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Abstract. Certain natural geometric approximation schemes are developed for Wiener measure on a com-
pact Riemannian manifold. These approximations closely mimic the informal path integral formulas used
in the physics literature for representing the heat semi-group on Riemannian manifolds. The path space
is approximated by finite dimensional manifolds HP(M) consisting of piecewise geodesic paths adapted to
partitions P of [0, 1]. The finite dimensional manifolds HP(M) carry both an H1 and a L2 type Riemannian
structures, G1P and G0P respectively. It is proved that
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ZiP
e−

1
2
E(σ)dVolGiP

(σ)→ ρi(σ)dν(σ) as mesh(P)→ 0,

where E(σ) is the energy of the piecewise geodesic path σ ∈ HP(M), and for i = 0 and 1, ZiP is a

“normalization” constant, VolGiP
is the Riemannian volume form relative Gi

P , and ν is Wiener measure on

paths onM. Here ρ1(σ) ≡ 1 and ρ0(σ) = exp
³
− 1
6

R 1
0 Scal(σ(s))ds

´
where Scal is the scalar curvature ofM.

These results are also shown to imply the well know integration by parts formula for the Wiener measure.
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1. Introduction

Let (M, g, o) be a Riemannian manifold M of dimension d, with Riemannian metric g (we will also use

h·, ·i to denote the metric) and a given base point o ∈ M . Let ∇ be the Levi-Civita covariant derivative,

∆ = tr∇2 denote the Laplacian acting on C∞(M) and ps(x, y) be the fundamental solution to the heat

equation, ∂u/∂s = 1
2∆u. More explicitly, ps(x, y) is the integral kernel of the operator e

s
2∆ acting on

L2(M,dx), where dx denotes the Riemannian volume measure.

For simplicity we will restrict our attention to the case whereM is either compact orM is Rd. IfM = Rd,
we will always take o = 0 and h·, ·i to be the standard inner product on Rd. In either of these cases M is

stochastically complete, i.e.
R
M
ps(x, y)dy = 1 for all s > 0 and x ∈M. Recall, for s small and x and y close

in M, that

(1.1) ps(x, y) ≈ (
1

2πs
)d/2e−

1
2sd(x,y)

2

,

where d(x, y) is the Riemannian distance between x and y. Moreover if M = Rd, then ∆ =
Pd

i=1 ∂
2/∂x2i ,

d(x, y) = |x− y| and equation (1.1) is exact.

Definition 1.1. TheWiener space W([0, T ];M), T > 0 is the path space

(1.2) W([0, T ];M) = {σ : [0, T ]→M : σ(0) = o and σ is continuous}.
TheWiener measure ν associated to (M, h·, ·i, o) is the unique probability measure on W([0, T ];M) such
that

(1.3)

Z
W([0,T ];M)

f(σ)dνT (σ) =

Z
Mn

F (x1, . . . , xn)
nY
i=1

p∆is(xi−1, xi)dx1 · · · dxn,

for all functions f of the form f(σ) = F (σ(s1), ..., σ(sn)), where P := {0 = s0 < s1 < s2 < ... < sn = T} is
a partition of I := [0, T ], ∆is := si − si−1, and F :Mn → R is a bounded measurable function. In equation
(1.3), dx denotes the Riemann volume measure on M and by convention x0 := o. For convenience we will

usually take T = 1 and write W(M) for W([0, 1];M) and ν for ν1. ¤

As is well known, there exists a unique probability measure νT on W([0, T ];M) satisfying (1.3). The

measure νT is concentrated on continuous but nowhere differentiable paths. In particular we get the following

path integral representation for the heat semi-group in terms of the measure νT ,

(1.4) e
s
2∆f(o) =

Z
W([0,T ];M)

f(σ(s))dνT (σ),

where f is a continuous function on M and 0 ≤ s ≤ T.

Notation 1.2. When M = Rd, h·, ·i is the usual dot product and o = 0, the measure ν defined in Definition
1.1 is standard Wiener measure on W(Rd).We will denote this standard Wiener measure by µ rather than ν.
We will also let B(s) : W(Rd)→ Rd be the coordinate map B(s)(σ) := B(s, σ) := σ(s) for all σ ∈W(Rd). ¤
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Remark 1.3 (Brownian Motion). The process {B(s)}s∈[0,1] is a standard Rd—valued Brownian motion on the
probability space (W(Rd), µ).

1.1. A Heuristic Expression for Wiener Measure. Given a partition P := {0 < s1 < s2 < ... < sn = 1}
of [0, 1] and x := (x1, . . . , xn) ∈ Mn, let σx denote a path in W(M) such that σx(si) = xi and such that

σx|[si−1,si] is a geodesic path of shortest length for i = 1, 2, . . . n. (As above, x0 := o ∈ M.) With this

notation and the asymptotics for ps(x, y) in equation (1.1), we find
nY
i=1

p∆is(xi−1, xi) ≈
nY
i=1

(
1

2π∆is
)d/2 exp{− 1

2∆is
d(xi−1, xi)2}

=
1

ZP
exp{−1

2

Z 1

0

| σ0x(s) |2 ds},

where σ0x(s) :=
d
dsσx(s) for s /∈ P and ZP :=

Qn
i=1(2π∆is)

d/2. Using this last expression in equation (1.3)

and letting the mesh of the partition P tend to zero we are lead to the following heuristic expression:
(1.5) dν(σ)“ = ”

1

Z
e−

1
2E(σ)Dσ,

where

(1.6) E(σ) :=

Z 1

0

hσ0(s), σ0(s)ids

is the energy of σ, Dσ denotes a “Lebesgue” like measure on W(M) and Z is a “normalization constant”

chosen so as to make ν a probability measure.

Let V be a continuous function on M . Then equation (1.5) and Trotter’s product formula leads to the

following heuristic path integral formula for the parabolic heat kernel of the Schrödinger operator 1
2∆− V ,

(1.7) es(
1
2∆−V )f(o)“ = ”

1

Z

Z
W(M)

f(σ(1))e−(
1
2sE(σ)+s

R 1
0
V (σ(r))dr)D(σ)

Equation (1.7) can be interpreted as a prescription for the path integral quantization of the Hamiltonian
1
2g

ijpipj + V . The use of “path integrals” in physics including heuristic expressions like those in equations

(1.5) and (1.7) started with Feynman in [47] with very early beginnings being traced back to Dirac [26]. See

Gross [54] for a brief survey of the role of path integrals in constructive quantum field theory and Glimm

and Jaffe [52] for a more detailed account.

The heuristic interpretation of the “measure” Dσ is somewhat ambiguous in the literature. Some authors,
for example [21, 23, 25, 24] tend to viewW(M) as the infinite product spaceMI and Dσ as an infinite product
of Riemann volume measures on this product space. This is the interpretation which is suggested by the

“derivation” of equation (1.5) which we have given above.

Other authors, [4, 11] interpret Dσ as a Riemannian “volume form” on W(M). We prefer this second

point of view. One reason for our bias towards the volume measure interpretation is the fact that the path

space W(M) is topologically trivial whereas the product space MI is not. This fact is reflected in the

ambiguity (which we have glossed over) in assigning a path σx to a point x = (x1, . . . , xn) ∈ Mn as above

in the case when there are multiple distinct shortest geodesics joining some pair (xi−1, xi). However, from
the purely measure theoretic considerations in this paper we shall see that the two interpretations of Dσ are
commensurate.

Of course equations (1.5) and (1.7) are meaningless as they stand because: 1) infinite dimensional Lebesgue

measures do not exist and 2) Wiener measure ν concentrates on nowhere differentiable paths which renders
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the exponent in (1.5) meaningless. Nevertheless, in Theorem 1.8 we will give two precise interpretations of

equation (1.5).

1.2. Volume elements on path space. To make the above discussion more precise, let H(M) ⊂ W(M)
be the Hilbert manifold modeled on the space H(Rd) of finite energy paths:

(1.8) H(M) = {σ ∈W(M) : σ is absolutely continuous and E(σ) <∞}.
Recall that σ ∈W(M) is said to be absolutely continuous if f ◦σ is absolutely continuous for all f ∈ C∞(M).
(It is easily checked that the space H(M) is independent of the choice of Riemannian metric on M.) The

tangent space TσH(M) to H(M) at σ may be naturally identified with the space of absolutely continuous

vector fields X : [0, 1]→ TM along σ (i.e. X(s) ∈ Tσ(s)M for all s) such that X(0) = 0 and G1(X,X) <∞,

where

(1.9) G1(X,X) :=

Z 1

0

¿∇X(s)
ds

,
∇X(s)
ds

À
ds,

(1.10)
∇X(s)
ds

:= //s(σ)
d

ds
{//s(σ)−1X(s)},

and //s(σ) : ToM → Tσ(s)M is parallel translation along σ relative to the Levi-Civita covariant derivative

∇. See [35, 85, 36, 64, 48] for more details.
By polarization, equation (1.9) defines a Riemannian metric on H(M). Similarly we may define a “weak”

Riemannian metric G0 on H(M) by setting

(1.11) G0(X,X) :=

Z 1

0

hX(s),X(s)i ds

for all X ∈ TH(M). Given these two metrics it is natural to interpret Dσ as either of the (non-existent)
“Riemannian volume measures” VolG1 or VolG0 with respect to G1 and G0 respectively. Both interpretations

of Dσ are formally the same modulo an infinite multiplicative constant, namely the “determinant” of d
ds

acting on H(ToM).

As will be seen below in Theorem 1.8, the precise version of the heuristic expressions (1.5) and (1.7) shows

that depending on the choice of volume form on the path space, we get a scalar curvature correction term.

1.3. Statement of the Main Results. In order to state the main results, it is necessary to introduce finite

dimensional approximations to H(M), G1, G0, VolG1 and VolG0 .

Notation 1.4. HP(M) = {σ ∈ H(M) ∩ C2(I \ P) : ∇σ0(s)/ds = 0 for s /∈ P} – the piecewise geodesics

paths in H(M) which change directions only at the partition points. ¤

It is possible to check that HP(M) is a finite dimensional submanifold of H(M). Moreover by Remark 4.3

below, HP(M) is diffeomorphic to
¡
Rd
¢n

. For σ ∈ HP(M), the tangent space TσHP(M) can be identified
with elements X ∈ TσHP(M) satisfying the Jacobi equations on I \ P, see Proposition 4.4 below for more
details. We will now introduce Riemann sum approximations to the metrics G1 and G0.

Definition 1.5 (The P—Metrics). For each partition P = {0 = s0 < s1 < s2 < · · · < sn = 1} of [0, 1], let
G1P be the metric on THP(M) given by

(1.12) G1P(X,Y ) :=
nX
i=1

h∇X(si−1+)
ds

,
∇Y (si−1+)

ds
i∆is
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for all X,Y ∈ TσHP(M) and σ ∈ HP(M). (We are writing ∇X(si−1+)ds as a shorthand for lims&si−1
∇X(s)
ds .)

Similarly, let G0P be the degenerate metric on HP(M) given by

(1.13) G0P(X,Y ) :=
nX
i=1

hX(si), Y (si)i∆is,

for all X,Y ∈ TσHP(M) and σ ∈ HP(M). ¤

If Np is an oriented manifold equipped with a possibly degenerate Riemannian metric G, let VolG denote

the p—form on N determined by

(1.14) VolG(v1, v2, . . . , vp) :=

r
det

³
{G(vi, vj)}pi,j=1

´
,

where {v1, v2, . . . , vp} ⊂ TnN is an oriented basis and n ∈ N. We will often identify a p—form on N with the

Radon measure induced by the linear functional f ∈ Cc(N)→
R
N
fVolG.

Definition 1.6 (P—Volume Forms). Let VolG0
P
and VolG1

P
denote the volume forms on HP(M) determined

by G0P and G1P in accordance with equation (1.14). ¤

Given the above definitions, there are now two natural finite dimensional “approximations” to ν in equa-

tion (1.5) given in the following definition.

Definition 1.7 (Approximates to Wiener Measure). For each partition P = {0 = s0 < s1 < s2 < · · · <
sn = 1} of [0, 1], let ν0P and ν1P denote measures on HP(M) defined by

ν0P :=
1

Z0P
e−

1
2EVolG0

P

and

ν1P =
1

Z1P
e−

1
2EVolG1

P
,

where E : H(M)→ [0,∞) is the energy functional defined in equation (1.6) and Z0P and Z1P are normalization
constants given by

(1.15) Z0P :=
nY
i=1

(
√
2π∆is)

d and Z1P := (2π)
dn/2.

¤

We are now in a position to state the main results of this paper.

Theorem 1.8. Suppose that f :W (M)→ R is a bounded and continuous, then

(1.16) lim
|P|→0

Z
HP(M)

f(σ)dν1P(σ) =
Z
W(M)

f(σ)dν(σ)

and

(1.17) lim
|P|→0

Z
HP(M)

f(σ)dν0P(σ) =
Z
W(M)

f(σ)e−
1
6

R 1
0
Scal(σ(s))dsdν(σ),

where Scal is the scalar curvature of (M, g). ¤

Equation (1.16) is a special case of Theorem 4.17 which is proved in Section 4.1 and equation (1.17) is a

special case of Theorem 6.1 which is proved in Section 6 below. An easy corollary of equation (1.17) of this

theorem is the following “Euler approximation” construction for the heat semi-group es∆/2 on L2(M,dx).

The following corollary is a special case of Corollary 6.7
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Corollary 1.9. For s > 0 let Qs be the symmetric integral operator on L2(M,dx) defined by the kernel

Qs(x, y) := (2πs)
−d/2

exp

µ
− 1
2s

d2(x, y) +
s

12
Scal(x) +

s

12
Scal(y)

¶
for all x, y ∈M.

Then for all continuous functions F :M → R and x ∈M,

(e
s
2∆F )(x) = lim

n→∞(Q
n
s/nF )(x).

¤

1.4. Remarks on the Main Theorems. Let us point out that the idea of approximating Wiener measure

by measures on spaces of piecewise geodesics is not new, see for example [86, 18]. What we feel is novel about

our approach is the interpretation of Dσ in Eq. (1.7) as a volume form on HP(M) relative to a suitable
metric. However, (as will be shown in Propositions 5.6 and Proposition 5.14 below) the measure dν0P(σ) is,
up to small errors, equivalent to a product measure on Mn where n is the number appearing in Definition

1.5. Reformulated in this guise, there is a large literature pertaining to Eq. (1.17) and especially Corollary1

1.9, see [15, 94, 49, 60, 58] to give a very small sampling of the literature. These papers along with [86, 18]

are based on using a Trotter product or Euler approximation methods which are well explained in [16].

Moreover, once dν0P(σ) is replaced by a product measure, it would be possible to invoke weak convergence
arguments to give a proof of Eq. (1.17), see for example Section 10 in Stroock and Varadhan [90] and [91]

and Ethier and Kurtz [45]. We will not use the weak convergence arguments in this paper, rather we will

make use of Wong and Zakai [96] type approximation theorems for stochastic differential equations. This

allows us to get the stronger form of convergence which is stated in Theorems 4.17 and 6.1 below. This

stronger form of convergence is needed in the proof of the integration by parts Theorem 1.10 stated at the

end of this introduction.

In the literature one often finds “verifications” (or rather tests) of path integral formulas like (1.7) by

studying the small s asymptotics. This technique, known as “loop expansion” or “WKB approximation”,

when applied in the manifold case leads to the insight that the operator constructed from the Hamiltonian
1
2g

ijpipj+V depends sensitively on choices made in the approximation scheme for the path integral. Claims

have been made that the correct form of the operator which is the path integral quantization of the Hamil-

tonian 1
2g

ijpipj + V is of the form −~2(12∆ − κScal) + V where ~ is Planck’s constant, Scal is the scalar
curvature of (M, g) and κ is a constant whose value depends on the authors and their interpretation of the

path integrals. Values given in the literature include κ = 1
12 , κ =

1
6 [22], κ =

1
8 , [20, Eq. (6.5.25)] all of

which are computed by formal expansion methods. The ambiguity in the path integral is analogous to the

operator ordering ambiguity appearing in pseudo-differential operator techniques for quantization, see the

paper by Fulling [50] for a discussion of this point. In [50] it is claimed that depending on the choice of

covariant operator ordering, the correction term has κ ranging from 0 (for Weyl quantization) to 1
6 . For a

discussion in the context of geometric quantization, see [97, §9.7], where the value κ = 1
12 is given for the case

of a real polarization. In addition to the above one also finds in the literature claims, based on perturbation

calculations, that noncovariant correction terms are necessary in path integrals, see for example [19] and

references therein.

It should be stressed that in contrast to the informal calculations mentioned in the previous paragraph,

the results presented in Theorem 1.8 and Corollary 1.9 involve only well defined quantities. Let us emphasize

1After finishing this manuscript, we received the paper of Jyh-Yang Wu [98] where the Trotter product formula method is
carried out in detail to give a proof of Corollary 1.9.
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that the scalar curvature term appearing in equation (1.17) has the nature of a Jacobian factor relating the

two volume forms VolG0
P
and VolG1

P
on path space. This scalar curvature factor would also be found using

the Trotter — Euler product approximation methods as a result of the fact that the right hand side of Eq.

(1.1) is a parametrix for et(∆/2−Scal/6) — not et∆/2.
We conclude this discussion by mentioning the so called Onsager-Machlup function of a diffusion process.

The Onsager-Machlup function can be viewed as an attempt to compute an “ideal density” for the probability

measure on path space induced by the diffusion process. In the paper [93], the probability for a Brownian

path to be found in a small tubular �—neighborhood of a smooth path σ was computed to be asymptotic to

Ce−λ1/�
2 · exp

µ
−1
2
E(σ(s)) +

1

12

Z 1

0

Scal(σ(r))dr

¶
,

where λ1 is the first eigenvalue for the Dirichlet problem on the unit ball in Rd and C is a constant. The

expression 1
2E(σ)− 1

12

R 1
0
Scal(σ(r))dr thus recovered from the Wiener measure on W(M) is in this context

viewed as the action corresponding to a Lagrangian for the Brownian motion. It is intriguing to compare

this formula with equations (1.16) and (1.17).

1.5. Integration by Parts on Path Space. An important result in the analysis on path space, is the

formula for partial integration. Here we use the approximation result in Theorem 1.8 to give an alternative

proof of this result.

Theorem 1.10. Let k ∈ H(Rd) ∩C1([0, 1];Rd), σ ∈W (M) and Xs(σ) ∈ Tσ(s)M be the solution to

∇
ds

Xs(σ) +
1

2
RicXs(σ) =f//s(σ)k0(s) with X0(σ) = 0,

wheref//s(σ) denotes stochastic parallel translation along σ, see Definition 4.15. Then for all smooth cylinder
functions f (see Definition 7.15) on W(M),Z

W(M)

Xf dν =

Z
W(M)

f

µZ 1

0

hk0, db̃i
¶
dν.

Here. b̃ is the Rd — valued Brownian motion which is the anti-development of σ, see Definition 4.15 and
Xf is the directional derivative of f with respect to X, see Definition 7.15. ¤

Section 7 is devoted to the proof of this result whose precise statement may be found in Theorem 7.16.

Remark 1.11. This theorem first appeared in Bismut [10] in the special case where f(σ) = F (σ(s)) for some

F ∈ C∞(M) and s ∈ [0, 1] and then more generally in [30]. Other proofs of this theorem may be found in

[1, 2, 31, 41, 42, 40, 44, 46, 56, 57, 70, 73, 75, 84].

Acknowledgments: The authors thank David Elworthy, Aubrey Truman, Stephan Stolz, and Daniel

Stroock for helpful remarks. The second author is grateful to the Mathematical Science Research Institute,

l’Institut Henri Poincaré and l’École Normal Supériure where some of this work was done.

2. Basic Notations and Concepts

2.1. Frame Bundle and Connections. Let π : O(M) → M denote the bundle of orthogonal frames on

M . An element u ∈ O(M) is an isometry u : Rd → Tπ(u)M . We will make O(M) into a pointed space by

fixing u0 ∈ π−1(o) once and for all. We will often use u0 to identify the tangent space ToM of M at o with

Rd.
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Let θ denote the Rd—valued form on O(M) given by θu(ξ) = u−1π∗ξ for all u ∈ O(M), ξ ∈ TuO(M)

and let ω be the so(d)—valued connection form on O(M) defined by ∇. Explicitly, if s → u(s) is a smooth

path in O(M) then ω(u0(0)) := u(0)−1∇u(s)/ds|t=0, where ∇u(s)/ds is defined as in equation (1.10) with
X replaced by u. The forms (θ, ω) satisfy the structure equations

dθ = −ω ∧ θ,(2.1a)

dω = −ω ∧ ω +Ω(2.1b)

where Ω is the so(d)—valued curvature 2—form on O(M). The horizontal lift Hu : Tπ(u)M → TuO(M) is

uniquely defined by

(2.1c) θHuu = idRd , ωuHu = 0.

Definition 2.1. The curvature tensor R of ∇ is

(2.2) R(X,Y )Z = ∇X∇Y Z −∇X∇Y Z −∇[X,Y ]Z

for all vector fields X,Y and Z on M. The Ricci tensor of (M, g) is RicX :=
Pd

i=1R(X, ei)ei and the

scalar curvature Scal is Scal =
Pd

i=1hRicei, eii, where {ei} is an orthonormal frame.

The relationship between Ω and R is:

(2.3) Ω(ξ, η) = u−1R(π∗ξ, π∗η)u = Ω(Huπ∗ξ,Huπ∗η)

for all u ∈ O(M) and ξ, η ∈ TuO(M). The second equality in equation (2.3) follows from the fact that Ω is

horizontal, i.e. Ω(ξ, η) depends only on the horizontal components of ξ and η.

2.2. Path spaces and the development map. Let (M,o, h·, ·i,∇), (O(M), u0), W(M), and H(M) be as

above. We also let H(O(M)) be the set of finite energy paths u : [0, 1] −→ O(M) as defined in equation

(1.8) with M replaced by O(M) and o by u0.

For σ ∈ H(M), let s 7→ u(s) be the horizontal lift of σ starting at u0, i.e. u is the solution of the ordinary

differential equation

u0(s) = Hu(s)σ
0(s), u(0) = u0.

Notice that this equation implies that ω(u0(s)) = 0 or equivalently that ∇u(s)/ds = 0. Hence u(s) =

//s(σ)u0, where as before //s(σ) is the parallel translation operator along σ. Again since u0 ∈ O(M) is fixed

in this paper we will use u0 to identify ToM with Rd and simply write u(s) = //s(σ). By smooth dependence

of solutions of ordinary differential equations on parameters, the map σ ∈ H(M) 7→ //(σ) ∈ H(O(M)) is

smooth. A proof of this fact may be given using the material in Palais [85], see also Corollary 4.1 in [28].

Definition 2.2 (Cartan’s Development Map). The development map φ : H(Rd)→ H(M) is defined, for

b ∈ H, by φ(b) = σ ∈ H(M) where σ solves the functional differential equation:

(2.4) σ0(s) = //s(σ)b
0(s), σ(0) = o,

see [13, 65, 34]. ¤
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It will be convenient to give another description of the development map φ. Namely, if b ∈ H(Rd) and
σ = φ(b) ∈ H(M) as defined in equation (2.4) then σ = π(w) where w(s) ∈ O(M) is the unique solution to

the ordinary differential equation

(2.5) w0(s) = Hw(s)w(s)b
0(s), w(0) = u0.

From this description of φ and smooth dependence of solutions of ordinary differential equations on parame-

ters it can be seen that φ : H(Rd)→ H(M) is smooth. Furthermore, φ is injective by uniqueness of solutions

to ordinary differential equations.

The anti—development map φ−1 : H(M)→ H(Rd) is given by b = φ−1(σ) where

(2.6) b(s) =

Z s

0

//r
−1(σ)σ0(r)dr.

This inverse map φ−1 is injective and smooth by the same arguments as above. Hence φ : H(Rd)→ H(M) is

a diffeomorphism of infinite dimensional Hilbert manifolds, see [34]. However, as can be seen from equation

(3.5) below, φ is not an isometry of the Riemannian manifolds H(M) and H(Rd) unless the curvature Ω of
M is zero. So the geometry of H(Rd) and that of (H(M), G1) are not well related by φ.
For each h ∈ C∞(H(M)→ H) and σ ∈ H(M), let Xh(σ) ∈ TσH(M) be given by

(2.7) Xh
s (σ) := //s(σ)hs(σ) for all s ∈ I,

where for notational simplicity we have written hs(σ) for h(σ)(s). The vector field Xh is a smooth vector

field on H(M) for all h ∈ H. The reader should also note that the map

(2.8) ((σ, h)→ Xh(σ)) : H(M)×H→ TH(M)

is an isometry of vector bundles.

3. Differentials of the Development Map

For u ∈ O(M) and v, w ∈ Tπ(u)M, let

Ru(v, w) = Ω(Huv,Huw) = u−1R(v, w)u

and for a, b ∈ Rd let
Ωu(a, b) := Ω(Huua,Huub) = u−1R(ua, ub)u.

For σ ∈ H(M) and X ∈ TσH(M), define qs(X) ∈ so(d) by

(3.1) qs(X) =

Z s

0

Ru(r)(σ
0(r),X(r))dr.

where u = //(σ) is the horizontal lift of σ.

Remark 3.1. The one form qs in equation (3.1) naturally appears as soon as one starts to compute the

differential of parallel translation operators, see for example Theorem 2.2 in Gross [53] and Theorem 4.1 in

[28] and Theorem 3.3 below. ¤

Notation 3.2. Given A ∈ so(d) and u ∈ O(M), let u · A ∈ TuO(M) denote the vertical tangent vector

defined by u ·A := d
dr |0uerA. ¤
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Theorem 3.3. Let σ ∈ H(M), let u = //(σ) be the horizontal lift of σ and let b = φ−1(σ). Then for
X ∈ TσH(M),

(//∗sω)(X) = qs(X),(3.2)

(//∗sθ)(X) = u−1(s)X(s),(3.3)

(//∗X)(s) = u(s) · qs(X) +Hu(s)X(s),(3.4)

and

(φ∗X)(s) = u−1(s)X(s)−
Z s

0

qr(X)b
0(r)dr,(3.5)

where φ∗X(b) := φ−1∗ X(φ(b)).

Remark 3.4. The results of this theorem may be found in one form or another in [10, 29, 30, 17, 53, 72]. We

will nevertheless supply a proof to help fix our notation and keep the paper reasonably self contained.

Proof. Choose a one parameter family t 7→ σt of curves in H(M) such that σ0 = σ and σ̇0(s) = X(s)

where σ̇t(s) =
d
dtσt(s). Let ut(s) := //s(σt), be the horizontal lift of σt, u(s) = //s(σ), u

0
t(s) := dut(s)/ds,

u̇t(s) := dut(s)/dt and u̇(s) := dut(s)/dt|t=0. (In general t—derivatives will be denoted by a “dot” and
s—derivatives will be denoted by a “prime.”) Notice, by definition, that

u̇(s) = (//s)∗X = (//∗X)(s)

and ω(u0t(s)) = 0 for all (t, s). The Cartan identity

(3.6) dα(X,Y ) = Xα(Y )− Y α(X)− α([X,Y ]),

valid for any 1-form α and vector fields X,Y, gives

0 =
d

dt
ω(u0) = dω(u̇, u0) +

d

ds
ω(u̇) = Ω(u̇, u0) +

d

ds
ω(u̇),

where we have used the structure equations (2.1b) and 0 = ω(u0) in the second equality. Setting t = 0 and
integrating the previous equation relative to s yields

(//∗sω)(X) := ω((//s)∗X) =
Z s

0

Ω(u0(0, r), u̇(0, r)) dr

=

Z s

0

Ru0(r)(π∗u
0(0, r), π∗u̇(0, r)) dr

=

Z s

0

Ru0(r)(σ
0(r),X(r)) dr,

where we have made use of the fact that Ω is horizontal and the relation σt(s) = π(ut(s)). This proves

equation (3.2). Equation (3.3) is verified as follows:

(//∗sθ)(X) = θ((//s)∗X) = θ(u̇(s)) = u−10 (s)
d

dt
|t=0π(ut(s))

= //−1s (σ)
d

dt
|t=0σt(s) = //−1s (σ)X(s).

Recall that for u ∈ O(M), (θ, ω) : TuO(M) → Rd × so(d) is an isomorphism. Therefore equations (3.2)
and (3.3) imply (3.4), after taking into account the definition of θ and the identity,

ω(u ·A) := u−1
∇
dr
|r=0uerA = A.
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To prove equation (3.5), let b = φ−1(σ) and u(s) = //s(σ). Then

b(s) =

Z s

0

u−1(r)σ0(r) dr =
Z s

0

θ(u0(r)) dr,

or equivalently,

b0(s) = θ(u0(s)).

Therefore

d

ds
φ−1∗ X(s) =

d

dt
θ(u0t(s))|t=0

=
d

ds
θ(u̇(s)) + dθ(u̇(s), u0(s))

=
d

ds
(u−1(s)X(s))− ω ∧ θ(u̇(s), u0(s))

=
d

ds
(u−1(s)X(s))− ω(u̇(s))θ(u0(s))

=
d

ds
(u−1(s)X(s))− qs(X)b

0(s),

where we have used the equations (3.6), (2.1a), (3.2) and the fact that ω(u0(s)) = 0. Integrating the last

equation relative to s proves (3.5). ¤

3.1. Bracket Computation.

Theorem 3.5 (Lie Brackets). Let h, k : H(M) → H(Rd) be smooth functions. (We will write hs(σ) for

h(σ)(s).) Then [Xh,Xk] = Xf(h,k), where f(h, k) is the smooth function H(M)→ H(Rd) defined by

(3.7) fs(h, k)(σ) := Xh(σ)ks −Xk(σ)hs + qs(X
k(σ))hs − qs(X

h(σ))ks,

where q = //∗ω as in equation (3.2) and Xh(σ)ks denotes derivative of σ → ks(σ) by the tangent vector

Xh(σ).

Remark 3.6. This theorem also appears in equation (1.32) in Leandre [71], equation (6.2.2) in Cruzeiro and

Malliavin [17] and is Theorem 6.2 in [32]. To some extent it is also contained in [48]. Again for the readers

convenience will supply a short proof. ¤

Proof. The vector fields Xh andXk on H(M) are smooth, hence [Xh,Xk] is well defined. In order to simplify

notation, we will suppress the arguments σ and s from the proof of equation (3.7).

According to equation (3.3), h = (//∗θ)(Xh), k = (//∗θ)(Xk), and f(h, k) = (//∗θ)([Xh,Xk]). Using

equations (3.1—3.6) we find that

f(h, k) = Xh
£
(//∗θ)(Xk)

¤−Xk
£
(//∗θ)(Xh)

¤− (d(//∗θ))(Xh,Xk)

= Xhk −Xkh− (//∗dθ)(Xh,Xk)

= Xhk −Xkh+ (//∗(ω ∧ θ))(Xh,Xk)

= Xhk −Xkh+ (//∗ω ∧ //∗θ)(Xh,Xk)

= Xhk −Xkh+ q(Xh)k − q(Xk)h.

¤
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4. Finite Dimensional Approximations

Definition 4.1. Let P = {0 = s0 < s1 < s2 < · · · < sn = 1} be a partition of [0, 1] and let |P| =
maxi |si − si−1| be the norm of the partition, Ji := (si−1, si] for i = 1, 2, . . . , n and s = si−1 when s ∈ Ji.

For a function k, let ∆ik := k(si) − k(si−1) and ∆is = si − si−1. For a piecewise continuous function on
[0, 1], we will use the notation f(s+) = limr&s f(r). ¤

Notation 4.2. HP = {x ∈ H∩C2(I \P) : x00(s) = 0 for s /∈ P}– the piecewise linear paths in H := H(Rd),
which change directions only at the partition points. ¤

Remark 4.3 (Development). The development map φ : H→ H(M) has the property that φ(HP) = HP(M),
where HP(M) has been defined in Notation 1.4 above. Indeed, if σ = φ(b) with b ∈ HP , then differentiating
equation (2.4) gives:

∇σ0(s)
ds

=
∇
ds
(//s(σ)b

0(s)) = //s(σ)b
00(s) = 0 for all s /∈ P.

We will write φP for φ|HP . ¤

Because φ : H → H(M) is a diffeomorphism and HP ⊂ H is an embedded submanifold, it follows that

HP(M) is an embedded submanifold of H(M). Therefore for each σ ∈ HP(M), TσHP(M) may be viewed as

a subspace of TσH(M). The next proposition explicitly identifies this subspace.

Proposition 4.4 (Tangent Space). Let σ ∈ HP(M), then X ∈ TσH(M) is in TσHP(M) if and only if

(4.1)
∇2
ds2

X(s) = R(σ0(s),X(s))σ0(s) on I \ P.
Equivalently, letting b = φ−1(σ), u = //(σ) and h ∈ H, then Xh ∈ TσH(M) defined in equation (2.7) is in

TσHP(M) if and only if

(4.2) h00(s) = Ωu(s)(b0(s), h(s))b0(s) on I \ P.
Proof. Since HP(M) consists of piecewise geodesics, it follows that for σ ∈ HP(M), any X ∈ TσHP(M) must
satisfy the Jacobi equation (4.1) for s /∈ P. Equation 4.2 is a straightforward reformulation of this using the
definitions.

It is instructive to give a direct proof of equation (4.2). Since HP is a vector space, TbHP ∼= HP for all
b ∈ HP . Since φP : HP → HP(M) is a diffeomorphism, we must identify those vectors X ∈ TσH(M) such

that φ∗X ∈ HP , i.e. those X such that (φ∗X)00 := 0 on I \P. Because b ∈ HP and hence b00(s) = 0 on I \P,
it follows from equation (3.5) that (φ∗X)00 = 0 on I \ P is equivalent to

0 = h00(s)− Ωu(s)(b0(s), h(s))b0(s) on I \ P.
¤

Remark 4.5. The metricG1P in Definition 1.5 above is easily seen to be non-degenerate because ifG
1
P(X,X) =

0 then ∇X(si+)/ds = 0 for all i. It then follows from the continuity of X and the fact that X solves the

Jacobi equation (4.1) that X is zero. Also note that G1P is a “belated” Riemann sum approximation to the

metric on HP(M) which is inherited from G1 on H(M). Moreover, in the case M = Rd, the metric G1P is
equal to G1 on THP(M). ¤

Definition 4.6. Let VolP be the Riemannian volume form on HP equipped with the H1 — metric, (h, k) :=R 1
0
hh0(s), k0(s)ids. ¤



PATH INTEGRAL FORMULAS ON MANIFOLDS 13

Notation 4.7. Let P = {0 = s0 < s1 < s2 < · · · < sn = 1} be a partition of [0, 1]. For each i = 1, 2, . . . n,

and s ∈ (si−1, si], define
q̂Ps (X) = qsi−1(X)(4.3)

and

q̃Ps (X) = qs(X)− qsi−1(X) =

Z s

si−1
Ωu(σ

0(r),X(r))dr.(4.4)

Note that q = q̂P + q̃P and hence equation (3.5) becomes

(4.5) (φ∗Xh)0(s) = h0(s)− qs(X
h)b0(s) = h0(s)− q̂s(X

h)b0(s)− q̃s(X
h)b0(s)

for all h ∈ H(Rd). ¤

Theorem 4.8. φ∗PVolG1
P
= VolP

Proof. Let {hk} be an orthonormal basis for HP , b ∈ HP , σ = φ(b) and u = //(σ). Using the definitions of

the volume form on a Riemannian manifold we must show that

det(G1P(φ∗hk, φ∗hj)) = 1,

where φ∗hk := d
dt |0φ(b+ thk).

Let Hk(s) = u−1(s)(φ∗(hk))(s) and set

hH,KiP :=
nX
i=1

hH 0(si−1+),K0(si−1+)i∆is.

Then XHk = φ∗(hk) and
det(G1P(φ∗(hk), φ∗(hj))) = det(hHk,HjiP).

By equation (4.5)

h0k = (φ
∗(XHk))0 = H 0

k − q(XHk)b0 = H 0
k − q̂(XHk)b0 − q̃(XHk)b0

so that

(4.6) h0k + q̂(XHk)b0 = H 0
k − q̃(XHk)b0.

Noting that h0k, q̂(X
Hk), and b0 are all constant on (si−1, si) and that q̃si−1(XHk) = 0, it follows that both

sides of equation (4.6) are constant on (si−1, si) and the constant value is H 0
k(si−1+). Therefore

hHk,HjiP =
Z 1

0

hH 0
k − q̃(XHk)b0,H 0

j − q̃(XHj )b0i ds

=

Z 1

0

hh0k + q̂(XHk)b0, h0j + q̂(XHj )b0i ds.
Define the linear transformation, T : HP → HP by

(Th)(s) =

Z s

0

q̂r(φ∗h)b0(r)dr.

We have just shown that

det(G1P(φ∗(hk), φ∗(hj))) = det({h(I + T )hk, (I + T )hjiP}j,k)
= det({hhk, (I + T )∗(I + T )hjiP}j,k)
= det((I + T )∗(I + T )) = [det(I + T )]2.
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So to finish the proof it suffices to show that det(I+T ) = 1. This will be done by showing that T is nilpotent.

For this we will make a judicious choice of orthonormal basis for HP . Let {ea}da=1 be an orthonormal basis
for ToM ∼= Rd and define

hi,a(s) =

µ
1√
∆is

Z s

0

1Ji−1(r)dr

¶
ea

for i = 1, 2, . . . , n, a = 1, . . . , d. Using the causality properties of φ and q̂, it follows that φ∗hi,a := 0 on

[0, si−1] and hence q̂(φ∗(hi,a)) := 0 on [0, si). Thus for any a, b, hThi,a, hj,bi = 0 if j ≤ i. This shows that T

is nilpotent and hence finishes the proof. ¤

Definition 4.9. Let ERd(b) :=
R 1
0
|b0(s)|2ds denote the energy of a path b ∈ H. For each partition P = {0 =

s0 < s1 < s2 < · · · < sn = 1} of [0, 1], let µ1P denote the volume form
µ1P =

1

Z1P
e−

1
2ERdVolHP

on HP , where Z1P := (2π)
dn/2. (By Lemma 4.11 below, µ1P is a probability measure on HP .) ¤

Let b ∈ H and σ := φ(b) ∈ H(M). Because parallel translation is an isometry, it follows from equation

(2.4) that E(b) = E(σ). As an immediate consequence of this identity and Theorem 4.8 is the following

theorem.

Theorem 4.10. Let µ1P (Definition 4.9) and ν
1
P (Definition 1.7) be as above, then µ1P is the pull back of ν

1
P

by φP , i.e. µ1P = φ∗Pν
1
P . ¤

Before exploring the consequences of this last theorem, we will make a few remarks about the measure

µ1P . Let πP : W(Rd)→ (Rd)n be given by πP(x) := (x(s1), x(s2), . . . , x(sn)). Note that πP : HP → (Rd)n is
a linear isomorphism of finite dimensional vector spaces. We will denote the inverse of πP |HP by iP .
Lemma 4.11. Let dy1dy2 · · · dyn denote the standard volume form on (Rd)n and y0 := 0 by convention.

Then

(4.7) i∗Pµ
1
P =

1

Z1P

Ã
nY
i=1

(∆is)
−d/2 exp{− 1

2∆is
|yi − yi−1|2}

!
dy1dy2 · · · dyn

where Z1P is defined in equation (1.15). Using the explicit value on Z1P , this equation may also be written as

(4.8) i∗Pµ
1
P =

Ã
nY
i=1

p∆is(yi−1, yi)

!
dy1dy2 · · · dyn,

where ps(x, y) := (2πs)−d/2 exp{−|x − y|2/2s} is the heat kernel on Rd. In particular i∗Pµ1P and hence µ1P
are probability measures.

Proof. Let x ∈ HP , then

E(x) =

Z 1

0

|x0(s)|2ds =
nX
i=1

|∆ix

∆is
|2∆is =

nX
i=1

1

∆is
|∆ix|2.

Hence if x = iP(y), then

(4.9)

Z 1

0

|x0(s)|2ds =
nX
i=1

1

∆is
|yi − yi−1|2 =

nX
i=1

|ξi|2.

where ξi := (∆is)
−1/2(yi − yi−1). This last equation shows that the linear transformation

x ∈ HP → {(∆is)
−1/2(x(si)− x(si−1)}ni=1 ∈ (Rd)n
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is an isometry of vector spaces and therefore

(4.10) i∗PVolP = dξ1dξ2 · · · dξn.
Now an easy computation shows that

(4.11) dξ1dξ2 · · · dξn =
Ã

nY
i=1

(∆is)
−d/2

!
dy1dy2 · · · dyn.

From equations ((4.9) — (4.11)), we see that equation (4.7) is valid. ¤

Notation 4.12. Let {B(s)}s∈[0,1] be the standard Rd–valued Brownian motion on (W(Rd), µ) as in No-
tation 1.2. Given a partition P of [0, 1] as above, set BP := iP ◦ πP(B). The explicit formula for BP
is:

BP(s) = B(si−1) + (s− si−1)
∆iB

∆is
if s ∈ (si−1, si],

where ∆iB := B(si) − B(si−1). We will also denote the expectation relative to µ by E, so that E [f ] =R
W(Rd) fdµ. ¤

Note that BP is the unique element in HP such that BP = B on P. We now have the following

easy corollary of Lemma 4.11 and the fact that the right side of equation (4.8) is the distribution of

(B(s1), B(s2), . . . , B(sn)).

Corollary 4.13. The law of BP and the law of φ(BP) (with respect to µ) is µ1P and ν
1
P respectively. ¤

4.1. Limits of the finite dimensional approximations. Let us recall the following Wong and Zakai type

approximation theorem for solutions to Stratonovich stochastic differential equations.

Theorem 4.14. Let f : Rd×Rn →End(Rd,Rn) and f0 : Rd×Rn → Rn be twice differentiable with bounded
continuous derivatives. Let ξ0 ∈ Rn and P be a partition of [0, 1]. Further let B and BP be as in Notation
4.12 and ξP(s) denote the solution to the ordinary differential equation:

(4.12) ξ0P(s) = f(ξP(s))B0
P(s) + f0(ξP(s)), ξP(0) = ξ0

and ξ denote the solution to the Stratonovich stochastic differential equation,

(4.13) dξ(s) = f(ξ(s))δB(s) + f0(ξ(s))ds, ξ(0) = ξ0.

Then, for any γ ∈ (0, 12), p ∈ [1,∞), there is a constant C(p, γ) <∞ depending only on f and M , so that

(4.14) lim
|P|→0

E
·
sup
s≤1

|ξP(s)− ξ(s)|p
¸
≤ C(p, γ)|P|γp.

This theorem is a special case of Theorem 5.7.3 and Example 5.7.4 in Kunita [66]. Theorems of this type

have a long history starting with Wong and Zakai [95, 96]. The reader may also find this and related results

in the following partial list of references: [3, 5, 6, 9, 12, 27, 39, 55, 59, 61, 62, 69, 68, 74, 76, 79, 80, 81, 82,

83, 86, 88, 90, 89, 92]. The theorem as stated here may be found in [33].

Definition 4.15. (1) Let u be the solution to the Stratonovich stochastic differential equation

δu = HuuδB, u(0) = u0.

Notice that u may be viewed as µ — a.e. defined function from W(Rd)→W(O(M)).

(2) Let φ̃ := π ◦ u : W(Rd)→W(M). This map is will be called the stochastic development map.
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(3) Let //̃·(σ) denote stochastic parallel translation relative to the probability space (W(M), ν). That
is //̃·(σ) is a stochastic extension of //·(σ).

(4) Let b̃(s) =
R s
0
//̃r
−1(σ)δσ(r), where δσ(r) denotes the Stratonovich differential.

¤

Remark 4.16. Using Theorem 4.14, one may show that φ̃ is a “stochastic extension” of φ, i.e. φ̃ =

lim|P|→0 φ(BP). Moreover, the law of φ̃ (i.e. µφ̃−1) is the Wiener measure ν on W (M). It is also well

known that b̃ is a standard Rd — valued Brownian motion on (W(M), ν) and that the law of u under µ on
W(Rd) and the law of //̃ under ν are equal. ¤

The fact that φ̃ has a “stochastic extension” seems to have first been observed by Eells and Elworthy [34]

who used ideas of Gangolli [51].The relationship of the stochastic development map to stochastic differential

equations on the orthogonal frame bundle O(M) of M is pointed out in Elworthy [37, 38, 39]. The frame

bundle point of view has also been developed by Malliavin, see for example [77, 76, 78]. For a more detailed

history of the stochastic development map, see pp. 156—157 in Elworthy [39]. The results in the previous

remark are all standard and may be found in the previous references and also in [43, 59, 66, 79]. For a

fairly self contained short exposition of these results the reader may wish to consult Section 3 in [30]. Using

Theorem 4.14 and Corollary 4.13 above, we get the following limit theorem for ν1P .

Theorem 4.17. Suppose that F :W (O(M))→ R is a continuous and bounded function and for σ ∈ H(M)
we let f(σ) := F (//·(σ)). Then

(4.15) lim
|P|→0

Z
HP(M)

f(σ)dν1P(σ) =
Z
W(M)

f̃(σ)dν(σ),

where f̃(σ) := F (//̃·(σ)).

Proof. By Remark 4.16

(4.16)

Z
W(M)

f̃(σ)dν(σ) = E[f̃(u)].

By embedding O(M) into RD for some D ∈ N and extending the map v 7→ Huuv to a compact neighbor-

hood of O(M) ⊂ RD, we may apply Theorem 4.14 to conclude that

(4.17) lim
|P|→0

E
·
sup
0≤s≤1

|uP(s)− u(s)|pRD
¸
= 0,

where uP solves equation (2.5) with b replaced by BP . But the law of uP is equal to the law of //(·) under
ν1P , see Corollary 4.13. Therefore,

(4.18)

Z
HP(M)

f(σ)dν1P(σ) = E[f(uP)].

The limit in equation (4.15) now easily follows from (4.16—4.18) and the dominated convergence theorem. ¤

5. The L2 metric

In section 4 we considered the metric G1P (see Definition 1.5) on HP(M) and the associated finite dimen-

sional approximations of the Wiener measure ν on W(M). It was found that under the development map

φP , the volume form with respect to. G1P pulls back to the volume form of a flat metric on HP(Rd), see
Theorem 4.8. As a consequence, we found that under the development map φP , the volume form ν1P on

HP(M) pulls back to the Gaussian density µ1P on HP(Rd).
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Definition 5.1. Let MP :=Mn and πP : W(M)→MP denote the projection

(5.1) πP(σ) := (σ(s1), . . . , σ(sn)).

We will also use the same notation for the restriction of πP to H(M) and HP(M). ¤

In this section we will consider two further models for the geometry on path space, namely the degenerate

L2-“metric” G0P defined in Definition 1.5 on HP(M) and the product manifoldM
P with its “natural” metric.

Remark 5.2. The form G0P is non-negative but fails to be definite precisely at σ ∈ HP(M) for which σ(si)

is conjugate to σ(si−1) along σ([si−1, si]) for some i. In this case there exists a nonzero X ∈ THP(M) for

which G0P(X,X) = 0. Hence, VolG0
P
will also be zero for such σ ∈ HP(M). ¤

Definition 5.3. Let MP be as in Definition 5.1. For x = (x1, x2, . . . , xn) ∈MP , let

(5.2) EP(x) :=
nX
i=1

d2(xi−1, xi)
∆is

where d is the geodesic distance on M . Let gP be the Riemannian metric on MP given by

(5.3) gP = (∆1s) g × (∆2s) g × · · · × (∆ns) g,

i.e. if v = (v1, v2, . . . , vn) ∈ TMn = (TM)n then

gP(v,v) :=
nX
i=1

g(vi, vi)∆is.

Let the normalizing constant Z0P be given by equation (1.15) and let γP denote the measure on MP defined
by

(5.4) γP(dx) :=
1

Z0P
exp

µ
−1
2
EP(x)

¶
VolgP (dx)

where VolgP denotes volume form on MP defined with respect to. gP . ¤

Remark 5.4. An easy computation shows that

(5.5) VolgP =

Ã
nY
i=1

(∆is)
d/2

!
×Volng ,

where Volg is the volume measure on (M, g) and Volng denotes the n—fold product of Volgwith itself. ¤

The next proposition shows the relationship between ν0P (defined in Definition 1.7 above) and γP . For
the statement we need to define a subset of paths σ in HP(M) such that each geodesic piece σ([si−1, si]) is
short. The formal definition is as follows.

Definition 5.5.

(1) For any � > 0, let

H�
P(M) := {σ ∈ HP(M) :

Z si

si−1
|σ0(s)|ds < � for i = 1, 2, . . . , n}.

(2) For any � > 0, let

MP
� = {x ∈MP : d(xi−1, xi) < � for i = 1, 2, . . . , n}

where d is the geodesic distance on (M, g) and x0 := o. ¤
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Proposition 5.6. For � > 0 less than the injectivity radius of M , we have

(1) G0P is a Riemannian metric on H
�
P(M).

(2) The image of H�
P(M) under πP is M

P
� and the map

πP : (H�
P(M), G

0
P)→ (MP

� , gP)

is an isometry, where gP is the metric on MP in equation (5.3).
(3) π∗PγP = ν0P on H

�
P(M).

Proof. Because � is less than the injectivity radius of M , it follows that any X ∈ TσHP(M) is determined
by its values on the partition points P. Therefore, if G0P(X,X) = 0 for X ∈ TσH

�
P(M), then X := 0. This

proves the first item. The second item is a triviality. The last item is proved by noting that for σ ∈ H�
P(M),

σ|[si−1,si] is a minimal length geodesic joining σ(si−1) to σ(si), and therefore

(5.6)

Z si

si−1
|σ0(s)|2ds =

µ
d(σ(si−1), σ(si))

∆is

¶2
∆is =

d2(σ(si−1), σ(si))
∆is

.

Summing this last equation on i shows,

(5.7) E(σ) =

Z 1

0

|σ0(s)|2ds =
nX
i=1

d2(σ(si−1), σ(si))
∆is

= EP(πP(σ)).

Hence by the definition of γP , the fact that πP is an isometry on H�
P(M) (point 2 above), and (5.7) above,

we find that on H�
P(M),

π∗PγP =
1

Z0P
e−E/2VolG0

P
= ν0P .

¤

Note that in general, for x ∈MP , π−1P (x) has more than one element, and may even fail to be a discrete

subset. Therefore using the product manifoldMP as a model for HP(M) requires some care. The important
aspect of the isometric subsets MP

� and H�
P(M) is that in a precise sense they have nearly full measure with

respect to. γP , ν1P and ν0P . This will be proved in section 5.1 below.
Before carrying out these estimates we will finish this section by comparing ν0P to ν

1
P .

Notation 5.7. Let RdP denote the Euclidean space (Rd)n equipped with the product inner product defined
in the same way as gP in equation (5.3) with Rd replacing TM. ¤

To simplify notation throughout this section, let

(5.8) σ ∈ HP(M), b := φ−1(σ), u := //(σ), and A(s) := Ωu(s)(b
0(s), ·)b0(s).

Note that since b ∈ HP(Rd),
(5.9) b0(s) = ∆ib/∆is and A(s) = Ωu(s)(

∆ib

∆is
, ·)∆ib

∆is

for s ∈ (si−1, si]. Let us also identify X ∈ TσHP(M) with h := u−1X. Recall from Proposition 4.4 that

h : [0, 1]→ Rd is a piecewise smooth function such that h(0) = 0 and Equation (4.2) holds, i.e.

(5.10) h00 = Ah on I \ P and h(0) = 0 ∈ Rd.
In order to compare VolG0

P
and VolG1

P
it is useful to define two linear maps

J0 : (TσHP(M), G0P)→ RdP

J1 : (TσHP(M), G1P)→ RdP
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by

J0(X) = (h(s1), h(s2), . . . , h(sn))

and

J1(X) = (h
0(s0+), h0(s1+), . . . , h0(sn−1+))

where h := u−1X as above.

It follows from the definition of G0P and the metric on RdP that if σ is such that J0 is injective, then J0

is an isometry. By point 2 of Proposition 5.6 this holds on H�
P(M). However, by Remark 5.2 there is in

general a nonempty

subset of HP(M) where J0 fails to be injective. Clearly, J0 fails to be injective precisely where G0P fails to
be positive definite. Similarly, it is immediate from the definitions and the fact that G1P is a nondegenerate
Riemann metric, see Remark 4.5, that J1 is an isometry at all σ ∈ HP(M).
To simplify notation, let V denote the vector space (Rd)n and let T = TP(σ) be defined by T := J0 ◦J−11 .

Thus T : V → V is the unique linear map such that

(5.11) T (h0(s0+), h0(s1+), . . . , h0(sn−1+)) = (h(s1), h(s2), . . . , h(sn))

for all h = u−1X with X ∈ TσHP(M). With this notation it follows that

VolG0
P

= J∗0VolRdP = (T ◦ J1)∗VolRdP
= J∗1T

∗VolRdP = det(T )J
∗
1VolRdP

= det(T )VolG1
P
.(5.12)

Note that in this computation σ ∈ HP(M) is fixed and we treat VolG0
P
,VolG1

P
as elements of the exterior

algebra ∧dn (T ∗σHP(M)) at some fixed σ and VolRdP as an element of ∧dn
¡
(RdP)∗

¢
.

Our next task is to compute det(T ).

Lemma 5.8. Let Zi−1(s) denote the d× d matrix—valued solution to

(5.13) Z00i−1(s) = A(s)Zi−1(s) with Zi−1(si−1) = 0 and Z0i−1(si−1) = I.

Then

det(TP(σ)) =
nY
i=1

det(Zi−1(si)).

Proof. We start by noting that for σ ∈ HP(M) such that G0P is nondegenerate, then det(Zi−1) 6= 0 for

i = 1, 2, . . . , n. To see this assume that det(Zi−1) = 0 for some i. In view of the fact that Z solves the Jacobi
equation (5.13), this is equivalent to the existence of a vector field Xi−1 along σ([si−1, si]) which solves (4.1)
for s ∈ [si−1, si] and which satisfies

Xi−1(si−1) = 0, Xi−1(si) = 0.

Define X by

X(s) =

½
Xi−1(s), s ∈ [si−1, si]
0 s ∈ [0, 1] \ [si−1, si]

ThenX ∈ TσHP(M) and it is clear from the construction that G0P(X,X) = 0. Thus for such σ, VolG0
P
|σ =

0. Hence we may without loss of generality restrict our considerations to the case when det(Zi−1) 6= 0 for
all i.
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Let Ci−1(s) be the d× d matrix—valued solutions to

C00i−1(s) = A(s)Ci−1(s) with Ci−1(si−1) = I and C 0i−1(si−1) = 0.

For i ∈ {1, 2, . . . , n} and h = u−1X with X ∈ TσHP(M) let

k(s) := Ci−1(s)h(si−1) + Zi−1(s)h0(si−1+).

Then k00 = Ak on (si−1, si), k(si−1) = h(si−1) and k0(si−1) = h0(si−1+). Since h satisfies the same linear
differential equation with initial conditions at si−1, it follows that h = k on [si−1, si] and in particular that

h(si) = Ci−1(si)h(si−1) + Zi−1(si)h0(si−1+).

Solving this equation for h0(si−1+) gives

h0(si−1+) = Zi−1(si)−1(h(si)− Ci−1(si)h(si−1))

from which it follows that T−1(ξ1, ξ2, . . . , ξn) = (η1, η2, . . . , ηn) where

ηi = αiξi − βiξi−1 for i = 1, 2, . . . , n,

αi := Zi−1(si)−1 and βi := Zi−1(si)−1Ci−1(si). (In the previous displayed equation ξ0 should be interpreted
as 0.) Thus the linear transformation T−1 : V → V may be written in block lower triangular form as

T−1 =


α1 0 0 · · · 0
β2 α2 0 · · · 0

0 β3 α3
. . . 0

...
...

. . .
. . . 0

0 0 · · · βn αn


and hence for σ ∈ HP(M) so that G0P is nondegenerate,

det(T−1) =
nY
i=1

det(αi) =
nY
i=1

det(Zi−1(si)−1).

It follows by the above arguments, that for all σ ∈ HP(M)

det(T ) =
nY
i=1

det(Zi−1(si))

¤

As a consequence, we have the key theorem relating ν0P to ν
1
P .

Theorem 5.9. Let

(5.14) ρP(σ) :=
nY
i=1

det(
Zi−1(si)
∆i−1s

),

then ν0P = ρPν1P .
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Proof. From the Definition 1.6 for ν0P , Equation (5.12) and Lemma 5.10 we find that

ν0P =
1

Z0P
e−

1
2EVolG0

P

=
1

Z0P
e−

1
2E

nY
i=1

det(Zi−1(si))VolG1
P

=
1

Z0P
e−

1
2E

nY
i=1

(∆i−1s)d ·
nY
i=1

det(
1

∆i−1s
Zi−1(si))VolG1

P
.

Equation (5.14) now follows from Definition 1.7 (for ν1P) and the expressions for Z
1
P and Z0P in equation

(1.15).

Using this result and Bishop’s Comparison Theorem we have the following estimate on ρP(σ). ¤

Corollary 5.10. Let K > 0 be such that Ric ≥ −(d− 1)KI (for example take K to be a bound on Ω) then

(5.15) ρP(σ) ≤
nY
i=1

Ã
sinh(

√
K|∆ib|)√

K|∆ib|

!d−1
.

Proof. The proof amounts to applying Theorem 3.8 on p. 120 [14] to each of the Zi−1(si)’s above. In order
to use this theorem one must keep in mind that ∆ib∆is is not a unit vector and the estimate given in [14]

corresponds to the determinant of Zi−1(si) restricted
n
ξ := ∆ib

∆is

o⊥
. Noting that Zi−1(si)ξ = ∆is · ξ and

accounting for the aforementioned discrepancies, Theorem 3.8 in [14] gives the estimate

det (Zi−1(si)) ≤
Ã
sinh(

√
K|∆ib|)√

K|∆ib|/∆is

!d−1
∆is

or equivalently that

det(
1

∆i−1s
Zi−1(si)) ≤

Ã
sinh(

√
K|∆ib|)√

K|∆ib|

!d−1
.

This clearly implies the estimate in equation (5.15). ¤

5.1. Estimates of the measure of H�
P(M) and MP

� . We will need the following Lemma, which is again

a consequence of Bishop’s comparison theorem.

Lemma 5.11. Let ωd−1 denote the surface area of the unit sphere in Rd, R be the diameter of M and let

K ≥ 0 such that Ric ≥ −(d− 1)KI. Then for all F : [0, R]→ [0,∞],Z
M

F (d(o, ·))dvol ≤ ωd−1
Z R

0

rd−1F (r)

Ã
sinh(

√
Kr)√

Kr

!d−1
dr

Proof. See Equations (2.48) on p. 72 (3.15) on p. 113, and Theorem 3.8 on p. 120 in Chavel [14]. ¤

We are now ready to estimate the measures of MP
� and H�

P(M). We start by considering γP(M
P \MP

� ).

Proposition 5.12. Fix � > 0 and let MP
� be as in Definition 5.5 and let γP be the measure on MP defined

by (5.4). Then there is a constants C <∞ such that

γP(MP \MP
� ) ≤ C exp(− �2

4|P| ).
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Proof. Let f : [0,∞)n → [0,∞) be a measurable function. Let dx =Qn
i=1Volg(dxi) and note that

(5.16) dx = dVolgP (x)
nY
i=1

(∆is)
−d/2.

An application of Lemma 5.11 and Fubini’s theorem provesZ
MP

f(d(o, x1), d(x1, x2), . . . , d(xn−1, xn))γP(dx)

≤
Z
[0,∞)n

f(r1, r2, . . . , rn) exp

Ã
−

nX
i=1

r2i
2∆is

!
nY
i=1

Ã
sinh(

√
Kri)√

Kri

!d−1
ωd−1rd−1i dri
(2π∆i−1s)d/2

.

As usual let {B(s)}s∈[0,1] be a standard Rd—valued Brownian motion in Notation 4.12 and ∆iB = B(si) −
B(si−1). Noting that

exp

Ã
−

nX
i=1

r2i
2∆is

!
nY
i=1

ωd−1rd−1i dri
(2π∆i−1s)d/2

is the distribution of (|∆1B|, |∆2B|, . . . , |∆nB|), the above inequality may be written as:Z
MP

f(d(o, x1), d(x1, x2), . . . , d(xn−1, xn))γP(dx)(5.17)

≤ E
f(|∆1B|, |∆2B|, . . . , |∆nB|)

nY
i=1

Ã
sinh(

√
K|∆iB|)√

K|∆iB|

!d−1 .
For i ∈ {1, 2, . . . , n}, let Ai := {x ∈MP : d(xi−1, xi) ≥ �} so that MP \MP

� = ∪ni=1Ai and

(5.18) γP(MP \MP
� ) ≤

nX
i=1

γP(Ai).

Since 1Ai(x) = χ�(d(xi−1, xi)), where χ�(r) = 1r≥�, we find from equation (5.17) that

γP(Ai) ≤ E
χ�(|∆iB|)

nY
j=1

Ã
sinh(

√
K|∆jB|)√

K|∆jB|

!d−1
= E

χ�(|∆iB|)
Ã
sinh(

√
K|∆iB|)√

K|∆iB|

!d−1Y
j 6=i

ψ(
p
∆js),(5.19)

where ψ is defined in equation (8.19) of the Appendix. An application of Lemma 8.7 now completes the

proof in view of (5.18) and (5.19). ¤

We also have the following analogue of Proposition 5.12.

Proposition 5.13. For any � > 0 there is a constant C <∞ such that

ν1P(HP(M) \H�
P(M)) ≤ C exp(− �2

4|P| ).
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Proof. Let us recall that φ(HP(Rd)) = HP(M) and let us note that φ(H�
P(Rd)) = H�

P(M). By Theorem 4.10
and Corollary 4.13 this implies that

ν1P(HP(M) \H�
P(M)) = µ1P(HP(Rd) \H�

P(Rd))

= µ({max{|∆i−1B| : i = 1, 2, . . . , n} ≥ �})

≤
nX
i=1

µ(|∆i−1B| ≥ �)

=
nX
i=1

E [χ�(|∆iB|)]

≤ Ce−
�2

4|P| .

where as above χ�(r) = 1r≥�. The last inequality follows from Lemma 8.7 with K = 0. ¤

Finally we consider ν0P(HP(M) \H�
P(M)).

Proposition 5.14. Let � > 0. Then there is a constant C <∞ such that

(5.20) ν0P(HP(M) \H�
P(M)) ≤ C exp(− �2

4|P| ).

Proof. Let B be the standard Rd valued Brownian motion. For i = 1, 2, . . . , n, let Ai = {|∆iB| > �} and
set A = ∪ni=1Ai. Then HP(M) \H�

P(M) = φP(A) where φP : HP(Rd)→ HP(M) denotes the development

map.

By Theorem 5.9, ν0P = ρPν1P , where ρP is given by (5.14). By Theorem 4.10 and Corollary 5.10 above,

ν0P(HP(M) \H�
P(M)) =

Z
A
ρP(φ(BP))dµ1P ≤

Z
A

nY
i=1

Ã
sinh(

√
K|∆iB|)√

K|∆iB|

!d−1
dµ,

wherein we have used the fact that the distribution of {∆iBP}i under µ1P is the same as the distribution of
{∆iB}i under µ. Thus arguing as in the proof of Proposition 5.12 we have with χ� = 1r≥�,

ν0P(φP(A)) ≤
nX
i=1

ν0P(φP(Ai))

≤
nX
i=1

E

χ�(|∆iB|)
nY
j=1

Ã
sinh(

√
K|∆jB|)√

K|∆jB|

!d−1
=

nX
i=1

E

χ�(|∆iB|)
Ã
sinh(

√
K|∆iB|)√

K|∆iB|

!d−1Y
j 6=i

ψ(
p
∆js).

where ψ is defined in equation (8.19) of the Appendix. An application of Lemma 8.7 in the Appendix

completes the proof. ¤

6. Convergence of ν0P to Wiener Measure

This section is devoted to the proof of the following Theorem.

Theorem 6.1. Let F :W (O(M))→ R be a continuous and bounded function and set f(σ) := F (//·(σ)) for
σ ∈ H(M). Then

lim
|P|→0

Z
HP(M)

f(σ)dν0P(σ) =
Z
W (M)

f̃(σ)e−
1
6

R 1
0
Scal(σ(s))dsdν(σ),



24 ANDERSSON AND DRIVER

where f̃(σ) := F (//̃·(σ)) and //̃r(σ) is stochastic parallel translation, see Definition 4.15. ¤

Because of Theorem 4.17, in order to prove this theorem it will suffice to compare ν1P with ν0P . Of course
the main issue is to compare VolG0

P
with VolG1

P
. In view of Proposition 5.14 and the boundedness of f and

Scal, ¯̄̄̄
¯
Z
HP(M)\H�P(M)

f(σ)dν0P(σ)

¯̄̄̄
¯ ≤ C||f ||∞e−

�2

4|P|

which tends to zero faster than any power of |P|. Therefore, it suffices to prove that for any � > 0 smaller

than the injectivity radius of M ,

(6.1) lim
|P|→0

Z
H�P(M)

f(σ)dν0P(σ) =
Z
W (M)

f̃(σ)e−
1
6

R 1
0
Scal(σ(s))dsdν(σ).

6.1. Estimating the Radon Nikodym Derivative. In this section we will continue to use the notation

set out in equation (5.8).

Proposition 6.2. Suppose that A is given by equation (5.9) and that Zi−1 is defined as in Lemma 5.8.
Let Λ be an upper bound for both the norms of the curvature tensor R (or equivalently Ω) and its covariant

derivative ∇R. Then
(6.2) Zi−1(si) = ∆is(I +

1

6
Ωu(si−1)(∆ib, ·)∆ib+ Ei−1),

where

(6.3) |Ei−1| ≤ 1
6
(2Λ|∆ib|3 + 1

2
Λ2|∆ib|4) cosh(

√
Λ|∆ib|).

In particular, if � > 0 is given and it is assumed that |∆ib| ≤ � for all i, then

(6.4) |Ei−1| ≤ C|∆ib|3,
where C = C(�, R,∇R) = 1

6(2Λ+
1
2Λ

2�) cosh(
√
Λ�).

Proof. By Lemma 8.3 of the Appendix,

(6.5) Zi−1(si) = ∆isI +
∆is

3

6
Ωu(si−1)(

∆ib

∆is
, ·)∆ib

∆is
+∆isEi−1,

with Ei−1 satisfying the estimate,

(6.6) |Ei−1| = 1

6
(2K1(∆is)

3 +
1

2
K2(∆is)

4) cosh(
√
K∆is)

where K := sups∈(si−1,si) |A(s)| and K1 := sups∈(si−1,si) |A0(s)|.
By (5.9), for s ∈ [si−1, si],

|A(s)| ≤ Λ|∆ib|2(∆is)
−2

and hence K(∆is)
2 ≤ Λ|∆ib|2.

Since u0(s) = Hu(s)u(s)b
0(s), we see for si−1 < s ≤ si that

A0(s) = (DΩ)u(s)(b
0(s), b0(s), ·)b0(s)

= (∆is)
−3(DΩ)u(s)(∆ib,∆ib, ·)∆ib,

where (DΩ)u(s)(b
0(s), ·, ·) := d

dsΩu(s). Therefore |A0(s)| ≤ Λ(∆is)
−3|∆ib|3 which combined with equation

(6.6) proves equation (6.3). ¤
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Proposition 6.3. Let Ψ(U) be given as in Lemma 8.1 of the Appendix and define

(6.7) Ui−1 :=
1

6
Ωu(si−1)(∆ib, ·)∆ib+ Ei−1,

where Ei−1 is defined in Proposition 6.2. Then
(6.8) ρP(σ) = exp(WP(σ)) exp(−1

6
RP(σ)),

where

RP(σ) :=
nX
i=1

hRicu(si−1)∆ib,∆ibi

and

(6.9) WP(σ) :=
nX
i=1

(trEi−1 +Ψ(−Ui−1)).

Moreover there exists �0 > 0 and C1 <∞ such that for all � ∈ (0, �0],

(6.10) |WP(σ)| ≤ C1

nX
i=1

|∆ib|3 for all σ ∈ H�
P(M).

Proof. Recall that by definition, the trace of the linear map v 7→ Ωu(si−1)(∆ib, v)∆ib equals−hRicu(si−1)∆ib,∆ibi
and hence

trUi−1 = −1
6
hRicu(si−1)∆ib,∆ibi+ trEi−1.

From the definitions of RP and WP , we get using Lemma 5.8 and Lemma 8.1,

ρP(σ) =
nY
i=1

exp

µ
−1
6
hRicu(si−1)∆ib,∆ibi+ trEi−1 +Ψ(−Ui−1)

¶

= exp

Ã
−1
6

nX
i=1

hRicu(si−1)∆ib,∆ibi
!
exp

Ã
nX
i=1

trEi−1 +
nX
i=1

Ψ(−Ui−1)
!

which proves equation (6.8).

Letting Λ be a bound on the curvature tensor Ω, it follows using equation (6.4) that

|Ui−1| ≤ 1

6
|Ωu(si−1)(∆ib, ·)∆ib|+ |Ei−1|

≤ Λ

6
|∆ib|2 + C|∆ib|3

≤ (C�+
Λ

6
)|∆ib|2 ≤ (C�+ Λ

6
)�2 ≤ 1

2

for � sufficiently small. So, using Lemma 8.1 of the Appendix, WP satisfies the estimate,

|WP(σ)| ≤
nX
i=1

(|trEi−1|+ |Ψ(−Ui−1)|)

≤ d
nX
i=1

(|Ei−1|+ |Ui−1|2(1− |Ui−1|)−1)

≤ d
nX
i=1

"
C|∆ib|3 + 2

µ
(C�+

Λ

6
)|∆ib|2

¶2#

≤ C1

nX
i=1

|∆ib|3.

¤
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Let SP : HP(M)→ R be given as

(6.11) SP(σ) :=
nX
i=1

Scal(σ(si−1))∆is,

where Scal is the scalar curvature of (M, h·, ·i).

Proposition 6.4. Let p ∈ R and � > 0. Then there exists C = C(p, �,M) <∞ such that

(6.12) 1− Ce−
�2

4|P| ≤
Z
H�P(M)

ep(RP(σ)−SP(σ))dν1P(σ) ≤ eCK
2|P| − Ce−

�2

4|P| ,

and hence

(6.13)

¯̄̄̄
¯
Z
H�P(M)

ep(RP(σ)−SP(σ))dν1P(σ)− 1
¯̄̄̄
¯ ≤ eCK

2|P| − 1 + Ce−
�2

4|P| ≤ C|P|

for all partitions P with |P| sufficiently small.

Proof. Let uP be the solution to equation (2.5) with b replaced by BP , Ri := RicuP(si−1), and

Y := ep
Pn

i=1(hRi∆iB,∆iBi−tr(Ri)∆is).

By Theorem 4.10, the distribution of ep(RP−SP) under ν1P is the same as the distribution of Y under µ.

Therefore, Z
H�P(M)

ep(RP(σ)−SP(σ))dν1P(σ) =
Z
Ac

Y dµ,

where A := ∪ni=1Ai and Ai := {|∆iB| ≥ �} as in the proof of Proposition 5.14. By Proposition 8.8 of the
Appendix

1 ≤
Z
W(Rd)

Y dµ =

Z
Ac

Y dµ+

Z
A
Y dµ ≤ edp

2K2|P|,

where K is a bound on Ric. Therefore,

1−
Z
A
Y dµ ≤

Z
H�P(M)

ep(RP(σ)−SP(σ))dν1P(σ) ≤ edp
2K2|P| −

Z
A
Y dµ.

So to finish the proof it suffices to show that
R
A Y dµ ≤ C exp

³
− �2

4|P|
´
.

Since ¯̄̄̄
¯
nX
i=1

(hRi∆iB,∆iBi− tr(Ri)∆is)

¯̄̄̄
¯ ≤ K

Ã
nX
i=1

|∆iB|2 + d

!
,

it follows thatZ
A
Y dµ ≤

Z
A
exp

K|p|(
nX
j=1

|∆jB|2 + d)

 dµ

≤
X
i

Z
Ai

exp

K|p|(
nX
j=1

|∆jB|2 + d)

 dµ

=
X
i

E

exp
K|p|(

nX
j=1, j 6=i

|∆jB|2 + d)

E hχ�(|∆iB|)eK|p||(∆iB|
2+d)

i
,(6.14)
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where χ�(r) = 1r≥�. The first factor of each term in the sum is bounded by Lemma 8.5. Using the same

type of argument as in the proof of Lemma 8.6 one shows for |P| sufficiently small that there is a constant
C <∞ such that

E
h
χ�(|∆iB|)eK|p|(|∆iB|

2+d)
i
= E

h
χ�(
p
∆is|B(1)|)eK|p|(∆is|B(1)|

2+d)
i
≤ C(∆is)e

− �2

4|P| .

Hence the sum in equation (6.14) may be estimated to give
R
A Y dµ ≤ C exp

³
− �2

4|P|
´
. ¤

Corollary 6.5. Let SP : HP(M) → R be given as in equation (6.11). Then for all � > 0 sufficiently small

there is a constant C = C(�) such that

(6.15)

Z
H�P(M)

¯̄̄
ρP − e−

1
6SP

¯̄̄
dν1P ≤ C

p
|P|

for all partitions P with |P| sufficiently small.

Proof. Let C be a generic constant depending on the geometry and the dimension of M. Let J denote the

left side of equation (6.15) and let K be a constant so that |Scal| ≤ K. Then

J =

Z
H�P(M)

¯̄̄
ρP − e−

1
6SP

¯̄̄
dν1P

=

Z
H�P(M)

¯̄̄
e−

1
6RPeWP − e−

1
6SP

¯̄̄
dν1P

≤ eK
Z
H�P(M)

¯̄̄
e−

1
6 (RP−SP)eWP − 1

¯̄̄
dν1P ≤ I + II,

where

I := eK
Z
H�P(M)

¯̄̄
e−

1
6 (RP−SP) − 1

¯̄̄
eWPdν

and

II := eK
Z
H�P(M)

¯̄
eWP − 1¯̄ dν.

Since |ea − 1| ≤ e|a| − 1 ≤ |a|e|a| for all a ∈ R,

(6.16)

Z
H�P(M)

¯̄
eWP − 1¯̄ dν1P ≤ Z

H�P(M)

|WP |e|WP |dν1P

By Proposition 6.3 there exist �0 > 0 such that |WP(σ)| ≤ C
Pn

i=1 |∆ib|3 on H�
P(M)) for � < �0. Therefore,

with the aid of Theorem 4.10,Z
H�P(M)

|WP |e|WP |dν1P ≤ C
nX
i=1

Z
H�P(M)

|∆ib|3 eC�0
Pn

j=1 |∆jb|2dν1P

≤ C
nX
i=1

Z
HP(M)

|∆ib|3 eC�0
Pn

j=1 |∆jb|2dν1P

= C
nX
i=1

Z
W(Rd)

|∆iB|3 eC�0
Pn

j=1 |∆jB|2dµ

= C
nX
i=1

E
h
|∆iB|3eC�0|∆iB|2

i
E
h
eC�0

Pn
j:j 6=i |∆jB|2

i
.
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By Lemma 8.5, lim sup|P|→0 E
h
eC�0

Pn
j:j 6=i |∆jB|2

i
= edC�0 <∞ and hence

II ≤ 2eKCedC�0
nX
i=1

E
£|∆iB|3 exp

¡
C�0|∆iB|2

¢¤
= 2eKCedC�0

nX
i=1

(∆is)
3/2E

£|B(1)|3 exp ¡C�0∆is|B(1)|2
¢¤

≤ 2eKCedC�0E
£|B(1)|3 exp ¡C�0|P||B(1)|2¢¤p|P|

≤ C
p
|P|.(6.17)

for all partitions P with |P| sufficiently small.
To estimate I, apply Holder’s inequality to get

I2 ≤ e2K

ÃZ
H�P(M)

¯̄̄
e−

1
6 (RP−SP) − 1

¯̄̄2
dµ

!ÃZ
H�P(M)

e2|WP |dµ

!
.

The second term is bounded by the above arguments. Expanding the square gives¯̄̄
e−

1
6 (RP−SP) − 1

¯̄̄2
= (e−

1
3 (RP−SP) − 1)− 2(e− 1

6 (RP−SP) − 1)

≤
¯̄̄
e−

1
3 (RP−SP) − 1

¯̄̄
+ 2

¯̄̄
e−

1
6 (RP−SP) − 1

¯̄̄
.

By equation (6.13) of Proposition 6.4 to each term above, there is a constant C = C(�,M) <∞, such that

I2 ≤ C|P| for all partitions P with |P| sufficiently small. From this we see that

I ≤ C|P|1/2

which together with (6.17) proves the Corollary. ¤

6.2. Proof of Theorem 6.1. To simplify notation, let ρ :W (M)→ (0,∞) be given by

(6.18) ρ(σ) := exp

µ
−1
6

Z 1

0

Scal(σ(s)) ds

¶
,

where Scal is the scalar curvature of (M, g). Recall, by the remark following Theorem 6.1, to prove Theorem

6.1 it suffices to prove equation (6.1) for some � > 0. Let F : W(O(M)) → R, f : H(M) → R, and
f̃ : W(M) → R be as in the statement of Theorem 6.1. Then by Corollary 6.5 and Proposition 5.13, for

� > 0 sufficiently small and for partitions P with |P| sufficiently small,Z
H�P(M)

fdν0P =

Z
H�P(M)

fρPdν1P

=

Z
H�P(M)

fe−
1
6SPdν1P + �̃P

=

Z
HP(M)

fe−
1
6SPdν1P + �P ,

and |�P | ≤ Ckfk∞|P|1/2 where C is a constant independent of P. Because of Theorem 4.17, to finish the

proof, it suffices to show that

lim
|P|→0

Z
HP(M)

f(e−
1
6SP − ρ)dν1P = 0.
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As above, let B be the Rd —Brownian motion in Notation 1.2, BP be its piecewise linear approximation,

σP = φ(BP) and uP := //(σP). If Λ is a constant such that |Scal| ≤ Λ and |∇Scal| ≤ Λ, then¯̄̄̄
¯
Z
HP(M)

f(e−
1
6SP − ρ)dν1P

¯̄̄̄
¯

≤ E
h¯̄̄
f(uP)

³
e−

1
6

R 1
0
Scal(σP(s))ds − e−

1
6

R 1
0
Scal(σP(s))ds

´¯̄̄i
≤ kfk∞eΛ/6E

·Z 1

0

|Scal(σP(s))− Scal(σP(s))|ds
¸

(6.19)

wherein the last step we used the inequality |ea−eb| ≤ emax(a,b)|a−b|. (Recall that s := si−1 for s ∈ [si−1, si).)
For s ∈ [si−1, si), we have

|Scal(σP(s))− Scal(σP(si−1))| ≤ Λ|∆iB|
and hence ¯̄̄̄

¯
Z
HP(M)

f(e−
1
6SP − ρ)dν1P

¯̄̄̄
¯ ≤ kfk∞eΛ/6Λ

nX
i=1

E|∆iB|∆is

= kfk∞eΛ/6ΛE|B(1)|
nX
i=1

(∆is)
3/2

≤ Ckfk∞|P|1/2.
This finishes the proof of Theorem 6.1. ¤

Definition 6.6. Let P be a partition of [0, 1]. To every point x ∈MP we will associate a path σx ∈ HP(M)
as follows. If for each i, there is a unique minimal geodesic joining xi−1 to xi, let σx be the uniqe path in
HP(M) such that σx(si) = xi and

R si
si−1

|σ0(s)|ds = d(xi−1, xi) for i = 1, 2, . . . , n. Otherwise set σx(s) := o

for all s.

Corollary 6.7. Let α ∈ [0, 1], F : W (O(M)) → R be a continuous and bounded function and set f(σ) :=
F (//·(σ)) for σ ∈ H(M). Then for α ∈ [0, 1],

lim
|P|→0

Z
MP

f(σx)e
1
6

Pn
i=1(αScal(xi−1)+(1−α)Scal(xi))∆isdγP(x) =

Z
W (M)

f̃(σ)dν(σ),

where f̃(σ) := F (//̃·(σ)) and //̃r(σ) is stochastic parallel translation, see Definition 4.15.

Proof. For σ ∈ H(M), let χP,α(σ) = e
1
6

Pn
i=1(αScal(σ(si−1))+(1−α)Scal(σ(si)))∆is. Let Λ be a constant such that

|Scal| ≤ Λ and |∇Scal| ≤ Λ. Then χP,α(σ) ≤ eΛ/6 so by Proposition 5.12Z
MP\MP

�

f(σx)χP,α(σx)dγP(x) = �P

where �P ≤ C||f ||∞|P|1/2. Therefore it is sufficient to consider
R
MP
�
f(σx)χP,α(σx)dγP(x). By Propositions

5.6 we have Z
MP
�

f(σx)χP,α(σx)dγP(x) =
Z
H�P(M)

f(σ)χP,α(σ)dν0P(σ)

Let ρ(σ) be given by (6.18). Arguing as in the proof of Theorem 6.1, the Corollary will follow if

lim
|P|→0

Z
HP(M)

f(σ)(χP,α(σ)ρ(σ)− 1)dν1P(σ) = 0
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Let σP , BP be as in the proof of Theorem 6.1. We estimate as in the proof of Theorem 6.1,¯̄̄̄
¯ lim|P|→0

Z
HP(M)

f(σ)(χP,α(σ)ρ(σ)− 1)dν1P(σ)
¯̄̄̄
¯

≤ ||f ||∞eΛ/6E
"¯̄̄̄
¯
nX
i=1

(αScal(σP(si−1)) + (1− α)Scal(σP(si)))∆is−
Z 1

0

Scal(σP(s))ds

¯̄̄̄
¯
#

≤ C||f ||∞|P|1/2

which completes the proof of Corollary 6.7. ¤

7. Partial Integration Formulas

As an application of Theorem 4.17, we will derive the known integration by parts formula for the measure

ν. This will be accomplished by taking limits of the finite dimensional integration by parts formulas for the

measure ν1P . The main result appears at the end of this section in Theorem 7.16. A similar method for

proving integration by parts formula for laws of solutions to stochastic differential equations has been used

by Bell [7, 8].

7.1. Integration by parts for the approximate measures. The two ingredients for computing the

integration by parts formula for the form ν1P is the differential of E and the Lie derivative of VolG1
P
. The

following lemma may be found in any book on Riemannian geometry. We will supply the short proof for the

readers convenience.

Lemma 7.1. Let Y ∈ TσH(M), then

(7.1) Y E = dE(Y ) = 2

Z 1

0

hσ0(s), ∇Y (s)
ds

ids.

Proof. Choose a one parameter family of paths σt ∈ H(M) such that σ0 = σ and d
dt |t=0σt = Y. Then

Y E =
d

dt
|t=0

Z 1

0

|σ0t(s)|2ds = 2
Z 1

0

h∇
dt
σ0t(s)|t=0, σ0(s)ids.

Since ∇ has zero torsion,
∇
dt
σ0t(s)|t=0 =

∇
ds

d

dt
|t=0σt(s) = ∇

ds
Y (s).

The last two equations clearly imply equation (7.1). ¤

To compute the Lie derivative of VolG1
P
is will be useful to have an orthonormal frame on HP(M) relative

to G1P . We will construct such a frame in the next lemma.

Notation 7.2. Given σ ∈ HP(M), let HP,σbe the subspace of H given by

(7.2) HP,σ := {v ∈ H : v00(s) = Ωu(s)(b0(s), v(s))b0(s), ∀s /∈ P},
where u = //(σ) and b = φ−1(σ). ¤

Because of equation (4.2) of Proposition 4.4, v ∈ HP,σ if and only if Xv(σ) := //(σ)v ∈ TσHP(M).

Lemma 7.3 (GP—orthonormal frame). Let P be a partition of [0, 1] and G1P be as in equation (1.12) above.
Also let {ea}da=1 be an orthonormal frame for ToM ∼= Rd. For σ ∈ HP(M), i = 1, 2, . . . , n and a = 1, . . . , d

let hi,a(s, σ) := v(s) be determined (uniquely) by:
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(1) v ∈ HP,σ.
(2) v0(sj+) = 0 if j 6= i− 1.
(3) v0(si−1+) = 1√

∆is
ea.

Then {Xha,i , i = 1, . . . , n, a = 1, . . . , d} is a globally defined orthonormal frame for (HP(M), G1P).

Proof. This lemma is easily verified using the definition of G1P in equation (1.12), the identity

∇Xv(σ)(s+)

ds
= //s(σ)v

0(s+),

and the fact that //s(σ) is an isometry. ¤

Definition 7.4. Let PC1 denote the set of k ∈ H which are piecewise C1. Given k ∈ PC1, define kP :

HP(M)→ H by requiring kP(σ) ∈ HP,σ for all σ ∈ HP(M) and k0P(σ, s+) = k0(s+) for all s ∈ P \{1}. Note
that with this definition of kP , XkP is the unique tangent vector field on HP(M) such that

∇XkP (s+)

ds
=
∇Xk(s+)

ds
for all s ∈ P \ {1}.

Lemma 7.5. If k ∈ PC1, then LXkPVolG1
P
= 0.

Proof. Recall that on a general Riemannian manifold

LXVol = −
X
i

hLXei, eiiVol =
X
i

h[ei,X], eiiVol,

where {ei} is an orthonormal frame. Therefore we must show that

(7.3)
nX
i=1

dX
a=1

G1P([X
ha,i ,XkP ],Xha,i) = 0.

Suppressing σ ∈ HP(M) from the notation and using Theorem 3.5 to expand the Lie bracket, we find

G1P([X
ha,i ,XkP ],Xha,i) =

nX
j=1

h(Xha,ikP −XkPha,i)
0, h0a,ii|(sj−1+)∆js

+
nX
j=1

h(q(XkP )ha,i − q(Xha,i)kP)0, h0a,ii|(sj−1+)∆js.

For s ∈ P \ {1}, (Xha,ikP)0(s+) = Xha,ik0P(s+) = 0, since k
0(s+) is independent of σ. For the same reason,

(XkPha,i)
0(s+) = 0 for s ∈ P \ {1}. Moreover for s ∈ P \ {1},

h(q(XkP )ha,i)
0, h0a,ii|s+ = hq(XkP )h0a,i +Ru(σ

0,XkP )ha,i, h
0
a,ii|s+ = 0.

because q(XkP ) is skew symmetric and because either ha,i(s+) or h
0
a,i(s+) are equal to zero for all s ∈ P\{1}.

Similarly,

h(q(Xha,i)kP)0, h0a,ii|s+ = hq(Xha,i)k0P +Ru(σ
0,Xha,i)kP , h0a,ii|s+ = 0

because for all s ∈ P \ {1}, either qs+(Xha,i) = 0 or h0a,i(s+) = 0 and either ha,i(s+) = 0 or h
0
a,i(s+) = 0.

Thus every term in the sum in equation (7.3) is zero. ¤

Theorem 7.6. Suppose that k ∈ PC1, P is a partition of [0, 1], b ∈ HP and σ = φ(b) ∈ HP(M). Then

(7.4) (LXkP ν
1
P)σ = −

Ã
nX
i=1

hk0(si−1+),∆ibi
!
(ν1P)σ,
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i.e. the divergence of XkP relative to the volume form ν1P is

(7.5) (divν1PX
kP )(σ) = −

nX
i=1

hk0(si−1+),∆ibi.

¤

Proof. By Lemma 7.5,

(LXkP ν
1
P)σ =

·
−1
2
(XkPE)(σ)

¸
· (ν1P)σ

and by Lemma 7.1,

(XkPE)(σ) = 2

Z 1

0

hσ0(s), ∇X
kP (σ)(s)

ds
i ds

= 2

Z 1

0

h//s(σ)b0(s), //s(σ)k0P(σ, s)i ds

= 2
nX
i=1

Z
Ji

hb0(s), k0P(σ, s)i ds.

Now for s ∈ Ji := (si−1, si],

hb0(s), k0P(σ, s)i = hb0(si−1+), k0P(σ, si−1+)i+
Z s

si−1
b0(r) · k00P(σ, r)dr

= hb0(si−1+), k0P(si−1+)i
+

Z s

si−1
hb0(s),Ωu(r)(b0(r), kP(σ, r))b0(r)i dr

= hb0(si−1+), k0P(si−1+)i,
wherein the last equality we used the skew adjointness of Ωu(r)(b

0(r), kP(σ, r)) and the fact that b0(s) =
b0(r) = ∆ib/∆is for all s, r ∈ Ji. Combining the previous three displayed equations proves equation (7.4). ¤

Corollary 7.7. Let k ∈ PC1, P be a partition of [0, 1] as above, and let f : HP(M)→ R be a C1 function

for which f and its differential is bounded, then

(7.6)

Z
HP(M)

¡
XkPf

¢
ν1P =

Z
HP(M)

f

Ã
nX
i=1

hk0(si−1+),∆ibi
!
ν1P .

where in this formula ∆ib is the to be understood as the function on H(M) defined by

(7.7) ∆ib(σ) := φ−1(σ)(si)− φ−1(σ)(si−1).

¤

Proof. First assume that f has compact support. Then by Stoke’s theorem

0 =

Z
HP(M)

d
£
iXkP

¡
fν1P

¢¤
=

Z
HP(M)

LXkP
¡
fν1P

¢
=

Z
HP(M)

£
(XkPf)ν1P + fLXkP ν

1
P
¤

which combined with equation (7.4) proves equation (7.6). For the general case choose χ ∈ C∞c (R) such
that χ is one in a neighborhood of 0. Define χn := χ( 1nE(·)) ∈ C∞c (HP(M)) and fn := χnf ∈ C∞c (HP(M)).
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Observe that ¡
XkPfn

¢
= χn ·XkPf +

1

n
f · χ0( 1

n
E(·))XkPE

= χn ·XkPf +
1

n
f · χ0( 1

n
E(·))

Ã
nX
i=1

hk0(si−1+),∆ibi
!
,

wherein the last equality we have used the formula for XkPE computed in the proof of Lemma 7.6. Because

of Theorem 4.10,
Pn

i=1hk0(si−1+),∆ibi is a Gaussian random variable on (HP(M), ν1P) and hence is in Lp

for all p ∈ [1,∞). Also

|XkPf | ≤ C
q
G1P(XkP ,XkP )

= C

vuut nX
i=1

hk0(si−1+), k0(si−1+)i∆is ≤ Ckk0k∞,

where C is bound on the differential of f. Using these remarks and the dominated convergence theorem,

we may replace f by fn in equation (7.6) and pass to the limit to conclude that equation (7.6) holds for

bounded f with bounded derivatives. ¤

Remark 7.8. Obviously Corollary 7.7 holds for more general functions f. For example the above proof works

if f and df are in Lp(HP(M), ν1P) for some p > 1. ¤

We would like to pass to the limit as |P| → 0 in equation (7.6) of Corollary 7.7. The right side of this

equation is easily dealt with using Theorem 4.17. In order to pass to the limit on the left side of equation

(7.6) it will be necessary to understand the limiting behavior of kP as |P| → 0. This is the subject of the

next subsection.

7.2. The limit of kP .

Notation 7.9. Let P = {0 = s0 < s1 < s2 < · · · < sn = 1} be a partition of [0, 1] and for r ∈ (sj−1, sj ], let
r := sj−1. For k ∈ PC1, define ||k0||1,P and |||k0|||P by

||k0||1,P =
nX
i=1

|k0(si−1+)|∆is,(7.8)

and

|||k0|||P =
Z 1

0

|k0(r)− k0(r)|dr.(7.9)

Note that |||k0|||P = 0 if k ∈ HP .

Lemma 7.10. Let P be a partition of [0, 1], σ ∈ HP(M), b = φ−1(σ), u = //(σ), k ∈ PC1 and kP(σ, ·) be
as in definition 7.4. Then with ∆ib given by (7.7) and ||k0||1,P given by (7.8),

|kP(σ, s)| ≤ ||k0||1,Pe 12Λ
Pn

j=1 |∆jb|2 ∀s ∈ [0, 1](7.10)

and

|kP(σ, s)− kP(σ, si−1)| ≤
µ
|k0(si−1+)|∆is+

1

2
|kP(σ, si−1)|Λ |∆ib|2

¶
cosh

√
Λ |∆ib| ,(7.11)
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and

|kP(σ, s)− kP(σ, si−1)| ≤ |k0(si−1+)|∆is+
1

2
Λ|∆ib|2kkP(σ, ·)k∞ ∀s ∈ (si−1, si],(7.12)

where Λ is a bound on the curvature tensor.

Proof. Let κ(·) := kP(σ, ·) ∈ HP,σ and A(s) := Ωu(s)(b
0(s), ·)b0(s). By Definition 7.4 of kP , κ satisfies

κ00(s) = A(s)κ(s) for all s /∈ P(7.13)

and

κ0(s+) = k0(s+) ∀s ∈ P \ {1}.(7.14)

Noting that
¯̄
Ωu(s)(b

0(s), ·)b0(s)¯̄ ≤ Λ |b0(s)|2 = Λ |∆ib|2∆is2
for s ∈ (si−1, si], Lemma 8.2 of the Appendix and

equation (7.12) implies that

|κ(s)− κ(si−1)| ≤ |κ(si−1)|
³
cosh

√
Λ |∆ib|− 1

´
+ |k0(si−1+)|∆is

sinh
√
Λ |∆ib|√

Λ |∆ib|
≤

µ
|k0(si−1+)|∆is+

1

2
|κ(si−1)|Λ |∆ib|2

¶
cosh

√
Λ |∆ib|

where we have made use of the elementary inequalities

(7.15) cosh(a)− 1 ≤ 1
2
a2 cosh(a), and

sinh(a)

a
≤ cosh(a) ∀a ∈ R.

In particular, equation (7.11) is valid and

|κ(s)| ≤ |κ(si−1)| cosh
√
Λ |∆ib|+ |k0(si−1+)|∆is

sinh
√
Λ |∆ib|√

Λ |∆ib|
≤ (|κ(si−1)|+ |k0(si−1+)|∆is) exp{1

2
Λ |∆ib|2},(7.16)

since cosh(a) ≤ eα
2/2 for all a. Using the fact that κ(s0) = κ(0) = 0 and an inductive argument, equation

(7.16) with s = si implies that

|κ(si)| ≤
 iX

j=1

|k0(sj−1+)|∆js

 e
1
2Λ

P i
j=1 |∆jb|2 .

Combining this last equation with equation (7.16) proves the bound in equation (7.10). ¤

In the rest of this section, unless otherwise stated, C will be a generic constant depending only on the

geometry of M and C(γ, p) will be a generic constant depending only on γ, p and the geometry of M .

Theorem 7.11. Let k ∈ PC1 and B and BP be the Rd—valued processes defined in Notation 1.2 and
Notation 4.12 respectively. Also let u be the O(M)—valued process which solves the Stratonovich stochastic

differential equation

(7.17) δu = HuuδB, u(0) = u0,

uP = //(φ(BP)) and zP = kP(φ(BP), ·). (Note by Theorem 4.14 that u = lim|P|→∞ φ(BP) is a stochastic
extension of φ.) Let z denote the solution to the (random) ordinary differential equation

(7.18) z0(s) +
1

2
Ricu(s)z(s) = k0(s), z(0) = 0.
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Then for γ ∈ (0, 12 ), p ∈ [1,∞),

E

"
sup

s∈[0,1]
|zP(s)− z(s)|p

#
≤ C(γ, p)

³
||k0||p1,P |P|γp + |||k0|||pP

´
.

We will prove this theorem after the next two lemmas. Before doing this let us note that zP in Theorem
7.11 above is determined by

(7.19) z00P(s) = A(s)zP(s) for s /∈ P, zP(0) = 0, and z0P(s+) = k0(s+) ∀s ∈ P \ {1},
where

(7.20) A(s) := ΩuP(s)(
∆iB

∆is
, ·)∆iB

∆is
when s ∈ (si−1, si].

Lemma 7.12. Let δi be defined by

δi := zP(si) +
Z si

0

µ
1

2
RicuP(r)zP(r)− k0(r+)

¶
dr.

Then there for all p ∈ [1,∞) and γ ∈ (0, 1/2) there is a constant C = C(p, γ,Λ) <∞ such that

E
h
max
i
|δi|p

i
≤ C||k0||p1,P |P|γp,

where Λ is a bound on Ω and its horizontal derivative.

Proof. With out loss of generality, we can assume that p ≥ 2. Throughout the proof C will denote generic

constant depending only on p, γ, Λ, and possibly the dimension of M. By Taylor’s theorem with integral

remainder and equation (7.19) and equation (7.20) we have

zP(si) = zP(si−1) + z0P(si−1+)∆is+

Z si

si−1
(si − r)z00P(r))dr

= zP(si−1) + k0(si−1+)∆is

+

Z si

si−1
(si − r)ΩuP(r)(B

0
P(r), zP(r))B

0
P(r)dr

= zP(si−1) + k0(si−1+)∆is+
1

2
ΩuP(si−1)(∆iB, zP(si−1))∆iB + βi(7.21)

where

(7.22) βi =

Z si

si−1
(si − r)(ΩuP(r)(B

0
P(r), zP(r))− ΩuP(si−1)(B0

P(r), zP(si−1)))B
0
P(r)dr.

By Itô’s lemma,

ΩuP(sj−1)(∆jB, zP(sj−1))∆jB =

Z sj

sj−1
ΩuP(sj−1)(B(r)−B(sj−1), zP(sj−1))dB(r)

+

Z sj

sj−1
ΩuP(sj−1)(dB(r), zP(sj−1))B(r)−B(sj−1)

−RicuP(r)zP(sj−1)∆js.

Using this equation and the fact that zP(0) = 0, we may sum equation (7.21) on i to find

(7.23) zP(si) =
Z si

0

µ
k0(r+)− 1

2
RicuP(r)zP(r)

¶
dr +MP

si +
iX

j=1

βj ,
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where MP is the Rd — valued Martingale,

MP
s : =

Z s

0

ΩuP(r)(B(r)−B(r), zP(r))dB(r)

+

Z s

0

ΩuP(r)(dB(r), zP(r)) (B(r)−B(r)) .

Therefore δi =MP
si +

Pi
j=1 βj .

By the martingale moment inequality [63, Prop. 3.26],

(7.24) E
·
sup
s
|MP

s |p
¸
≤ CpE

h
hMPip/21

i
where Cp is a constant and hMPi is the quadratic variation of MP . It is easy to estimate hMPi1 by

hMPi1 ≤ 2dΛ2
Z 1

0

|B(r)−B(r)|2 |zP(r)|2 dr

and hence by Jensen’s inequality

hMPip/21 ≤ (2d)p/2 Λp
Z 1

0

|B(r)−B(r)|p |zP(r)|p dr.

Because {zP(r)}r∈[0,1] is adapted to the filtration generated by B we may use the independence of the

increments of B along with scaling to find

EhMPip/21 ≤ (2d)
p/2
Λp
Z 1

0

E |B(r)−B(r)|p · E |zP(r)|p dr

= Cp (2d)
p/2 Λp

Z 1

0

|r − r|p/2 · E |zP(r)|p dr

≤ Cp (2d)
p/2
Λp||k0||p1,P

Z 1

0

|r − r|p/2 · Ee p2Λ
Pn

j=1 |∆jB|2dr,

where equation (7.10) was used in the last equality. By Lemma 8.5 of the Appendix, Ee
p
2Λ

Pn
j=1 |∆jB|2 is

bounded independent of P when |P| is sufficiently small. Hence we have shown that

E
·
sup
s
|MP

s |p
¸
≤ Cp(Λ)||k0||p1,P

Z 1

0

|r − r|p/2 dr ≤ Cp(Λ)||k0||p1,P |P|p/2.

So finish the proof it suffices to show that

(7.25) E

 nX
j=1

|βj |
p

≤ C||k0||p1,P |P|γp.

By assumption, uP solves the differential equation

u0P(s) = HuP(s)uP(s)B
0
P(s) uP(0) = u0,

so that for any F ∈ C1(O(M)), r ∈ (si−1, si],

(7.26) |F (uP(r))− F (uP(si−1))| ≤ C|
Z r

si−1
B0
P(s)ds| ≤ C|∆iB|,

where C bounds the horizontal derivatives of F . Applying this estimate to Ω implies

(7.27) |ΩuP(r) − ΩuP(si−1)| ≤ Λ|∆iB|.
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Using the inequalities in (7.12) and (7.27) and equation (7.22) we find that

|βi| ≤ 1

2
Λ max
si−1≤s≤si

|zP(s)− zP(si−1)||∆iB|2 + Λ|zP(si−1)||∆iB|3

≤ 1

2
Λ

µ
|k0(si−1+)|∆is+

1

2
|zP(si−1)|Λ |∆iB|2

¶
cosh

³√
Λ |∆iB|

´
|∆iB|2

+Λ|zP(si−1)||∆iB|3.(7.28)

Letting Kγ denote the random variable defined in equation (8.15) of Fernique’s Lemma 8.3, the above

estimate implies that

|βi| ≤ Λ

2
|k0(si−1+)|∆is cosh

³√
ΛKγ |P|

´
K2
γ |P|2γ

+

µ
Λ2

4
K4
γ |∆is|4γ cosh

³√
ΛKγ |P|

´
+ C2K

3
γ |∆is|3γ

¶
|zP(si−1)|

where γ ∈ (0, 1/2). We will now suppose that γ is close to 1/2. Then by equation (7.10) of Lemma 7.10, we
find that

nX
i=1

|βi| ≤ Λ

2
||k0||1,P cosh

³√
ΛKγ |P|

´
K2
γ |P|2γ

+C||k0||1,P |P|3γ−1
³
K4
γ cosh

³√
ΛKγ |P|

´
+K3

γ

´
e
1
2Λ

Pn
j=1 |∆jB|2

≤ C||k0||1,P |P|3γ−1
³¡
K4
γ +K2

γ

¢
cosh

³√
ΛKγ |P|

´
+K3

γ

´
e
1
2Λ

Pn
j=1 |∆jB|2 .

Using Lemma 8.4 and 8.5 of the Appendix, it follows that

³¡
K4
γ +K2

γ

¢
cosh

³√
ΛKγ |P|

´
+K3

γ

´
e
1
2Λ

Pn
j=1 |∆jB|2

is bounded in all Lp for |P| small. This proves E
³Pn

j=1 |βj |
´p
≤ C||k0||p1,P |P|(3γ−1)p which proves equation

(7.25) since (3γ − 1) approaches 1/2 when γ approaches 1/2. ¤

Lemma 7.13. Let �P be defined by

(7.29) �P(s) := zP(s) +
Z s

0

µ
1

2
RicuP(r)zP(r)− k0(r)

¶
dr.

Then for all γ ∈ (0, 12) and p ∈ [1,∞),

(7.30) E
h
max
s
|�P(s)|p

i
≤ C(γ, p)

³
||k0||p1,P |P|γp + |||k0|||pP

´
.
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Proof. Let δi be as in the previous lemma and set δP(s) :=
Pn

i=1 δi1(si−1,si](s). By the definitions of �P ,
(7.29) and δP , we have for s ∈ (si−1, si],

�P(s)− δP(s) = zP(s)− zP(si)

+
1

2

µZ s

0

RicuP(r)zP(r)dr −
Z si

0

RicuP(r)zP(r)dr
¶

+

Z si

0

k0(r+)dr −
Z s

0

k0(r)dr

=
1

2

Z si

0

¡
RicuP(r)zP(r)−RicuP(r)zP(r)

¢
dr

− 1
2

Z si

s

RicuP(r)zP(r)dr

+ (zP(s)− zP(si)) + (k(si)− k(s))

−
Z si

0

(k0(r)− k0(r+))dr

=:
1

2
Ai +

1

2
Bi + Ci(s) +Ei,

where for r ∈ (sj−1, sj ], r := sj−1. We will now prove the estimate

E
·
sup
s
|�P(s)− δP(s)|p

¸
≤ C(γ, p)

³
||k0||p1,P |P|2γp + |||k0|||pP

´
This will complete the proof (7.30) in view Lemma 7.12.

By definition of |||k0|||P in equation (7.9)
(7.31) max

i
|Ei| ≤ |||k0|||P .

In the argument to follow let {KP}P denote a collection functions on (W(Rd), µ) such that supP kKPkLp(µ) <
∞ for all p ∈ [1,∞). Using equation (7.10) with b = B and σ = φ(BP) and Lemma 8.5 of the Appendix,

|Bi| ≤ kRick∞|P|kzPk∞ ≤ kRick∞KP |kk0k1,P |P|.
So for p ∈ [1,∞),

E
h
max
i
|Bi|p

i
≤ kRickp∞|kk0kp1,PE [Kp

P ] |P|p ≤ C|P|p.
Next we consider Ci. We have Ci(si) = 0 and by (7.13) and (7.14) with b = B and σ = φ(BP) for
s ∈ (si−1, si],

C 0i(s) = z0P(s)− k0(s)

= k0(si−1)− k0(s) +
Z s

si−1
ΩuP(r)(B

0(r), zP(r))drB0(s)

which implies after integrating

|Ci(s)| ≤ Λ|∆iB|2||zP ||∞ + |||k0|||P ≤ ΛK2
γ |∆is|2γ ||zP ||∞ + |||k0|||P

where Λ is a bound on Ω and Kγ is defined in Lemma 8.4. Therefore, again by (7.10) and Lemma 8.5, if

p ∈ [1,∞) and γ ∈ (0, 1/2) then

E
·
max
i,s

|Ci(s)|p
¸
≤ C(γ, p,Λ)

³
||k0||p1,P |P|2γp + |||k0|||pP

´
.

¤
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So to finish the proof it only remains to consider the Ai term. Applying the estimate in equation (7.26)

with F = Ric gives, for r ∈ (sj−1, sj ],
|RicuP(r) −RicuP(r)| ≤ C|∆jB| ≤ CKγ |P|γ .

where C is a bound on the horizontal derivative of Ric. Therefore,

|Ai| ≤ CKγ |P|γkzPk∞ + kRick∞
Z 1

0

|zP(r)− zP(r)|dr

≤ CKγ |P|γ ||k0||1,Pe 12Λ
Pn

j=1 |∆jB|2

+kRick∞
µ
||k0||1,P |P|+ 1

2
Λmax

i
|∆iB|2kzPk∞

¶
≤ C||k0||1,P

n
e
1
2Λ

Pn
j=1 |∆jB|2

³
Kγ |P|γ +K2

γ |P|2γ
´
+ |P|

o
≤ KP ||k0||1,P |P|γ ,

wherein we have made use of equations (7.10) and (7.12) of Lemma 7.10 in the second inequality, equation

(7.10) and the definition of Kγ in equation (8.15) in the third inequality, and Lemmas 8.4 and 8.5 in the last

inequality. Thus

E
h
max
i
|Ai|p

i
≤ C(γ, p)||k0||p1,P |P|γp

for p ∈ [1,∞) and γ ∈ (0, 1/2). This completes the proof of Lemma 7.12. ¤

Proof. Let �P be defined as in equation (7.29) and let yP(s) denote the solution to the differential equation,

y0P(s) +
1

2
RicuP(s)yP(s) = k0(s) with yP(0) = 0.

Then

zP(s)− yP(s) = −
Z s

0

1

2
RicuP(r)(zP(r)− yP(r))dr + �P(s)

and hence

|zP(s)− yP(s)| ≤
Z s

0

C|(zP(r)− yP(r)|dr + �P(s),

where C is a bound on 1
2Ric. So by Gronwall’s inequality,

|zP(s)− yP(s)| ≤ max
s

¡|�P(s)|eCs¢ ≤ max
s
|�P(s)|eC ,

which combined with equation (7.30) of Lemma 7.12 shows that

E
h
max
s
|zP(s)− yP(s)|p

i
≤ C(γ, p)

³
||k0||p1,P |P|γp + |||k0|||pP

´
.

for p ∈ [1,∞), γ ∈ (0, 1/2).
To finish the proof of the theorem it is sufficient to prove

(7.32) E
h
max
s
|yP(s)− z(s)|p

i
≤ C(γ, p)

³
||k0||p1,P |P|γp + |||k0|||pP |P|γp

´
.

First note that a Gronwall estimate gives

(7.33) max
s
|z(s)| ≤ ||k0||L1(ds)e||Ric||∞s ≤ C||k0||L1(ds)

and similarly

max
s
|yP(s)| ≤ C||k0||L1(ds),

where ||k0||L1(ds) =
R 1
0
|k0(s)|ds. Let w = yP − z. Then

w0(s) =
1

2
RicuP(s)w(s) +

1

2

¡
RicuP(s) −Ricu(s)

¢
z(s)



40 ANDERSSON AND DRIVER

Letting

AP = max
s

1

2
|RicuP(s) −Ricu(s)|

the inequality (7.33) and an application of Gronwall’s inequality gives

(7.34) |w(s)| ≤ CAP ||k0||L1eCs

Theorem 4.14 implies

E [|AP |p] ≤ C(γ, p)|P|γp

and hence by (7.34),

E
h
max
s
|yP(s)− z(s)|p

i
≤ C(γ, p)||k0||pL1 |P|γp.

This implies (7.32) in view of the fact that

||k0||L1 ≤ ||k0||1,P + |||k0|||P .
This completes the proof of Theorem 7.11. ¤

7.3. Integration by Parts for Wiener Measure.

Proposition 7.14. Let |P| := max{|∆is| : i = 1, 2, . . . , n} denote the mesh size of the partition P and f be
a function on H(M) and f̃ on W(M) as in Theorem 4.17. Then

(7.35) lim
|P|→0

Z
HP(M)

f

Ã
nX
i=1

hk0(si−1+),∆ibi
!
ν1P =

Z
W(M)

µ
f̃

Z 1

0

hk0, db̃i
¶
dν,

where ∆ib is to be interpreted as a function on H(M) as in equation (7.7) and b̃ is the anti-development

map. Recall that b̃ is an Rd—valued Brownian motion on (W(M), ν) which was defined in Definition 4.15.
Here

R 1
0
hk0, db̃i denotes the Itô integral of k0 relative to b̃.

Proof. Let B denote the standard Rd—valued Brownian motion in Notation 1.2 and u denote the solution to

the Stratonovich stochastic differential equation (7.17). By Lemma 4.11 and Theorem 4.10,

(7.36)

Z
HP(M)

f

Ã
nX
i=1

hk0(si−1+),∆ibi
!
ν1P = E

"
f(φ(BP))

Ã
nX
i=1

hk0(si−1+),∆iBi
!#

.

By the isometry property of the Itô integral, we find that

lim
|P|→0

Ã
nX
i=1

hk0(si−1+),∆iBi
!
=

Z 1

0

hk0, dBi,

where the convergence takes place in L2(W(Rd), µ). As in the proof of theorem 4.17, f(φ(BP)) converges to
F (u) in L2 as well. Therefore we may pass to the limit in equation (7.36) to conclude that

lim
|P|→0

Z
HP(M)

f

Ã
nX
i=1

hk0(si−1+),∆ibi
!
ν1P = E

·
F (u)

Z 1

0

hk0, dBi
¸
.

Since (B, u) and (b̃, //̃) have the same distribution,

E
·
F (u)

Z 1

0

hk0, dBi
¸
=

Z
W(M)

µ
f̃

Z 1

0

hk0, db̃i
¶
dν.

The previous two displayed equations prove equation (7.35). ¤
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Definition 7.15. A function f : W(M)→ R is said to be a smooth cylinder function if f is of the form

(7.37) f(σ) = F ◦ πP(σ) = F (σP)

for some partition P and some F ∈ C∞(MP). ¤

We are now prepared for the main theorem of this section.

Theorem 7.16. Let k ∈ PC1, z be the solution to the differential equation (7.18) of Theorem 7.11 and f

be a cylinder function on W(M). Then

(7.38)

Z
W(M)

Xzf dν =

Z
W(M)

f

µZ 1

0

hk0, db̃i
¶
dν,

where

(Xzf)(σ) :=
nX
i=1

h∇if)(σ),X
z
si(σ)i =

nX
i=1

h∇if)(σ), //̃si(σ)z(si, σ)i

and (∇if)(σ) denotes the gradient F in the ith variable evaluated at (σ(s1), σ(s2), . . . , σ(sn)).

Proof. The proof is easily completed by passing to the limit |P| → 0 in equation (7.6) of Corollary 7.7

making use of Proposition 7.14, Theorems 7.11, 4.14, and Corollary 4.13 ¤

8. Appendix: Basic Estimates

8.1. Determinant Estimates.

Lemma 8.1. Let U be a d× d matrix such that |U | < 1, then
(8.1) det(I − U) = exp (−trU +Ψ(U)) ,
where Ψ(U) := −P∞n=2 1n trUn. Moreover, Ψ(U) satisfies the bound,

(8.2) |Ψ(U)| ≤
∞X
n=2

d

n
|U |n ≤ d|U |2(1− |U |)−1.

Proof. Equation (8.1) is just a rewriting of the standard formula:

log(det(I − U)) = −
∞X
n=0

1

n+ 1
tr
¡
Un+1

¢
,

which is easily deduced by integrating the following identity,

d

ds
log(det(I − sU)) = −tr((I − sU)−1U)

= −tr
Ã ∞X
n=0

snUnU

!
= −

∞X
n=0

sntr
¡
Un+1

¢
.

Since for any d× d matrix |trU | ≤ d|U | and |Uk| ≤ |U |k, it follows that
|tr(Uk)| ≤ d|U |k

and hence

|Ψ(U)| ≤
∞X
n=2

d

n
|U |n ≤ d|U |2(1− |U |)−1.

¤
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8.2. Ordinary Differential Equation Estimates.

Lemma 8.2. Let A(s) be a d× d matrix for all s ∈ [0, 1] and let Z(s) be either a Rd valued or d× d matrix

valued solution to the second order differential equation

(8.3) Z00(s) = A(s)Z(s).

Then

(8.4) |Z(s)− Z(0)| ≤ |Z(0)|
³
cosh

√
Ks− 1

´
+ |Z0(0)|sinh

√
Ks√

K

and

(8.5) |Z(s)− Z(0)| ≤ s|Z0(0)|+K
s2

2
Z∗(s)

where Z∗(s) := max{|Z(r)| : 0 ≤ r ≤ s}, K := sups∈[0,1] |A(s)| and |A| denotes the operator norm of A.

Proof. By the Taylor’s theorem with integral remainder,

Z(s) = Z(0) + sZ0(0) +
Z s

0

Z 00(u)(s− u)du

= Z(0) + sZ0(0) +
Z s

0

A(u)Z(u)(s− u)du(8.6)

and therefore

|Z(s)− Z(0)| ≤ s|Z0(0)|+K

Z s

0

|Z(u)|(s− u)du

≤ s|Z0(0)|+K

Z s

0

|Z(u)− Z(0)|(s− u)du+
s2

2
K|Z(0)| =: f(s).(8.7)

One may easily deduce equation (8.5) from the first inequality in this equation.

Note that f(0) = 0,

f 0(s) = |Z0(0)|+K

Z s

0

|Z(u)− Z(0)|(s− u)du+ sK|Z(0)|

f 0(0) = |Z 0(0)| and
f 00(s) = K|Z(s)− Z(0)|+K|Z(0)| ≤ Kf(s) +K|Z(0)|.

That is:

(8.8) f 00(s) = Kf(s) + η(s), f(0) = 0, and f 0(0) = |Z0(0)|,

where η(s) := f 00(s)−Kf(s) ≤ K|Z(0)|. Equation (8.8) may be solved by variation of parameters to find:

f(s) = |Z 0(0)|sinh
√
Ks√

K
+

Z s

0

sinh
p
K(s− r)√
K

η(r)dr

≤ |Z 0(0)|sinh
√
Ks√

K
+ |Z(0)|

Z s

0

√
K sinh

p
K(s− r)dr

= |Z 0(0)|sinh
√
Ks√

K
+ |Z(0)|(cosh

√
Ks− 1).

Combining this equation with equation (8.7) proves equation (8.4). ¤



PATH INTEGRAL FORMULAS ON MANIFOLDS 43

Lemma 8.3. Suppose that Z is a d × d — matrix valued solution to equation (8.3) with Z(0) = 0 and

Z0(0) = I. Let K > 0, K1 > 0 be constants so that sups∈[0,1] |A(s)| ≤ K and sups∈[0,1] |A0(s)| ≤ K1. Then

(8.9) Z(s) = sI +
s3

6
A(0) + sE(s),

where

(8.10) |E(s)| ≤ 1
6
(2K1s

3 +
1

2
K2s4) cosh(

√
Ks)

Proof. Using the definition of Z in equation (8.3) we have that Z(0) = Z00(0) = 0, Z0(0) = I,

Z(3)(s) :=
d3

ds3
Z(s) = A0(s)Z(s) +A(s)Z0(s),

and hence Z(3)(0) = A(0). By Taylor’s theorem with integral remainder

Z(s) = sI +
1

2

Z s

0

Z(3)(ξ)(s− ξ)2dξ

= sI +
s3

6
A(0) +

1

2

Z s

0

³
Z(3)(ξ)−A(0)

´
(s− ξ)2dξ.

Now using Lemma 8.2 with Z(0) = 0,we find¯̄̄
Z(3)(ξ)−A(0)

¯̄̄
=

¯̄̄̄
¯A0(ξ)Z(ξ) +A(ξ)

Ã
I +

Z ξ

0

A(r)Z(r)dr

!
−A(0)

¯̄̄̄
¯(8.11)

≤ K1
sinh(

√
Kξ)√

K
+K(cosh(

√
Kξ)− 1) +K1ξ(8.12)

≤ K1ξ(cosh(
√
Kξ) + 1) +

1

2
K2ξ2 cosh(

√
Kξ)(8.13)

≤ (2K1s+
1

2
K2s2) cosh(

√
Ks)(8.14)

where we used the elementary inequalities sinh(a)/a ≤ cosh(a) and cosh(a) − 1 ≤ 1
2a
2 cosh(a) valid for all

a ∈ R. Using Z(3)(0) = A(0) and the definition of E completes the proof. ¤

8.3. Gaussian Bounds. In this subsection, B(s) will always denote the standard Rd —valued Brownian
motion defined in Notation 1.2.

Lemma 8.4 (Fernique). For γ ∈ (0, 1/2) let Kγ be the random variable,

(8.15) Kγ := sup

½ |B(s)−B(r)|
|s− r|γ : 0 ≤ s < r ≤ 1

¾
.

Then there exists an � = �(γ) > 0 such that E
h
e�K

2
γ

i
<∞

Proof. Since Kγ as a functional of B is a “measurable” semi-norm, equation (8.15) is a direct consequence

of Fernique’s theorem [67, Theorem 3.2]. ¤

Lemma 8.5. For p ∈ [1,∞),

(8.16) Ee
p
2C

Pn
j=1 |∆jB|2 =

nY
j=1

(1− pC∆js)
−d/2

provided that pC∆js < 1 for all j. Furthermore,

(8.17) lim
|P|→0

Ee
p
2C

Pn
j=1 |∆jB|2 = edpC/2.
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Proof. By the independence of increments and scaling properties of B we have

E
h
e
p
2C

Pn
j=1 |∆jB|2

i
=

nY
j=1

E
h
epC|∆jB|

2/2
i
=

nY
j=1

³
E
h
epC∆jsN

2/2
i´d

,

where N is an standard normal random variable. This proves equation (8.16), since an elementary Gaussian

integration gives

E
h
epC∆jsN

2/2
i
= (1− pC∆js)

−1/2

provided that pC∆js < 1. Equation (8.17) is an elementary consequence of (8.16). ¤

Lemma 8.6 (Gaussian Bound). For every k ≥ 0 there is a constant C = C(k, d) which is increasing in k

such that

(8.18) E[ek|B(1)| : |B(1)| ≥ ρ] ≤ Ce−
1
4ρ

2

/ρ2 for all ρ ≥ 1.

Proof. A compactness argument shows that there is a constant C̃(k, d) such that rd−1ekre−
1
2 r

2 ≤ C̃(k, d)e−
3
8 r

2

for all r ≥ 0. Passing to polar coordinates and using this inequality shows that

E[ek|B(1)| : |B(1)| ≥ ρ] = ωd−1(2π)d/2
Z ∞
ρ

rd−1ekre−
1
2 r

2

dr

≤ ωd−1(2π)d/2C̃(k, d)
Z ∞
ρ

r

ρ
e−

3
8 r

2

dr

= ωd−1(2π)d/2C̃(k, d)
4

3ρ
e−

3
8ρ

2

≤ Ce−
1
4ρ

2

/ρ2,

where ωd−1 is the volume of the d− 1 sphere in Rd. ¤

Lemma 8.7. Fix � > 0 and K ≥ 0. Let χ�(r) = 1r≥�, let B be a standard Rd—valued Brownian motion and
let P = {0 = s0 < s1 < · · · < sn = 1} be a partition of [0, 1].
Define the function ψ : R+ → R+ by

(8.19) ψ(u) := E

Ã sinh(√K|B(u2)|)√
K|B(u2)|

!d−1 = E
Ãsinh(√Ku|B(1)|)√

Ku|B(1)|

!d−1 .
Then there is a constants C = C(K,d) <∞ such that

(8.20)
nX
i=1

E

χ�(|∆iB|)
Ã
sinh(

√
K|∆iB|)√

K|∆iB|

!d−1Y
j 6=i

ψ(
p
∆js) ≤ C�−2 exp

µ
− �2

4|P|
¶
.

Proof. It is easily checked that ψ is an even smooth (in fact analytic) function and that ψ(u) = 1+ d(d−1)
6 u2+

O(u4) and hence there is a constant C <∞ such that ψ(u) ≤ eCu
2

for 0 ≤ u ≤ 1. ThusY
j 6=i

ψ(
p
∆js) ≤ eC

P
j 6=i∆js ≤ eC .
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Recall the elementary inequalities sinh(a)/a ≤ cosh(a) ≤ e|a| which are valid for all a ∈ R. Using these
inequalities and the scaling properties of B and Lemma 8.6,

E

χ�(|∆iB|)
Ã
sinh(

√
K|∆iB|)p|K||∆iB|

!d−1 = E

"
χ�(
p
∆is|B(1)|)

µ
sinh(

√
K∆is|B(1)|)√

K∆is|B(1)|
¶d−1#

≤ E
h
χ�∆is−1/2(|B(1)|) exp

³
(d− 1)

p
K∆is|B(1)|

´i
≤ C(d,K|P|)∆is

�2
exp

µ
− �2

4∆is

¶
≤ C(d,K|P|)∆is

�2
exp

µ
− �2

4|P|
¶
.

Combining the above estimates completes the proof of Lemma 8.7. ¤

Proposition 8.8. Let B be the Rd—valued Brownian motion defined on
¡
W(Rd), µ

¢
as in Notation 1.2 above

and let Let Ri for i = 0, 1, , . . . , n be random symmetric d×d matrices which are σ(Bs : s ≤ si−1)—measurable
for each i. Note that R0 is non-random. Further assume there is a non-random constant K <∞ such that

|Ri| ≤ K for all i. Then for all p ∈ R there is an � = �(K, d, p) > 0

(8.21) 1 ≤ E
h
ep
Pn

i=1(hRi∆iB,∆iBi−tr(Ri)∆is)
i
≤ edp

2K2|P|

whenever |P| ≤ �.

Proof. By Itô’s Lemma,

hRi∆iB,∆iBi− tr(Ri)∆is = 2

Z si

si−1
hRi(B(s)−B(s)), dB(s)i,

and hence
Pn

i=1(hRi∆iB,∆iBi−tr(Ri)∆is) =M1, whereMt is the continuous square integrable martingale

Mt := 2

Z t

0

hRs(B(s)−B(s)), dB(s)i

and Rs := Ri if s ∈ (si−1, si]. The quadratic variation of this martingale is

hMit = 4
Z t

0

|Rs(B(s)−B(s))|2ds ≤ 4K2

Z t

0

|B(s)−B(s)|2ds.

Let p ∈ (1,∞). Then by the independent increment property of the Brownian motion B, it follows that

E
h
ep

2hMi1
i
≤ E

·
exp

µ
4p2K2

Z 1

0

|B(s)−B(s)|2ds
¶¸

=
nY
i=1

E

"
exp

Ã
4p2K2

Z si

si−1
|B(s)−B(s)|2ds

!#

=
nY
i=1

E
·
exp

µ
4p2K2∆is

2

Z 1

0

|B(s)|2ds
¶¸

,(8.22)

wherein the last equality we have used scaling and independence properties of B to conclude that
R si
si−1

|B(s)−
B(s)|2ds, R∆is

0
|B(s)|2ds and R∆is

0
∆is|B( s

∆is
)|2ds = ∆is

2
R 1
0
|B(s)|2ds all have the same distribution.

Fernique’s theorem [67, Theorem 3.2] implies that

ψ(λ) := E
·
exp

µ
λ

2

Z 1

0

|B(s)|2ds
¶¸
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is a well defined analytic function of λ in a neighborhood of 0. Because ψ(0) = 1 and

ψ0(0) =
1

2
E
Z 1

0

|B(s)|2ds = d

4

it follows that ψ(λ) ≤ edλ/2 for all positive λ sufficiently near 0. Using this fact in equation (8.22) gives the

bound

E
h
ep

2hMi1
i
≤

nY
i=1

exp
¡
4dp2K2∆is

2
¢
= exp

Ã
4dK2p2

nX
i=1

∆is
2

!
≤ exp

¡
4dK2p2|P|¢ <∞,(8.23)

which is valid when the mesh of P is sufficiently small.
By Itô’s Lemma,

Z
(p)
t = exp

µ
pMt − p2

2
hMit

¶
is a positive local martingale. Because of the bound in equation (8.23), Novikov’s criterion [87, Prop. 1.15,

p.308] implies that Z
(p)
t is in fact a martingale and hence in particular E

h
Z
(p)
1

i
= 1. Therefore,

E
£
epM1

¤
= E

·
epM1− p2

2 hMi1e
p2

2 hMi1
¸
≥ E

·
epM1− p2

2 hMi1
¸
= 1

and

E
£
epM1

¤
= E

£
exp

¡
pM1 − p2hMi1

¢
exp

¡
p2hMi1

¢¤
≤

p
E [exp (2pM1 − 2p2hMi1)]

p
E [exp (p2hMi1)]

=

q
EZ(2p)t

p
E [exp (p2hMi1)] =

p
E [exp (p2hMi1)]

≤ exp
¡
4dK2p2|P|¢ .

This completes the proof of Proposition 8.8. ¤
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[53] L. Gross, A Poincaré lemma for connection forms, J. Funct. Anal. 63 (1985), no. 1, 1—46.
[54] Leonard Gross, Lattice gauge theory; heuristics and convergence, Stochastic processes–mathematics and physics (Bielefeld,

1984), Lecture Notes in Math., vol. 1158, Springer, Berlin, 1986, pp. 130—140.
[55] S. J. Guo, On the mollifier approximation for solutions of stochastic differential equations, J. Math. Kyoto Univ. 22 , no.

2 (1982), 243—254.
[56] E. P. Hsu, Flows and quasi-invariance of the Wiener measure on path spaces, Stochastic analysis (Ithaca, NY, 1993), Proc.

Sympos. Pure Math., vol. 57, Amer. Math. Soc., Providence, RI, 1995, pp. 265—279.
[57] , Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal.

134 (1995), no. 2, 417—450.
[58] Wataru Ichinose, On the formulation of the Feynman path integral through broken line paths, Comm. Math. Phys. 189

(1997), no. 1, 17—33.
[59] N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North Holland, Amsterdam, 1981.
[60] Atsushi Inoue and Yoshiaki Maeda, On integral transformations associated with a certain Lagrangian–as a prototype of

quantization, J. Math. Soc. Japan 37 (1985), no. 2, 219—244.
[61] E. Jørgensen, The central limit problem for geodesic random walks, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32

(1975), 1—64.
[62] H. Kaneko and S. Nakao, A note on approximation for stochastic differential equations, Séminaire de Probabilités, XXII,
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