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1. Introduction

1.1. Background

The existence and properties of Brownian motion on L(K), the pinned loop group

of a compact Lie group K, have been studied in a number of papers starting with

Refs. 20, 21 and then followed by Refs. 2, 3, 6, 8, 9, 12, 14, 16, 24. (This is only a

partial list.) Similar results have been obtained on W(K), the pinned path group,

in Ref. 11. Of fundamental importance in these constructions is the compactness of

K; in particular, the fact that a compact-type Lie group admits an AdK-invariant

inner product on its Lie algebra, k. In addition, several recent works (Refs. 1, 13 and

22) have constructed Brownian motion on the diffeomorphism group of the circle.

This paper extends results that can be found in Refs. 6, 8 and 9 to a more

general type of diffusion. In particular, we eliminate the compactness assumption

on K and any need of an AdK -invariant inner product on k. The existence of

the heat kernel measures and the properties of finite-dimensional approximations
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summarized herein are important to the first author’s analysis of the Taylor map

on complex path groups in Ref. 4.

1.2. Statement of results

Let G be a connected real Lie group, g = TeG be its Lie algebra, Γ be a linearly

independenta subset of g, and V := span(Γ) ⊂ g. Further let

β(t, s) :=
∑

A∈Γ

βA(t, s)A , (1.1)

where {βA}A∈Γ is a collection of independent R-valued Brownian sheets or Brow-

nian bridge sheets. To be more precise, if

k(σ, s) = s ∧ σ and k0(σ, s) = s ∧ σ − σs ∀ σ, s ∈ [0, 1] , (1.2)

then for each A ∈ Γ, {βA(t, s) : s ∈ [0, 1], t ≥ 0} is a mean zero continuous Gaussian

process such that

E[βA(t, s)βA(τ, σ)] = k̄(σ, s)(t ∧ τ) , (1.3)

where k̄(σ, s) = k(σ, s) in the Brownian case and k̄(σ, s) = k0(σ, s) in the Brownian

bridge case.

Suppose that (Ω,F , P ) is a complete probability space on which the processes

{βA}A∈Γ are defined. For each t ≥ 0, let F0
t be the smallest sub-sigma-algebra of F

such that βA(τ, s) is measurable for all s ∈ [0, 1], τ ∈ [0, t] and A ∈ Γ. Let {Ft}t≥0

be the filtration which is the right continuous extension of the filtration {F 0
t }t≥0,

augmented by all the P -null subsets of F . This filtration then satisfies the “usual

hypothesis,” i.e. {Ft}t≥0 is right continuous and each Ft contains all of the P —

null sets.

For g, x ∈ G, let Lgx = gx and Rgx = xg. In addition, for A ∈ g let Ã be the

unique left invariant vector field satisfying Ã(e) = A ∈ g. In general we will use “δ”

for the Stratonovich differential and “d” for the Itô differential of a semimartingale.

In particular, β(δt, s) and β(dt, s) denote the Stratonovich and Itô differentials,

respectively, of the process t→ β(t, s).

Define W(G) and L(G) ⊂ W(G) to be the based path group and loop group

respectively on G. Specifically,

W(G) = {σ : [0, 1] → G|σ is continuous and σ(0) = e}

and

L(G) = {σ : [0, 1] → G|σ is continuous and σ(0) = σ(1) = e} .

aSee the Appendix to see why it is sufficient to consider only the case where Γ ⊂ g is linearly
independent.
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To each partition,

P = {0 = s0 < s1 < · · · < sn < 1} , (1.4)

of [0, 1], we associate a projection map, πP : W(G) → G#(P), defined by

πP (σ) = (σ(s1), σ(s2), . . . , σ(sn)) , (1.5)

where #(P) := n. We make W(G) and L(G) into measurable spaces by endowing

each with the smallest σ-algebra for which all of the projection maps, {πP : P
a partition of [0, 1]}, are measurable. The existence of W(G) and L(G) valued

diffusions is given in the following theorem.

Theorem 1.1. Suppose G is a Lie group and σ0 ∈ W(G). Then there exists a

continuous Ft-adapted W(G)-valued process, {Σ(t)}t≥0, such that for each s ∈ [0, 1],

Σ(·, s) solves the stochastic differential equation:

Σ(δt, s) = LΣ(t,s)∗β(δt, s) with Σ(0, s) = σ0(s) . (1.6)

More precisely,

Σ(δt, s) =
∑

A∈Γ

Ã(Σ(t, s))βA(δt, s) with Σ(0, s) = σ0(s) . (1.7)

We will prove Theorem 1.1 by first proving it in the case where G is the general

linear group, GL(n,R), (see Sec. 2), then in the case that G is a (not necessarily

closed) Lie sub-group of GL(n,R) (see Sec. 3), and then finally for general G (see

Sec. 4).

Remark 1.1. When β(t, s) is a g-valued Brownian bridge sheet, then the process

given by Theorem 1.1 is L(G)-valued. In this case we will denote Σ by Σ0.

Definition 1.1. When Σ and Σ0 are as in Theorem 1.1 and Remark 1.1 with

σ0(s) ≡ e ∈ G, let νt and ν0
t be the measures on W(G) and L(G) which are the

laws of Σ(t, ·) and Σ0(t, ·) respectively. Given a bounded or non-negative measurable

map, f : W(G) → R, we will use the following definition;

νt(f) :=

∫

W(G)

f(g)dνt(g) = Ef(Σ(t, ·)) (1.8)

and

ν0
t (f) :=

∫

W(G)

f(g)dν0
t (g) = Ef(Σ0(t, ·)) . (1.9)

Because of Proposition 1.1 below, we will refer to νt and ν0
t as heat kernel measures.

Let (·, ·)V denote the unique inner product on V for which Γ is an orthonormal

basis and for a path h : [0, 1] → V , let

〈h, h〉H(V ) :=





∫ 1

0

|h′(s)|2V ds , if h is absolutely continuous

∞ , otherwise .
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We define the “horizontal” Cameron–Martin spaces as

H(V ) = {h : [0, 1] → V |h(0) = 0 and (h, h)H(V ) <∞}

and

H0(V ) = {h ∈ H(V )|h(1) = 0} .

Given h, l ∈ H(V ), we can define a real inner product on H(V ) by

〈h, l〉H(V ) =

∫ 1

0

(h′(s), l′(s))V ds .

With this inner product, H0(V ) ⊂ H(V ) are Hilbert spaces. We will use S0

and S to denote orthonormal bases of the Hilbert spaces (H0(V ), 〈·, ·〉H(V )) and

(H(V ), 〈·, ·〉H(V )) respectively.

Definition 1.2. A function f : W(G) → C is called a smooth cylinder function

if there exist a partition P of [0, 1] and a function F ∈ C∞(G#(P)) such that

f = F ◦ πP .

For h ∈ H(V ), g ∈ W(G), and f : W(G) → C a smooth cylinder function, let

h̃f(g) :=
d

dt
|0f(g · eth) , (1.10)

where (g · eth)(s) := g(s)eth(s) for all s ∈ [0, 1]. In Sec. 5, we will show that the

linear operators

LH(V )f :=
∑

h∈S

h̃2f and LH0(V )f :=
∑

h∈S0

h̃2f (1.11)

on smooth cylinder functions on W(G) and L(G) respectively are the generators

of our diffusions given by Theorem 1.1. As will be shown in Sec. 5.1, the heat

kernel measures, νt and ν0
t , satisfy (in the distributional sense) the following “heat”

equations.

Proposition 1.1. If f = F ◦ πP is a smooth cylinder function, then

∂

∂t
νt(f) =

1

2
νt(LH(V )f) with lim

t↓0
νt(f) = f(e) (1.12)

and

∂

∂t
ν0
t (f) =

1

2
ν0
t (LH0(V )f) with lim

t↓0
ν0
t (f) = f(e) , (1.13)

where e is the identity path in W(G).
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2. W(GL(n, R))-valued Diffusions

We will first prove Theorem 1.1 in the special case where G := GL(n,R) is the

general linear group of n× n-real invertible matrices. Let gl(n,R) = Lie(GL(n,R))

be the Lie algebra of GL(n,R) consisting of all real n× n matrices. We will make

gl(n,R) into a Hilbert space with the aid of the Hilbert–Schmidt inner product and

norm given by (A,B) := tr(AtrB) and |A| :=
√

tr(AtrA) respectively. It is easily

verified that |I | =
√
n where I is the identity matrix in GL(n,R) and |AB| ≤ |A||B|

for all A, B ∈ gl(n,R).

Remark 2.1. Throughout the paper, Cp(Γ
′, T ) will be used to denote a generic

finite constant which may vary from line to line. However, Cp(Γ
′, T ) will always

only depend on p ∈ [2,∞), T ∈ [0,∞), and Γ′ where Γ′ is a finite subset of g.

Theorem 2.1. For each s ∈ [0, 1], let g(t, s) be the GL(n,R)-valued solution to the

linear stochastic differential equation,

g(dt, s) = g(t, s)β(δt, s) with g(0, s) = I . (2.1)

Then for any T <∞ and p ∈ [2,∞),

E[ max
0≤t≤T

|g(t, s) − g(t, σ)|p] ≤ Cp(Γ, T )|s− σ|p/2 ∀ σ, s ∈ [0, 1] , (2.2)

and

E|g(t, s) − g(τ, σ)|p ≤ Cp(Γ, T )[|t− τ |p/2 + |s− σ|p/2] (2.3)

for all σ, s ∈ [0, 1] and t, τ ∈ [0, T ]. Both of these estimates hold, with the same

constants, when g is replaced by the inverse process, g−1.

The proof of Theorem 2.1 will be completed in Sec. 2.2 below after first prov-

ing some preliminary results. The following result is a simple corollary of Theo-

rem 2.1 along with Kolmogorov’s continuity criteria (see for example Theorem 1.4.1

of Ref. 19 and Corollary 1.2 of Ref. 25).

Corollary 2.1. Keeping the same definition as in Theorem 2.1, there is a jointly

continuous version of g solving Eq. (2.1). Moreover, for any α ∈ (0, 1/2) there exists

a random variable, Cα <∞ a.s., such that

sup
0≤t≤T

|g(t, s) − g(t, σ)| ≤ Cα|s− σ|α (2.4)

and

|g(t, s) − g(τ, σ)| ≤ Cα[|t− τ |α + |s− σ|α] . (2.5)
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2.1. Preliminary results

Let us begin by recalling a standard Brownian semi-martingale estimate, see

Eq. (2.7) below. First we need some definition. Let Γ be an arbitrary linearly in-

dependent subset of gl(n,R), {BA}A∈Γ be independent Brownian motions, and Bt
be the gl(n,R)-valued Brownian motion defined by,

Bt :=
∑

A∈Γ

BA(t)A . (2.6)

For any gl(n,R)-valued process Yt, let Y ∗
t := sups≤t |Yt|. Suppose τ → Qτ ∈

End(V, gl(n,R)) and τ → ατ ∈ gl(n,R) are continuous adapted processes and

Yt :=

∫ t

0

QτdBτ +

∫ t

0

ατdτ ∈ gl(n,R) .

Then for each p ∈ [2,∞) there exists cp <∞ such that

E(Y ∗
t )p ≤ cp

{
E

(∫ t

0

‖Qτ‖2
Γdτ

)p/2
+ E

(∫ t

0

|ατ |dτ
)p}

, (2.7)

where

‖Qτ‖2
Γ =

∑

A∈Γ

|Qτ (A)|2 , (2.8)

see for example Proposition 9.2 of Ref. 7. For α ≥ 1 and uτ ≥ 0, Jensen’s inequality

implies,

(∫ t

0

uτdτ

)α
= tα

(∫ t

0

uτ
dτ

t

)α
≤ tα

∫ t

0

uατ
dτ

t
= tα−1

∫ t

0

uατ dτ .

Combining this estimate with Eq. (2.7) gives,

E(Y ∗
t )p ≤ cp

{
tp/2−1E

∫ t

0

‖Qτ‖pΓdτ + tp−1E

∫ t

0

|ατ |pdτ
}
. (2.9)

In applying Eq. (2.9), Qτ will be of the form, Qτ := Lxτ
Ryτ

with xτ and yτ in

gl(n,R). The ‖ · ‖Γ-norm of such a Qτ may easily be estimated as:

‖Qτ‖2
Γ =

∑

A∈Γ

|xτAyτ |2 ≤ C(Γ)|xτ |2|yτ |2 , (2.10)

where

C(Γ) :=
∑

A∈Γ

|A|2 . (2.11)

Now let {gt}t≥0 be the GL(n,R)-valued solution to the stochastic differential

equation;

dgt = gtδBt with g0 = I . (2.12)
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The integrated Itô form of Eq. (2.12) is

gt − I =

∫ t

0

gτdBτ +
1

2

∫ t

0

gτ [dBτ ]
2 , (2.13)

where

[dBt]
2 =

(
∑

A∈Γ

dBAt A

)2

=
∑

A∈Γ

A2dt .

It is standard, see Theorem 5.2.9 of Ref. 18 for example, that this linear stochastic

differential equation has a unique global strong solution.

The next Proposition 2.1 summarizes some well-known estimates on the process

{gt}t≥0 solving Eq. (2.12). Since we will need to keep fairly careful track of the

constants appearing in these estimates, we will sketch the proof of Proposition 2.1.

It will be convenient in what follows to let

K(p, T,Γ) := 2p−1cp[C(Γ)p/2T
p
2 + 2−pT pC(Γ)p] , (2.14)

where cp is as in Eq. (2.7) and C(Γ) is defined in Eq. (2.11).

Proposition 2.1. Let g be the process given by Eq. (2.12). Then for each p ∈
[2,∞),

sup
t≤T

E[|gt|p] ≤ 2p−1np/2eK(p,T,Γ) (2.15)

and, for all s, t ≥ 0,

E[|gt − gs|p] ≤ 2p−1npK(p, |t− s|,Γ)eK(p,s∧t,Γ)+K(p,|t−s|,Γ) . (2.16)

Similarly, the inverse process, g−1
t , satisfies the exact same estimates in Eqs. (2.15)

and (2.16) with g replaced by g−1.

Proof. Let T <∞ be fixed and throughout suppose that t, τ ∈ [0, T ]. Applying the

estimate in Eq. (2.9) with Qτ := Lgτ
and ατ := 1

2gτ
∑
A∈ΓA

2, using the estimates

|ατ | ≤
1

2
C(Γ)|gτ | and ‖Qτ‖2

Γ ≤ C(Γ)|gτ |2 ,

implies

E(g· − I)∗pt ≤ cp[C(Γ)p/2t(
p
2
−1) + tp−12−pC(Γ)p]

(∫ t

0

E|gτ |pdτ
)
. (2.17)

Since

|gt|p ≤ [|I | + (g· − I)∗t ]
p ≤ 2p−1[np/2 + (g· − I)∗pt ]

it follows from Eq. (2.17) that

E|gt|p ≤ 2p−1np/2 + 2p−1cp[C(Γ)p/2T (p
2
−1) + T p−12−pC(Γ)p]

(∫ t

0

E|gτ |pdτ
)
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and, assuming supt≤T E|gt|p <∞, it follows by Gronwall’s inequality that

E|gt|p ≤ 2p−1np/2 · exp(2p−1cp[C(Γ)p/2T (p
2
−1) + T p−12−pC(Γ)p]t)

≤ 2p−1np/2 · eK(p,T,Γ) . (2.18)

By stopping g and B at first exit time of gt from an increasing sequence of com-

pact subsets which exhaust GL(n,R), we can easily remove the assumption that

supt≤T E|gt|p <∞ used to derive Eq. (2.18). Feeding Eq. (2.18) back into Eq. (2.17)

at t = T then implies

E(g· − I)∗pT ≤ np/2K(p, T,Γ)eK(p,T,Γ) . (2.19)

Now suppose that s ∈ (0,∞), t = s+ T for some T > 0, and let uτ := g−1
s gτ+s

for τ ≥ 0. Since

duτ = uτδτ [B(τ+s) −Bs] with u0 = I ,

and {Bτ+s −Bs}τ≥0 has the same law as {Bτ}τ≥0, it follows from Eq. (2.19) that

E|g−1
s gs+T − I |p = E|uT − I |p ≤ np/2K(p, T,Γ)eK(p,T,Γ) .

Since

|gt − gs| = |gs+T − gs| = |gs(g−1
s gs+T − I)| ≤ |gs| · |(g−1

s gs+T − I)|

and gs is independent of g−1
s gs+T − I , we find

E|gt − gs|p ≤ E|gs|p · E|(g−1
s gs+T − I)|p

≤ 2p−1np/2 · eK(p,s,Γ) · np/2K(p, T,Γ)eK(p,T,Γ)

= 2p−1npK(p, T,Γ)eK(p,s,Γ)+K(p,T,Γ)

from which Eq. (2.16) easily follows.

Since

δg−1
t = −g−1

t (δgt)g
−1
t = −g−1

t (gtδBt)g
−1
t = −δBtg−1

t ,

it follows that

g−1
t − I = −

∫ t

0

dBτgτ +
1

2

∫ t

0

[dBτ ]
2gτ .

The process,Qτ := −Rgτ
satisfies (see Eq. (2.10)) the same estimates as Lgτ

. There-

fore, by the same methods as above, g−1
· also satisfies the estimates in Eqs. (2.15)

and (2.16).
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2.2. Proof of Theorem 2.1

For each s ∈ [0, 1], let g(t, s) ∈ GL(n,R) solve the stochastic differential equation

g(dt, s) = g(t, s)β(δt, s) with g(0, s) = I . (2.20)

For an s ∈ (0, 1) (fixed), let

Γs :=

{
Ã :=

√
k̄(s, s)A

}

A∈Γ

, and BÃt =
βA(t, s)√
k̄(s, s)

. (2.21)

With this definition, {BÃt }Ã∈Γs
are independent Brownian motions such that

Bt := β(t, s) =
∑

Ã∈Γs

BÃt Ã . (2.22)

Thus we may apply Eq. (2.16) with Γ replaced by Γs to estimate g(t, s) − g(τ, s)

as,

E[|g(t, s) − g(τ, s)|p] ≤ 2p−1npK(p, |t− τ |,Γs)eK(p,τ∧t,Γs)+K(p,|t−τ |,Γs) . (2.23)

Using C(Γs) = k̄(s, s)C(Γ) ≤ C(Γ) (C(Γ) was defined in Eq. (2.11)) and the

definition of K in Eq. (2.14), we find

E[|g(t, s) − g(τ, s)|p] ≤ Cp(Γ, T )|t− τ |p/2 ∀ s ∈ [0, 1] and t, τ ∈ [0, T ] . (2.24)

Now suppose 0 < σ < s < 1 and let

ut := g(t, s)g(t, σ)−1 and (2.25)

Bt := β(t, s) − β(t, σ) (2.26)

in which case ut solves

dut = g(t, s)[β(δt, s) − β(δt, σ)]g(t, σ)−1 = utAdg(t,σ)δBt . (2.27)

Since

dt[Adg(t,σ)]dBt = Adg(t,σ)addtβ(t,σ)dBt

=
∑

A∈Γ

Adg(t,σ)adAAdtβ
A(t, σ)dtB

A = 0 ,

we find

dt[utAdg(t,σ)]dBt =
1

2
(dtut)Adg(t,σ)dBt

=
1

2
[utAdg(t,σ)dBt][Adg(t,σ)dBt]

=
1

2

∑

A∈Γ

utAdg(t,σ)A
2(dBAt )2

=
1

2

∑

A∈Γ

g(t, s)A2g(t, σ)−1(dBAt )2 , (2.28)
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where BAt := βA(t, s) − βA(t, σ). If we let

F (σ, s) = [k̄(s, s) + k̄(σ, σ) − 2k̄(σ, s)] , (2.29)

Γσ,s := {Â :=
√
F (σ, s)A : A ∈ Γ} , and (2.30)

BÂt =
βA(t, s) − βA(t, σ)√

F (σ, s)
=

BAt√
F (σ, s)

, (2.31)

then, by checking covariances, {BÂt }Â∈Γσ,s
are independent Brownian motions such

that

Bt = β(t, s) − β(t, σ) =
∑

Â∈Γσ,s

BÂt Â . (2.32)

(A simple direct computation shows that F (σ, s) > 0 if σ 6= s.) Furthermore, since

BAt =
√
F (σ, s)BÂt , it follows that (dBAt )2 = F (σ, s)dt. From this observation and

Eq. (2.28), the integrated Itô form of Eq. (2.27) is given by

ut − I =

∫ t

0

Lg(τ,s)Rg(τ,σ)−1dBτ +
1

2
F (σ, s)

∫ t

0

∑

A∈Γ

g(τ, s)A2g(τ, σ)−1dτ . (2.33)

Using the decomposition of Bt in Eq. (2.32), we may apply the estimate in Eq. (2.9)

to Eq. (2.33) to find

E[(u− I)∗pt ] ≤ cp

{
tp/2−1E

∫ t

0

‖Lg(τ,s)Rg(τ,σ)−1‖pΓσ,s
dτ

+ tp−1E

∫ t

0

∣∣∣∣∣
1

2
F (σ, s)

∑

A∈Γ

g(τ, s)A2g(τ, σ)−1

∣∣∣∣∣

p

dτ

}
. (2.34)

Since ∣∣∣∣∣
∑

A∈Γ

g(τ, s)A2g(τ, σ)−1

∣∣∣∣∣ ≤ C(Γ)|g(τ, s)||g(τ, σ)−1| ,

C(Γσ,s) = F (σ, s)C(Γ) and by Eq. (2.10),

‖Lg(τ,s)Rg(τ,σ)−1‖2
Γσ,s

≤ C(Γ)F (σ, s)|g(τ, s)|2|g(τ, σ)−1|2 ,
it follows from Eq. (2.34) that

E((u− I)∗t )
p ≤ cp(C(Γ)p/2F p/2(σ, s)tp/2−1 + 2−pC(Γ)pF p(σ, s)tp−1)N (2.35)

where

N := E

∫ t

0

|g(τ, s)|p|g(τ, σ)−1|pdτ .

By Hölder’s inequality and the estimate in Eq. (2.15),

N ≤ C(p, T ) :=

∫ T

0

(E[|g(τ, s)|2p])1/2(E[|g(τ, σ)−1|2p])1/2dτ <∞
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which combined with Eq. (2.35) implies

E[(u− I)∗pt ] ≤ cpC(p, T )(C(Γ)p/2F p/2(σ, s)tp/2−1 + 2−pC(Γ)pF p(σ, s)tp−1) .

(2.36)

Since

|g(t, s) − g(t, σ)| = |[g(t, s)g(t, σ)−1 − I ]g(t, σ)|

≤ |g(t, s)g(t, σ)−1 − I ||g(t, σ)|

= |ut − I ||g(t, σ)| ,
it follows that

[g(·, s) − g(·, σ)]∗pT ≤ [u· − I ]∗pT g
∗p
T (·, σ) . (2.37)

By Hölder’s inequality, the estimate in Eq. (2.36), and Proposition 2.1 we have

(E[g(·, s) − g(·, σ)]∗pT )2 ≤ E[u− I ]∗2pT · Eg∗2pT (·, σ)

≤ Cp(Γ, T )[F (σ, s)p + F (σ, s)2p] . (2.38)

In each of the two cases considered (Brownian sheets and Brownian bridge sheets),

we have | ∂∂sF (σ, s)| ≤ 2 and F (σ, σ) = 0 and therefore,

F (σ, s) =

∣∣∣∣
∫ s

σ

∂

∂r
F (σ, r)dr

∣∣∣∣ ≤ 2|s− σ| . (2.39)

Combining the estimates in Eqs. (2.38) and (2.39) then implies

E[g(·, s) − g(·, σ)]∗pT ≤ Cp(Γ, T )[|s− σ|p + |s− σ|2p]1/2

≤ Cp(Γ, T )|s− σ|p/2 . (2.40)

Finally, let 0 ≤ τ ≤ T and 0 ≤ σ ≤ s ≤ 1. From Eqs. (2.24), (2.40), and the

triangle inequality we have,

‖g(t, s) − g(τ, σ)‖Lp ≤ ‖g(t, s) − g(τ, s)‖Lp + ‖g(τ, s) − g(τ, σ)‖Lp

≤ Cp(Γ, T )[|t− τ |1/2 + |s− σ|1/2]
which implies the estimate in Eq. (2.3).

3. Matrix Groups

Though G may not have a finite dimensional real representation, Ado’s Theorem

(p. 199 of Ref. 17) states that g has a faithful representation, ϕ : g → g0, where

g0 is a matrix Lie sub-algebra of gl(n,R) for some n ∈ N. Let G0 ⊂ GL(n,R)

be the unique connected Lie subgroup of GL(n,R) with Lie(G0) = g0. If we let

D := {Ã : A ∈ g0 ⊂ gl(n,R)}, then D is an involutive distribution and G0 may be

described as the unique maximal D-integral manifold in GL(n,R) which contains

I ∈ GL(n,R), see Theorem 3.19 of Ref. 26.
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Remark 3.1. While G0 is a subgroup, it is not necessarily closed as a subset of

GL(n,R). See Sec. 3.8 of Ref. 15 for an example of such a matrix group.

Definition 3.1. Let τ0 be the manifold topology on G0 and τi be the topology on

G0 which is inherited from GL(n,R). In general, τi may be a proper subset of τ0.

We give GL(n,R) a Riemannian structure by extending the inner product, (·, ·),
on gl(n,R) to a right invariant Riemannian metric on GL(n,R). This metric induces

a right-invariant distance on GL(n,R) defined by,

dGL(n,R)(x, y) = inf
σ

∫ 1

0

|σ′(s)σ−1(s)|ds , (3.1)

where the infimum is taken over piecewise C1-paths, σ : [0, 1] → GL(n,R), such

that σ(0) = x and σ(1) = y.

Let exp : gl(n,R) → GL(n,R) be the matrix exponential map defined by,

exp(A) := eA =

∞∑

n=0

An

n!
for all A ∈ gl(n,R) (3.2)

and

log(x) = −
∞∑

n=1

1

n
(I − x)n for |I − x| < 1 (3.3)

be its local inverse.

Lemma 3.1. There exists connected open neighborhoods, N ⊂ g0 and W ⊂
GL(n,R), of 0 ∈ g0 and I ∈ GL(n,R) respectively such that exp(N) is the τ0-

connected component of G0 ∩W containing I ∈ G0.

Proof. Let g′0 be a complementary subspace to g0 in gl(n,R) and define ψ : g0 ×
g′0 → GL(n,R) by; ψ(A,B) := eBeA. Then it is well known (see for example

Theorem 1.5.3 of Ref. 10) that

d

dt
|0ψ(A+ tA′, B) = Lψ(A,B)∗

∫ 1

0

e−sadAA′ds ∈ Lψ(A,B)∗g0 = Dψ(A,B) .

Hence for each B ∈ g′0 and a sufficiently small open neighborhood, N , of 0 ∈ g0,

N 3 A→ eBeA is a D-integral sub-manifold in GL(n,R).

Let us choose connected open neighborhoods, N and N ′, of 0 in g0 and g′0
respectively such that ψ : N × N ′ → GL(n,R) is a diffeomorphism onto W :=

ψ(N × N ′) — an open connected neighborhood of I ∈ GL(n,R). We have just

shown that z := (x, y) := ψ|−1
N×N ′ is a chart on W ⊂ GL(n,R) such that {y = B}

with B ∈ N ′ are integral submanifolds of D.

Let C be the τ0-connected component of G0 ∩W which contains I ∈ G0. Since

G0 ∩W is τ0-locally path connected, C is τ0-open (and closed in general) in G0 ∩W
and therefore C is a connected integral submanifold of D. So for h ∈ C, ThC =

Lh∗g0 = Dh and therefore, dy(ThC) = 0. Now y|C is constant because C is also
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connected in the weaker topology, τi, on G0 ∩W inherited from GL(n,R). Since

I ∈ C and y(I) = 0 it follows that C ⊂ {y = 0} = exp(N). As exp : N → (G0∩W, τ0)
continuous map, exp(N) ⊂ G0 ∩W is a τ0-connected set containing I . Therefore

exp(N) ⊂ C and thus C = exp(N).

Proposition 3.1. There exists a connected open neighborhood, θ, of 0 ∈ gl(n,R)

such that:

(i) θ̃ := exp(θ) is a connected open neighborhood of I ∈ GL(n,R),

(ii) exp : θ → θ̃ is a diffeomorphism,

(iii) there are constants C1, C2 > 0 such that

C1|y − x| ≤ dGL(n,R)(x, y) ≤ C2|y − x| (3.4)

for all x, y ∈ θ̃,

(iii) there exists C <∞ such that

| log(x)| ≤ C|I − x| for all x ∈ θ̃ , (3.5)

(v) and the τ0-connected component, C, of G0 ∩ θ̃ containing I is exp(θ ∩ g0).

Proof. Items (i)–(iv) will hold for any sufficiently small open neighborhood, θ, of

0 ∈ GL(n,R). This is true for items (i) and (ii) by the inverse function theorem.

Item (iii) holds because GL(n,R) is an open subset of gl(n,R) and the fact that

the metric space topology coincides with topology determined by the differentiable

structure (see Corollary I.6.1 of Ref. 5). Item (iv) holds by a simple estimate of the

power series expansion for log(x) in Eq. (3.3).

For item (v), we take θ̃ = W = ψ(N ×N ′) as in the proof of Lemma 3.1 with

N and N ′ sufficiently small so that θ := log(θ̃) satisfies assertions (i)–(iv) of the

proposition and exp : N + N ′ → exp(N + N ′) is a diffeomorphism with inverse

given by the log function. Since N ⊂ g0 and

θ = log(eN
′ · eN ) ⊃ log(eN ) = N ,

we see that N ⊂ g0 ∩ θ. As exp(g0 ∩ θ) is a τ0-connected subset of G0 ∩ θ̃ which

contains I , we must have

exp(g0 ∩ θ) ⊂ C = exp(N) . (3.6)

Since exp : θ → θ̃ is bijective and N ⊂ g0 ∩ θ ⊂ θ, we may conclude from Eq. (3.6)

that g0∩θ ⊂ N . Thus we have shown g0∩θ = N and hence exp(g0∩θ) = exp(N) =

C, which completes the proof of item (v).

Definition 3.2. For the rest of this section, we will assume θ has been chosen as

in Proposition 3.1. Moreover, we will let U := θ ∩ g0 and Ũ := exp(U) which may

also be described as the τ0-connected component of G0 ∩ θ̃ which contains I ∈ G0.
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Since g0 ⊂ gl(n,R), g0 inherits the Hilbert–Schmidt inner product from gl(n,R)

and this inner product induces a unique right-invariant Riemannian metric on G0.

Let dG0
denote the induced right-invariant distance on G0. That is, for x, y ∈ G0,

dG0
(x, y) = inf

σ

∫ 1

0

|σ′(s)σ−1(s)|ds , (3.7)

where the infimum is now taken over all piecewise C1 paths, σ : [0, 1] → G0 with

σ(0) = x and σ(1) = y.

Lemma 3.2. Suppose γ : [0, T ] → GL(n,R) is a continuous map such that γ(t) ∈
G0 for all t ∈ [0, T ]. Then γ is a τ0-continuous map into G0. Moreover, if we further

assume that γ([0, T ]) ⊂ G0 ∩ θ̃, then

(a) γ(t) ∈ Ũ for all t ∈ [0, T ], and

(b) dG0
(I, γ(t)) ≤ C|I − γ(t)| for all t ∈ [0, T ], where C is the constant appearing

in Eq. (3.5).

Proof. The assertion that γ is continuous as a map into G0 follows from The-

orem 1.62 of Ref. 26 and the construction of G0 as a maximal integral manifold

(Theorem 3.19 of Ref. 26) as described above.

For assertion (a), notice that γ([0, T ]) is the τ0-continuous image of a connected

set and is therefore a τ0-connected subset of G0 ∩ θ̃. As I ∈ γ([0, T ]), it now follows

that γ([0, T ]) ⊂ Ũ .

Finally, for any Lie group, d(I, eA) ≤ |A| which follows from the fact that

s→ esA is a path joining I , at s = 0, to eA, at s = 1 and hence

d(I, eA) ≤
∫ 1

0

∣∣∣∣
(
d

ds
esA
)
e−sA

∣∣∣∣ ds =

∫ 1

0

|A|ds .

Assertion (b) follows by substituting A = log γ(t) and using Eq. (3.5).

Lemma 3.3. Let ρ : H → G be a Lie homomorphism of two Lie groups, H and G,

h := Lie(H), g := Lie(G), Γ be a finite subset of h, and {BA}A∈Γ be a collection of

independent Brownian motions. If ht ∈ H solves the stochastic differential equation,

δht =
∑

A∈Γ

Ã(ht)δB
A
t with h0 = e ∈ H , (3.8)

then gt := ρ(ht) ∈ G solves the stochastic differential equation,

δgt =
∑

A∈Γ

ρ̃∗A(gt)δB
A
t with g0 = e ∈ G , (3.9)

where ρ∗A := d
dt |0ρ(etA) ∈ g.

Proof. For f ∈ C∞(G) (so that f ◦ ρ ∈ C∞(H)) and A ∈ g we have

Ã(f ◦ ρ)(h) =
d

dt
|0f(ρ(hetA)) =

d

dt
|0f(ρ(h)ρ(etA))

= (ρ̃∗Af)(ρ(h)) .
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Therefore it follows that

δf(gt) = δ(f ◦ ρ(ht)) =
∑

A∈Γ

(Ã(f ◦ ρ))(ht)δBAt

=
∑

A∈Γ

(ρ̃∗Af)(ρ(ht))δB
A
t =

∑

A∈Γ

(ρ̃∗Af)(gt)δB
A
t .

That this last identity holds for all f ∈ C∞(G) is precisely the meaning of the first

identity in Eq. (3.9). This completes the proof since g0 = ρ(h0) = ρ(e) = e ∈ G.

Proposition 3.2. Let Γ̃ be any linearly independent subset of g0, Bt =∑
A∈Γ̃B

A(t)A where {BA}A∈Γ̃ are independent Brownian motions, and let gt ∈
GL(n,R) solve the stochastic differential equation

δgt = gtδBt with g0 = I ∈ GL(n,R) . (3.10)

Then, almost surely, gt ∈ G0 for all t and g· = h· where

δht = Lht∗δBt with h0 = I ∈ G0 . (3.11)

The stochastic differential equation in Eq. (3.11) is to be interpreted as an equation

on G0.

Proof. By Theorem 4.8.7 of Ref. 19, there exists a unique solution, ht ∈ G0,

to the stochastic differential equation in Eq. (3.11). Applying Lemma 3.3 with

H = G0, G = GL(n,R), and ρ being the inclusion map, shows ρ(ht) = ht also

solves Eq. (3.10) with g changed to h. Since solutions to Eq. (3.10) are unique, we

know that g· = h· a.s.

We now prove Theorem 1.1 with G replaced by G0. We will let β0(t, s) :=

ϕ(β(t, s)), where β(t, s) is given in Eq. (1.1) and ϕ : g → g0 ⊂ gl(n,R) is a faithful

representation of g.

Theorem 3.1. For each s ∈ [0, 1], let g(t, s) be the G0 valued process solving

g(dt, s) = g(t, s)β0(δt, s) with g(0, s) = I . (3.12)

Then g(t, s) has a version, g0(t, s), which is jointly continuous in the manifold

topology, τ0, on G0.

Remark 3.2. Proposition 3.2 gives that g in Eq. (3.12) is G0-valued, and Theo-

rem 2.1 indicates that it has a jointly continuous version when viewed as a GL(n,R)-

valued process. It remains to show how this implies a jointly continuous version in

the τ0-topology on G0.

Proof. Let Λ := ∪∞
n=1{m2−n|0 ≤ m ≤ 2n} be the dyadic rationals in [0, 1].

Applying Kolmogorov’s continuity criterion (Theorem 1.4.1 of Ref. 19) to Eq. (2.40)
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implies that, for every α ∈ (0, 1/2), there exists a random variable Cα : Ω → (0,∞]

such that Cα <∞ a.s. and

sup
0≤t≤T

|g(t, s) − g(t, σ)| ≤ Cα|s− σ|α ∀ σ, s ∈ Λ . (3.13)

By Proposition 2.1, C̃ := sup0≤t≤T |g(t, σ)−1| <∞ a.s. Since

|g(t, s)g(t, σ)−1 − I | = |(g(t, s) − g(t, σ))g(t, σ)−1|

≤ |g(t, s) − g(t, σ)||g(t, σ)−1| ,
we have

sup
0≤t≤T

|g(t, s)g(t, σ)−1 − I | ≤ C̃α|s− σ|α ∀ σ , s ∈ Λ , (3.14)

where C̃α := C̃Cα <∞ a.s.

Let δ > 0 be chosen so that if x ∈ GL(n,R) satisfies, |I − x| < δ, then x ∈ θ̃

where θ̃ is as in Proposition 3.1. As C̃α <∞ a.s., the random variable, ε := δ/C̃α,

is almost surely positive. Hence at a sample point, ω ∈ Ω, where C̃α(ω) < ∞
(equivalently ε(ω) > 0), we have (t → g(t, s)g(t, σ)−1) ∈ C([0, T ], θ̃) provided σ,

s ∈ Λ and |s−σ| < ε. Since g(t, s)g(t, σ)−1 ∈ G0 as well, we may apply Lemma 3.2

to conclude that the map, (t→ g(t, s)g(t, σ)−1) : [0, T ] → G0 ∩ θ̃, is τ0-continuous.

Moreover for s, σ ∈ Λ with |s− σ| < ε, Lemma 3.2 implies that

sup
0≤t≤T

dG(g(t, s)g(t, σ)−1, I) ≤ C sup
0≤t≤T

|g(t, s)g(t, σ)−1 − I | ≤ CC̃α|s− σ|α ,

wherein the last inequality we have used Eq. (3.14). Since our metric was chosen

to be right invariant, this equation may be written as,

sup
0≤t≤T

dG0
(g(t, s), g(t, σ)) ≤ CC̃α|s− σ|α ,

provided that s, σ ∈ Λ and |s − σ| < ε. By repeated use of the triangle inequality

we may now conclude that

sup
0≤t≤T

dG0
(g(t, s), g(t, σ)) ≤ C̄α|s− σ|α ∀ σ , s ∈ Λ ,

where

C̄α := CC̃α(1 + ε−1) = CC̃α(1 + δ−1C̃α) <∞ a.s.

This shows that (almost surely) Λ 3 s → g(·, s) is an α-Hölder continuous map

into C([0, T ] → G0), where C([0, T ] → G0) is equipped with the uniform metric

associated to dG0
. This map is therefore uniformly continuous and extends uniquely

to a Hölder continuous map from [0, 1] → C([0, T ] → G0) which is the desired

version. That is, if we define

g0(t, s) := lim
λ∈Λ

λ→s

g(t, λ) ,

then since [0, 1] 3 s → g(·, s) ∈ Lp(Ω, C([0, T ] → gl(n,R)) is continuous (see

Eq. (2.40)), we may conclude that g0(·, s) = g(·, s) a.s. for all s ∈ [0, 1]. So that g0
is indeed a version of g.
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4. Pushing Down and Lifting Up

Up to this point we have constructed a jointly continuous G0-valued process satisfy-

ing the desired stochastic differential equation, Eq. (3.12). We have yet to indicate

how this implies Theorem 1.1, since G is not a matrix group in general. This will

be accomplished by first lifting the process, g0(t, s) ∈ G0, of Theorem 3.1 to the

universal cover, G̃, of both G and G0 and then pushing the resulting process down

to G. The next proposition explains the “pushing down” procedure in this covering

group context.

Lemma 4.1. (Pushing down) Suppose ρ : H̃ → H is a Lie group homomorphism

which is also a covering map. Let h̃ := Lie(H̃) and h = Lie(H), so that ρẽ∗ : h̃ → h

is a Lie algebra isomorphism, where ẽ ∈ H̃ is the identity. Let Γ be any linearly

independent subset of h,

Γ̃ := ρ−1
ẽ∗ (Γ) := {A := ρ−1

ẽ∗ A ∈ h̃ : A ∈ Γ} ⊂ h̃ ,

β(t, s) =
∑

A∈Γ β
A(t, s)A, and β̃(t, s) =

∑
A∈Γ β

A(t, s)A, where {βA}A∈Γ are in-

dependent Brownian sheets or Brownian bridge sheets. If g̃(t, s) ∈ H̃ is a process

satisfying, for each s ∈ [0, 1],

g̃(δt, s) = Lg̃(t,s)∗β̃(δt, s) with g̃(0, s) = ẽ ∈ H̃ (4.1)

then g(t, s) := ρ(g̃(t, s)) is an H-valued process satisfying,

g(δt, s) = Lg(t,s)∗β(δt, s) with g(0, s) = e ∈ H . (4.2)

Proof. This is a special case of Lemma 3.3 with β(t, s) being decomposed as in

Eq. (2.22). Alternatively, one can simply repeat the proof of Lemma 3.3 in this

context.

Let G̃ be the unique (up to isomorphism) simply connected Lie group such that

g̃ := Lie(G̃) is isomorphic to g. The group G̃ is the universal cover for any Lie group

whose Lie algebra is isomorphic to g. Hence there exist covering maps, ρ : G̃ → G

and ρ0 : G̃→ G0. The maps ρ and ρ0 are also Lie group homomorphisms which are

also locally isomorphisms. By constructing ρ0 : G̃ → G to be the unique Lie group

homomorphism such that ρ0∗ẽ = ϕρ∗ẽ, we may further assume that ρ0∗ẽ = ϕρ∗ẽ.

Since [0,∞) × [0, 1] is contractible, the continuous G0-valued process, g0(t, s),

of Theorem 3.1 has a unique lift to a continuous process G̃-valued process, g̃(t, s),

see for example Lemma 14.2 of Ref. 23. More explicitly, g̃(t, s) is the the unique

jointly continuous process in G̃ such that g̃(0, 0) = e and ρ0(g̃(t, s)) = g0(t, s). Since

g0(t, 0) = I for all t, and g̃(·, 0) is a lift of g0(·, 0), we may further conclude that

g̃(t, 0) = ẽ ∈ G̃ for all t.

Corollary 4.1. (Lifting up) The continuous G̃-valued process, g̃(t, s), described

above satisfies the stochastic differential equation,

g̃(δt, s) = Lg̃(t,s)∗β̃(δt, s) with g̃(0, s) = ẽ ∈ G̃ , (4.3)
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where β̃(t, s) := ρ−1
∗ẽ β(t, s) = ρ−1

0∗ẽβ0(t, s), with β(t, s) given as in Eq. (1.1) and

β0(t, s) as in Theorem 3.1.

Proof. Let g0(t, s) be as in Theorem 3.1. Fix an s ∈ [0, 1] and let ḡ(·, s) solve (see

Theorem 4.8.7 of Ref. 19),

ḡ(δt, s) = Lḡ(t,s)∗β̃(δt, s) with ḡ(0, s) = ẽ ∈ G̃ . (4.4)

By the push down Lemma 4.1, ρ0(ḡ(·, s)) solves the same stochastic differential

equation as g0(·, s) and therefore by uniqueness of such solutions, we know that

ρ0(ḡ(·, s)) = g0(·, s) a.s. This shows, almost surely, that ḡ(·, s) is a lift of g0(·, s)
and since lifts are unique we may conclude that ḡ(·, s) = g̃(·, s) a.s. In particular,

g̃(·, s) solves the same stochastic differential equation as ḡ(·, s), i.e. t→ g̃(t, s) solves

Eq. (4.3).

4.1. Completion of the proof of Theorem 1.1

Let g(t, s) := ρ(g̃(t, s)) ∈ G where g̃(t, s) is the jointly continuous G̃-valued process

in Corollary 4.1. Clearly g(t, s) is a jointly continuous process which by the push

down Lemma 4.1 satisfies, Eq. (1.6) with σ0(s) ≡ e ∈ G. For general σ0 ∈ W(G),

the process, Σ(t, s) := σ0(s)g(t, s), satisfies the conclusions of Theorem 1.1.

5. Heat Equations

We refer to the reader to the Introduction for the definition of cylinder functions

and their derivatives. In this section, we will reference results found primarily in

Refs. 6, 8 and 9.

Definition 5.1. For n ∈ N, i ∈ {1, 2, . . . , n}, F ∈ C∞(Gn), and A ∈ g, let

Ã(i)F (x1, x2, . . . , xn) :=
d

dt
|0F (x1, . . . , xi · etA, xi+1, . . . , xn) (5.1)

for all (x1, x2, . . . , xn) ∈ Gn.

Remark 5.1. Note that if f = F ◦ πP as in Definition 1.2, then

h̃f =

n∑

i=1

(h̃(si)
(i)
F ) ◦ πP ∀ h ∈ H(V ) . (5.2)

In particular, note that h̃f is still a smooth cylinder function based on the same

partition P .

Recalling the definitions of k, k0 : [0, 1]2 → [0, 1] in Eq. (1.2), we have, by the

same methods used to prove Lemma 3.8 in Ref. 8 or Lemma 3.3 in Ref. 9, that
∑

h∈S

h(σ) ⊗ h(s) = k(s, t)
∑

A∈Γ

A⊗A and

∑

h∈S0

h(σ) ⊗ h(s) = k0(s, t)
∑

A∈Γ

A⊗A .
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From these identities and Eq. (5.2) it easily follows, see Remark 3.5 in Ref. 9, that

if f = F ◦ πP , then

LH(V )(F ◦ πP ) = (LPF ) ◦ πP

and

LH0(V )f = (L0
PF ) ◦ πP ,

where LP and L0
P are the operators on C∞(G#(P)) defined by,

LPF :=
∑

A∈Γ

n∑

i,j=1

k(sj , si)(Ã
(j)Ã(i)F ) , (5.3)

and

L0
PF :=

∑

A∈Γ

n∑

i,j=1

k0(sj , si)(Ã
(j)Ã(i)F ) . (5.4)

Definition 5.2. Given the Brownian sheet or Brownian bridge sheet, β(t, s) (see

Eq. (1.1)), and a partition, P , of [0, 1] as in Eq. (1.4), let

βP(t) := (β(t, s1), β(t, s2), . . . , β(t, sn)) .

In the next proposition, Σ(t, s) will denote the continuous G-valued process

described in Theorem 1.1 with σ0(s) ≡ e ∈ G for all s ∈ [0, 1]. When β is the

Brownian bridge sheet, we will denote Σ by Σ0.

Proposition 5.1. If β(t, s) is a Brownian sheet, P is a partition of [0, 1], and

ΣP(t) := πP ◦ Σ(t, ·), then ΣP solves the stochastic differential equation,

ΣP(δt) = LΣP (t)∗βP(δt) with ΣP(0) = (e, e, . . . , e) ∈ G#(P) ,

and has 1
2LP (see Eq. (5.3)) as its generator. Similarly, if β(t, s) is a Brownian

bridge sheet and Σ0
P(t) := πP ◦ Σ0(t, ·), then Σ0

P solves

Σ0
P(δt) = LΣ0

P
(t)∗βP(δt) with Σ0

P(0) = (e, e, . . . , e) ∈ G#(P)

and has 1
2L

0
P (see Eq. (5.4)) as its generator.

Proof. We refer the reader to Sec. 3.3 of Ref. 6, specifically the proof of The-

orem 3.10, for a proof of the second statement. This proof is valid despite the

difference in starting assumptions (in Ref. 6, the group G was assumed to be com-

pact and Γ was assumed to span g). The proof of the first statement follows by

replacing k0 with k.
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5.1. Proof of Proposition 1.1

If f = F ◦ πP , then by Proposition 5.1 and Eqs. (5.3) and (5.4),

∂

∂t
νt(f) =

∂

∂t
E[F (ΣP(t)] =

1

2
E[(LPF )(ΣP (t)]

=
1

2
E[(LH(V )f)(Σ(t))] =

1

2
νt(LH(V )f)

and

lim
t↓0

νt(f) = lim
t↓0

E[F (ΣP (t))] = F (e, e, . . . , e) = f(e) .

This proves Eq. (1.12). Equation (1.13) is proved analogously.

Appendix

Suppose that Γ ⊂ g is a finite subset which is not necessarily independent in g. We

again may let

β(t, s) :=
∑

A∈Γ

βA(t, s)A , (A.1)

where {βA}A∈Γ are independent mean zero Gaussian fields with covariances de-

scribed in Eq. (1.1). The following lemma shows that there is no loss of generality,

for the purposes of this paper, in assuming that Γ is in fact a linearly independent

subset of g.

Lemma A.1. Let V := span(Γ) ⊂ g. There is a unique inner product on, (·, ·)V ,
on V such that if {Ai}dim(V )

i=1 is an orthonormal basis for V, then

β(t, s) =

dim(V )∑

i=1

βi(t, s)Ai ,

where {βi(s, t) := (β(t, s), Ai)}dim(V )
i=1 is again a collection of independent R-valued

Brownian sheets or Brownian bridge sheets.

Proof. For α, β ∈ V ∗, let q(α, β) :=
∑

A∈Γ α(A)β(A). Then q defines an inner

product on V ∗ which in turn induces an inner product, (·, ·)V , on V such that

{Ai}dim(V )
i=1 ⊂ V is an orthonormal basis for (·, ·)V iff the the dual basis, {αi}dim(V )

i=1 ,

is an orthonormal basis for (V ∗, q(·, ·)). For such a basis we have

β(t, s) =

dim(V )∑

i=1

αi(β(t, s))Ai ,
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where αi(β(t, s)) are mean zero Gaussian processes such that

E[αi(β(t, s))αj (β(t, s))] =
∑

A,B∈Γ

E[βA(t, s)βB(t, s)][αi(A)αj(B)]

= k̄(σ, s)(t ∧ τ)
∑

A∈Γ

[αi(A)αj(A)]

= k̄(σ, s)(t ∧ τ)q(αi , αj) = δijk(σ, s)(t ∧ τ) .

As αi(β(t, s)) = (β(t, s), Ai), the proof is complete.
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