

$$
\left.\frac{\nabla X_{s}^{\mathcal{P}}(\sigma)}{d s}\right|_{s=s_{i}+}=/ / s_{s_{i}}(\sigma) k^{\prime}\left(s_{i}+\right) .
$$

1. $X^{\mathcal{P}}(\sigma)$ is a certain projection of $/ / .(\sigma) k(\cdot)$ into $T_{\sigma} H_{\mathcal{P}}(M)$.
2.

$$
\begin{aligned}
d E\left(X^{\mathcal{P}}\right) & =2 \int_{0}^{1}\left\langle\sigma^{\prime}(s), \frac{\nabla X_{s}^{\mathcal{P}}}{d s}\right\rangle d s \\
& =2 \sum_{i=1}^{n}\left\langle\Delta_{i} b, k^{\prime}\left(s_{i-1}+\right)\right\rangle
\end{aligned}
$$

3. $L_{X^{k_{\mathcal{P}}}} \mathrm{Vol}_{G_{\mathcal{P}}^{1}}=0$.
4. 1 \& 2 imply that

$$
L_{X^{k \mathcal{P}}} \nu_{\mathcal{P}}^{1}=-\sum_{i=1}^{n}\left\langle\Delta_{i} b, k^{\prime}\left(s_{i-1}+\right)\right\rangle \nu_{\mathcal{P}}^{1} .
$$

Equivalently:

$$
\int_{\mathrm{H}_{\mathcal{P}}(M)}\left(X^{k_{\mathcal{P}}} f\right) \nu_{\mathcal{P}}^{1}=\int_{\mathrm{H}_{\mathcal{P}}(M)} \sum_{i=1}^{n}\left\langle k^{\prime}\left(s_{i-1}+\right), \Delta_{i} b\right\rangle f \nu_{\mathcal{P}}^{1} .
$$

5. After some work one shows

$$
\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathrm{H}_{\mathcal{P}}(M)}\left(X^{k_{\mathcal{P}}} f\right) \nu_{\mathcal{P}}^{1}=\int_{W(M)} X^{z} f d \nu
$$

and
6.

$$
\lim _{|\mathcal{P}| \rightarrow 0} \int_{\mathrm{H}_{\mathcal{P}}(M)} \sum_{i=1}^{n}\left\langle k^{\prime}\left(s_{i-1}+\right), \Delta_{i} b\right\rangle f d \nu_{\mathcal{P}}^{1}=\int_{\mathrm{W}(M)} X^{z} f d \nu
$$

7. The previous three equations and the limit theorem imply the IBP result.

Quasi-Invariance Theorem for $\nu_{W_{W}}(M)$

Theorem 10 (D. 92, Hsu 95). Let $h \in H\left(T_{o} M\right)$ and X^{h} be the $\nu_{W(M)}$ - a.e. well defined vector field on $W(M)$ given by

$$
\begin{equation*}
X_{s}^{h}(\sigma)=/ / s(\sigma) h(s) \text { for } s \in[0,1] . \tag{10}
\end{equation*}
$$

Then X^{h} admits a flow $e^{t X^{h}}$ on $W(M)$ and this flow leaves $\nu_{W(M)}$ quasi-invariant. (Ref: D. 92, Hsu 95, Enchev-Strook 95, Lyons 96, Norris 95, ...)

A word from our sponsor: Quantized Yang-Mills Fields

- A \$1,000,000 question, http://www.claymath.org/millennium-problems
- ". . . Quantum Yang-Mills theory is now the foundation of most of elementary particle theory, and its predictions have been tested at many experimental laboratories, but its mathematical foundation is still unclear. . . ."
- Roughly speaking one needs to make sense out of the path integral expressions above when $[0, T]$ is replaced by $\mathbb{R}^{4}=\mathbb{R} \times \mathbb{R}^{3}$:

$$
\begin{equation*}
d \mu(A) "=" \frac{1}{Z} \exp \left(-\frac{1}{2} \int_{\mathbb{R} \times \mathbb{R}^{3}}\left|F^{A}\right|^{2} d t d x\right) \mathcal{D} A, \tag{11}
\end{equation*}
$$

More Motivation: Physics proof of the Atiyah-Singer Index Theorem

Physics proof of the Atiyah-Singer Index Theorem (Alvarez-Gaumé, Friedan \& Windey, Witten)

$$
\begin{aligned}
\operatorname{index}(D) & =" \lim _{T \rightarrow 0} \int_{L(M)} e^{-\int_{0}^{T}\left[\left|\sigma^{\prime}(s)\right|^{2}-\psi(s) \cdot \frac{\nabla \psi(s)}{d s}\right] d s} \mathcal{D} \sigma \mathcal{D} \psi \\
& \vdots \\
& (\text { Laplace Asymptotics }) \\
& \vdots \\
& =C^{2 n} \int_{M} \hat{A}(R) .
\end{aligned}
$$

- Toy Model for Constructive Field Theory,
- Intuitive understanding of smoothness properties of ν.
- Heuristic path integral methods have lead to many interesting conjectures and theorems.

End

