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86962 Futuroscope Chasseneuil Cedex, France

bDepartment of Mathematics-0112, University of California at San Diego
La Jolla, CA 92093-0112 USA

Abstract

We prove Li-Yau type inequalities for positive harmonic functions on Riemannian
manifolds by using methods of Stochastic Analysis. Rather than evaluating an exact
Bismut formula for the differential of a harmonic function, our method relies on
a Bismut type inequality which is derived by an elementary integration by parts
argument from an underlying submartingale. It is the monotonicity inherited in
this submartingale which allows to establish the pointwise estimates.
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1 Introduction

The effect of curvature on the behaviour of harmonic functions is a classical
problem: it manifests itself most directly in gradient estimates and Harnack
inequalities with constants depending only on a lower bound of the Ricci cur-
vature of the manifold, the dimension, and the radius of the ball on which the
function is defined. Such estimates in global form, i.e., for positive harmonic
functions on Riemannian manifolds, are due to S.T. Yau [9]; local versions
have been established by Cheng and Yau [3].
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The classical proof of gradient estimates relies on two ingredients: the use
of comparison theorems for the Laplacian of the Riemannian distance, which
allow to bound the mean curvature of geodesic spheres from above in terms
of the lower bound of the Ricci curvature, and Bochner’s formula which yields
a lower bound for ∆| grad u|2 for a harmonic function u in terms the lower
Ricci bound. The estimate itself then relies on a clever use of the maximum
principle, see [6].

In this paper we show that gradient estimates for positive harmonic functions
can be derived from elementary submartingales by means of stochastic analy-
sis. In particular, we give a stochastic proof of the following gradient estimate
due to Cheng and Yau [3]. It should be noted that our approach gives in
addition an explicit value for the constant.

Theorem 1.1 Let M be a complete Riemannian manifold of dimension n ≥ 2
and let D ⊂ M be a relatively compact domain. Let u : D → R be a harmonic
function which is strictly positive. Put r(x) = dist(x, ∂D). Then:

|du|
u

(x) ≤ c(n)

[
k +

1

r(x)

]
(1.1)

if Ric ≥ −(n− 1) k2 where k ≥ 0.

Our method of proof is inspired by the stochastic approach to gradient es-
timates used in [8], [1] where one represents the differential of a harmonic
map by a Bismut type mean value formula which can be evaluated in explicit
terms. As in [8], explicit estimates depend on a reasonable choice of a finite-
energy process which is used for integration by parts on path space. See [7]
for background on Bismut formulas.

2 Some elementary calculations

Let M be a (not necessarily complete) Riemannian manifold of dimension n ≥
2, and u : M → R be a harmonic function. For x ∈ M let ϕ(x) = | grad u|(x).
For x ∈ M with ϕ(x) 6= 0, let n(x) = ϕ(x)−1 grad u(x).

If f : M → R is a smooth function, then we have the well-known formula

� grad f = grad ∆f + Ric] grad f, (2.1)

where � = trace∇2 denotes the rough Laplacian on Γ(TM), and where by
definition,

〈Ric] X, Y 〉 = Ric(X, Y ), X, Y ∈ Γ(TM).
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Eq. (2.1) applied to u gives

� grad u = Ric] grad u. (2.2)

In the following Lemma we calculate grad ϕ and ∆ϕ in terms of n.

Lemma 2.1 Let u : M → R be a harmonic function, ϕ = | grad u|, and
n = (grad u)/ϕ where it is defined. Then on M , where ϕ does not vanish,

grad log ϕ = ∇nn− (div n)n, (2.3)

and
∆ϕ = ϕ

[
Ric(n, n) + |∇n|2H.S.

]
. (2.4)

In particular,
|grad log ϕ|2 ≤ (n− 1) |∇n|2H.S. . (2.5)

Proof (i) We start by proving Eq. (2.4). To this end, fix x ∈ M such
that ϕ(x) 6= 0 and choose an orthonormal frame (ei)1≤i≤n at x such that
(∇ei

ej)(x) = 0 for all i, j. Then, we have at x,

�(ϕn) = (∆ϕ) n + 2 〈∇ei
grad u, n〉∇ei

n + ϕ �n.

Taking scalar product with n makes the second term of the r.h.s. to vanish
and yields

∆ϕ = 〈�(ϕn), n〉 − ϕ 〈�n, n〉 . (2.6)

It is easily seen that
〈�n, n〉 = − |∇n|2H.S. ,

so that with Eq. (2.2) the claimed equality for ∆ϕ follows.

(ii) To establish (2.3), note that ∆u = 0 writes as

0 = div(ϕn) = dϕ (n) + ϕ div n.

Let n[ = 〈n, ·〉 = ϕ−1 〈grad u, ·〉 = ϕ−1du. Then on one hand,

ιndn[ = ιn
(
−ϕ−2dϕ ∧ du

)
= −ϕ−2 (dϕ (n) du− du (n) dϕ)

= −ϕ−2
(
−ϕ div n du− ϕ |n|2 dϕ

)
= div n 〈n, ·〉+ 〈grad log ϕ, ·〉 ,

while on the other hand,

ιndn[ = 〈∇nn, ·〉 − 〈∇.n, n〉 = 〈∇nn, ·〉 .

Comparing these last two equations proves Eq. (2.3).
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(iii) Finally, to establish (2.5), note first that, as a consequence of (2.3),

|grad log ϕ|2 = (div n)2 + |∇nn|2 . (2.7)

Next, fix x ∈ M such that ϕ(x) 6= 0 and choose an orthonormal frame (e′i)1≤i≤n

at x such that e′n = n. Then

|grad log ϕ|2 =

n−1∑
j=1

〈
∇e′

j
n, e′j

〉2

+ |∇nn|2

≤ (n− 1)
n−1∑
j=1

〈
∇e′

j
n, e′j

〉2
+
∣∣∣∇e′

n
e′n
∣∣∣2

≤ (n− 1)
n∑

j=1

∣∣∣∇e′
j
n
∣∣∣2 = (n− 1) |∇n|2H.S. . 2

3 Gradient estimates for positive harmonic functions

The following theorem gives the submartingale property which will be crucial
for our estimates, see Bakry [2] for related analytic results.

Theorem 3.1 Let M be a (not necessarily complete) Riemannian manifold
of dimension n ≥ 2. Let X be a Brownian motion on M and let u : M → R
be a harmonic function. For any α ≥ n−2

n−1
, the process

Yt := | grad u|α(Xt) exp
{
−α

2

∫ t

0
Ric(n, n)(Xr) dr

}
(3.1)

is a local submartingale (with the convention that Ric(n, n)(x) = 0 at points x
where grad u(x) vanishes).

Proof First assume that grad u does not vanish on M . Then, making use of
Eq. (2.4), we have

∆ϕα = αϕα−1∆ϕ + α(α− 1)ϕα−2 |grad ϕ|2

= αϕα
(
Ric(n, n) + |∇n|2H.S. + (α− 1) |grad log ϕ|2

)
.

From the assumption on α, along with estimate (2.5), we obtain

|∇n|2H.S. + (α− 1) |grad log ϕ|2 ≥ |∇n|2H.S. −
1

n− 1
|grad log ϕ|2 ≥ 0,

and hence
∆ϕα ≥ αϕα Ric(n, n). (3.2)
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An application of Itô’s lemma now shows, Yt = Nt + At where

dNt = exp
{
−α

2

∫ t

0
Ric(n, n)(Xr) dr

}〈
//−1

t grad ϕα(Xt), dbt

〉
and

dAt =
1

2

(
∆ϕα

ϕα
(Xt)− α Ric(n, n)(Xt)

)
Yt dt.

By the inequality (3.2), dAt ≥ 0 and therefore, Yt is a local submartingale,
which completes the proof under the assumption that ϕ never vanishes on M .
This assumption however is easily removed by letting Ric(n, n)(x) = 0 in (3.1)
at points x where grad u(x) = 0.

Indeed, let [0, ζ[ be the maximal interval on which our Brownian motion X is
defined. Fixing ε > 0, we consider the partition

0 = τ0 ≤ σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤ . . .

of [0, ζ[ defined by

σi = inf{t ≥ τi−1 : Yt ≤ ε/2} and τi = inf{t ≥ σi : Yt ≥ ε}, i ≥ 1.

Now consider Y ε
t := Yt ∨ ε which is seen to be a local submartingale on each

of the sub-intervals of our partition. Indeed, on [σi, τi[ the process is constant,
Y ε ≡ ε, while on [τi−1, σi[ it is a local submartingale, since there Y itself is
a local submartingale by Itô’s formula, as shown above, using the fact that
X|[τi−1, σi[ takes its values in {x ∈ M : grad u(x) 6= 0}. Now since each Y ε is
a local submartingale, Yt = lim

ε↓0
Y ε

t itself is a local submartingale. 2

Remark 1 In (3.1) we adopted the convention Ric(n, n)(x) = 0 at points x
where grad u(x) vanishes. It should be noted that any other convention gives
a local submartingale as well.

Remark 2 In Appendix A we provide a generalization of Theorem 3.1, along
with a unified proof of the submartingale property of (3.1), which directly
takes care of the possible vanishing of the gradient of u and does not require
the case distinction made in the proof of Theorem 3.1.

Let `t be a real-valued non-negative adapted continuous process with C1 paths.
Since

d
(
Yt`t −

∫ t

0
Ys

˙̀
s ds

)
= `t dYt,

the process

Zt := Yt`t −
∫ t

0
Ys

˙̀
s ds = Y0`0 +

∫ t

0
`sdYs (3.3)

is a local submartingale. Fix x ∈ M and assume X0 = x. Further let τ be a
stopping time such that (3.3) stopped at τ is a (true) submartingale. (Note
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that this can always be achieved by choosing τ to be the first exit time of
X from some relatively compact neighbourhood of x.) Then, if `0 = 1 and
`τ = 0, the inequality

Z0 ≤ E [Zτ ]

yields

Y0 ≤ −E
[∫ τ

0
Ys

˙̀
s ds

]
which gives in our situation

ϕα(x) ≤ −E
[∫ τ

0
ϕα(Xs) exp

{
−α

2

∫ s

0
Ric(n, n)(Xr) dr

}
˙̀
s ds

]
. (3.4)

Assuming α < 2, by Hölder’s inequality, we may estimate

ϕ(x) ≤ E
[(∫ τ

0
ϕ2(Xs) ds

)α/2

(3.5)

(∫ τ

0
exp

{
− α

2− α

∫ s

0
Ric(n, n)(Xr) dr

} ∣∣∣ ˙̀s∣∣∣2/(2−α)
ds
)(2−α)/2

]1/α

.

Theorem 3.2 Let α ∈ [n−2
n−1

, 2[ and let p > 1, q > 1 such that p−1 + q−1 = 1.
Then

| grad u|(x) ≤ I1(α, p) · I2(α, p) (3.6)

where

I1(α, p) = E
[(∫ τ

0
| grad u|2(Xs) ds

)αp/2
]1/αp

I2(α, p) = E
[(∫ τ

0
exp

{ −α

2− α

∫ s

0
Ric(n, n)(Xr) dr

} ∣∣∣ ˙̀s∣∣∣2/(2−α)
ds
)(2−α)q/2

]1/αq

and where `t is a real-valued non-negative adapted continuous process with C1

paths such that `0 = 1 and `τ = 0.

Proof We apply one more time Hölder’s inequality to Eq. (3.5). 2

To estimate I1(α, p) we use the following Lemma.

Lemma 3.3 Let β ∈ ]0, 1[ and

Cβ = 2−1/2

Γ
(

1−β
2

)
Γ
(

1
2

)
1/β

. (3.7)

For every positive local martingale Y with infinite lifetime and deterministic
starting point Y0 = y,

E
[
〈Y, Y 〉β/2

∞

]1/β
≤ Cβ y. (3.8)
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Proof Without loss of generality we may assume that y = 1. Moreover, apply-
ing the Dambis, Dubins-Schwarz Theorem (cf. [4] or [5]), by “enriching” the
filtered probability space if necessary, we may assume there exists a Brownian
motion B started at 0 such that

Y = 1 + B〈Y,Y 〉.

Let T := inf{t ≥ 0, 1 + Bt = 0}. By the reflection principle which yields

P {Bt ≤ −1} =
1

2
P {T ≤ t} for all t ≥ 0,

and the scaling property of Brownian motion, we conclude that T has the
same law as 1/B2

1 . Consequently,

E
[
T β/2

]1/β
= E

[
|B1|−β

]1/β
= Cβ.

Moreover, we have

〈Y, Y 〉∞ ≤ T a.s.,

so that

E
[
〈Y, Y 〉β/2

∞

]1/β
≤ E

[
T β/2

]1/β
= Cβ. 2

To exploit estimate (3.6) we now choose α ∈
[

n−2
n−1

, 1
[

if n ≥ 3, α ∈ ]0, 1[ if
n = 2, and p > 1 such that β := αp < 1.

Proposition 3.4 (Gradient estimate; general form) Let M be a Rieman-
nian manifold. Assume that u : M → R is a positive harmonic function and
let n = grad u/| grad u| where it is defined. Further, let α ∈

[
n−2
n−1

, 1
[

and q > 1

such that β := q
q−1

α < 1. Then, for each x ∈ M , the following estimate holds:

| grad log u|(x) (3.9)

≤ Cβ E
[(∫ τ

0
exp

{
− α

2− α

∫ s

0
Ric(n, n)(Xr) dr

} ∣∣∣ ˙̀s∣∣∣2/(2−α)
ds
)(2−α)q/2

]1/αq

where Cβ is given by (3.7) and the process `s is chosen as in Theorem 3.2.

Proof Lemma 3.3 applied to Yt := u(Xτ
t ) gives

E
[(∫ τ

0
ϕ2(Xs) ds

)β/2
]1/β

≤ Cβ u(x). (3.10)

Bounding the term I1(α, p) in estimate (3.6) by means of (3.10), and dividing
by u(x), the claimed inequality follows from (3.6). 2
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Corollary 3.5 We keep the assumptions of Proposition 3.4 and assume that
Ric ≥ −K for some constant K ≥ 0. Then

| grad log u|(x) ≤ Cβ E
[(∫ τ

0
exp

{
αKs

2− α

} ∣∣∣ ˙̀s∣∣∣2/(2−α)
ds
)(2−α)q/2

]1/αq

. (3.11)

4 Explicit constants

For methods of estimating the right hand sides in Eqs. (3.9) and (3.11) we
refer to [8] and see especially [8, Corollary 5.1]. The remaining question then
is to optimize the choices of α and p.

Fix x ∈ M and let D ⊂ M be a relatively compact open neighbourhood of
x in M such that ∂D is smooth. Let f ∈ C2(D̄) be a positive function on D
which is bounded by 1 and vanishing on ∂D. Define

T (t) :=
∫ t

0
f−2(Xs(x)) ds and ρ(t) := inf {s ≥ 0 : T (s) ≥ t} .

We have ρ(t) ≤ t. The process X ′
t := Xρ(t) is a diffusion with generator

L′ := 1
2
f 2∆ and infinite lifetime, see [8, Proposition 2.5]. We fix t > 0 and let

h0(s) :=
∫ s

0
f−2(Xr(x)) 1{r<ρ(t)} dr.

Hence h0(s) = h0(ρ(t)) = T (ρ(t)) = t for s ≥ ρ(t). Let h1 ∈ C1([0, t], R) be
a function with non-positive derivative such that h1(0) = 1 and h1(t) = 0,
and define `s := (h1 ◦ h0)(s). Since `s has non-positive derivative, | ˙̀s| ds is a
probability measure on [0, ρ(t)].

We want to estimate I1/αq where

I := E

(∫ ρ(t)

0
exp

{
αKs

2− α

} ∣∣∣ ˙̀s∣∣∣2/(2−α)
ds

)(2−α)q/2
 .

Assume that (2− α)q/2 > 1 (note this is automatically satisfied if n ≥ 3 and
α = n−2

n−1
). By means of Jensen’s inequality, we get

I = E

(∫ ρ(t)

0
exp

{
αK

2− α
s
} ∣∣∣ ˙̀s∣∣∣α/(2−α) ∣∣∣ ˙̀s∣∣∣ ds

)(2−α)q/2


≤ E
[∫ ρ(t)

0
exp

{
αKq

2
s
} ∣∣∣ ˙̀s∣∣∣qα/2 ∣∣∣ ˙̀s∣∣∣ ds

]

= E
[∫ ρ(t)

0
exp

{
αKq

2
s
} ∣∣∣ ˙̀s∣∣∣(qα+2)/2

ds

]
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= E
[∫ ρ(t)

0
exp

{
αKq

2
s
} ∣∣∣ḣ1(h0(s))

∣∣∣(qα+2)/2 ∣∣∣ḣ0(s)
∣∣∣(qα+2)/2

ds

]

= E
[∫ ρ(t)

0
exp

{
αKq

2
s
} ∣∣∣ḣ1(h0(s))

∣∣∣(qα+2)/2
f−qα−2(Xs) ds

]

= E
[∫ t

0
exp

{
αKq

2
ρ(r)

} ∣∣∣ḣ1(r)
∣∣∣(qα+2)/2

f−qα(X ′
r) dr

]
=
∫ t

0

∣∣∣ḣ1(r)
∣∣∣(qα+2)/2

E
[
exp

{
αKq

2
ρ(r)

}
f−qα(X ′

r)
]

dr.

Let Zs = eαKqρ(s)/2 f−αq(X ′
s). We have

dZs
m=

1

2
Zs

(
αKqf 2(X ′

s)− αq(f∆f)(X ′
s) + αq(αq + 1) |grad f |2 (X ′

s)
)

ds

≤ C(α, K, q, f)Zs ds

where

C(α, K, q, f) =
1

2
sup
x∈D

{
αKqf 2(x)− αq(f∆f)(x) + αq(αq + 1) |grad f |2 (x)

}
.

Let C := C(α, K, q, f). Then

E[Zs] ≤ Z0e
Cs = f−αq(x)eCs

which yields

I1/αq ≤
(∫ t

0
f−αq(x) eCs

∣∣∣ḣ1(s)
∣∣∣(qα+2)/2

ds
)1/αq

= f−1(x)
(∫ t

0
eCs

∣∣∣ḣ1(s)
∣∣∣(qα+2)/2

ds
)1/αq

.

We fix a > 0 and let h1(s) = 1 − 1− e−as

1− e−at
for s ∈ [0, t]. Then, in terms of

I ≡ I(t, a), we have

| grad log u|(x) ≤ Cβ inf
a>0

inf
t>0

I1/αq(t, a).

But, if a > 2C/(qα + 2), then

I1/αq(t, a) ≤ f−1(x)
(

a

1− e−at

)(qα+2)/(2αq) (∫ t

0
e(C−(qα+2)a/2)s ds

)1/αq

= f−1(x)
(

a

1− e−at

)(qα+2)/(2αq)
(

1− e(C−(qα+2)a/2)t

(qα + 2)a/2− C

)1/αq

and

inf
t>0

I1/αq(t, a) ≤ lim
t→∞

I1/αq(t, a) = f−1(x)

(
a(qα+2)/2

(qα + 2)a/2− C

)1/αq

.
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The minimum in a > 2C/(qα + 2) of the last expression is attained for a =

2C/αq, and is equal to (2C/αq)1/2. Consequently

| grad log u|(x) ≤ f−1(x) Cβ

(
2C

αq

)1/2

.

Recall that

Cβ = Cαp = 2−1/2

Γ
(

1−αp
2

)
Γ
(

1
2

)
1/αp

.

Combining our results, we get

Theorem 4.1 (Gradient estimate; specific form) Let M be a Rieman-
nian manifold such that Ric ≥ −K for some constant K ≥ 0. Let u be a
positive harmonic function defined on some relatively compact open domain
D ⊂ M with smooth boundary ∂D. Further, let f ∈ C2(D̄) be strictly positive
on D, bounded by 1 and vanishing on ∂D. Then, for any x ∈ D,

|grad log u| (x) ≤ f−1(x)

Γ
(

1−αp
2

)
Γ
(

1
2

)
1/αp√

C1(α, K, q, f) (4.1)

where

C1(α, K, q, f) =
1

2
sup
x∈D

{
Kf 2(x)− (f∆f)(x) + (αq + 1) |grad f |2 (x)

}
. (4.2)

Here we have α ∈
[

n−2
n−1

, 1
[

and p > 1, q > 1 such that p−1 + q−1 = 1 and
pα < 1.

Note that C1(α, K, q, f) differs from the constant c1(f)/2 in [8], Eq. (4.2) only
by the term αq + 1. In the following remark we specify estimate (4.1) by a
particular choice of the function f .

Remark 3 Let M be a complete Riemannian manifold and D ⊂ M be a
relatively compact open domain with smooth boundary. Fixing x ∈ D and
using the function

f := cos

(
π

2

d(x, ·)
dist(x, ∂D)

)
,

defined on the open ball B(x, dist(x, ∂D)) about x of radius dist(x, ∂D), we
may follow the method applied in [8], Sect. 5 to obtain for strictly positive
harmonic functions u on D the estimate

|grad log u| (x) ≤

Γ
(

1−αp
2

)
Γ
(

1
2

)
1/αp√

C(dist(x, ∂D)) (4.3)
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where

C(r) :=
π2

4

n + αq + 1

r2
+

π

2

√
K (n− 1)

r
+ K. (4.4)

Here −K ≤ 0 is again a lower bound for Ricci on M .

It remains to minimize the r.h.s. of (4.1) in α and p (resp. q). Letting for
instance m = dim M ∨ 3, α = m−2

m−1
, p = 2m−3

2m−4
so that β = αp = 2m−3

2m−2
< 1,

q = 2m − 3 the conjugate exponent of p, the estimate depends only on the
dimension of M , the lower bound K for the Ricci curvature, and on the the
distance dist(x, ∂D) to the boundary. This establishes estimate (1.1) claimed
in the Introduction.

Theorem 4.2 (Gradient estimate; Cheng-Yau [3]) Let M be a complete
Riemannian manifold and let D ⊂ M be a relatively compact domain. Let
u : D → R be a harmonic function which is strictly positive. Put r(x) =
dist(x, ∂D). Then:

|du|
u

(x) ≤ c(n)

[
k +

1

r(x)

]
if Ric ≥ −(n− 1) k2 where k ≥ 0.

Corollary 4.3 (Gradient estimate on geodesic balls) Let M be a com-
plete Riemannian manifold with Ric ≥ −(n − 1)k2, k ≥ 0. If u is a positive
harmonic function on a geodesic ball Br(x) ⊂ M , then

sup
Br/2(x)

|du|
u

≤ c(n)

(
1 + k r

r

)
. (4.5)

In particular, if Ric ≥ 0 then any positive harmonic function u on M is
constant.

Corollary 4.4 (Elliptic Harnack inequality) Let M be a complete Rie-
mannian manifold with Ric ≥ −(n − 1)k2. Suppose that u is a positive har-
monic function on a geodesic ball Br(x) ⊂ M . Then

sup
Br/2(x)

u ≤ c(n, r, k) inf
Br/2(x)

u. (4.6)

Proof By the gradient estimate, we have supBr/2(x) |du|/u ≤ c(n, r, k). Let

x1, x2 ∈ B̄r/2(x) be such that supBr/2(x) u = u(x1) and infBr/2(x) u = u(x2).
Let γ be a minimal geodesic joining x1 and x2. Then

log
u(x1)

u(x2)
=

∣∣∣∣∣
∫ d log u(γ(s))

ds
ds

∣∣∣∣∣ ≤
∫

γ

|du|
u

≤ c(n, r, k)
∫

γ
1 ≤ c(n, r, k) 2r.

Therefore, u(x1) ≤ exp (2r c(n, r, k)) u(x2). 2
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A Expansion on the submartingale proof

We start by generalizing inequality (3.2).

Lemma A.1 Let ε ≥ 0, u : M → R be a harmonic function,

M ′ = {x ∈ M : grad u (x) 6= 0} , ϕε =
√
| grad u|2 + ε2,

and

nε (x) := ϕ−1
ε grad u =

(
|grad u|2 + ε2

)−1/2
grad u,

with the convention that n0 (x) := 0 if x /∈ M ′. Then for α ∈
[

n−2
n−1

, 1
]
,

∆ϕα
ε ≥ αϕα

ε Ric (nε, nε) (A.1)

where (A.1) holds for all x ∈ M if ε > 0 and for all x ∈ M ′ if ε = 0.

Proof Suppose either ε > 0 or ε = 0 and grad u (x) 6= 0. We begin by
observing that

∆ϕα
ε = αϕα−1

ε ∆ϕε + α (α− 1) ϕα−2
ε |grad ϕε|2

= αϕα
ε

{
∆ϕε

ϕε

+ (α− 1) |grad log ϕε|2
}

. (A.2)

Set fε (s) = (ε2 + s)
1/2

, so that ϕε (x) = fε

(
|grad u (x)|2

)
. Then

f ′ε (s) =
1

2

(
ε2 + s

)−1/2
and f ′′ε (s) = −1

4

(
ε2 + s

)−3/2

and for v ∈ TM ,

vϕε = 2f ′ε
(
|grad u|2

)
〈∇v grad u, grad u〉

= ϕ−1
ε 〈∇v grad u, grad u〉

= 〈∇v grad u, nε〉 = 〈∇nε grad u, v〉 (A.3)

where in the last equality we have used the fact that ∇ has zero torsion. From
this equation it follows that

grad ϕε = ∇nε grad u = ∇nε(ϕεnε) = nεϕε · nε + ϕε∇nεnε, (A.4)

and in particular that

grad log ϕε = nε log ϕε · nε +∇nεnε. (A.5)

Since

div nε = div
(
ϕ−1

ε grad u
)

= −ϕ−2
ε 〈grad ϕε, grad u〉+ ϕ−1

ε ∆u

12



= −〈grad log ϕε, nε〉 = −nε log ϕε,

Eq. (A.5) may be written as

grad log ϕε = ∇nεnε − (div nε) nε. (A.6)

From Eq. (A.3) we also have

∇2
v⊗vϕε =

〈
∇2

v⊗v grad u, nε

〉
+ 〈∇v grad u,∇vnε〉

=
〈
∇2

v⊗v grad u, nε

〉
+ 〈∇v (ϕεnε) ,∇vnε〉

=
〈
∇2

v⊗v grad u, nε

〉
+ vϕε · 〈nε,∇vnε〉+ ϕε 〈∇vnε,∇vnε〉

which upon summing on v running through an orthonormal frame shows

∆ϕε = 〈� grad u, nε〉+ 〈nε,∇grad ϕεnε〉+ ϕε |∇nε|2

=
〈

grad ∆u + Ric# grad u, nε

〉
+ 〈nε,∇grad ϕεnε〉+ ϕε |∇nε|2

=
〈

Ric#∇u, nε

〉
+ 〈nε,∇grad ϕεnε〉+ ϕε |∇nε|2

= ϕε

{
Ric (nε, nε) + 〈nε,∇grad log ϕεnε〉+ |∇nε|2

}
. (A.7)

When ε 6= 0 and grad u (x) = 0, we see from Eq. (A.7) that

∆ϕε (x) = ϕε (x) |∇nε|2 (x)

and from Eq. (A.4) that (grad log ϕε) (x) = 0. Combining these identities with
Eq. (A.2) gives

(∆ϕα
ε ) (x) = αϕα

ε (x) |∇nε|2 (x) ≥ 0 = αϕα
ε (x) Ric (nε, nε) (x) . (A.8)

This shows that Eq. (A.1) is valid for x /∈ M ′. To finish the proof it suffices
to show that Eq. (A.1) is valid for all x ∈ M ′.

So for the rest of the proof we will assume that x ∈ M ′. Since 〈n0, n0〉 = 1
on M ′,

0 = v1 = 2 〈∇vn0, n0〉 for all v ∈ TxM and x ∈ M ′. (A.9)

Taking ε = 0 in Eq. (A.7) gives

∆ϕ0 = ϕ0

(
Ric (n0, n0) + |∇n0|2

)
(A.10)

and from Eqs. (A.6) and (A.9) we find

|grad log ϕ0|2 = |∇n0n0|2 + (div n0)
2 (A.11)

on M ′. Let Fε (s) := (s2 + ε2)
α/2

so that ϕα
ε = Fε (ϕ0) and by elementary

calculus,

F ′
ε (s) = αs

(
s2 + ε2

)−1
Fε (s) and

13



F ′′
ε (s) = α

(
s2 + ε2

)−2 (
ε2 − (1− α) s2

)
Fε (s) .

Therefore we find

∆ϕα
ε = ∆Fε (ϕ0) = div (F ′

ε (ϕ0) grad ϕ0) = F ′
ε (ϕ0) ∆ϕ0 + F ′′

ε (ϕ0) |grad ϕ0|2

= αϕ0

(
ϕ2

0 + ε2
)−1

Fε (ϕ0) ∆ϕ0

+ α
(
ϕ2

0 + ε2
)−2 (

ε2 − (1− α) ϕ2
0

)
Fε (ϕ0) |grad ϕ0|2

≥ αϕα
ε

{
ϕ0

(
ϕ2

0 + ε2
)−1

∆ϕ0 −
(
ϕ2

0 + ε2
)−2

(1− α) ϕ2
0 |grad ϕ0|2

}
= αϕα

ε

ϕ2
0

ϕ2
0 + ε2

{
∆ϕ0

ϕ0

− (1− α)
ϕ2

0

ϕ2
0 + ε2

|grad log ϕ0|2
}

≥ αϕα
ε

ϕ2
0

ϕ2
0 + ε2

{
∆ϕ0

ϕ0

− (1− α) |grad log ϕ0|2
}

= αϕα
ε

ϕ2
0

ϕ2
0 + ε2

{
Ric (n0, n0) + |∇n0|2 − (1− α) |grad log ϕ0|2

}
(A.12)

where in the last equality we have used Eq. (A.10).

Letting {ei}n
i=1 be an orthonormal frame such that en = n0 shows

(div n0)
2 =

(
n∑

i=1

〈∇ei
n0, ei〉

)2

=

(
n−1∑
i=1

〈∇ei
n0, ei〉

)2

≤ (n− 1)
n−1∑
i=1

〈∇ei
n0, ei〉2 ≤ (n− 1)

n−1∑
i=1

|∇ei
n0|2

and therefore, using Eq. (A.9),

|grad log ϕ0|2 = |∇n0n0|2 + (div n0)
2

≤ (n− 1)
n−1∑
i=1

|∇ei
n0|2 + |∇enn0|2 ≤ (n− 1) |∇n0|2 .

Combining this estimate with Eq. (A.12) shows

∆ϕα
ε ≥ αϕα

ε

ϕ2
0

ϕ2
0 + ε2

{
Ric (n0, n0) +

(
1− (1− α) (n− 1)

)
|∇n0|2

}
. (A.13)

Taking α ≥ n−2
n−1

(which is equivalent to 1− (1− α) (n− 1) ≥ 0) in Eq. (A.13)
implies

∆ϕα
ε ≥ αϕα

ε

ϕ2
0

ϕ2
0 + ε2

Ric (n0, n0) = αϕα
ε Ric (nε, nε) . (A.14)

Combining this estimate with that in Eq. (A.8) proves inequality (A.1). 2
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Theorem A.2 We keep the notation and the assumptions of Theorem (3.1).

For all α ∈
[

n−2
n−1

, 1
]
,

Yt := |grad u (Xt)|α exp
{
−α

2

∫ t

0
Ric (n, n) (Xs) ds

}
(A.15)

is a local submartingale, where

n (x) := n0 (x) =

 |grad u (x)|−1 grad u (x) if grad u (x) 6= 0

0 if grad u (x) = 0.

Proof Let ε > 0, then by Itô’s formula along with Lemma A.1,

dϕα
ε (Xt) =

〈
(grad ϕα

ε ) (Xt) , //t dbt

〉
+

1

2
(∆ϕα

ε ) (Xt) dt

= dM ε
t +

α

2
ϕα

ε (Xt) Ric (nε, nε) (Xt) dt + ρε
t dt

where ρε
t is a non-negative process. In particular this implies that

d
(
exp

{
−α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
ϕα

ε (Xt)
)

= exp
{
−α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
dMt

+ exp
{
−α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}
ρε

t dt.

So if ε > 0 and α ∈
[

n−2
n−1

, 1
]
, then

Yt (ε) :=
(
|grad u (Xt)|2 + ε2

)α/2
exp

{
−α

2

∫ t

0
Ric (nε, nε) (Xs) ds

}

is a local submartingale. If τ is the first exit time of Xt from a precompact
open subset of M , Y τ

t (ε) is an honest submartingale. If G is a bounded non-
negative Fs-measurable function, then

E
[
G
(
Y τ

t (ε)−Y τ
s (ε)

)]
= E

[
G
∫ t

s
exp

{
−α

2

∫ r

0
Ric (nε, nε) (Xs) ds

}
ρε

r dr
]
≥ 0.

Using the dominated convergence theorem, we may let ε ↓ 0 in the above
inequality to conclude,

E [G (Y τ
t − Y τ

s )] ≥ 0

which completes the proof. 2
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