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Abstract. These notes are an attempt at an introduction to heat kernel
analysis on infinite dimensional spaces.
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1. Introduction

In these lecture notes we will generally be concerned with integral — di erential
analysis on infinite dimensional spaces equipped with measures related to heat
kernels. As of yet, there is still no general theory within which to work. There
have been attempts at a general structure, for example abstract Wiener—Riemann
manifolds, but it has been hard to put interesting natural examples into this frame
work. So these lectures will be a case study when the infinite dimensional manifold
is either the paths or loops into a finite dimensional manifold and more specifically
a Lie group.

In section 2, we will introduce the notion of the heat kernel measures on finite
dimensional Riemannian manifolds. This notion will simply turn out to be the
usual heat kernel function times the Riemannian volume form.
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Section 3 is devoted to a description of the smoothness properties of positive
measures on R without reference to Lebesgue measure. Although not technically
needed for the rest of these notes, this section motivates some of our later consid-
erations in the infinite dimensional setting.

Sections 4 — 6 are devoted to defining and proving existence of heat kernel
measures associated to an infinite dimensional Hilbert space. The most important
of these sections being Section 6 where classical Wiener measure on the space¡

R
¢
=
© ¡

[0 1] R
¢
: (0) = 0

ª
is considered as a heat kernel measure. Although the results in these sections are
very classical (see for example Kuo [45] or Bogachev [5]), we still give the proofs
in full detail. Our proofs will emphasize the interpretation of Wiener measure as
an infinite dimensional heat kernel measure.

Section 7 describes analogous results to those in Section 6 in the case R is
replaced by a compact Lie group Results for the more complicated space of
loops, L( ) on are also described. The results of Section 7 rely on an analysis
of Wiener measure on the path space of L( ) (Note this is a path space on a path
space, i.e. maps from [0 1]×[0 ] to ) Section 8 briefly outlines the results needed
for Section 7 in the simpler setting where L ( ) is replaced by a finite dimensional
Riemannian manifold

Appendix 9 gives some motivations for these notes. Some readers may want to
start here.

Acknowledgments: The author thanks the l’Institut Henri Poincaré for the
opportunity to present the lectures which gave rise to these notes. The author
is also greatly indebted to P. Auscher, G. Besson, T. Coulhon and A. Grigoryan
who made possible the trimester programme on “Heat kernels, random walks and
analysis to manifolds and graphs” held at IHP in Paris.

2. Finite Dimensional Heat Kernel Measures

Notation 2.1. Suppose ( ) is a smooth — dimensional manifold with
Riemannian metric Let ( ) denote the collection of — times continuously
di erentiable functions : R As usual ( ) will denote those ( )
with compact support. Similarly, let ( ) denote those ( ) such
that are all bounded, where denotes the Levi-Civita covariant
derivative of As usual will be used to denote the Riemannian Laplacian
associated to In local coordinates,

= tr( 2 ) =
X
=1

1
µ ¶

where =
P

=1

¡ ¢
is the matrix inverse of ( ) and =

det ( )

Notation 2.2. If is a probability measure on a measure space ( F) and
1 ( ) = 1 ( F ) we will often write ( ) for the integral,

R
Definition 2.3. Let ( ) be a Riemannian manifold be a fixed base

point. A sequence { } 0 of positive measures is called a heat kernel sequence
based at if:

(1) ( ) 1 for all 0
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(2) For all 2( ) the function ( ) :=
R

is continuously
di erentiable,

(2.1) ( ) =
1

2
( ) and lim

0
( ) = ( )

Remark 2.4. If exists as in Definition 2.3, then necessarily ( ) = 1 for
all This follows simply from the definition with 1

Proposition 2.5. Suppose = R with the standard flat metric, so that
=
P

=1

2

2 For each point R there is exactly one sequence of positive

measures { } 0 with (R ) 1 such that Eq. (2.1) holds for all
¡
R
¢

Moreover this sequence is given by

(2.2) ( ) = ( ) ( )

where ( ) := (2 )
2 1

2 | |2 is the heat kernel and is Lebesgue measure
on R

Proof. Uniqueness. By assumption satisfies

(2.3) ( ) = ( ) +

Z
0

1

2
( ) for all

¡
R
¢

Now suppose 2
¡
R
¢
and (R ) such that

R
R ( ) = 1 Letting

( ) := ( ) we have (R ) and

and

boundedly as Therefore passing to the limit, in the equation,

( ) = ( ) +

Z
0

1

2
( )

shows Eq. (2.3) holds for all 2
¡
R
¢

Now suppose 2
¡
R
¢
such that and are bounded and let

( (0 1) [0 1]) such that = 1 in a neighborhood of 0 and set ( ) := ( )
Then = is in 2(R ) and hence for large

( ) = ( ) +

Z
0

1

2
( + 2 · + )

= ( ) +

Z
0

1

2
(
1
2
( ) +

2
( ) · + )

Using the dominated convergence theorem to pass to the limit in this equation
allows us to conclude Eq. (2.3) holds for all 2

¡
R
¢
such that and

are bounded, i.e. { } 0 is automatically heat kernel sequence based at R
For (R ) and 0 and [0 ) the function

( ) = ( ) 2 ( ) = ( ) ( ) :=

Z
R

( ) ( )

satisfies

| |+ | |+ | | := sup [| ( )|+ | ( )|+ | ( )|]
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Claim: The function ( ) is 1 for (0 ) and

( ) =
1

2
( )

Indeed, we have

| ( ) ( )| | ( )|+ | ( ) ( )|

= | ( )|+
¯̄̄̄
1

2

Z
( )

¯̄̄̄
| ( )|+ 1

2
k k | | 0 as ( ) ( )(2.4)

which shows ( ) is continuous. Since

=
1

2( )

Z
=

1

2

1
Z

¯̄̄ ¯̄̄
is bounded for near and

1

2
=

1

2
as

Thus, by the dominated convergence theorem,

( ) ( )
=

µ ¶
1

2
( ) as

This shows that ( ) exists and ( ) = 1
2 ( ) Since =

and ( ) it follows from Eq. (2.4) with replaced by that

( ) ( ) =
1

2
( ) = ( )

is continuous proving the claim.
By the chain rule,

( ) =
1

2
( )

1

2
( ) = 0

and therefore,

(2.5) ( ) = ( ) for all 0

Letting ( ) := sup {| ( ) ( )| : | | } we have

| ( ) ( )| =
¯̄̄̄Z
R

( ) [ ( ) ( )]

¯̄̄̄
Z
| |

( ) | ( ) ( )|

+

Z
| |

( ) | ( ) ( )|

( ) + 2 k k
Z
| |

( ) = ( ) + 2 k k ( )(2.6)

from which it follows lim 0 k k ( ) 0 as 0 In particular this
implies

| ( ) ( )| k k 0 as 0
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and hence

(2.7) lim
0

( ) = lim
0

( ) = ( )

Moreover,

| ( ) ( )| =
¯̄̄̄
¯
Ã
1

2

Z !¯̄̄̄
¯

=

¯̄̄̄
¯
Ã
1

2

Z !¯̄̄̄
¯ 1

2
k k 0 as 0

so that

(2.8) lim
0

( ) = lim
0

( ) = ( ) =

Z
( ) ( )

The second equality in Eq. (2.8) requires a bit of explanation. By assumption
lim 0 ( ) = ( ) for all (R ) Let 0 and be the ball of radius
centered at R Choosing ( [0 1]) such that ( ) = 1 implies

lim 0 (R \ ) = 0 From this it follows that lim 0 ( ) = (0) for all¡
R
¢

Combining Eqs. (2.5) — (2.8) shows ( ) =
R
R ( ) ( ) for all

(R ) Since (R ) is dense in 1( + ( ) ) and the latter space contains
all bounded measurable functions, it follows that

( ) = ( )

i.e. Eq. (2.2) must hold.
Existence. This completes the proof, since it is now a simple matter to verify

that defined as in Eq. (2.2) is a heat kernel sequence based at R This fact
will also follow from Theorem 2.6 below.

Recall (see for example Strichartz [56], Dodziuk [16] and Davies [14]) that
if ( ) is a complete Riemannian manifold, then = acting on ( ) is
essentially self-adjoint, i.e. the closure ¯ of is an unbounded self-adjoint operator
on 2( ) (Here = 1 is being used to denote the Riemann
volume measure on )Moreover the semi-group :=

¯ 2 has a smooth integral
kernel, ( ) such that

( ) 0 for allZ
( ) ( ) 1 for all and

( ) :=
³

¯ 2
´
( ) =

Z
( ) ( ) ( ) for all 2( )

Theorem 2.6. Let ( ) be a complete Riemannian manifold with Ricci tensor
bounded from below (i.e. Ric for some 0) and be a fixed
point. Then there exists a unique heat kernel sequence { } 0 based at The
measure is given by

(2.9) ( ) = ( ) ( )

and satisfy

(2.10) ( ) :=

Z
=:
³

¯ 2
´
( ) for all ( )
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Proof. Uniqueness. Suppose exists as described above. For 2( )

and 0 let := ( ) ¯ 2 Then = 1
2
( ) ¯ 2 is a bounded function

depending continuously on [0 ] and Essentially the same argument as
used in the proof of Proposition 2.5, shows if { } 0 exists it must be given by Eq.
(2.9). In doing this one should replace R by and | | by ( ) everywhere
in the argument. The only other point is to note that the standard Gaussian heat
kernel bounds along with volume growth estimates may be used in Eq. (2.6) to
again conclude

| ( ) ( )| ( ) + 2 k k ( )

Existence. According to Dodziuk [16]1, the kernel ( ) may be written as
the increasing limit of heat kernels ( ) with Dirichlet boundary conditions for
relatively compact open subsets with smooth boundary such that
Now for 2( ) we then have, letting = and =Z

( ) ( ) =
1

2

Z
( ) ( )

=
1

2

Z
( ) · ( ) +

1

2

Z
( ) · ( ) ( )

=
1

2

Z
( ) · ( ) +

1

2

Z
( ) · ( ) ( ) ( )

where is the surface measure and is the outward pointing unit normal on
(the boundary of ) Integrating the previous equation on givesZ

( ) ( ) = ( ) +
1

2

Z
0

Z
( ) · ( )

+
1

2

Z
0

Z
( ) · ( ) ( ) ( )

and letting in this equation impliesZ
( ) ( ) = ( ) +

1

2

Z
0

Z
( ) · ( ) + lim ( )

where

( ) :=
1

2

Z
0

Z
( ) · ( ) ( ) ( )

We will now finish the proof by showing lim ( ) = 0

Since ( ) 0 and vanishes for ( ) · ( ) 0 and hence

| ( )| 1

2
k k

Z
0

Z
( ) · ( ) ( )

= k k 1

2

Z
0

Z
( )

= k k
Z
0

Z
( ) = k k

·
1

Z
( )

¸
1Dodziuk also proves, under the condition that ( ) is complete and the Ricci curvature

is bounded from below, that bounded solutions to the heat equation are uniquely determined by
their initial values at = 0
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Letting in this expression then shows

lim | ( )| k k
·
1

Z
( )

¸
Thus lim | ( )| = 0 since the lower bound on the Ricci curvature is su cient
to show

R
( ) = 1 see for example Theorem 5.2.6 in Davies [14].

3. Describing Smooth Measures on R Without Reference to Lebesgue
Measure

One of the main goals in these lectures is to give some examples of heat kernel
sequences for infinite dimensional manifolds. Once we produce such a heat kernel
sequence we will want to show the resulting measures { } 0 are “smooth.” How-
ever, in the infinite dimensional examples below there is no reasonable notion of
Lebesgue measure or the Riemann volume measure. Hence it will not be possible
to measure the smoothness of in terms of the smoothness of its density with re-
spect to the Riemann volume measure. In this section, we will explain an intrinsic
criteria for a finite measure on R to be smooth. This criteria will later be used as
a definition in the infinite dimensional settings below.

Notation 3.1. For a measure on R let ( ) := 1 ( )

Definition 3.2. A Radon measure on R is said to be smooth if for all
multi—indices = ( 1 ) N0 (N = {1 2 } and N0 = N {0}) there exists
functions (R ) ( ) such that,

(3.1)
Z
R
( ) =

Z
R

for all (R )

where :=
Q

=1

¡ ¢
Theorem 3.3. A measure on R is smooth i there exists (R (0 ))

such that = where is Lebesgue measure on R

Proof. Let us begin by showing there are coe cients ( ) N (in fact
( ) = !

!( )!) for 0 such that for (R ) and (R )

(3.2)
Z
R
( ) · =

X
( )

Z
R

·

The proof of Eq. (3.2) will be by induction on | | = 1 + · · ·+ Equation (3.1)
with = and being replaced by impliesZ

R
· =

Z
R

· ( + )

which proves Eq. (3.2) for | | = 1
Equation (3.1) with being replaced by along with the previous identity

shows Z
R

+ =

Z
R
( )

+
=

Z
R
( )

=

Z
R

· =

Z
R

· [ + 1 ]

This equation being true for all
¡
R
¢
implies + 1 = + — a.e.

8 BRUCE K. DRIVER

Now suppose Eq. (3.2) holds for all | | with 1 ThenZ
R
( ) + · =

Z
R
( ) ( ) · =

X
( )

Z
R
( ) ·

=
X

( )

Z
R

¡ £ · ¤
+ · ¢

=
X

( )

Z
R

¡
+ · + · [ + ]

¢
=

Z
R

X
( )

¡
+ · + · +

¢
which finishes the induction argument.

For (R ) let ( ) :=
R
R then is a distribution on R with

compact support. The Fourier transform of is given by

ˆ ( ) =

Z
R

· ( ) ( )

By Eq. (3.2),

ˆ ( ) =

Z
R

· ( ) ( ) =

Z
R

µ
1

¶
· ( ) ( )

=

Z
R

· X ( )

µ
1

¶
( ) · ( ) ( )

from which we learn sup
³
1 + | |2

´ ¯̄̄
ˆ ( )

¯̄̄
for all Hence may be

represented by a smooth function (still denoted by ), i.e.Z
R

=

Z
R

for all (R )

Now choose (R [0 1]) such that = 1 on (0 1) and let ( ) = ( )
Then one easily sees that = on (0 ) for all Thus we may define
( ) = ( ) for all (0 ) Then is a smooth function such that =
Since 0 it follows that 0 so it only remains to prove that is positive. By
Eq. (3.1),Z

R
=

Z
R
( ) =

Z
R
( ) =

Z
R

=

Z
R

and hence = Let = ( 1 2 ) and fix a point 0 R such that
( 0) 0 Then for any R

(3.3) ln ( 0+ ) =
( 0 + ) ·
( 0 + )

=
( 0 + ) ( 0 + ) ·

( 0 + )
= ( 0+ )·

which is valid for all such that ( 0 + ) 0 In particular this is valid for all
near zero. Integrating Eq. (3.3) on implies

( 0 + ) = ( 0) exp

µZ
0

( 0 + ) ·
¶
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From this equation it follows that ( 0 + ) 0 for all that is ( ) 0 for all
and then taking 0 = 0 and = 1 that

( ) (0) exp

µ
| |
Z 1

0

| ( )|
¶

Corollary 3.4. All smooth measures on R are mutually absolutely continu-
ous relative to each other.

Corollary 3.5. If is a smooth measure on R and : R R is a
di eomorphism, then is a smooth measure as well. In fact if = then

(3.4) ( ) = 1
¯̄̄¡

1
¢0 ¯̄̄

Proof. Let (R ) thenZ
R

=

Z
R

=

Z
R

( ( )) ( )

So making the change of variables, = ( ) so that = 1( ) =¯̄̄¡
1
¢0
( )
¯̄̄

and henceZ
R

=

Z
R

( ) ( 1( ))
¯̄̄¡

1
¢0
( )
¯̄̄

which proves Eq. (3.4).
These finite dimensional results in Corollaries 3.4 and 3.5 are in stark contrast

to what happens in infinite dimensional settings as we shall see below in Proposition
5.5 and Exercise 6.1. Also see Remark 6.22.

4. Infinite Dimensional Considerations

Let ( (· ·)) be a separable Hilbert space, | | := p
( ) be the associate

Hilbertian norm and be an orthonormal basis for As usual, for
2( ) let

( ) = tr( 2 ( )) =
X¡

2
¢
( )

provided 2 ( ) is trace class. Here ( ) := |0 ( + ) ( ) := ( )

and 2 ( )( ) := ( ) ( )

Example 4.1. Suppose : is a finite rank orthogonal projection and
2( ) and ( ) := ( ) for all Then

( ) = ( ) ( )
2 ( )( ) = 2 ( ) ( )

and
( ) = ( ) ( )

where represents the usual finite dimensional Laplacian acting on 2( )

Notation 4.2. A function of the form ( ) = ( ) with ( ) and
: is a finite rank orthogonal projection will be called a — cylinder

function. The collection of — cylinder functions will be denoted by F ( )
Also let F ( )

¡F ( )
¢
denote those = F ( ) such that

( )
¡

( )
¢
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Proposition 4.3. There does not exist a heat kernel sequence based at 0
More explicitly there is no collection { } 0 of positive measures on such that

(1) ( ) 1 for all 0 and
(2) For all F 2( ) the function ( ) :=

R
is continuously

di erentiable and

( ) =
1

2
( ) and lim

0
( ) = (0)

The following basic Gaussian integration lemma will be needed for the proof of
Proposition 4.3.

Lemma 4.4. For all 0 and C

(4.1)
Z
R

2

=

r
1
4

2

More generally if is a finite dimensional subspace, := dim( ) 0 and
then

(4.2)
Z

| |2 ( )+ ( ) =
³ ´ 2 1

4 ( + )2

where denotes Lebesgue measure on and ( + )2 := | |2 | |2+2 ( ) We
also have, for any

(4.3)
Z

| |2 ( )
2

=
³ ´ 2 1

2
| |2

and any [1 )

(4.4)
³ ´ 2

Z
| |2 | | =

( +
2 )

( 2 )
2

Proof. The proof of this lemma is standard. We leave the proof of Eq. (4.1)
to the reader and note that Eq. (4.2) follows from Eq. (4.1) using Fubini’s theorem
after introducing an orthonormal basis on Equation (4.3) may be proved by
di erentiating Eq. (4.2) in to findZ

| |2 ( )
2

=
2

2
| =0

Z
| |2 ( )

=
2

2
| =0

³ ´ 2 2

4 | |2 =
³ ´ 2 1

2
| |2

Passing to polar coordinates, the left side of Eq. (4.4) satisfies

³ ´ 2
Z

| |2 | | =
¡

1
¢ ³ ´ 2

Z
0

2 1
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where
¡

1
¢
is the surface area of the unit sphere in R Letting =

p
in

the last integral then shows³ ´ 2
Z

| |2 | | =
¡

1
¢ ³ ´ 2

Z
0

( )
+ 1
2

1

2
( ) 1 2

=

¡
1
¢

2 2
2

Z
0

+ 1
2

1
2

=

¡
1
¢

2 2
2

Z
0

+
2

=

¡
1
¢

2 2
2 (

+

2
)(4.5)

Comparing this equation with = 0 and Eq. (4.2) with = = 0 we find

1 =
( 1)
2 2 ( 2 ) which put back into Eq. (4.5) proves Eq. (4.4).
Proof. (Proof of Proposition 4.3) Suppose { } 0 were such a heat kernel

sequence based at 0 Let : be a finite rank orthogonal projection
and denote the measure on defined byZ

:=

Z
for all : R which are bounded and measurable. The hypothesis on now
guarantees that

© ª
0
is a heat kernel sequence based at 0 and therefore

by Proposition 2.5,

( ) =

µ
1

2

¶dim( ) 2
1
2 | |2

where denotes Lebesgue measure on By Eq. (4.2) of Lemma 4.4, for any
0Z

| |2 ( ) =

µ
1

2

¶dim( ) 2µ
+ 1

2

¶dim( ) 2

=

µ
1

2 + 1

¶dim( ) 2

Let : be a sequence of increasing finite rank orthogonal projections such
that strongly as Then by the dominated convergence theorem,Z

| |2 ( ) = lim

Z
| |2 ( ) = lim

Z
| |2 ( )

= lim

µ
1

2 + 1

¶dim( ) 2

= 0

Since | |2 is a positive function on it follows that must be the zero measure
for all which clearly violates the initial condition: lim 0 ( ) = (0)

Remark 4.5. Another way to “understand” Proposition 4.3 is that if were
to exist as a measure on it should be given by the formula

(4.6) “ ( ) =
1 1

2 | |2 ( ) ”

where is “infinite dimensional Lebesgue measure,” and

:= (2 )
dim( ) 2

=

½
0 if 1 2

if 1 2

12 BRUCE K. DRIVER

Clearly the expression in Eq. (4.6) has severe problems owing to the definition of
Moreover, it is well known that there is no reasonable notion of Lebesgue measure
on an infinite dimensional Hilbert space as you are asked to show in Exercise 4.1
below.

Exercise 4.1. Suppose is an infinite dimensional Hilbert space and is
a countably additive measure on B which is invariant under translations and
satisfies, ( (0 )) 0 for all 0 Show ( ) = for all non-empty open
subsets Hint: Show (0 ) contains an infinite number of disjoint balls of
radius = 2

L. Gross, in [38] and [39], describes how to characterize those “completions”
of to a Banach space such that the heat kernel measures may be constructed
on Rather than work in the full generality of Gross’ abstract Wiener spaces,
the discussion below will be restricted to two important special cases. The first is
when = 2 and is a certain Hilbertian extension of 2 and the second is in the
context of “classical Wiener space.”

5. Heat Kernel Measures Associated to 2

When = 2 the expression in Eq. (4.6) may be informally re-written as

( ) =
1
2

P
=1

2 Y
=1

2
=
Y
=1

µ
1
2

2

2

¶
=
Y
=1

( )

where ( ) := 1
2

1
2

2

Fact 5.1. Recall that Kolmogorov’s existence theorem implies the existence of
infinite products of probability measures. (See almost any graduate text book in
probability theory.)

As a consequence, there exists a unique probability measure on := RN
such that

(5.1)
Z

( 1 ) ( ) =

Z
R

( 1 )
Y
=1

( )

holds for all : R R which are bounded and measurable and for all N
From Proposition 4.3, we expect that 2 is a set of — measure 0 i.e. ( 2) =
0 This is verified in the following theorem.

Theorem 5.2. For = ( 1 2 ) (0 )N define

= 2( ) = { :

vuutX
=1

2 =: k k }

then for any 0

(5.2) ( ) =
1 if

P
=1

0 if
P
=1

=

In particular ( 2) = 0
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Proof. The method of proof will be very similar to that of Proposition 4.3.
Let ( ) :=

P
=1

2 and for N let ( ) =
P

=1
2 For any 0 using

the monotone convergence theorem,Z
2 =

Z
lim 2 = lim

Z
2

= lim

Z
R

2

P
1

2Y
=1

( )

= lim
Y
=1

Z
R

2
2

( ) = lim
Y
=1

q
2 + 1

2

2

=
Y
1

1

1 +
=

"Y
1

(1 + )

# 1 2

(5.3)

Taking logarithms of Eq. (5.3) and then letting 0 implies

(5.4) log

µZ
2

¶
=
1

2

X
=1

ln(1 + )
0
½

if
P

=1 =
0 if

P
=1

and hence

lim
0

Z
2 =

½
0 if

P
=1 =

1 if
P

=1

Since 2 1 and lim 0
2 = 1 this result along with the dominated

convergence theorem proves Eq. (5.2).
For the rest of this section, fix a linear subspace := RN such that

2 and ( ) = 1 for all 0 (For example = with
P

=1 )

Notation 5.3. A function : R of the form ( ) = ( 1 ) for
some (R ) will be called a cylinder function on and the collection of
such functions will be denoted by F ( ) As before, if (R ) of (R )
we will say F ( ) or F ( ) respectively.

Proposition 5.4. The measures { } 0 form a heat kernel sequence based at
0 in the sense that

(1) ( ) = 1 for all 0 and
(2) for all F 2( ) the function ( ) is continuously di eren-

tiable,

( ) =
1

2
( ) and lim

0
( ) = (0)

where

( ) :=
X
=1

2 ( ) = ( R ) ( 1 )

and { } =1 is the standard orthonormal basis for
2 i.e. ( ) =

Moreover, { } 0 is the unique heat kernel sequence on satisfying items 1.
and 2. above.
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Proof. The fact that satisfies items 1. and 2. above is a simple exercise left
to the reader. For uniqueness, suppose { } 0 is a heat kernel sequence based at
0 and N let be the measure on R such thatZ

R
( 1 ) ( ) =

Z
( 1 ) ( )

for all bounded measurable functions : R R Then one easily verifies { } 0

is a heat kernel sequence based at 0 R and hence by Proposition 2.5,

( ) = (2 ) 2 1
2 | |2R ( )

which is equivalent to Eq. (5.1).

Proposition 5.5. If 0 and 6= then

Proof. For each 0 let

:=

(
: lim

1 X
=1

2 =

)
Then the strong law of large numbers2 asserts ( ) = 1 for all 0 and this
proves the theorem since = for all 6=

If 2 and = 0 for for some thenZ
( · )2 ( ) =

Z
R

ÃX
=1

!2
( ) = k k22

This simple computation along with a standard limiting argument leads to the
following result.

Lemma 5.6. For 2 and for let = if and 0 if
Then lim · exists in 2( ) By abuse of notation we will use · to denote
this limit (even though the answer may depend on ) The limit · still satisfiesZ

( · )2 ( ) = k k22
and Z

· ( ) = 2k k22

The next proposition points out that even though is not supported on 2

its quasi-invariance (and hence di erentiability properties) are still intimately con-
nected with 2

Proposition 5.7 (Cameron-Martin Type Theorem). For let :=
(· ) i.e.

(5.5)
Z

( ) ( ) =

Z
( ) ( ) :=

Z
( + ) ( )

Then := (· )¿ i 2 and if 2 then

(5.6)
( )

( )
=

1 · 1
2 | |2

2Also see Exercise 6.1 which essentially sketches a proof of the law of large numbers in this
context.
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Proof. At an informal level, we have

( )

( )
=

1
2 | |2

1
2 | |2

=
1 · 1

2 | |2

which clearly only makes sense if 2

For a rigorous proof, suppose first 2 ThenZ
· ( ) =

Z
·( + ) ( ) = 2 | |2+ ·

while Z
· 1 · 1

2 | |2 ( ) = 2 (
1 + )2 1

2 | |2 = 2 | |2+ ·

and this su ces to prove Eq. (5.6).
Suppose that \ 2 and let k k denotes the total variation norm of a

measure We will make use of the fact if k k = 2 then that (The
converse is true as well but is not needed here.) Indeed if k k = 2 and
is the Jordan decomposition of then

2 = k k = ( ) ( ) ( ) ( ) ( ) + ( ) 2

with equality i ( ) = 1 and ( ) = 1 Therefore
We now compute k k formally. For this let :=

1
2 · 1

4 | |2 then

k k =
Z ¯̄̄

1 · 1
2 | |2 1

¯̄̄
=

Z
| 1| | + 1|Z

| 1|2 =

Z
( 2 2 + 1) = 2(1

Z
)

Now Z
=

Z
1
2 · 1

4 | |2 =
1
8 | |2 1

4 | |2 =
1
8 | |2

from which it follows that

(5.7) k k 2(1
1
8 | |2)

This proof is of course not rigorous. However the idea is right. In fact the same
type of computations shows

k k = sup {( ) ( ) : measurable and | | 1}
sup {( ) ( ) : ( ) = ( 1 ) measurable and | | 1}

=

Z ¯̄̄
1 · 1

2 | |2 1
¯̄̄

( ) 2(1
1
8 | |2)

Letting in this estimate shows that Eq. (5.7) is indeed valid and in
particular if 2 we have k k = 2

Corollary 5.8 (A Cameron type integration by parts formula). For 1
2 and F ( )

(( 1 ) · ) = ¡ ·
1

¢
where = + 1 · and ( · ) is to be interpreted as ·

16 BRUCE K. DRIVER

Proof. (Sketch.) From Eq. (5.5) and (5.6),Z
( + ) ( + ) ( ) =

Z
( ) ( ) · 2

2 | |2 ( )

Di erentiating this equation in and evaluating at = 0 showsZ
[ ( ) ( ) + ( ) ( )] ( ) =

Z
1
( · ) ( ) ( ) ( )

i.e. = + 1 · The analytic details are left to the reader or see, for
example, [22].

6. Classical Wiener Measure

Notation 6.1 (Path Spaces). Given a pointed Riemannian manifold ( )
let

(6.1) ( ) = { ([0 1] ) | (0) = }
For those ( ) which are absolutely continuous, let

(6.2) ( ) :=

Z 1

0

| 0( )|2

denote the energy of The space of finite energy paths ( ) is given by

(6.3) ( ) := { ( )| is absolutely continuous and ( ) }
Notation 6.2. If is an inner product space we will always take = 0

and to be the Riemannian metric associated to the inner product on The
supremum norm,

k k = max
[0 1]

| ( )|
makes theWiener space ( ) into a Banach space. The Cameron — Martin
space ( ) becomes a Hilbert space when equipped with the inner product

( ) = ( ) ( ) :=

Z 1

0

( 0( ) 0( )) for all ( )

The associated Hilbertian norm
p
( ) on ( ) will be denoted by | |

Definition 6.3. A function : ( ) C is a — cylinder function (
F ( )) provided there exists a partition

(6.4) := {0 = 0 1 · · · = 1}
of [0 1] and a smooth function ( ) such that

(6.5) ( ) = ( ( 1) ( )) = ( | )
As usual we will say F ( ( )) or F ( ( )) if ( ) or

( ) respectively.

For the rest of this section we are going to take = R (The case where
is a more general manifold will be considered in Sections 7 and 8 below.)

Definition 6.4 (Di erential Operators). For 2( (R )) and (R )
let ( ) := |0 ( + ) and grad ( ) (R ) for the unique element in
(R ) such that ( ) = (grad ( ) ) for all (R ) We also let be an

orthonormal basis for
¡
R
¢
and define 4 (R ) :=

P
2 whenever the sums

converge.
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See Proposition 6.11 below for an explicit description of grad and 4 (R )

when is a cylinder function. The existence (and the hard) part of the following
theorem is due to N. Wiener [58].

Theorem 6.5 (Wiener 1923). There exists a unique heat kernel sequence3

{ } 0 based at 0 = (R ) satisfying

(1) ( ) = 1 for all 0 and
(2) for all F 2( ) the function ( ) is continuously di eren-

tiable,

( ) =
1

2
(4 (R ) ) and lim

0
( ) = (0)

Remark 6.6. The existence proof in subsection 6.3 below will show that is
concentrated on — Hölder continuous paths for any 1 2 It is also well known
that lives on the set of nowhere di erentiable paths. It is not our aim here to
study the sample path properties of in any detail. The reader interested in such
matters is referred to the very nice survey article of Y. Peres [54].

Before going into the proof of Theorem 6.5 we need to pause to develop the
di erential calculus on (R ) The uniqueness assertion will be proved in subsection
6.2 and the existence assertion will be proved in subsection 6.3 below.

6.1. Di erential Calculus on . In what follows, for notational simplicity,
we will often state and/or prove results in the special case, = 1 in which case we
write = (R1) and = (R1) The reader is invited to fill in the details for

1 which are omitted.

Proposition 6.7. Let ( ) = min( ) = Then is the reproducing
kernel for , i.e. ( ( ·) ) = ( ) for all [0 1] and

Proof. For

( ) =

Z
0

0( ) =

Z 1

0

1 0( ) = ( ( ·) )

where
( ) = 1

and therefore ( ) =
R
0
1 =

Remark 6.8. ( ) is the Green’s function for 2 2 with Dirichlet bound-
ary conditions at 0 and Neumann boundary conditions at 1

Corollary 6.9 (A simple Sobolev embedding theorem). The inclusion map
: is continuous and in fact

k k | | for all
where | | = k k is the Hilbertian norm on

Proof. By Proposition 6.7, for [0 1]

| ( )| = |( ( ·) ) | k ( ·)k k k

3Wiener did not state the theorem this way, but the results are equivalent.
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This proves the corollary since

k ( ·)k2 =
Z 1

0

(1 )2 = 1

Corollary 6.10. Let be any orthonormal basis for . ThenX
( ) ( ) = ( )

Proof. The proof is simply Parseval’s equality along with the reproducing
kernel properties ofX

( ) ( ) =
X
( ( ·) )( ( ·) ) = ( ( ·) ( ·)) = ( )

Proposition 6.11. Suppose that F 2( ) then

(6.6) grad ( ) =
X
=1

( ( 1) ( )) ( ·)

and

(6.7) ( ) =
X
=1

( ) ( ( 1) ( )) =: ( | )

If is expressed as

(6.8) ( ) = ( 1 )

where = ( ) ( 1) for = 1 2 then (with := 1)

(6.9) ( ) =
X
=1

¡
2
¢
( 1 )

Proof. By definition,

( ) =
X
=1

( ) ( ( 1) ( )) =
X
=1

( ( 1) ( )) ( ( ·) )

and

( ) =
X

2 ( ) =
X X

=1

( ) ( ) ( ( 1) ( ))

=
X
=1

( ) ( ( 1) ( ))

which proves Eqs. (6.6) and (6.7). Similarly, if is given as in Eq. (6.8), then

( ) =
X
=1

( ( ) ( 1)) ( 1 )

grad ( ) =
X
=1

( 1 ) ( ( ·) ( 1 ·))
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and

( ) =
X

2 ( )

=
X X

=1

( ( ) ( 1)) ( ( ) ( 1)) ( 1 )

=
X
=1

( 1 1 + 1 1) ( 1 )

=
X
=1

2 ( 1 )

Remark 6.12. The operators are all elliptic. Indeed, if = ( ) =1 R
then X

=1

( ) =
X
=1

( ( ·) ( ·)) =

°°°°°X
=1

( ·)
°°°°°
2

0

with equality i ( ) =
P

=1 ( ) is zero. This would imply

0 = 0( ) =
X
=1

1 for

from which it easily follows that = 0

Proposition 6.13. Let be a partition of [0 1] as in Eq. (6.4), 2(R )
then

(6.10) 2 (0) =

Z
R

( 1 )

"Y
=1

( 1)( 1 )

#
1 · · ·

where is the heat kernel on R as in Proposition 2.5 (with = 1) and is defined
in Eq. (6.7).

Proof. If ( 1 ) = ( 1 2 1 1) then

(6.11) ( 1 ) =
X
=1

( 1)
¡
2
¢
( 1 2 1 1)

This may be deduced from Proposition 6.11 or proved directly as follows. By the
chain rule

( 1 ) = [( +1) ] ( 1 2 1 1)

where by convention +1 = 0 Hence, with = ( 1 ) and = ( 1 2

1 1)

( ) =
X

[( +1) ( +1) ] ( )

= 2
X

[( +1) ( +1) ] ( ) +
X h

( +1)
2
i
( )

= 2
X

[( +1) +1 ] ( ) +
X h

( +1)
2
i
( )
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where we have used a telescoping series to compute the sum on Elementary
algebra now shows

( ) =
X

[( +1) ( + +1) ] ( ) =
X £¡

2 2
+1

¢ ¤
( )

which is equivalent to Eq. (6.11) after re-indexing the second term in the last sum.
A consequence of Eq. (6.11) is³

2
´
(0) =

³
2

P
=1( 1)

2
´
(0)

=

Z
R

( 1 )

"Y
=1

( 1) ( )

#
1 · · ·

Making the change of variable = ( 1 2 1 1) in the previous
integral gives Eq. (6.10).

6.2. Properties of { } 0. In this section we will develop some of the basic
properties of the heat kernel sequence { } 0 in Theorem 6.5.

Proposition 6.14 (Uniqueness of Heat Kernel Measures on ). Suppose
{ } 0 is a heat kernel sequence based at 0 (R ) as in Theorem 6.5 and

F 2( ) is a cylinder function as in Eq. (6.5). Then

(6.12) ( ) =

Z
(R )

( 1 )

"Y
=1

( 1)( 1 )

#
1 · · ·

In particular if { } 0 exists then it is uniquely determined by Eq. (6.12).

Proof. The proof follows in the same manner as the proof of uniqueness in
Proposition 5.4 and making use of Proposition 6.13.

Let ( ) :=
R 1
0
| 0( )|2 be the energy of a path (R ) then (as in

Remark 4.5) we have informally

(6.13) “ ( ) =
1 1

2 ( ) ( ) ”

Proposition 6.17 below makes this formula precise.

Notation 6.15. To each partition of [0 1] let

(R ) :=
©

(R ) : 00( ) = 0 if
ª

and for
¡
R
¢
let (R ) denote the unique element of (R ) such

that ( ) = ( ) for all

Lemma 6.16. The mapping
¡
R
¢

(R ) (R ) is orthogonal
projection onto (R )

Proof. Since it is clear that = for
¡
R
¢
we need only prove

( ) = ( ) for all
¡
R
¢
If is a partition as in Eq. (6.4), then

0 =
1X

=0

( +1) ( )

+1
1( +1]

and hence

( ) =
1X

=0

( +1) ( )

+1
· ( ( +1) ( ))
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which is clearly symmetric in and

Proposition 6.17. Suppose { } 0 is a heat kernel sequence based at 0
(R ) is a partition of [0 1] and is a cylinder function written as ( ) =
( | ) with | as in Eq. (6.5). Let denote a Lebesgue measure on (R )

(i.e. any non-trivial translation invariant measure on (R )) then

(6.14)
Z

(R )

( ) ( ) =
1

( )

Z
(R )

( )
1
2 ( ) ( )

where ( ) is a normalization constant chosen so that

(6.15) ( ) :=
1

( )

1
2 ( ) ( )

is a probability measure.

Proof. First notice that the measure is independent of the possible choices
of since translation invariant measures are unique up to a multiplicative constant
and this ambiguity of the constant is cancelled by the normalization constant ( )
For each

¡
R
¢
let denote the unique element of (R ) such that ( ) =

for = 1 2 The mapping
¡
R
¢

(R ) is a vector space
isomorphism with the property that (with := 1 and := 1)

( ) =
X
=1

| 1|2
2 =

X
=1

| |2

and henceY
=1

( 1 ) =
Y
=1

1

(2 ) 2

1
2 | |2

=
Y
=1

1

(2 ) 2
· 1

2 ( )

So if we now fix by requiring to be the push forward of Lebesgue measure
on
¡
R
¢
under the map we have shownZ

(R )

( ) ( ) =

Z
(R )

( 1 )
Y
=1

( 1)( 1 ) 1 · · ·

=

Z
(R )

( )
1Y

=0

1

(2 ) 2
· 1

2 ( ) ( )

Corollary 6.18. Let be a bounded and continuous function on
¡
R
¢

relative to the sup-norm topology, thenZ
(R )

( ) ( ) = lim
| | 0

Z
(R )

( ) ( )

Proof. For each partition and (R ) let (R ) be as in Notation
6.15. Then by uniform continuity, ( ) ( ) uniformly in as | | 0 and so
by the dominated convergence theorem,Z

(R )

( ) ( ) = lim
| | 0

Z
(R )

( ) ( ) = lim
| | 0

Z
(R )

( ) ( )

wherein we have used Proposition 6.17 for the second equality.
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Exercise 6.1. Use the following outline to show if 6= To simplify
notation assume = 1 For N let := { 2 : = 0 1 2 2 } and define

( ) =
¯̄ ¡

( + 1) 2
¢ ¡

2
¢¯̄2

2

and

( ) :=
2 1X
=0

¯̄ ¡
( + 1) · 2 ¢ ¡ · 2 ¢¯̄2

(1) Show ( ) = 0 ( ) = 0 if 6= and ( 2) = 2 · 2 2 2

(2) Use 1. to conclude for any 0

(| | ) 2

Z
| ( ) |2 ( ) = 2 · 2 2 2

(3) Use 2. to conclude for any 0 thatX
=1

1| ( ) | for — a.e.

(4) Use 3. to conclude that ( ) = 1 where

:=

(
(R) : lim

2 1X
=0

¯̄ ¡
( + 1) 2

¢ ¡
2

¢¯̄2
=

)
(5) Observe that = if 6=
Proposition 6.19 (Itô integral). Suppose (R ) is a partition of [0 1]

as in Eq. (6.4) and for
¡
R
¢
let

¡
R
¢
be as in Notation 6.15. Then

for each 0 the limit of the function, ( ) exist in 2( ) as | | 0
By abuse of notation we will write this 2( ) limit as

2( ) — lim
| | 0

( ) =: ( ) =

Z 1

0

0( ) · ( )

(Warning: As in Lemma 5.6, the limit will in general depend on 0 ) Further-
more, for all

¡
R
¢
and bounded measurable functions : R R

(6.16)
Z

(R )

(( )) ( ) =
1

2

Z
R

³
| |

´
2 2

Proof. Before starting the proof let us notice that

(6.17) ( ) =

Z 1

0

0( ) · 0 ( ) =
1X

=0

·
( +1) ( )

+1

¸
· [ ( +1) ( )]

For
¡
R
¢
(the union being over all partitions of [0 1]) with

(6.18) 0( ) =
1X

=0

1( +1]( ) for a.e.

let

( ) :=
1X

=0

· [ ( +1) ( )]
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The reader is invited to check that ( ) is well defined independent of how 0 is
written in the form given in Eq. (6.18). Making use of Propositions 6.13 and 6.14,
we have for RZ

(R )

· [ ( +1) ( )] · [ ( +1) ( )] ( ) = · ( +1 )

and therefore Z
(R )

[ ( )]
2

( ) =
1X

=0

| |2 ( +1 ) = | |2

This shows that the map ¡
R
¢

2( )

is a bounded linear map and hence extends uniquely to
¡
R
¢
= (R ) If¡

R
¢
is chosen so that

¡
R
¢
with ( ) = ( ) for all then

Eq. (6.17) shows ( ) = ( ) So to finish the proof it su ces to prove, for
all in as | | 0

When 1
¡
[0 1] R

¢ ¡
R
¢ 0 0 uniformly and therefore in

as | | 0 For general
¡
R
¢
and 1

¡
[0 1] R

¢ ¡
R
¢
we have

lim sup
| |

| | lim sup
| |

(| |+ | |+ |( ) |)

| |+ lim sup
| |

|( ) | 2 | |(6.19)

wherein the last equality we have used Lemma 6.16 to conclude |( ) | | |
Letting in Eq. (6.19) completes the proof of existence of the 2( ) — limit.

Since probability measures on R are uniquely characterized by their Fourier
transform, it su ces to prove Eq. (6.16) in the case that ( ) = for
some R Now choose a sequence of partitions such that | | 0 and
lim ( ) = ( ) for — a.e. Then using Lemma 4.4 and Corollary
6.18,Z

(R )

( ) ( ) = lim

Z
(R )

( ) ( ) = lim

Z
(R )

( ) ( )

= lim 2
2| |2 = 2

2| |2 =
1

2

Z
R

( | | ) 2 2

Items 2. and 3. of the following theorem may be found in [7, 8, 9].

Theorem 6.20 (Cameron — Martin Theorem and Integration by Parts For-
mula). For

¡
R
¢
let := (· ) i.e.Z

(R )

( ) ( ) =

Z
(R )

( ) ( ) :=

Z
(R )

( + ) ( )

(1) If
¡
R
¢ \ ¡

R
¢
then

(2) If
¡
R
¢
then ¿ and

( ) =
1 ( ) 1

2 | |2 = exp
µ
1
Z 1

0

0( ) · ( )
1

2
| |2

¶
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(3) For all
¡
R
¢

=
¡

+ 1( )
¢
i.e.Z

(R )

( ) · ( ) ( ) =

Z
(R )

( )

µ
+
1
( )

¶
( ) ( )

In particular is a smooth measure.

Proof. We will not give the proof of item 1. here which is similar to the
proof of the corresponding result in Proposition 5.7. For item 2., first suppose

(
¡
R
¢
)

¡
R
¢
for some partition of [0 1] and let be a

sequence of partitions containing such that | | 0 Since
¡
R
¢ ¡

R
¢

by Corollary 6.18 and the translation invariance of finite dimensional Lebesgue
measure,Z

(R )

( + ) ( ) = lim

Z
(R )

( + ) ( )

= lim

Z
(R )

( + )
1

( )

1
2 ( ) ( )

= lim

Z
(R )

( )
1

( )

1
2 ( ) ( )

= lim

Z
(R )

( )
1
2 [ 2( )+| |2] ( )

=

Z
(R )

( )
1
2 [ 2( )+| |2] ( )

For general
¡
R
¢
the previous result proves

(6.20)
Z

(R )

( + ) ( ) =

Z
(R )

( )
1 ( ) 1

2 | |2 ( )

By the dominated convergence theorem,

(6.21) lim
| | 0

Z
(R )

( + ) ( ) =

Z
(R )

( + ) ( )

while for any 1

=

Z
(R )

¯̄̄
1
2 [ 2( )+| |2] 1

2 [ 2( )+| |2]
¯̄̄

( )

=

Z
(R )

( ) 2 | |2
¯̄̄
1 ( ) 2 [| |2 | |2]

¯̄̄
( )

Hence by the Cauchy Schwarz inequality and Eq. (6.16), 2 where

=

Z
(R )

2 ( ) 2
2 | |2 ( ) =

1

2

Z
R

2 | | 2
2 | |2 2 2

and

=

Z
(R )

¯̄̄
1 ( ) 2 [| |2 | |2]

¯̄̄2
( )

=
1

2

Z
R

¯̄̄
1 | | 2 [| |2 | |2]

¯̄̄2 2 2
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The dominated convergence theorem now shows lim| | 0 = 0 and hence 0
so that
(6.22)

lim
| | 0

Z
(R )

( )
1 ( ) 1

2 | |2 ( ) =

Z
(R )

( )
1 ( ) 1

2 | |2 ( )

Combining Eqs. (6.20) — (6.22) shows

(6.23)
Z

(R )

( + ) ( ) =

Z
(R )

( )
1 ( ) 1

2 | |2 ( )

for all
¡
R
¢
and

¡ ¡
R
¢¢

By general measure theoretic arguments
it now follows that Eq. (6.23) holds for all bounded measurable functions on¡

R
¢
and this proves item 2. Lastly item 3. is proved similarly to the proof of

Corollary 5.8.

Notation 6.21. It is customary to call the measure := 1 —Wiener mea-
sure on

¡
R
¢

Remark 6.22. From Proposition 6.17, it is easily shown that is the measure
on

¡
R
¢
determined byZ

(R )

( ) ( ) =

Z
(R )

( ) ( )

and this equation clearly shows that

lim
0

( ) = lim
0

Z
(R )

( ) ( ) = (0)

for all (
¡
R
¢
) It is also interesting to note that we can deduce from

Theorem 6.20 that ( ) = (12 ) Indeed let F 2(
¡
R
¢
) be a

cylinder function and be an orthonormal basis for
¡
R
¢
then

( ) =

Z
(R )

1

2
( ( ) ) ( )

=
XZ

(R )

1

2
( ( ) )( ) ( )

=
XZ

(R )

1

2
( ) ( ) 1 ( )

=
XZ

(R )

1

2

¡
2
¢
( ) ( ) = (

1

2
)

6.3. Construction of { } 0 on
¡
R
¢
. Our construction of will be

based on the ideas in Proposition 6.17 and Corollary 6.18.

Notation 6.23. For each N0 let

:=
©
2 : = 0 1 2 2

ª
and let 0 := 0

¡
R
¢
=
©

(R ) : 00 = 0
ª
and for 1 let denote the

orthogonal complement of 1(R ) in (R )

Lemma 6.24. Using the notation above:
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Figure 1. This function is a typical element of 3 It is the func-
tion 3 as described in Lemma 6.24 with = 3

(1) Suppose is a partition of [0 1] then (R ) i | = 0
(2) For 1 =

©
(R ) : | 1 = 0

ª
(3)

¡
R
¢
= =0 with the sum being the Hilbert space orthogonal direct

sum.
(4) Given 1 and 0 2 1 let (R) be the unique “tent”

function (see Figure 1) such that

|[0 2 +1] [( +1)2 +1 1] = 0 and (( +
1

2
)2 +1) = 2

+1
2

Then
©

: 0 2 1 = 1
ª
is an orthonormal basis for¡

R
¢

Proof. Items 1. and 2. Suppose (R ) and R Let
( ) = ( ) then (R ) and hence 0 = ( ) = ( ) · from which it
follows | = 0 Any easy computation using the fundamental theorem of calculus
shows that if | = 0 and (R ) then ( ) = 0

Item 3. If 6= and are orthogonal subspaces and
¡
R
¢
= =0

by construction. If
¡
R
¢
and for all then

¡
R
¢
for all

So by item 1., ( ) = 0 on all dyadic rationals in [0 1] Since the latter set is dense
in [0 1] and is continuous, 0 and this completes the proof of item 3.

Item 4. is a simple verification left to the reader.

Lemma 6.25. Let { } 0 denote the heat kernel sequence on := (R) at
0 and for [1 ) let

(6.24) ( ) :=

µ
1

2

Z
R
| | 1

2
2

¶1
= 2

·
1
2

µ
+ 1

2

¶¸1
Then for any [1 )

(6.25)
µZ

k k ( )

¶1
( ) 1 22 ( 12

1 )
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Moreover for (0 1) let

k k := sup

½ | ( ) ( )|
| | : [0 1] with 6=

¾
then we have

(6.26)
µZ

k k ( )

¶1
( ) 1 22 ( 1)( 12

1 )

Proof. Let
©

: 2 1
ª
be as in Lemma 6.24 and set ( ) := ( )

Then =
P

2 1 ( ) for all Since the sets { 6= 0}2 1

=0 are disjoint

and k k = 2
+1
2 it follows that k k = 2

+1
2 ( ) where

( ) := max
©| ( )| : 2 1

ª
For any 1µZ

( ) ( )

¶1 ÃZ X
2 1

| ( )| ( )

!1

=

µ
2 1 1

2

Z
R
| | 1

2
2

¶1
= ( ) 1 22( 1)(6.27)

where ( ) is defined in Eq. (6.24). (The second equality in Eq. (6.24) is a
consequence of the integrand being even and the change of variables = 2 2 )

Therefore for any 1µZ
k k ( )

¶1 µZ
k k ( )

¶1
= 2

+1
2

µZ
( ) ( )

¶1
( ) 1 22

1

2
+1
2 ( ) 1 22 2 2

which proves Eq. (6.25).

Since
°°° ˙ °°° = 2

+1
2 2 = 2

1
2 ˙ =

P
2 1 ( ) ˙ and { ˙ } have

essentially disjoint supports, it follows that
°°° ˙ °°° = 2

1
2 ( ) By the mean

value theorem,

(6.28)
| ( ) ( )|
| |

°°° ˙ °°° | |
| | = 2

1
2 ( ) | |1

From Eq. (6.28), if | | 2 ( 1)

| ( ) ( )|
| | 2

1
2 ( )2 (1 )( 1) = ( )2 ( 1)( 12 )

and if | | 2 ( 1)

| ( ) ( )|
| |

2 k k
2 ( 1)

2
2

+1
2 ( )

2 ( 1)
= ( )2 ( 1)( 12 )

The previous two equations imply

k k ( )2 ( 1)( 12 )
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Therefore for any 1 (working as above)µZ
k k ( )

¶1
2 ( 1)( 12 )

µZ
( ) ( )

¶1
2 ( 1)( 12 ) ( ) 1 22

1

which proves Eq. (6.26).
6.3.1. Existence proof of { } 0 in Theorem 6.5. Again for simplicity of no-

tation we carry out the proof when = 1 Let :=
Q

=0 :=
Q

=0 (see
Fact 5.1) and for N let : be the natural projection onto Then
by construction, { } =0 are all mutually independent and ( ) = for each

N If 1
2 and [1 ) we may choose [1 ) such that 12

1 0

Then by Lemma 6.25,°°°°°X
=0

k k
°°°°°

( )

X
=0

kk k k ( ) ( ) 1 2
X
=0

2 ( 1)( 12
1 )

This shows: 1)
P
=0
k k for — a.e. and hence :=

P
=0

exists in

0 ([0 1]) o a — null set and 2) :=
P
=0

converges in ( 0 ([0 1]))

for all [1 )
Thus the measure := is a probability measure on which is supported

on 0 ([0 1]) for any 1 2 and satisfiesZ
k k ( ) for all [1 )

For Z
( ) ( ) =

Z
( ( )) ( ) = lim

Z
( ( )) ( )

= lim exp

µ
2
| |2

¶
= exp

µ
2
| |2

¶
So if is a partition of [0 1] and it follows that

(6.29)
Z

( ) ( ) = exp

µ
2
| |2

¶
= exp

µ
2
| |2

¶
where ( ) := for The last equality in Eq. (6.29) is a result of the fact
that : is orthogonal projection by Lemma 6.16. Eq. (6.29) and the
fact that probability measures are uniquely determined by their Fourier transform
implies Eq. (6.14) of Proposition 6.17 holds. The reader is now invited to use this
information and the fact that is a heat kernel sequence on to show { } 0

is the desired heat kernel sequence.

7. Path and Loop Group Extensions

In this section we will discuss the analogues of the results in Section 6 when¡
R
¢
is replaced by the path ( ) or the loop space L( ) on a compact Lie

group Our description of the results in this section will be rather brief com-
pared to the previous sections. This is because to understand these heat kernel
measures on ( ) and L( ) one must understand “Wiener measure” on the path
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space of ( ) and L( ) respectively. Section 8, describes these type of results
in the simpler setting where ( ) and L( ) are replaced by a finite dimensional
Riemannian manifold

Notation 7.1. Let be a connected compact Lie group, k := be the
Lie algebra of h· ·ik be an -invariant inner product on k and let := k

denote the unique bi-invariant Riemannian metric on which agrees with h· ·ik on
k := To simplify notation later we will assume that is a matrix group in
which case k may also be viewed as a matrix Lie algebra. (Since is compact, this
is no restriction, see for example Theorem 4.1 on p. 136 in [6].) Elements k
will be identified with the unique left invariant vector field on agreeing with
at the identity in i.e. if ( ) then

( ) = |0 ( )

Example 7.2. As an example, let = (3) be the group of 3 × 3 real
orthogonal matrices with determinant 1 The Lie algebra of is k = (3) the set
of 3× 3 real skew symmetric matrices, and the inner product h ik := tr( )
is an example of an — invariant inner product on k

Our main interest here is the path and loop spaces built on In this section,
let = and = ( is the identity element) in Notation 6.1.

Notation 7.3. For a compact Lie group let

(7.1) ( ) := { ([0 1] ) | (0) = }
(7.2) L ( ) := { ( ) | (1) = }
and e L ( ) ( ) denote the constant path at As in Notation 6.1,
( ) and 0( ) are the finite energy paths in ( ) and L( ) respectively. In

this case the energy on ( ) is given explicitly by

(7.3) ( ) :=

Z 1

0

¯̄̄
[ ( )] 1 0( )

¯̄̄2
k

=

Z 1

0

¯̄ 0( ) ( ) 1
¯̄2
k

wherein the last equality is a consequence of the — invariance of h· ·ik
As usual we will refer to (k) equipped with the Hilbertian inner product,

(7.4) ( ) :=

Z 1

0

h 0( ) 0( )i
as the Cameron — Martin Hilbert space.

Remark 7.4. It is well known that ( ) is a Hilbert Lie group under pointwise
multiplication and that the map

( ) ( )× (k) ( ( ))

is a trivialization of the tangent bundle of ( ) (We are using : ( )
( ) to denote left multiplication by ) This trivialization induces a left-invariant

Riemannian metric (· ·) on ( ) given explicitly by

(7.5) ( ) =

Z 1

0

h 0( ) 0( )ik ( ) and (k)

See Appendix A in [20] and the references therein for more details.
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Definition 7.5 (Di erential Operators). For (k) ( 0(k)) let ˜

denote the left invariant vector field on ( ) (L( )) such that ˜(e) = i.e. if
1( ( ))

¡
1(L( ))

¢
and ( ) ( L( )) then

˜ ( ) =

¯̄̄̄
0

¡ ¢
where

¡ ¢
( ) = ( ) ( ) for all [0 1] For those 2( ( )) for which

the following sums converge (for example smooth cylinder functions), let

kgrad k2 :=
X³

˜
´2

and 4 ( ) :=
X

˜2

and

kgrad0 k2 :=
X

0

³
˜
´2

and 4
0( ) :=

X
0

˜2

Here and 0 are orthonormal bases for (k) and 0 (k) respectively.

Theorem 7.6 (Heat Kernel Measure). There exists unique heat kernel se-
quences { } 0 and { e} 0 based at e on ( ) and L( ) respectively, i.e. for
all F 2( ( ))

( ) =
1

2

¡4 ( )

¢
and e( ) =

1

2
e
¡4

0( )

¢
and

lim
0

( ) = (e) = lim
0

e( )

The reader is referred to Malliavin [52], Driver and Lohrenz [21], and Driver
and [18] for the existence of and e

Theorem 7.7 (Quasi-invariance for heat kernel measure). For each 0( )
which is null homotopic, e is quasi-invariant under the right and left translations
by

Proof. See Driver [18, 19] and Fang [32, 33]. The free loop space version of
these results was carried out by Trevor Carson in [10, 11]. The reader should also
see Inahama [43] for generalizations of Theorem 7.8 and Corollary 7.7 to include
“ — metrics” on L( ) for 1 2

Theorem 7.8 (Heat Kernel Logarithmic Sobolev Theorem, [21]). There is a
constant such that

(7.6)
Z
L( )

2 log
2

e( 2)
e

Z
L( )

kgrad0 k2 e

for all smooth cylinder functions : L( ) R (Eq. (7.6) when = R is Gross’
original Logarithmic Sobolev inequality.)

Proof. See Driver and Lohrenz [21], Carson [10, 11] and Fang [33].

Remark 7.9. Similar results hold for and they are much easier to prove.
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8. Wiener Measure on ( ) and its Properties

The proofs of the results in Section 7 rely on properties of “Wiener measure” on
(L( )) and ( ( )) to deduce properties about the heat kernel measures

and e respectively. This section will describe some of the relevant results needed
in the simpler setting where L( ) ( ( )) is replaced by a finite dimensional
Riemannian manifold with a fixed base point We will continue to use
the notation and results from Section 2. In particular ( ) denotes the heat
kernel on as described just before Theorem 2.6. To simplify the exposition, let
us assume is compact. (Most of the results are valid under the weaker assumption
that is complete and the Ricci curvature is bounded from below.)

Notation 8.1. To each ( ) and [0 1] let ( ) : ( )

denote parallel translation along |[0 ] relative to the Levi-Civita covariant de-
rivative i.e. ( ) is the unique solution to the ordinary di erential equation

( ) = 0 with 0( ) =

Also let : ( ) ( ) denote Cartan’s rolling map, defined by
= ( ) where is the unique solution to the functional di erential equation

(8.1) 0( ) = ( ) 0( ) with (0) =

Remark 8.2. Suppose is the boundary of a smooth convex region in R3
equipped with the metric inherited from R3 Then the curve in (8.1) has the
interpretation of being the curve on found by rolling along the curve in

The reader is invited to try this by rolling a balloon along a curve, drawn
on a chalk board.

Theorem 8.3 (Wiener measure). There exists a unique probability measure
( ) on ( ) such that for all cylinder functions F ( ( )) as described

in Definition 6.3,
(8.2)Z

( )

( ) ( )( ) =

Z
( 1 )

1Y
=0

( +1 )( +1) 1 · · ·

where 0 = and denotes the volume measure on

Remark 8.4 (Warning). Comparing Eq. (8.2) with Eq. (6.12) with = 1 the
reader may be lead to think that ( ) is a heat kernel measure on ( ) This
is however not the case for general Riemannian manifolds Of course ( ) is
intimately connected to the heat kernel measures on based at by the
formula

(8.3) ( ) =

Z
( )

( ( )) ( ) for all ( )

It is this relationship which is exploited to prove the results in Section 7.

It turns out that there is another (often more useful) way to construct the
measure ( ) which involves solving a “stochastic di erential” equation. We
will hide this stochastic di erential equation in the formulation given in the next
theorem.
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Theorem 8.5 (Eells & Elworthy stochastic rolling construction of ( )). Let

(R ) be Wiener measure on
¡
R
¢
as in Notation 6.21 and for

¡
R
¢
and

a partition of [0 1] let
¡
R
¢
be as defined in Notation 6.15. Then ˜( ) :=

lim| | 0 ( ) exists for (R ) — a.e. and moreover ( ) = ˜
(R ) :=

(R )
˜ 1 In words, ( ) is the push — forward of Wiener measure (R )

on
¡
R
¢
by the “stochastic” extension ˜ of Cartan’s rolling map.

Proof. The fact that ˜ has a “stochastic extension” seems to have first been
observed by Eells and Elworthy [23] who used ideas of Gangolli [36]. The relation-
ship of the stochastic development map to stochastic di erential equations on the
orthogonal frame bundle ( ) of is pointed out in Elworthy [24, 25, 26]. The
frame bundle point of view has also been developed by Malliavin, see for example
[50, 49, 51]. For a more detailed history of the stochastic development map, see
pp. 156—157 in Elworthy [26].

Proposition 8.6 (Stochastic parallel translation). There exists a continuous
process, ( ) ( ) × [0 1] f ( ) ( ) such that f ( )¡

( )

¢
for all and andf (˜( )) = (R )— lim| | 0

( ( ))

where the limit is taken in the sense of (R ) — measure.

Theorem 8.7 (Cameron-Martin Theorem for ). Let ( ) and
be the ( ) — a.e. well defined vector field on ( ) given by

(8.4) ( ) = ( ) ( ) for [0 1]

Then admits a flow on ( ) and this flow leaves ( ) quasi-invariant.

This theorem first appeared in Driver [17] when ( ) 1([0 1] )
and was soon extended to all ( ) by E. Hsu [40, 41]. Other proofs may
also be found in [30, 48, 53].

Corollary 8.8 (Integration by Parts for ( )). For ( ) and
F 1( ( )) be as in Eq. (6.5), let

( )( ) = |0 ( ( )) =
X
=1

( ( ) ( )) =
X
=1

( )( ) f ( ) ( ))

Then Z
W( )

( ) =

Z
W(R )

(˜( )) ( ) (R )( )

where

( ) :=

Z 1

0

h 0( ) +
1

2
Ric ˜ (˜( ))

0( ) ( )i

and Ric ˜ ( ) :=
˜ ( ) 1Ric ( )

˜ ( ) ( ) and Ric is the Ricci tensor
on

Proof. A special case of this type of theorem for ( ) = ( ( )) for some
( ) first appeared in Bismut [4]. The result stated here was proved in

[17]. Other proofs of this corollary may be found in [1, 2, 18, 28, 29, 27, 30, 31,
40, 41, 46, 47, 48, 53]
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Example 8.9. When = R then ( ) = ( ) for all R and

(R ) Thus ( ) = ( ( )) ( ) and ( ) = + and so Theorem 8.7
becomes the classical Cameron-Martin Theorem, see Theorem 6.20 with = 1

8.1. Path Integral Interpretation. In this subsection we will state a couple
of analogues of Proposition 6.17.

Notation 8.10. Given a partition of [0 1] let

( ) = { ( ) 2( \ ) : 0( ) = 0 for }
be the piecewise geodesics paths in ( ) which change directions only at the
partition points.

It is possible to check that ( ) is a finite dimensional submanifold of ( )
which is in fact di eomorphic to

¡
R
¢

For ( ) the tangent space
( ) can be identified with elements ( ) satisfying the Jacobi

equations on \
Definition 8.11 (The —Metrics). For each partition of [0 1] as in Eq. (6.4)

let 1 be the metric on ( ) given by

(8.5) 1 ( ) :=
X
=1

µ
( 1+) ( 1+)

¶
( 1)

for all ( ) and ( ) (We are writing ( 1+) as a shorthand

for lim
1

( ) ) Similarly, let 0 be the degenerate metric on ( ) given by

(8.6) 0 ( ) :=
X
=1

( ( ) ( )) ( 1)

for all ( ) and ( )

Remark 8.12. Notice that 1 and 0 are the Riemann sum approximations
to the metrics,

1( ) :=

Z 1

0

µ
( ) ( )

¶
and 0( ) :=

Z 1

0

( ( ) ( ))

If is an oriented manifold equipped with a possibly degenerate Riemannian
metric let Vol denote the —form on determined by

(8.7) Vol ( 1 2 ) :=

r
det

³
{ ( )} =1

´
where { 1 2 } is an oriented basis and We will identify a —
form on with the Radon measure induced by the linear functional ( )R

Vol

Definition 8.13 ( — Volume Forms). Let Vol 0 and Vol 1 denote the volume
forms on ( ) determined by 0 and 1 in accordance with equation (8.7).

Given the above definitions, there are now two natural finite dimensional “ap-
proximations” to ( ) in equation (7.4) given in the following definition.
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Definition 8.14 (Approximates to Wiener Measure). For each partition =
{0 = 0 1 2 · · · = 1} of [0 1] let 0 and 1 denote measures on
( ) defined by

0 :=
1
0

1
2 Vol 0

and
1 =

1
1

1
2 Vol 1

where : ( ) [0 ) is the energy functional defined in equation (6.2) and
0 and 1 are normalization constants given by

(8.8) 0 :=
Y
=1

( 2 ( 1)) and 1 := (2 ) 2

Theorem 8.15 (Path Integral interpretation of ( )). Suppose that :
( ) R is bounded and continuous, then

(8.9) lim
| | 0

Z
( )

( ) 1 ( ) =

Z
W( )

( ) W( )( )

and

(8.10) lim
| | 0

Z
( )

( ) 0 ( ) =

Z
W( )

( )
1
6

R 1
0
Scal( ( ))

W( )( )

where Scal is the scalar curvature of ( )

There is a large literature pertaining to results of the type in Theorem 8.15, see
for example [12, 57, 55, 35, 13, 44, 42, 59]. The version given here is contained
in Andersson and Driver [3].

9. Motivations

9.1. Malliavin’s Method. Malliavin’s idea is to embed questions about heat
kernels on finite dimensional manifolds into questions about Wiener measure on¡

R
¢
In the elliptic (i.e. Riemannian geometry) setting, Equation (8.3) along

with Corollary 8.8 may be used as a basis for this method. Malliavin’s idea also
extends to certain hypoelliptic settings as well. Although this is a strong motivation,
I am more motivated by problems related to quantum mechanics and quantum field
theories to be described next.

9.2. Canonical Quantization & Path Integral Quantization. Let ( )
R describe the motion of a particle of mass in the force due to a potential
function ( ) Then satisfies Newton’s equations of motion,

(̈ ) = ( ( ))

The Lagrangian density associated to this equation is ( ) := 1
2 | |2 ( )

the momentum conjugate to is given by = ( ) = and the associated
Hamiltonian is given by

( ) = · ( ) where =

i.e.

(9.1) ( ) =
1 2 1

2
2 + ( ) =

1

2
2 + ( ) = ( )
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where ( ) = 1
2 | |2+ ( ) is the energy of the “state,” ( ) To quantize this

system, we should take = 2(R ) for the quantum Hilbert space and replace
by = and by = ~ These are the usual “canonical quantization”

rules one learns in a quantum mechanics class. Let us summarize the usual story
in the following table.

CONCEPT CLASSICAL QUANTUM

CONFIGURATION R No analogue
SPACE
STATE SPACE R = R ×R = 2(R ) i.e.

( ) = 2(R )
= Position × Momentum 3 k k = 1

OBSERVABLES Functions : R R Self adjoint operators
on

Examples ˆ = ~

ˆ =

( ) = 1
2

2 + ( ) ˆ = ~2
2 + ( )

DYNAMICS Newtons Equations Schrödinger Equation
of Motion ~ ˙( ) = ˆ ( )
( ) = ( ( )) ( )

MEASUREMENTS Evaluation of an observable h i — expected value
on a state, i.e. ( ) of in the state

The formal “path integral quantization” of the system described by in Eq.
(9.1) is given by

ˆ
( )“ = ”

1
Z

(0)=

R
0

( ( ) ˙ ( )) ( ( ))D

=
1
Z

(0)=0

R
0

( + ( ) ˙ ( )) ( + ( ))D(9.2)

where

“ :=

Z
(0)=0

2

R
0
| ˙ ( )|2 D ”

is the “normalization constant” chosen so that

(9.3) ( )“ = ”
1

2

R
0
| ˙ ( )|2 D

is a probability “measure”. With this notation Eq. (9.2) states

ˆ
( ) =

Z
(0)=

( + ( ))
R
0

( + ( )) ( )

which is the Feynman Kac formula. This last formula is in fact rigorous provided
one interprets as Wiener measure with variance 1 2 on

¡
R
¢
and some mild

restrictions are put on the potential
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The use of “path integrals” in physics including heuristic expressions like those
in equations (9.2) started with Feynman in [34] with very early beginnings being
traced back to Dirac [15]. See Section 6 for the correct interpretation of Eq. (9.3).

9.3. Quantization on Riemannian Manifolds. Now suppose is a Rie-
mannian manifold with metric and ( ) describe the motion of a particle in
subject to the force due to a potential function ( ) Then satisfies Newton’s

equations of motion,

(9.4)
˙( )

= ( ( ))

As before, the Lagrangian density associated to this equation is given by

( ) :=
1

2
| |2 ( ) =

1

2
( ) ( )

where = ( ) in local coordinates. The corresponding Hamiltonian is given by
the Legendre transform,

( ) = ( ) where =
( )

= ( )

and is the conjugate momentum to So = ( ) and hence

( ) = ( ) =

µ
1

2
( ) ( )

¶
=

µ
1

2
( )

¶
=
1

2
+ ( )

=
1

2
( ) + ( )(9.5)

If ( ) solves Eq. (9.4) and ( ) := ( ( )) and ( ) := ( ( )) ˙ ( ) then

˙ =
( )

and ˙ =
( )

We now want to quantize ( ) by replacing:

:=
1

and :=

where is multiplication by Working formally from Eq. (9.5) we conclude

ˆ =
1

2
( )

2

+ ( )

This is not a very good answer since it is coordinate dependent. To remedy this,
notice at the classical level we could also write

( ) =
1

2

1
( ) + ( )

which when quantized gives the operator,

ˆ =
1

2

1
( ) + ( ) =

1

2
+

The latter expression has the virtue of at least being coordinate independent.
The formal path integral quantization of the above system is given by

(9.6)
ˆ
( 0) =

1
Z
(0)= 0

R
0

( ( ) ˙ ( )) ( ( ))D
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where ( ) = 1
2 ( ) + ( ) is the energy. Possible rigorous interpretations of

the right side of Eq. (9.6) and its relationship to ˆ when = 0 are discussed
in Theorem 8.15 above.

9.4. Quantization of Infinite Dimensional Classical Systems. Quan-
tization of infinite dimensional classical systems leads to infinite dimensional
Schrödinger Equations. The simplest of which are standard type heat equations.

9.4.1. Klein-Gordon Equations. A non-linear Klein-Gordon equation is a non-
linear wave equation of the form,

+ ( + 2) + 3 = 0

for some function : R×R R This may be phrased as ¨ = ( ) where

( ) =

Z
R

µ
1

2
| |2 +

2

2
2 +

1

4
4

¶
The quantization of this equation leads one to consider the partial di erential equa-
tion in infinitely many variable,

( ) =
1

2
( ) ( ) ( )

where := 2(R ) The formal path integral quantization of this system is given
by

( 12 ) ( ) =
1
Z
(0)= 0

R
0

h
1
2k ˙( )k2 + ( ( ))

i
( ( ))D

See Glimm and Ja e [37] and the references therein for more information about
this expression.

9.4.2. Yang — Mills Equations. The Yang — Mills equations are the Euler La-
grange equations for

( ) =

Z
R×R

h i2

where = + and : R +1 R +1 g is a connection one form and
h·i2 is a non-degenerate quadratic form determined by the Lorentzian metric on
R +1 and an inner product on g = Lie( ) and is a compact Lie group. The
corresponding path integral quantization measure is given informally by

(9.7) ( ) =
1
exp

µ
1

2

Z
R×R

¯̄ ¯̄2 ¶
D

Because of “gauge invariance” of the problem, this measure is really to be defined
on the non-linear space of connections modulo gauge transformations,M G Mak-
ing sense out of Eq. (9.7) is a part of the million dollar Clay Mathematics prize
pertaining to quantization of Yang—Mills fields.4

When = 1 and R = R1 is replace by 1 the spaceM G0 simply becomes
itself and the path integral in (9.7) reduces to the one like that in Eq. (9.6) with
= and = 0 See the Driver and Hall [20] for more on this point and the

relation to symplectic reduction.

4More information about this problem may be found at
http://www.claymath.org/Millennium_Prize_Problems/Yang-Mills_Theory/.
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9.5. Loop Spaces. The loop spaces L( ) considered in Section 7 are models
of the configuration space in “string theory.” The action used in physics is the
relativistic area swept out by the string which leads to considering the so called
non-linear — models in the path integral formulation. In Section 7 we considered
a more tractable action which leads to a reasonable heat equation on L( ) The
heat “kernels” for this heat equation may be thought of as a replacements for
the non-existent Lebesgue measure on L( ) As such one would eventually like
to understand the relationship between the analysis on L( ) and the topology of
L( ) i.e. something like a Hodge deRham theory and index theory for loop spaces.
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