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Certain natural geometric approximation schemes are developed for Wiener
measure on a compact Riemannian manifold. These approximations closely mimic
the informal path integral formulas used in the physics literature for representing
the heat semi-group on Riemannian manifolds. The path space is approximated by
finite dimensional manifolds HP (M) consisting of piecewise geodesic paths adapted
to partitions P of [0, 1]. The finite dimensional manifolds HP (M) carry both an
H1 and a L2 type Riemannian structures, G 1

P and G 0
P , respectively. It is proved

that (1�Z i
P ) e&(1�2) E(_) d VolG i

P
(_) � \i (_) d&(_) as mesh(P) � 0, where E(_) is

the energy of the piecewise geodesic path _ # HP (M), and for i=0 and 1, Z i
P

is a ``normalization'' constant, VolGi
P

is the Riemannian volume form relative
to G i

P , and & is Wiener measure on paths on M. Here \1 (_)#1 and \0 (_)=
exp(&1

6 �1
0 Scal(_(s)) ds) where Scal is the scalar curvature of M. These results are

also shown to imply the well known integration by parts formula for the Wiener
measure. � 1999 Academic Press
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1. INTRODUCTION

Let (M, g, o) be a Riemannian manifold M of dimension d, with
Riemannian metric g (we will also use ( } , } ) to denote the metric) and a
given base point o # M. Let { be the Levi�Civita covariant derivative,
2=tr {2 denote the Laplacian acting on C� (M) and ps (x, y) be the
fundamental solution to the heat equation, �u��s= 1

22u. More explicitly,
ps (x, y) is the integral kernel of the operator e (s�2) 2 acting on L2 (M, dx),
where dx denotes the Riemannian volume measure.

For simplicity we will restrict our attention to the case where M is either
compact or M is Rd. If M=Rd, we will always take o=0 and ( } , } ) to be
the standard inner product on Rd. In either of these cases M is stochasti-
cally complete, i.e, �M ps (x, y) dy=1 for all s>0 and x # M. Recall, for s
small and x and y close in M, that

ps (x, y)r\ 1
2?s+

d�2

e&(1�2s) d(x, y)2
, (1.1)

where d(x, y) is the Riemannian distance between x and y. Moreover if
M=Rd, then 2=�d

i=1 �2��x2
i , d(x, y)=|x& y| and Eq. (1.1) is exact.

Definition 1.1. The Wiener space W([0, T]; M), T>0 is the path
space

W([0, T]; M)=[_: [0, T] � M : _(0)=o and _ is continuous]. (1.2)

The Wiener measure & associated to (M, ( } , } ), o) is the unique probability
measure on W([0, T]; M) such that

|
W([0, T]; M)

f (_) d&T (_)

=|
Mn

F(x1 , ..., xn) `
n

i=1

p2i s
(x i&1 , xi) dx1 } } } dxn , (1.3)

for all functions f of the form f (_)=F(_(s1), ..., _(sn)), where P :=
[0=s0<s1<s2< } } } <sn=T] is a partition of I :=[0, T], 2is :=
si&si&1 , and F: Mn � R is a bounded measurable function. In Eq. (1.3), dx
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denotes the Riemann volume measure on M and by convention x0 :=o. For
convenience we will usually take T=1 and write W(M) for W([0, 1]; M)
and & for &1 .

As is well known, there exists a unique probability measure &T on
W([0, T]; M) satisfying (1.3). The measure &T is concentrated on continuous
but nowhere differentiable paths. In particular we get the following path
integral representation for the heat semi-group in terms of the measure &T ,

e(s�2) 2f (o)=|
W([0, T]; M)

f (_(s)) d&T(_), (1.4)

where f is a continuous function on M and 0�s�T.

Notation 1.2. When M=Rd, ( } , } ) is the usual dot product and o=0,
the measure & defined in Definition 1.1 is standard Wiener measure on
W(Rd). We will denote this standard Wiener measure by + rather than &. We
will also let B(s): W(Rd) � Rd be the coordinate map B(s)(_) :=B(s, _) :=
_(s) for all _ # W(Rd).

Remark 1.3 (Brownian Motion). The process [B(s)]s # [0, 1] is a standard
Rd-valued Brownian motion on the probability space (W(Rd), +).

1.1. A Heuristic Expression for Wiener Measure. Given a partition
P :=[0<s1<s2< } } } <sn=1] of [0, 1] and x :=(x1 , ..., xn) # Mn, let _x

denote a path in W(M) such that _x (si)=xi and such that _x |[si&1, si]
is a

geodesic path of shortest length for i=1, 2, ..., n. (As above, x0 :=o # M.)
With this notation and the asymptotics for ps (x, y) in Eq. (1.1), we find

`
n

i=1

p2is
(xi&1 , xi)r `

n

i=1 \
1

2?2is+
d�2

exp {&
1

22is
d(xi&1 , xi)

2=
=

1
ZP

exp {&
1
2 |

1

0
|_$x(x)|2 ds= ,

where _$x (s) :=(d�ds) _x(s) for s � P and ZP :=>n
i=1 (2?2is)d�2. Using this

last expression in Eq. (1.3) and letting the mesh of the partition P tend to
zero we are lead to the heuristic expression

d&(_) ``=''
1
Z

e&(1�2) E(_)D_, (1.5)

where

E(_) :=|
1

0
(_$(s), _$(s)) ds (1.6)
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is the energy of _, D_ denotes a ``Lebesgue'' like measure on W(M) and Z
is a ``normalization constant'' chosen so as to make & a probability measure.

Let V be a continuous function on M. Then Eq. (1.5) and Trotter's
product formula leads to the following heuristic path integral formula for the
parabolic heat kernel of the Schro� dinger operator 1

22&V,

es((1�2) 2&V)f (o)

``=''
1
Z |

W(M)
f (_(1)) e&((1�2s) E(_)+s �1

0 V(_(r)) dr) D_. (1.7)

Equation (1.7) can be interpreted as a prescription for the path integral
quantization of the Hamiltonian 1

2gijpi pj+V. The use of ``path integrals'' in
physics including heuristic expressions like those in Eqs. (1.5) and (1.7) star-
ted with Feynman in [47] with very early beginnings being traced back to
Dirac [26]. See Gross [54] for a brief survey of the role of path integrals
in constructive quantum field theory and Glimm and Jaffe [52] for a more
detailed account.

The heuristic interpretation of the ``measure'' D_ is somewhat ambiguous
in the literature. Some authors, for example, [21, 23�25] tend to view W(M)
as the infinite product space M I and D_ as an infinite product of Riemann
volume measures on this product space. This is the interpretation which is
suggested by the ``derivation'' of Eq. (1.5) which we have given above.

Other authors, [4, 11] interpret D_ as a Riemannian ``volume form'' on
W(M). We prefer this second point of view. One reason for our bias towards
the volume measure interpretation is the fact that the path space W(M) is
topologically trivial whereas the product space M I is not. This fact is reflected
in the ambiguity (which we have glossed over) in assigning a path _x to a
point x=(x1 , ..., xn) # Mn as above in the case when there are multiple dis-
tinct shortest geodesics joining some pair (xi&1 , xi). However, from the
purely measure theoretic considerations in this paper we shall see that the
two interpretations of D_ are commensurate.

Of course Eqs. (1.5) and (1.7) are meaningless as they stand because:
(1) infinite dimensional Lebesgue measures do not exist and (2) Wiener
measure & concentrates on nowhere differentiable paths which renders the
exponent in (1.5) meaningless. Nevertheless, in Theorem 1.8 we will give two
precise interpretations of Eq. (1.5).

1.2. Volume Elements on Path Space. To make the above discussion
more precise, let H(M)/W(M) be the Hilbert manifold modeled on the
space H(Rd) of finite energy paths:

H(M)=[_ # W(M) : _ is absolutely continuous and E(_)<�]. (1.8)
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Recall that _ # W(M) is said to be absolutely continuous if f b _ is absolutely
continuous for all f # C� (M). (It is easily checked that the space H(M) is
independent of the choice of Riemannian metric on M.) The tangent space
T_H(M) to H(M) at _ may be naturally identified with the space of
absolutely continuous vector fields X: [0, 1] � TM along _ (i.e., X(s) #
T_(s)M for all s) such that X(0)=0 and G1 (X, X)<�, where

G1 (X, X) :=|
1

0 �
{X(s)

ds
,
{X(s)

ds � ds, (1.9)

{X(s)
ds

:=��s (_)
d
ds

[��s (_)&1 X(s)], (1.10)

and ��s (_): ToM � T_(s)M is parallel translation along _ relative to the Levi�
Civita covariant derivative {. See [35, 36, 48, 64, 85] for more details.

By polarization, Eq. (1.9) defines a Riemannian metric on H(M). Similarly
we may define a ``weak'' Riemannian metric G0 on H(M) by
setting

G0 (X, X) :=|
1

0
(X(s), X(s)) ds (1.11)

for all X # TH(M). Given these two metrics it is natural to interpret D_ as
either of the (non-existent) ``Riemannian volume measures'' VolG1 or VolG 0

with respect to G1 and G0 respectively. Both interpretations of D_ are
formally the same modulo an infinite multiplicative constant, namely the
``determinant'' of d�ds acting on H(ToM).

As will be seen below in Theorem 1.8, the precise version of the heuristic
expressions (1.5) and (1.7) shows that depending on the choice of volume form
on the path space, we get a scalar curvature correction term.

1.3. Statement of the Main Results. In order to state the main results, it
is necessary to introduce finite dimensional approximations to H(M), G1, G0,
VolG1 and VolG0 .

Notation 1.4. HP (M)=[_ # H(M) & C2 (I"P): {_$(s)�ds=0 for s � P]��
the piecewise geodesics paths in H(M) which change directions only at the
partition points.

It is possible to check that HP (M) is a finite dimensional submanifold
of H(M). Moreover by Remark 4.3 below, HP (M) is diffeomorphic to
(Rd)n. For _ # HP (M), the tangent space T_HP (M) can be identified with
elements X # T_ HP (M) satisfying the Jacobi equations on I"P, see
Proposition 4.4 below for more details. We will now introduce Riemann
sum approximations to the metrics G1 and G0.
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Definition 1.5 (The P-Metrics). For each partition P=[0=s0<s1<
s2< } } } <sn=1] of [0, 1], let G1

P be the metric on THP (M) given by

G1
P (x, Y) := :

n

i=1
�{X(si&1+)

ds
,
{Y(si&1+)

ds � 2i s (1.12)

for all X, Y # T_HP (M) and _ # HP (M). (We are writing {X(si&1+)�ds as
a shorthand for limszsi&1

({X(s)�ds).) Similarly, let G0
P be the degenerate

metric on HP (M) given by

G0
P (X, Y) := :

n

i=1

(X(si), Y(si)) 2i s, (1.13)

for all X, Y # T_ HP (M) and _ # HP (M).

If N p is an oriented manifold equipped with a possibly degenerate
Riemannian metric G, let VolG denote the p-form on N determined by

VolG(v1 , v2 , ..., vp) :=- det([G(vi , v j)] p
i, j=1), (1.14)

where [v1 , v2 , ..., vp]/Tn N is an oriented basis and n # N. We will often
identify a p-form on N with the Radon measure induced by the linear func-
tional f # Cc (N) � �N f VolG .

Definition 1.6 (P-Volume Forms). Let VolG 0
P

and VolG 1
P

denote the
volume forms on HP (M) determined by G0

P and G1
P in accordance with

Eq. (1.14).

Given the above definitions, there are now two natural finite dimensional
``approximations'' to & in Eq. (1.5) given in the following definition.

Definition 1.7 (Approximates to Wiener Measure). For each partition
P=[0=s0<s1<s2< } } } <sn=1] of [0, 1], let &0

P and &1
P denote

measures on HP (M) defined by

&0
P :=

1
Z0

P

e&(1�2) E VolG0
P

and

&1
P =

1
Z1

P

e&(1�2) E VolG1
P

,
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where E: H(M) � [0, �) is the energy functional defined in Eq. (1.6) and
Z0

P and Z1
P are normalization constants given by

Z0
P := `

n

i=1

(- 2? 2 is)d and Z1
P :=(2?)dn�2. (1.15)

We are now in a position to state the main results of this paper.

Theorem 1.8. Suppose that f: W(M) � R is a bounded and continuous,
then

lim
|P| � 0 |HP(M)

f (_) d&1
P (_)=|

W(M)
f (_) d&(_) (1.16)

and

lim
|P| � 0 |HP(M)

f (_) d&0
P (_)

=|
W(M)

f (_) e&(1�6) �1
0 Scal(_(s)) ds d&(_), (1.17)

where Scal is the scalar curvature of (M, g).

Equation (1.16) is a special case of Theorem 4.17 which is proved in
Subsection 4.1 and Eq. (1.17) is a special case of Theorem 6.1 which is
proved in Section 6 below. An easy corollary of Eq. (1.17) of this theorem is
the following ``Euler approximation'' construction for the heat semi-group
es2�2 on L2 (M, dx). The following corollary is a special case of Corollary 6.7

Corollary 1.9. For s>0 let Qs be the symmetric integral operator on
L2 (M, dx) defined by the kernel

Qs (x, y) :=(2?s)&d�2 exp \&
1
2s

d 2 (x, y)+
s

12
Scal(x)+

s
12

Scal( y)+
for all x, y # M.

Then for all continuous functions F: M � R and x # M,

(e(s�2) 2F )(x)= lim
n � �

(Qn
s�nF )(x).

1.4. Remarks on the Main Theorems. Let us point out that the idea of
approximating Wiener measure by measures on spaces of piecewise
geodesics is not new, see for example [18, 86]. What we feel is novel about
our approach is the interpretation of D_ in Eq. (1.7) as a volume form on
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HP (M) relative to a suitable metric. However (as will be shown in
Propositions 5.6 and Proposition 5.14 below), the measure d&0

P (_) is, up to
small errors, equivalent to a product measure on Mn where n is the number
appearing in Definition 1.5. Reformulated in this guise, there is a large
literature pertaining to Eq. (1.17) and especially Corollary1 1.9, see [15,
49, 58, 60, 94] to give a very small sampling of the literature. These papers
along with [18, 86] are based on using a Trotter product or Euler
approximation methods which are well explained in [16]. Moreover, once
d&0

P (_) is replaced by a product measure, it would be possible to invoke
weak convergence arguments to give a proof of Eq. (1.17), see, for example,
Section 10 in Stroock and Varadhan [90, 91] and Ethier and Kurtz [45].
We will not use the weak convergence arguments in this paper, rather we
will make use of Wong and Zakai [96] type approximation theorems for
stochastic differential equations. This allows us to get the stronger form of
convergence which is stated in Theorems 4.17 and 6.1 below. This stronger
form of convergence is needed in the proof of the integration by parts
Theorem 1.10 stated at the end of this introduction.

In the literature one often finds ``verifications'' (or rather tests) of path
integral formulas like (1.7) by studying the small s asymptotics. This
technique, known as ``loop expansion'' or ``WKB approximation,'' when
applied in the manifold case leads to the insight that the operator con-
structed from the Hamiltonian 1

2g ijpi pj+V depends sensitively on choices
made in the approximation scheme for the path integral. Claims have been
made that the correct form of the operator which is the path integral quan-
tization of the Hamiltonian 1

2gijp i pj+V is of the form &�2 ( 1
22&}Scal)+V

where � is Planck's constant, Scal is the scalar curvature of (M, g) and }
is a constant whose value depends on the authors and their interpretation
of the path integrals. Values given in the literature include }= 1

12 , }= 1
6

[22], }= 1
8 , [20, Eq. (6.5.25)] all of which are computed by formal expan-

sion methods. The ambiguity in the path integral is analogous to the
operator ordering ambiguity appearing in pseudo-differential operator
techniques for quantization, see the paper by Fulling [50] for a discussion
of this point. In [50] it is claimed that depending on the choice of
covariant operator ordering, the correction term has } ranging from 0 (for
Weyl quantization) to 1

6 . For a discussion in the context of geometric quan-
tization, see [97, Sect. 9.7], where the value }= 1

12 is given for the case of
a real polarization. In addition to the above one also finds in the literature
claims, based on perturbation calculations, that noncovariant correction terms
are necessary in path integrals, see, for example, [19] and references therein.
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It should be stressed that in contrast to the informal calculations men-
tioned in the previous paragraph, the results presented in Theorem 1.8 and
Corollary 1.9 involve only well defined quantities. Let us emphasize that
the scalar curvature term appearing in Eq. (1.17) has the nature of a
Jacobian factor relating the two volume forms VolG 0

P
and VolG1

P
on path

space. This scalar curvature factor would also be found using the Trotter�
Euler product approximation methods as a result of the fact that the right
hand side of Eq. (1.1) is a parametrix for et(2�2&Scal�6)��not et2�2.

We conclude this discussion by mentioning the so called Onsager-
Machlup function of a diffusion process. The Onsager-Machlup function
can be viewed as an attempt to compute an ``ideal density'' for the prob-
ability measure on path space induced by the diffusion process. In the
paper [93], the probability for a Brownian path to be found in a small
tubular =-neighborhood of a smooth path _ was computed to be asymptotic
to

Ce&*1�=2
} exp \&

1
2

E(_(s))+
1

12 |
1

0
Scal(_(r)) dr+ ,

where *1 is the first eigenvalue for the Dirichlet problem on the unit ball
in Rd and C is a constant. The expression 1

2 E(_)& 1
12 �1

0 Scal(_(r)) dr thus
recovered from the Wiener measure on W(M) is in this context viewed as
the action corresponding to a Lagrangian for the Brownian motion. It is
intriguing to compare this formula with Eqs. (1.16) and (1.17).

1.5. Integration by Parts on Path Space. An important result in the
analysis on path space, is the formula for partial integration. Here we use
the approximation result in Theorem 1.8 to give an alternative proof of this
result.

Theorem 1.10. Let k # H(Rd) & C1 ([0, 1]; Rd), _ # W(M) and Xs (_) #
T_(s) M be the solution to

{

ds
Xs (_)+

1
2

RicXs (_)= ��
t

s (_) k$(s) with X0 (_)=0,

where ��
t

s (_) denotes stochastic parallel translation along _, see Defini-
tion 4.15. Then for all smooth cylinder functions f (see Definition 7.15) on
W(M),

|
W(M)

Xf d&=|
W(M)

f \|
1

0
(k$, db� )+ d&.
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Here b� is the Rd-valued Brownian motion which is the anti-development of _,
see Definition 4.15 and Xf is the directional derivative of f with respect to X,
see Definition 7.15.

Section 7 is devoted to the proof of this result whose precise statement
may be found in Theorem 7.16.

Remark 1.11. This theorem first appeared in Bismut [10] in the special
case where f (_)=F(_(s)) for some F # C� (M) and s # [0, 1] and then
more generally in [30]. Other proofs of this theorem may be found in
[1, 2, 31, 40�42, 44, 46, 56, 57, 70, 73, 75, 84].

2. BASIC NOTATIONS AND CONCEPTS

2.1. Frame Bundle and Connections. Let ?: O(M) � M denote the
bundle of orthogonal frames on M. An element u # O(M) is an isometry
u: Rd � T?(u)M. We will make O(M) into a pointed space by fixing
u0 # ?&1 (o) once and for all. We will often use u0 to identify the tangent
space ToM of M at o with Rd.

Let % denote the Rd-valued form on O(M) given by %u (!)=u&1?
*

! for
all u # O(M), ! # TuO(M) and let | be the so(d )-valued connection form
on O(M) defined by {. Explicitly, if s � u(s) is a smooth path in O(M)
then |(u$(0)) :=u(0)&1 {u(s)�ds| t=0 , where {u(s)�ds is defined as in
Eq. (1.10) with X replaced by u. The forms (%, |) satisfy the structure equations

d%=&| 7 %, (2.1a)

d|=&| 7 |+0, (2.1b)

where 0 is the so(d )-valued curvature 2-form on O(M). The horizontal lift
Hu : T?(u)M � TuO(M) is uniquely defined by

%Hu u=idRd , |uHu=0. (2.1c)

Definition 2.1. The curvature tensor R of { is

R(X, Y) Z={X{YZ&{X{YZ&{[X, Y] Z (2.2)

for all vector fields X, Y and Z on M. The Ricci tensor of (M, g)
is RicX :=�d

i=1 R(X, ei) ei and the scalar curvature Scal is Scal=
�d

i=1 (Ricei , ei) , where [ei] is an orthonormal frame.

The relationship between 0 and R is

0(!, ')=u&1R(?
*

!, ?
*

') u=0(Hu ?
*

!, Hu?
*

') (2.3)
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for all u # O(M) and !, ' # TuO(M). The second equality in Eq. (2.3)
follows from the fact that 0 is horizontal, i.e., 0(!, ') depends only on the
horizontal components of ! and '.

2.2. Path Spaces and the Development Map. Let (M, o, ( } , } ) , {),
(O(M), u0), W(M), and H(M) be as above. We also let H(O(M)) be the
set of finite energy paths u: [0, 1] � O(M) as defined in Eq. (1.8) with M
replaced by O(M) and o by u0 .

For _ # H(M), let s [ u(s) be the horizontal lift of _ starting at u0 , i.e.,
u is the solution of the ordinary differential equation

u$(s)=Hu(s) _$(s), u(0)=u0 .

Notice that this equation implies that |(u$(s))=0 or equivalently that
{u(s)�ds=0. Hence u(s)=��s (_) u0 , where as before ��s (_) is the parallel
translation operator along _. Again since u0 # O(M) is fixed in this paper
we will use u0 to identify ToM with Rd and simply write u(s)=��s (_). By
smooth dependence of solutions of ordinary differential equations on
parameters, the map _ # H(M) [ ��(_) # H(O(M)) is smooth. A proof of
this fact may be given using the material in Palais [85], see also
Corollary 4.1 in [28].

Definition 2.2 (Cartan's Development Map). The development map
8: H(Rd) � H(M) is defined, for b # H, by ,(b)=_ # H(M) where _ solves
the functional differential equation,

_$(s)=��s (_) b$(s), _(0)=o, (2.4)

see [13, 34, 65].

It will be convenient to give another description of the development map
,. Namely, if b # H(Rd) and _=,(b) # H(M) as defined in equation (2.4)
then _=?(w) where w(s) # O(M) is the unique solution to the ordinary
differential equation

w$(s)=Hw(s)w(s) b$(s), w(0)=u0 . (2.5)

From this description of , and smooth dependence of solutions of ordinary
differential equations on parameters it can be seen that ,: H(Rd) � H(M)
is smooth. Furthermore, , is injective by uniqueness of solutions to
ordinary differential equations.

The anti-development map ,&1: H(M) � H(Rd) is given by b=,&1 (_)
where

b(s)=|
s

0
��r

&1 (_) _$(r) dr. (2.6)
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This inverse map ,&1 is injective and smooth by the same arguments as
above. Hence ,: H(Rd) � H(M) is a diffeomorphism of infinite dimensional
Hilbert manifolds, see [34]. However, as can be seen from Eq. (3.5) below,
, is not an isometry of the Riemannian manifolds H(M) and H(Rd) unless
the curvature 0 of M is zero. So the geometry of H(Rd) and that of
(H(M), G1) are not well related by ,.

For each h # C� (H(M) � H) and _ # H(M), let Xh (_) # T_H(M) be
given by

X h
s (_) :=��s (_) hs (_) for all s # I, (2.7)

where for notational simplicity we have written hs (_) for h(_)(s). The
vector field Xh is a smooth vector field on H(M) for all h # H. The reader
should also note that the map

((_, h) � Xh (_)) : H(M)_H � TH(M) (2.8)

is an isometry of vector bundles.

3. DIFFERENTIALS OF THE DEVELOPMENT MAP

For u # O(M) and v, w # T?(u) M, let

Ru (v, w)=0(Hu v, Huw)=u&1R(v, w) u

and for a, b # Rd let

0u (a, b) :=0(Huua, Hu ub)=u&1R(ua, ub) u.

For _ # H(M) and X # T_H(M), define qs (X) # so(d ) by

qs (X)=|
s

0
Ru(r) (_$(r), X(r)) dr, (3.1)

where u=��(_) is the horizontal lift of _.

Remark 3.1. The one form qs in Eq. (3.1) naturally appears as soon as
one starts to compute the differential of parallel translation operators, see,
for example, Theorem 2.2 in Gross [53] and Theorem 4.1 in [28] and
Theorem 3.3 below.

Notation 3.2. Given A # so(d ) and u # O(M), let u } A # TuO(M) denote
the vertical tangent vector defined by u } A :=(d�dr)|0 uerA.
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Theorem 3.3. Let _ # H(M), let u=��(_) be the horizontal lift of _ and
let b=,&1 (_). Then for X # T_H(M),

(��*s |)(X)=qs (X), (3.2)

(��*s %)(X)=u&1 (s) X(s), (3.3)

(��
*

X)(s)=u(s) } qs (X)+Hu(s) X(s), (3.4)

and

(,*X)(s)=u&1 (s) X(s)&|
s

0
qr (X) b$(r) dr, (3.5)

where ,*X(b) :=,
*
&1X(,(b)).

Remark 3.4. The results of this theorem may be found in one form or
another in [10, 17, 29, 30, 53, 72]. We will nevertheless supply a proof to
help fix our notation and keep the paper reasonably self contained.

Proof. Choose a one parameter family t [ _t of curves in H(M) such
that _0=_ and _* 0 (s)=X(s) where _* t (s)=(d�dt) _t (s). Let ut (s) :=��s (_t),
be the horizontal lift of _t , u(s)=��s (_), u$t (s) :=dut (s)�ds, u* t (s) :=
dut (s)�dt and u* (s) :=dut (s)�dt| t=0 . (In general t-derivatives will be denoted
by a ``dot'' and s-derivatives will be denoted by a ``prime.'') Notice, by defini-
tion, that

u* (s)=(��s)*
X=(��

*
X)(s)

and |(u$t (s))=0 for all (t, s). The Cartan identity

d:(X, Y)=X:(Y)&Y:(X)&:([X, Y]), (3.6)

valid for any 1-form : and vector fields X, Y, gives

0=
d
dt

|(u$)=d|(u* , u$)+
d
ds

|(u* )=0(u* , u$)+
d
ds

|(u* ),

where we have used the structure equations (2.1b) and 0=|(u$) in the
second equality. Setting t=0 and integrating the previous equation relative
to s yields

(��*s |)(X) :=|((��s)*
X)=|

s

0
0(u$(0, r), u* (0, r)) dr

=|
s

0
Ru0(r) (?*

u$(0, r), ?
*

u* (0, r)) dr

=|
s

0
Ru0(r) (_$(r), X(r)) dr,
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where we have made use of the fact that 0 is horizontal and the relation
_t (s)=?(ut (s)). This proves Eq. (3.2). Equation (3.3) is verified as follows:

(��*s %)(X)=%((��s)*
X)=%(u* (s))=u&1

0 (s)
d
dt } t=0

?(ut (s))

=��&1
s (_)

d
dt } t=0

_t (s)=��&1
s (_) X(s).

Recall that for u # O(M), (%, |): Tu O(M) � Rd_so(d ) is an isomorphism.
Therefore Eqs. (3.2) and (3.3) imply (3.4), after taking into account the
definition of % and the identity,

|(u } A) :=u&1 {

dr } r=0

uerA=A.

To prove Eq. (3.5), let b=,&1 (_) and u(s)=��s (_). Then

b(s)=|
s

0
u&1 (r) _$(r) dr=|

s

0
%(u$(r)) dr,

or equivalently,

b$(s)=%(u$(s)).

Therefore

d
ds

,
*
&1X(s)=

d
dt

%(u$t (s))| t=0

=
d
ds

%(u* (s))+d%(u* (s), u$(s))

=
d
ds

(u&1 (s) X(s))&| 7 %(u* (s), u$(s))

=
d
ds

(u&1 (s) X(s))&|(u* (s)) %(u$(s))

=
d
ds

(u&1 (s) X(s))&qs (X) b$(s),

where we have used Eqs. (3.6), (2.1a), (3.2), and the fact that |(u$(s))=0.
Integrating the last equation relative to s proves (3.5). K
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3.1. Bracket Computation.

Theorem 3.5 (Lie Brackets). Let h, k: H(M) � H(Rd) be smooth func-
tions. (We will write hs (_) for h(_)(s).) Then [Xh, X k]=X f (h, k), where
f (h, k) is the smooth function H(M) � H(Rd) defined by

fs (h, k)(_) :=X h (_) ks&Xk (_) hs+qs (Xk (_)) hs&qs (Xh (_)) ks ,

where q=��*| as in Eq. (3.2) and Xh (_) ks denotes derivative of _ � ks (_)
by the tangent vector Xh (_).

Remark 3.6. This theorem also appears in Eq. (1.32) in Leandre [71],
Eq. (6.2.2) in Cruzeiro and Malliavin [17], and is Theorem 6.2 in [32]. To
some extent it is also contained in [48]. Again for the readers convenience
will supply a short proof.

Proof. The vector fields Xh and Xk on H(M) are smooth, hence
[Xh, Xk] is well defined. In order to simplify notation, we will suppress the
arguments _ and s from the proof of Eq. (3.7).

According to Eq. (3.3), h=(��*%)(Xh), k=(��*%)(X k), and f (h, k)=
(��*%)([Xh, Xk]). Using Eqs. (3.1)�(3.6) we find that

f (h, k)=Xh[(��*%)(X k)]&Xk[(��*%)(Xh)]&(d(��*%))(Xh, X k)

=Xhk&Xkh&(��* d%)(Xh, Xk)

=Xhk&Xkh+(��*(| 7 %))(Xh, Xk)

=Xhk&Xkh+(��*| 7 ��*%)(Xh, Xk)

=Xhk&Xkh+q(Xh) k&q(Xk) h. K

4. FINITE DIMENSIONAL APPROXIMATIONS

Definition 4.1. Let P=[0=s0<s1<s2< } } } <sn=1] be a partition
of [0, 1] and let |P|=maxi |si&si&1 | be the norm of the partition,
Ji :=(si&1 , si] for i=1, 2, ..., n and s=si&1 when s # Ji . For a function k,
let 2ik :=k(si)&k(si&1) and 2is=si&si&1 . For a piecewise continuous
function on [0, 1], we will use the notation f (s+)=limrzs f (r).

Notation 4.2. HP =[x # H & C2 (I"P) : x"(s)=0 for s � P]��the piece-
wise linear paths in H :=H(Rd); which change directions only at the
partition points.
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Remark 4.3 (Development). The development map ,: H � H(M) has
the property that ,(HP )=HP (M), where HP (M) has been defined in
Notation 1.4 above. Indeed, if _=,(b) with b # HP , then differentiating
Eq. (2.4) give

{_$(s)
ds

=
{

ds
(��s (_) b$(s))=��s (_) b"(s)=0 for all s � P.

We will write ,P for ,|HP
.

Because ,: H � H(M) is a diffeomorphism and HP /H is an embedded
submanifold, it follows that HP (M) is an embedded submanifold of H(M).
Therefore for each _ # HP (M), T_HP (M) may be viewed as a subspace of
T_H(M). The next proposition explicitly identifies this subspace.

Proposition 4.4 (Tangent Space). Let _ # HP (M), then X # T_H(M) is
in T_ HP (M) if and only if

{2

ds2 X(s)=R(_$(s), X(s)) _$(s) on I"P. (4.1)

Equivalently, letting b=,&1 (_), u=��(_) and h # H, then Xh # T_ H(M)
defined in Eq. (2.7) is in T_ HP (M) if and only if

h"(s)=0u(s) (b$(s), h(s)) b$(s) on I"P.

Proof. Since HP (M) consists of piecewise geodesics, it follows that for
_ # HP (M), any X # T_HP (M) must satisfy the Jacobi Eq. (4.1) for s � P.
Equation 4.2 is a straightforward reformulation of this using the definitions.

It is instructive to give a direct proof of Eq. (4.1). Since HP is a vector
space, TbHP $HP for all b # HP . Since ,P : HP � HP (M) is a diffeomor-
phism, we must identify those vectors X # T_H(M) such that ,*X # HP ,
i.e., those X such that (,*X)" :=0 on I"P. Because b # HP and hence
b"(s)=0 on I"P, it follows from Eq. (3.5) that (,*X)"=0 on I"P is
equivalent to

0=h"(s)&0u(s) (b$(s), h(s)) b$(s) on I"P. K

Remark 4.5. The metric G1
P in Definition 1.5 above is easily seen to be

non-degenerate because if G1
P (X, X)=0 then {X(si+)�ds=0 for all i. It

then follows from the continuity of X and the fact that X solves the Jacobi
Eq. (4.1) that X is zero. Also note that G1

P is a ``belated'' Riemann sum
approximation to the metric on HP (M) which is inherited from G1 on
H(M). Moreover, in the case M=Rd, the metric G1

P is equal to G1 on
THP (M).
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Definition 4.6. Let VolP be the Riemannian volume form on HP

equipped with the H1-metric, (h, k) :=�1
0 (h$(s), k$(s)) ds.

Notation 4.7. Let P=[0= 0<s1<s2< } } } <sn=1] be a partition of
[0, 1]. For each i=1, 2, ..., n, and s # (si&1 , si], define

q̂P
s (X)=qsi&1

(X) (4.3)

and

q~ P
s (X)=qs (X)&qsi&1

(X)=|
s

si&1

0u (_$(r), X(r)) dr. (4.4)

Note that q=q̂P+q~ P and hence Eq. (3.5) becomes

(,*Xh)$ (s)=h$(s)&qs (Xh) b$(s)

=h$(s)&q̂s (Xh) b$(s)&q~ s (Xh) b$(s) (4.5)

for all h # H(Rd).

Theorem 4.8. ,*P VolG1
P
=VolP .

Proof. Let [hk] be an orthonormal basis for HP , b # HP , _=,(b) and
u=��(_). Using the definitions of the volume form on a Riemannian
manifold we must show that

det(G1
P (,

*
hk , ,

*
hj))=1,

where ,
*

hk :=(d�dt)|0 ,(b+thk).
Let Hk (s)=u&1 (s)(,

*
(hk))(s) and set

(H, K) P := :
n

i=1

(H$(si&1+), K$(si&1+)) 2i s.

Then XHk=,
*

(hk) and

det(G1
P (,

*
(hk), ,

*
(h j)))=det((Hk , Hj) P ).

By Eq. (4.5)

h$k=(,*(XHk))$=H$k&q(XHk) b$=H$k&q̂(XHk) b$&q~ (X Hk) b$

so that

h$k+q̂(XHk) b$=H$k&q~ (XHk) b$. (4.6)
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Noting that h$k , q̂(XHk), and b$ are all constant on (si&1 , si) and that
q~ si&1

(XHk)=0, it follows that both sides of Eq. (4.6) are constant on
(si&1 , si) and the constant value is H$k (si&1+). Therefore

(Hk , Hj) P =|
1

0
(H$k&q~ (XHk) b$, H$j&q~ (XHj) b$) ds

=|
1

0
(h$k+q̂(X Hk) b$, h$j+q̂(XHj) b$) ds.

Define the linear transformation, T: HP � HP by

(Th)(s)=|
s

0
q̂r (,

*
h) b$(r) dr.

We have just shown that

det(G1
P (,

*
(hk), ,

*
(hj)))=det([( (I+T ) hk , (I+T ) hj) P ]j, k)

=det([(hk , (I+T )* (I+T ) h j) P ] j, k)

=det((I+T)* (I+T ))=[det(I+T )]2.

So to finish the proof it suffices to show that det(I+T )=1. This will be
done by showing that T is nilpotent. For this we will make a judicious
choice of orthonormal basis for HP . Let [ea]d

a=1 be an orthonormal basis
for ToM$Rd and define

hi, a(s)=\ 1

- 2is
|

s

0
1Ji&1

(r) dr+ ea

for i=1, 2, ..., n, a=1, ..., d. Using the causality properties of , and q̂, it
follows that ,

*
hi, a :=0 on [0, si&1] and hence q̂(,

*
(hi, a)) :=0 on [0, si).

Thus for any a, b, (Thi, a , hj, b)=0 if j�i. This shows that T is nilpotent
and hence finishes the proof. K

Definition 4.9. Let ERd (b) :=�1
0 |b$(s)|2 ds denote the energy of a path

b # H. For each partition P=[0=s0<s1<s2< } } } <sn=1] of [0, 1], let
+1

P denote the volume form

+1
P =

1
Z1

P

e&(1�2) ERd VolHP

on HP , where Z1
P :=(2?)dn�2. (By Lemma 4.11 below, +1

P is a probability
measure on HP .)

447PATH INTEGRAL FORMULAS ON MANIFOLDS



Let b # H and _ :=,(b) # H(M). Because parallel translation is an
isometry, it follows from Eq. (2.4) that ERd (b)=E(_). As an immediate
consequence of this identity and Theorem 4.8 is the following theorem.

Theorem 4.10. Let +1
P (Definition 4.9) and &1

P (Definition 1.7) be as
above. Then +1

P is the pull back of &1
P by ,P , i.e., +1

P =,*P&1
P .

Before exploring the consequences of this last theorem, we will make a
few remarks about the measure +1

P . Let ?P : W(Rd) � (Rd)n be given by
?P (x) :=(x(s1), x(s2), ..., x(sn)). Note that ?P : HP � (Rd)n is a linear
isomorphism of finite dimensional vector spaces. We will denote the inverse
of ?P |HP

by iP .

Lemma 4.11. Let dy1 dy2 } } } dyn denote the standard volume form on
(Rd)n and y0 :=0 by convention. Then

i*P +1
P =

1
Z1

P
\`

n

i=1

(2is)&d�2 exp {&
1

22is
| yi& y i&1 | 2=+ dy1 dy2 } } } dyn ,

(4.7)

where Z1
P is defined in Eq. (1.15). Using the explicit value on Z1

P , this equa-
tion may also be written as

i*P+1
P =\`

n

i=1

p2i s
( yi&1 , yi)+ dy1 dy2 } } } dyn , (4.8)

where ps (x, y) :=(2?s)&d�2 exp [&|x& y|2�2s] is the heat kernel on Rd. In
particular i*P+1

P and hence +1
P are probability measures.

Proof. Let x # HP , then

E(x)=|
1

0
|x$(s)|2 ds= :

n

i=1
}2ix
2is }

2

2is= :
n

i=1

1
2is

|2 i x|2.

Hence if x=iP ( y), then

|
1

0
|x$(s)|2 ds= :

n

i=1

1
2i s

| yi& yi&1 | 2= :
n

i=1

|!i |
2, (4.9)

where !i :=(2is)&1�2 ( yi& yi&1). This last equation shows that the linear
transformation

x # HP � [(2i s)&1�2 (x(si)&x(si&1))]n
i=1 # (Rd)n
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is an isometry of vector spaces and therefore

i*P VolP =d!1 d!2 } } } d!n . (4.10)

Now an easy computation shows that

d!1 d!2 } } } d!n=\`
n

i=1

(2is)&d�2+ dy1 dy2 } } } dyn . (4.11)

From Eqs. (4.9)�(4.11), we see that Eq. (4.7) is valid. K

Notation 4.12. Let [B(s)]s # [0, 1] be the standard Rd-valued Brownian
motion on (W(Rd), +) as in Notation 1.2. Given a partition P of [0, 1] as
above, set BP :=iP b ?P (B). The explicit formula for BP is

BP (s)=B(si&1)+(s&si&1)
2iB
2is

if s # (si&1 , si],

where 2iB :=B(si)&B(si&1). We will also denote the expectation relative
to + by E, so that E[ f ]=�W(Rd ) f d+.

Note that BP is the unique element in HP such that BP =B on P. We
now have the following easy corollary of Lemma 4.11 and the fact that the
right side of Eq. (4.8) is the distribution of (B(s1), B(s2), ..., B(sn)).

Corollary 4.13. The law of BP and the law of ,(BP ) (with respect to
+) is +1

P and &1
P , respectively.

4.1. Limits of the Finite Dimensional Approximations. Let us recall the
following Wong and Zakai type approximation theorem for solutions to
Stratonovich stochastic differential equations.

Theorem 4.14. Let f: Rd_Rn � End(Rd, Rn) and f0 : Rd_Rn � Rn be
twice differentiable with bounded continuous derivatives. Let !0 # Rn and P

be a partition of [0, 1]. Further let B and BP be as in Notation 4.12 and
!P (s) denote the solution to the ordinary differential equation

!$P (s)= f (!P (s)) B$P (s)+ f0 (!P (s)), !P (0)=!0 (4.12)

and ! denote the solution to the Stratonovich stochastic differential equation,

d!(s)= f (!(s)) $B(s)+ f0 (!(s)) ds, !(0)=!0 . (4.13)

(we are using $B(s) for the Stratonovich differential of B and dB(s) for the
Itô differential.)
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Then, for any # # (0, 1
2), p # [1, �), there is a constant C( p, #)<� depending

only on f, f0 and M, so that

lim
|P| � 0

E [sup
s�1

|!P (s)&!(s)| p]�C( p, #) |P| #p. (4.14)

This theorem is a special case of Theorem 5.7.3 and Example 5.7.4 in
Kunita [66]. Theorems of this type have a long history starting with Wong
and Zakai [95, 96]. The reader may also find this and related results in the
following partial list of references: [3, 5, 6, 9, 12, 27, 39, 55, 59, 61, 62, 68,
69, 74, 76, 79�83, 86, 88, 89, 90, 92]. The theorem as stated here may be
found in [33].

Definition 4.15. (1) Let u be the solution to the Stratonovich
stochastic differential equation

$u=Huu $B, u(0)=u0 .

Notice that u may be viewed as +-a.e. defined function from
W(Rd) � W(O(M)).

(2) Let ,� :=? b u: W(Rd) � W(M). This map is will be called the
stochastic development map.

(3) Let ��
t

. (_) denote stochastic parallel translation relative to the
probability space (W(M), &). That is, ��

t
. (_) is a stochastic extension of

�� . (_).

(4) Let b� (s)=�s
0 ��

t&1
r (_) $_(r), where $_(r) denotes the Stratonovich

differential.

Remark 4.16. Using Theorem 4.14, one may show that ,� is a
``stochastic extension'' of ,, i.e., ,� =lim |P| � 0 ,(BP ). Moreover, the law of
,� (i.e., +,� &1) is the Wiener measure & on W(M). It is also well known that
b� is a standard Rd-valued Brownian motion on (W(M), &) and that the law
of u under + on W(Rd) and the law of ��

t
under & are equal.

The fact that ,� has a ``stochastic extension'' seems to have first been
observed by Eells and Elworthy [34] who used ideas of Gangolli [51].
The relationship of the stochastic development map to stochastic differen-
tial equations on the orthogonal frame bundle O(M) of M is pointed out
in Elworth [37�39]. The frame bundle point of view has also been
developed by Malliavin, see, for example, [77, 76, 78]. For a more detailed
history of the stochastic development map, see pp. 156�157 in Elworthy
[39]. The results in the previous remark are all standard and may be
found in the previous references and also in [43, 59, 66, 79]. For a fairly
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self contained short exposition of these results the reader may wish to
consult Section 3 in [30]. Using Theorem 4.14 and Corollary 4.13 above,
we get the following limit theorem for &1

P .

Theorem 4.17. Suppose that F: W(O(M)) � R is a continuous and
bounded function and for _ # H(M) we let f (_) :=F(�� . (_)). Then

lim
|P| � 0 |HP(M)

f (_) d&1
P (_)=|

W(M)
f� (_) d&(_), (4.15)

where f� (_) :=F( ��
t

. (_)).

Proof. By Remark 4.16

|
W(M)

f� (_) d&(_)=E[ f� (u)]. (4.16)

By embedding O(M) into RD for some D # N and extending the map
v [ Huuv to a compact neighborhood of O(M)/RD, we may apply
Theorem 4.14 to conclude that

lim
|P| � 0

E[ sup
0�s�1

|uP (s)&u(s)| p
RD]=0, (4.17)

where uP solves Eq. (2.5) with b replaced by BP . But the law of uP is equal
to the law of ��( } ) under &1

P , see Corollary 4.13. Therefore,

|
HP(M)

f (_) d&1
P (_)=E[ f (uP )]. (4.18)

The limit in Eq. (4.15) now easily follows from (4.16)�(4.18) and the
dominated convergence theorem. K

5. THE L2 METRIC

In Section 4 we considered the metric G1
P (see Definition 1.5) on HP (M)

and the associated finite dimensional approximations of the Wiener
measure & on W(M). It was found that under the development map ,P , the
volume form with respect to. G1

P pulls back to the volume form of a flat
metric on HP (Rd), see Theorem 4.8. As a consequence, we found that
under the development map ,P , the volume form &1

P on HP (M) pulls back
to the Gaussian density +1

P on HP (Rd).
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Definition 5.1. Let MP :=Mn and ?P : W(M) � MP denote the
projection

?P (_) :=(_(s1), ..., _(sn)). (5.1)

We will also use the same notation for the restriction of ?P to H(M) and
HP (M).

In this section we will consider two further models for the geometry on
path space, namely the degenerate L2-``metric'' G0

P defined in Definition 1.5
on HP (M) and the product manifold MP with its ``natural'' metric.

Remark 5.2. The form G0
P is non-negative but fails to be definite

precisely at _ # HP (M) for which _(si) is conjugate to _(si&1) along
_([si&1 , si]) for some i. In this case there exists a nonzero X # THP(M)
for which G0

P (X, X)=0. Hence, VolG0
P

will also be zero for such
_ # HP (M).

Definition 5.3. Let MP be as in Definition 5.1. For x=
(x1 , x2 , ..., xn) # MP, let

EP (x) := :
n

i=1

d 2 (xi&1 , xi)
2is

, (5.2)

where d is the geodesic distance on M. Let gP be the Riemannian metric
on MP given by

gP =(21s) g_(22s) g_ } } } _(2ns) g, (5.3)

i.e., if v=(v1 , v2 , ..., vn) # TMn=(TM)n then

gP (v, v) := :
n

i=1

g(v i , v i) 2is.

Let the normalizing constant Z0
P be given by Eq. (1.15) and let #P denote

the measure on MP defined by

#P (dx) :=
1

Z0
P

exp \&
1
2

EP (x)+ VolgP
(dx), (5.4)

where VolgP
denotes volume form on MP defined with respect to gP .

Remark 5.4. An easy computation shows that

VolgP
=\`

n

i=1

(2i s)d�2+_Voln
g , (5.5)
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where Volg is the volume measure on (M, g) and Voln
g denotes the n-fold

product measure of Volg with itself.

The next proposition shows the relationship between &0
P (defined in

Definition 1.7 above) and #P . For the statement we need to define a subset
of paths _ in HP (M) such that each geodesic piece _([si&1 , si]) is short.
The formal definition is as follows.

Definition 5.5. (1) For any =>0, let

H=
P (M) :={_ # HP (M) : |

si

si&1

|_$(s)| ds<= for i=1, 2, ..., n= .

(2) For any =>0, let

M P
= =[x # MP : d(x i&1 , x i)<= for i=1, 2, ..., n],

where d is the geodesic distance on (M, g) and x0 :=o.

Proposition 5.6. For =>0 less than the injectivity radius of M, we have

(1) G0
P is a Riemannian metric on H=

P (M).

(2) The image of H=
P (M) under ?P is M P

= and the map

?P : (H=
P (M), G0

P ) � (M P
= , gP )

is an isometry, where gP is the metric on MP in Eq. (5.3).

(3) ?*P#P =&0
P on H=

P (M).

Proof. Because = is less than the injectivity radius of M, it follows that
any X # T_HP (M) is determined by its values on the partition points P.
Therefore, if G0

P (X, X)=0 for X # T_H=
P (M), then X :=0. This proves the

first item. The second item is a triviality. The last item is proved by noting
that for _ # H=

P (M), _|[si&1, si]
is a minimal length geodesic joining _(si&1)

to _(si), and therefore

|
si

si&1

|_$(s)|2 ds=\d(_(si&1), _(si))
2 is +

2

2is=
d 2 (_(si&1), _(si))

2is
. (5.6)

Summing this last equation on i shows,

E(_)=|
1

0
|_$(s)|2 ds= :

n

i=1

d 2 (_(si&1), _(s i))
2i s

=EP (?P (_)). (5.7)
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Hence by the definition of #P , the fact that ?P is an isometry on H=
P (M)

(point(2) above), and (5.7) above, we find that on H=
P (M),

?*P #P =
1

Z0
P

e&E�2 VolG 0
P
=&0

P . K

Note that in general, for x # MP, ?&1
P (x) has more than one element,

and may even fail to be a discrete subset. Therefore using the product
manifold MP as a model for HP (M) requires some care. The important
aspect of the isometric subsets M P

= and H=
P (M) is that in a precise sense

they have nearly full measure with respect to #P , &1
P and &0

P . This will be
proved in Section 5.1 below.

Before carrying out these estimates we will finish this section by comparing
&0

P to &1
P .

Notation 5.7. Let RdP denote the Euclidean space (Rd)n equipped with
the product inner product defined in the same way as gP in Eq. (5.3) with
Rd replacing TM.

To simplify notation throughout this section, let

_ # HP (M), b :=,&1 (_), u :=��(_), and

A(s) :=0u(s) (b$(s), } ) b$(s). (5.8)

Since b # HP (Rd),

b$(s)=2i b�2is and A(s)=0u(s) \2ib
2i s

, } + 2ib
2i s

(5.9)

for s # (si&1 , si]. Let us also identify X # T_HP (M) with h :=u&1X. Recall
from Proposition 4.4 that h: [0, 1] � Rd is a piecewise smooth function
such that h(0)=0 and Eq. (4.2) holds, i.e.,

h"=Ah on I"P and h(0)=0 # Rd. (5.10)

In order to compare VolG 0
P

and VolG1
P

it is useful to define two linear maps

J0 : (T_HP (M), G0
P ) � RdP

J1: (T_HP (M), G1
P ) � RdP

by

J0 (X)=(h(s1), h(s2), ..., h(sn))

and

J1 (X)=(h$(s0+), h$(s1+), ..., h$(sn&1+)),

where h :=u&1X as above.
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It follows from the definition of G0
P and the metric on RdP that if _ is

such that J0 is injective, then J0 is an isometry. By point (2) of Proposi-
tion 5.6 this holds on H=

P (M). However, by Remark 5.2 there is in general
a nonempty subset of HP (M) where J0 fails to be injective. Clearly, J0 fails
to be injective precisely where G0

P fails to be positive definite. Similarly, it
is immediate from the definitions and the fact that G1

P is a nondegenerate
Riemann metric, see Remark 4.5, that J1 is an isometry at all _ # HP (M).

To simplify notation, let V denote the vector space (Rd)n and let
T=TP (_) be defined by T :=J0 b J &1

1 . Thus T: V � V is the unique linear
map such that

T(h$(x0+), h$(s1+), ..., h$(sn&1+))=(h(s1), h(s2), ..., h(sn)) (5.11)

for all h=u&1X with X # T_HP (M). With this notation it follows that

VolG0
P

=J*0 VolRdP=(T b J1)* VolRdP

=J*1T* VolRdP=det(T) J*1 VolRdP

=det(T ) VolG1
P

. (5.12)

Note that in this computation _ # HP (M) is fixed and we treat VolG0
P

,
VolG1

P
as elements of the exterior algebra �dn (T*_HP (M)) and VolRdP as

an element of �dn ((RdP)*).
Our next task is to compute det(T ).

Lemma 5.8. Let Zi&1 (s) denote the d_d matrix-valued solution to

Z"i&1 (s)=A(s) Zi&1 (s)

with Zi&1 (si&1)=0 and Z$i&1 (si&1)=I. (5.13)

Then

det(TP (_))= `
n

i=1

det(Zi&1 (si)).

Proof. We start by noting that for _ # HP (M) such that G0
P is non-

degenerate, then det(Zi&1){0 for i=1, 2, ..., n. To see this assume that
det(Zi&1)=0 for some i. In view of the fact that Z solves the Jacobi
Eq. (5.13), this is equivalent to the existence of a vector field Xi&1 along
_([si&1 , si]) which solves (4.1) for s # [si&1 , si] and which satisfies

Xi&1 (si&1)=0, Xi&1 (si)=0.
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Define X by

X(s)={Xi&1 (s),
0

s # [si&1 , si]
s # [0, 1]"[si&1 , si].

Then X # T_HP (M) and it is clear from the construction that
G0

P (X, X)=0. Thus for such _, VolG0
P

|_=0. Hence we may without loss of
generality restrict our considerations to the case when det(Zi&1){0 for all i.

Let Ci&1 (s) be the d_d matrix-valued solutions to

C"i&1 (s)=A(s) Ci&1 (s)

with Ci&1 (si&1)=I and C$i&1 (si&1)=0.

For i # [1, 2, ..., n] and h=u&1X with X # T_HP (M) let

k(s) :=Ci&1 (s) h(si&1)+Z i&1 (s) h$(si&1+).

Then k"=Ak on (si&1 , si), k(si&1)=h(si&1) and k$(si&1)=h$(si&1+).
Since h satisfies the same linear differential equation with initial conditions
at si&1 , it follows that h=k on [si&1 , si] and in particular that

h(si)=Ci&1 (si) h(si&1)+Zi&1 (si) h$(si&1+).

Solving this equation for h$(si&1+) gives

h$(si&1+)=Zi&1 (si)
&1 (h(si)&Ci&1 (si) h(si&1))

from which it follows that T&1 (!1 , !2 , ..., !n)=('1 , '2 , ..., 'n) where

'i=:i!i&;i! i&1 for i=1, 2, ..., n,

:i :=Zi&1 (si)
&1 and ;i :=Zi&1 (si)

&1 Ci&1 (si). (In the previous displayed
equation !0 should be interpreted as 0.) Thus the linear transformation
T&1: V � V may be written in block lower triangular form as

:1 0 0 } } } 0

;2 :2 0 } } } 0

T&1=_ 0 ;3 :3
. . . 0&b b . . .
. . . 0

0 0 } } } ;n :n

456 ANDERSSON AND DRIVER



and hence for _ # HP (M) such that G0
P is nondegenerate,

det(T&1)= `
n

i=1

det(:i)= `
n

i=1

det(Zi&1 (si)
&1).

It follows by the above arguments that for all _ # HP (M)

det(T )= :
n

i=1

det(Zi&1 (si)). K

As a consequence, we have the key theorem relating &0
P to &1

P .

Theorem 5.9. Let

\P (_) := `
n

i=1

det \Zi&1 (si)
2i&1 s + , (5.14)

then &0
P =\P&1

P .

Proof. From Definition 1.6 for &0
P , Eq. (5.12), and Lemma 5.10 we find

that

&0
P =

1
Z0

P

e&(1�2) E VolG0
P

=
1

Z0
P

e&(1�2) E `
n

i=1

det(Zi&1 (si)) VolG1
P

=
1

Z0
P

e&(1�2) E `
n

i=1

(2i&1 s)d } `
n

i=1

det \ 1
2i&1s

Z i&1 (si)+ VolG1
P

.

Equation (5.14) now follows from Definition 1.7 (for &1
P ) and the expres-

sions for Z1
P and Z0

P in Eq. (1.15). K

Using this result and Bishop's Comparison Theorem we have the follow-
ing estimate on \P (_).

Corollary 5.10. Let K>0 be such that Ric�&(d&1) KI ( for example
take K to be a bound on 0) then

\P (_)� `
n

i=1
\sinh(- K |2ib| )

- K |2ib| +
d&1

. (5.15)

Proof. The proof amounts to applying Theorem 3.8 on p. 120 of [14]
to each of the Zi&1 (si)'s above. In order to use this theorem one must keep
in mind that 2i b�2i s is not a unit vector and the estimate given in [14]
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corresponds to the determinant of Zi&1 (si) restricted [! :=2 ib�2is]=.
Noting that Zi&1 (si) !=2is } ! and accounting for the aforementioned
discrepancies, Theorem 3.8 in [14] gives the estimate

det(Zi&1 (si))�\sinh(- K |2ib| )

- K |2i b|�2is +
d&1

2 is

or equivalently that

det \ 1
2i&1s

Z i&1 (si)+�\sinh(- K |2ib| )

- K |2ib| +
d&1

.

This clearly implies the estimate in Eq. (5.15). K

5.1. Estimates of the Measure of H=
P (M) and M P

= . We will need the
following lemma, which is again a consequence of Bishop's comparison
theorem.

Lemma 5.11. Let |d&1 denote the surface area of the unit sphere in Rd,
R be the diameter of M and let K�0 be such that Ric�&(d&1) KI. Then
for all F: [0, R] � [0, �],

|
M

F(d(o, } )) dvol�|d&1 |
R

0
rd&1F(r) \sinh(- K r)

- K r +
d&1

dr.

Proof. See Chavel [14, Eqs. (2.48) on p. 72, (3.15) on p. 113, and
Theorem 3.8 on p. 120]. K

We are now ready to estimate the measures of M P
= and H=

P (M). We
start by considering #P (MP"M P

= ).

Proposition 5.12. Fix =>0 and let M P
= be as in Definition 5.5 and let

#P be the measure on MP defined by (5.4). Then there is a constant C<�
such that

#P (MP"M P
= )�C exp \&

=2

4 |P|+ .

Proof. Let f: [0, �)n � [0, �) be a measurable function. Let
dx=>n

i=1 Volg (dxi) and note that

dx= `
n

i=1

(2is)&d�2 d VolgP
(x). (5.16)
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An application of Lemma 5.11 and Fubini's theorem proves

|
MP

f (d(o, x1), d(x1 , x2), ..., d(xn&1 , xn)) #P (dx)

�|
[0, �)n

f (r1 , r2 , ..., rn) exp \& :
n

i=1

r2
i

22is+
_ `

n

i=1
\sinh(- K ri)

- K ri
+

d&1 |d&1 rd&1
i dri

(2? 2i&1s)d�2 .

As usual let [B(s)]s # [0, 1] be a standard Rd-valued Brownian motion in
Notation 4.12 and 2iB=B(si)&B(si&1). Noting that

exp \& :
n

i=1

r2
i

22is+ `
n

i=1

|d&1rd&1
i dr i

(2? 2i&1s)d�2

is the distribution of ( |21 B| , |22 B|, ..., |2nB| ), the above inequality may be
written as

|
MP

f (d(o, x1), d(x1 , x2), ..., d(xn&1 , xn)) #P (dx)

�E _f ( |21 B|, |22B|, ..., |2n B| ) `
n

i=1
\sinh(- K |2i B| )

- K |2iB| +
d&1

& . (5.17)

For i # [1, 2, ..., n], let Ai :=[x # MP: d(x i&1 , xi)�=] so that MP"M P
= =

�n
i=1 Ai and

#P (MP"M P
= )� :

n

i=1

#P (Ai). (5.18)

Since 1Ai
(x)=/= (d(xi&1 , xi)), where /= (r)=1r�= , we find from Eq. (5.17)

that

#P (Ai)�E _/= ( |2iB| ) `
n

j=1
\sinh(- K |2 jB| )

- K |2 jB| +
d&1

&
=E _/= ( |2iB| ) \sinh(- K |2iB| )

- K |2iB| +
d&1

& `
j{i

�(- 2js), (5.19)

where � is defined in Eq. (8.19) of the Appendix. An application of
Lemma 8.7 of the Appendix now completes the proof in view of (5.18) and
(5.19). K
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We also have the following analogue of Proposition 5.12.

Proposition 5.13. For any =>0 there is a constant C<� such that

&1
P (HP(M)"H=

P (M))�C exp \&
=2

4 |P|+ .

Proof. Let us recall that ,(HP (Rd))=HP (M) and let us note that
,(H=

P (Rd))=H=
P (M). By Theorem 4.10 and Corollary 4.13 this implies

that

&1
P (HP (M)"H=

P (M))=+1
P (HP (Rd)"H=

P (Rd))

=+([max[ |2i&1B|: i=1, 2, ..., n]�=])

� :
n

i=1

+( |2i&1B|�=)

= :
n

i=1

E[/= ( |2iB| )]

�Ce&=2�4 |P |,

where as above /= (r)=1r�= . The last inequality follows from Lemma 8.7
with K=0. K

Finally we consider &0
P (HP (M)"H=

P (M)).

Proposition 5.14. Let =>0. Then there is a constant C<� such that

&0
P (HP(M)"H=

P (M))�C exp \&
=2

4 |P|+ . (5.20)

Proof. Let B be the standard Rd valued Brownian motion. For i=
1, 2, ..., n, let Ai=[ |2iB|>=] and set A=�n

i=1 Ai . Then HP (M)"
H=

P (M)=,P (A) where ,P : HP(Rd) � HP (M) denotes the development
map.

By Theorem 5.9, &0
P =\P &1

P , where \P is given by (5.14). By Theorem 4.10
and Corollary 5.10 above,

&0
P (HP (M)"H=

P (M))=|
A

\P (,(BP )) d+1
P

�|
A

`
n

i=1
\sinh(- K |2iB| )

- K |2iB| +
d&1

d+,
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wherein we have used the fact that the distribution of [2i BP ]i under +1
P

is the same as the distribution of [2i B]i under +. Thus arguing as in the
proof of Proposition 5.12 we have with /==1r�= ,

&0
P (,P (A))� :

n

i=1

&0
P (,P (Ai))

� :
n

i=1

E _/= ( |2iB| ) `
n

j=1 \
sinh(- K |2j B| )

- K |2j B| +
d&1

&
= :

n

i=1

E _/= ( |2iB| ) \sinh(- K |2iB| )

- K |2 iB| +
d&1

& `
j{i

�(- 2 js),

where � is defined in Eq. (8.19) of the Appendix. An application of
Lemma 8.7 in the Appendix completes the proof. K

6. CONVERGENCE OF &0
P TO WIENER MEASURE

This section is devoted to the proof of the following theorem.

Theorem 6.1. Let F: W(O(M)) � R be a continuous and bounded func-
tion and set f (_) :=F(�� . (_)) for _ # H(M). Then

lim
|P| � 0 |HP(M)

f (_) d&0
P (_)=|

W(M)
f� (_) e&(1�6) �1

0 Scal(_(s)) ds d&(_),

where f� (_) :=F( ��
t

. (_)) and ��
t

r (_) is stochastic parallel translation, see
Definition 4.15.

Because of Theorem 4.17, in order to prove this theorem it will suffice to
compare &1

P with &0
P . Of course the main issue is to compare VolG0

P
with

VolG1
P

. In view of Proposition 5.14 and the boundedness of f and Scal,

} |HP(M)"H=
P(M)

f (_) d&0
P (_)}�C & f &� e&=2�4|P|

which tends to zero faster than any power of |P|. Therefore, it suffices to
prove that for any =>0 smaller than the injectivity radius of M,

lim
|P| � 0 |H=

P(M)
f (_) d&0

P (_)=|
W(M)

f� (_) e&(1�6) �1
0 Scal(_(s)) ds d&(_). (6.1)

6.1. Estimating the Radon Nikodym Derivative. In this section we will
continue to use the notation set out in Eq. (5.8).
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Proposition 6.2. Suppose that A is given by Eq. (5.9) and that Zi&1 is
defined as in Lemma 5.8. Let 4 be an upper bound for both the norms of the
curvature tensor R (or equivalently 0) and its covariant derivative {R. Then

Zi&1 (si)=2is (I+ 1
6 0u(si&1) (2ib, } ) 2i b+Ei&1), (6.2)

where

|Ei&1 |� 1
6 (24 |2 ib|3+ 1

2 42 |2i b|4) cosh(- 4 |2ib| ). (6.3)

In particular, if =>0 is given and it is assumed that |2i b|�= for all i, then

|Ei&1 |�C |2i b|3, (6.4)

where C=C(=, R, {R)= 1
6(24+ 1

242=) cosh(- 4 =).

Proof. By Lemma 8.3 of the Appendix,

Zi&1 (si)=2isI+
2is3

6
0u(si&1) \2 ib

2i s
, } + 2ib

2is
+2isEi&1 , (6.5)

with Ei&1 satisfying the estimate

|Ei&1 |= 1
6 (2K1 (2is)3+ 1

2K2 (2is)4) cosh(- K 2is), (6.6)

where K :=sups # (si&1, si)
|A(s)| and K1 :=sups # (si&1, si)

|A$(s)|.
By (5.9), for s # [si&1 , si],

|A(s)|�4 |2ib|2 (2is)&2

and hence K(2i s)2�4 |2ib|2.
Since u$(s)=Hu(s) u(s) b$(s), we see for si&1<s�si that

A$(s)=(D0)u(s) (b$(s), b$(s), } ) b$(s)

=(2i s)&3 (D0)u(s) (2ib, 2ib, } ) 2ib,

where (D0)u(s) (b$(s), } , } ) :=(d�ds) 0u(s) . Therefore |A$(s)|�4(2is)&3 |2ib|3

which combined with Eq. (6.6) proves Eq. (6.3). K

Proposition 6.3. Let 9(U) be given as in Lemma 8.1 of the Appendix
and define

Ui&1 := 1
60u(si&1) (2i b, } ) 2ib+Ei&1 , (6.7)

where Ei&1 is defined in Proposition 6.2. Then

\P (_)=exp(WP (_)) exp (&1
6RP (_)) , (6.8)
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where

RP (_) := :
n

i=1

(Ricu(si&1) 2ib, 2i b)

and

WP (_) := :
n

i=1

(tr Ei&1+9(&U i&1)). (6.9)

Moreover there exists =0>0 and C1<� such that for all = # (0, =0],

|WP (_)|�C1 :
n

i=1

|2i b|3 for all _ # H =
P (M). (6.10)

Proof. Recall that by definition, the trace of the linear map
v [ 0u(si&1) (2i b, v) 2ib equals &(Ricu(si&1)2ib, 2 ib) and hence

tr Ui&1=&1
6(Ricu(si&1) 2i b, 2ib) +tr Ei&1 .

From the definitions of RP and WP , we get using Lemma 5.8 and
Lemma 8.1,

\P (_)= `
n

i=1

exp (&1
6 (Ricu(si&1) 2ib, 2ib)+tr Ei&1+9(&Ui&1))

=exp \&1
6 :

n

i=1

(Ricu(si&1) 2ib, 2i b)+
_exp \ :

n

i=1

tr Ei&1+ :
n

i=1

9(&U i&1)+
which proves Eq. (6.8).

Letting 4 be a bound on the curvature tensor 0, it follows using
Eq. (6.4) that

|Ui&1 |�
1
6

|0u(si&1) (2ib, } ) 2ib|+|Ei&1 |

�
4
6

|2i b|2+C |2ib|3

�\C=+
4
6+ |2ib|2�\C=+

4
6+ =2�

1
2
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for = sufficiently small. So, using Lemma 8.1 of the Appendix, WP satisfies
the estimate

|WP (_)|� :
n

i=1

( |tr Ei&1 |+ |9(&U i&1)| )

�d :
n

i=1

( |Ei&1 |+ |Ui&1 |2 (1&|Ui&1 | )&1)

�d :
n

i=1
_C |2ib|3+2 \\C=+

4
6+ |2ib|2+

2

&
�C1 :

n

i=1

|2i b|3. K

Let SP : HP (M) � R be given as

SP (_) := :
n

i=1

Scal(_(si&1)) 2i s, (6.11)

where Scal is the scalar curvature of (M, ( } , } ) ).

Proposition 6.4. Let p # R and =>0. Then there exists C=
C( p, =, M)<� such that

1&Ce&2�4 |P|�|
H=

P(M)
e p(RP(_)&SP(_)) d&1

P (_)

�eCK2 |P| &Ce&=2�4 |P|, (6.12)

and hence

} |H=
P(M)

e p(RP(_)&SP(_)) d&1
P (_)&1}�eCK 2 |P|&1+Ce&=2�4|P|�C |P| (6.13)

for all partitions P with |P| sufficiently small.

Proof. Let uP be the solution to Eq. (2.5) with b replaced by BP ,
Ri :=RicuP(si&1) , and

Y :=e p �n
i=1

((Ri 2iB, 2iB)&tr(Ri) 2is).

By Theorem 4.10, the distribution of e p(RP&SP) under &1
P is the same as the

distribution of Y under +. Therefore,

|
H=

P(M)
e p(RP(_)&SP(_)) d&1

P (_)=|
Ac

Y d+,
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where A :=�n
i=1 Ai and Ai :=[ |2iB|�=] as in the proof of Proposi-

tion 5.14. By Proposition 8.8 of the Appendix

1�|
W(Rd )

Y d+=|
Ac

Y d++|
A

Y d+�edp2 K 2 |P|,

where K is a bound on Ric. Therefore,

1&|
A

Y d+�|
H=

P
(M)

e p(RP(_)&SP(_)) d&1
P (_)�edp2 K2 |P| &|

A

Y d+.

So to finish the proof it suffices to show that �A Y d+�C exp(&=2�4|P| ).
Since

} :
n

i=1

((Ri 2i B, 2iB)&tr(Ri) 2is)}�K \ :
n

i=1

|2i B|2+d+ ,

it follows that

|
A

Y d+�|
A

exp \K | p| \ :
n

j=1

|2jB| 2+d++ d+

�:
i
|

Ai

exp \K |P| \ :
n

j=1

|2jB| 2+d++ d+

�:
i

E _exp \K | p| \ :
n

j=1, j{i

|2j b|2+d++&
_E[/= ( |2iB| ) eK | p| ( |2i B|2+d )], (6.14)

where /= (r)=1r�= . The first factor of each term in the sum is bounded by
Lemma 8.5. Using the same type of argument as in the proof of Lemma 8.6
one shows for |P| sufficiently small that there is a constant C<� such
that

E[/= ( |2iB| ) eK |P| ( |2iB|2+d)]=E[/= (- 2is |B(1)| ) eK | p| (2i s |B(1)|2+d )]

�C(2is) e&=2�4|P |.

Hence the sum in Eq. (6.14) may be estimated to give �A Y d+�
C exp(&=2�4|P| ). K

Corollary 6.5. Let SP : HP (M) � R be given as in Eq. (6.11). Then
for all =>0 sufficiently small there is a constant C=C(=) such that

|
H=

P(M)
|\P &e&(1�6) SP| d&1

P �C - |P| (6.15)

for all partitions P with |P| sufficiently small.
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Proof. Let C be a generic constant depending on the geometry and the
dimension of M. Let J denote the left side of Eq. (6.15) and let K be a con-
stant so that |Scal|�K. Then

J=|
H=

P(M)
|\P &e&(1�6) SP| d&1

P

=|
H=

P(M)
|e&(1�6) RPeWP&e&(1�6) SP| d&1

P

�eK |
H=

P(M)
|e&(1�6)(RP&SP)eWP&1| d&1

P �I+II,

where

I :=eK |
H=

P(M)
|e&(1�6)(RP&SP)&1| eWP d&

and

II :=eK |
H=

P(M)
|eWP&1| d&.

Since |ea&1|�e |a|&1�|a| e |a| for all a # R,

|
H=

P(M)
|eWP&1| d&1

P �|
H=

P(M)
|WP | e |WP| d&1

P . (6.16)

By Proposition 6.3 there exist =0>0 such that |WP (_)|�C �n
i=1 |2i b|3 on

H=
P (M) for =<=0 . Therefore, with the aid of Theorem 4.10,

|
H=

P(M)
|WP | e |WP| d&1

P

�C :
n

i=1
|

H=
P(M)

|2 ib|3 exp \C=0 :
n

j=1

|2j b|2+ d&1
P

�C :
n

i=1
|

HP(M)
|2ib| 3 exp \C=0 :

n

j=1

|2j b|2+ d&1
P

=C :
n

i=1
|

W(Rd)
|2iB| 3 exp \C=0 :

n

j=1

|2jB|2+ d+

=C :
n

i=1

E[|2iB|3 exp(C=0 |2iB| 2)] E exp \C=0 :
n

j: j{i

|2i B|2+ .
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By Lemma 8.5, lim sup |P| � 0 E[eC=0 �n
i : i{j |2i B|2]=edC=0<� and hence

II�2eKCedC=0 :
n

i=1

E[|2i B|3 exp(C=0 |2iB|2)]

=2eKCedC=0 :
n

i=1

(2i s)3�2 E[|B(1)| 3 exp(C=0 2i s |B(1)| 2)]

�2eKCedC=0E[|B(1)| 3 exp(C=0 |P| |B(1)| 2)] - |P|

�C - |P|, (6.17)

for all partitions P with |P| sufficiently small.
To estimate I, apply Holder's inequality to get

I2�e2K \|H=
P(M)

|e&(1�6)(RP&SP)&1| 2 d++\|H=
P(M)

e2 |WP| d++ .

The second term is bounded by the above arguments. Expanding the
square gives

|e&(1�6)(RP&SP)&1|2=(e&(1�3)(RP&SP)&1)&2(e&(1�6)(RP&SP)&1)

�|e&(1�3)(RP&SP)&1|+2 |e&(1�6)(RP&SP)&1|.

By Eq. (6.13) of Proposition 6.4 to each term above, there is a constant
C=C(=, M)<�, such that I2�C |P| for all partitions P with |P| suf-
ficiently small. From this we see that

I�C |P|1�2

which together with (6.17) proves the corollary. K

6.2. Proof of Theorem 6.1. To simplify notation, let \: W(M) � (0, �)
be given by

\(_) :=exp \&1
6 |

1

0
Scal(_(s)) ds+ , (6.18)

where Scal is the scalar curvature of (M, g). Recall, by the remark follow-
ing Theorem 6.1, to prove Theorem 6.1 it suffices to prove Eq. (6.1) for
some =>0. Let F: W(O(M)) � R, f: H(M) � R, and f� : W(M) � R be as in
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the statement of Theorem 6.1. Then by Corollary 6.5 and Proposition 5.13,
for =>0 sufficiently small and for partitions P with |P| sufficiently small,

|
H=

P(M)
f d&0

P =|
H=

P(M)
f\P d&1

P

=|
H=

P(M)
fe&(1�6) SP d&1

P +=~ P

=|
HP(M)

fe&(1�6) SP d&1
P +=P ,

and |=P |�C & f &� |P| 1�2 where C is a constant independent of P. Because
of Theorem 4.17, to finish the proof, it suffices to show that

lim
|P| � 0 |HP(M)

f (e&(1�6) SP&\) d&1
P =0.

As above, let B be the Rd-Brownian motion in Notation 1.2, BP be its
piecewise linear approximation, _P =,(BP ) and uP :=��(_P ). If 4 is a
constant such that |Scal|�4 and |{Scal|�4, then

} |HP(M)
f (e&(1�6) SP&\) d&1

P }
�E[| f (uP )(e&(1�6) �1

0 Scal(_P(s
�
)) ds&e&(1�6) �1

0 Scal(_P(s)) ds)|]

�& f &� e4�6E _|
1

0
|Scal(_P (s))&Scal(_P (s

�
))| ds& (6.19)

wherein the last step we used the inequality |ea&eb|�emax(a, b) |a&b|. For
s # [si&1 , si), we have

|Scal(_P (s))&Scal(_P (si&1))|�4 |2iB|

and hence

} |HP(M)
f (e&(1�6) SP&\) d&1

P }�& f &� e4�64 :
n

i=1

E |2 iB| 2 is

=& f &� e4�64E |B(1)| :
n

i=1

(2is)3�2

�C & f &� |P|1�2.

This finishes the proof of Theorem 6.1. K
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Definition 6.6. Let P be a partition of [0, 1]. To every point x # M P

we will associate a path _x # HP (M) as follows. If for each i, there is
a unique minimal geodesic joining xi&1 to x i , let _x be the unique path
in HP (M) such that _x (si)=xi and �si

si&1
|_$(s)| ds=d(xi&1 , x i) for

i=1, 2, ..., n. Otherwise set _x (s) :=o for all s.

Corollary 6.7. Let : # [0, 1], F: W(O(M)) � R be a continuous and
bounded function and set f (_) :=F(�� . (_)) for _ # H(M). Then : # [0, 1],

lim
|P| � 0 |MP

f (_x ) e (1�6) �n
i=1

(:Scal(xi&1)+(1&:) Scal(xi)) 2i s d#P (x)

=|
W(M)

f� (_) d&(_),

where f� (_) :=F( ��
t

. (_)) and ��
t

r (_) is stochastic parallel translation, see
Definition 4.15.

Proof. For _ # H(M), let

/P, : (_)=e(1�6) �n
i=1 (:Scal(_(si&1))+(1&:) Scal(_(si))) 2i s.

Let 4 be a constant such that |Scal|�4 and |{Scal|�4. Then
/P, : (_)�e4�6 so by Proposition 5.12

|
MP"M =

P
f (_x ) /P, : (_x ) d#P (x)==P ,

where =P �C & f &� |P| 1�2. Therefore it is sufficient to consider
�M =

P f (_x ) /P, : (_x ) d#P(x). By Proposition 5.6 we have

|
M=

P
f (_x ) /P, : (_x ) d#P (x)=|

H=
P(M)

f (_) /P, : (_) d&0
P (_).

Let \(_) be given by (6.18). Arguing as in the proof of Theorem 6.1, the
corollary will follow if

lim
|P| � 0 |HP(M)

f (_)(/P, : (_) \(_)&1) d&1
P (_)=0.
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Let _P , BP be as in the proof of Theorem 6.1. We estimate, as in the proof
of Theorem 6.1,

} lim
|P| � 0 |HP(M)

f (_)(/P, : (_) \(_)&1) d&1
P (_)}

�& f &� e4�6 E _} :
n

i=1

(:Scal(_P (si&1))+(1&:) Scal(_P (si))) 2i s

&|
1

0
Scal(_P (s)) ds}&

�C & f &� |P|1�2

which completes the proof of Corollary 6.7. K

7. PARTIAL INTEGRATION FORMULAS

As an application of Theorem 4.17, we will derive the known integration
by parts formula for the measure &. This will be accomplished by taking
limits of the finite dimensional integration by parts formulas for the
measure &1

P . The main result appears at the end of this section in
Theorem 7.16. A similar method for proving integration by parts formula
for laws of solutions to stochastic differential equations has been used by
Bell [7, 8].

7.1. Integration by Parts for the Approximate Measures. The two
ingredients for computing the integration by parts formula for the form &1

P

is the differential of E and the Lie derivative of VolG1
P

. The following
lemma may be found in any book on Riemannian geometry. We will
supply the short proof for the readers convenience.

Lemma 7.1. Let Y # T_H(M). Then

YE=dE(Y)=2 |
1

0 �_$(s),
{Y(s)

ds � ds. (7.1)

Proof. Choose a one parameter family of paths at _t # H(M) such that
_0=_ and (d�dt) | t=0 _t=Y. Then

YE=
d
dt } t=0

|
1

0
|_$t (s)| 2 ds=2 |

1

0 �
{

dt
_$t (s)| t=0 , _$(s)� ds.
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Since { has zero torsion,

{

dt
_$t (s)| t=0=

{

ds
d
dt } t=0

_t (s)=
{

ds
Y(s).

The last two equations clearly imply Eq. (7.1). K

To compute the Lie derivative of VolG1
P

is will be useful to have an
orthonormal frame on HP (M) relative to G1

P . We will construct such a
frame in the next lemma.

Notation 7.2. Given _ # HP (M), let HP, _ be the subspace of H given
by

HP, _ :=[v # H: v"(s)=0u(s) (b$(s), v(s)) b$(s), \s � P], (7.2)

where u=��(_) and b=,&1 (_).

Because of Eq. (4.2) of Proposition 4.4, v # HP, _ if and only if
Xv (_) :=��(_) v # T_HP (M).

Lemma 7.3 (GP -Orthonormal Frame). Let P be a partition of [0, 1]
and G1

P be as in Eq. (1.12) above. Also let [ea]d
a=1 be an orthonormal

frame for ToM$Rd. For _ # HP (M), i=1, 2, ..., n and a=1, ..., d let
hi, a(s, _) :=v(s) be determined (uniquely) by:

(1) v # HP, _ .

(2) v$(sj+)=0 if j{i&1.

(3) v$(si&1+)=(1�- 2is) ea .

Then [Xha, i, i=1, ..., n, a=1, ..., d] is a globally defined orthonormal
frame for (HP (M), G1

P ).

Proof. This lemma is easily verified using the definition of G1
P in

Eq. (1.12), the identity

{X v (_)(s+)
ds

=��s (_) v$(s+),

and the fact that ��s (_) is an isometry. K

Definition 7.4. Let PC 1 denote the set of k # H which are piecewise
C1. Given k # PC1, define kP : HP (M) � H by requiring kP (_) # HP, _ for
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all _ # HP (M) and k$P (_, s+)=k$(s+) for all s # P"[1]. Note that with
this definition of kP , XkP is the unique tangent vector field on HP (M) such
that

{XkP (s+)
ds

=
{Xk (s+)

ds
for all s # P"[1].

Lemma 7.5. If k # PC1, then LXkP VolG1
P
=0.

Proof. Recall that on a general Riemannian manifold

LX Vol=&:
i

(LXe i , e i) Vol=:
i

([ei , X], ei) Vol,

where [ei] is an orthonormal frame. Therefore we must show that

:
n

i=1

:
d

a=1

G1
P ([Xha, i, XkP], Xha, i)=0. (7.3)

Suppressing _ # HP (M) from the notation and using Theorem 3.5 to
expand the Lie bracket, we find

G1
P ([Xha, i, XkP], Xha, i)

= :
n

j=1

( (Xha, ikP &XkPha, i)$, h$a, i) | (sj&1+) 2js

+ :
n

j=1

( (q(XkP) ha, i&q(Xha, i) kP )$, h$a, i) | (sj&1+) 2js.

For s # P"[1], (Xha, ikP )$ (s+)=Xha, ik$P (s+)=0, since k$(s+) is inde-
pendent of _. For the same reason, (XkPha, i)$(s+)=0 for s # P"[1].
Moreover for s # P"[1],

( (q(XkP) ha, i)$, h$a, i) | s+ =(q(XkP) h$a, i+Ru (_$, XkP) ha, i , h$a, i) | s+=0,

because q(XkP) is skew symmetric and because either ha, i (s+) or h$a, i (s+)
are equal to zero for all s # P"[1]. Similarly,

( (q(Xha, i) kP )$, h$a, i) | s+=(q(Xha, i) k$P +Ru (_$, Xha, i) kP , h$a, i) | s+ =0

because for all s # P"[1], either qs+ (Xha, i)=0 or h$a, i (s+)=0 and either
ha, i (s+)=0 or h$a, i (s+)=0. Thus every term in the sum in Eq. (7.3) is
zero. K
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Theorem 7.6. Suppose that k # PC1, P is a partition of [0, 1], b # HP

and _=,(b) # HP (M). Then

(LXkP &1
P )_=&\ :

n

i=1

(k$(si&1+), 2ib)+ (&1
P )_ , (7.4)

i.e., the divergence of XkP relative to the volume form &1
P is

(div&1
P

X kP)(_)=& :
n

i=1

(k$(si&1+), 2ib) . (7.5)

Proof. By Lemma 7.5,

(LXkP &1
P )_=[&1

2(XkPE)(_)] } (&1
P )_

and by Lemma 7.1,

(XkPE)(_)=2 |
1

0 �_$(s),
{XkP (_)(s)

ds � ds

=2 |
1

0
(��s (_) b$(s), ��s (_) k$P (_, s)) ds

=2 :
n

i=1
|

Ji

(b$(s), k$P (_, s)) ds.

Now for s # Ji :=(si&1 , si],

(b$(s), k$P (_, s))=(b$(si&1+), k$P (_, si&1+)) +|
s

si&1

b$(r) } k"P (_, r) dr

=(b$(si&1+), k$P (si&1+))

+|
s

si&1

(b$(s), 0u(r) (b$(r), kP (_, r)) b$(r)) dr

=(b$(si&1+), k$P (si&1+)),

wherein the last equality we used the skew adjointness of 0u(r) (b$(r), kP (_, r))
and the fact that b$(s)=b$(r)=2ib�2is for all s, r # Ji . Combining the
previous three displayed equations proves Eq. (7.4). K

Corollary 7.7. Let k # PC1, P be a partition of [0, 1] as above, and
let f : HP (M) � R be a C1 function for which f and its differential is bounded, then

|
HP(M)

(XkPf ) &1
P =|

HP(M)
f \ :

n

i=1

(k$(si&1+), 2 ib)+ &1
P , (7.6)
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wherein this formula 2i b is to be understood as the function on H(M) defined
by

2i b(_) :=,&1 (_)(si)&,&1 (_)(si&1). (7.7)

Proof. First assume that f has compact support. Then by Stoke's
theorem

0=|
HP(M)

d[iX kP ( f&1
P )]=|

HP(M)
LXkP ( f&1

P )

=|
HP(M)

[(XkPf ) &1
P + fLX kP &1

P ]

which combined with Eq. (7.4) proves Eq. (7.6). For the general case
choose / # C �

c (R) such that / is one in a neighborhood of 0. Define
/n :=/( 1

n E( } )) # C �
c (HP(M)) and fn :=/n f # C �

c (HP (M)). Observe that

(XkPfn)=/n } XkPf +
1
n

f } /$ \1
n

E( } )+ XkPE

=/n } XkPf +
1
n

f } /$ \1
n

E( } )+\ :
n

i=1

(k$(si&1+), 2i b)+ ,

wherein the last equality we have used the formula for XkPE computed in
the proof of Lemma 7.6. Because of Theorem 4.10, �n

i=1 (k$(si&1+), 2 ib)
is a Gaussian random variable on (HP (M), &1

P ) and hence is in L p for all
p # [1, �). Also

|XkPf |�C - G1
P (X kP, XkP)

=C � :
n

i=1

(k$(si&1+), k$(si&1+)) 2is�C &k$&� ,

where C is bound on the differential of f. Using these remarks and the
dominated convergence theorem, we may replace f by fn in Eq. (7.6) and
pass to the limit to conclude that Eq. (7.6) holds for bounded f with
bounded derivatives. K

Remark 7.8. Obviously Corollary 7.7 holds for more general functions
f. For example the above proof works if f and df are in L p (HP (M), &1

P ) for
some p>1.

We would like to pass to the limit as |P| � 0 in Eq. (7.6) of
Corollary 7.7. The right side of this equation is easily dealt with using
Theorem 4.17. In order to pass to the limit on the left side of Eq. (7.6) it
will be necessary to understand the limiting behavior of kP as |P| � 0.
This is the subject of the next subsection.
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7.2. The Limit of kP .

Notation 7.9. Let P=[0=s0<s1<s2<...<sn=1] be a partition of
[0, 1] and for r # (sj&1 , sj], let r

�
:=sj&1 . For k # PC1, define &k$&1, P and

_k$_P by

&k$&1, P= :
n

i=1

|k$(si&1+)| 2 is, (7.8)

and

_k$_P =|
1

0
|k$(r)&k$(r

�
) | dr. (7.9)

Note that _k$_P =0 if k # HP .

Lemma 7.10. Let P be a partition of [0, 1], _ # HP (M), b=,&1 (_),
u=��(_), k # PC 1 and kP (_, } ) be as in Definition 7.4. Then with 2ib given
by (7.7) and &k$&1, P given by (7.8),

|kP (_, s)|�&k$&1, P e(1�2) 4 �n
j=1

|2j b|2 \s # [0, 1] (7.10)

and

|kP (_, s)&kP (_, si&1)|

�( |k$(si&1+)| 2is+ 1
2 |kP (_, si&1)| 4 |2ib| 2) cosh - 4 |2ib|, (7.11)

and

|kP (_, s)&kP (_, si&1)|

�|k$(si&1+)| 2is+ 1
2 4 |2ib|2 &kP (_, } )&� \s # (si&1 , si], (7.12)

where 4 is a bound on the curvature tensor.

Proof. Let }( } ) :=kP (_, } ) # HP, _ and A(s) :=0u(s) (b$(s), } ) b$(s). By
Definition 7.4 of kP , } satisfies

}"(s)=A(s) }(s) for all s � P (7.13)

and

}$(s+)=k$(s+) \s # P"[1]. (7.14)
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Noting that |0u(s) (b$(s), } ) b$(s)|�4 |b$(s)|2=4( |2ib|2�2is2) for s # (si&1 , si],
Lemma 8.2 of the Appendix implies Eq. (7.12) and that

|}(s)&}(si&1)|�|}(si&1)| (cosh - 4 |2ib|&1)

+|k$(si&1+)| 2is
sinh - 4 |2ib|

- 4 |2ib|

�\ |k$(si&1+)| 2i s+
1
2

|}(si&1)| 4 |2ib| 2+ cosh - 4 |2ib|,

where we have made use of the elementary inequalities

cosh(a)&1�
1
2

a2 cosh(a), and

sinh(a)
a

�cosh(a) \a # R. (7.15)

In particular, Eq. (7.11) is valid and

|}(s)|�|}(si&1)| cosh - 4 |2ib|+|k$(si&1+)| 2is
sinh - 4 |2ib|

- 4 |2i b|

�( |}(si&1)|+|k$(si&1+)| 2is) exp {1
2

4 |2ib| 2= , (7.16)

since cosh(a)�ea2�2 for all a. Using the fact that }(s0)=}(0)=0 and an
inductive argument, Eq. (7.16) with s=si implies that

|}(si)|�\ :
i

j=1

|k$(sj&1+)| 2js+ e(1�2) 4 �i
j=1

|2jb|2
.

Combining this last equation with Eq. (7.16) proves the bound in
Eq. (7.10). K

In the rest of this section, unless otherwise stated, C will be a generic
constant depending only on the geometry of M and C(#, p) will be a
generic constant depending only on #, p and the geometry of M.

476 ANDERSSON AND DRIVER



Theorem 7.11. Let k # PC1 and B and BP be the Rd-valued processes
defined in Notation 1.2 and Notation 4.12, respectively. Also let u be the
O(M)-valued process which solves the Stratonovich stochastic differential
equation

$u=Huu $B, u(0)=u0 , (7.17)

uP =��(,(BP )) and zP =kP (,(BP ), } ). (Note by Theorem 4.14 that
u=lim |P| � ���(,(BP )) is a stochastic extension of ,.) Let z denote the solu-
tion to the (random) ordinary differential equation

z$(s)+ 1
2Ricu(s) z(s)=k$(s), z(0)=0. (7.18)

Then for # # (0, 1
2), p # [1, �),

E[ sup
s # [0, 1]

|zP (s)&z(s)|2]�C(#, p)(&k$& p
1, P |P| #p+_k$_ p

P ).

We will prove this theorem after the next two lemmas. Before doing this
let us note that zP in Theorem 7.11 above is determined by

z"P (s)=A(s) zP for s � P, zP (0)=0, and

z$P (s+)=k$(s+) \s # P"[1], (7.19)

where

A(s) :=0uP(s) \2iB
2is

, } + 2i B
2is

when s # (si&1 , si]. (7.20)

Lemma 7.12. Let $i be defined by

$i :=zP (si)+|
si

0
( 1

2RicuP(r
�
) zP (r)&k$(r

�
+ )) dr.

Then for all p # [1, �) and # # (0, 1�2) there is a constant C=C( p, #, 4)<�
such that

E[max
i

|$i |
p]�C &k$& p

1, P |P| #p,

where 4 is a bound on 0 and its horizontal derivative.

Proof. Without loss of generality, we can assume that p�2.
Throughout the proof, C will denote generic constant depending only on p,
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#, 4, and possibly the dimension of M. By Taylor's theorem with integral
remainder and Eq. (7.19) and Eq. (7.20) we have

zP (si)=zP (si&1)+z$P (si&1+) 2i s+|
si

si&1

(si&r) z"P (r) dr

=zP (si&1)+k$(si&1+) 2is

+|
si

si&1

(si&r) 0uP(r) (B$P (r), zP (r)) B$P (r) dr

=zP (si&1)+k$(si&1+) 2is

+ 1
20uP(si&1) (2i B, zP (si&1)) 2i B+;i , (7.21)

where

;i =|
si

si&1

(si&r)(0uP(r) (B$P (r), zP (r))

&0uP(si&1) (B$P(r), zP (si&1))) B$P (r) dr. (7.22)

By Itô's lemma,

0uP(sj&1) (2jB, zP (sj&1)) 2jB

=|
sj

sj&1

0uP(sj&1) (B(r)&B(sj&1), zP (sj&1)) dB(r)

+|
sj

sj&1

0uP(sj&1) (dB(r), zP (sj&1))(B(r)&B(sj&1))

&RicuP(r
�
) zP(zj&1) 2j s.

Using this equation and the fact that zP (0)=0, we may sum Eq. (7.21) on
i to find

zP (si)=|
si

0
(k$(r

�
+ )& 1

2 RicuP(r
�
) zP (r)) dr+M P

si
+ :

i

j=1

;j , (7.23)

where MP is the Rd-valued Martingale,

M P
s :=|

s

0
0uP(r

�
) (B(r)&B(r

�
), zP (r

�
)) dB(r)

+|
s

0
0uP(r

�
) (dB(r), zP (r

�
))(B(r)&B(r

�
)).

Therefore $i=M P
si

+� i
j=1 ; j .
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By the martingale moment inequality [63, Proposition 3.26],

E[sup
s

|M P
s | p]�CpE[(MP) p�2

1 ], (7.24)

where Cp is a constant and (MP) is the quadratic variation of M P. It is
easy to estimate (MP) 1 by

(MP) 1�2d42 |
1

0
|B(r)&B(r

�
)| 2 |zP (r

�
) |2 dr

and hence by Jensen's inequality

(MP) p�2
1 �(2d ) p�2 4 p |

1

0
|B(r)&B(r

�
) | p |zP (r

�
) | p dr.

Because [zP (r
�
)]r # [0, 1] is adapted to the filtration generated by B we may

use the independence of the increments of B along with scaling to find

E(MP) m�2
1 �(2d ) p�2 4 p |

1

0
E |B(r)&B(r

�
) | p } E |zP (r

�
) | p dr

=Cp (2d)d�2 4 p |
1

0
|r&r

�
| p�2 } E |zP (r

�
) | p dr

�Cp (2d) p�2 4 p &k$& p
1, P |

1

0
|r&r

�
| p�2

_Ee( p�2) 4 �n
j=1

|2j B|2 dr,

where Eq. (7.10) was used in the last equality. By Lemma 8.5 of the
Appendix, E[e( p�2) 4 � n

j=1
|2j B|2] is bounded independent of P when |P| is

sufficiently small. Hence we have shown that

E[sup
s

|M P
s | p]�Cp (4) &k$& p

1, P |
1

0
|r&r

�
| p�2 dr�Cp (4) &k$& p

1, P |P| p�2.

So finish the proof it suffices to show that

E \ :
n

j=1

|;j |+
p

�C &k$& p
1, P |P| #p. (7.25)

By assumption, uP solves the differential equation

u$P (s)=HuP(s) uP (s) B$P (s), uP (0)=u0 ,
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so that for any F # C1 (O(M)), r # (si&1 , si],

|F(uP (r))&F(uP (si&1))|�C } |
r

si&1

B$P (s) ds }�C |2i B|, (7.26)

where C bounds the horizontal derivatives of F. Applying this estimate to
0 implies

|0uP(r)&0uP(si&1) |�4 |2iB|. (7.27)

Using the inequalities in (7.12) and (7.27) and Eq. (7.22) we find that

|;i |�
1
24 max

si&1�s�si

|zP (s)&zP (si&1)| |2iB|2+4 |zP (si&1)| |2iB|3

� 1
24( |k$(si&1+)| 2is+ 1

2 |zP (s i&1)| 4 |2iB| 2)

_cosh(- 4 |2iB| ) |2iB|2+4 |zP (si&1)| |2i B|3. (7.28)

Letting K# denote the random variable defined in Eq. (8.15) of Fernique's
Lemma 8.3, the above estimate implies that

|;i |�
4
2

|k$(si&1+)| 2i s cosh(- 4 K# |P| ) K 2
# |P|2#

+\42

4
K4

# |2i s| 4# cosh(- 4 K# |P| )+C2 K 3
# |2i s| 3#+ |zP(s i&1)|,

where # # (0, 1�2). We will now suppose that # is close to 1�2. Then by
Eq. (7.10) of Lemma 7.10, we find that

:
n

i=1

|;i |�
4
2

&k$&1, P cosh(- 4 K# |P| ) K 2
# |P|2#+C &k$&1, P |P| 3#&1

_(K 4
# cosh(- 4 K# |P| )+K 3

#) e(1�2) 4 �n
j=1

|2j B|2

�C &k$&1, P |P|3#&1

_((K 4
#+K 2

#) cosh(- 4 K# |P| )+K 3
# ) e(1�2) 4 � n

j=1
|2j B|2.

Using Lemma 8.4 and 8.5 of the Appendix, it follows that

((K 4
#+K 2

#) cosh(- 4 K# |P| )+K 3
#) e(1�2) 4 � n

j=1
|2j B|2

is bounded in all L p for |P| small. This proves E(�n
j=1 |; j | )

p�
C &k$& p

1, P |P| (3#&1) p which proves Eq. (7.25) since (3#&1) approaches 1�2
when # approaches 1�2. K
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Lemma 7.13. Let =P be defined by

=P (s) :=zP (s)+|
s

0
( 1

2RicuP(r) zP(r)&k$(r)) dr. (7.29)

Then for all # # (0, 1
2) and p # [1, �),

E[max
s

|=P (s)| p]�C(#, p)(&k$& p
1, P |P| #p+_k$_ p

P ). (7.30)

Proof. Let $i be as in the previous lemma and set $P (s) :=
�n

i=1 $i 1(si&1, si]
(s). By the definitions of =P , (7.29) and $P , we have for

s # (si&1 , si],

=P (s)&$P (s)= zP (s)&zP (si)

+ 1
2 \|

s

0
RicuP(r) zP (r) dr&|

si

0
RicuP(r

�
) zP (r

�
) dr+

+|
si

0
k$(r

�
+) dr&|

s

0
k$(r) dr

= 1
2 |

si

0
(RicuP(r) zP (r)&RicuP(r

�
) zP (r

�
)) dr

& 1
2 |

si

s
RicuP(r) zP (r) dr

+(zP (s)&zP (si))+(k(si)&k(s))

&|
si

0
(k$(r)&k$(r

�
+)) dr

=: 1
2Ai+

1
2Bi+Ci (s)+Ei ,

where for r # (sj&1 , sj], r
�
:=sj&1 . We will now prove the estimate

E[sup
s

|=P (s)&$P (s)| p]�C(#, p)(&k$& p
1, P |P| 2#p+_k$_ p

P )

This will complete the proof (7.30) in view Lemma 7.12.
By definition of _k$_P in Eq. (7.9)

max
i

|Ei |�_k$_P . (7.31)
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In the argument to follow let [KP ]P denote a collection functions on
(W(Rd), +) such that supP &KP&L p(+)<� for all p # [1, �). Using
Eq. (7.10) with b=B and _=,(BP ) and Lemma 8.5 of the Appendix,

|Bi |�&Ric&� |P| &zP &��&Ric&� KP | &k$&1, P |P|.

So for p # [1, �),

E[max
i

|Bi |
p]�&Ric& p

� | &k$& p
1, P E[K p

P ] |P| p�C |P| p.

Next we consider Ci . We have Ci (si)=0 and by (7.13) and (7.14) with
b=B and _=,(BP ) for s # (si&1 , si],

C$i (s)=z$P (s)&k$(s)

=k$(si&1)&k$(s)+|
s

si&1

0uP(r) (B$(r), zP (r)) dr B$(s)

which implies after integrating

|Ci (s)|�4 |2i B|2 &zP &�+_k$_P �4K 2
# |2is| 2# &zP &�+_k$_P ,

where 4 is a bound on 0 and K# is defined in Lemma 8.4. Therefore, again
by (7.10) and Lemma 8.5, if p # [1, �) and # # (0, 1�2) then

E[max
i, s

|Ci (s)| p]�C(#, p, 4)(&k$& p
1, P |P|2#p+_k$_ p

P ). K

So to finish the proof it only remains to consider the Ai term. Applying
the estimate in Eq. (7.26) with F=Ric gives, for r # (sj&1 , sj],

|RicuP(r)&RicuP(r
�
) |�C |2jB|�CK# |P| #,

where C is a bound on the horizontal derivative of Ric. Therefore,

|Ai |�CK# |P| # &zP &�+&Ric&� |
1

0
|zP (r)&zP (r

�
) | dr

�CK# |P| # &k$&1, P e(1�2) 4 � n
j=1

|2j B|2

+&Ric&� (&k$&1, P |P|+ 1
24 max

i
|2iB|2 &zP&�)

�C &k$&1, P [e(1�2) 4 �n
j=1

|2jB|2 (K# |P| #+K 2
# |P|2#)+|P|]

�KP &k$&1, P |P| #,
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wherein we have made use of Eqs. (7.10) and (7.12) of Lemma 7.10 in the
second inequality, Eq. (7.10) and the definition of K# in Eq. (8.15) in the
third inequality, and Lemmas 8.4 and 8.5 in the last inequality. Thus

E[max
i

|Ai |
p]�C(#, p) &k$& p

1, P |P| #p

for p # [1, �) and # # (0, 1�2). This completes the proof of Lemma 7.13. K

Proof of Theorem 7.11. Let =P be defined as in Eq. (7.29) and let yP (s)
denote the solution to the differential equation,

y$P (s)+ 1
2RicuP(s) yP (s)=k$(s) with yP (0)=0.

Then

zP (s)& yP (s)=&|
s

0

1
2RicuP(r) (zP (r)& yP (r)) dr+=P (s)

and hence

|zP (s)& yP (s)|�|
s

0
C |(zP (r)& yP (r))| dr+=P (s),

where C is a bound on 1
2Ric. So by Gronwall's inequality,

|zP (s)& yP (s)|�max
s

( |=P (s)| eCs)�max
s

|=P (s)| eC,

which combined with Eq. (7.30) of Lemma 7.12 shows that

E[max
s

|zP (s)& yP (s)| p]�C(#, p)(&k$& p
1, P |P| #p+_k$_ p

P ).

for p # [1, �), # # (0, 1�2).
To finish the proof of the theorem it is sufficient to prove

E[max
s

| yP (s)&z(s)| p]�C(#, p)(&k$& p
1, P |P| #p+_k$_ p

P |P| #p). (7.32)

First note that a Gronwall estimate gives

max
s

|z(s)|�&k$&L1(ds) e&Ric&� s�C &k$&L1(ds) (7.33)

and similarly

max
s

| yP (s)|�C &k$&L1(ds) ,
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where &k$&L1(ds)=�1
0 |k$(s)| ds. Let w= yP &z. Then

w$(s)= 1
2RicuP(s) w(s)+ 1

2(RicuP(s)&Ricu(s)) z(s).

Letting

AP =max
s

1
2 |RicuP(s)&Ricu(s) |

the inequality (7.33) and an application of Gronwall's inequality give

|w(s)|�CAP &k$&L1 eCs. (7.34)

Theorem 4.14 implies

E[|AP | p]�C(#, p) |P| #p

and hence by (7.34),

E[max
s

| yP (s)&z(s)| p]�C(#, p) &k$& p
L1 |P| #p.

This implies (7.32) in view of the fact that

&k$&L1�&k$&1, P+_k$_P .

This completes the proof of Theorem 7.11. K

7.3. Integration by Parts for Wiener Measure.

Proposition 7.14. Let |P| :=max[ |2i s|: i=1, 2, ..., n] denote the mesh
size of the partition P and f be a function on H(M) and f� on W(M) as in
Theorem 4.17. Then

lim
|P| � 0 |HP(M)

f \ :
n

i=1

(k$(si&1+), 2ib)+ &1
P

=|
W(M) \f� |

1

0
(k$, db� )+ d& (7.35)

where 2i b is to be interpreted as a function on H(M) as in Eq. (7.7) and b�
is the anti-development map. Recall that b� is an Rd-valued Brownian motion
on (W(M), &) which was defined in Definition 4.15. Here �1

0 (k$, db� ) denotes
the Itô integral of k$ relative to b� .
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Proof. Let B denote the standard Rd-valued Brownian motion in
Notation 1.2 and u denote the solution to the Stratonovich stochastic differen-
tial Eq. (7.17). By Lemma 4.11 and Theorem 4.10,

|
HP(M)

f \ :
n

i=1

(k$(si&1+), 2ib)+ &1
P

=E _f (,(BP )) \ :
n

i=1

(k$(s i&1+), 2i B)+& . (7.36)

By the isometry property of the Itô integral, we find that

lim
|P| � 0 \ :

n

i=1

(k$(si&1+), 2iB)+=|
1

0
(k$, dB) ,

where the convergence takes place in L2 (W(Rd), +). As in the proof of
Theorem 4.17, f (,(BP )) converges to F(u) in L2 as well. Therefore we may
pass to the limit in Eq. (7.36) to conclude that

lim
|P| � 0 |HP(M)

f \ :
n

i=1

(k$(si&1+), 2i b)+ &1
P =E _F(u) |

1

0
(k$, dB)& .

Since (B, u) and (b� , ��
t

) have the same distribution,

E _F(u) |
1

0
(k$, dB)&=|

W(M) \f� |
1

0
(k$, db� )+ d&.

The previous two displayed equations prove Eq. (7.35). K

Definition 7.15. A function f: W(M) � R is said to be a smooth cylin-
der function if f is of the form

f (_)=F b ?P (_)=F(_P ) (7.37)

for some partition P and some F # C � (MP).

We are now prepared for the main theorem of this section.

Theorem 7.16. Let k # PC1, z be the solution to the differential equation
(7.18) of Theorem 7.11 and f be a cylinder function on W(M). Then

|
W(M)

X zf d&=|
W(M)

f \|
1

0
(k$, db� )+ d&, (7.38)
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where

(X zf )(_) := :
n

i=1

( ({i f )(_), X z
si
(_))= :

n

i=1

( ({i f )(_), ��
t

si
(_) z(si , _))

and ({i f )(_) denotes the gradient F in the ith variable evaluated at
(_(s1), _(s2), ..., _(sn)).

Proof. The proof is easily completed by passing to the limit |P| � 0 in
Eq. (7.6) of Corollary 7.7 making use of Proposition 7.14, Theorems 7.11,
4.14, and Corollary 4.13. K

8. APPENDIX: BASIC ESTIMATES

8.1. Determinant Estimates.

Lemma 8.1. Let U be a d_d matrix such that |U|<1, then

det(I&U)=exp(&trU+9(U)), (8.1)

where 9(U) :=&��
n=2

1
n trU n. Moreover, 9(U) satisfies the bound,

|9(U)|� :
�

n=2

d
n

|U|n�d |U| 2 (1&|U| )&1. (8.2)

Proof. Equation (8.1) is just a rewriting of the standard formula,

log(det(I&U))=& :
�

n=0

1
n+1

tr(Un+1),

which is easily deduced by integrating the identity

d
ds

log(det(I&sU))=&tr((I&sU)&1 U)

=&tr \ :
�

n=0

snU nU+=& :
�

n=0

sn tr(U n+1).

Since for any d_d matrix |tr U|�d |U| and |Uk|�|U|k, it follows that

|tr(Uk)|�d |U| k
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and hence

|9(U)|� :
�

n=2

d
n

|U|n�d |U|2 (1&|U| )&1. K

8.2. Ordinary Differential Equation Estimates.

Lemma 8.2. Let A(s) be a d_d matrix for all s # [0, 1] and let Z(s) be
either a Rd valued or d_d matrix valued solution to the second order
differential equation

Z"(s)=A(z) Z(s). (8.3)

Then

|Z(s)&Z(0)|�|Z(0)| (cosh - K s&1)+|Z$(0)|
sinh - K s

- K
(8.4)

and

|Z(s)&Z(0)|�s |Z$(0)|+K
s2

2
Z*(s), (8.5)

where Z*(s) :=max[ |Z(r)|: 0�r�s], K :=sups # [0, 1] |A(s)| and |A| denotes
the operator norm of A.

Proof. By Taylor's theorem with integral remainder,

Z(s)=Z(0)+sZ$(0)+|
s

0
Z"(u)(s&u) du

=Z(0)+sZ$(0)+|
s

0
A(u) Z(u)(s&u) du (8.6)

and therefore

|Z(s)&Z(0)| � s |Z$(0)|+K |
s

0
|Z(u)| (s&u) du

� s |Z$(0)|+K |
s

0
|Z(u)&Z(0)| (s&u) du+

s2

2
K |Z(0)|

=: f (s). (8.7)
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One may easily deduce Eq. (8.5) from the first inequality in this equation.
Note that f (0)=0,

f $(s)=|Z$(0)|+K |
s

0
|Z(u)&Z(0)| (s&u) du+sK |Z(0)|,

f $(0)=|Z$(0)|, and

f "(s)=K |Z(s)&Z(0)|+K |Z(0)|�Kf (s)+K |Z(0)|.

That is,

f "(s)=Kf (s)+'(s), f (0)=0, and f $(0)=|Z$(0)|, (8.8)

where '(s) :=f "(s)&Kf (s)�K |Z(0)|. Equation (8.8) may be solved by
variation of parameters to find

f (s)=|Z$(0)|
sinh - K s

- K
+|

s

0

sinh - K (s&r)

- K
'(r) dr

�|Z$(0)|
sinh - K s

- K
+|Z(0)| |

s

0
- K sinh - K (s&r) dr

=|Z$(0)|
sinh - K s

- K
+|Z(0)| (cosh - K s&1).

Combining this equation with Eq. (8.7) proves Eq. (8.4). K

Lemma 8.3. Suppose that Z is a d_d-matrix valued solution to
Eq. (8.3) with Z(0)=0 and Z$(0)=I. Let K>0, K1>0 be constants so that
sups # [0, 1] |A(s)|�K and sups # [0, 1] |A$(s)|�K1 . Then

Z(s)=sI+
s3

6
A(0)+sE(s), (8.9)

where

|E(s)|� 1
6 (2K1s3+ 1

2K2s4) cosh(- K s). (8.10)

Proof. Using the definition of Z in Eq. (8.3) we have that Z(0)=
Z"(0)=0, Z$(0)=I,

Z(3) (s) :=
d 3

ds3 Z(s)=A$(s) Z(s)+A(s) Z$(s),
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and hence Z(3) (0)=A(0). By Taylor's theorem with integral remainder

Z(s)=sI+
1
2 |

s

0
Z(3) (!)(s&!)2 d!

=sI+
s3

6
A(0)+

1
2 |

s

0
(Z(3) (!)&A(0))(s&!)2 d!.

Now using Lemma 8.2 with Z(0)=0, we find

|Z(3) (!)&A(0)|= }A$(!) Z(!)+A(!) \I+|
!

0
A(r) Z(r) dr+&A(0) } (8.11)

�
sinh(- K !)

- K
+K(cosh(- K !)&1)+K1! (8.12)

�K1 !(cosh(- K !)+1)+
1
2

K2!2 cosh(- K !) (8.13)

�\2K1s+
1
2

K2s2+ cosh(- K s), (8.14)

where we used the elementary inequalities sinh(a)�a�cosh(a) and
cosh(a)&1� 1

2a2 cosh(a) valid for all a # R. Using Z(3) (0)=A(0) and the
definition of E completes the proof. K

8.3. Gaussian Bounds. In this subsection, B(s) will always denote the
standard Rd-valued Brownian motion defined in Notation 1.2.

Lemma 8.4 (Fernique). For # # (0, 1�2) let K# , be the random variable,

K# :=sup { |B(s)&B(s)|
|s&r| # : 0�s<r�1= . (8.15)

Then there exists an ===(#)>0 such that E[e=K#
2
]<�

Proof. Since K# as a functional of B is a ``measurable'' semi-norm,
Eq. (8.15) is a direct consequence of Fernique's theorem [67,
Theorem 3.2]. K

Lemma 8.5. For p # [1, �),

Ee( p�2) C � n
j=1 |2j B|2= `

n

j=1

(1& pC 2js)&d�2 (8.16)
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provided that pC 2js<1 for all j. Furthermore,

lim
|P| � 0

Ee( p�2) C �n
j=1

|2j B|2=edpC�2. (8.17)

Proof. By the independence of increments and scaling properties of B
we have

E[e( p�2) C �n
j=1 |2j B|2]= `

n

j=1

E[e pC |2jB|2�2]= `
n

j=1

(E[e pC 2j sN2�2])d,

where N is an standard normal random variable. This proves Eq. (8.16),
since an elementary Gaussian integration gives

E[e pC 2jsN2�2]=(1& pC 2j s)&1�2

provided that pC 2js<1. Equation (8.17) is an elementary consequence of
(8.16). K

Lemma 8.6 (Gaussian Bound). For every k�0 there is a constant
C=C(k, d ) which is increasing in k such that

E[ek |B(1)|: |B(1)|�\]�Ce&(1�4) \2�\2 for all \�1. (8.18)

Proof. A compactness argument shows that there is a constant C� (k, d )
such that rd&1ekre&(1�2) r2

�C� (k, d ) e&(3�8) r2
for all r�0. Passing to polar

coordinates and using this inequality shows that

E[ek |B(1)|: |B(1)|�\]=|d&1 (2?)d�2 |
�

\
rd&1ekre&(1�2) r2 dr

�|d&1 (2?)d�2 C� (k, d ) |
�

\

r
\

e&(3�8) r2 dr

=|d&1 (2?)d�2 C� (k, d )
4

3\
e&(3�8) \2

�Ce&(1�4) \2�\2,

where |d&1 is the volume of the d&1 sphere in Rd. K

Lemma 8.7. Fix =>0 and K�0. Let /= (r)=1r�= , let B be a standard
Rd-valued Brownian motion and let P=[0=s0<s1<...<sn=1] be a parti-
tion of [0, 1].
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Define the function �: R+ � R+ by

�(u) :=E _\sinh(- K |B(u2)| )

- K |B(u2)| +
d&1

&
=E _\sinh(- K u |B(1)| )

- K u |B(1)| +
d&1

& . (8.19)

Then there is a constant C=C(K, d )<� such that

:
n

i=1

E _/= ( |2iB| ) \sinh(- K |2i B| )

- K |2iB| +
d&1

& `
j{i

�(- 2js)

�C=&2 exp \&
=2

4 |P|+ . (8.20)

Proof. It is easily checked that � is an even smooth (in fact analytic)
function and that �(u)=1+(d(d&1)�6) u2+O(u4) and hence there is a
constant C<� such that �(u)�eCu2

for 0�u�1. Thus

`
j{i

�(- 2js)�eC �j{i 2j s�eC.

Recall the elementary inequalities sinh(a)�a�cosh(a)�e |a| which are
valid for all a # R. Using these inequalities and the scaling properties of B
and Lemma 8.6,

E _/= ( |2iB| ) \sinh(- K |2i B| )

- |K| |2iB| +
d&1

&
=E _/= (- 2is |B(1)| ) \sinh(- K 2is |B(1)| )

- K 2is |B(1)| +
d&1

&
�E[/=2is

&1�2 ( |B(1)| ) exp((d&1) - K 2is |B(1)| )]

�C(K |P|, d )
2is
=2 exp \&

=2

42is+
�C(K |P|, d )

2is
=2 exp \&

=2

4 |P|+ .

Combining the above estimates completes the proof of Lemma 8.7. K

Proposition 8.8. Let B be the Rd-valued Brownian motion defined on
(W(Rd), +) as in Notation 1.2 above and let Ri for i=0, 1, ..., n be random
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symmetric d_d matrices which are _(Bs : s�si&1)-measurable for each i.
Note that R0 is non-random. Further assume there is a non-random constant
K<� such that |Ri |�K for all i. Then for all p # R there is an ==
=(K, d, p)>0

1�E[e p � n
i=1

((Ri 2iB, 2i B)&tr(Ri) 2is)]�edp2 K2 |P| (8.21)

whenever |P|�=.

Proof. By Itô's Lemma,

(Ri 2i B, 2i B)&tr(Ri) 2is=2 |
si

si&1

(Ri (B(s)&B(s
�
)), dB(s)) ,

and hence �n
i=1 ((Ri 2iB, 2iB)&tr(Ri) 2 is)=M1 , where Mt is the con-

tinuous square integrable martingale

Mt :=2 |
t

0
(Rs (B(s)&B(s

�
)), dB(s))

and Rs :=Ri if s # (s i&1 , si]. The quadratic variation of this martingale is

(M) t=4 |
t

0
|Rs (B(s)&B(s

�
))|2 ds�4K2 |

t

0
|B(s)&B(s

�
) | 2 ds.

Let p # (1, �). Then by the independent increment property of the
Brownian motion B, it follows that

E[e p2(M)1]�E _exp \4p2K2 |
1

0
|B(s)&B(s

�
) | 2 ds+&

= `
n

i=1

E _exp \4p2K2 |
si

si&1

|B(s)&B(s
�
)| 2 ds+&

= `
n

i=1

E _exp \4p2K2 2 is2 |
1

0
|B(s)|2 ds+& , (8.22)

wherein the last equality we have used scaling and independence prop-
erties of B to conclude that �si

si&1
|B(s)&B(s)|2 ds, �2i s

0 |B(s)|2 ds and
�2i s

0 2is |B(s�2 is)|2 ds=2is2 �1
0 |B(s)| 2 ds all have the same distribution.

Fernique's theorem [67, Theorem 3.2] implies that

�(*) :=E _exp \*
2 |

1

0
|B(s)|2 ds+&
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is a well defined analytic function of * in a neighborhood of 0. Because
�(0)=1 and

�$(0)=
1
2

E |
1

0
|B(s)|2 ds=

d
4

it follows that �(*)�ed*�2 for all positive * sufficiently near 0. Using this
fact in Eq. (8.22) gives the bound

E[e p2(M)1]� `
n

i=1

exp(4 dp2K2 2i s2)=exp \4 dK 2p2 :
n

i=1

2is2+
�exp(4 dK2p2 |P| )<�, (8.23)

which is valid when the mesh of P is sufficiently small.
By Itô's Lemma,

Z( p)
t =exp \pMt&

p2

2
(M) t+

is a positive local martingale. Because of the bound in Eq. (8.23),
Novikov's criterion [87, Proposition 1.15, p. 308] implies that Z ( p)

t is in
fact a martingale and hence in particular E[Z ( p)

1 ]=1. Therefore,

E[e pM1]=E[e pM1&( p2�2)(M)1e( p2�2)(M)1]�E[e pM1&( p2�2)(M)1]=1

and

E[e pM1]=E[exp( pM1& p2(M) 1) exp( p2(M)1)]

�- E[exp(2pM1&2p2(M) 1)] - E[exp( p2(M)1)]

=- EZ (2p)
t - E[exp( p2(M) 1)]=- E[exp( p2(M) 1)]

�exp(4 dK2p2 |P| ).

This completes the proof of Proposition 8.8. K
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