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Abstract. We consider the “energy representation” W of the group G of
smooth mappings of a Riemannian manifold M into a compact Lie group G.

Our main result is that if W (g) f = f for all g ∈ G, then f = 0. In the
language of quantum field theory this says that there are no “states.” Our
result follows from the irreducibility of the energy representation whenever the
irreducibility theorems of Ismagilov, Gelfand–Graev–Veršik, Albeverio–Hoegh-
Krohn–Testard, or Wallach apply. Our result, however, applies in general, even
in cases where the energy representation is known to be reducible.

We work in the more general context of the “Gaussian regular represen-
tation” of the Euclidean group of a real separable Hilbert space. We show that
if a function is invariant under the action of any subgroup of the Euclidean
group that has unbounded orbits, then this function must be identically zero.
Our result about the energy representation is a special case.

As submitted to Albeverio volume, 22 June 1999.
With minor corrections 6/25/99.

1. Introduction and statement of result

Let M be a compact Riemannian manifold without boundary, with dimension
at least one. Let G (the “structure group”) be a compact connected Lie group, and
let G (the “gauge group”) be the set of smooth mappings of M into G, forming a
group under pointwise multiplication. Let g be the Lie algebra of G, and fix on g
an Ad-G-invariant inner product. In addition, fix a positive function ω on M.

We consider the real Hilbert space H of square-integrable, g-valued 1-forms on
M. So an element A of H assigns to a point m ∈ M an element of T ∗mM ⊗ g ∼=
Hom (TmM, g) . The inner product on H is given explicitly by

(1) 〈A,B〉 =
∫

M

tr
(
A (m)∗B (m)

)
ω (m) dm, A,B ∈ H,

where A (m)∗ denotes the adjoint of A (m) : TmM → g relative the given inner
products on TmM and on g, and where dm is the Riemannian volume measure on
M. If dimM 6= 2, the function ω can be absorbed into the definition of the metric;
if dimM = 2, the inner product on H depends only on the conformal class of the
metric on M.

†This research was partially supported by NSF Grant DMS 96-12651.
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For g ∈ G and A ∈ H we define the action of g on A by

(2) (g ·A) (vm) = Adg(m)A (vm)− dg (vm) g (m)−1
,

where v is a vector field on M. The action of G on H is isometric, the first term
being an invertible isometric linear transformation applied to A and the second
term being a translation.

We now consider the Gaussian measure ρ associated to H, given formally by
the expression

dρ (A) =
1
Z
e−|A|

2/2DA,

where |A|2 := 〈A,A〉 , DA is the fictitious Lebesgue measure on H, and Z is sup-
posed to be a normalizing constant. Rigorously, ρ is defined not on H itself, but
on some extension B of H, in this case a suitable space of distributional (g-valued)
1-forms on M. The measure ρ may be characterized, for example, by the condition
that ∫

B

eiφ(A) dρ (A) = exp
{
−1

2
|φ|2H∗

}
for all continuous linear functionals φ on B. Here |φ|H∗ is the norm of φ as a linear
functional on H ⊂ B. The action of G on H extends continuously to an action of
G on B, and this action leaves the measure ρ quasi-invariant.

Finally, we consider a unitary representation of G acting in L2 (B, ρ) given by

(3) W (g) f (A) = e−|dgg−1|2/4 e−〈A,dgg−1〉/2f
(
g−1 ·A

)
.

The “multiplier” in front of f
(
g−1 ·A

)
is the square root of the Radon-Nikodym

derivative dρ
(
g−1 ·A

)
/dρ (A) .More details on the definition ofW (g) may be found

in the next section; in particular, W (g) = U(Adg,−dg g−1) in the notation of
Definition 8 below.

We may now state the main result of this paper.

Theorem 1. If f ∈ L2 (B, ρ) satisfies

W (g) f = f

for all g ∈ G, then f = 0.

Proof. This is an immediate consequence of Theorem 14 and Proposition 2. �
Thus in the language of quantum field theory, there are no “states.” This result

is expected in view of the non-compactness of the gauge orbits. However, we know
of no proof of this in general in the literature.

The representation W is unitarily equivalent to the “energy representation”
introduced by Ismagilov [I] in the case G = SU(2) and by Gelfand, Graev, and
Veršik [GGV1] in general. See Section 4 for details. If G is semisimple and
dimM ≥ 3, or under additional assumptions on ω ifG is semisimple and dimM = 2,
the energy representation is irreducible [I, GGV1, GGV2, AKT, Wa]. Thus,
in these cases, W is also irreducible and Theorem 1 follows immediately. On the
other hand, if dimM = 1 or if G is commutative, then the energy representation
is reducible; in any case it is desirable to have a simple direct proof of Theorem 1,
which is much weaker than irreducibility.

Theorem 1 can doubtless be proved in many ways, for example, using the same
techniques as in the proofs of irreducibility. Our proof will make use of coherent
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states and the Segal–Bargmann transform. The only properties of G that we will
use are that G acts isometrically on H and the following. (See Theorem 14 below.)

Proposition 2. For any A ∈ H, the orbit of A under the action of G is
unbounded in H.

Proof. Since the inner product on g is Ad-G-invariant, the norm of the first
term in (2) is equal to the norm of A and hence independent of g. Meanwhile,
the second term in (2) is independent of A. It follows that if any one G-orbit is
unbounded, then all the others are as well. Thus to show that the orbits of G are
unbounded, we must merely show that supg

∣∣g−1dg
∣∣
H

= ∞,which is evident, say,
by considering g of the form g(x) = ef(x)ξ with ξ ∈ g and f ∈ C∞(M). �

The authors thank Nolan Wallach for valuable discussions concerning the en-
ergy representation.

2. The regular representation and Segal–Bargmann transform

Having noted that the representation W arises from an isometric action of G
on H, and having recorded Proposition 2, we no longer need to concern ourselves
with the manifold M or with the precise nature of the gauge action in (2). We will
prove a general result (Theorem 14) about subgroups of the isometry group of a
Hilbert space H; Theorem 1 is an immediate consequence.

2.1. Finite dimensions. Let H be a real Hilbert space, which in this sub-
section we take to have finite dimension d. Let E (H) be the Euclidean group, that
is, the set of transformations of the form

x→ Rx+ h,

where R is an orthogonal linear transformation and h is an element of H. We denote
this transformation as (R, h) and observe that the composition of Euclidean trans-
formations takes the form (R, h) ◦ (S, k) = (RS,Rk + h) . Let dx be the Lebesgue
measure on H, normalized so that a unit cube has volume one. We now define a
unitary representation Ũ of E (H) acting on L2 (H, dx) by

Ũ (R, h) f (x) = f((R, h)−1
x) = f

(
R−1(x− h)

)
.

In preparation for the passage to the infinite-dimensional limit, we make a unitary
change from Lebesgue measure to Gaussian measure on H. So define the measure
ρ on H to be

dρ (x) = (2π)−d/2
e−|x|

2/2 dx,

where d = dimH; and consider the unitary map Φ : L2 (H, dx) → L2 (H, ρ) given
by

(4) Φf (x) = (2π)d/4
e|x|

2/4f (x) .

Then define a unitary representation of E (H) acting on L2 (H, ρ) by

U (R, h) = ΦŨ (R, h) Φ−1.

We will call Ũ the regular representation of E (H) and U the Gaussian regular
representation. Computing U explicitly leads to the following definition.
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Definition 3. The Gaussian regular representation is the unitary repre-
sentation U of E (H) acting on L2 (H, ρ) given by

U (R, h) f (x) = e−|h|
2/4e〈h,x〉/2f

(
R−1(x− h)

)
.

We next turn to the Segal–Bargmann transform [B, S1, S2, S3], which con-
verts the Gaussian regular representation to the “holomorphic regular representa-
tion.” Let HC = H + iH be the complexification of H and let µ be the measure on
HC given by

dµ (z) = π−de−|z|
2
dz,

where |x+ iy|2 = |x|2 + |y|2 and dz denotes 2d-dimensional Lebesgue measure on
HC.

Definition 4. Let HL2(HC, µ) denote the space of entire holomorphic func-
tions on HC which are square-integrable with respect to µ.

It is easily shown that HL2(HC, µ) is a closed subspace of L2(HC, µ) and there-
fore a Hilbert space. We will now define a unitary representation of E (H) on
HL2(HC, µ). Let (z, w) denote the complex bilinear (not Hermitian) extension of
the inner product on H to HC. Given R ∈ O (H) we consider the unique complex-
linear extension of R to HC, also denoted R.

Definition 5. The holomorphic regular representation of E (H) is the
unitary representation V of E (H) on HL2(HC, µ) by

V (R, h)F (z) = e−|h|
2/8e(h,z)/2F

(
R−1(z − h/2)

)
.

It straightforward computation to check directly that V is unitary and a rep-
resentation. This result also is a consequence of Proposition 7 below.

Theorem 6 (Segal–Bargmann transform). For f ∈ HL2(HC, µ), let Sf be the
function on HC given by

Sf (z) = e−(z,z)/2

∫
H

f (x) e(z,x) dρ (x) .

Then the integral that defines Sf is absolutely convergent and depends holomor-
phically on z. Moreover, the map f → Sf is a unitary map of L2 (H, ρ) onto
HL2(HC, µ).

This is well known and will not be proved here. See [S3, BSZ], or [B],
which considers SΦ, where Φ is the change of measure (4). Note that for z ∈ H,
e−(z,z)/2e(z,x) is the Radon–Nikodym derivative dρ (z − x) /dρ (x) . So Sf is the
analytic continuation to HC of the function

Sf (z) =
∫

H

f (x) dρ (z − x) =
∫

H

f (z − x) dρ (x) , z ∈ H.

Proposition 7. The Segal–Bargmann transform intertwines the Gaussian reg-
ular representation and the holomorphic regular representation. That is, for (R, h) ∈
E (H) , V (R, h) = SU (R, h)S−1.

The proof of this result is an explicit computation which is carried out in the
proof of Proposition 13 below in the infinite-dimensional case.
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2.2. Infinite dimensions. Now let (H,B, ρ) be an abstract Wiener space [G].
This means that B is a real, separable Banach space; H is an infinite-dimensional,
real, separable Hilbert space continuously embedded into B with dense image; and
ρ is a probability measure on B such that∫

B

eiφ(x) dρ (x) = exp
{
−1

2
|φ|2H∗

}
for all φ ∈ B∗ ⊂ H∗. In this the infinite-dimensional case, the Gaussian measure ρ
does not exist on H, but must live on some larger space B; in particular, ρ (H) = 0.

As in the linear case, the Euclidean group E (H) is the set of transformations
of H of the form x → Rx + h, with h ∈ H and R an invertible, isometric linear
transformation on H. We want E (H) to act on L2 (B, ρ) as in the finite-dimensional
case. This requires some care, since now elements of E (H) are transformations of
H, but our functions are defined on B.

First, there is a dense subspace of H, denoted B∗, such that for all h ∈ B∗, 〈h, ·〉
extends continuously from H to B. Given h ∈ H, choose hn ∈ X with hn → h.
It is well known that 〈hn, ·〉 converges in L2 (B, ρ) to a limit 〈h, ·〉 ∈ L2(H, ρ),
independent of the choice of approximating sequence. It is easily shown that the
map h→ 〈h, ·〉 is linear from H to L2 (B, ρ) , and that for all h, k ∈ H, 〈h, x+ k〉 =
〈h, x〉 + 〈h, k〉 for ρ–a.e. x. The expression 〈h, x+ k〉 is well defined for ρ – a.e. x
because of the Cameron–Martin theorem, which asserts that

(5) dρ(x+ h) = e−〈h,x〉−|h|2/2dρ(x) ∀h ∈ H.

Now we define an element f of L2 (B, ρ) to be a cylinder function if there
is a finite orthonormal set {h1, · · · , hn} in H and a measurable function φ on Rn

such that

(6) f (x) = φ (〈h1, x〉 , · · · , 〈hn, x〉) .

Suppose that R is an isometric invertible linear transformation of H and that f is a
cylinder function given by (6). Then we define f ◦R−1 to be the cylinder function
given by

(7) f ◦R−1 (x) = φ (〈Rh1, x〉 , · · · , 〈Rhn, x〉) .

Although a given cylinder function f can be represented in form (6) in many differ-
ent ways, it is not hard to see that f ◦R−1 is independent of the representation. It
is straightforward to verify that the map f → f ◦R−1 is isometric on L2 (B, ρ) and
that

(
f ◦R−1

)
◦ R = f. Hence this map extends to a unitary map of L2 (B, ρ) to

itself, which we still denote as f → f ◦ R−1. If R−1 happens to have a continuous
extension from H to B, then for all f ∈ L2 (B, ρ) , f ◦ R−1 will coincide with the
composition of f with this extension.

Finally, by the Cameron–Martin theorem, the map Th : L2 (B, ρ) → L2 (B, ρ)
given by

Thf (x) = e−|h|
2/4e〈h,x〉/2f (x− h)

is unitary for all h ∈ H.
So we make the following definition.

Definition 8. The Gaussian regular representation of E (H) on L2 (B,µ)
is given by

U (R, h) f = Th

(
f ◦R−1

)
,
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that is,

U (R, h) f (x) = e−|h|
2/4e〈h,x〉/2f ◦R−1(x− h).

We turn now to the infinite-dimensional version of the Segal–Bargmann trans-
form. While this may be defined in terms of a complex abstract Wiener space as in
[DH, HS], we follow [S3] and consider a Hilbert space of holomorphic functions on
HC, where we use the standard notion of holomorphicity on a Banach space [HP].

Definition 9. A function F : HC → C is holomorphic if F is locally bounded
and the restriction of F to every finite-dimensional subspace of HC is holomorphic.

Definition 10. The Segal-Bargmann space over HC, denoted HL2(HC, µ),
is the set of holomorphic functions F on HC such that

sup
X

∫
X

|F (z)|2 dµX (z) <∞,

where the supremum is over finite-dimensional subspaces X of HC, and where µX

is the Gaussian probability measure on X given by dµX (z) = π− dim Xe−|z|
2
dz. For

F ∈ HL2(HC, µ) we define ‖F‖ to be the square root of the above supremum.

It is a consequence of the Krée Skeleton Theorem [K] that this defines a Hilber-
tian norm on HL2(HC, µ) and that HL2(HC, µ) is complete in this norm. Thus
HL2(HC, µ) is a complex Hilbert space. We remark that if F : HC → C is holomor-
phic on each finite-dimensional subspace and the supremum in the above definition
is finite, then F is automatically locally bounded. (See (11) below.)

Note that HL2(HC, µ) is an abuse of notation, in that there does not exist a
measure µ on HC such that ‖F‖ is the L2 norm of F with respect to µ. We may
regard µ either as a cylinder-set measure on HC or as a honest measure on a suitable
extension BC of HC–see [G].

Since our holomorphic functions are truly functions on HC (not on some Ba-
nach space containing HC), there is no trouble in extending the definition of the
holomorphic regular representation to infinite dimensions, and in verifying that it
is unitary.

Definition 11. The holomorphic regular representation of E (H) is the
unitary representation V of E (H) on HL2(HC, µ) by

V (R, h)F (z) = e−|h|
2/8e(h,z)/2F

(
R−1(z − h/2)

)
.

If we interpret (z, x) as 〈Rez, x〉+ i 〈Imz, x〉 as an ρ-almost everywhere defined
function on B, then the definition of the Segal–Bargmann transform carries over
without change from the finite-dimensional case.

Theorem 12 (Segal–Bargmann transform). For all f ∈ L2 (B, ρ) , define a
function Sf on HC by

Sf (z) = e−(z,z)/2

∫
B

e(z,x)f (x) dρ (x) .

Then the integral that defines Sf is absolutely convergent and depends holomorphi-
cally on z. Moreover, S is a unitary map of L2 (B, ρ) onto HL2(HC, µ).

For a proof see [S3].
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Proposition 13. The Segal–Bargmann transform intertwines the Gaussian
regular representation and the holomorphic regular representation. That is, for
(R, h) ∈ E (H) , V (R, h) = SU (R, h)S−1.

Proof. Note that any (R, h) ∈ E (H) may be factored as (I, h) (R, 0) . So it
suffices to consider rotations and translations separately. Note that by inspection,
U (R, h) = U (I, h)U (R, 0) and similarly for V, as must be the case, since U and V
are representations.

It is easily seen that a holomorphic function onHC is determined by its values on
H. So it suffices to show that SU (R, h) f (z) = V (R, h)Sf (z) for all f ∈ L2 (B, ρ)
and for all z ∈ H. We begin by computing on a cylinder function f of the form (6).
For any fixed z ∈ H we have

Sf (z) =
∫

B

φ (〈h1, z − x〉 , · · · , 〈hn, z − x〉) dρ (x)

=
∫

B

φ (〈h1, z〉 − 〈h1, x〉 , · · · , 〈hn, z〉 − 〈hn, x〉) dρ (x)

=
∫

Rn

φ (〈h1, z〉 − x1, · · · , 〈hn, z〉 − xn) e−(x2
1+···+x2

n)/2 dx1 · · · dxn

(2π)n/2

= (Sφ) (〈h1, z〉 , · · · , 〈hn, z〉) .
Here Sφmeans the Segal–Bargmann transform of φ defined on the finite-dimensional
Hilbert space Cn. The third equality is because the joint distribution of {〈hi, x〉} is
the given measure on Rn.

But now recall the definition (7) of f ◦ R−1 on cylinder functions. Since R
is isometric, {Rh1, · · · , Rhn} is again an orthonormal set, and so by the previous
paragraph we have

S
(
f ◦R−1

)
(z) = (Sφ) (〈Rh1, z〉 , · · · , 〈Rhn, z〉)

= (Sφ)
(〈
h1, R

−1z
〉
, · · · ,

〈
hn, R

−1z
〉)

= Sf
(
R−1z

)
.

Thus S
(
f ◦R−1

)
= Sf ◦R−1 on cylinder functions, and therefore for all functions.

Meanwhile, for z ∈ HC we have, using the Cameron–Martin theorem,

SU (I, h) f (z) = e−(z,z)/2

∫
B

e(z,x)e−|h|
2/4e〈h,x〉/2f (x− h) dρ (x)

= e−|h|
2/4e−(z,z)/2

∫
B

e(z,x+h)e〈h,x+h〉/2f (x) e−〈h,x〉−|h|2/2dρ (x)

= e−|h|
2/4e−(z,z)/2e(z,h)

∫
B

e(z−h/2,x)f (x) dρ (x)

= e−|h|
2/4e−(z,z)/2e(z,h)e(z−h/2,z−h/2)/2Sf (z − h/2)

= e−|h|
2/8e(h,z)/2Sf (z − h/2) = V (I, h)Sf(z).

Combining the results of this paragraph and the previous one gives the theorem.
�

3. The gauge-fixed subspace is trivial

We now present an abstract theorem about subgroups G of E (H) . Now, G is a
set of transformations of the form (Rg, hg) , g ∈ G. An orbit of G is thus of the form
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{Rgx+ hg} . Since |Rgx| = |x| , we see that if any one orbit is unbounded then all
others are as well.

Theorem 14. Suppose G is a subgroup of E (H) with the property that one
(and hence every) orbit of G is unbounded in H. Suppose f ∈ L2 (B, ρ) is such that

U (R, h) f = f

for all (R, h) ∈ G. Then f = 0.

Proof. In light of Proposition 13 it is equivalent to assume that F := Sf
satisfies V (R, h)F = F for all (R, h) ∈ G. The hypothesis on G implies that there
is a sequence {(Rn, hn)} in G with |hn| → ∞. Then the assumption on F says that
for all z ∈ HC,

F (z) = e−|hn|2/8e(hn,z)/2F
(
(Rn, hn/2)−1

z
)
.

Fixing some w ∈ HC and choosing z = zn := (Rn, hn/2)w = Rnw + hn/2 we get

F (zn) = e−|hn|2/8e(hn,zn)/2F (w) .

Doing a little algebra, this implies that

(8)
|F (zn)|2

e|zn|2
=
|F (w)|2

e|w|
2 .

Now, it is well known (e.g. [B, BSZ]) that the pointwise evaluation map

F → F (z)

is a continuous linear functional on HL2(HC, µ) for all z ∈ HC. So there is a unique
χz ∈ HL2(HC, µ) such that

(9) F (z) = 〈χz, F 〉

for all F ∈ HL2(HC, µ). (The inner product is complex linear on the right.) The
χz’s are called coherent states and are given explicitly by

(10) χz (w) = e(z̄,w).

As a consequence of (9) and (10) we have

〈χw, χz〉 = e(z̄,w).

In particular ‖χz‖2 = exp |z|2 , and so by (9)

(11) |F (z)|2 ≤ ‖F‖2 e|z|
2
.

We now introduce the normalized coherent states

χ̃z :=
χz

‖χz‖
and observe that

|〈χ̃w, χ̃z〉| = eRe(z̄,w)e−|w|
2/2e−|z|

2/2

= e−|z−w|2/2.(12)

This shows that χ̃w and χ̃z are nearly orthogonal whenever the distance between
w and z is large. Equation (8), re-stated in terms of coherent states, says

(13) |〈χ̃zn
, F 〉|2 = |〈χ̃w, F 〉|2 = |F (w)|2e−|w|

2
.
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We are assuming that |hn| → ∞ and so that |zn| → ∞. The idea is now to pass
to a subsequence on which |zn − zm| is large for all n 6= m. Then the χ̃zn ’s will be
essentially orthonormal, and so (13) will tell us that

‖F‖2 &
∞∑

n=1

|〈χ̃zn , F 〉|
2 = ∞

unless 〈χ̃w, F 〉 = F (w) exp(− |w|2) = 0. Since this argument holds for all w, we see
that F ≡ 0.

To be more precise, suppose that we are given a positive integer N. Since
lim zn = ∞ we may choose {wk}N

k=1 ⊂ {zn}∞n=1 such that |wn − wm| is large enough
that (by (12))

|〈χ̃wn
, χ̃wm

〉 − δm,n| ≤
1

4N
∀ m,n ≤ N.

Let Cn,m := 〈χ̃wn
, χ̃wm

〉 be the Gram matrix of {χ̃wn
}N

n=1 , A = I − C and D =
C−1 − I. Then A is an N ×N matrix whose Hilbert–Schmidt norm, and therefore
it’s operator norm ‖A‖ , is bounded by 1/4. Using the geometric series expansion
for C−1, we conclude that

‖D‖ =
∥∥C−1 − I

∥∥ ≤ 1
4

(1− 1/4)−1 = 1/3.

By the previous considerations and the fact that the norm-squared of the pro-
jection of F onto the span of {χ̃wn

}N
n=1 is given by

∑N
m,n=1 C

−1
n,m〈χ̃wn

, F 〉 〈χ̃wm
, F 〉 ,

we find that

‖F‖2 ≥
N∑

m,n=1

C−1
n,m〈χ̃wn

, F 〉 〈χ̃wm
, F 〉

=
N∑

m=1

|〈χ̃wm , F 〉|
2 +

N∑
m,n=1

Dn,m〈χ̃wn , F 〉 〈χ̃wm , F 〉

≥
N∑

m=1

|〈χ̃wm
, F 〉|2 − ‖D‖

N∑
m=1

|〈χ̃wm
, F 〉|2

=
2
3
N |F (w)|2e−|w|

2
.

Since ‖F‖2 <∞ and N is arbitrary in the above equation, it follows that |F (w)| =
0. This finishes the proof since w was arbitrary as well. �

Corollary 15. If F ∈ HL2(HC, µ) then

lim
|z|→∞

|F (z)|2 e−|z|
2

= 0.

This result is reasonable, since in order for F to be in HL2(HC, µ), the inte-
gral of |F (z)|2 e−|z|2 over every finite-dimensional subspace of HC must be finite.
Nevertheless, there is no obvious way to prove this directly from the definitions.

Proof. If the corollary were not true, then there would exist ε > 0 and a
sequence {zn} with |zn| → ∞ such that

|F (zn)|2

e|zn|2
= |〈χ̃zn

, F 〉|2 ≥ ε,
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and so the above argument would show that ‖F‖ = ∞. �
Remark. It would be possible to prove Theorem 14 directly in L2 (B, ρ) , by

considering the coherent states ψz ∈ L2 (B, ρ) defined as ψz = S−1 (χz) , which
may be computed explicitly as

ψz (x) = e(z̄,x)−(z̄,z̄)/2.

However, it seems that the most natural “home” for the coherent states is the
Segal–Bargmann space, especially in light of the natural interpretation of the χz’s
as representing the pointwise evaluation maps.

4. Comparison with the Energy Representation

4.1. Energy Representation. Recall the notation of Section 1. We now
introduce a 1-parameter family ρt of Gaussian measures on B, characterized by the
condition that ∫

B

eiφ(A) dρt (A) = exp
{
− t

2
|φ|2H∗

}
for all φ ∈ B∗ ⊂ H∗. Here t is an arbitrary positive number. Thus the measure ρ
of the previous sections is the same as ρ1.

We consider the “energy representation” Et, a unitary representation of G act-
ing on L2 (B, ρt) , given by the formula

(14) Et (g) f (A) = ei〈A,dg g−1〉f
(
Adg−1 (A)

)
as introduced in [I] in the case G = SU(2) and in [GGV1] in general. (Although
the right hand side of (14) appears to be independent of t, the Hilbert space in
which f lives depends on t.) Note that for g smooth, the adjoint action of G on H
extends continuously to B. Equation (14) is the form of the energy representation
used in [GGV1, Sect. 5] and in [Wa]. A unitarily equivalent form is used in some
of the other references. Note also that parameter t could be absorbed into the
density ω in (1), or into the choice of inner product on g.

The main theorem of this section is the following.

Theorem 16. The representations W and E1/4 are unitarily equivalent.

The proof of this theorem is an easy consequence of Proposition 18 below
with r = 1. The intertwining operator between W and E1/4 is a variant of the
Fourier transform called the Fourier–Wiener transform, which we now introduce.
The details of the proof are given at the end of the paper.

4.2. The Fourier–Wiener Transform. The Fourier–Wiener transform was
introduced by Cameron and Martin [C, CM1, CM2]–see especially Theorem 1 of
[CM2]. See also [BSZ]. The Fourier–Wiener transform is given by essentially the
same formula as the Segal–Bargmann transform–see [GM, Sect. 4]. In fact, the
unitarity of the Fourier–Wiener transform can be viewed as a limiting case of the
unitarity of the Segal–Bargmann transform [H, Sect. 2].

For the sake of motivation, first assume that dim(H) <∞. For any r > 0 and
f ∈ L2(H,λ) let

(15) Frf(x) =
( r

2π

)d/2
∫

H

e−ir〈x,y〉f(y)dλ(y)

where the integral is (as usual in the theory of the Fourier transform) to be inter-
preted as an improper Lebesgue integral. Since rd/2dλ is Lebesgue measure on H
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relative to the inner product r〈·, ·〉, it follows Fr : L2(H, rd/2λ) → L2(H, rd/2λ) is
unitary for all r > 0. This easily implies that Fr : L2(H,λ) → L2(H,λ) is unitary
for all r > 0. We now define the Fourier–Wiener transform Wr so that the following
diagram commutes

Fr

L2(H,λ) −→ L2(H,λ)
Φ1 ↓ ↓ Φ1/4r2

L2(H, ρ) −→ L2(H, ρ1/4r2)
Wr

where

Φtf(x) =
(
dρt(x)
dx

)−1/2

f(x) = (2πt)d/4
e|x|

2/4tf(x).

A simple computation shows that

(16) Wrf(x) = er2|x|2
∫

H

e−ir
√

2〈x,y〉f(
√

2y)dρ(y).

The choice of the target space L2(H, ρ1/4r2) is necessary for the passage to
infinite-dimensional H. Specifically, the target space is chosen so that the following
property will hold. Suppose H = H1 ⊕H2 is an orthogonal direct sum decomposi-
tion, and let P1 be the projection onto the first factor. Then our definition of Wr

guarantees that

(17) WH
r [f ◦ P1] =

[
WH1

r f
]
◦ P1,

where WH
r is computed on H and WH1

r is computed on H1. This consistency
condition is necessary in the definition of Wr when dimH = ∞, and is easily
verified from (16) once one checks that Wr of the constant function 1 is 1.

With this as background we are now in a position to define the Fourier–Wiener
transform in general.

Definition 17 (Fourier–Wiener Transform). The Fourier–Wiener transform is
the unique unitary map Wr : L2(B, ρ) → L2(B, ρ1/4r2) defined on cylinder functions
as follows. If f ∈ L2 (B, ρ) is of the form

(18) f (x) = φ (〈h1, x〉 , · · · , 〈hn, x〉)
for some finite orthonormal set {h1, · · · , hn} in H, then we set

(19) Wrf (x) =
(
WRn

r φ
)

(〈h1, x〉 , · · · , 〈hn, x〉) ,

where WRn

r is computed on Rn.

Note that in the formula for Wrf, 〈hi, x〉 is to be computed by a limiting
procedure in L2(B, ρ1/4r2) and so technically does not mean the same thing as
in the formula for f, where it is computed in L2 (B, ρ) . Although a given cylinder
function f can be represented as in (18) in many different ways, it follows from (17)
that Wrf is independent of the representation. Also note that Wr is an isometric
transform of cylinder functions in L2(B, ρ) onto cylinder functions in L2(B, ρ1/4r2)
and that Wr is formally given by (16).

Proposition 18. For f ∈ L2(H, ρ) and (R, h) ∈ E(H),

(20) WrU(R, h)f(x) = exp(−ir〈h, x〉) (Wrf) ◦R−1 (x) .
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Proof. If f is a cylinder function, then using (19) we reason precisely as in the
proof of Proposition 13 to show that Wr

(
f ◦R−1

)
= Wrf ◦ R−1. By continuity,

this holds for all f ∈ L2 (B, ρ) .
To consider the effect of a translation U (I, h) = Th, we consider a cylinder

function f as in (18). By enlarging the set {h1, · · · , hn} if necessary we may write
h =

∑n
i=1 aihi with ai = 〈h, hi〉 ∈ R. Let a = (a1, a2, . . . , an) ∈ Rn, then

Thf (x) = e−|h|
2/4e〈h,x〉/2f (x− h) = ψ(〈h1, x〉 , · · · , 〈hn, x〉),

where
ψ(u) := e−|h|

2/4ea·u/2φ (u− a)
for u ∈ Rn. Using the definition of WRn

r , the change of variables u→ u+a/
√

2 and
the fact that a · a = |h|2, we find that(

WRn

r ψ
)

(v) = er2|v|2
∫

H

e−ir
√

2v·ue−|h|
2/4ea·

√
2u/2φ

(√
2u− a

)
dρ(u)

= er2|v|2
∫

H

e−ir
√

2v·(u+a/
√

2)e−|h|
2/4ea·

√
2(u+a/

√
2)/2 ×

φ(
√

2u)e−u·a/
√

2−|a|2/4dρ(u)

= er2|v|2
∫

H

e−ir
√

2v·(u+a/
√

2)φ(
√

2u)dρ(u)

= e−irv·a
(
WRn

r φ
)

(v),

where ρ is now the standard normal distribution on Rn. Since
∑n

i=1〈hi, x〉ai =
〈h, x〉, evaluating this last expression at v = (〈h1, x〉 , . . . , 〈hn, x〉) implies that

WrThf (x) =
(
WRn

r ψ
)

(〈h1, x〉 , . . . , 〈hn, x〉) = e−ir〈h,x〉Wrf (x) .

�
Proof of Theorem 16. As noted prior to Theorem 1, W (g) = U(Adg,−dg g−1).

Hence by Proposition 18 and the definition of E1/4 in (14),

W1W (g)f(A) = W1U(Adg,−dg g−1)f(A)

= exp(i〈−dg g−1, A〉) (W1f) ◦Ad−1
g (A)

= E1/4(g)W1f(A).

Note that in order to make the formulas come out right we need to use Wr with
r = 1, and that W1 maps the Hilbert space on which W (g) is defined to Hilbert
space on which E1/4 is defined – see Definition 17.
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