Reprinted from JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Vol. 157, No. 2, May 15, 1991
All Rights Reserved by Academic Press, New York and London Printed in Belgium

Simplicity of Solutions of x’(t) =bx(t—1)
Bruce K. DRIVER

Department of Mathematics, University of California at San Diego,
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AND
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Department of Mathematics, University of Rhode Island,
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It is well known that the solution of x'(1)=bx(r—1) for 120 with x(z)=1 on
[—1,0] (or other initial function) can be approximated for “large ” by a linear
combination of one or two exponentials e¥, where A= be % (In case b= —1/e the
solution is approximated by cte~".) This paper gives estimates for the error in that
approximation when —5n/2 < b < 3r/2. The smallness of the error even for modest
values of 1 >0 may be surprising.  © 1991 Academic Press, Inc.

The linear delay differential equation
x'()=bx(t—1) for =0, (1)
where b+#0 is real, with initial function

x(t)=1 for —1<t<0 (2)

is particularly easy to solve—at least in principle. On the interval [0, 1]
one integrates a constant function and obtains the first-degree polynomial
x(t)=1+bt. Then on [1, 27 one integrates a first-degree polynomial to get
the quadratic x(¢) = 1 4+ bt + b%(¢ — 1)%/2. In general one gets the nth degree
polynomial

n k(s __ k
x(t)= 3, 9—(—1—;'_—{-& on(n—1,nlforn=1,2, ... 3)
k=0 .

The result of this step-by-step integration on [0, 3] for the case b=1 is
displayed in Fig. 1.
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The exact solution is obtained using elementary calculus. But the result,
Eq. (3), is awkward even when ¢ is fairly small, and it does not appear to
offer any .insight into the nature of x(¢) for large ¢

Other approaches to Egq.(l1) involve the Laplace transform
[1,7,9, 10, 13], semigroup theory [5,12], and for the case >0, an
ingenious advanced-calculus argument of deBruijn [2]. Using any of these,
one gets a representation of the solution of (1) with a fairly general given
initial function

x(t)=o(?) for te[—1,0]
in terms of exponentials e*', where A satisfies the characteristic equation
D(A)= e’ =b. 4)

In fact, using either Laplace-transform or functional-analysis methods,
one can show that asymptotically the solution is simple. It is well
approximated “for sufficiently large ¢’ by a linear combination of exponen-
tial solution(s)—often just one or two such exponentials—involving the
root (or roots) of Eq. (4) with greatest real part(s).

But, what is “sufficiently large ¢?”

For example, if =1 the root of Eq.(4) with greatest real part is
J = 0.567. And a Laplace-transform argument, a functional-analysis
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argument, deBruijn’s argument [27], or the argument in {4] shows that the
solution of Eqgs. (1) and (2) is well approximated by the asymptotic solu-
tion

X (1) = 1.13%57

“for sufficiently large .”

But if one wants to know what the solution really looks like, such a
statement is virtually useless. How far must one use the cumbersome
Eq. (3) before x,(¢) becomes useable? And then with what error?

A simple exercise on a personal computer suggests an unexpected
answer. For the case b=1, Fig. 2 displays a graph of the solution of
Egs. (1) and (2) plus a graph of the function x, defined above.

At t=0 the two graphs differ by only 0.13; and for ¢ >0.5 they appear
virtually indistinguishable.

Of course, the computer actually solved a discretized approximation to
Eq. (1). So our purpose is to justify Fig. 2 analytically, and to determine
whether such fast convergence of the solution to a simple asymptotic form
should be expected for other values of .

The proofs are based on the Laplace-transform solution of (1) and (2)
as obtained in various standard references. But before one can even write
down this solution one needs information about the roots of Eq. (4). In
particular, one would like to know that the roots are countable.
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Equation (4) has been studied by many authors. For example see
Lemeray [8], Pontrjagin [11], Hayes [6], Wright [13], or deBruijn [3].
Lemmas 1 and 2 below review some known properties of solutions of (4).

LemMa 1 (The Real Roots of Eq. (4)).  All roots of Eq. (4), whether real
or not, are simple roots except for a double root o= —1 when b= —1/e.

(A) If b>0 there is a unique real root Ao, and 1y>0. Moreover,
Ao <In b when b>e.

(B) If —1/e<b<0, there are exactly two real roots, Ay and Ay, and
they satisfy Ao<In|bl < —1<4,<0. If b= —l/e, there is a unique real
root, A= —1, and it is a double root.

(C) If b< —1/e, there are no real roots.

Proof. These assertions follow from consideration of D(0)=0,
D(In |b])=b| In |b], D(—1)= —1/e, D(0)= 0, and D(—0)=0 together
with observations on the sign of D’'(A)=(1+4)e". 1

Since any non-real roots of Eq.(4) must occur in complex conjugate
pairs, consider now roots of the form

4 + i where p and o are real with @ > 0.

LemMA 2 (Imaginary Parts of the Complex Roots of Eq.(4)). Equa-
tion (4) has countably many nonreal solutions. These occur in complex
conjugate pairs i,= ,+ io, and 1, =, — iw, for the values of n specified
below.

(A) Ifb>0, thenn=1,2, .., and (2n— rn<w,<2nm.
(B) If —1/e<b<0, thenn=1,2, .., and nm<w,<(2n+1) .
(C) Ifb< —lje, thenn=0,1,2, .., and 2nm<w, < 2n+ 1) =

Proof. Write A=+ iw, where u and w are real. Then taking real and

imaginary parts of Eq. (4), written 4= be~*, yields
pet=bcosw (5)

and

we' = — b sin w. (6)

Considering @ >0, solve (6) for u and substitute into (5) to get an
equation for w:

W COS @ n<£—>=ln|b|. )

d(w)= - |sin @|

sin w
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Note that

2 . A .
_w?sin’ 0+ (w cos o —sin w)?

4'(w) >w>0. (8)

wsin?w

(A) Let b>0. Then by (6), since w>0,sinw<0. Hence
(2n— 1) = < w < 2nx for some integer n > 1. And, since 4’(w)>0, there is
at most one such solution for each n. It will follow that Eq. (7) has exactly
one solution w, in (2nn — =, 2nn) for each n=1, 2, ... if

lim A(w)<In |b| and lim A(w)>In|b|.

w-—-2n—1)n+ w - 2nn—

To show the first of these, let (2n—1)n<w<(2n—1)n+7/3. Then
cos w < —% and sin w <0. So

d(w) < w +ln< —w>
2sinw sin @

<—= 42 [ =2
Yeno sno - —0 as w—>(2n—1)n+.

For the limit at 2n7 consider 2nn — 7/3 < w < 2nn. Then cos w > 3 and

w
2sin w

A(w)> - ™ as w—2nn—.

. (B). and (C) Now let »<0. Then Eq.(6) and the fact that w>0
imply sinw >0, and hence 2nt<w <(2n+ 1) = for some integer n>0.

Since 4'(w) >0, Eq. (7) has at most one solution in (2nn, 2nm + ) for each
n=0,1,2,...

For n = 1, arguments analogous to those of case (A) show that

lim Ad(w)= - and lim A(w)= 0.

w = 2nn + w=—=+2n+1)n—
For n=0,

lim Ad(w)= -1 and lim A(w)= 0.

®—0+ W

From these limits we draw the following conclusions.
(B) Let —1/e<b<0. Then 4(w)>1n |b| on (0, n), while Eq. (7) has
exactly one solution in (2nn, 2nm + =) for each n=1,2, ....

(C) Let b< —l/e. Then Eq.(7) has exactly one solution in
(2n=, 2nm + n) for each n=0,1,2, ... |
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The notation introduced in Lemmas 1 and 2 for the real and complex
roots of Eq. (4) is used henceforth without further comment. In addition,
when real A, exists write pg= 4, and wy =0.

LeMMA 3 (Ordering the Real Parts of the Roots of Eq. (4)). Let b#0.
Then for n=0,1,2, ., p,<In|bl, p,<In|b| ~Inw,, and p, | <, More
specifically,

2 CU2

n+l— %y
. 9)
2w}, + iy Hasr)

(0]

l‘n+1<#n_

Proof. If po=4o and we=0, then po<In|b| by Lemma 1, and
o <In |b] —In w, is trivial. If w, >0, then Eq. (6) gives

(—b sin w,,)
#n=ln I—— 2
w’l

which yields p, <In |6 and g, <In|b| —In w,.
From Eq. (4) itself, p =y, and w = w, must satisfy

w?=f(p)  where f(u)=ble *—p’ - (10)

(Note that this also holds for y= 1, and =0 when 4, is real.)

If we can show that f'(u) <O then, since w?,,> w?, it will follow that
o1 <, forn=0,1,2, ...

Now

S(p)=—2b%"*—=2p  and  f'(p)=4b’e* -2

Since we need only consider g<max,sqp,<In|b|, f"(#)>2. Hence
fi(w)<f'(In|bl)y= —2—21In |b|. I |b| > I/e then () <0. If 0<|b| < /e,
then p<In|b| implies p< —1, and so f'(p)= —2f(p)=2p*+p)<
—2f(u). Thus (d/du)[ f(r) €] <0. So, for p<max,q H,

f(p) e¥ > f(max p,) ™20,

and hence again f'(yu) <O0.
To establish inequality (9) consider g, , | < g < p,. Then

—2@2, ket e )= () ST (B S (R) <0
By the mean value theorem, for some ¢ (Kt 1> Ha)s
w3+ 1 —w3=f,(£)(tu'n+l —ﬂ")< 2(wi+ 1 +lu'p21+ 1 +lu'n+ 1)(#:1_#n+1)’

which yields inequality (9). 1§
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Assume b# —1/e and let z|, z,, ... be an enumeration of all the roots of
Eq. (4) ordered, say, so that |Im z,| is a nondecreasing function of k. Then
the solution of Eq. (1) with an arbitrary continuous initial function x(t)=
o(t) on [—1,0] is found with the aid of the Laplace transform to be

o0

x(n)=Y, sz)ez“ for =0, (11)

o 1+ 2z,

where

plz)=p(0) +be= [ e =(s)ds.

-1

See, for example, [7, 9, 13] or Theorem 4.2 of [1].
In case b= —1/e, Eq. (4) has a double root 1, = —1 and the term in (11)
corresponding to z, = —1 becomes

[2p(= D) +3p(—1)+2p'(—1)]e ™"

For ¢(t)=1, p(z,)=b/z, for each k, and p'(—1)= —b=1/e when
b= —1/e. Thus, if b# —1/e, Eq. (11) becomes

> o) b .
x(t)= — %! for t=0. 12
L i+ (12)

If b= —1/e the term in (12) involving z, = —1 becomes

(218
e 3e)¢
Incidentally, the convergence of the series in (12) for all >0 will be a

corollary of the estimates to follow.
Returning to the notation introduced in Lemmas 1 and 2, define x,(¢) by

® b .
x(t)=x,(t)+ g(t) where g(1)=2 ”z::l Re [m e“"‘]. (13)

Since u, . <p,forn=1,2,3, ..,

|
lg(l <216 Y — et (14)

n=1 n

Sometimes one might want the more explicit estimate for this “error”

2 |b|

e <—210
S PNRTEwN

©
e +21b) Y — e, (15)

n=2 n
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As shown in Lemma 3, p, < fo (Or py <Ag if Ay is real). So one can say
that the error g(¢) always decays faster, or grows more slowly, than x,(?).

We shall find explicit bounds for |g(#)], especially in the case —572<
b < 3m/2.

To estimate the sums in (14) and (15), we use the identities

1

2
2=E6— and

3

- 118

1 2 (16)

o0

2 @1

n=1

LemMa 4 (Further Estimates for u,). Letn=1,2, ...
(A) If b>0, then

-13 ln(—in—z——bl—)z<yn< —0.95 ln(—‘—m—;bl—)E when 0<b<ﬁ"_;2m
0.82 ln%ﬁsunslnw—nzj—ﬁ; when b>ﬁn—_2¥.
(B), (C) If b<O, then
—1.151n(—‘—m2—+|-b1l—)7£<u,,< —0.981n(—4n7+|-—b1|l7-r- when —(4—"+,)—12£<b<0
0.88 ln%ﬁgﬂ"sln@% when b< _Er_l%l_)_n‘

Proof. For a fixed integer n>1, consider u=u, and w=w, as
functions of b.
From Egs. (5) and (6), u= —o cot w, which yields

du  o—sinwcosw

dow sin® @

Also (6) and (7) show that b dw/db=1/4'(w)>0. Thus

b_d_uzbd_yd_w_ w? — o sin w cos @

= - - . 1
db do db ®?—2wsin w cos w + sin? @ (17)

It would be nice to find sharp upper and lower bounds for the right-
hand side of (17) considered as a function of w on appropriate intervals.
This appears difficult. However, useful estimates can be obtained by a
cruder process.
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Consider the dependence of the right-hand side of (17) on cos @ alone.
One finds it to be an increasing function of cos @ when sinw >0 and a
decreasing function of cos @ when sin @ <0.

(A) Let 0<b<(2n—1/2)n. Then by Lemma2(A) and the fact
that 4(2nm —n/2)>1n b it follows that (2n— 1) m <w < (2n—1/2) n. Thus
sinw <0 and —1<cos w <0, and hence

1 <pdt_ 1
1+ (sin?w)/w? " db 1+ (sinw)/@’

Now (sinw)/w is negative, and it attains a minimum in
(2nm — 7, 2nm — m/2) when tan w = . This occurs for some & € (2nm—
7+ 1.35, 2nm — x/2). Thus (sin w)/w = —1/(2an —n + 1.35)> —1/(n + 1.35)
and

du
0.95 —<1.3.
<bdb<13 (18)

Using (18) and observing from (5) and (7) that u=0 if b=2nn—n/2, it is
easy to compute

4n—1)n

2nn —nf2 2nn - n/2
p=0— J'b (du/dB) df < — J'b (0.95/8) df = —0.95 In ——

Similarly

4n—-1)=n

-13
u> In %

Let > (2n— 1/2) n. Then A(2nm — n/2) <In b. This implies 2nm — /2 <
w < 2nm and hence sin w <0 and 0 < cos w < 1. It follows that
< < :
1+1/2nn—n/2) "1 —(sin w)/w
du 1

<h—<——-+—<1.
b T+ snla)ol (19)

0.82

The corresponding bounds for p=yu, are again obtained by integrating
du/dp. _
(B), (C). The cases for b<0 are similar: Let —(2n+1/2) n<b <0.
By Lemma 2(B) and (C) and the fact that A(2nt +7/2) = 1n |b], 2nr <0 <
2nn + /2. Thus sin w >0 and 0 <cos w< 1. So
1 < du < 1
1+ (sinw)/w?  db 1—(sinw)/o
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_ This time (sin w)/w is positive and attains a maximum in (2nn, 2nr + 7/2)
when tan o = w. This occurs for some @ e (2nn+ 1.44,2nn + n/2). Thus
(sin w)/w < 1/(2nm + 1.44) <0.13 and

du
) — <1.15. 20
098<bdb<115 (20)
Since u =0 if b= —2nn —n/2,
—2nm—n/2 4n+1)=n 4n+1)n
= - —1.15In ————=, —098 In ————— .
i L (dy/dB) d,Be( Sin 5, —098In =

Finally, for b< —(2n+1/2)n one finds 2n+12)a<w<(2n+1)m,
and hence
! < .1 <bd—‘u
14+1/2an+7/2) 1+ (sinw)/w  db
S S
1+ (sin? w)/w?

0.88 <

<1 1)

The final assertion of the lemma now follows as before. ||

Remarks. The constants in (18)-(21), which then appear as the coef-
ficients of In in the assertions of the lemma, are fairly good for the case
n=1. However they can be sharpened for larger n. For example, if n>2,
0<b<2nn—n/2 and p=p,, then (sinw)/w> —0.1 for we (2nn—m,
2nn —mn/2). Thus (18) can be replaced by

du
099 <b = <11
Similarly, if n=2 (19)-(21) can be replaced respectively by:

du du du
0.91<bdb<1, 0.99<bdb<1.08, and 0.93<b£<1.

In a sense, none of the estimates in Lemma 4 or Lemma 5 below are
really needed. Any root of Eq. (4) can be found to any desired accuracy via
Newton’s method. However the bounds presented here will yield error
estimates valid over fairly large ranges of values of b in the forthcoming
theorems.

LEMMA 5 (Some Bounds for 4 and p,).
(A) Let b>0. Then 1o=bmax, 5, (1+ t)/(b+e'). Thus, for example,
b 2b Inb 1+Ink
b+1'b+e’ 1+1/e’ 1+k/b

Ao = max { } foreach k=1,

—
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and
Jo < min {ln(b +1), In <b ; e)}
(C) Let b< —1/e. Then
—In <2—Tb—‘)<#o< —051In <ﬁ) if —m2<b< —l/e
and

0.6 In(2 |b}/n) € o <In(2 |b}/7) if b< —m/2

Proof. (A) Let b>0. Then h(1)=b(1+1)/(b+e') is defined and
differentiable for all 7 Moreover A(t)>0 for ¢>0, h(w)=0, and
W(t)=b(b—te")/(b+e')? is zero if and only if t=4,. So A(t) attains its
maximum when = 1,. Now note that A(4,) = 4,.

The lower bounds for A, offered as examples are obtained by evaluating
h(t) at various values of t>0. Upper bounds then follow from the identity
Ao =1n(b/4y).

(C) Let b< —1/e and consider w = w, and u= p, as functions of b.
Then, as in the proof of Lemma 4, Eq. (17) holds. By Lemma 2, 0<w <=
and so sin @ —w cos w > 0. Hence

bd,u w? — o sin @ cos ® <1
db w’—wsinwcosw+sinw(sinw—wcosw)

If —n/2<b< —1/e, then 0 < w < 7/2 and, as in the proof of Lemma 4,

du 1

b db” 1+ (sin® w)/w?

1
==,
2

Using the fact that 4=0 when b= —=/2, the above yield

T T
—In{— <y, —-0. — .
‘ “<2|b|> Ho 051n<21bl>

If b < —n/2, then n/2 <w < = So, as in the proof of Lemma 4,

du 1 1

- = - = >
b db” 1+ (sinw)/w” 1+2/n

0.6.

Hence

0.6 In(2 |bl/n) < po <In(2 [5l/n). 1
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In Example 2 shall we take b = 1. For that case, Lemmas 4 and 5 yield

1+In2
>

Ag = ———2=0.56.
T 1 +2/b

n
< —0. —< =L
JTN 0951n 2b< 1.47 and

THEOREM A. Lect b>0 (and hence Ay>0). Then for all t=0

b :
xX(t)=——"7—e"" + g(1), where | g(t)] sbe“".

T Ao+ 4g) 4

If 0.< b <3n/2, then u, < —0.95 in(3n/2b).
If b2 3n/2, then 0 <y, <In(2b/37n) and

<) 9n?
IS4 50N | 2b
4 +|(In— ) +Iln—
In In

Proof. From Lemma 2, each w,> (2n— 1)n. So, (14) and (16) yield the
first statement of the theorem.

The estimate for u, when b < 3n/2 comes from Lemma 4.

If b>3n/2 then, from Lemma4 and the proof of Lemmad4, 3n/2<
w,<2n and 0<p, <In(2b/3n). These observations applied in Lemma 3
produce the final assertion about x,. |

EXAMPLE 1. Let b=e. Then ig=1, and for 1 >0

x,(1) = g e and  |g(r) <0.68¢ %%

ExampLE 2. Let b=1. Then /;,=0.567, and for 20
x,(t)=113¢%%"  and |g(£)] £0.25¢ =147,
See Fig. 2 for the graphs of x and x,.

Remarks. Estimates can always be improved with more effort. When
b=1, w,>4.37, since 4(4.37)<Inb. (See the proof of Lemma 2.) This
together with u, < —1.47 gives |4i,|>4.61. From a remark following
Lemma 4, y, < —0.99 In(7n/2) < —2.37. Thus (15) gives

lg(1)] <0.le 47 +0.05e =¥ for t>0.

This improved estimate for Example 2 comes very close to predicting the
fast convergence suggested by Fig. 2.
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TueoreM B. Let —1/e<b<0. Then for t20

x(t)= b e e + g(1),

b
+
Ao(1+ Ap) Ao(1+ 4p)
where | g(1)| < (1b]/12) eM* < (|b|/12) e~ [098InGSm216D1 ¢  (|p]/12) 2.
Let b= —1/e. Then for t =20

2 8\ _, LI
x(t)=('é'+3_e)e +g0)  where gl <€

Proof. From (11), if —1/e<b<0, then for all >0

b ; i b
Aot 4 e +2 z Re [m e""].
n=1 n "

=40 C I+ A0)

Since w, > 2nm, and invoking Eq. (16),
® 1 b

___ pHnl —

lg()I<216] ¥ —e <5

n=1 n

Lemma 4 gives the estimate for y,.
If b= —1/e, then x,(t)=(2t+ %) e~""", as given after Eq. (10), and the
estimate for |g(¢)| is as above but with b= —1/e. §

EXAMPLE 3. Let b= —0.36. Then A,= —0.806 and i,= —1.223. Thus
for t20
x,(1) =2.30e ~%3%" — 1.32¢ ~ 1223 and 1g(8)] <0.03¢ =%
The solution x and the function x, are displayed in Fig. 3.

Remark. When b <0 and |b| is small, the exp(A,¢) term may give an
adequate representation of the solution. For example, if b= —0.012, then
Ag= —0012, 4,= —6.3, and for £ >0,

x,(t)=e %9122 _00004c ** and  |g(r)] <0.001e~ %"

For Case C, b < —1/e, we begin with an example:

ExaMpLE 4. Let b= —n/2. Then Eq. (7) yields wo = 7/2. From this and
Eq. (6) po=0. From Lemma 4, u, < —0.98 In 5. Thus for 120

4r it 8 11

XD= 3 By T e Y
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__,7;—‘:_.
7 \“\\
\\\w\
}; % I \\._\_
-1 0 1 2 4
FIGURE 3
and
X m * 1/n
lgI< Y —e'<s Y —/—ze""
n=1 n n=1 4n

A sharper result

n
— it —1.57¢
7€ <0.131e .

U< —0.991n9. Then

n X m
|g(t)|<-(‘7e‘“’+ Z Fe“2’<0.054e“‘57’+0.051e‘2"7’.

1 n=2

The solution is displayed in Fig. 4 along with the graph of x,.

is obtained using the fact

n

that w,>7.64 and

=~
A
o -

FIGURE 4
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TueoreM C. Let b< —1/e. Then for t=0

2b

x(’)=m [(#o + u3 — w5) cos wo!
0 0

+ (o + 2w o) Sin wot] €™’ + g(t),

where | g(1)| <(|bl/12)e*"".
If —5n/2<b< —1/e, then ;< —0.98 In(57/2 |b]).
If b< —5m/2, then 0 <, <In(2 |b|/5n) and

< _ 217%/8
Hy = Ho 5 2|b| 2 2|b|
In?+{ln— ) +In—
St 5t

Proof. Forall t=0,

2b iwg! uot
x(t)=Re<me )e + g(¢),

where g(1) is as defined in Eq.(13). When the required real part is
evaluated, this is equivalent to the form stated in the theorem; and, by (14)

and (16),
® b
Re [———— e‘"’:l
; A1+ 4,)

|51 |6]

e#n’ < — e#l’.

lg() =

n

2
2

<
El (2nn)?
The assertions about y, follow from Lemma4. |

EXAMPLE 5. Let b= —2. Then Theorem C yields for >0
‘ .
x,(t) = [0.88 cos 1.67¢ —0.76 sin 1.67¢] *'7%, | g(2)l <g e 13

The graphs of x and x, are shown in Fig. 5.

Theorems A, B, and C show that if —57/2<b < 3n/2 then the solution
of Eq. (1) with constant initial function is well approximated by the “zeroth
order terms” of the series representation.

For other values of b the error g(f) may not decay exponentially. But at
least it will not grow as fast as x,(¢). To get an approximation in which the
error actually decays, one must add more terms in x,. Include in x, all
terms through the (n — 1)st order where # is choosen such that u,<0.

An obvious question remains: What about a nonconstant initial
function?
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FiGURE 5

The genesis of this study was actually a computer experiment on Eq. (1)
with “random” initial functions, i.e., finite sequences of random numbers
produced by the computer. The results were unexpected. Figure 6 shows
a typical solution for the case b= —n/2 with a “random” initial function
taking values in [ -1, 1].

A sufficiently random initial function with average value over small inter-
vals approximately zero leads to something close to a constant function on
[0, 1]. (The “constant” is the value of ¢(0).) From then on we have essen-
tially Eqgs. (1) and (2) again. In fact, the more random the initial function
the closer its integral will be to zero on small intervals, and the closer the
solution on [0, 1] will be to a constant.

Considering Eq. (1) with an arbitrary continuous (or merely integrable)
initial function

x(t)= (1) for —1<1<0, (22)
100 values [
/‘/’——-‘-\‘\\
) T S . e
1 N e i 5 T + }
o~ & - 5 6
FIiGURE 6
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one could try to pursue the analysis of this paper using the series represen-
tation (11) for the general solution instead of the special one in (12). The
estimates for u; would still be valid. But one would not get such convenient
general estimates for |g(0)].

Of course it is possible to choose a special nontrivial initial function ¢
for which the leading terms p(4,), p(A), or p(pg+ iw,) in (11), or in case
b= —1/e the terms p(—1) and p’(—1), vanish. Then the rest of the series
representation would be anything but negligible. However, this will
“practically never” happen by accident since such a ¢ would have to lie in
subspace of codimension one or codimension two of the space of initial
functions.

As further justification for studying the case of a constant initial function,
we mention the variation-of-parameters approach to Eq. (1) with arbitrary
initial function. Let u be the solution of Eq. (1) with initial function being
the (discontinuous) unit step function

()= 0 for t<0
“=N for t=0.

Clearly u(t)=1 for 0<t<1. So, except for a time translation, u is the
solution of Egs.(1) and (2) again. The solution of Eq. (1) with general
initial function (22) can now be represented as

x(1) = u(t) <p<0)+f: bu(i—s— 1) o(s) ds;

cf. Hale [5, p.22].
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