
Communications in
Commun. Math. Phys. 123, 575-616 (1989) MatnglTiatlCal

Physics
© Springer-Verlag 1989

YM2: Continuum Expectations, Lattice Convergence, and
Lassos

Bruce K. Driver
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Abstract. The two dimensional Yang-Mills theory (YM2) is analyzed in both the
continuum and the lattice. In the complete axial gauge the continuum theory may
be defined in terms of a Lie algebra valued white noise, and parallel translation
may be defined by stochastic differential equations. This machinery is used to
compute the expectations of gauge invariant functions of the parallel translation
operators along a collection of curves #. The expectation values are expressed as
finite dimensional integrals with densities that are products of the heat kernel
on the structure group. The time parameters of the heat kernels are determined
by the areas enclosed by the collection #, and the arguments are determined by
the crossing topologies of the curves in (β. The expectations for the Wilson lattice
models have a similar structure, and from this it follows that in the limit of small
lattice spacing the lattice expectations converge to the continuum expectations.
It is also shown that the lasso variables advocated by L. Gross [36] exist and are
sufficient to generate all the measurable functions on the YM2-measure space.

1. Introduction

The informal expression for the Yang-Mills' measure is:

μ(dA) = Z" 1 expΓ-ί J £ tτaxxp(Ftj(x)2)dx]®A, (1.1)
| Z 0 d i < J J

where A runs over a space of connection forms (jtf) on the trivial unitary vector bundle
d

CN *Rd,FA = dA + AΛA is the curvature o{A,@A=Y\ Π d{Ai{x)) is "infinite

dimensional Lebesgue measure" on s4, gl is a positive "coupling" constant, and Z is
a normalization constant which makes μ a probability measure. The connection
forms are restricted to take values in the Lie algebra ^ of the structure (or gauge)
group G—a subgroup of U(N). The trace is taken with respect to some
representation p of G.

It is well known that the expression (1.1) is ill defined, see Gross [35]. Despite the
many technical problems, when d = 2 it is possible to define a "gauge fixed" version
of μ as mean zero Gaussian measure on a space of generalized connection 1-forms,
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see Definitions 2.5 and 2.7. Heuristicly, this gauge fixed measure should agree with μ
in (1.1) on gauge invariant functions, and be unrelated for non-gauge invariant
functions. The purpose of this paper is to study this continuum YM2-measure and its
lattice approximations with an emphasis on using gauge invariant observables. By
using gauge invariant functions, one is forced to consider non-linear functional of
the measure space. This makes the theory less trivial than one might first think.

There has been considerable effort in understanding (1.1) for d = 3 and d = 4, and
in fact, much progress has been made by Balaban [7]-[17], and Federbush [24]-
[31] in controlling the renormalization group flow of the lattice approximations (or
in Federbush's case an infinite directed sequence of lattices). The group of R. Seneor
et al. are trying to use a continuum regularization. Despite success in proving
stability results for these flows, a YM3 or YM 4 theory with gauge invariant
observables is still missing.

One question is what should the gauge invariant observables be? The most
common suggestion is the Wilson loop variables (traces of parallel translation
operators), but these variables are quite singular in d = 3 and especially d = 4. As an
alternative to these variables, L. Gross [36] has advocated using "lasso-variables." A
lasso-variable is the curvature tensor transported back to the origin by the parallel
translation operator along a curve, see Definition 9.1. It is shown in [36], with
generalizations by Driver [21] to base spaces with non-trivial topologies, that the
lassos generate the gauge invariant functions. So expectations of functions of the
lassos would completely characterize the YM-measure on the gauge invariant
sigma-field.

The lassos are smoothable random variables for the measure in (1.1) if the
structure group G = (7(1). (In this abelian case it is well known how to interpret the
measure μ as a generalized gaussian process, see for example [22,37].) This is in
contrast to the Wilson loops in d = 4, which do not seem to be smoothable. (There
are proposals of how to work with the expectations of these singular Wilson loops,
see Seiler [44].) Another success of the lassos is their use in proving that on the
"current sector," the l/(l)-lattice gauge theories converge to the continuum 1/(1)-
theory, see Gross [37] when d = 3 and Driver [22] when d = 4.

When d = 2, parallel translation may be defined by stochastic differential
equations, see Definition 3.3 and Gross, King, and Sen Gupta [34]. This means that
in two space-time dimensions the Wilson loop variables are well defined. In this
paper, I will give explicit formulas for the YM2-expectations of functions depending
on the parallel translation operators on a finite "admissible collection" (#) of curves,
see Theorem 4.12. The results are given as finite dimensional integrals involving
densities that are certain products of the convolution heat kernel on G. If the
function integrated is gauge invariant, the density simplifies in such a way that the
arguments of the heat kernels are determined by the crossing topology of the curves
in #, and the time parameters are determined by the areas enclosed by the collection
Ή, see Theorem 6.4. This result immediately shows, Corollary 6.7, that gauge
invariant expectations are Euclidean invariant—a fact that is not a priori obvious
when using the gauge fixed measure.

Results showing that the expectations depend only on the enclosed areas and
crossing topologies of the curves in Ή have been obtained by a number of different
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authors with varying degrees of rigor, see [19,34,39,40,41] and the references
therein. The methods of this paper are a variation of the methods in Gross et al. [34]
which were inspired by Bralic [19]. However, the form of the results in this paper
were most influenced by Dosch and Mϋller [23], where it was shown that for
G = U(l) or SU(2% the lattice theory converges, and the resulting answer depends
on the collection (^) only via the enclosed areas and crossing topologies.

Formulas similar to those given here for the expectations of gauge invariant
functions have already been discovered. Most notably, Albeverio, H^egh-Krohn,
and Holden [1-5] have such formulas and show that these formulas may be used as
a definition of a random process indexed by planar "complexes." This point of view
of defining the YM2-theory has also appeared in Klimek and Kondracki [42].

It will also be shown that the (gauge fixed) Wilson [48] lattice approximations
converge (on arbitrary functions) on gauge invariant functions to the continuum
YM2-measure, see Theorems 8.5 and 8.10 and their corollaries. This statement is
valid for both the Villain and the Wilson action. These limits have been shown in less
generality to exist if G = U(l) and G = SU(2) by Dosch and Mϋller [23] and
Albeverio et al. [5]. The existence of the limit is also alluded to in Klimek and
Kondracki [42]. However, a direct connection of the limiting values with the gauge
fixed YM2-measure seems to have been missing.

Finally, it will be shown that the lasso variables with "polygonal tails" exist for
the continuum YM2-theory, and do generate the full algebra of measurable
functions on the gauge-fixed measure space, see Theorems 9.5 and 10.1. While this is
not a conclusive test as to whether the lasso variables are smoother than the Wilson
variables, it does show they are no worse.

2. The Continuum YM2-Measure

The continuum YM2-measure will be defined in this section, but first some basic
notation will be given. For the purposes of this paper G will denote a connected
compact Lie group with Lie algebra c§. Without loss of generality, G will be taken to
be a closed subgroup of U(N) for some N and & a Lie subalgebra of the N x N skew
adjoint matrices. If p is any finite dimensional representation of G, let χp = trace (p)
be the character of p, Vp be the representation space of p, dp = dim Vp, and
p*{A) = d/dt\op(exptA) for all Ae^ be the differential of p. We define a real
bi-linear form on ^ by

(A, B)p ~ - trace (p^A)p^(B)\ (2.1)

for all A,Be@. The bi-linear form in (2.1) is non-negative and in fact positive definite
if p^ is one to one. For the rest of this paper p will be a fixed representation of G for
which p^ is injective. Also let Γ — Γ(G) be a complete collection of inequivalent
irreducible representations of G.

Definition 2.1. Let τ be any finite dimensional representation of G. The Casmir
operator Cτ on Vx is
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where {Ta}^f} is an (; )p-orthonormal basis for <§, and τ{Ta):= d/dt\oτ{etTa).

Remarks 2.2. 1. The Casmir operator Cτ is independent of the orthonormal basis

2. [Cτ,τ(g)] = OVgeG, since {g 1Tag}a is also an orthonormal basis. Hence
Cττ(g) = <g)Σ<d'1Tag)2 = τ(g)Cτ.
3. If τeΓ(G) is irreducible, then by Shur's lemma, Cτ = cτ/, where cτ is a constant.
Furthermore, with respect to a G-invariant inner product on Vτ9 τ(Ta)* = — τ(Ta\
which shows that cτ ^ 0 with equality iff τ is the trivial representation.

The first problem to overcome in defining the measure in (1.1) is the "gauge"
in variance of the exponent. Namely, if g: Rd -> G is a gauge transformation, under
which the connection 1-form A transforms to A9 = g~ ιAg + g~ 1dg, then it is well
known ([43]) that FAg = g~xFAg. Since traces are invariant under conjugation, it
follows that the exponent of (1.1) is invariant under the action oϊgeGT, where GTis
the set of gauge transformations. This has the serious consequence that even at an
informal level it is impossible to choose the normalization constant Z so that μ is a
probability measure. As is well known, the first step in overcoming this problem is to
interpret the Yang-Mills measure on the space stf/GT of connections module the
gauge transformations. This is a very appealing geometrical interpretation, however
on a technical level it is easier to define the measure by choosing a "transversal" slice
of the space of connections and restrict the measure μ to that slice. The price one
pays for this procedure is to lose the manifest Euclidean invariance. Nevertheless,
Euclidean invariance will be recovered, Corollary 6.7, also see Gross et al. [34] on
this point.

We now restrict to d = 2, and let GT = {geCco(R2,G)\g(Q) = eeG} be the
restricted gauge transformations, stf be the set of ^-valued connection 1-forms on
R2, and &0f = {Ae^\A = A1dx1 SLndA1 = 0 on the x-axis}. A element in j/y is said
to be in the complete axial gauge.

The following theorems stated without proof are only to help to motivate the
definition of the YM2-measure.

Proposition 2.3. Define a left action of GT on s/ by

gΆ\=A«^\=gAg-ι+gdg-\

then the map

(g,A)^g-A'.GTx^f-+^ (2.2)

is a surjection. Furthermore the action ofGTon s$ is affine with the linear part leaving
the subspace s/f invariant.

This proposition indicates that it should be possible to "restrict" the measure
μ to s/f provided one only integrates functions which are invariant under the left
action of GT on si. Notice that

F = curvature (A) = - d2Aιdx A dy:= F21dy Λ dx (2.3)
for Aesif.

Meta-Theorem 2.4. The ''measure" μ when "restricted" to s/f is given informally by
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^ J (d2A1(x)9d2A1(x))pdx]^A9 (2.4)
2a0 R2 J

where Aestff. The content here is that the J acobian factor coming from the change of
variables from stf coordinates to GT x s/f coordinates is a constant.

We now identify F with F21=d2A1, and make the linear change of variables
F = d2A1 in Eq. (2.4) to find that

= Z1 expΓfj J (F(x),F(x))pdx]
L 2βθ R2 J

μ(dF) = Z1 expΓfj J (F(x),F(x))pdx]®F. (2.5)
L 2βθ R2 J

But this last equation is the informal expression for dim (^)-independent white
noises on R2.

From now on the coupling constant g% will be set to one, this amounts to a trivial
scaling of the F's. Let {Ta} be an orthonormal basis for 0 with respect to the inner
product ( , )p, where p^ is assumed to be injective.

Definition 2.5. The $-valued white noise (Ω, #", £, F) is the process F = £ FaT
aona

probability space (Ω, #", E\ where {Ffl} J ϊ \ are independent real valued white noises on
R2. That is, each Fa satisfies

1. For each Borel subset R a R2 with \R\:= Lebesgue measure (R) < oo, Fa(R) is a
mean zero Gaussian random variable with variance \R\.
2. If R and S are disjoint subsets of R2 each with finite Lebesgue measure, then
Fa{R) and Fa(S) are independent and Fa(RuS) = Fa(R) + Fa(S).

Remark 2.6. For a simple L2-function / = £ c f l R . , put F(f) = ^ c ^ F ^ j ) . By taking
i ί

ίΛlimits, it is possible to extend F(f) to all functions / G L 2 ( R 2 ) .
Informally, the connection A = Aγdx may be recovered from the process F by

]{x,y')dy'. (2.6)

Of course F evaluated at a point is not well defined. To make this more precise,
multiply Eq. (2.6) by a test function g, integrate over R2, and use Fubini's theorem
(heuristicly) to get

A(g):= J A{x9y)g(x,y)dxdy = F(g),
R2

where

The definition A(g) = F(g) is well defined for ge^(R2)-thQ space of Schwartz test
functions.

Definition 2.7. The (gauge fixed) continuum YM2-measure (μ) is the distribution
measure on R e ^ ^ R 2 ) ® ^ of the random variables {A(g)}geRey>{R2r
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In the sequel, no distinction will be made between the measures μ and E, and both
will be called the YM2-measure.

3. Parallel Translation along Horizontal Paths

As already noted it is only the expectations of Gauge invariant functions that have
the interpretation of being expectations with respect to the YM2-measure informally
defined in (1.1). The standard examples of such functions in the physics literature are
the Wilson loop variables W(σ\ where σ is a closed curve in the plane. The Wilson
loop variable is defined to be the trace in some representation of the parallel
translation operator around the curve σ. The purpose of this section is to define
parallel translation with respect to the random connections A. Because of the
singular nature of the random connections (A's) it is necessary to define parallel
translation by stochastic differential equations rather than ordinary differential
equations.

Definition 3.1. A horizontal path in R2 is a path σ which may be written in the
form σ(t) = (t, σ(t)) for some continuous function σ: [α, b~\ -> R.

To avoid a clutter of notation the function σ and the path σ will both be denoted by
σ. It should be clear from the context which meaning of σ is being used. Parallel
translation along an arbitrary curve will be defined in terms of parallel translation
along these horizontal curves.

To motivate the definition of parallel translation along horizontal paths, I will
follow the discussion in [34]. First recall that the parallel translation operator
(Pt = Pf(σ)) with respect to a smooth connection A along a curve σ parameterized
on [α, b] is the solution to the differential equation

— Pt + A(σ'(t))Pt = 0 with Pa = eeG,
at

where e is the identity in G. For Aesrff and σ a horizontal curve the differential
equation becomes

Put Rσ(t) to be the region in the plane bounded by the lines x1 = a, xί = t, x2 = 0 and
the path σ|[α?ί]. Let K^.(ί)(R^(ί)) be the portion of Rσ(ή contained in the upper
(lower) half plane. With this notation and the fundamental theorem of calculus we
may rewrite A^σit)) as:

σ(t) rf t σ(t)

A1(t,σ(t))= J d2Aί(t,s)ds = —$ J F(u,s)duds
0 dt 0

= ~{ J -
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where F = F2ΐ = 82Λ1. So the equation for parallel translation may be written as

In the case where F is the ^-valued white noise, Mσ(t) is a martingale, for which the
paths are differentiable almost nowhere. Hence we are forced to consider the above
equation as a stochastic differential equation. We now study the process Mσ(t).

Proposition 3.2 (Martingale). Let F be the ^-valued white noise {Definition 2.5%
dimSί

and σ be a horizontal path, then there exists a version Mσ(t) = £ Mσ

a(t)Ta of
a=l

F(Rσ

+{ή) - F{Rσ_(ή) such that the process {Mσ{t)}b

t=a is continuous £-a.s. Further-
more the process Mσ(t) satisfies:

1. Each component Mσ

a is a time changed Brownian motion.
2. Mσ(t) has independent increments.
3. Mσ(t) is a martingale with respect to the filtration 3F* = f] σ(F(R):

0
f]

ε>0

{ ( l 2 ) 2 }
4. Suppose that τ is another horizontal curve on [α, b]9 put

dMτ(t)dMσ(t) := X dMσ

a(t)dMτ

b{ή Ta Ί\

where dM"a{t) is the ltd differential of M"a. Then

(t):=d{Mσ,Mτ}(t) = Cίσ(t)τ(t^omm(\σ(ή\,\τ(t)\)dt, (3.1)

(Ta)2.

Proof. For the moment let Mσ(t) be any version of F(Rσ+(ή) - F(Rσ_(ή). Set
τ(ί) = \Rσ(')\~1(t\ where |S | denotes the Lebesgue measure of a subset S a R2.
Then one checks that each component of Mσ(τ(ή) is a mean zero Gaussian
process with the same covariance as the Brownian motion, and so is a Brownian
motion. It is standard that the Brownian motion can be chosen to be continuous,
and this is done in such a way that Mσ(t) is 2Fa

t -measurable. From these facts
and standard facts about Brownian motion, the first three items follow easily.

The martingales Mσ

a and Mτ

b have independent increments, and hence their
square differentials may be computed as dMσ

adM\ = (djdt)E(Mσ

aM
τ

h)dt. It is now an
easy computation using the definition of the white noise to find

£(MJ(ί)MJ(ί)) = δab \ lσ ( s ) t ( s ) g o min (I σ(s) |, | τ(s) | )ds. Q.E.D.
a

Definition 3.3. Stochastic parallel translation along the horizontal curve σ on [a, b~\ is
the continuous process Pt(σ) which solves the stochastic differential equation:

dPt(σ) + dMσ(t)oPt(σ) = 0, and Pa(σ) = eeG,

where Mσ is the martingale defined in Proposition 3.2. The symbol "°" indicates that
the differential are to be taken in the sence of Stratonovich. In terms oflto differentials
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the equation becomes:

dPt{σ) + dMσ(t)Pt(σ) - \daσ{t)CpPt{σ) = 0,

where aσ{t) = \Rσ(t)\. We will abbreviate Pb(σ) by P(σ).

Proposition 3.2 and the definition of the Stratonovich differential in terms of the
Ito differential (dX° Y = dXY + \dXdY) was used to go from the first equality to the
second equality.

Remark 3.4. The existence and uniqueness to such stochastic differential equations
is standard, see [38]. It is also well known with the choice of the Stratonovich
differential, the operators Pt(σ) will remain in the compact group G. For this reason
there is no blow up in the solution to the parallel translation stochastic differential
equation, and hence Pt(σ) is defined on [α, £>]. If the Ito differential were used rather
than the Stratonovich differential, these remarks would no longer be true.

Proposition 3.5. Suppose that σeC([α,6],R) and τeC([6,c],R) are two functions
satisfying σ(b) = τ(b). Let

\σ{t\

and τσ:= τσ. Then P(τσ):= Pc(τσ) = Pb(τ)Pc(σ) =:P(τ)P(σ).

Proof. Noting that Mτσ(t) = Mσ(b) + Mτ(t) for all t e [ft, c], it follows that Pt(τσ) and
g(t):— Pt(τ)Pb(σ) satisfies the same stochastic parallel translation equation on [fr, c].
Since g(b) = Pb{τσ), the proposition follows from the uniqueness theorem for
solution to stochastic differential equations. Q.E.D.

So far we have defined parallel translation for horizontal paths moving from left
to right. The next proposition shows that, as one would expect, parallel translation
along a horizontal path from right to left is the inverse of parallel translation along
the same path from left to right.

Proposition 3.6. Let σeC(/,R), where I = [a,b], then parallel translation along the
path determined by the graph ofτ moving from right to left is equal to Pb(σ)~1. More
precisely if g(t) is the solution to the stochastic differential equation

d _ g(t) + d_ Mσ(t) °g(t) = 0, and g(b) = e,

then g(a) = Pb(σ)~x. In this last equation, d_ denotes the backwards pointing
differential.

Remark 3.7. Note that Mσ(t) — Mσ(b) is a reverse martingale with respect to the
filtration {^}teI. Hence the parallel translation equation for g(t) is well defined.

Proof. Set h(t) := Pt(σ)Pb(σ)~\ then because of Proposition 3.5, h(t) = Pb(σ\[ttb]) and
so is #t-measurable. It is also clear that h(b) = g(b) = <?, so it suffices to show that h
satisfies the same stochastic differential equation as g. Because of the symmetry in
the definition of the Stratonovich integral one has

pt(σ) = e -\dM\i)°Pt{σ) = e -\d_Mσ{t)°Pt{σ).
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Multiply this last equation on the right by P^σ)" 1 to conclude that h(t) satisfied
t

h(t) = e -\d_Mσ{t)Qh(t). Hence one finds that

h(ή -e = h(t) - h(b) = $d_Mσ(t)oh(ή = - \d.Mσ{t)°h(t\
t t

which is the same stochastic integral equation satisfied by g. So by uniqueness of
solutions to stochastic differential equations, it follows that h = g (a.s.) In particular,

Pb(σΓ1. Q.E.D.

Definition 3.8. A continuous curve in the plane is called admissible if it can be broken
into a finite number of pieces consisting of vertical line segments and C 1 -horizontal
curves.

The parallel translation along an admissible curve is now defined to be products
of parallel translations along the horizontal parts of the curve. These products are
taken in the order determined by the path. Parallel translation along any vertical
segments is defined to be the identity in G. This definition of parallel translation is
consistent because of Propositions 3.5 and 3.6. Also because of the definitions and
these last two propositions, parallel translation along any curve is determined by
parallel translation along left to right moving horizontal curves. Because of the
independence of 3Fh

a and 3Fd

c if [a, fo] n [c, d~\ = and the continuity of the parallel
translation operators along the path, it follows that the random parallel translation
operators restricted to curves lying in the vertical strip {(x1,x2):α ^ xλ f* b} are
independent of those restricted to curves lying in the strip {(xl9x2).b ^ xλ ^ c).
Therefore, in order to understand expectations of parallel translation operators
along any admissible curves it is enough to understand parallel translation along
horizontal curves in a fixed vertical interval. The key to computing these
expectations is Ito's Lemma. The computation of these expectations will be the
subject of the next section.

4. Expectations of Functions of Parallel Translation

In order to facilitate the application of Itό's lemma, it is helpful to introduce some
standard notation.

Definition 4.1. Let G be a Lie group with Lie algebra $ which is taken to be the
tangent space to G at the identity. Also suppose that f is a C™-function on G. Then for
each Ae^ there is a unique right invariant vector field (again denoted by A) which
agrees with Ae^ at the identity. This vector field is given by

f(exp(tA)g),
o

where exp is the exponential on &.

Remark 4.2. If G is a group of matrices contained Jt—the matrix algebra on some
finite dimensional vector space, then the exponential function is the ordinary
exponential. Furthermore, if / is a C00-function on Jί (a matrix algebra) and .
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c Jί> then

_d tA _d

dt 0 it 0

where /'(#)<•> is the differential as a function on the vector space ^ .
It will also be necessary to know how to compute iterated applications of right

invariant vector fields on functions defined on M.

Proposition 4.3. Let f be a C*'-function on Jί and A, Be^, then

ABf(g) = f"{g) < Ag, Bg > + f'(g) (BAg}.

Proof.

, ds
f(e'BesAg) =

ds
f'(esAg)(BesΛg)

= f"(g) < Ag, Bg > + f'(g) <BAg>. Q.E.D.

Lemma 4.4. Suppose that G is a compact matrix group contained in Jί and f is a C00-
function on G. Also suppose that M(t) is a ^-valued continuous martingale (on some
probability space (Ω, #", £)), and that Pt is the solution to the stochastic parallel
translation equation

dPt + dM(t) °Pt = 0, and

then the differential off(Pt) is

df(Pt) = - dM(t)f(Pt) + i

:= - Σ Taf(Pt)dMa(t) + i X TaTbf(Pt)dMa(t)dMb(t)
a atb

=:-dM(t)of(Pt\

where M(t) = ̂ M f l ( ί ) Γ , and {Ta} is a basis for <S.

Proof. Since G is an embedded submanifold of Jί, it is possible to choose a C00-
function F on Jί which agrees with / on G. Thus f(Pt) = F(Pt\ and so it is enough to
compute the differential of F(Pt). By Itό's lemma:

dF(Pt) = F(Pt) <dPt)+ \F\Pt) < dPt, dPt >,

which may be rewritten as

dF(Pt)=-F(PtKPtdM(t))

+ %F(Pt) < Pt(dM(t) f > + F»(Pt) < dM(t\ dM(t) >)

= - dM(t)F(Pt) + %dM{t))2F{Pt)

using the stochastic differential equation for Pt, Remark 4.2 and Proposition 4.3.
Q.E.D.

If one were to use a more intrinsic definition of solutions to stochastic differential
equations taking values in a manifold, this last proposition would essentially
become a definition. For this point of view the reader is referred to Ikeda and
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Watanabe [38]. Now suppose that σί9..., σn are horizontal curves in R2 defined on
the interval / = [α, &]. Set Mf(ί) = Mσi(t) and Pj = Pt(σt) for 1 g i ̂  n. The next
corollary is a direct consequence of the above proposition applied to the Lie group
Gn and the ̂ "-martingale M(t) = (M^ί), . . . , Mn(ή). In order to state the result we
need:

Definition 4.5. For Ae&, set Ai to be the right invariant vector field on G" defined by

Aif{gl9. , fifj = d/dt\of(gu..., etAgh..., gn).

Note that the vector fields At and Bj commute if i φj, where A and B are in 0.

Corollary 4.6. Suppose that f is a C™-function on Gn, then

df{P} ,...,P?) = (dMί(t)+-+ dMn(t))f(P} ,...,P?)

where dM^t) = ]Γ T^(dMi)a is a right invariant differential vector field acting on the ith

a

variable of Gn.
The next step is to simplify the expression for the second order differential vector

field (dM^t) + ••• + dMn(t))2. This is easily done using Proposition 3.2. In order to
state the result it is useful to introduce a number of different "Laplacians" on Gn.

Definition 4.7. Let {Ta}a™\ bea(-9 %-orthonormal basis for <S. The Laplacian ΔonG
is defined to be the second order differential operator

dim#

a=l

, thwhere Ta is considered to be a right invariant vector field on G. More generally, the ϊ
Laplacian (Δι) is the second order differential operator on Gn defined by

Σ
α = l

Remark 4.8. It is easy to check that the Laplacians defined above are independent of
the orthonormal basis chosen for (3.

Proposition 4.9. Suppose that σf's are horizontal curves lying in the upper half plane
parameterized by t = xί. Also assume at time t the σs are labeled such that
σx(ί) ^ σ2(ή ^ ••• ^ σn(t). Then, in the notation of Corollary 4.6:

(dMΛt) + - + dMn(t))2 = Σ (*i(0 - *t
ί=l

where σn + ί(t):= 0 for all t.

Proof. The proof will go by induction on n. n := 1?

a,b
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Now assume that the proposition is true for n-curves, and consider the case of
(n + l)-curves:

i) + ». + dMn+1(t))2 = {dM.it) + ... + dMn(t))2 + (dMn+1(t))2

= " Σ ("tit) - σi+ι(t))Δ,dt + σn(t)Δndt
i= 1

(dMn+1(t))2 + 2 f
i=ί

f + σn+ι(t)Δndt
i=ί

= Σ

where σn + 2(t) is now defined to be zero. To carry out these computations, we have
made repeated use of Proposition 3.2 and the fact that M^(t) and Mζj(t) are
independent and hence have zero bracket if a Φ b. Q.E.D.

Before we can make use of this last result it will be necessary to know that the
different Δ/s commute with one another. This fact follows from the "infinitesimal
braid relations" (see Frohlich [32]) of the next proposition. These relations are also
used in Gross, King, and Sen Gupta [34], The author is grateful to L. Gross for
showing me these relations.

Proposition 4.10 (Infinitesimal Braid Relations). Let T" denote the action of Ta

acting on the ith variable of Gn as in Definition 4.5. Then £ [ 7 7 ^ , T\ + T)~] = 0,
a

for all i and j .

Proof. Let {fabc} be the structure constants for the ^ with respect to the Tα's.
Using the identities [^5,C] = A[β,C] + [A,C~]B valid for linear operators A,B
and C, and [T?, T)~] = 0 if i Φj, one shows that

ai τaj, τ\ + T J ] = Σ (fabc + fcba) T- τbj

for i Φj and twice the right-hand side iff = / So to finish the proposition it suffices to
show that fabc = - fcba. Now recall that the Γα's were chosen such tat
- trace (TaTb) = δab, so that

fabc = _ trace([Tα, T&]ΓC) = - trace(Ta[Tb, Γ])=fbca.

Because of the skew symmetry of the bracket it follows that fahc=fbca = -fcba.
Q.E.D.
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Corollary 4.11. The operators (4f's) commute with one another.

Proof. Let j > ι, then

w h e r e 4 > ; : = Σ ( T » + 1 + ••• + T\). S o [ _ Δ h Λ ^ = 2 £ [ 4 , ' Π + ••• + Γ ? ] ( Γ ? + 1 + •••
a a

+ Γ"). Finally the expression [Ai9T\ + h T"~] is easily shown to be zero by
expanding out A{ and then using the infinitesimal braid relations and the
commutativity of T\ and T) for i Φj. Q.E.D.

Theorem 4.12. Let {σj" fre a collection of horizontal curves in the upper half plane
which, when considered as real value functions, satisfy σx(ί) ^ σ2(t) ^ ••• ^ σw(ί) ^ 0
/or te[a, b~\—the domain of the σf's. Lei P | = Pt{σ?) be parallel translation along σh

and let f be a bounded measurable function on G". Then

EnP},...9Pΐ)= J f{gl9 . ,gn)ΠQA.. + M9Γ+\)dg1' 'dgn9 (4.2)
Gn 1=1

b
where Qt is the convolution kernel for the operator cxptΔ/2 and Aij\=\{σi(t) —

a
Gj(t))dt—the signed area between the horizontal curves σf(ί) and σj(t).

Remark 4.13. The notation etΔ/2 stands for the contraction semigroup associated
with the heat equation dtu = jΔu. The relationship between Qt and etΔ/2 is
etΔf(g) = J QΛn ~ 1g)f(h)dh. The fact that this semigroup has a convolution kernel is a

G

consequence of the Laplacian (Δ) on G commuting with left and right multiplication
by elements of G. The explicit series expression for Qt is

Qt(g)= Σ exp(ίc t/2Kχ τ(0),
τeΓ(G)

where cτ is defined in Remarks 2.2. Recall that Γ is a set of inequivalent irreducible
representations of G.

Proof. Define a new function F(t9gu...,gn) on / x G" as the solution to the
backwards heat equation

1 n

dtF(t9gl9...,gn)= - - £ ΔiF(t,gu...,gn\

The solution i7 can be expressed more suggestively as

F(t,βl,...,gn)= f\(eW2)A'WΔ'f)(g1,..,gn), (4.3)
i = l

where A((t):= ja^t) — σi+ t(t)dt—the area between the horizontal paths σ^t) and
t

σi+1(ή on the ^-interval [t,b~]. The operator etl/2Δi denotes the semigroup on G"
generated by At. The representation in (4.3) for F is valid because the different
Laplacians all commute—Corollary 4.11.
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At this point the careful reader may be concerned that etl2Δi may not be well
defined because A{ is a degenerate elliptic operator. This problem is easily overcome
by realizing that it is enough to prove the proposition for an algebra stf of functions /
which generate the measurable function on Gn. A particularly nice algebra is the

n

finite sums of functions of the form f(g1, . . . , # „ ) = Y\ //(gff)5 where each ft is a matrix

element of a finite dimensional representation of G. Since Aτtj = Σ τik{Λ)τkj, if τi<7 are
kthe matrix elements of a representation τ and AeΉ is considered to be a right

invariant vector field. Hence, it follows that this algebra is invariant under the action
of Δt for each i. Since this algebra of functions is ^-invariant, the heat equation
reduces to an ordinary linear differential equation. Finally, by the Peter-Weyl
theorem (see [20]) the algebra jaf is uniformly dense in the continuous function on
Gn, and hence the algebra generates the measurable functions on Gn.

Now apply Itό's lemma to compute the differential of the process F(t, P},..., Pn

t).
One gets the expression in Corollary 4.6 with / -• F plus a term dtF(t9 P],..., P")dt.
Because of Proposition 4.9 and the definition of F, only the martingale terms survive
to leave:

This shows that the process F(t,P},..., P") is a martingale, and in particular

= EF(a, e,...,e) = F(a, e,...,e).

The theorem now follows from the next lemma. Q.E.D.

Lemma 4.14.

F ( α , e 9 . . . 9 e ) = f l {eiAiia))l2Δif)(el9..., e)

n

Gn i = l

Proof. Let Dt: G
n~ί+1 -> G" be defined by Z)f(gf, ̂ ί + 1 ? . . . , gn) := (gf,..., g, gi+ u > ^ ) ?

and set yl ί:=yl ί j.+ 1:=yl ί(α). The first step in the proof is to show that (etΔif)°
£). = eM l(/ofl.), This follows from the fact that (ΔJ^Di = Δ^f^D^ which is seen
by the following computation:

v - d

'at ods

0 a

Now F(a9e,...,e) may be expressed as



YM2: Expectations and Lassos 589

i= 1

n - 1

Π*
i = l

n - 2

G \ ί = 1

After iterating these steps n-times one arrives at the claimed result. Q.E.D.

Theorem 4.12 gives a method for computing the expectation
Ef(P(σ1),...,P(σn)) for any function (f) and "admissible collection" of curves
σl9...9σn. The goal of the next two sections is to simplify these results for the special
case that /(P(σ 1 ), . . . , P(σn)) is a "gauge invariant" function. The idea will be to undo
the gauge fixing which is inherent in Theorem 4.12. This will yield a simple
expression for the final result. The main ideas will be borrowed from the lattice gauge
theory techniques and will also be used for the lattice computations.

5. Tree Theorem

For the purposes of this section let A be a finite set and let B be an oriented graph on
A. So B is a finite set of "bonds" (b) satisfying:

1. There is a surjection (the orientation reversing map) fo -• 5:2? -> 2? for which bψb

and b = b.
2. There are mappings b -> b\ and b-+bf from B onto A which satisfy bι = bf. We
say that b\bf) is the initial (final) point of the bond (b). The pair [b\ bf) are called the
end points of b.

A path (σ) in B is a finite sequence (bn(σ)9..., bx) of bonds in B which satisfy b\+1=b{
for 1 ^ i < n(σ). Such a path will be denoted by bn(σ)-"b1 and will be called a path
from σ1 := b\ to σf := b{. The orientation reversing map will be extended to paths by

If T is a subset of B, let T denote the set of endpoints of all of the bonds in T.
Finally if beB let [b] = {b,b}. We now are in a position to define a tree.

Definition 5.1 (Tree). A subset T ofB is called a tree ίfT = T, and there are no loops in
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T—that is there is no closed path σ = bn ~bί with bteB and all [b f] distinct subsets
of T. The tree is said to be connected if there is a path in T which joins any two
points of V.

Remark 5.2. It is easily checked that for a connected tree T, there is a unique path

σ = bn - b1 in T between any two points of V such that all of the [frj are distinct.
Now suppose that G is a compact Lie group as above. Set Ω = {g:B->G\

g(b)-=g(b)~1ybeB}. If T is a tree contained in B, set DTg = f[ dg{[b'])
[b]φT

Π δe(dg\b~]), where dg([b]) - Haar (dg(b)) and δe(dg) = δ(g) Haar (dg) is the point
[b]eT

mass at e = ideG. (This is well defined, since the point mass at the identity and Haar
measure are both invariant under g^g~x) If T = B we will write Dg = DBg. The
group element g(b) is to be interpreted as parallel translation along the bond b.

In this setting the gauge transformations are elements of the set G Λ:= {θ: A -» G}
which act on Ω via g\b) = θ{bf)~ 1g(b)θ{bi). Haar measure on G Λ will be denoted by
Dθ which is equal to f\

Λ

Theorem 5.3 (Tree). Let f be a measurable function on Ω, T = (J Tt be a tree with
connected components Tt in B, and fix a "roof xt e T for each i. Then

\f{g)Dg= I f(gθ)DτgDΘ= f f(gθ)Y\δe(θ(Xi))DτgDΘ. (5.1)
Ω ΩxGΛ ΩxGΛ ί

Proof. For simplicity I will give the proof for the case that the tree has only one
connected component and the root of T is labeled xr. For the moment consider the
third integral above with the ^-integrals fixed. Make the change of variables
g(b) -• θ(bf)g(b)θ(biy'x for all bφT. By invariance of Haar measure, this operation
leaves the integral unchanged. With this change of variables

θ(h) \Φ\ ϋbφT;
[ j ifliftWV1, otherwise,

Dτg almost everywhere. Now fix the ^-integrals and choose an outer bond βeT.
That is β is a bond in T which satisfies the property; if & is any bond in T with bf = βf

then b — β. We further assume that bf φ xr. It is always possible to find such a bond.
Now make the change of variables θ(βf)-+θ(βf)θ(β% and rename θ(bf) = g{β).
Setting 7\ = T\[/J], it is now easy to check that

J f(g9)δMxr))DτgDΘ= J
ΛΩxGΛ

The proof that the third and first integral in (5.1) are equal may now be completed by
induction on the size of the tree T. From the argument given above it is easily
checked, at the last step in the induction and upon doing all integrals except the
d0(xr)-integral, that the integrand of the 0(xr)-integral is of the form:
constnat δ(θ(xr)). Hence, one may remove the delta function without altering the
value of the integral. Q.E.D.

As an immediate corollary we have:

Corollary 5.4 (Tree). Let f be a function on Ωfor which f(gθ) = f(g) for all θeGΛsuch
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that θ(Xi) = eeG for all roots xt. Then

ί MDg = J f(g)Dτg.
Ω Ω

6. Gauge Invariant Expectations

In this section, the results of the last two sections will be used to compute the
expectations of certain gauge invariant functions. The typical application is to gauge
invariant functions of the form f(P(σ1),...,P(σn)), where {σ1,...,σn} is an
"admissible collection" of curves.

Definition 6.1. A collection {σt }?=i of planar curves is an admissible collection if the
following conditions hold:

1. Each of the curves σt are pίecewise C1.
2. IfS:= S(σ1,..., σn) is the union of the images of the curves {σj, then the number of
connected compounds R2\(Su{x-axis}) is required to be finite.
3. Each curve σt is an admissible curve, Definition 3.8.
4. // σt is parameterized by arc-length, then there is no time τ and ε > 0 such that
σi{τ-t) = σi{τ + t)for\t\<ε.

The last requirement is a condition that the curves do not immediately retrace
themselves at any time. This condition is not a real restriction, since by the definition
of parallel translation, any such retraces may be removed without affecting the value
of P(σ).

Definiton 6.2. A planar graph B is a finite directed graph on a discrete subset A of R2

for which the bonds ofB are directed curves joining the points of A. The bonds (curves)
may only cross one another and themselves at the endpoints. The endpoint maps are
required to correspond to the endpoints of the directed curves making up the bonds.
Furthermore, it will be assumed that the bonds in B form an admissible collection of
curves.

Our goal is to compute E[f(P\B)^ for any gauge invariant function fonΩ = Ω(B\
where B is a planar graph. In order to state the result, we need the following notation.
If B is a planar graph, set 01 = 0l(B) to be the collection of bounded connected
components of R2\S(B), where S(B) is the union of the images of all the bonds in b.
For R e 01, the boundary of R may decompose into a number of connected pieces. Let
(dR)i denote any path around the ιth connected component of dR consistent with an
arbitrary but fixed orientation on R. Write formally dR = Yj(dR)i, see Fig. 1 for an

ί

example. In this figure R is the shaded region. There are three connected boundary
components for the dR. An admissible choice for dR is dR = bί + b4r + b2bφ2.
Notice the b2 terms were included in this expression but according to Theorem 6.4
the b2 bonds could have been omitted.

For any geΩ, let g(dR):= Y[g((dR)i), where order of the product is taken in any
i

fixed arbitrary manner. Admittedly, there is considerable ambiguity in the definition
of g(δR). It is part of the content of the next theorem that this ambiguity does not
affect the final answer.
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Fig. 1. Boundary of R

Definition 6.3. Suppose that B is a planar graph on A. A restricted gauge invariant
function f on Ω(B) = {g:B^>G\g(b) = g(b)~1} is a function satisfying f(gθ) = f(g) for
all θeGΛ with the restriction that θ(0) = eeG if OeΛ

Theorem 6.4 (Gauge Invariant Expectation). Let B be a planar graph, and f be a
restricted gauge invariant function on Ω(B). Then

EU(P\BΏ= J f(jg)UQ\RMdR))Dg9

Ω(B) Re®

where \R\is the area of the region R. The right-hand side of this equation is independent
of any of the choices made in defining g(dR). Furthermore, ifT is any tree in B, then the
above integral is unchanged by "freezing" g\τ to the identity, that is

£ [ / ( f | * ) ] = J f(9)ΠQ\R\(9(dR))Dτ9,
Ω(B) Re®

where, as before, Dτg = f ] δe(dg(b)) f ] dΦ)
[b)e[T] [b]φ[T]

The idea of the proof of the theorem is to first compute the expectation using the
Horizontal Expectation Theorem 4.12 and then to remove the gauge fixing using the
Tree Corollary 5.4. The next step is to do a number of the integrals over the
"spurious" bond variables. The remaining spurious variables are gauged away by an
application of the Tree Theorem. In order to get the independence of the choices in
g(dR), it will actually be necessary to enlarge the graph B before we start this
procedure in such a way that the regions in 01 are all simply connected.

In order to better understand the theorem and the notation, we will pause for
some examples. These examples will be concerned with computing
Ef(P(σ1),...,P(σn)), where {σj"= 1 is an admissible collection of planar curves.
Given a collection of admissible curves {σf}"= 1 we associate a directed planar graph
B = B(σ1,...,σn)o\QX a s u b s e t / I = A ( σ 1 ; . . . , σn) a s f o l l o w s . L e t S = S(σl9...,σn)be
as above, then a point xeS is in A if either x is an endpoint of some σ{ or there is no
open neighborhood JV of x such that N n S is homeomorphic to an open interval.
The set B is now composed of the directed curve segments of 5 which join any two
points of A without passing through any other points of A. With these definitions
and the obvious endpoint maps, the set B becomes an oriented planar graph A. To
each of the curves σf there is a naturally defined path in B which corresponds to
breaking σi into directed segments (i.e. bonds) in B. We will identify the curves σt with
their paths in B.
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(a) (b)

(c) (d)

Fig. 2. Some simple Wilson loops

For the examples to follow, η is taken to be a representation of G, and χλ and χ2

are characters on G. The reader is referred to Fig. 2 when studying these examples.

(a) Let σ be the curve in Fig. 2a then

If η is an irreducible representation of G, then the result may be simplified to
exp (cη IR |/2), where cη is the eigenvalue of the Laplacian acting on η. If η is not
irreducible, then the result will have the form ]Γfcτexp(ct|lί|/2), where the sum is

τ

over the irreducible representations of G. The coefficients kτ are determined by the
decomposition χη = ^/cτχτ of the character χη into irreducible characters. Thus all
but a finite number of the fcτ's are non-zero.
(b) Let σ be the curve in Fig. 2b and η be irreducible, then

Eχη(P(σ))= J χn{gιg2)Q\R^2l9i)Q\R2\{Q2)dgχdg2
G2

= d;1 \ χη(g2)QlRll(g)dg-$ χη(g)QlRιl(g)dg.
G G

Since, χη(g2) = trace(η(g)®η(g))- 2trace(η(g)®η(g)\VηAVη), it is possible to de-
compose χη into a finite sum of characters corresponding to the decomposition of the
tensor representations. Hence, again the general form of the answer will be a finite
sum of exponentials of the form exp (c11R11 + c21R21 )•
(c) Let σ1 and σ2 be the curve in Fig. 2c, then
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Fig. 3. Cutting the region U to make it simple connected

Again by representation theory this last result may be expressed as a finite sum of
exponentials with arguments linear in the areas of R1,...,R3.
(d) Let σί and σ2 be the curve in Fig. 2d, then

Notice that the density in this example is not a gauge invariant function.

We now return to the proof of the Gauge Invariant Expectation Theorem 6.4. The
proof will proceed by a number of lemmas.

Lemma 6.5. Let B be a planar graph, and UeϊM(B). Suppose that boundary ofU is
disconnected and dU = YJ(dU)i with (dU)ι a path around the ith component of the

i

boundary ofU. Assume that {dU} is enumerated so that (dU)0 is the path around the
boundary component of the unbounded component of R2\U. For each i choose
XiEidUyi—recall that (dΌ)\ denotes the set ofendpoints of all the bonds in {dO)t. Then
there exists non-crossing admissible paths {b0,..., bN} such that bt is a path from xt to
xi + 1. The paths bt lie in U except for the endpoints.

Such a collection of paths will be called cuts, since they cut the region U so as to
make it simply connected, see Fig. 3. In this figure, U is the shaded region, the dots
indicate the endpoints of bonds, and the boundary of U is shown by the solid lines. A
possible collection of cuts which make U simply connected are shown in dashed
lines.

Proof. The set U is path connected. So the existence of a path b0 from x0 to xx is
assured. This path can be chosen to be admissible with no self crossings. Now
assume that {b0,..., bj} have been chosen to satisfy the lemma. One sees that the
closure of ί7\(Images of bθ9..., bj) is still path connected, for if not some pair of
{b0,..., bj} must intersect at some point other than an endpoint. Hence, one may
continue inductively and pick bj+1. Q.E.D.
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Let Bc be the directed graph containing B and a collection of cuts as described in
the above lemma. Cuts are added for each Ue£# for which the boundary is not
connected—or in other words for which U is not simply connected. This graph Bc

satisfies the following property: for each Re$(Bc) the dR is connected. A graph with
this property will be called a BC-graph-BC for boundary connected. For regions R
with connected boundary it is easily seen that the only ambiguity in g(dR) is a cyclic
ordering of the group elements corresponding to a starting point for a path around
the boundary. Since Qt is a class function, the function Qt(g(dR)) is unambiguously
defined once the orientation on R is chosen. Since Qt(g) = Qt{g~ι\ it follows that
Qt(g(dR)) is also independent of the orientation chosen for R. Then next theorem is a
special case of Theorem 6.4, where B is a BC-graph.

Theorem 6.6 Assume that B is a BC-dίrected-planar-graph, and that f is a gauge
invariant function on Ω{B\ then

Ω(B) Rε®

Proof. Set S = S(B) to be union of the images of all the bonds in B. Let X c R be the
set consisting of the union of the x-coordinates of the points in A and the x-
coordinates of the points where a bond in B cross the x-axis or has a vertical tangent.
Set σ0 to be the left to right oriented line segment on the x-axis from x = min (X) to
x = max(X). For each x e l , set ax = min {y\(x,y)eS} and bx = max{y|(x,y)eS}.
Lable the points in X by x l 5 . . . , xm, and set σk to be the upwards oriented vertical
line segment at x = xk going from y = aXk to y = bXk for 1 <£ k ̂  m. Now set
VΛ=Λ({b}beB9σl9...,σm), and VB = B({b}beB,σu...,σm) as described in the
discussion after Definition 6.1. Also put VM = 01 (VB) and VΩ = Ω{VB). Let Tbe
the tree in VB consisting of all vertical bonds and any bonds on the x-axis.

A couple of remarks about VB are in order. First, the directed graph VB is still
boundary connected. Second, there is a natural embedding of the graph B into the
paths on VB arising from the fact that the bonds in B are subdivided in the process of
going to the graph VB. Thus if geΩ(VB) and beB, it makes sense to write g(b). With
this understanding, appiy Theorem 4.12, use the independence of the continuum
YM2-measure over disjoint vertical strips, and the symmetry of the YM2-measure
with respect to reflections about the x-axis to conclude

Ef(P\B)= ί /teli,) Π Q\R\(9(dR))Dτg. (6.1)
VΩ ReV@

(This last equation is valid for arbitrary functions / on Ω(B).) Now apply the Tree
Corollary 5.4 to this last integral (for / gauge invariant) to conclude that

Ef(P\B)= j /teU) Π Qm(g(dR))Dg. (6.2)
VΩ ReVm

Now do the integrals over bonds in VB which are in the unbounded component

of R 2\S. Put Λ:= [j R, and set VX = {ReVM\R c z R 2 \ J } . If VX is not empty,

there is a region R in V9t' which contains a bond beδR which is not contained in the
boundaries of any other elements of V& or in the decomposition of the paths of any
of the bonds in B. Thus the only place that g(b) appears in the integrand of Eq. 6.2 is
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in the term Qm(g(dR)). Owing to the fact that j Qm(kh)dh = 1 for all fceG, the term
G

Q\R\(g(dR)) may be omitted from the integrand. Continuing inductively in this way,
it is possible to omit all terms of the form Q^(g{dR)) for which ReVM'.

The next step is to now do integral with respect to the variables g(vb) for all bonds
vbeVB for which neither vb or vb occur in the decomposition of any of the bonds in
B—these vb will all come from the added vertical bonds. These bond variables
appear in the integrand of (6.2) in the form

where vbedRndU. Now using the basic semigroup property of Qt, namely

ί Qt(gh)Qs(h~ιk)dh = Qt+s{gk)Vg, fceG,
G

one finds that

f(g\B) ΓΊ Qm(g(dR))Dg= j f(g\B) Π δ|κ

where B# is the subgraph of VB gotten by removing the vertical bonds which do not
occur in the decomposition of any bond in B. (Notice that B is still naturally
embedded in the paths in B#)

In order to finish the proof it is necessary to show that Ω# = Ω(B#) may be
replaced by Ω. Notice that the bond variables in f2#in the decomposition oϊg(b) for
a bond beB always occur as definite ordered product, and these variables do not
occur in the ordered products for any other bond variable desides b. So by the
invariance of Haar measure, all but any one of the integrals of the bond variables
associated to a bond be B is redundant. Hence, the value of the second integral in the
above equation is unchanged by replacing Ω# by Ω. Q.E.D.

Completion of the proof of the Gauge invariant Expectation Theorem 6.4. Let B be as
in Theorem 6.4 and Bc = Bu(cuts) as described after Lemma 6.5. Then by
Theorem 6.6,

EU(P\BΏ= ί MB) Π Qw(g(dR))Dg. (6.3)
Ω(Bc) Re@(Bc)

Now suppose that T is a tree in B, let t = Tv(Bc\B). The set f is still a tree, for if t
were not a tree there would be a simple loop σ in t. Since both f and BC\B are trees,
there must be bonds from both T and BC\B in the decomposition of σ. But there are
no simple loops in Bc which contains a cut (an element of BC\B), because each point
in a simple loop is in the boundary of at least two distinct regions of Bc. But by
construction, the region on each side of a cut is the same, see Fig. 3. Here we have
used the fact that the region inside of σ is made up of the closure of elements in &(BC).

Because Bc is a BC-graph, each of the functions Q\R\(g(dR)) are gauge invariant
functions on Ω(BC). Thus the integrand in the right-hand side of (6.3) is gauge
invariant. Hence the Tree Theorem 5.3 applies and we conclude from (6.3) that

ί
Ω(BC)

f(g\B) Π

= ί f(g) Π Q\R\(gW))Dg,
Ω(B) Rε®
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where the ordering of g{dR) is determined by the particular cuts used to create Bc.
One may now check that the ambiguity choosing the cuts corresponds precisely with
the ambiguity in the expression g{δR). But this last equation is valid for any system of
cuts, and hence the final result is independent of the ambiguities in g(dR).

Q.E.D.

It follows immediately from the Gauge Invariant Expectation Theorem 6.4 that:

Corollary 6.7. The expectation value E[f(P\B)] for gauge invariant functions f is
invariant under area preserving diffeomorphisms of R2 provided the image graph is still
admissible. Notice that a diffeomorphism (D) acts naturally on a bond b as D°b,so that
D transforms B to a new graph DB.

7. Lattice YM2 Expectations

In this section, the lattice YM2 -measures will be introduced and it will be shown that
expectations with respect to these measures have the identical structure as
expectations with respect to the continuum measure. Once this fact is established it
will be an easy matter to show that the appropriate lattice measures converge to the
corresponding continuum measures as the lattice spacing tends to zero.

Throughout this section let G be a compact Lie group, Z 2 be the unit square
lattice in R2, B^ be the infinite directed graph on Z 2 consisting of nearest neighbor
directed bonds, and Ωm = Ω(Bςβ) = {g:BQ0-+G\g(b) = gφY1}. Also for each posi-
tive integer n, let An be the closed square of side In centered at zero in R2 and put
Bn = {bsBJb1 or bΈΛn-Λ and Yn = {beBJb\bfeΛn}.

Definition 7.1. An action function A is a continuous positive class function on G for
which A(g~1) = A(g)VgeG. We further assume that A has been normalized so that

We also set An to be the n-fold convolution of A.
Associated to an action A we will introduce two measures on 12^, one of the
measures will be a gauge fixed version of the other. These measures will be the
unique infinite volume limits of the finite volume measures to be defined presently.

For each "boundary condition" heΩ^, define μn(",h) to be the unique
probability measure on Ω^ such that

μn(f;h) = -^-$ f(g) Π A{g(dP))δ(g = h on B°n)Dg (7.1)

for all continuous functions / on Ω^, where Dg = D9

B = Π diίaar (#(£?)) (a
0 0 [bMB]

probability measure on Ω^\ and Zn(h) is the normalization constant to make μw( ; h)
a probability measure. Because of the delta-function, the integral in (7.1) is finite
dimensional.

In order to define the gauge fixed version of this measure, let T be the tree in B^
consisting of all vertical bonds and all bonds which are on the x-axis. Then the finite
volume axial-gauge fixed measure is defined analogously for each heΩ^ satisfying
h\τ = id to be the unique measure μj|( ;h) on Ω^ such that
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μ"Λf; h) = ̂ y J f(g) Π_ A(g(dP))δ{g = hon Wn)Ότg (7.2)

for all continuous functions / on Ω^.

Theorem 7.2. The weak infinite volume limits of the measures defined in (7.1) and (7.2)
exist and are independent of the boundary conditions h. (These limits will be denoted by
μ(f) and μa(f) respectively.) Furthermore, the resulting measures when restricted to
functions depending on finitely many bond variables are the corresponding finite
volume measures with "free" boundary conditions. More precisely, if Λn, Bn are as
above the measures with free boundary conditions are

μnU)'=γ J f(g) Π_ A(θ(dP))Dg, (7.3)

and

ti(f)'=^ S f(g) Π Λ(g(dP))DTg. (7.4)

With this notation the theorem states that

μ{f)=\imμN{f;h) = μn{f), (7.5)
N-+O0

and
μ"{f)=\imμ°N(f;h) = μa

n{f) (7.6)

for all continuous functions f on Ω^ which depend only on the bond variables over Bn.
This theorem is basically contained in Dosch and Muller [23]. The proof is

instructive so it will be given. We do however borrow the following elementary
lemma from [23].

Lemma 7.3. Let A be an action, then ^4fc-> 1 uniformly as k-+co.

Proof of Theorem 7.2. Since the continuous functions depending on only finitely
many variables is dense in all continuous functions on Ω^ with the sup-norm
topology (Stone Weierstrass Theorem), it suffices, by an ε/3-argument, to show that
Eqs. (7.5) and (7.6) hold.

Suppose that/is a continuous function on Ω^ which depends only on the bond
variables over Bn - that is f(g) = F(g\Bn) for some function F on Ωn:= Ω(Bn).

I will first concentrate on the non-gauge fixed measures. Suppose that N >n, and
let c be the path in BN corresponding to the directed line segment on the y-axis of R2

going from y = n to y = N. The region R = ΛN\(Λn u S(c)) is simply connected. By
integrating over all of the bond variables in BN\(Bnu (the bonds in c)) and using the
invariance of Haar measure one finds that

μ»if;h) = τΊh) ί * F{g)

- Π Λ(g(dP))Am(k-1g(σn)kh(σN))DgdK (7.7)
Pe®(Bn)

where #(R) = N2 — n2 is the number of plaquettes in R, and σk is the counter-
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clockwise path around the boundary of Λk starting at (0, k)eZ2. So by the
Dominated Convergence Theorem and Lemma 7.3,

J f F(g) Π Λ(g(dP))Λm(k-'g(σn)kh(σN)Dgdk
{keG}{geΩn} Ps<%(Bn)

- J F(g) U Λ(g(dP))Dg as n - o o .
{geΩn} Pe@(Bn)

Taking n = 0 and F:= 1 in this last equation shows that limN^ aoZN(h) = 1. The
combination of these last two limits along with (7.7) gives (7.5).

Now to the proof for the gauge fixed measure. Again let N > n and f(g) = F(g\Bn)
for some continuous function F on Ωn. Because of the gauge fixing, the bond
variables in different vertical strips are jointly independent with respect to the
measure μa

N(-; h). Using this fact and performing the bond variable integrations for
bonds outside of Bn, one finds that

μ"N(f;h) = j F(g) Π A{g(dP)) f[ A(N_n)(g(b(i,n))h(b(i,N))'1), (7.8)

-n))h(b(U -N)y')Dτg, (7.9)

where b(i,j) is the left to right directed horizontal bond in B^ starting at (iJ)eZ2.
The proof now follows by the same reasoning as the non-gauged fixed measure case.

Q.E.D.

The next two theorems show that the structure of these lattice measures are in
close correspondence with continuum YM2-measure.

Theorem 7.4. Let B be a directed planar graph of paths in B^ and f be a function on
Ω^ of the form f(g) = F(g\B) for some function F on Ω(B). Then

μa(f)= f F(g\B)YlA{R{{g(dR))Dτg,
Ω(VB) ReίM

where VB is directed graph derived from B by subdividing the original bonds and
adding certain vertical bonds as in the proof of Theorem 6.6 and T is the tree in VB
consisting of the vertical bonds and bonds on the x-axis.

Proof Choose n to be a sufficiently large integer such that B may be embedded in
Bn. Then by Theorem 7.2, μa{f) = μa

n(F\B). Let VB* be the collection of bonds (b) in
Bn such that b occurs in the decomposition of some bond in VB. (Notice that, like B,
VB is a directed planar graph consisting of paths in B^) Using the definition of An

and the assumption that the integral of A is normalized to one, it is easy to integrate
over all of the variables corresponding to the horizontal bonds in Bn\VB# and
conclude that

μa(f)= ί F(g\B) Π Λ]Rl(g(dR))Dτ#g.
Ω(VB#) #

In this last expression, T# is the tree in VB? consisting of any bonds on the x-axis and
any vertical bonds in VB#. In going from the graph VB to VB#, the bonds of VB were
subdivided into unit bonds in B^. This process is easily reversed with the aid of the
following formula,
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k

j H(uίυl9...9ukvk) Π AMi(uiuΐ+\)ANi{υiυ;+\)du1---dukdυγ--'dvk
G2k i=l

k

= J H(vί9...9vk) [ ] AMi+Ni(viυr+

1

ί)dv1'"dvk9
Gk i=l

which is valid for an arbitrary function H9 and non-negative integers Mt and Nt. This
formula is easily verified by using the definition of An9 making the change of
variables v^u^v^ and then do the w-integrals in the order that they are labeled.
Repeated use of this formula "splices" the split bonds together to yield

μ\f)= J F(g\B) Π AlRl(g(dR))Dτg. Q.E.D.
Ω(VB)

Theorem 7.5. Let B be a directed planar graph of paths in B^ and f be a function on
Ω^ of the form f(g) = F(g\B) for some gauge invariant function F on Ω(B). Then

μ(f)= ί F(g\B)l\Am{jg{dR))Dg
Ω(B) R e 0 ί

= ί F(g\B)U Am{g{dR))Dτg,
Ω(B) R e M

where T is any tree in B.

Proof By Theorem 7.2, if n is chosen sufficiently large, then μ(f) = μn(F\B). Now for
the moment forget that B is embedded in R2, and introduce the graph Bc =
Bu(cuts), where the cuts are paths as described after Lemma 6.5. Overlay these
cuts onto Bn, to create a new directed graph B% by subdividing the bonds of Bn for
each crossing of a cut. It may be checked that

μn(f)= J F{g\B) Π Am(g(dR))Dg. (7.10)
Ω(B#) #

This is done by integrating out the bond variables which make up the cuts and then
using the invariance of Haar measure to get rid of the subdivisions of the bonds in
B§

n as was done at the end of the proof of Theorem 6.6.
Consider the right-hand side of Eq. (7.10). By integrating out the bond variables

in B#

n which do not occur in the decomposition of the cuts or the bonds in B (see proof
of Theorem 6.6) one finds that

= μn(F\B)= ί F(g\B) Π Aw(g(dR))Dg,
Ω(BC)

where Bc is the planar graph consisting of the bonds in B along with the cuts. Finally
as in the conclusion of the proof of Theorem 6.4, the Tree Corollary 5.4 may be
applied to this last equation to prove the theorem. Q.E.D.

8. Continuum Limit

The goal of this section is to show that the continuum YM2-measure may be
recovered by choosing appropriate actions A and letting the lattice spacing tend to
zero. Dosch and Muller [23] have shown that the continuum limit exists for the
YM2-lattice measures if the structure group is (7(1) of SU(2). But their expression for
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the limit is rather complicated and is hard to compare with the continuum YM2-
measure. Basically, their result is the same as ours except that the heat kernels are
always expanded in terms of the characters.

Throughout this section εZ 2 will be the ε-square lattice in R2, ^ ( ε ) will be the
infinite directed graph on εZ 2 consisting of nearest neighbor directed bonds, and

Definition 8.1. Suppose that B is a directed planar graph. A lattice approximating
sequence to B is a collection {B(ε)}εo>ε>o of directed planar graphs B(ε) of paths in
B^ε) with surjections (b ̂ > b{ε)): B-+B{ε) and (R-+R(ε)):@(B)-±@{B(ε)) satisfying
the following conditions.

1. The area \R\R(ε)\ -f |JR(e)\K| is of order ε.
2. If the surjection (b->b(ε)) is denoted by iε, and dR denotes an admissible sum of
paths for the boundary Re0l then iε(dR) should be an admissible sum of paths for the
boundary of R(ε).

The following lemma is easy to prove and will be stated without proof.

Lemma 8.2. Given a directed planar graph B, there exist lattice approximating
sequences.

Now suppose that {,4ε}ε>0 is a collection of actions. By Theorem 7.2 we may
define unique measures μa

ε and με on Ω^ (ε) associated to the given action Aε. (Z 2 has
been trivially replaced by εZ2.) The next theorem asserts that the measure μa

ε

converges to the continuum YM 2 -measure, and the measure με converges to the
continuum measure on gauge invariant functions. The two actions that will interest
us are the Villain action and the Wilson action.

Definition 8.3 (Villain). A Villain action is an action of the form Aε(g) = QE\g\ where
Qt is the convolution heat-kernel for etΔ/2, where A is defined in Definition 4.7.

Definition 8.4 (Wilson). A Wilson action is an action of the form Aε

χ(g) =
Z~* exp Re χ{g\ where χ is the character of a unitary representation of G and Zε

is chosen to normalize Aε

χ to have integral one.

Theorem 8.5. Suppose that p is a representation of G for which p^ is ίnjectίve. Let Qt

denote the usual convolution semigroup associated to the representation p, and Aε be
the Villain action based on Q. Suppose that B is a directed planar graph, {B(ε}} is a
lattice approximating sequence to B, and f is a continuous function on Ω(B). Then

where με is the axial gauge fixed measure on εZ 2 with action Aε.

Proof Suppose that VB and VB(ε) are as described in the proof of Theorem 6.6,
then it may be shown that {VB(ε)} is an approximating sequence to the directed
graph VB. If T{T(ε)) is the tree in VB{VB{ε)) consisting of the vertical bonds and the
bonds on the x-axis, then by Theorem 7.4, the definition Aε, and the definition of an
approximating sequence, we find,
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t(fohx\B(e))= J RG\B) Π A\R\
Ω(VB(ε)) Re<%(VB(ε))

= ί f(g\B) Π ^mι/ε2(g(dR(ε)))DTie)g
Ω(VB) Re3t(VB)Re3t(VB)

= J f(g\B) Π
Ω(VB)

The limit as ε tends to zero is now easily taken to yield,

\imμa

ε(foi;i\B(ε))= j f(g\B) Π
ε^O fl(KB) Re@(VB)

which is precisely the answer one gets by computing EF(P\B) by Theorem 4.12.
Q.E.D.

Corollary 8.6. Assuming the same hypothesis of the above theorem, with the additional
hypothesis that f is now gauge invariant, then

Proof. By the Tree Theorem 5.3 and Theorem 7.2 it follows that

μi(fOh1\B(e)) = μeWoh1\B(e))'

This along with the Theorem 8.5, and Theorem 7.5 proves the Corollary.
Q.E.D.

Remark 8.7. This corollary could have been proved directly by using Theorem 7.5
and Theorem 6.4.

The analogues of Theorem 8.5 and Corollary 8.6 hold in case the Villain action is
replaced by the Wilson action. The key added ingredient in the proof is a "central
limit theorem" for group valued random variables. The version that we will need is
essentially Theorem A.2. of Borgs and Seiler [18].

Theorem 8.8 (Borgs and Seiler). Let p be a faithful representation of a compact Lie
Group G, and let Aε be the Wilson action associated with p. Suppose that t(ε) is a
positive function such that t(ε)/ε2 is a positive integer for all ε. Also suppose that
t(ε) = t + O(ε) as ε^>0, where t > 0, then Aε

t{E)jε2-+ Qt uniformly as ε-• 0.

Proof. Decompose Aε and Qt into irreducible characters as

tc
and Qt = £Xexp

where the sums are over τeΓ—a complete set of irreducible representations of G.
The eigenvalues of Aε and Qt as convolution operators are aτ and exp(ίcτ/2)
respectively. The Laplacian A is negative so that cτ ^ 0, see also Remarks 2.2. Also it
is easy to show that Re χτ is a positive semi-definite function in the sense that for
{gi)γ=1dG the matrix {ReχΛ&gfj"1 )},-,• is positive semi-definite. Therefore, the
Wilson action Aε is positive semi-definite, and hence as a convolution operator Aε is
non-negative. This shows that aτ(ε) ̂  0, see Borgs and Seiler [18] Lemma II. 1 for
another proof of this fact. Furthermore, by the orthogonality of the χτ's,
aτ{ε) = {\/dτ)\Aε(g)χτ(g)dg, from which it follows that aτ(ε) ̂  1.
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In Appendix A of [18] it is shown that

Trace [/ίf/ε2 * - & * ] - > ( ) as (8.1)

(where F * denotes the operator on L2(G) given by convolution by the function F\
and that

ατ(ε) - exp -cX ^ const c2

τz . (8.2)

Using the fact that the degeneracy of the (simultaneous) eigenspaces for Aε* and Qf

are d2

τ, Eq. (8.1) may be rewritten as

as ε->0. 3.3)

It is easy to conclude from Eqs. (8.2) and (8.3), and the fact that 0^α τ(ε),
exp(ίcτ/2)^ 1, that

flt(fi)ί(e)/e2-exp
tcτ •0 as ε-»0.

(This is a special case of Grύmm's convergence theorem, see Simon [46] Theorem
2.19.) But from the series representations for Aε and Qt and the estimate | |χ τ\\O 0^ dτ

one finds

. Q.E.D.

Remark 8.9. The full strength of Theorem 8.8 is not needed here. The equation (8.2)
and Lemma 9.6 of the next section would be adequate for the proof of the next
theorem.

Theorem 8.10. Suppose that p is a faithful representation of G. Let Qt denote the usual
convolution semigroup associated to the representation p, and Aε — Aε

χ be the Wilson
action. Suppose that B is a directed planar graph, {B(ε}} is a lattice approximating
sequence to B, and f is a bounded measurable function on Ω(B). Then

where E denotes the continuum YM2-expectatίon.

Proof. Proceeding with the notation and the beginning of the proof of Theorem 8.5
one computes that

μaΛfoh%e))= ί f(g\B) Π
Ω(VB

With the aid of Theorem 8.8, the conclusion of the proof follows identically to the
proof of Theorem 8.5. Q.E.D.

Again we have the immediate corollary.

Corollary 8.11. Assuming the same hypothesis of the above theorem, with the
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additional hypothesis that f is now gauge invariant, then

9. Existence of Lassos

One of the motivations for this paper is the extreme singularity of the Wilson loop
variables in the four dimensional theory. Using the l/4(l)-model as a test case, it
would seem that there is no reasonable way to smooth the Wilson loop variables to
get genuine random variables. This meta-fact initiated the work in Gross [36],
where it was shown that "Lassos and integrated Lassos" could be used to
parameterize smooth gauge theories. These results were generalized in Driver [21]
to show that the lassos and integrated lassos may be used to classify bundle
connection pairs over a fixed simply connected manifold.

We now recall the definition of a lasso in the special case of a trivial vector bundle

E = CN x Rd with ^-valued connection 1-form A = ]Γ Atdx\
i=ί

Definition 9.1. The Lasso L = LA associated to the pair (E, A) is the path two form
L = £ Lijdxιdx\ where Ltj is the ^-valued function on the paths (σ) in Rd

starting at zero given by

where F' = FA — dA + A A A is the curvature 2-form.
If the structure group G of the bundle is t/(l), then the definition of L essentially

reduces to the curvature F. For the t/(l)-Yang-Mills-measure, the curvature is a
smoothable random variable. Furthermore, it was shown in Gross [37] for d = 3
and Driver [22] for d = 4 that, on the "current sector" (d*F), the Wilson lattice gauge
theories converge to the continuum theory. So at least for the abelian models Lasso's
behave better than the Wilson loops.

In this section, it will be shown that lassos are smoothable random variables with
respect to the YM2 -measure. The key to this result is the computation of the lasso
two point function. The result may be summarized informally as:

£(L(σ)L(τ))= Σ ElAdPla)-ιp{τ)(T') rr\-δ(σ'-τ') + J(σ,τl (9.1)
a= 1

where J( , •) is a bounded function when restricted to polygonal paths of a fixed
"order." Strictly speaking, L(σ) is not defined, since this requires evaluating the white
noise F at the point σ^eR2. Therefore to get started we introduce the regularized
lasso variables. In the following discussion d will always be two.

Definition 9.2. The ^-regularized lasso (Lε) is the random variable given by

ev~' 2ε2

where lε(σ) is the clockwise oriented square loop of side ε with the lower left-hand corner
at σfeR2.
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Remark 9.3. If A is a smooth connection 1-form on R2 then it is well known that

)~P(lε(σΓ^
—2 = t12[σ)9

so that lim ε^ 0L ε = L 1 2 , with L 1 2 defined as above for smooth connections.
The main goal of this section is to show that lim J Lε(σ)dm(σ) exists for a suitable

ε-»0 op

class of measures on 0>—the continuous paths on R2 starting at OeR2.1 will now
describe two classes of measures for which the desired limit exists. Fix a positive
integer N, and write the elements of R2N as x = (x1,..., xN) with each x( in R2. Let
σN:R2N^>&> be the map which takes the ΛΓ-points (x1,...,xN) and assigns the
piecewise linear path in 0> found by connecting OeR2 to xuxγ to x2, etc. Each
segment of the path is directed from xt to xί+1, where x0 = 0. The measures to be
considered will come from pushing measures on R2N to 0> by the map σ^. So given a
measure (m) on R2N it will be identified with the measure m°σ^1 on^. It should be
clear from context whether m refers to the measure on R2N or the push forward to 0*.

Definition 9.4. A measure m on R2N is said to be of type I, ifm has an L1 continuous
density with respect to Lebesgue measure. The measure m is of type II if it has the form
m(dx1- dxN) = mXN(dx1' 'dxN_1)dxN, where mx for each xeR2 is a measure on
RN~λ satisfying:

1. The measure m should be a finite signed measure.
2. If K is a compact set of R2 then mx is concentrated on a fixed compact subset of
RN1 for xeK.
3. The mapping

should be continuous, where Cb(RN~ *) are the bounded continuous functions onRN~λ

with the sup-norm topology.

Theorem 9.5 (Existence of Lassos). Let m be a measure of type I or type II, then
L2 — lim J Lε(σ)dm(σ) =:L(m) exists. Furthermore if n is another measure of type I or

ε->0 op

II, then

Γdimί?

(n))= J YjE(kάm-ιm

(9.2)

where the first term is interpreted in the obvious way. For example, ifm and n are both
of type II, then

j F(σ,τ)δ(σf-τf)dm(σ)dn(τ)= J F^y^^dx^ή^dyκ)dxN,

where F(x, y):= F(σN(x), τN(y)), x<={xl9...,xN_1), and y = (y<9 xN).
The proof will be given after a number of preparatory results. A key ingredient

in the proof is that A preserves the space of polynomial functions on G with degree
less than some fixed number. Therefore, the A restricted to such a space of
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polynomials is a bounded operator. From this observation, one may deduce
smoothness and good bounds on the function etΔ/2p(g) = JQt{gh~ 1)p(h)dh and

G

its derivatives when p is a polynomial. The next lemma clears the way for using
these facts. In the sequel, K( ) will denote a positive function which is
non-decreasing in its arguments.

Lemma 9.6. Let Bbea directed planar graph, and p: Ω(B) -^Cbe polynomial function
of the matrix elements of g(b) for beB. Then there is a choice of bonds {bR}Reg% such
that

h(P)'= ί p(g)UQ\R\i9(dR))Dg= J p(g) ft Q\R\(g(bR))Dg,
Ω(B) Re@ Ω(B) RGgt{B)

where p is another polynomial with deg(p) ^ K(dQg(p),#(B)) for some function K.
Furthermore if p is a product of g(bys with possible repetition, then p is also of this
form.

Proof Choose Rx e& = 0l(B) such that dRγ meets the boundary of the unbounded
component of R2\S(B), and let b1 be a bond in this intersection. Notice that the only
term in the product Y[ Q\R\(g(dR)) that the bond variable 0Γ.= 0(&i) enters is

Re<%

Q\Rl\(g(dRi)% and this term has the form Q\Rl\(gih), where h is a function on Ω(B)
not depending on g1 = gφ^. Thus by making the change of variables (g1 -^gγh'1)
and using the invariance of Haar measure, the integral may be written as

UP)= ί Π Q
Ω(B)

where px is another polynomial, and B1 = £\[^ i ] If P is a product of g(b)'s, then so is
px. Also one sees that degQ^) ίgdeg(p) + #(B)deg(p). Continuing this process
inductively one finds bonds {b^ffl and polynomials {Pi]f=\ such that

h(p)= J Π Q\

where Bt = B\( (J [bk]). The polynomial p = pm) is the desired polynomial.
fc = 1 Q.E.D.

Corollary 9.7. Assuming the same notation as the lemma, there exists a C00-function F
on R^ such that IB(p) = F({\R\}Re^). Furthermore, if p is a product of g(b)'s, then
|| F{k) ||,, ̂  K(k, deg (p), #{B))Jor some function K, where F(k) is the kth fold differential
of F, and the sup-norm is over all SeR® such that S(R) ̂  0 for all

Proof. The fact that such a C^-function (in fact analytic) function F exists follows
from Lemma 9.6 and the comments prior to it. The norm estimate holds because
taking a derivative with respect to an S-variable brings down a A acting on p, and
hence the sup-norm of the resulting polynomial may be estimated as CHpH^ for
some constant C = C(deg (/?)). Since, there is only a finite number of polynomials
of a fixed degree which are products of g{b)'s, one gets the estimate that
II Δkp || ̂  ^ K(k, deg (p), #{B)\ where Ak denotes the product of k — Δ's each acting on
possibly different variables. This estimate and the fact that jQt(h)dh = 1 for t ^ 0,

G

gives the norm estimate. Q.E.D.
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These last results along with the next elementary facts about C°°-functions will prove
to be a powerful tool in approximating E(Lε(σ)Lδ(τ)) for ε and δ small.

Lemma 9.8. All functions in this lemma are assumed to be smooth.

1. Suppose that F is a function on RN, then

F(x) = F(0) + jF(ίx)<x> dt = F(0) + \dxF{tx)dt.
o oo

{Recall that dvF(x):= (d/dt)\0F{x + tυ))
2. Next suppose that F is a function on RN x RM, and that F{x, 0) = F(0, y) = Ofor all
x and y, then F(x,y) = f Bxd F(sx,ty)dsdt, where I = [0,1].

J X /

Proo/. The first item follows from the Fundamental Theorem of Calculus applied to
the function t -+ F(tx). The second item follows from two applications of the first:

F(x,y) = jdyF(x9ty)dt= J dxdyF{sx,ty)dsdt. Q.E.D.
/ / x /

Theorem 9.9. Let σ and τ be two piecewise linear curves in 0>, each with at most N
linear segments. Set Aε(σ) (^(τ)) to be the ε (τ) square in R2 with left lower corner at
σf (τf). Then on the set where Άε(σ)nAδ(τ) is empty we have || E(Lε(σ)Lδ{τ)) \\ ^ K(N)
and if σf Φ τf, then lim E{Lε{σ)Lδ(τ)) =:J(σ, τ) exists.

Proof. Assume that Aε(σ)nAδ(τ) is empty. Put B = B(σ9τJε(σ)Jδ(τ)\ 0t =
mx = {Rem\R c= Aε(σ)}, and 0l2 = {Re^\R a Aδ(τ)}. Let / = E{Lε(σ)Lδ{τ)\ and F
be the C°°-function on R^ (via Lemma 9.6) such that 4ε2δ2I = F({\R\}Re^l so F is

j Ad^ )-1(^ε(σ))-^(/ε(σ))-1) A d 0 ( τ ) - 1 ( ^ ( τ ) ) - ^ ( τ ) ) - 1 )
Ω(B)

• ΓΊ Qs(R)(9(dR))Dg. (9.3)

Notice, that if S is such that S\m = 0 , then the terms QS{R) = Q0 = δ for Re^x. This is
easily seen to force g(Lε) = id in the integrand above, and hence integral is zero. The
same argument applies to S such that S\m = 0 , which shows that F(S) — 0 if either
S | Λ i = 0 o r S | Λ 2 = 0.

For SeR® and u,vel put

(S{R), if

SUtυ(R)=luS(R)9 if

[ if

Then by Lemma 9.8 it follows that

J= Σ ^ T ^ ί 3SiRι)dS(R2)F(SUtΌ)dudυ9 (9.4)

where S(K) = |K| for all Re@. But clearly |KX | \R2\/{4ε2δ2) S1/4, so that
| / | ^ # ( ^ ) | | F | | 0 0 ^ X ( A r ) . The last inequality was obtained with the help of
Corollary 9.7.

So it only remains to show that the limit of / = /(ε, δ) exists as ε, (3 -> 0. The key to
this is to note that for ε and δ small enough the topological type of the graph B
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Fig. 4. A possible configuration near the heads of seperated lassos for small epsilon and delta

stabilizes and must have the form depicted in Fig. 4. From Fig. 4 one sees that there
are constants CRί and CR2 such that \R±\ = CRlε

2 and \R2\ = CRlδ
2 for R1e&1 and

R2e&2 Hence, taking the limit of Eq. (9.4) gives

lim/=
ε,<5->0

CRιCR2dSiRι)dSiR2)F(S0t0)=:J(σ9τ),

where S(R) = \R\ϊor Re&(B(σ, τ)). We have been tacitly using the fact that for ε and
δ small, the graphs B(σ9τ,lε(σ),lδ(τ)) are all isomorphic. Q.E.D.

Theorem 9.10. Let σ and τ be the piecewίse linear paths in 0*. Denote by στ the
piecewίse linear path consisting τ followed by the straight line segment from τf —• σf

and then following σ backwards back to the origin in the plane. There exist a constant
K(N), where N is the number of line segments in σ and τ, such that

Γdim^

£[L,(σ)L4(τ)]-£ £ Ad

on the set where Λε(σ)nΛδ(τ) φ 0.

P(&τ)Ta-Ta

\At(σ)nAs(τ)

ε2δ2

Proof. Let B = B(σ, τ, / » , lδ(τ)), and F(S) be given by (9.3). Also define the following
subsets of Sk:

= {Rε«|Λc/l 1(σ)\/l,(σ)n/l J(τ)}>

so that <R is the disjoint union of the ̂ /s. Corresponding to this splitting of M, write
S = (So, Si, S2, S3) and by abuse of notation F(S) = F(S0, S t , S2, S3), where St = S\m..
Suppose that So = 0 and St = 0, then the terms in (9.3) QS(R)(g(dR)) for / ? e ^ o u ^ Ί
are now (5-functions, which forces g(lε(σ)) = id. This causes g(lε(σ)) — g(lε(σ))~1 = 0,
and hence makes F = 0. A similar argument shows that F = 0 if So = 0, and S2 = 0.
Suppressing S 3 from the notation for the moment, this implies by Lemma 9.8 that

(9.5)

= JJδ5 l3S2F(0,«S1,»S2)iMdι;+iδSoF(MS0,S1,S2)dM. (9.6)
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To simplify notation write I:=E[Lε(σ)Lδ(τ)], and /«H(σ, τ, ε, δ) if
|| / — H(σ, τ, ε, 5) || ^ K(N) for some constant K(N) only depending on iV. Then by
(9.6) and Lemma 9.6, it follows that

where S(R) = |R | . This is because | # ! | \R2 \ <,ε2δ2 for / ^ e ^ and R2e0ί2. By similar
arguments we may also expand d S o F with respect to the S0,S1 and S2 arguments to
conclude / «(l/4ε2(S2)δSoF(0,0,0, S3).

Let / be the directed straight line segment from σf-+τf. There are two
possibilities; either / is contained in Λε(σ) u ^ ( τ ) or it is not. In the latter case, we split
013 into the disjoint union 0t'3 κj0t"3 where 01'3 consists of the regions in 013 which are
contained in the triangular region (TR) bounded by / and d(Aε(σ)uAδ(τ)). In order
to treat both cases at once, when in the first case write S3 = S3 and interpret any
statement involving S3 to be vacuous. Using the fact that the area of this triangular
region is no more than ε2δ2/2, it follows, by expanding with respect to S3, that

4 ,0,S'3 = 0,S5). (9.7)

m

Now we are in a position to compute the derivative dSo F. Enumerate 010 = (J Rι

and write So = s = (s 1,. . ., sm) and write f(s) = F(s90,0, S3 = 0, S3). The immediate
goal is to show

Σ
« = 1

Σ Ad^τ) TaTa\γi QS(R)(g(dR))Dg, (9.8)

where S = (0,0,0, S3 = 0, S3). To take this derivative, we may assume that Sj = 0 if
j Φ i. For such s, the (5-functions in the integrand of (9.3) enable one to conclude that
variables g(c) may be set to the identity, where c is a closed path in B which lies in the
region (Aε(σ)κj Aδ(τ)uΎR)\Rι. This coupled with the fact that the regions Rj are
simply connected, enables one to deform the paths lε(σ) and lδ(τ) to paths bordering
the boundary of Rι in such a way that f(s) may be written as

. (9.9)

/(0,...,S;,...,0)= j 1
Ω(B)

Where, in this last equation, η is a path in 5, dRι is a path around the boundary of R\
and Iσ is the path σ followed by the path /. In view of this last expression, the
derivative to be computed may be written in the form:

J.—
at

J Qt(h) Aάgih)(h -

where g,k:G->G and D: G ->R is a smooth density. A straightforward calculation
shows:
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J = ttΔδ(h)Adm(h-h-1)Adm(h-h-1)D(h)dh
G

_ί_d2

~2dt2

= Σ ίAdg(e)(Ta)AdmTa-D(e)l (9.10)
α = l

From this last Computation and Eq. (9.9) we conclude that

dsif(0) = 4 j Adg(lσrlgiη)Ta-Adg{τ)-lgiη)Ta ]jQSiR)(g(δR))Dg.

This last equation is identical to Eq. 9.8, because for any k and g in G,

This is proven by noticing that £ Ad^TJ Adk(Ta) is independent of the orthonormal
a

basis {Ta} of ̂  and so one may choose the orthonormal basis {Adk~
1 Tα} instead of

From (9.8) we conclude that
/ m \ dim^

aSof(o, o, o, s'3 = o, S3) = Σ s1' ί Σ Ad^, τaτa
\i=ί / Ω(B) a = 1

• Π QsiR>(g(dR))Dg,

where .S = (0,0,0,S"3 = O,^), and So = s. So setting s* = \Rl\, it follows that

jJA^nAM άγAd Ta.TaUQsiR){g{dR))Dg,
£ 0 Ω(B)a=ί R£0t

where S is still S = (0,0,0, Sf

3 = 0, S3). Finally, by reversing the arguments that led to
(9.7), this last equation is still valid for S such that S(R) = \R\ for all Re0l. But for
S(R) = \R\, the right-hand side of this last approximation is exactly

[ dimS? Π

β Σ Ad Λ Λ ) τ β τ β J . Q.E.D.
We now return to the proof of Theorem 9.5.

Proof of Theorem 9.5. Let m and n be two measures of type I or II, and write
Lε(m) = \Lε(σ)dm(σ). Also put

JE(Lt{σ)Lt(τ)), if At(σ)nAi(τ)Φ0;
Jε'Λσ'τ)-\0, otherwise.

Then according to Theorems 9.9 and 9.10,
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E(Lε(m)Lδ(n))= J ί ^ ^ ^ Γ f AdP(ίl)Tα Γal

dn(τ). (9.11)

The last term in this equation goes to zero as ε and δ go to zero, since

which is zero m x rc-almost everywhere. The second term in the equation
converges to J J(σ,τ)dm(σ)dn(τ) by the dominated convergence theorem and

^ x ^

Theorem 9.9. So it is only the first term that needs attention.
A short computation shows that J ((\Aε(x)nΛδ(y)\)/ε2δ2)dx = 1 for ε, δ > 0 and

R2

j/eR2. This shows that ((\Aε(x)nAδ(y)\)/ε2δ2) is a sequence of approximate δ-
functions. Now it is easy to check that E AdP(^W)P(^ (y)) is a continuous and uniformly
bounded function of (x, y)eRN X RN. This fact along with the properties assumed on
m and n implies, by standard techniques of approximate (5-functions, that the first
term in (9.11) converges to the first term in (9.2). Finally, to see that Lε(m) converges
in L2 take m = nin the above computations, to show the lim E( — trace (Lε(m)Lδ(m))

ε,δ^O

exists. This proves the L2-limit exists, since — trace (AB) = trace (A*B) is the Hubert
Schmidt norm on 0. Q.E.D.

10. Lassos Generate the Measurable Functions

In this last section, we will show that the ^-valued white noise can be recovered from
the lassos. Or in other words, the lassos generated all measurable functions on
(f2, #", E). Let g be a real valued C00-function with compact support on R2. Let m be
the measure on R2 x R2 given by m(du9dv) = δ(u — (vί90))g(υ)dudv. Then the
corresponding measure on 0* is concentrated on "L-shaped" paths.

Theorem 10.1. Assuming the above notation, then L(m) = — F(g) E-almost surely.

This theorem is what we should expect from Remark 9.3. Recall that F was identified
with F 2 1 , which explains the sign discrepancy. The key fact needed for the proof is:

Lemma 10.2. Let σ be an L-shaped path, and x = σf be the final point of the path.
Then

E(Lε(σ)F(g)) = (- ί/ε2)(g, \A^)C + l,uppto)(x)O,(ε),

where C = Γ T : = £ Γ Γ , ( , ) denotes the L2-inner product on R2, and Og(ε) is a
a

function depending on g which when divided by ε remains bounded uniformly in σ which
has been suppressed from the notation. The same estimate also holds for E(F(g)Lε(σ)).

Proof of Theorem 10.1. We will now prove the theorem assuming the lemma. In
order to do this we will show that E(L(m) + F(g))2 — 0. By the definition of the white
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noise it follows that EF(g)2 = (g,g)C. By Eq. (9.2) of Theorem 9.5, one finds that

EL(m)2 = (g,g)C + J J{σ,τ)m{dσ)m{dτ),

where we have noticed that if σ and τ are L-shaped curves which agree at their final
points, then σ = τ. Since, m concentrates on L-shaped curves, it follows that

E AdP(σ)- iP ( t ) δ(σf — τf) = E AdP(σ)- iP ( σ ) δ(σf — τf) = Id δ(σf — τf) m x m-a.s.

Now we show that J(σ, τ) = 0 for two non-equal L-shaped curves. Let Jε>ε(σ, τ) be
as in the proof of Theorem 9.5, then for ε sufficiently small it follows by Theorem 6.4
(with T equal to the bonds in the decomposition of σ and τ) that

J ε > , τ ) = J (k - k-'Xh - h~ι)Qε2(k)QAh)dkdh = 0.
G2

\2 .This shows that J(σ,τ) = lim Jε>ε(σ,τ) = 0, and so EL(m)2 = (g,g)C.

Therefore E(L(m) + F(g))2 - 2(g9g)C + E(L(m)F(g)) + E(F(g)L(rn))9 and so it
only remains to show E(L(m)F(g)) = E(F(g)L(m)) = — (g,g)C. Now compute

E(L(m)F(g)) - lim

= - l i m j -ϊil^g^ + Og(ε)lsupp{g)(σf) \dm(σ)

= -(g,g)C,

where in the second inequality we used Lemma 10.2, and in the last inequality we
used the fact the (1/ε 2)^ (x) is a sequence approaching the delta-function at xeR 2 .
The computation for E(F(g)L(m)) is identical. Q.E.D.

Proof of Lemma 10.2. Only the statement concerning E(Lε(σ)F(g)) will be proved,
since the estimate for E(F(g)Lε(σ)) has a similar proof. Because of symmetry
considerations, there is no loss in generality assuming that x = σf is in the first
quadrant. It is now necessary to introduce a considerable amount of notation. For
what follows it will be understood that the variable t is in [xί,xί + ε].

First we define three regions in the plane: Λ(ή = [x 1 ? ί ] x [x2>
χ2 + ε]>

B(t) = \xut] x [0,x 2], and D(t) = Λ{t)uB(t). Now we need the six martingales:
M(t) = F(D(t)), N(t) - F(B{t))9 δ(t) = F(A(ή) = M(t) - N(t\ f(t) = F(gίm)9 k(t) =
F(glB{t)% and α(ί) = F(gίA(t)) = f(t) - k(t). (All of these martingales are taken to be
continuous in ί, the existence of such versions can be deduced from Theorem 4.3
of [38].) Next, let Pt and Qt be parallel translation with respect to the martingales
M(t) and N(t) respectively, see Definition 3.3. Finally, let a(t) = (g, lA{t)), b(t) =

(g,lm\ and d(ή = (g2,lDo)-
Because we are using the complete axial gauge, parallel translation along L-

shaped curves is equal to the identity operator. Therefore
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which is measurable with respect to the σ-algebra generated by the functions
{F{A)}AcD(Xi +ε)m By the independence properties of the white noise, this implies that

^ ^ ) ) (10.1)

where β = x1 + ε, and H is the function on G2 x & given by H(p,q,f):=
[q~1p-p~1q]f. So following the method used in proving Theorem 4.12, we need to
compute dHt:= dH(Pt, Qt,f(ή). This can be done in the same manner as the proof of
Proposition 4.9. To state the final result of Itό's lemma, we define for each Te^ the
vector fields TUT2 and T3 on G2 x 0 by T1H(p,qJ) = (d/dt)\0H{etτp,q,fl
T2H(p,qJ) = {d/dt)\0H{p,etTqJl and T3H(p,q,f) = (d/dή\0H(p9q9f+tT). Also
let Jί = Mί + N2 - f3—a vector field valued martingale. With this notation

dHt= -dJ((t)oHt:= -dJί(t)H(Pt,QtJ(ή) + ±dJΪ(ή

Arguing as in the proof of Theorem 4.12, we conclude that

j

I = e*> H(e,e9O).

So compute
2:=d(M1+N2-df3)

2

= d(Nt +N2-k3)
2 + d(δ1 - α3)

2

= d(N1 + N2)
2 + dk\ + dδ\ + docj - 2d(N1 + N2)dk3 -

= d(N1 + N2)
2 + df\ + dδ2 - 2d{N1 + N2)dk3 -

where the independence of (Nί + N2 — k3) and (δ1 — α3) were used in the third
equality, and the independence of k3 and α3 were used in the last equality. Now
define the following second order differential operators on G2 x ^: Cf =

Γβ3, and T12 T3 =

i + T2)T3. Using the fact that all of the martingales considered have
α

independent increments, the above equation for dJί2 is easily shown to be equal to:

dJί{t)2 = {ydtC^-ldαiήT. T,} + [d(d(ή)C3-hεdtC1 -2db(t)T12 T3]

=:dV1(t) + dV2{t).
Now all the terms in this last equation commute with one another except for the
terms in {•••}, which do commute with the terms in [•••] but not necessarily with
one another. The desired commutators are shown to be zero with the aid of the
infinitesimal braid relations (Proposition 4.10), and the fact that the T3s commute
with everything. Since dVί commutes with dV2, it follows that

I=[eXi ex' H{e,e,0),
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where y:= x2 is the second component of σf.
Now dV2(t)H = εdtCιH = εdtCH, since C3H = 0, C^ + T ^ H ^ O , and

CγH = CH. Since C commutes with the matrices in G and ^ (Remarks 2.2), it follows
that

/ = gd/2)^c/ e x, H j( e > e >o) = e ( 1 / 2 ) ε 2 c(e ( 1 / 2 )"ε C l 2"'' ( ' ' ) Γ ' 'Γ 3Jcί)(e>e,O).

Expanding out the exponential in this last expression shows

nl

where it has been noted that C12H = 0 and Tx T3 C
fc

12 7\ T3H = 0 for all k ^ 0. Thus

2 e ? e > 0 )

Because // is a polynomial in all of its arguments, the right-hand side of this last
expression may easily be estimated by

||r.h.s|| ^Kyε\a{β)\eKyε.

Now using the last two equations, and the equalities H(e, e, 0) = 0,
T1'T3H{e,e,0) = 2C, and \a(β)\ = Og(ε2) we have

2 e°^)O(yε\a(β)\) = - 3

Using this last equation and the definition of / (Eq. 10.1) proves the lemma upon
recalling that a(β) = a(xx + ε) = {g, lAεiσ)). Q.E.D.
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