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Abstract

A Hermitian form q on the dual space, g�, of the Lie algebra, g, of a simply connected
complex Lie group, G, determines a sub-Laplacian, �, on G. Assuming Hörmander’s con-
dition for hypoellipticity, there is a smooth heat kernel measure, ρt , on G associated to et�/4.

In a companion paper [6], we proved the existence of a unitary “Taylor” map from the space
of holomorphic functions in L2(G, ρt) onto J 0

t (a subspace of) the dual of the universal en-
veloping algebra of g. Here we give a very different proof of the surjectivity of the Taylor
map under the assumption that G is nilpotent. This proof provides further insight into the
structure of the Taylor map. In particular we show that the finite rank tensors are dense in J 0

t

when the Lie algebra is graded and the Laplacian is adapted to the gradation. We also show
how the Fourier–Wigner transform produces a natural family of holomorphic functions in
L2(G, ρt), for appropriate t , when G is the complex Heisenberg group.

1. Introduction

Let G be a complex Lie group with a given a Hermitian inner product on its Lie algebra, g.
The Laplace operator, �, associated to the left-invariant extension of the real part of the inner
product, determines a heat kernel ρt on G, defined by the identity et�/4 = right convolution
by ρt(x)dx . For each t > 0 the heat kernel decays fast enough at infinity so that the Hilbert
space consisting of holomorphic functions in L2(G, ρt(x)dx) is non-empty and is in fact a
quite substantial space. For a holomorphic function f in this space we will, in a very strong
sense, determine the growth rate of its Taylor coefficients at the identity element of G: if
ξ1, . . . , ξk are in g then the map (ξ1, . . . , ξk) → (ξ1 · · · ξk f )(e) is a multilinear map into the
complex numbers and is consequently represented by a unique element of the dual space
of g⊗k . Allowing k to vary and putting these elements together now yields an element f̂ of
the algebraic dual space T ′, wherein T denotes the tensor algebra over g. Thus the element
f̂ is the set of Taylor coefficients of f at the identity element of G. There is a remarkable
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identity of norms involving f and its Taylor coefficients. On the one hand one has the norm
‖ f ‖L2(G,ρt (x)dx), while on the other hand one has the norm of f̂ as an element of T ′ with
its natural (t dependent) norm induced by the original Hermitian inner product on g. These
norms are equal. In fact the map f → f̂ is unitary if G is simply connected. See [5] for a
precise description of these results and some history.

It is not actually necessary, for this type of theorem, that the operator � be elliptic. In
[6] we have shown that indeed such a unitarity theorem holds if the subLaplacian � is
merely subelliptic. The inner product on g must, properly speaking, be defined on the dual
space g� in this case and is allowed to be degenerate to the extent that Hörmander’s the-
orem for hypoellipticity of the subLaplacian � permits. The fact that the map f → f̂ is
an isometry does not require G to be simply connected and, moreover, the proof of iso-
metry in the degenerate case is not substantially different from that in the non-degenerate
case. See [6, section 4] for this proof. The proof of surjectivity, however, (for simply con-
nected G) is, and has always been, for all cases, by far the most difficult part of unitarity to
prove.

This paper is devoted to the special case wherein the group G is nilpotent. In Section 3
we will give a proof of surjectivity in this case. It is a very different proof from the general
surjectivity proof in [6]. Moreover, along the way it produces a proof that the finite rank
tensors are dense in the tensor-side Hilbert space if G is graded nilpotent and the Laplacian
is adapted to the gradation. Such denseness is false for a semisimple group. Section 2 gives
needed background concerning the Taylor map.

In Section 4 we will show how the Fourier-Wigner transform generates, in a natural way,
holomorphic functions in L2(HC

3 , ρt), where ρt is the natural subelliptic heat kernel on the
three dimensional complex Heisenberg group, HC

3 . Moreover the time parameter t is related
in an interesting way to Planck’s constant and the physical time appearing in the Fourier-
Wigner transform.

2. Notation and background

In this section we will review some notation and basic results from [6]. We will use angle
brackets, 〈·, ·〉, to denote the pairing of a vector space, V, and its algebraic dual, V ′, i.e.
〈α, v〉 := α(v) for all v ∈ V and α ∈ V ′. Let G be a complex connected Lie group equipped
with its right Haar measure dx and let H = H(G) denote the space of complex valued
holomorphic functions on G. Given A ∈ g := Lie(G) (the complex Lie algebra of G), let
Ã denote the unique left invariant vector field acting on C∞(G) such that Ã(e) = A.

Denote by T (g) the tensor algebra over g. An element of T (g) is a finite sum:

β =
N∑

k=0

βk βk ∈ g
⊗k . (2·1)

We may and will identify T (g)′ with the direct product
∏∞

k=0(g
�)⊗k via the pairing,

〈α, β〉 =
∞∑

k=0

〈αk, βk〉, (2·2)

where

α =
∞∑

k=0

αk αk ∈ (g�)⊗k . (2·3)
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Notation 2·1 (Left Invariant Differential Operators). We define a real linear map (β →
β̃) from T (g) to left invariant differential operators on G determined by: (1) for β = A1⊗. . .

⊗ Ak ∈ g⊗k, β̃ f := Ã1 . . . Ãk f and (2) 1̃ f = f for f ∈ C∞(G).

If f is a C∞ function on G, the Taylor coefficient of f at x ∈ G is the element, f̂ (x), in
T (g)′

Re (the real linear functionals on T (g)) defined by

〈 f̂ (x), β〉 = (β̃ f )(x) for all β ∈ T (g). (2·4)

If we further assume f ∈ H, then β → (β̃ f )(x) is complex linear and in this case f̂ (x) ∈
T (g)′. In either case, f̂ (x) annihilates the two sided ideal, J ⊂ T (g), generated by

{ξ ⊗ η − η ⊗ ξ − [ξ, η] : ξ, η ∈ g}. (2·5)

So if f ∈ H and x ∈ G, then f̂ (x) ∈ J 0 where

J 0 := {α ∈ T (g)′ : 〈α, J 〉 = {0}}. (2·6)

The space J 0 is complex isomorphic to U ′ where U := T (g)/J is the universal enveloping
algebra of g.

Notation 2·2. Let q be a nonnegative quadratic (respectively Hermitian) form on the dual
space g�. Thus

q(a) = (a, a)q (2·7)

for some, possibly degenerate, nonnegative bilinear (respectively sesquilinear) form (, )q

on g�.

As is shown in [6, lemma 2·2], there exists a linearly independent (over C) subset,
{X j }m

j=1 ⊂ g, such that

q(a) = (a, a)q =
m∑

j=1

|〈a, X j 〉|2 for all a ∈ g
�. (2·8)

The space, H := span(X1, . . . , Xm) equipped with the unique Hermitian inner product,
(·, ·)H , for which {X j }m

j=1 is an orthonormal basis, is called the Hörmander subspace asso-
ciated to q. H is the backwards annihilator of the kernel of q. See, e.g., [6, equation (2·3)].
Also associated to q is the second order left invariant differential operator,

� =
m∑

j=1

(
X̃ 2

j + (̃i X j )
2)

. (2·9)

It can be shown that � and (H, (·, ·)H ) only depend on q and not on the choice of {X j }m
j=1 ⊂

g for which (2·8) holds, see [6].
The form q induces a degenerate Hermitian form qk := q⊗k whose inner product, (·, ·)qk ,

on (g�)⊗k is determined by

(a1 ⊗ · · · ⊗ ak, b1 ⊗ · · · ⊗ bk)qk =
k∏

j=1

(a j , b j )q ai , bi ∈ g
�, i = 1, . . . , k (2·10)
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for k � 1. If α ∈ (g�)⊗k, we will write qk(α) or |α|2qk
for (α, α)qk . By convention, V ⊗0 = C

and we define q0 on (g�)⊗0 so that q0(1) = 1. For t > 0 define

‖α‖2
t :=

∞∑
k=0

t k

k! |αk |2qk
(2·11)

when α is given by (2·3).
The function, ‖·‖t , defines a seminorm in the subspace of T (g)′ on which ‖α‖2

t is finite.
But we will, by restriction, always consider ‖·‖t to be a semi-norm on

J 0
t := {α ∈ J 0 : ‖α‖2

t < ∞}. (2·12)

Definition 2·3. We say that Hörmander’s condition holds for q if the smallest Lie subal-
gebra, Lie(H), containing H is g. (It is permissible here to view Lie(H) as the Lie algebra
generated by H ⊂ g with g thought of being either a complex or a real Lie algebra.)

The significance of Hörmander’s condition is twofold. 1) By [6, theorem 2·7], Lie(H) = g

iff for some t > 0 (hence for all t > 0), ‖·‖t is a norm on J 0
t . 2. By Hörmander’s theorem

[16], Lie(H) = g iff � is hypoelliptic, see the end of Section 1 in [6] for a more detailed
discussion on this last point. So under Hörmander’s condition on q, the operator, �, in (2·9)
admits a smooth heat kernel, ρt : G → (0, ∞), satisfying(

et�̄/4 f
)
(e) =

∫
G

f (x)ρt(x)dx for all f ∈ L2(G, dx), (2·13)

where �̄ denotes the L2(G, dx) closure of �|C∞
c (G). We call the measure ρt(x)dx the heat

kernel measure on G associated to the sub-Laplacian �, see [6, section 3] for more details
of this construction.

Notation 2·4. We denote by H the space of holomorphic functions on G and define

HL2(G, ρt(x)dx) = H � L2(G, ρt(x) dx). (2·14)

(For any complex matrix group the matrix entries and polynomials in these entries lie in this
space for any such subelliptic Laplacian.)

We may now summarize some of the main theorems from [6].

THEOREM 2·5 ([6, theorem 4·2]). Let G be a connected complex Lie group. Suppose that
q is a non-negative Hermitian form on the dual space g� and assume that Hörmander’s
condition holds. Let ρt denote the heat kernel associated to q. Then the Taylor map,

f −→ f̂ (e), (2·15)

is an isometry from HL2(G, ρt(x) dx) into J 0
t .

PROPOSITION 2·6 ([6, proposition 4·3]). Let f ∈ H(G) and assume that f̂ (e) ∈ J 0
t (see

(2·4)) for some t > 0. Then f ∈ HL2(G, ρt(x) dx).

THEOREM 2·7 ([6, theorem 6·1]). Let G be a connected, simply connected complex Lie
group. Suppose that q is a non-negative Hermitian form on the dual space g� and assume
that Hörmander’s condition holds, (cf. Definition. 2·3). Then the Taylor map, f → f̂ (e) is
a unitary map from HL2(G, ρt(x)dx) onto J 0

t .

One of the main objectives of this paper is to provide an alternate proof of the surjectivity
portion of Theorem 2·7 under the restrictive hypothesis that G is nilpotent.
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3. Taylor expansion over complex nilpotent groups

In this section we are going to give a proof of the surjectivity of the isometry described
in Theorem 2·7 when G is nilpotent. This proof is simpler than and very different from
the proof given in [6] for the general case. It also yields more detailed information on the
structure of the Taylor map.

THEOREM 3·1. Let G be a connected, simply connected, nilpotent complex Lie group.
Suppose that q is a nonnegative Hermitian form on the dual space g� of the complex Lie
algebra of G. Assume that q satisfies Hörmander’s condition (cf. Definition 2·3.) Let t > 0.
If f is in HL2(G, ρt(x)dx) then f̂ (e) is in J 0

t and the map

( f −→ f̂ (e)) :HL2(G, ρt(x)dx) −→ J 0
t (3·1)

is unitary.

The proof of Theorem 3·1 will follow the proof of Lemma 3·6, which asserts that The-
orem 3·1 holds under the additional assumption that g is a “graded” Lie algebra and q is
nicely related to the gradation.

Notation 3·2. A Lie algebra g is graded if it is representable as a direct sum:

g = ⊕∞
j=1Vj (3·2)

where all but finitely many of the the subspaces {Vj }∞
j=1 equal {0} and

[Vi , Vj ] ⊂ Vi+ j , i, j = 1, 2, . . . . (3·3)

A graded algebra is necessarily nilpotent.

Notation 3·3. A Lie algebra g is stratified if it is graded and V1 generates g. In this case,
we have

[V1, Vk] = Vk+1, k = 1, . . . , ∞, (3·4)

and there exists an integer r such that Vr � {0}, Vr+1 = {0}, and

g = ⊕r
j=1Vj . (3·5)

If g is stratified and r is as in Notation 3·3 then g is r -step nilpotent.
An important example illustrating these definitions comes from the complex Heisenberg

algebra h
C

3 . This is a 3-dimensional complex vector space with basis X, Y, Z equipped with
a Lie bracket satisfying [X, Y ] = Z , [X, Z ] = [Y, Z ] = 0. In this case, V1 is the vector
subspace spanned by X, Y and V2 is spanned by Z . Obviously, h

C

3 is graded and, in fact,
stratified.

Notation 3·4 (Dilations). Let g be a graded Lie algebra with g = ⊕∞
j=1Vj as in (3·2). For

λ ∈ C and v = ∑∞
1 vi ∈ g, v j ∈ Vj , j = 1, . . . , ∞, define

δλ(v) =
∞∑

k=1

λkvk . (3·6)

It is straightforward to verify that

δλμ = δλδμ λ, μ ∈ C. (3·7)

and that, for λ� 0, δλ is an automorphism of the Lie algebra g. See [7, chapter 1] for details.
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LEMMA 3·5. Let g be a complex graded Lie algebra. Let q be a nonnegative Hermitian
form on g� satisfying Hörmander’s condition (Definition 2·3). Assume that q is invariant
under the action of the transposed dilations (δeiθ )′. Then the finite rank tensors in J 0

t are
dense in J 0

t for each t > 0.

Proof. Let �θ : T (g) → T (g) be the automorphism of the tensor algebra over g induced
by the automorphism δeiθ of g, i.e.

�θ =
k-times︷ ︸︸ ︷

δeiθ ⊗ · · · ⊗ δeiθ on g
⊗k .

For any ξ and η in g we have

�θ(ξ ∧ η − [ξ, η]) = (δeiθ ξ ) ∧ (δeiθ η) − δeiθ [ξ, η]
= (δeiθ ξ ) ∧ (δeiθ η) − [δeiθ ξ, δeiθ η].

Thus �θ takes J into, and in fact onto, J . The transpose, �′
θ , on T (g)′ therefore takes J 0

onto itself. Since

�′
θ =

k-times︷ ︸︸ ︷
(δeiθ )′ ⊗ · · · ⊗ (δeiθ )′ on (g�)⊗k,

it follows that

qk(�
′
θu) = qk(u) for all u ∈ (g�)⊗k . (3·8)

Since δeiθ ξ is continuous in θ for any norm on g, �θβ is continuous in θ for all k tensors
β and for any product norm on g⊗k . Similarly �′

θα is continuous in θ for any element α in
(g�)⊗k .

Let

Fn(θ) = 1

2πn

n−1∑
k=0

k∑
=−k

eiθ = 1

2πn
sin 2(nθ/2)

sin 2(θ/2)

denote Fejer’s kernel [25, p. 413]. Then
∫ π

−π
Fn(θ) dθ = 1 for all n and

lim
n→∞

∫ π

−π

Fn(θ)ϕ(θ) dθ = ϕ(0)

for all continuous functions, ϕ : [−π, π] → C.

If β = ξ1 ⊗ · · · ⊗ ξk with ξp ∈ Vjp for p = 1, . . . , k then

�θβ = (
ei

∑k
p=1 jpθ

)
β.

So ∫ π

−π

Fn(θ)�θβdθ = 0 if
k∑

j=1

jp > n.

Since all jp � 1 we have∫ π

−π

Fn(θ)�θdθ = 0 on g
⊗k if k > n.

Consequently ∫ π

−π

Fn(θ)�′
θαdθ = 0 if α ∈ (g�)⊗k and k > n.
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Now an elementary argument using (3·8) and the strong continuity of θ �→ �′
θ on each

(g�)⊗k shows that θ �→ �′
θ is strongly continuous on J 0

t in the norm (2·11). Hence if α ∈ J 0
t

then

γn :=
∫ π

−π

Fn(θ)�′
θα dθ

is also in J 0
t and is zero in all ranks > n. Moreover

‖γn − α‖t =
∥∥∥∥
∫ π

−π

Fn(θ)(�′
θα − α)dθ

∥∥∥∥
t

�
∫ π

−π

Fn(θ)‖�′
θα − α‖t dθ −→ 0 as n −→ ∞.

LEMMA 3·6 (Theorem 3·1–Graded case). In addition to the hypotheses of Theorem 3·1,
assume that g is a graded algebra and that for any complex number λ with |λ| = 1, q is
invariant under the transposes, (δλ)

′, of the dilations introduced in Notation 3·4. Then the
conclusions of Theorem 3·1 hold.

Proof. By Theorem 2·5 the map f → f̂ (e) is isometric from HL2(G, ρt) into J 0
t . To

prove the surjectivity it suffices therefore to prove that the image is dense. To this end it
suffices, by Lemma 3·5, to show that if α is a finite rank tensor in J 0

t then there exists
a function u ∈ HL2(G, ρt) such that α = û. Since, in our case, the exponential map is
a holomorphic diffeomorphism onto G we may identify G with CN and define u as the
holomorphic function on G given by

u(exp ξ) =
∞∑

n=0

〈
αn, ξ

⊗n〉 /n!

This is a finite sum because α is of finite rank.
One now easily concludes (see [4, proposition 6·3]) that û = α. Indeed, for any ξ ∈ g,

〈
û(e), ξ⊗k 〉 =

(
d
dt

)k
∣∣∣∣∣
t=0

u(etξ ) =
(

d
dt

)k
∣∣∣∣∣
t=0

∞∑
0

1

n!
〈
αn, (tξ)⊗n〉

= 〈
αk, ξ

⊗k 〉 . (3·9)

By polarization, the linear span of {ξ⊗k : ξ ∈ g} is the set of all symmetric R-tensors, S. It
follows that û(e) = α on S. But, by the Poincaré–Birkhoff–Witt theorem, [26, lemma 3·3·3],
we know that T (g) = S ⊕ J , and, since û − α annihilates J, we conclude that û(e) = α on
T (g).

Since u is a holomorphic function such that û(e) = α ∈ J 0
t , it follows from Proposi-

tion 2·6 that u ∈ HL2(G, ρt).
Alternatively, one may conclude that u ∈ L2(G, ρt) (or in fact that u ∈ L p(G, ρt) for all

0 < p <∞) on the grounds that any polynomial is in L p(G, ρt). The latter assertion is
proved using the heat kernel upper bound in [6, theorem 3·4] and the fact that for any polyno-
mial P on G (i.e., P(x) = P̃ ◦ exp −1(x) where P̃ is a polynomial on g) there exist C, α � 0
(for example, see [27, section IV·5]) such that |P(x)| � C(1 + d(e, x))α with d(x, y) being
the sub-Riemannian distance associated with q as in [6, equation (3·1)].

Remark 3·7. Let g be a graded algebra with decomposition g = ⊕∞
i=1Vi and equipped

with the dilations introduced in Notation 3·4. Let q be a Hermitian form on g� satisfying
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Hörmander’s condition. Let H be the Hörmander subspace of g equipped with its scalar
product (·, ·)H induced by q. See the discussion after (2·8). It is not hard to check that a
necessary and sufficient condition for q to be invariant under the dilation (δλ)

′, |λ| = 1, is
that H be the orthogonal direct sum of the non-trivial H � Vi , i = 1, . . . , under (·, ·)H . This
is equivalent to saying that there exists an orthonormal basis {X j }m

j=1 of (H, (·, ·)H ) such
that each X j belongs to Vi for some i = i( j). In particular, if g is stratified and H = V1,
the Hermitian form q is invariant under the dilations (δλ)

′ with |λ| = 1. But this is far from
the only example. For instance, in the Heisenberg algebra h

C

3 described above, consider the
following two cases:

(a) The model subelliptic case where H = V1 = span(X, Y ) with X, Y being an orthonor-
mal basis (this is equivalent to a description of q);

(b) The non-degenerate case where H = h
C

3 = span(X, Y, Z) with X, Y, Z being an or-
thonormal basis.

Note that the dilatations δλ on h
C

3 are given by

δλ(X) = λX, δλ(Y ) = λY, δλ(Z) = λ2 Z .

Although only structure (a) above is “homogeneous” with respect to all dilations δλ, λ ∈ C,
the structures (a) and (b) are both invariant under these dilations when |λ| = 1. Thus Lemma
3·5 applies to both and shows that the finite rank tensors are dense in J 0

t , t > 0, for the
Hermitian forms in both cases (a) and (b).

Remark 3·8. Lemma 3·5 asserts that the finite rank tensors in J 0 are dense in J 0
t for each

t > 0 if g is graded nilpotent and the Hermitian form q is automorphism invariant, as in the
hypotheses of Lemma 3·5. We don’t know whether such density holds if g is nilpotent but
not graded or even if g is graded but q is not invariant under δλ, |λ| = 1. On the other hand,
in view of [14, theorem 4·15], we know that when q is nondegenerate the finite rank tensors
cannot be dense in J 0

t for any t > 0 unless g is nilpotent.

Proof of Theorem 3·1. Let G be a connected, simply connected, nilpotent complex Lie
group with Lie algebra g whose dual is equipped with a quadratic form q satisfying
Hörmander’s condition. Let X1, . . . , Xm be an orthonormal basis of (ker q)0. Choose r ∈ N

sufficiently large so that g is nilpotent of step r. Let n(m, r) denote the step r free nilpotent
complex Lie algebra on m generators η1, . . . , ηm . (see [23], [9, p. 37] and also [1, chapter 2
section 2]). By definition of n(m, r), there exists a Lie algebra homomorphism

π : n(m, r) −→ g

such that π(ηi) = Xi . (This property holds for any step r nilpotent Lie algebra g generated
by m elements X1, . . . , Xm .) The algebra n(m, r) is a stratified Lie algebra with

n(m, r) = V1 + · · · + Vr

where V1 is the linear span of η1, . . . , ηm and Vi = [V1, Vi−1], i = 2, . . . , r . For a description
of a basis of Vi , see [1, 9]. The natural dilation structure on n(m, r) is defined by setting
δλ(ξ) = λiξ for ξ ∈ Vi , i = 1, 2, . . . , r , λ ∈ C.

On the dual n(m, r)� of n(m, r), set

q̃(a) =
m∑
1

|〈a, ηi 〉|2. (3·10)
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By construction, we have

(ker q̃)0 = span(η1, . . . , ηm) = V1.

Hence q̃ satisfies the Hörmander condition and is invariant with respect to the dilations δeiθ .
Moreover, by (2·8) and (3·10), q̃ = π�q = q ◦ π.

Suppose now that t > 0 and that α ∈ J 0
t (g). The surjective homomorphism π extends

to a surjective homomorphism from T (n(m, r)) onto T (g). We denote the extension again
by π . Then π� maps from T (g)′ into T (n(m, r))′. Moreover π(J (n(m, r)) = J (g) and so
π�(J 0(g)) ⊂ J 0(n(m, r)). Let α′ = π�α = α ◦ π. It follows from (3·10) and (2·8) that
α′ ∈ J 0

t (n(m, r)) and

‖α′‖t = ‖α‖t < ∞. (3·11)

Let N (m, r) be the simply connected nilpotent Lie group whose Lie algebra is n(m, r).
An application of Lemma 3·6 allows us to conclude that there exists a holomorphic function,
v, on N (m, r) such that v̂ = α′. We further know that v is square integrable relative to the
time t heat kernel measure associated to q̃, but we will not need this fact here.

Let ϕ be the unique complex surjective Lie group homomorphism from N (m, r) to G
such that ϕ�e = π. It is known that

G0 := ker ϕ ⊂ N (m, r)

is connected if and only if G is simply connected, see [10, theorem 4·8]. Since we have
assumed that G is simply connected, G0 is connected in our case. Moreover, G0 is a complex
Lie group because Lie(G0) = ker π is a complex Lie algebra.

We assert that the function v is right (and therefore left) invariant under the normal sub-
group G0 and consequently factors through a holomorphic function f on G, i.e. v = f ◦ ϕ.

To prove this assertion, it suffices to show that η̃v ≡ 0 on N (m, r) for any vector η ∈ Te(G0).

Since η̃v is holomorphic on N (m, r) it is enough to show that (β̃η̃v)(e) = 0 for all β ∈
n(m, r). But because πη = 0,

(β̃η̃v)(ẽ) = 〈α′, β ⊗ η〉 = 〈α, π(β ⊗ η)〉 = 〈α, (πβ) ⊗ (πη)〉 = 0

and the assertion is proved.

To each Ai ∈ g, we may use the surjectivity of π to find a Bi ∈ n(m, r) such that π Bi =
Ai . It is well known and easy to show that B̃i (F ◦ ϕ) = ( Ãi F) ◦ ϕ for any smooth function
F on G. By repeated use of this identity, we find

〈v̂(e), B1 ⊗ · · · ⊗ Bn〉 = (B̃1 . . . B̃nv)(e) = (B̃1 . . . B̃n( f ◦ ϕ))(e)

= ( Ã1 . . . Ãn f )(ϕ(e)) = 〈 f̂ (e), A1 ⊗ · · · ⊗ An〉.
On the other hand,

〈v̂ (e) , B1 ⊗ · · · ⊗ Bn〉 = 〈
α′, B1 ⊗ · · · ⊗ Bn

〉 = 〈
π�α, B1 ⊗ · · · ⊗ Bn

〉
= 〈α, π B1 ⊗ · · · ⊗ π Bn〉 = 〈α, A1 ⊗ · · · ⊗ An〉 .

Comparing the previous two equations allows us to conclude that f is a holomorphic func-
tion on G such that f̂ (e) = α. In light of Theorem 2·5 and Proposition 2·6, this fact is
sufficient to complete the proof of Theorem 3·1.
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4. The Fourier–Wigner transform and holomorphic functions

We are going to show in this section how the harmonic oscillator Hamiltonian produces
a natural source of holomorphic functions on the complex three dimensional Heisenberg
group, HC

3 , which lie in HL2(HC

3 , ρt), where ρt is the heat kernel of the natural subelliptic
Laplacian. There is a correspondence between analytic vectors for the quantum mechan-
ical harmonic oscillator Hamiltonian and holomorphic functions on the complex Heisen-
berg group. The correspondence is induced by the Fourier-Wigner transform and also by
the Wigner transform itself. The former seems easier to deal with. We will study only the
Fourier-Wigner transform in this paper.

4·1. Holomorphic Fourier–Wigner Functions

Notation 4·1. The complex Heisenberg group is HC

3 = C3 with the group law

(z1, z2, z3) · (z′
1, z′

2, z′
3) = (z1 + z′

1, z2 + z′
2, z3 + z′

3 + (1/2)(z1z′
2 − z2z′

1)).

Let us observe here that if z j = x j + iy j then

z1z′
2 − z2z′

1 = [x1x ′
2 − x2x ′

1 − (y1 y′
2 − y2 y′

1)] + i[x1 y′
2 − y2x ′

1 + y1x ′
2 − x2 y′

1].
Define vector fields by

X1 = ∂/∂x1 − (x2/2)∂/∂x3 − (y2/2)∂/∂y3

X2 = ∂/∂x2 + (x1/2)∂/∂x3 + (y1/2)∂/∂y3

Y1 = ∂/∂y1 + (y2/2)∂/∂x3 − (x2/2)∂/∂y3

Y2 = ∂/∂y2 − (y1/2)∂/∂x3 + (x1/2)∂/∂y3.

These are the left invariant vector fields which reduce at the origin to ∂/∂x1, etc. We will use
the sub-Laplacian given by

� = X 2
1 + X 2

2 + Y 2
1 + Y 2

2 . (4·1)

Define the kernel ρt on HC

3 by the identity et�/4 f = f � ρt .

Notation 4·2. Let Q denote the operator of multiplication by x on L2(R) with its natural
domain of self-adjointness and let P denote the operator −id/dx with its natural domain
of self-adjointness. Denote by H0 the operator, (1/2)(P2 + Q2) with its natural domain of
self-adjointness.

We will show in Lemma 4·4 that for any real numbers u and v the closure of the operator
(u P + vQ)|S(R) is self-adjoint. This is a very well known fact that goes back at least to
J. M. Cook [2, theorem 10]. See also [21, theorem X·41]. These proofs show that these
operators are essentially self-adjoint on any domain that contains the Hermite functions.
Nevertheless we will give a short self contained proof in Lemma 4·4 because it comes right
out of an identity that we will need anyway. We will always interpret the sum u P + vQ as
this self-adjoint operator.

The main theorem of this section is the following.

THEOREM 4·3. Let s > 0. Suppose that f is in the domain of es H0 . Then the Fourier-
Wigner transform

W (u, v, w) := eiw (
ei(u P+vQ) f, f

)
, u, v, w ∈ R, (4·2)
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has a unique analytic continuation to an entire function W̃ on C3. Moreover W̃ is in
HL2(HC

3 , ρt) if

t <
tanh s

2(1 + tanh s)
= 1

4
(1 − e−2s). (4·3)

The proof depends on the following lemmas, of which the first is in part a precise restate-
ment of a well known identity (cf. (4·5) below) expressing the evolution of the harmonic
oscillator in the Heisenberg picture. It can be found in many elementary books on quantum
mechanics. See e.g. [11, page 257].

LEMMA 4·4 (Rotation in P, Q space). Let u and v be real, let r = (u2 + v2)1/2 and let
s > 0. Then u P + vQ is essentially self-adjoint on S and

‖eu P+vQe−s H0‖ = ‖er Qe−s H0‖. (4·4)

Proof. Since S = C∞(H0) we have, for any real number θ , eiθ H0S = S. Therefore, since
S is a core for Q it is also a core for Qe−iθ H0 and for eiθ H0 Qe−iθ H0 . Let ε > 0 and note that
range e−εH0 ⊂ S. Define an operator valued function of θ by

T (θ) := {e−iθ H0 e−εH0}{(P sin θ + Q cos θ)e−εH0}{eiθ H0 e−εH0}.
Each of the three operators in braces is a function of θ into the space of bounded operators
and each is differentiable with respect to θ with the operator norm on the range. Using the
commutation relations [i H0, P] = −Q, [i H0, Q] = P on S (and therefore on the range of
e−εH0 ) it is straightforward to compute that dT (θ)/dθ = 0 by a computation which is easily
justified, given the preceding information. Hence T (θ) = T (0) for all real θ . That is,

e−εH0 e−iθ H0{P sin θ + Q cos θ}eiθ H0 e−2εH0 = e−εH0 Qe−2εH0 .

We may cancel the injective operator e−εH0 on the left and then multiply by eiθ H0 on the left
and by e−iθ H0 on the right to find

{P sin θ + Q cos θ}e−2εH0 f = eiθ H0 Qe−iθ H0 e−2εH0 f

for all f ∈ L2(R) and all ε > 0. Let g ∈ L2(R) and insert f := (H0 +1)−1g into this equality.
Shift the factors (H0+1)−1 to the left of the factors e−2εH0 . We may then let ε ↓ 0 because the
product to the left of the operator e−2εH0 on each side of the equation is a bounded operator.
Since any function f in S may be written in the form f = (H0 + 1)−1g with g ∈ L2(R), we
have shown

{P sin θ + Q cos θ} = eiθ H0 Qe−iθ H0 (4·5)

on S. Since S is a core for the selfadjoint operator on the right, {P sin θ + Q cos θ} is
essentially self-adjoint on S and (4·5) holds on the full domain of the closure of P sin θ +
Q cos θ . The functional calculus now shows that

er(P sin θ+Q cos θ)e−s H0 = eeiθ H0 r Qe−iθ H0 e−s H0

= eiθ H0 er Qe−iθ H0 e−s H0

= eiθ H0 er Qe−s H0 e−iθ H0,

from which (4·4) follows.

Notation 4·5. The ground state (lowest eigenfunction) for the operator H0 is the func-
tion ψ0(x) = π−1/4e−x2/2. The associated ground state transformation, [17, page 71] and
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[3, page 458], is defined as follows. Define the ground state measure γ by γ (dx) =
ψ0(x)2dx = π−1/2e−x2

dx . Under the unitary map U : f → f (x)/ψ0(x) from L2(R, dx) to
L2(R, γ ), the Hamiltonian H0 transforms to U H0U−1 = N +(1/2) where N is the Dirichlet
form operator associated to the measure γ by the formula,

(N f, g)L2(γ ) = (1/2)

∫
R

f ′(x)g′(x)dγ (x).

Under the unitary transform U the operator Q goes over to an operator Q̂ := U QU−1,
which again consists of multiplication by x (but on a different domain).

LEMMA 4·6 (Hypercontractive estimates). Let s > 0 and let r be real. Then

‖er Q̂e−s N ‖L2(γ )→L2(γ ) � er2/2 tanh s . (4·6)

Moreover

‖er Qe−s H0‖L2(R)→L2(R) � er2/2 tanh se−s/2 (4·7)

and

‖eu P+vQe−s H0‖L2(R)→L2(R) � er2/2 tanh se−s/2 (4·8)

when r = (u2 + v2)1/2.

Proof. Let f ∈ L2(γ ) and let g = e−s N f . Define p by the equation e2s = 2p − 1. Then
e−s N is a contraction from L2(γ ) to L2p(γ ), [13]. [A change of variance from [13] and a
change to (1/2)∇�∇ cancel.] So ‖g‖2p � ‖ f ‖2. Let q = p/(p − 1) = (tanh s)−1. Then

‖er Q̂ g‖2
2 =

∫
R

e2r x |g(x)|2dγ (x) � ‖e2r x‖q‖g‖2
2p � ‖e2r x‖q‖ f ‖2

2.

But ‖e2r x‖q
q = ∫

R
e2qr x dγ (x) = e(2qr)2/4. Hence ‖e2r x‖q = eqr2

. So

‖er Q̂e−s N f ‖2 = ‖er Q̂ g‖2 � eqr2/2‖ f ‖2.

Returning now to Lebesgue measure, the inequality (4·7) follows from (4·6) because
U H0U−1 = N + (1/2), while Uer QU−1 = er Q̂ . (4·8) now follows from (4·4) and (4·7).

LEMMA 4·7 (Taylor coefficient estimates). Suppose that n1, . . . , n2r are non-negative in-
tegers with n1 + · · · + n2r = k. Then

‖Pn1 Qn2 · · · Pn2r−1 Qn2r f ‖ � 2k/2
∥∥(H0 + k)k/2 f

∥∥ (4·9)

for all f ∈ S(R). There is a constant C such that, for s > 0,

‖Pn1 Qn2 · · · Pn2r−1 Qn2r e−s H0‖ � C
√

k!
(e2s

s

)k/2/
k1/4, k � 1. (4·10)

Proof. We are going to give a proof here for the reader’s convenience. But we want to
emphasize that the machinery we will use is quite well known in the literature of quantum
field theory. See e.g. [21, section X·6, example 2] and also [21, section X·7].

Let a = (Q + i P)/
√

2, interpreted as the closure of the actual sum. Then a∗ = (Q −
i P)/

√
2 (closure of sum). Moreover S(R) is a core for both operators and both leave S(R)

invariant. Let M = a∗a. Then M is a non-negative self-adjoint operator with core S(R) and
leaves S(R) invariant. One can easily verify on S(R) the identities aa∗ = a∗a + 1, H0 =
M + (1/2), Ma = a(M − 1) and Ma∗ = a∗(M + 1).
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Since Q = (a + a∗)/
√

2 and P = (a − a∗)/ i
√

2 the product Pn1 Qn2 · · · Pn2r−1 Qn2r is
a sum of products A1 · · · Ak with each A j = a or a∗ and with an overall factor of 2−k/2 in
magnitude. Hence the left side of (4·9) is at most 2−k/2

∑ ‖A1 · · · Ak f ‖ where the sum is
over all possible choices, A j = a or a∗, for each j ∈ {1, . . . , k}.

We may now use, on each of these 2k terms, the inequality

‖A1 · · · Ak f ‖ �
∥∥(M + k)k/2 f

∥∥
stated in [22, problem 36 on page 178] and proved in [21, section X·7]. This proves (4·9).

In order to derive (4·10) note first that the range of e−s H0 ⊂ S(R) because S(R) is exactly
the set of C∞ vectors for H0. Taking f = e−s H0 g in (4·9) with ‖g‖ = 1, the inequality (4·10)
can be deduced from (4·9) by observing that

‖Pn1 Qn2 · · · Pn2r−1 Qn2r f ‖ � 2k/2
∥∥(H0 + k)k/2e−s H0 g

∥∥ � 2k/2
∥∥(H0 + k)k/2e−s H0

∥∥,

while

2k/2‖(H0 + k)k/2e−s H0‖ � 2k/2 sup
u�1/2

(u + k)k/2e−s(u+k)esk

� 2k/2esk sup
v�0

vk/2e−sv

= 2k/2esk(k/2s)k/2e−k/2

= kk/2

(
e2s

es

)k/2

,

since vk/2e−sv has a maximum on [0, ∞) at v = k/(2s). Stirling’s formula, kk/2 ∼ (k!)1/2ek/2/

(2πk)1/4, now shows that

2k/2
∥∥(H0 + k)k/2e−s H0

∥∥ ∼ (k!)1/2(e2s/s)k/2/(2πk)1/4

for large k. This proves (4·10).

LEMMA 4·8 (Convergence of power series). Let s > 0 and suppose that f ∈ D(es H0).
Then the power series expansion of ez1 P+z2 Q f in the two complex variables z1, z2 converges
absolutely. Moreover if z1 and z2 are both real then the sum is ez1 P+z2 Q f , where the expo-
nential is defined by the spectral theorem for the self-adjoint operator z1 P + z2 Q. Similarly,
if z1 = ib1 and z2 = ib2 are purely imaginary then the sum is ei(b1 P+b2 Q) f , where the expo-
nential is defined by the spectral theorem for the self-adjoint operator b1 P + b2 Q.

Proof. We may assume that f = e−s H0 g with ‖g‖ = 1. Each term of the series

∞∑
k=0

(z1 P + z2 Q)k

k! f

is well defined by Lemma 4·7 and has the form

(1/k!)
k∑

j=0

z j
1zk− j

2 E j f

where E j is a sum of
(k

j

)
products of k factors of P and Q as in Lemma 4·7. In view of the
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estimate (4·10) we find∣∣∣∣∣
∣∣∣∣∣(1/k!)

k∑
j=0

z j
1zk− j

2 E j f

∣∣∣∣∣
∣∣∣∣∣ � (1/k!)

k∑
j=0

|z1| j |z2|k− j

(
k
j

)
C(k!)1/2

(
e2s

s

)k/2 /
k1/4

� (|z1| + |z2|)k(k!)−1/2C
(

e2s

s

)k/2 /
k1/4.

Therefore the series converges absolutely.
In particular if z1 and z2 are real then f is an analytic vector for the self-adjoint operator

z1 P + z2 Q. Hence the series converges to the exponential defined by the spectral theorem.
A similar observation applies to ei(b1 P+b2 Q) f . This proves Lemma 4·8.

LEMMA 4·9 (Power series vs. spectral theorem). Let z1 = a1 + ib1, z2 = a2 + ib2. Then,
for s > 0,

ei(z1 P+z2 Q)e−s H0 = e(a2b1−a1b2)/2ei(a1 P+a2 Q)e−(b1 P+b2 Q)e−s H0 (4·11)

wherein the left-hand side is defined as a power series as in Lemma 4·8 while the operators
on the right-hand side are all defined by the spectral theorem.

Proof. Let f = e−s H0 g. If u1, u2, z1, z2 are all real then the Weyl form of the canonical
commutation relations, cf. [8, equation (1·24)], implies

ei((u1+z1)P+(u2+z2)Q) f = ei(u1z2−u2z1)/2ei(u1 P+u2 Q)ei(z1 P+z2 Q) f. (4·12)

Since ei(u1 P+u2 Q) is unitary, both sides of (4·12) are analytic functions of z1, z2 ∈ C2. Hence
(4·12) holds for all complex z1, z2. Choose z1 = iv1 and z2 = iv2 purely imaginary. Then
(4·12) reduces to

ei((u1+iv1)P+(u2+iv2)Q) f = e(u2v1−v2u1)/2ei(u1 P+u2 Q)e−(v1 P+v2 Q) f.

LEMMA 4·10 (Operator bounds for complex exponents). For s > 0 and any two complex
numbers z j = a j + ib j we have the operator bound∥∥ei(z1 P+z2 Q)e−s H0

∥∥ � e(a2b1−a1b2)/2e(|z1|2+|z2|2)/2 tanh se−s/2. (4·13)

Proof. If z j = a j + ib j for j = 1, 2 then, by (4·11) and (4·8),∥∥(ei(z1 P+z2 Q)e−s H0
∥∥ = e(a2b1−a1b2)/2

∥∥ei(a1 P+a2 Q)e−(b1 P+b2 Q)e−s H0
∥∥

= e(a2b1−a1b2)/2
∥∥e−(b1 P+b2 Q)e−s H0

∥∥
� e(a2b1−a1b2)/2e(b2

1+b2
2)/2 tanh se−s/2.

LEMMA 4·11 (Form bounds for complex exponents). If (z1, z2) ∈ C2 and f is in the do-
main of es H0 then ∣∣(ei(z1 P+z2 Q) f, f

)∣∣ � em2/(4 tanh s)‖es H0 f ‖2e−s

where m2 = |z1|2 + |z2|2.

Proof. If z1 and z2 are real, then(
ei(z1 P+z2 Q) f, f

) = (
e(i/2)(z1 P+z2 Q) f, e−(i/2)(z̄1 P+z̄2 Q) f

)
. (4·14)



Surjectivity of the Taylor map for complex nilpotent Lie groups 191

As both sides of this equation are entire functions of z1 and z2, it follows that (4·14) also
holds for all z1, z2 ∈ C. Therefore∣∣(ei(z1 P+z2 Q) f, f

)∣∣ �
∥∥e(i/2)(z1 P+z2 Q) f

∥∥ ∥∥e−(i/2)(z̄1 P+z̄2 Q) f
∥∥

�
∥∥e(i/2)(z1 P+z2 Q)e−s H0

∥∥ ∥∥e−(i/2)(z̄1 P+z̄2 Q)e−s H0
∥∥ ‖es H0 f ‖2

�
{
e(a2b1−a1b2)/8em2/(8 tanh s)e−s/2‖es H0 f ‖} ·{

e−(a2b1−a1b2)/8em2/(8 tanh s)e−s/2‖es H0 f ‖}
� em2/(4 tanh s)e−s‖es H0 f ‖2.

In the second from last line we have used (4·13) twice, but with opposite signs for the a j .

Proof of Theorem 4·3. Consider the functions

ϕ(z) := k(|z1|2 + |z2|2)2 + |z3|2and ψ(z) := ϕ(z)1/4.

We will choose a number k > 0 later. Writing m2 = |z1|2 + |z2|2, a computation shows that

X1ϕ = 4kx1m2 − x2x3 − y2 y3

X2ϕ = 4kx2m2 + x1x3 + y1 y3

Y1ϕ = 4ky1m2 + y2x3 − x2 y3

Y2ϕ = 4ky2m2 − y1x3 + x1 y3.

Another computation then shows that, for z � 0,

|∇ϕ(z)|2 = m2[16k2m4 + |z3|2].
If we choose k = 1/16 then we find

|∇ϕ(z)|2 = m2ϕ

and therefore

|∇ψ | = 1

4

|∇ϕ|
ϕ3/4

= m
4ϕ1/4

� 1

2
.

The intrinsic distance d is defined by

d(x, y) = sup { f (x) − f (y): f ∈ C1(HC

3 ), |∇ f | � 1}.
For further information about this distance function the reader is referred to the discussion
preceding [6, definition 3·1]. Thus the distance, d(z), from the origin to (z1, z2, z3) satisfies

d(z) � 2ψ = 2[2−4(|z1|2 + |z2|2)2 + |z3|2]1/4 = [(|z1|2 + |z2|2)2 + 16|z3|2]1/4.

It follows that m2 � d2(z) and 4|z3| � d2(z).
Now by Lemma 4·11

|W̃ (z1, z2, z3)| � e|z3|em2/(4 tanh s)‖es H0 f ‖2e−s,

� ed2(z) 1+tanh s
4 tanh s ‖es H0 f ‖2e−s .

Hence

|W̃ (z1, z2, z3)|2 � ed2(z) 1+tanh s
2 tanh s ‖es H0 f ‖4e−2s . (4·15)

By [27, theorem IV·4·2], for any ε > 0 there exists a finite constant Cε such that

ρt(z) � Cεt−4 exp

(
− d2 (z)

4(1 + ε)t

)
.
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Here the 4 in t−4 is 8/2 where 8 = 4 × 1 + 2 × 2 is the volume growth exponent of HC

3 .
Moreover, for any η > 0,

t−4

∫
HC

3

e−ηd2(z)dz � Aη < ∞.

Thus W̃ belongs to L2(H C
3 , ρt) if 1/(4t) > (1 + tanh s)/2 tanh s. That is, if (4·3) holds

then W̃ ∈ L2(HC

3 , ρt).

Remark 4·12. In applying Theorem IV·4·2 of [27] a reader might notice that the definition
of the distance used there differs slightly from that given above. It is however a well known
fact that these definitions coincide, [18].

THEOREM 4·13 (Insertion of Planck’s constant). Let h be a strictly positive real number.
Define Ph = −ih D and let

H = 1

2

(
P2

h + Q2
)
. (4·16)

If f is in the domain of es H then the function

W̃h(u, v, w) = eihw
(
ei(u Ph+vQ) f, f

)
(4·17)

on the real Heisenberg group H3 has a holomorphic extension to all of H C
3 . Moreover, if

t < (1 − e−2sh)/(4h) (4·18)

then the extension is in HL2(H C
3 , ρt)

Proof. The scale transformation (S f )(x) = h−1/4 f (x/h1/2) is a unitary operator on L2(R)

and one can compute easily that S−1 Ph S = h1/2 P and S−1 QS = h1/2 Q. Consequently
S−1(u Ph + vQ)S = h1/2(u P + vQ) and S−1 H S = h H0. Therefore∥∥e(u Ph+vQ)e−s H

∥∥ = ∥∥eh1/2(u P+vQ)e−sh H0
∥∥

� eh(|u|2+|v|2)/2 tanh she−sh/2.

The same argument leading to (4·15) now gives

|W̃h(z1, z2, z3)|2 � eh( 1+tanh sh
2 tanh sh )d2(z)‖es H f ‖4e−2sh . (4·19)

Consequently W̃h ∈ L2(HC

3 , ρt) if 1/(4t) > h((1 + tanh sh)/2 tanh sh). That is , if (4·18)
holds.

Remark 4·14. The artificial relation (4·3) between t and s should be attributed to the fact
that we are analytically continuing the Fourier-Wigner transform in (4·2) rather than the
Wigner transform itself, [8]. The Wigner transform will be studied from the point of view
of coherent states elsewhere. We expect a more perspicuous relation between t and s in that
case. An analytic continuation of the Wigner transform has already been discussed in [19]
using a description of the range space which is not based on the heat kernel measure that we
are using in this paper.

Remark 4·15. We might point out, however, that the condition (4·18) suggests some kind
of “semiclassical limit”: as h ↓ 0 the relation (4·18) goes over to t < s/2. On the other
hand, keeping h fixed and letting s → ∞, the relation (4·18) goes over to th < 1/4. This
limit can be loosely interpreted to suggest that even for the “most” regular functions f the
Fourier–Wigner transform associated to Planck’sconstant h will be in HL2(HC

3 , ρt) for only
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a bounded set of t , depending on h. In this sense Theorem 4·13 seems analogous to [15, the-
orem 4·6], according to which, the matrix elements of an irreducible unitary representation
of a compact Lie group K have holomorphic extensions to the complexification of K lying
in a certain L2 space over the complexification if and only if the Casimir operator for the
representation is appropriately related to the measure.

Remark 4·16. Extension of our results from the lowest dimensional Heisenberg group to
higher dimensional Heisenberg groups is routine. The relation between analytic vectors for
the harmonic oscillator Hamiltonian H and real analytic functions was discussed systemat-
ically in E. Nelson’s paper [20]. Such a connection between the domain of es H and analytic
functions was also discussed for Hamiltonians in infinitely many variables in [12].

4·2. Alternative proofs

Our proof of Theorem 4·3, in the previous subsection, was based on functional analytic
methods. In this subsection we are going to reprove some parts of this theorem by use of the
known explicit kernel of the key integral operator.

Suppose f ∈ D(es H0) and let F := es H0 f ∈ L2(R). We are going sketch an alternative
proof to the fact that the function,

V (u, v) := (
ei(u P+vQ) f, f

)
has an extension to an analytic function on C2 which satisfies the bounds in Lemma 4·11. We
begin by using Mehler’s formula, see for example [24, p. 38], which shows that f = e−s H0 F
may be represented as

f (z) =
√

1

2π sinh s

∫
R

exp

{
−1

2
coth s · (z2 + w2) + 1

sinh s
zw

}
F (w) dw. (4·20)

It is now evident that f has an analytic continuation to the complex plane given by the the
right-hand side of (4·20). Moreover, an application of the Cauchy-Schwarz inequality along
with an explicit Gaussian integration shows,

| f (x + iy)| �
(

1

4π sinh s · cosh s

)1/4

‖F‖2 exp

(
− x2

2
tanh s + y2

2
coth s

)
. (4·21)

According to Folland [8, p. 30],

V (u, v) =
∫

R

eivx f (x + u/2) f (x − u/2)dx .

Using this representation along with properties of f just described, it is easily seen that V
also has an analytic continuation to C2 given by

V (z1, z2) =
∫

R

eiz2x/2 f (x + z1/2)eiz2x/2 f (x − z̄1/2)dx .

Let zl = al + ibl . Using the Cauchy–Schwarz inequality and the translation invariance of
Lebesgue measure, we find

|V (z1, z2)| �
∥∥e−b2(·)/2 f (· + z1/2)

∥∥
2

∥∥e−b2(·)/2 f (· − z̄1/2)
∥∥

2

= ∥∥e−b2(·)/2 f (· + ib1/2)
∥∥2

2
. (4·22)



194 B. DRIVER, L. GROSS AND L. SALOFF–COSTE

Another application of the bound in (4·21) along with an explicit Gaussian integration,
shows

|V (z1, z2)| �
(

1

4π sinh s · cosh s

)1/2

‖F‖2
2 e

b2
1
4 coth s

∫
R

e−x2 tanh se−b2x dx

= 1

2 sinh s
‖F‖2

2 e
1
4 coth s(b2

1+b2
2). (4·23)

This is the same bound appearing in Lemma 4·11 except that e−s has been replaced by
(2 sinh s)−1 � e−s .

We can improve on the estimate (4·23) if we allow ourselves to use the hyper-contractivity
estimate in Lemma 4·6. Indeed, it is simple to verify from (4·20) that

| f (x + iy)| � ecoth s·y2/2e−s H0 |F | (x) for all x, y ∈ R.

Using this estimate in (4·22) along with the hyper-contractivity estimate in (4·7) then shows

|V (z1, z2)| �
∥∥e−b2(·)/2 f (· + ib1/2)

∥∥2

2
� e

b2
1
4 coth s

∥∥e−b2(·)/2e−s H0 |F |∥∥2

2

� e
b2

1
4 coth se

b2
2
4 coth se−s ‖|F |‖2

2 = ecoth s·(b2
1+b2

2)/4e−s ‖F‖2
2 .

This is is precisely the estimate appearing in Lemma 4·11.

REFERENCES
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