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Abstract: We use a variant of the Segal-Bargmann transform to study canonically
guantized Yang—Mills theory on a space-time cylinder with a compact structure group
K. The non-existent Lebesgue measure on the space of connections is “approximated”
by a Gaussian measure with large variance. The Segal-Bargmann transform is then
a unitary map from thd.? space over the space of connections teolbomorphicZ?
space over the space of complexified connections with a certain Gaussian measure. This
transform is given roughly by*24/2 followed by analytic continuation. Her 4 is the
Laplacian on the space of connections and is the Hamiltonian for the quantized theory.
On the gauge-trivial subspace, consisting of functions of the holonomy around the
spatial circle, the Segal-Bargmann transform becoai®s/? followed by analytic
continuation, where\  is the Laplacian for the structure grod. This result gives
a rigorous meaning to the idea thaty reduces taA g on functions of the holonomy.
By letting the variance of the Gaussian measure tend to infinity we recover the standard
realization of the quantized Yang—Mills theory on a space-time cylinder, nam%lyk
is the Hamiltonian and.?(K) is the Hilbert space. As a byproduct of these considera-
tions, we find a new one-parameter family of unitary transforms ffé(#) to certain
holomorphicL?-spaces over the complexification &f. This family of transformations
interpolates between the two previously known unitary transformations.
Our work is motivated by results of Landsman and Wren and uses probabilistic
techniques similar to those of Gross and Malliavin.
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1. Introduction

This paper uses techniques of stochastic analysis to address the problem of canonically
guantizing Yang—Mills theory on a space-time cylinder. We outline our results briefly
here, leaving a detailed description of the Yang—Mills interpretation to Sect. Z(Let
be a connected compact Lie group dnlgk its Lie algebra, endowed with a fixed Ad-
K-invariant inner product. Le#l be a certain subspace of the@alued distributions on
[0, 1] and P, be a scaled white noise measurerSee (4.2) and Definition 4.1 below.
By taking the indefinite “integrals” of elements df the measure spacd (P,) may be
identified with the space dfvalued paths on [A] starting at O equipped with a Wiener
measure of variance Elements of4 are to be interpreted as (generalized) connections
on the spatial circle.

Our objectiveisto understand the infinite-dimensional Laplacian opekatpwhere
A is the Cameron—Martin subspacedfnamely, the Hilbert space of square-integrable
t-valued functions. Sincé 4 is poorly behaved (e.g., non-closable) as a operator on
L2(A, P,), we work with a variant ; of theSegal-Bargmann transforrhis is defined
to be e*24/2 followed by analytic continuation. The transform is defined at first on
cylinder functions but extends to a unitary mapIgi(A, P;) onto theholomorphic
subspace of.?(Ac, M, ;). Here Ac is a space ofc-valued distributions (wherg: =
£ +it) and]\7[s¢ is a certain Gaussian measureAga.

We are particularly interested in theolthap8, which associates to almost every
A € Aacontinuoudy-valued patf. (4). Geometricallyf.- (A) represents the parallel
transport of the connectios from 0 tor, andh (A) := 0, (A) represents theolonomy
of A around the spatial circle. We similarly consider th@rtiapd® and the holonomy
he for complex connections’ € Ac, wheredC (C) and he (O) take values in the
complexificationK ¢ of the compact groujx’.

The main result is Theorem 5.2 of Sect. 5, which states:

Supposef € L2(A, P,) is of the form
f(A)=¢(h(A)),

whereg is a function onk . Then there exists a unique holomorphic functipion
K¢ such that

Ssf (C) =@ (he (C)).
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The function® is determined by the condition that
D, = ethx/2g,

HereA g refers to the Laplacian for the compact grdkipRecall tha@s,t is defined
to beett4/? followed by analytic continuation. Theorem 5.2 says that on functions of
the holonomyS,, ; reduces ta* /2 followed by analytic continuation. This is formally
equivalent to the following imprecise principle:

On functions of the holonony 4 reduces toA i .

As a consequence of Theorem 5.2 and the “averaging lemma” in [H1] we obtain a
Segal-Bargmann type transform for the compact grEufrheorem 5.3). To describe
this theorem lep, denote the distribution df (A) with respect ta’; andy, ; denote the
distribution of h¢ (C) with respect toZ\ZIS’t. The measures; andy, ; are certain heat
kernel measures oR and K¢, respectively. Then Theorem 5.3 asserts:

The map
¢ — analytic continuation o#**%/2¢

is an isometric isomorphism of? (K, p,) onto the holomorphic subspace of
L% (Kc, ps,t)-

This generalized Segal-Bargmann transformAowas known previously [H1] in
the cases = ¢t and also in the limiting case — oo. (See also [H2, H3, H4, D2, DG].)

For generals andt this transform is new and interpolates continuously between the
two previously known cases. An analysis of this new transform, from a purely finite-
dimensional point of view, is given in [H5].

There is a simple explanation (not a proof) for Theorem 5.2. The Hilbert sgace
(the Cameron—Martin subspace) may be thought of as an infinite-dimensional flat Rie-
mannian manifold. Led (K) be the infinite-dimensional group of finite-energy paths
with values inK, starting at the identity. This has a natural right-invariant Riemannian
metric. Theorem 8.1 in Sect. 8 asserts that tbemtipd, restricted to the Cameron—
Martin subspace, is an isometry ofd onto H (K). From this observation, one formally
concludes that\ 4 (f 0 0) = (Amx)f) o 6, whereA k) is the “Laplace—Beltrami”
operator associated to the right-invariant Riemannian structuf&(@f). Furthermore,
if f depends only on the endpoint of the path (ifeo,d is a function of the holonomy)
then an easy calculation shows thal; k) reduces toA x (Theorem 8.9). However,
even working onA there are serious domain issues to deal with, and of codrisea
measure-zero subsetdf So the proof of Theorem 5.2 does not make direct use of this
calculation. Nevertheless we present it as motivation, with a precise treatment of the
domain issues, in Appendix A.

The main tool in the proof of Theorem 5.2 is the Hermite expansion, which for
L?(A, P,) takes the form of an expansion in terms of multiple Wiener integrals, the so-
called Wiener chaos or homogeneous chaos expansion [Ka, Ito]. The Segal-Bargmann
transformsS; ; has a very simple action on this expansion, given in Theorem 4.7 of
Sect. 4.2.

Although itis natural from the standpoint of Yang—Mills theory to consider functions
of the holonomyh (A) := 01 (A), it makes sense to apply; ; to arbitrary functions of
the parallel transpo#f,, = € [0, 1]. Results similar to Theorem 5.2 hold, described in
Sect. 6.
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Finally, let us mention the paper [AHS], which considers a sort of Segal-Bargmann
transform in the context of two-dimensiori&lclideanvang—Mills theory. That paper is
not so much concerned with constructing the theory as with understanding the structure
of the Euclidean Yang—Mills measure. Despite a superficial similarity, there is no overlap
of results between [AHS] and the present paper.

2. The Yang—Mills Interpretation

This section explains the motivation for, and the desired interpretation of, the results of
the paper. It may be skipped without a loss of understanding of the statements.

The Segal-Bargmann transform was developed independently in the early 1960’s by
Segal [S1, S2, S3] in the infinite-dimensional context of scalar quantum field theories
and by Bargmann [B] in the finite-dimensional context of quantum mechani@s*on
The paper [H1] introduced an analog of the Segal-Bargmann transform in the context of
guantum mechanics on a compact Lie group. A natural next step is to attempt to combine
the compact group with the field theory in order to obtain a transform in the context of
guantum gauge theories. One such transform has already been obtained by Ashtekar,
al. [A], with application to quantum gravity.

This paper considers the canonical quantization of Yang—Mills theory in the simplest
non-trivial case, namely that of a space-time cylinder. We consider first briefly the classi-
cal Yang—Mills theory. (See also [L, RR].) L&t be a connected compact Lie group (the
structure group) together with an Ald-invariant inner product:, -) on its Lie algebra
£. We work in the temporal gauge, in which case the configuration space for the classical
Yang—Mills theory is the space éfvalued 1-forms on the spatial circle. More precisely,
let A denote the space of square-integrablalued 1-forms, which can be identified
with L2 ([0, 1] ; &), where the circle i§0, 1] with ends identified. The phase space of the
system is thetd¢ = A +i.A. The dynamical part of the Yang—Mills equations (e.g., [Di,
Eq. (2)]) may be expressed in Hamiltonian form, with the Hamiltonian functiodgn
given by

1
H(A+iP)= % |1P||% = %/O |P.|? dr. (2.1)

Note that since our spatial manifold is one-dimensional, the curvature term which usually
appears in the Hamiltonian is zero.
There is also a constraint part to the Yang—Mills equation (e.qg., [Di, Eqg. (1)]), namely,

dP;
dr

+[A;, P]=0, 7€[01] (2.2)

or equivalently,
Jn (A, P):=— (W +[Ah],P),=0

forall h € C* (S* — ). The set of point§A, P) satisfying this constraint is preserved
under the time evolution generated by (2.1).

Now letG be thegauge group namely, the group of maps of the spatial circle into
K. This acts onA by

d
(9-A), =g:-Argit — dﬁgil
T
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and onAc by

(9-(A,P),=((g-Ar.9:Prg; ).

The gauge action preserves both the dynamics and the constraint. The fuhctian
Ac is the Hamiltonian generator of the action of the one-parameter subgtoipg,
where (eth) = eth~. That is,J is the moment mapping for the action &f[L, Sect.
IV.3.6].

The parallel transpott. (A) of a connectioM € A, is the solution to thé(-valued
differential equation

B 0,4, to=c, (2.3)
dr

and@ transforms under gauge transformations as
0-(g- A) = gob- (A g;', g€G. (2.4)

Theholonomy of A is the parallel transport around the circle(A) := 61 (A). (In the
interest of consistency with [G, GM, HS] we have pgytto the left of A in (2.3).
Although this is the reverse of the usual definition of parallel transport, it makes little
difference. Theorem 5.2 would be unchanged with the other definition and Theorem 6.3
would require just the reversal oafandg in (6.2).)

If we formally apply the usual canonical quantization procedure to this classical
Yang—Mills theory, we find that the quantum mechanical Hilbert spade (A, DA)
and the Hamiltonian operator corresponding to the classical Hamiltonian (2.1) is
—A_4/2. HereDA is thenon-existentebesgue measure ohandA 4 is the Laplacian
operator, that is, the sum of squares of derivatives in the directions of an orthonormal
basis. The quantum operator corresponding to the fungijjémthe vector field/;, given

by

A . d
JhF(A)zlﬁ

F(A+t (W +[ARH]))
t=0

Thus the quantum analog of the constraint equation is to requir&'tiat.? (A4, DA) be
G-invariant. (More precisely, this is truedfis connected, i.e., ik is simply connected.
We will simply assumej-invariance even iff{ is not simply connected, and will not
address here the issue @¢fangles”. See [LW, W, L].)

We consider at first thbased gauge grougjo,

Go={9€Glgo=g1=¢}.

Itis not hard to verify using (2.4) (see [L]) that two connections@requivalent if and
only if they have the same holonomy. Thus, theinvariant functions are precisely the
functions of the formy (h (A)), where¢ is a function onK. For invariance under the
full gauge groupg would be required to be a class function.

Now let A i denote the Laplacian (quadratic Casimir) operatofkoassociated to
the chosen invariant inner product &in
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Claim 2.1 (Main Ideg. Consider a function o of the form¢ (h (A)), whereg is a
function onK. Then

A (h(A)) = (Ax¢) (h(A)).

That is, on functions of the holonomy, the Laplacian for the space of connections
should reduce to the Laplacian on the structure group. This idea is not new. It is stated
without proof in [Wi, pp. 166, 169], and a rigorous result in this direction is given in [Di,
Lem. 3.2]. (See the end of this section.) The challenge is not so much to prove the result
but to give it a rigorous interpretation. (See also [Ra], where reduction is done before
guantization.)

One approach is to approximate the non-existent Lebesgue measure by a Gaussian
measureP, with large variance, where “large” means that at the appropriate point in
our calculationss will tend to_infinity. The measuré’; does not exist oA itself, but
does exist on a certain spageof generalized connections. We then ta@keto be the
group offinite-energy mapsyg : [0, 1] — K satisfyinggo = g1 = e, where finite energy
means thay is absolutely continuous anﬁg1 \g;l dg/dT|2 dr < oo. The action 0iGy

on A may be extended to an action g and this action leaveB, quasi-invariant. We
consider the Hilbert spade?(A, P,) and define the gauge-trivial subspace to be:

LHA,B)% = {f € L2(A, P) Vg € Go, f (g7 A) = f(A) ae}. (2.5)

Note that the may (A) — f (g~ - A) is not unitary, sinc€ leavesP; quasi-invariant
but not invariant. We are deliberately not unitarizing the actioggés in [LW]; the
point of lettings — oo is to avoid having to do so. The following result shows clearly
our motivation for not unitarizing.

Theorem 2.2. Let U (g) be the unitary gauge action, as for example in [Di]. fif
L?(A, P,)andU (g) f = f for all g € Go, thenf = 0.

The corresponding results in dimensions 3+1 and higher (and in certain (2+1)-
dimensional cases) is a consequence of the irreducibility of the energy representa-
tion [Wa, AKT, GGV], atleast for the case whénhis semisimple. In the one-dimensional
case considered here, the energy representation is reducible, so a different proof is
needed, and is given in [DH]. Defining the gauge-trivial subspace in terms of the un-
unitarized action as in (2.5) gives a non-zero Hilbert space, as we shall see momentarily.
Unitarity is recovered, at least formally, in tke— oo limit. (However, in cases where
the energy representation is irreducible, the space defined in (2.5) contains only the
constants. So our approach will not work without modification in high dimensions.)

The parallel transport mafy and so also the holonomy, may be “extended” frdm
to A by replacing the differential equation (2.3) wittstochastidifferential equation,
the It0 map (Sect. 5). A deep theorem of Gross asserts that the elemdif(s4tP,)%
are precisely functions of the holonomy. (See also [Sal].) The reason this is not obvious
is that although we have enlarged the space of connections by repldcwith A,
we cannot unduly enlarge the group of gauge transformations without losing quasi-
invariance, without which (2.5) does not make sense. As a result, two connectidns in
with the same holonomy need not be gauge-equivalenk (i simply connected, then
the characterization df?(A, P,)% is obtained by composing [G, Thm. 2.5] with the It"
map. The general case is easily reduced to the simply connected case. Note ¢hat our
corresponds td(y (not Kp) in the notation of Gross.)
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We are back, then, to the matter of computing the Laplacian on functions of the
holonomy. Unfortunately, while 4 is densely defined id2(A4, P,) (say on smooth,
compactly supported cylinder functions), it is not closable. So it is not clear what it
means to apply the Laplacian to a function of the holonomy. We consider, then, a variant
of the Segal-Bargmann transform. The transform involves the heat opefatdg,
instead of theA 4 itself. More precisely, the Segal-Bargmann transform consists of

et24/2 followed by analytic continuation. The transform maps frﬁﬁ(A P ) onto a
certainL? space of holomorphic functions on a spate of complexified connections,
rather than fronL?(A, P;) to itself. Although the Segal-Bargmann transform is defined
initially only on cylinder functions, it is an isometric map and so extends by continuity
to all of L2(A, P,). In particular, it makes sense to apply the Segal-Bargmann transform
to functions of the holonomy.

Our main result is Theorem 5.2, described already in the introduction. It asserts
that for functions of the holonomy the Segal-Bargmann transform (roughly, the heat
operatoret®4/2, followed by analytic continuation) becomes the heat opertor/2
for the structure groupx’, followed by analytic continuation. This holds for each fixed
s, hot just in thes — oo limit. Thus Theorem 5.2 gives a rigorous meaning to the Main
Idea in Claim 2.1.

Now, the gauge-trivial subspace, which consists of functions of the fioffa( A)),
may be identified withZ2 (K, p;), whereps is the distribution ofh (4) with respect
to P,. Similarly, the space of functions of the ford (hc (C)) may be identified
with L? (K¢, ps,), Where s, is the distribution ofh.c (C) with respect to the rel-
evant Gaussian measure gh So restricting the Segal-Bargmann transform to the
gauge-trivial subspace gives an isometric map fréA(K, p,) into the holomor-
phic subspace of.? (Kc, s, ), given byet2x/2 followed by analytic continuation.

A finite-dimensional argument shows that this transform napgs the holomorphic
subspace. This gives a unitary Segal-Bargmann-type transform (Theorem 53) for
Bs,t : L2 (Ka ps) — HLZ (K(Ca ,U/s,t) given by

B, .f = analytic continuation of'2% /2.

Here? L? denotes the space of square-integrable holomorphic functions. This unitary
transform was previously obtained in [H1] for the case ¢ and the limiting case
s — oo, which we now discuss.

Note that the formula foB; ; depends only om; the s-dependence is only in the
measures. Hence it makes sense ta lggnd to infinity. In this limitp, converges to
normalized Haar measure é¢handy, , converges to a certailf -invariant measure;
on K¢. So taking the Segal-Bargmann transformgrrestricting to the gauge-trivial
subspace, and taking the large variance limit yields a unitary transfgrrmapping
L? (K, Haa) onto the holomorphic subspace bf (K¢, ;). The transform is given,
as always, by the timeheat operator followed by analytic continuation. Helie an
arbitrary positive parameter, which is to be interpreted physically as Planck’s constant.
See Theorem 5.5.

We arrive, then, at the expected conclusion: the physical Hilbert space for quantized
Yang-Mills on a space-time cylinder 6 (K, Haa) and the Hamiltonian operator
is —Ak /2. As a bonus, we obtain a natural Segal-Bargmann transfgrior the
physical Hilbert space. Let us mention two other matters in passing. First, for invariance
under the full gauge group we would restrict attention to the Ad-invariant subspace of
L? (K, _Haai). Second, the Wilson loop operators naturally act as multiplication operators
in L2(A, P,) and so also irl.? (K, Haay).



256 B. K. Driver, B. C. Hall

Let us briefly compare our approach to others. Landsman and Wren [LW, W, L] use
a method called Rieffel induction, in which gauge symmetry is implemented by means
of a certain integral over the gauge group. Under this integration the classical coherent
states fotd map to the coherent states that are associated to the tranSfatescribed
above (thes — oo limit of B; ;). However, it is not clear how to derive by this method
the relevant measurg on K¢, and the computation of the reduced Hamiltonian [W] is
complicated.

Dimock [Di] adds a mass term to the Hamiltonian, which makes it self-adjoint in
L?(A, P,). However, because the mass term destroys gauge-invariance, Dimock obtains
a result like the Main Idea only in the— oo limit [Di, Lem. 3.2].

The Euclidean method for Yang—Mills on a cylinder constructs a probability measure
directly on connections modulo gauge transformations.Htelenote the holonomy
around the spatial circle at timeThen it can be shown that: 1) for eagh! is distributed
as the Haar measure di, and 2)h! is a K-valued Brownian motion. Thinking in
terms of the temporal gauge, it is then reasonable to take as the time-zero Hilbert space
L? (K, Haa, and (since the infinitesimal generator of Brownian motiodois A - /2)
to take as the Hamiltoniar A /2. Since the Euclidean Yang—Mills measure does not
existon the space of connections, but only on connections modulo gauge transformations,
the Euclidean method does not directly address the relationship betweand A k.

Finally in Appendix A, A 4 is considered as an operator acting on functions on
A rather than ond. While functions of the formp (h (A4)), with ¢ smooth onK, are
differentiable onA, the Hessian of such a function is not in general trace-class. Hence, it
is not possible to defing 4¢ (h (A)) as the trace of the Hessian®fh (A)). This problem
is circumvented by computing the trace by a two-step procedure—see Definition 8.5. With
this definition, we prove a rigorous version of the Main Idea in Claim 2.1 (Theorem 8.9).
SinceA is a set ofP;-measure zero, these results do not bear directly on Theorem 5.2.

3. Segal-Bargmann forR<

We consider a variant of the classical Segal-Bargmann transform that depends on two
parameters, one of which we wish to let tend to infinity. See Sect. 2 for motivation. This is
in contrast to the conventional version of the transform, which has only one parameter (or
none, depending on the author). However, infiifecase, this two-parameter transform

is not truly new, but can be reduced to the classical one-parameter version by elementary
changes of variable. This reduction is described in [H5]. In Sect. 3.1 we describe the
transform itself. In Sect. 3.2 we describe Hermite expansions on both the domain and
range of the transform, and we describe the action of the transform on these expansions.
Hermite expansions play a key role in the proof of our main result, Theorem 5.2 in
Sect. 5.

3.1. The transform foR?. Let A be the standard Laplacian @& and P, be the
associated Gaussian measure. Explicitlysfor 0, d P, (z) = P, (x) dx, where

P, (z) = (21s)~ /2 e=2"/25
Herex = (z1,--- ,z4), ? = 22 +- - - + 23, anddz is the standard Lebesgue measure on

R?. Note that the functiod®, (z) admits an analytic continuation @, denotedP,(z).
Now for any numbet with ¢ < 2s (i.e.,s > ¢/2) define a map



Yang—Mills Theory and the Segal-Bargmann Transform 257

Set: L2 (R, Py) — H (CY)
by
Souf (2) = / Pi(z—a) f (@) de, =eC (3.1)
Rd

where? (C?) denotes the space of holomorphic functions@h The integral is well
defined sincefor < 2s, P; (z — x) / P (x)isin L2(RY, P, (z)). Using Morera’s theorem
one may show tha¥, , f is indeed holomorphic.

SinceP; is just the fundamental solution at zero of the heat equaligit = %Au,
Se.+f may be expressed as

Ss.+f = analytic continuation of'2/2 . 3.2)
Here e!2/2 is to be interpreted as the usual contraction semigrouo(R?, dz),
extended by continuity td? (R%, P).

Definition 3.1. For s > t/2, let A, be the constant-coefficient elliptic differential
operator onC¢ given by

E) om 2t 02
Ast = (s—2>;axi+2;ay%
Let M, denote the Gaussian measure given diy+/2 (). Explicitly dM,, =
M, 4(2) dz, wheredz is the standard Lebesgue measure@hand
M, (2) = (7rr)_”l/2 (7rt)_d/2 e~ /TemV/t,
Herer = 2(s —t/2) andz = z +y.

The Gaussian measurés and M, , may also be described by their Fourier trans-
forms:

/Rd exp(iX - z) dP;, (z) = exp(—%/\z) ,

/ explA - x +io - y) dM; +(2) = exp(—%l(r)\2 +ta?)) 3.3)
(Cd

for all A anda in R,
Let#L? (C¢, M,,) denote the Hilbert space of holomorphic functiong€®rwhich
are square-integrable with respectif ;.

Theorem 3.2 Extended Segal-Bargmann transfyrrfror all s andt¢ with s > ¢/2 >
0, the mapsS,, defined in (3.1) is an isometric isomorphism bt (R, P;) onto
HL?(C?, M,,). The standard case is= t.

We will prove this in Sect. 3.2, using Hermite expansions. The surjectivity, of
is proved by showing that the holomorphic polynomials are dens¢lif (C¢, M, ,),
which is item 4 of Theorem 3.6 below.

3.2. Action on the Hermite expansiofihe classical Segal-Bargmann transformgiér
takes the Hermite expansion of a function®fito the Taylor expansion of the corre-
sponding holomorphic function dik¢, and this property determines the transform [B].
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Our variant of the Segal-Bargmann transform also has a simple action on the Hermite
expansion, which reduces to the above result whent. Since we require Hermite
expansions on botR? andC?, we will prove abstract results which cover both cases
simultaneously.

LetV be areal finite-dimensional vector space dnoke a constant coefficient pure

second-order elliptic operator dfyi.e.,L = Z;ijl 9ij0°/0x;0x ;, whereN = dim(V),
{z;}X, arelinear coordinates dn and{ g;; } is a positive-definite symmetric matrix. For
v,w eV, letg(v,w) = fojzl g z; (v) z; (w), where{g"’ } denotes the matrix inverse
of {g;;}. Theng is an inner product o which is naturally induced by. Indeed,
if g* denotes the dual inner product Bf anda, 5 € V*, theng* (o, 8) = %L(aﬁ).

If {e;}X, is an orthonormal basis fd#, g), thenL = Zf\il 02, whered; = 0,,. This
follows from the observation that

1o a 1
52 0%aB) =) ale)ile) = g"(0. ) = S L(aB).
i=1

=1

Definition 3.3 (Heat kernel measuje For a pair V and L be as above, we associate
the Gaussian measures

1\"/? 1
dQ; (v) = <27rt> exp (—2tg (v,v)) dv YVt >0,

wheredv denotes Lebesgue measurelonormalized so that the unit cubeinrelative
to g has unit volume. We will abbreviatg; by Q. For any measurable functiofion V'
andv € V, let

#ﬂﬂm:/fw—wwwxw (3.4)
\%

whenever the integral exists.

The measure®; may also be described by their Fourier transforms, namiglys
the unique measure dn such that

[ 900, = e (_tg*(;, /\)) - oo <_ I (4Az)>
\%

forall A € V™.

Given areasonable functigionV (say continuous and exponentially bounded), itis
well known and easily checked tha(t, v) := e*~/2 f(v) is a solution to the heat equation
Ou(t,v)/ot = %Lu(t, v) such that lim~ o u(t, v) = f(v). Itis also easily checked that if
f is a polynomial function of, thenet~/2 f may be computed by the finite Taylor series
expansion:

o) k
eth/2f = Z (152L) f. (3.5)
k=0

The above sum in finite sinde® f = 0 whenever R is greater than the degree pfOn

polynomials, (3.5) defines'”/2f for all t € R in such a way that—**/2 is the inverse
of etL/2,
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Definition 3.4. Then'” level Hermite subspace ofL? (V, Q) is the spaceF,, (L) =
e~ L/2p, (V), whereP, (V) denotes the space of homogeneous polynomials of degree
onV.

The following result is well known. We include a proof for completeness and so that
some calculations will be available for later use.

Proposition 3.5. LetV and L be as above. Then

1. L?(V, Q) is the orthogonal Hilbert space direct sum of the subspaEgéL) for
n=012....

2. F, (L) is the set of all polynomials ol of degreen which are orthogonal to all
polynomials of degree at most— 1.

3. Foreveryf € L?(V,Q), e*/?f is a well defined, real-analytic function di. More-
over, if the “Hermite” expansion of € L2 (V,Q)is f = °7, f, with f,, € F,, (L),
then f,, = e~=/?p,,, wherep,(v) = L(97¢X/2£)(0) and @ £)(0) = & f(tv)]s=o.
We will write this succinctly as '

o0

@)=Y e H a2 )(0). (3.6)

n=0 "

Proof. Let {e;}¥, be an orthonormal basis fol’(g) so thatL = Zf\:}l 02, where
0; = 0O, . For functionp, gonV let (p, ¢) = fV p(v)q(v) dQ(v) be theL? inner product.
Takingp andgq to be polynomials o andv = 0 in (3.4), we find, using the fact th&t
is even, that

(e /%, e 1/2q) = M2 (e L/2pe=H /%) o.
Sinceetl/2(e—tL/2p e~tL/24) is a polynomial in ¢, v), it follows by Taylor’s theorem
that
S e 1 J»
L/Z( —L/2,.,-L/2 ) - - 4
c\@ e ZO nl dtn

n=

etL/Z(e—tL/Zp—e—tL/Z
t=0

q)-

Using the product rule repeatedly shows that

d _
ﬁetL/z(eftL/zp L e—tL/2

L, _ — L _ — _ L _
:etL/Z (2(6 tL/2pe tL/Zq)_(Ee tL/Zpe tL/Zq)—(@ tL/Zp§€ tL/Zq))

N
= otL/2 <Z 8ie—tL/2p—8ie—tL/2q> .

=1

q)

This equation may now be used inductively to show

an

N
oD et/ (e 2peth2g). = Z 93,04, + + 03, 003,03, - - 05,4

=0 i1,92, - in=1

Combining the previous four displayed equations shows that
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00 N
1
(e /%p, e F/2q) = E o E (84,0, - - - 03, p(0)D, B, - - - By, (V) |o=0,
n=0 ' i1,izsein=1 (3.7)

for all polynomialsp andg on V.

Using (3.7) we may prove items 1 and 2 as follows. Notice thgf{L) consists
of polynomials of degree and that@Z;)lfk(L) consists ofall polynomials onV' of
degreen — 1 or less. By (3.7), itis easily seen thapiE P, (V) andg € P,,(V) with
m 7 n, then ¢~ %/2p,e~1/2q) = 0. HenceF,,(L) is orthogonal ton ]~ Fi(L). Since
polynomials are dense ib?(V, Q), these observations immediately imply the first two
items of the theorem.

For item 3, suppose for the moment tifas a polynomial ori”. By Taylor's theorem
applied toe™/2f,

oo

(200 = 30 (@32 )(0).

n=0

Applying e~ ~/2 to both sides of this equation then proves (3.6) wiiéha polynomial.
For generalf € L?(V,Q), we must first show that’/?f is defined and smooth.
Letting ¢(v) = dQ(v)/dv, we may write

210 = [ fo-uwawdo= [ D @)

Sinceq(v — w)/q(w) = exp(—%g(v,v) + g(v,w)) € L?(V,Q(dw)), it follows that
f(v — w)q(w) is integrable and heneé/2f is defined. More generally one may show
sup,c i [0%q(v — w)/q (w)| € L?(V,Q(dw)) for all compact set& C V. Hence
el/2 f(v) is smooth and

9% L2 f(v) = / f(w)wq(w)dw. (3.9)
1% q(w)

So for each integen > 0, let (P, f)(v) = Le~L/2(0rel/2)(0) € F,.(L). Because of

(3.9),P, : L?(V,Q) — F,(L) is a well defined continuous linear map. Moreovey,f

is the same as an orthogonal projection afitdL) when f is a polynomial. Hence it

follows by density of polynomials ith.? (V, Q) that P, is an orthogonal projection onto
F.(L). This proves (3.6) for generdle L?(V,Q). O

We will need the following holomorphic version of Proposition 3.5.

Theorem 3.6. Suppose thal’ is a real vector space and is a pure second order
constant-coefficient differential operator &1 Also assume thal is equipped with a
complex structurd, i.e.,J : V — Visalinear map such that? = —I. Using.J, V may
considered to be a complex vector space by definirgJv forv € V. LetH (V') denote
the space of holomorphic functions Brand letH L? (V, Q) = H(V) N L? (V, Q) be the
space ofl.2 holomorphic functions. Le{.F,,(L) = H (V) N F,(L). Then

1. HL?(V, Q) is the orthogonal Hilbert space direct sum of the subsp&t&s, (L) for
n=012....

2. HF, (L) is the set of all holomorphic polynomials &hof degreen or less which
are orthogonal to all holomorphic polynomials énof degreen — 1 or less.
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3. Letf =377, f» be the Hermite expansion ¢fe #L? (V, Q). Thenf,, € HF (L)
forn=0,1,2,....
4. The holomorphic polynomials dn are dense ir{L? (V, Q).

Proof. SinceF,, (L) andF, (L) are orthogonal form # n, HF,, (L) andHF,, (L) are
also clearly orthogonal fan # n.

Now for f € L?(V, Q) we have already seen thdt/2f is a smooth function. Iff
is also holomorphic, thee*/2f is holomorphic. To see this it suffices to show, for each
u,v € V, thate?/2f (u + zv) is holomorphic as a function af € C. This is easily done
using Morera’s Theorem and the fact tifais holomorphic. We omit the details.

Hence if f € HL?(V,Q), thenp,(v) := L (0rel/2f)(0) is a holomorphic poly-
nomial that is homogeneous of degreeSince L preserves the space of holomor-
phic functions, it follows thatf,, = e~%/?p,, is both holomorphic and itF,,(L), i.e.,
fn € HF,(L). Hence we have proved items 1, 3, and 4 of the theorem. Finally, for item
2, if p is a holomorphic polynomial of degree less than or equal, tihen

=3 e H2he 2)(0).
k=0

Since @Z:OlHJ-‘k(L) is the collection#,,_; of holomorphic polynomials of degree
less than or equal ta — 1, it follows p is orthogonal toH,,_; if and only if p(v) =
Le~L/2(rel/?p)(0) which is equivalent tp being inH.F,(L). O

We now apply our results in two casdé: = R? and L = sA, andV = C? and
L= As,t-

Definition 3.7. Let F,, s (R?) = F,(sA) C L? (R%, P;) and F, o+ (C?) = Fy, (Asy)
C L?(CY% M,,).Let’F, s (C?) denote the holomorphic polynomialsh ., (C?).

Theorem 3.8. The transformS; ; in (3.1) takesF,, , (R?) ontoHF, 5, (C%). Specif-

ically, let p be a homogeneous polynomial of degreen R and letpc be its analytic
continuation taC?. Then

St (e*SA/zp) =e 4t/2 (pe). (3.10)

Note thatifs = ¢, then the operatot; , is zero on all holomorphic functions. Sowhen
s = t the holomorphic subspace &%, , ; (C?) is precisely the space of holomorphic
polynomials which are homogeneous of degtetn that case, the transforsy , takes
the Hermite expansion gf € L? (R?, P,) to the Taylor expansion &, , f. If s # ¢, then
by Theorem 3.6 and Theorem 38, , takes the Hermite expansion pfc L? (R¢, P;)
to an L?-convergent expansion &, ,f in terms of non-homogeneous holomorphic
polynomials. Fors # ¢ it is not clear (to us) whether the Taylor series of a function in
HL?(C?, M,,) is alwaysL2-convergent.

Proof. By the definition ofS, ,,

Ss,t (efsA/Zp) — (etA/ZefsA/Zp)(C — (e(tfs)A/Zp)(c.
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On the other hand singe: is holomorphicdpc /0y = idpc/Oxy, and hence

t o L P
Aeipe=(3-5-3)3 Z e =603 b = e

Thereforee=4=1/2 (pg) = (e =92/2p)c = S, 4 (e752/2p). O

Proof of Theorem 3.2f p andq are polynomials ofiR?, then

As,t%qC) - (As tITC)qC - ]TC(AS tq(C)
3p<c dqc dpc dgc

=2 (S B ) axk 8xk 2 Z 8yk 8yk

_ ot ~ Opc dqc Z 5pc ;91
axk 3xk 2 8xk 3$k

- Z 3]0@ 3%
8$}€ (r“)l'k

This formula and computations similar to those used to prove (3.7) show that

(e_A'*""/zp(c, e_AS‘*/ZQC)LZ(Ms,t)

= eAet/2(e=Asit/2pce™ A0t/ 20) | g

0 n d
S
= E - E awk awk o '8wkanawk awk T '&;kn%’f
e L S SR L © (311

0 d
§™
= Z 1 Z aﬂvk aﬂvk e 63% pawk aﬂvk e 893167,9 2=0
n=0 ! k1,ka,...k n=1 T s (3.12)

= *8/3(emsB/2pe™ 0 2q) (0) = (e %p, e /2q) .

Hered,, = d/0x;. In light of (3.10), which holds by linearity for all polynomials, this
shows thaitS; ; is isometric on polynomials.

Since polynomials are dense i} (R¢, P;) and the linear functionals
feL?(RYP) = (Ss.f) () eC

are continuous for eache C¢, it follows thatS, , is isometric on all ofL? (R?, P,).

Note thate—*2/2 is invertible on the space of polynomials of degree at mosthis

plus the fact that every holomorphic polynomial @4 is the analytic continuation

of its restriction toR? shows that every holomorphic polynomial is in the image of
Ss.¢. But Item 4 of Theorem 3.6 asserts that the holomorphic polynomials are dense in
HL? (C%, M,,) and therefores, , is surjective. [
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4. Segal-Bargmann for the Wiener Space

Because it is formulated in terms of Gaussian measures, our variant of the Segal—
Bargmann transform admits an infinite-dimensioral{ oo) limit. While this could

be formulated in terms of an arbitrary abstract Wiener space, we will for concreteness
consider only the classical Wiener space case relevant to this paperRThwi be
replaced by an infinite-dimensional space of Lie algebra-valued generalized functions
on|0, 1], with a white noise measure. By integrating once, this space may be identified
with the space of continuous Lie algebra-valued functionfoh] with a Wiener mea-

sure. SimilarlyR? will be replaced by a space of generalized functions with values in
the complex Lie algebra (with a white noise measure), which may be identified with the
space of continuous functions with values in the complex Lie algebra (with a Wiener
measure).

4.1. The transform for the Wiener spadeet K be a compact connected Lie group. Fix
once and for all an Ads-invariant inner product-, -) on the Lie algebré of K. Let
K¢ be the complexification oK in the sense of [Ho, H1], and lét = ¢ + it be the Lie
algebra ofK¢.

We then consider the space of connections on the spatial circle. These are Lie algebra-
valued 1-forms, which can be identified with Lie algebra-valued functions on the interval
[0, 1], where the circle is this interval with ends identified. Specifically, let

A=L?([0,1];¥), (4.2)
where the norm is computed using Lebesgue measuj@ @hand the inner product on
£. We need also a larger spade which may be taken to be

— da,
A={A= % ac Wl (4.2)

a subspace dfvalued distributions. Her&/ (£) denotes the set of continuous paths

from [0, 1] to € such thatg = 0, and% denotes the distributional derivative @f For

eachA € A, the functiona € W (£) is unique, and so may be thought of as a function
of A. We will write, suggestively,

ar (A) = /OT A, do. (4.3)

Note that we are reversing_convention by using the lowercase letter the anti-
derivative ofA. We can maked into a Banach space whose norm is the supremum norm
ona.

We similarly define

Ac = L2([0,1] ; )

using Lebesgue measure [ 1] and the sesquilinear extension of the inner product
from ¢ to €¢; and

— d"r
Ac={C =T |ec W(te)),

whereW (€¢) is defined analogously td/ (€). As in the real case; is unique and we
will write

e (C) = /0 "¢, do. (4.4)
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Definition 4.1. Let 155 denote the_unique Gaussian measure.orsuch that for all
continuous linear functionalg on A,

i$(A) 4P - _S6l?
[ ab, ()= exp( =5 ol).

where||¢|| denotes the norm af as a linear functional orA.
Let M ; denote the unique Gaussian measureisuch that for all continuous
linear functionalsp and) on A,

) . . 1
[ e i, (i) = exp( 30 ol 0l )
C

where||¢|| and||4|| denote norms as linear functionals shandr = 2 (s — ¢/2).

These measures have the formal expressions:

AP, (A) = Zil e~ I4I°/2s DA and

A, (A+iB) = Zie—”AHZ/T‘—”BHZ/t DADB.
2

Here||-|| is theL?-norm for.A, DA andD B refer to the (non-existent) Lebesgue measure
onA, andZ,, Z, are “normalization constants.” Note that the meagynmay be thought

of as the heat kernel measure at the origin, that is, the fundamental solution at the origin
of the equationiu/dt = %AAu, whereA 4 is the sum of squares of derivatives in the
directions of an orthonormal basis far.

_The spaceA is the_Cameron-Martin subspace for the Gaussian measure space
(A, P;) and is a set of’,-measure zero. Similarlydc is the Cameron—Martin sub-
space for Ac, M; ;) and is a set of\/, .-measure zero.

The measur®, is the law of a scalettvalued white noise ofD, 1]. This is equivalent
to saying that ifA is distributed asP; thena., (A) (defined in (4.3)) is a scalett
valued Brownian motion. Specifically, X"} is an orthonormal basis faf, then
a¥ = (X* a,) are real-valued Brownian motions satisfying

E{akdl} = smin{o, 7} 0p. (4.5)
Similarly, the measurMs’t is the law of a scale#l--valued white noise ofD, 1]. Letc
be asin (4.4), and decompasasc, = Rec; +ilme.., with Rez; and I, taking values

in £. Then(X*, Rec;) and(X',Imc, ) are independent real-valued Brownian motions
satisfying:

E{(X* Re,) (X' Rec,)} = (s — ;) min {o, 7} 61,
B{(X* me,) (X, Ime, )} = 2 min {o, 7} 6. (4.6)

We now define the two-parameter version of the Segal-Bargmann transform for
L?(A, P,). The reader should keep in mind that we are “trying” to work on the sglace
with the larger spacel introduced as a technical necessity.
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Definition 4.2. Let {es,--- ,eq} be a finite orthonormal set in the real Hilbert space
A with the property that each linear function@l;, -) extends continuously td. Each
linear functional(e;, -) then has a unique complex-linear extension frdno Ac. A
cylinder function on A is a function that can be expressed in the form

fA)=¢((er, A), - (ea, A)) (4.7)

where¢ is a measurable function oR? and{ey,--- ,eq} is a orthonormal basis as
above. Aholomorphic cylinder function on Ac is a function of the form

F(C)=® ({e1,C),--(eq,C)),

where® is a holomorphic function oft¢. Theholomorphic subspacmez(ffc, Ms,t),
denotedH L?(Ac, Mj ), is the L? closure of thel.? holomorphic cylinder functions.

The transform§‘ .+ will be defined in Theorem 4.3 below so as to coincide with
the finite dimensional transform‘ilS + acting on cylinder functions, and then extending
by continuity to all ofLZ(A P ). In the standard case € t) one can and often does
define the transform differently (e.g., [BSZ, GM]), with the range Hilbert space being a
certain space of holomorphic functions gig rather than ondc. Since the necessary
dimension-independent pointwise bounds hold only when ¢, this approach does
not work whens 7 t. Formally, S, , f is the analytic continuation af**4/2f; this
description may be taken fairly I|terally whehis a cylinder function.

Theorem 4.3. Fix s andt Wlth s > t/2 > 0. There exists a unlque isometric mﬁpt
of L2(A, P,) ontoH L2(Ac, M, ) such that for allf € L%(A, P,) of the form

f(A) ¢(<617 >7 7<€d7A>)

with {ey, - - - , eq} as in Definition 4.2,§S,tf is given by

gs,tf (C) - ( s t¢) (<elv > T 7<ed7c>) .

Proof. We want to definésvt to coincide withS, ; on cylinder functions. The fact that
S‘atf is well defined independent of hoyvis represented as a cylinder function is a
consequence of the two observations: 1) the mealuoa R is rotationally-invariant,
and 2) the(d + k)-dimensional measurE; factors as the product of the corresponding
d-dimensional and-dimensional measures.

Now isometricity on cylinder functions follows immediately from Theorem 3.2.
Since cylinder functions are denmyt has a unigque isometric extensmnlté(A P, ).
The surjectivity in Theorem 3.2 shows that evéRholomorphic cylinder function is in
the image OSS +. Since by definition the.? holomorphlc cylinder functlons are dense
in the holomorphic subspace, we conclude ﬂ?;a; maps ontoHLZ(AC, s.t)- O

Definition 4.4. Let A 4 be the unique operator on cylinder functions such that
Aaf(A)=(A9¢) ((e1, A) -+, (eq, A))

whenf is a cylinder function as in (4.7) of Definition 4.2. The domair\gf is taken to
be the set of those cylinder functions for whitis smooth and botkh and A¢ are in
L? (R4, Py).
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One checks as in the proof of Theorem 4.3 that is well defined, independent
of how f is represented as a cylinder function. Although it is densely defingdis a
non-closable operator.

4.2. Action on the Hermite expansiowe now turn to the infinite-dimensional version
of the Hermite expansion, and the action5f; on it.

Definition 4.5. Thent” level Hermite subspace ofL2(A, P,), denoted?,, (/T) is
the L? closure of the space of functions of the form

f(A) = ¢(<617A>7"' a<ed»A>) )
where{ey,--- ,eq} is as in Definition 4.2 and wherg € F, . (Rd)._Thenth level
holomorphic Hermite subspace ofL?(Ac, M, ), denotedH.F,, . (Ac), is the L?
closure of the space of functions of the form

F(C) =P (<6lac>a"' 7<6dac>) )
where® is in H.F, ;. (C%) as defined in Definition 3.7.

Recall that:, = fOT A, do is a scaled-valued Brownian motion whose components

with respect to an orthonormal bagis’*} for ¢ are denoted”. Now consider the:-
simplex

An:{(Tla"'7Tn)€Rn|0§7—l§7—2§"'§Tn Sl}

LetH = {Hy, ... k,|k; = 1,...,dim¢} be a collection of square-integrable complex-
valued functions om\,, and let

dim¢

H k k
Z / koo kn (71,7 7n) da‘rll e daT:
ko k=1 An

denote the multiple Wiener integral &f relative toa — see [Ito] or Definitions 4.10
and 4.12 below. _

Similarly, ¢, = fOT Codo for C € (Ac, M, ;) is atc-valued Brownian motion.
Regard the orthonormal badiX . } for ¢ as a basis ofc as a complex vector space and
let c* be the corresponding complex-valued components off H = {Hj, ... .} as
above let

dim¢

H k k
Z / k1, skin (T17 e 7Tﬂ) dchl T dc’r:
A’Vl

ki, k=1

denote the multiple Wiener integral Bf with respect ta. By expanding in terms of the
real and imaginary parts ef, we could express this as anintegral in terms of independent
real-valued Brownian motions. Note that this integral is a formally holomorphic function
of ¢ (and hence of’) since it depends only on the complex increments. of
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Proposition 4.6. The Hilbert spacdiz(ff, 1_53) is the orthogonal direct sum of the sub-
spacesF,, s (A) The Hilbert spaceH L?(Ac, M +) is the orthogonal direct sum of the
subspace${F, .. (Ac). B

Afunctionf € L3(A, Py) is in F, ; (A) if and only if there exist square-integrable
complex-valued functiondy, ... x, on A,, such that

dim¢

f(A) = Z / Hkl,"‘-,kn (Tl,"' ;Tn) da7}<_?11 da’:;f
kn=1" An

ki, kn=

A functionF € HL2(Ac, M,.,) is in HF o4 (/T(c) if and only if there exist square-
integrable complex-valued functiof,, ... ;, on A,, such that

dim¢g

F(O)= Z / Hyy oo gy, (71,04, Th) dcfl1 _ dcﬁ:.
P R

Here as usuad,, = fOT Ay doandc, = fOT C, do, and in either case th&’s are unique
up to a set of measure zero ix,.

The expansion of a functiofi € L2(A, P,) into a sum oven of such stochastic
integrals is called the Wiener chaos expansion and goes back to Kakutani [Ka] and
Itd [Ito]. Nevertheless, we will give a proof of this result (after Lemma 4.11 below)
to emphasize the relation of this result to those in Sect. 3. The trangfgfrhas the
following simple action on the Wiener chaos expansion, which will be used in the proof
of Theorem 5.2 in Sect. 5.

Theorem 4.7. The transformS, , takesF, . (X) ONtOHF 1 5.t (ffc). Specifically, if
f € LA, P,) is of the form

dim K

- k ko
f= E / Hpyyooo i, (11, ) dagt -+ - dajr,
i, kn=1" B0

thenSﬁg,tf is given by

dim K

~ _ K k
Ssif = Z / Hp,, ... k, (1, Tn) dchl T dCTZ.
kla"' ;knzl An

This result is the infinite-dimensional analog of Theorem 4.3, with®/2 and
e~4+t/2 hidden in the definition of the stochastic integrals. The proof will be given
at the end of this section.

We use a slightly unorthodox definition of the multiple Wiener integral, which em-
phasizes the role of the heat equation. Equation (4.12) below shows that our definition
agrees with the usual one. The symmetric gréypacts on the complex Hilbert space
L2 ([07 1]n ; Egn) by (U : f) (xla T2,..., ‘rn) = Uf (wab L2y .- 7xan): Whereaf de-
notes action of,, ontE" determined by (£1®- - -®&,) = £,-11®- - -®E, -1, In particu-
lar,if f = f1®---® f, with f; € L?([0,1] ; c), theno-f = f,-1,®- - -® f,-1,,. The sym-
metric subspace, denotsd.? ([0, 1] ; €2"), is the space of thosee L2 ([0, 1] ; ¢2")
forwhicho- f = fforallo € S,.Afunctionf € SL? ([0,1]" ; ¢Z") is determined by its
restriction toA,,. The restriction is in.? (A,,; €2™) and every element df? (A,,; €2")
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arises as such a restriction. For a symmefriits norm-squared ovg0, 1]" is n! times
its norm-squared ovek,,. Finally, note that given functiondy, ... . € L?(A,,) there
is a uniquef € SL?([0,1]™; €Z™) such that

(f (7-17 e 7Tn) ) ij_ Q- Q an) = Hk?l;”' Jkn (7—17 e ?Tn) for (T17 e aTn) S Ana

e, fla, =2 Hpy oo 1o Xiy ® - - ® Xy, . Here(., ) refers to the bilinear extension of
the inner product front to &c.

Definition 4.8. Let& denote the subspacebf ([0, 1]" ; ¢2") consisting of finite linear
combinations of functions of the form

flnm) = i) @ @ fulm), (4.8)

wheref; € L? ([0, 1] ; ) is of finite variation. As above, will be denoted by; ®- - - ®
fn- Themultiple Stratonovich integral is the linear mapStrat, . : £ — L?(A, P;)
determined by

1oy [*
swat,. (@ £)= 2 ]] [ (it).dan), @9)
"1

Here (-, -) refers to the bilinear extension of the inner product frbto &¢.

Remark 4.9.Since f; is assumed to be of finite variation, the integrals in (4.9) make
sense for all continuous functionss Stiltjies integrals. Moreover eagh () , da,) isa
continuous linear function af. Using these remarks Strag (f) for f € £ is completely
determined by its values A which are:

1
Strad s (/) (4) = - (A @A)y yogery Tl A A (4.10)

Thus the right side of (4.10) is a cylinder function, where ¢him Definition 4.2 is a
homogeneous polynomial of degregand every such cylinder function arises in this
way.

We will be interested in this map just on the symmetric subspaée dénotecCs.

Definition 4.10. The multiple It'o integral is the bounded linear mag, , from
SL?([0,1]™;¢&™) to L?(A, P,) which is determined uniquely by

I« (f) = e~*24/2Strat, , (f) forall f € &s. (4.11)

The fact that there exists a bounded linear operator satisfying this equation is a conse-
guence of Lemma 4.11 below.

As an example, foi = 1,2,,... ,n, let f; = X, 1y, m,) € L?([0,1] ; tc) where
l1,-++ ,l,andmq, - - - ,m, arerealnumbers such thatOl; < m; < [;+1 < 1. Because
of the conditions on thés andm’s, f := )" s fo1®- -+ ® foy is the unique function
in £s such that

Flan (1, 70) = (X L ma] (1) @ -+ @ (X, Lt imn] (7)) -
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By Definition 4.8,

n

Strat,  (f) = ﬁ/l(fi (r),da;) =] (afn - aii) :
i=1 70

=1

Again the assumptions on tiie andm’s imply that{ f1, f2, ..., fn} C L?([0,1] ; £c)
is an orthogonal set and hence thagStrat, . (f) = 0. Therefore the multiple Wiener
integral coincides with the multiple Stratonovich integral, i.e.,

L (f) = ﬁ (a’;n - af;) . (4.12)
i=1

This expression agrees with any other reasonable definition of the multiple Wiener
integral. For more on multiple Stratonovich integrals and their relationship to multiple
Itd integrals, see [HM, JK] and the references therein.

Lemma4.11. For f € &g,

2 _ 8" _ 2
||ITL7S (f)HLZ(AifDS) - g ||fHL2([0,1]n;E§n) =s" ||fHL2(An;E,§").

Proof of Lemma 4.11Choose an orthonormal séty, - - ,eq} C A with eache; of
finite variation and such that
fespan{e; @ ® ein}szl. (4.13)

Then there is ahomogeneous polynorpiaf degrem~oan suchthat Strat s (f) (4) =
p({e1, A), ..., {(eq, A)). Since the distribution (undé¥;) of ((e1, A), ..., (eq, A)) is the
Gaussian measueg®z4/25,, (3.7) with L = sAga implies that

n d
Vs Dlegifn == Do [(0a0i-+-0i,p) (@)

7;177;27-'~7;n:1

2
y

(4.14)

whered; = 9/0x; and the factos™ results from the fact that = sAga rather thampa.
By (4.10) of Remark 4.9,

1
p(<el7 A)a ey <eda A>) = E<f7 A (SRR A>L2 ([0,1]";E?") .
This equation and the chain rule gives,

1
(81'182'2 T aznp) (O) = maeil aeiz T aein <f7 AR ® A>L2 ([071171,;3?") |A:0
1

=0 (fein®e Cion) 12 (078" )
oESy
=({feq® - ® 6@‘n>L2([0,1]";E?")’ (4.15)

where in the last equality we have usgd= £s. Combining (4.13)—(4.15) proves the
lemma. O

We may now define the integrals that appear in Proposition 4.6.
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Definition 4.12. For f € L?(A,), let

f dakl e dakn = In,s (g) )

T Tn
A n

whereg is the symmetric extension [0, 1]" of the functionf - X, ® --- ® X, In
L2 (A, E8").

Proof of Proposition 4.6ldentifying SL? ([0, 1] ; ¢2" ) with L? (A,,; ¢2™) by restric-
tion, the 16 integral is an isometric map &P (An; Ej?") into L2(A, P,). From the proof
of Lemma 4.11, the image df? (A,,; ¢2") in L2(A, P,) is preciselyF,, ; (A) in Defi-
nition 4.5. This gives the characterization’®f (A) given in the proposition. That the
spacesF,, s (A) are orthogonal and that their sum is all 6f(A, P,) follow from the
corresponding results (Proposition 3.5) for the spa&es (R?) in L? (R?, P,) and the
density of cylinder functions.

We now turn to the complex case. As in the real case we think of the integrand
as an element af? (A,,; ¢2"), which we then identify with the symmetric subspace
of L2 ([0,1]™ ;¢£™). Continuing the notation of Definition 4.4, lef, , be the unique

operator on cylinder functions such that , f (4) = (As0) ((ex, A) -+, (eq, A)).
Define the complex Stratonovich integral by analogy to (4.9) to be

1oy [*
strat, i (1@ )= 5 ][ [ 0. der) (4.16)
T sl

and the complex &t'integral to be

Lo (f) = e~ A=/2Strat, ., (f). (4.17)

The analog of Lemma 4.11 in the complex case is:

2 _ ST a2 _ 2
||In,s,t (f)||L2(-/47(C5MS,t) - E Hf”LZ([O,l]";E?") =s" Hf”LZ(A,,L;?gm)

The proof is the same provided that (3.12) is used in place of (3.7). Alternatively, this
equation is a consequence of Theorem 3.8 and the isometricityah Theorem 3.2.
The rest of the proof is the same as the real casél

Proof of Theorem 4.7dentify the integrand as above with an elemenséf ([0, 1]" ;

Eg’”). By the continuity of the transform and the integrals it suffices to prove the result
on the dense subspag€e. But comparing (4.9) and (4.11) to (4.16) and (4.17) and using
Theorem 3.8 gives the result ég. O

Remark 4.13In Sect. 5 we will need to know that, at least in certain casesmihle

tiple Wiener integral coincides with thigerated Itd integral. It is easily seen that the

two coincide for nice integrands, as in (4.12). Moreover, using repeatedly the isometry
property of the one-dimensionabliftegral shows that the iteratea litfitegral has the

same isometry property (Lemma 4.11) as the multiple Wiener integral. It follows that the
multiple Wiener and iterateddtihtegrals coincidegrovidedthat the iterated ttintegral

makes sense. For us it is enough to have this for integrands which are constant on a set
of the form 0< u <7, < .- < 7, <wand zero elsewhere (Lemmas 5.7 and 5.8), in
which case there is no difficulty.
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5. Functions of the Holonomy

5.1. StatementsRecall thata, (4) := [; A, do andc.(A) := [; C, do are Brownian
motions with values it andéc respectively.

Definition 5.1 (Itd map3. Let 6, and 6 denote the solutions to the Stratonovich
stochastic differential equations

df, =0,0da, Withfg=e € K, (5.1)
dft = 6% o dc, withd§ =e € Kc. (5.2)

We define the holonomiég A) and h¢ (C) by

h(A) = 01(4),
he (C) =65 (O).

Notice that? andh are defined o(@ 155), and thaty® andh¢ are defined OMC, J\Zfs,t).

Recall tha®,. (A) andd® (C) are to be interpreted as the parallel transport from 0 to
7 of the generalized connectioasandC, respectively. The meaning of the stochastic
differential equations (5.1) and (5.2) is described in detail in Sect. 5.3. We are now ready
to state our main result.

Theorem 5.2. Fix s and¢ with s > £/2 > 0. Suppose’ € L2(A, P,) is of the form

f(A)=¢(h(A),

whereg is a function onk'. Then there exists a unique holomorphic functibon K¢
such that

St f (€)= @ (he (C)).
The function® is determined by the condition that
D), = eBr /24,

Here Ak is the Laplace—Beltrami operator ¢t associated to the bi-invariant Rie-
mannian metric that agrees at the identity with the chosen inner produtt Tme
meaning of!2x/2 is discussed following Theorem 5.3.

Observe that the space of functiohs L2(A, P;) of the formgoh may be identified
with L? (K, p,), wherep, is the distribution of, with respect taP;. It is known thatp,
coincides with the heat kernel measureforthus the Hilbert spack? (K, ps) coincides
with the one considered in [H1]. Similarly, the space of functibhs L?(Ac, Mj ;) of
the formF' = @ o ¢, with ® a not-necessarily-holomorphic function éft, may be
identified withL? (K¢, p,¢), Wherep , is the distribution ofuc with respect tal/, ;,
which is a certain heat kernel measurefgn. So if we apply the isometric transform
S, + to functions of the formp o h, then we obtain an isometric map &f (K, p)
into the holomorphic subspace bf (K¢, 1. ). The proof of surjectivity in Theorem 2
of [H1] applies essentially without change to show that this map is onto the holomorphic
subspace. The following theorem summarizes these observations.
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Theorem 5.3. For all s andt with s > ¢/2 > 0, the map
¢ — analytic continuation 0b!2 5 /24

is an isometric isomorphism df? (K, p,) onto the space of holomorphic functions in
L? (Kc, ps,t)-

This result was proved in [H1] for the case t. Part of the theorem is that®</2¢
always has a unique analytic continuatiorffg. Note that the measuye has a density
with respect to Haar measure which is strictly positive and continuous, and therefore
bounded and bounded away from zero by compactness. This meah$ thatp,) is the
same space of functions &8 (i, Haa)). Soe'*«/2 s to be interpreted as the standard
contraction semigroup oh? (K, Haay.

If we restrict the transforns ; to functions of the holonomy, then it makes sense to
allow s to tend to infinity. See Sect. 2 for a discussion of why this limit is natural from
the point of view of Yang—Mills theory.

Theorem 5.4. Normalize the Haar measurér on the compact groux’ to have mass
one. Theny € L? (K, p,) ifand only if¢ € L? (K, dx), and

o rogre azy = lemoo 1l Lagre py -
The measure

dvs (g)=/ dps,i (9x) dx, g€ Kc
K

is independent of and will be denoted (g). For all ® € # (K¢), ® € L? (Kc, pts,t)
if and only if® € L? (K¢, 1), and

1Pl ey = Ml 2(ace e, ) -
Thus the map

¢ — analytic continuatiore’</2¢
is an isometric isomorphism @ (K, dx) ontoHL? (K¢, v;).

The last isometric isomorphism, with domdif (K, dz), was obtained in [H1, Thm.
2], and was denoted;. . _

Recall that the transforifi; ; maps into the holomorphic subspacddtAc, Mj ;).
Theorem 5.2 together with the “onto” part of Theorem 5.3 gives the following.

Theorem 5.5. Supposed is a holomorphic function or¢c such that® o hc is in
L?(Ac, M, ;). Thend o he is in HL?(Ac, Mj ;).

It would be desirable to have a direct proof of this result. See the discussion in
Sect. 2.5 of [HS], which contains tle= ¢ case of Theorem 5.5. (Note that there is a gap
in one of the two proofs of this result in [HS]. The paper [DHu] will close this gap. See
the discussion at the end of Sect. 7.) A more general version of Theorem 5.5 is given in
Theorem 6.3 of Sect. 6.

5.2. Heuristics.We now give a simple heuristic argument for Theorem 5.2 based on the
following proposition. The proof will be given in the next subsection. We are grateful to
Ambar Sengupta for showing us the significance of Proposition 5.6. See also Appendix
A for another “explanation” of Theorem 5.2.
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Proposition 5.6. If A € A'is distributed according to the measufe and B is a fixed
element of4, thend(A + B) has the same distribution &5 A) 6 (B).

Proof. Direct calculation shows that fot and B smooth,
0. (A) 0, (B) =0,(Ad0(B) ' (4) +B).

Standard stochastic techniques show that this remains true almost sutédyafwhite
noise andB is in .A. But the white noise measur, is invariant under the pointwise
adjoint action, which is just a “rotation” ofl. O

Using Proposition 5.6, we may formally calculaté4/2f. The measure’, is the
fundamental solution at the origin of the heat equation, which means'tha should
be given by convolution witt?;. Similarly, p; is the fundamental solution at the identity
of the heat equation o. So if f (A) = ¢ (4 (A)) then

(D425 (B) = /f'las(el (A+B)) dB, (A) = /A 6 (61(A) 61 (B)) dP, (A)

- /K 6 (001 (B)) dpr (x)
= e!2%/2¢ (0, (B)).

We have used the proposition between the first and second lines. Assuming this is valid
for B € A and then analytically continuing formally tdc we obtain Theorem 5.2.

Some rigorous variant of this argument is used in [GM, Sa2, HS, AHS], all of which
consider only thes = t case. In that case it is possible to work with holomorphic
functions onA¢ instead ofAc, so that the above argument is essentially rigorous. The
results of [GM] are stated only adc, while the other papers work first ofic and then
extend toAc. However, this approach does not work whew ¢, since the pointwise
bounds needed to obtain (everywhere-defined) holomorphic functiondcotio not
hold whens # ¢.

5.3. Proofs.Let us explain more precisely Definition 5.1 of the ftiaps. A continuous
K-valued semi-martingalg satisfies (5.1) if and only if for alf € C°°([0, 1] x K),

dim¢

fe.0)=109+ [ Leoydoe Y [ xis@onodd. 63
k=1

wherea, = 329" qk X, Here{X;}%™" is an orthonormal basis fdt with eachx;

viewed as a left-invariant vector field dx.
Noting that{a*}9m ¢ are independent Brownian motions with variancé.3) may
be written in I8 form as

a T(Of s
1000 = 10,0+ [ (G0 + jaxs.00) ao
dim ¢

+ TX f(o,05) da¥, (5.4)
>

whereAx =3 X2.
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Write ¢, = Zd'mE ak X, + Zd'mE b*Y;,, whereY;, = J Xj. Warning: we are using
the same lettet for both the process ihand the real part of the procesgin which do
not even have the same distribution. The context should make it clear whether we are in
the real or the complex setting. A continualig—valued semi-martingalé" is said to
solve (5.2) provided that for all € C*° ([0, 1] x K¢),

u(r, 0%) = u(0, €) + / %(0, 6%) do
0 ag

dime dimée

+Z/ Xyu(o, 05) o da¥ +Z/ Yiu(o, %) o db”. (5.5)

Noting that{a*}$m¢ and {v*}9m¢ are independent Brownian motions with variances
(s —t/2) andt/2, respectively, (5.5) may be written irolform as

U(T’QE) :u(O’e)+/ (gg( QC)+ Astu(a,ﬁg)) do

0
dim¢g dim¢g

+Z/ Xyu (05) dak +Z/ Viu (65) dbk, (5.6)

where AX? is defined, by analogy tol,, to be (s —t/2) £X2 + LXV2. For exis-
tence and uniqueness of solutions to (5.5) and (5.6) see, for example, Elworthy [EI],
Emery [Em], Ikeda and Watanabe [IW], or Kunita [Ku, Theorem 4.8.7].

We now begin working toward the proof of Theorem 5.2. For use in Sect. 6, we will
actually computeS ;, on functions of the form(9,,16,), for two fixed timesu anduv.

The transformed function is theh ((95) HS) , Wwhered is holomorphic onk¢ and

where ®|,, = e=wtAx/2¢ Theorem 5.2 is the special case 0,v = 1
The following lemma is essentially a special case of the results of Veretennikov and
Krylov [VK].

Lemma 5.7. Suppose thad < v < v < 1, and¢ is a measurable function o such
that ¢(6;, 10,) € L%(A, P.). Then the Wiener Chaos expansiors(f;, 10.,) is

o dim¢g

¢(0 19 ) - Z Z / Ay o kp da kl t daﬁ:/v (57)
n=0 ky,--- Ay (u,v)
where
Qs = (X K, 070525/26) (o) (5.8)

and A, (u,v) ={(r1,...,m)u<nn<mn<--- <7, <v}

Proof. To simplify notation, lett, = 6, for u < 7 < 1. Let us first assume that
o(x) = (h, w(z)w), wherer : K — End(W) is a finite-dimensional representation of
K,h e W*andw € W. Set

F(rx) = (e@*ﬂsﬂk/zqs) (x) = <h7 w(x)e<v*7>”<ﬂf<>/2w> : (5.9)

wheren (Ag) = ZZL"}E 7(X)? and by abuse of notation we are writindX) for
%\mr(etx) when X € ¢ The second equality in (5.9) follows from uniqueness of
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solutions to the heat equation. (See also [H1]). Notice fhedlves the backward heat
equationd f(r, z)/0t + sA f(r,x)/2 = 0 with f(v, ) = ¢(z). Therefore by the analog
of (5.4) for¢.,

dim¢

fr.6) = f+ Y [ Xuf (0:60) dab.
k=1 vt

SinceA and X, commute, it follows tha¥;, f also satisfies the backward heat equation.
Hence, the previous equation applies witheplaced byX;. f, namely

dimée

Xef (16 = Xef (we)+ Y [ XiXef (&) dal.
=1 v

Combining the two previous equations gives

dime  .r dime¢ .- o
F(,6) = flu,e)+ ) / Xif(u, ) daf + ( / XX f (r, &) dai) dag.
k=17Y kil=1"%" u

Iterating this procedure gives (Remark 4.13)

$(0,10,) = (&) = f(,&)
N dim¢

- k k
= E E / Qky,oe ky dagt -+ dai™ + Ry (u,v),
n=0 kq,--+ ,k,=1 An(u,v)

whereay, ... , is defined by (5.8) and where

dim¢

v TN+1 T2
RN(U,U)Z Z / / / Xkl'"anf(7—17£7'1)da71'“ daTN+1'
u Ju u

ki, kn+a=1

Using the isometry property of the iterated ititegral together with the assumption that
¢ is a matrix entry of a finite-dimensional representation one shows that

2 ON+1
||RN (Uy'U)HLZ(J‘IﬁS) < m — 0asN — oo.
Therefore, (5.7) holds whegy(x) is a linear combination of matrix elements of finite-
dimensional representations &f.

We now consider general. Note that the distribution of; 16, is the same as
that of 6,_,,, namely, the heat kernel measyg_.);. This measure has a smooth
strictly positive density with respect to Haar measureignwhich by compactness is
bounded and bounded away from zero. Thus by the Peter-Weyl theorem, there exist
functions¢,, which are finite linear combinations of matrix entries such that— ¢
in L2 (K, pu—v)s) and thusp,, (0,%0,) — ¢(6,,*6,) in L3(A, P,). The smoothness of
the heat kernel shows that the map+ (Xy, - - - Xy, e"=754%/24) (e) is a continuous
linear functional onL? (K, p(,—v)s ). SO passing to the limit gives the lemma in general.
O

We have the following holomorphic analog of the previous lemma. RecaLhtﬁ?tz
(s —t/2) X2+ $XV?2, whereYy, = J X,
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Lemma 5.8. Suppose tha® is a holomorphic function ork¢c which is a finite lin-
ear combination of matrix entries. Then the holomorphic Wiener chaos expansion of

@ ((65)7"65) is

oo dim¢g
® ((95)’195) =3 ¥ By debr - dekr (5.10)
n=0 kq,--- ,k,=1 An(u:v)
where

K\
Bissoe b = (X o X 794520 () (5.12)

andAn(”?”)={(Tla---a7—n)‘u§TlSTZS s < Ty SU}

Proof. The argument is very similar to the preceding on@ () = (h, 7 (g) w), where
m is a finite-dimensional holomorphic representatior®f, then we set

¢ v—T)T Ke
u(r,g) = WAL 2 (g) = <h,7r(g) ) (A-**")w>.

Again it may be verified that the second and third expressions are equal (see for exam-
ple [H1]), with the second interpreted as convolution against the relevant heat kernel.
Thenu (7, g) is holomorphic iy for eachr. ThusYyu = i X u, and the last two terms in

(5.6) combine into one term involving integration against +idb; = dc, . Iteration then
proceeds as in the real case. The remainder estimate is similar as well after using the stan-

dard fact that thé.2 norm ofr ((95)71 9(5) is bounded uniformly for 6< u < v < 1.

The lemma in fact holds for all holomorphie for which & ((05)71@9) is square-
integrable, but we will not require this. O

Proof of Theorem 5.2.et ¢ € L2(K) and f = ¢(6;26,) € L*(A, P,). We will show
that there exists a unique holomorphic functibsuch thalS, , f (C) = @ ((95) -t Gf)

and such thatb| . = e(*"WAx/2¢ Theorem 5.2 is the special cases 0,v = 1.

By standard density arguments it suffices to prove the theorem in the case where
o(x) = (h,m(z)w) with 7 : K¢ — End(W) being a finite-dimensional holomorphic
representation of{c, h € W* andw € W. In this case the holomorphic function in
the statement of Theorem 5.2 is

Cb(g) — (6(1)—11,)tAK/2¢)(g) — <h, 7T(g)e(u—u)tﬂ'(AK)/2,w> ]

By Lemma 5.7 and Theorem 4.7,

oo dim ¢
SO0 => S [ andededd
n=0 kq,- ,kp=1" An(u,v)

whereay, ... g, = (X, - Xi, e ™9585/2¢) (¢). Lemma 5.8 will now give the the-

orem, provided that the coefficient, ... x,, in Lemma 5.8 with® as above coincide
with the coefficientsyy, ... x,. So we require that

(Xkl X e(v—u)sAK/Z) #e) = (Xk1 X e(v—u)As,f,/Ze(v—u)tAK/Zd)) ().
(5.12)
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But ® = ev~"!Ax/2¢ js holomorphic, andd, ;® = (s —t) Ax® on holomorphic
functions, so (5.12) holds. O

Proof of Theorem 5.45ince we are assuming thiatis compactp, (x) will be bounded
and bounded away from zero. Thus tbenorm with respect tp, (z) dz is finite if and
only if the L? norm with respect to the Haar measure is finite. It is an easy and standard
result thato, () converges uniformly to the constant function 1, which establishes the
first limit in the theorem.

Now, letd - denote the Haar measure An viewed as a measure @a-. Then since
A, ¢ 1s a left-invariant operator, we have formally

Vst = eAb’t (5K) .
But the two terms in the definition of, ; commute, so
Vey = et/ZZ JXie(s—t/Z)ZX,Zc (6K) )

Sincedx is K-invariant, the exponential involving X,f has no effect, and the-
dependence vanishes.

The equivalence of square-integrability with respegt i@ andv; is implied by the
“averaging lemma” [H1, Lem. 11]. This is stated in [H1] for the caset, but the same
proof applies in general. Using the commutativity}ofX 2 and (JX1)%,

Mst = e(s_t)zxi et/ZZJX’% et/ZEX,% (0e) V s>t.
Thus

ps,e (9) = /K,Ut,t (szl) ps—t (v) du,

from which it follows that lim_, o s + (9) = v+ (g) for all g. Furthermore, applying the
averaging lemma tq, , we see that for alk > ¢, i+ (¢9) is dominated by a constant
(independent of) timesv; (¢). So Dominated Convergence gives the second limit in
the theorem. The methods of [H1] are sufficient to make all of this rigoroud.]

6. General Functions of the Parallel Transport

Recall tha¥ andd® are the l6"maps satisfying the stochastic differential equations (5.1)
and (5.2) of Definition 5.1.

Definition 6.1. Let W (K) denote the group of continuous pathwith values ink,
with time interval[0, 1] and satisfyingeg = e. DefineW (K¢) similarly. Letj, be the
Wiener measure onlV (K), that is, the law of the proce#s(A), whereA is distributed
as Ps. Similarly letfi5 ; be theWiener measure onW (K¢), the law of the process
0% (C), whereC is distributed asiZ, ;.

For each partiton? = {0 =19 < 7, < --- < 7, = 1} of [0,1], let Op =
(67, ,0-.), K¥ = K™ andp? denote the law of», a probability measure o ”.
Defineds, KF andp?, similarly.



278 B. K. Driver, B. C. Hall

As in Theorem 5.3, lep, denote the measurg’ on K, whereP = {0, 1}. This
measure has a smooth strictly positive density with respect to the Haar measure, which

we also callp,. If x = (x4, - - , x,,) is a typical element id{”, then (as is well known)
dpl () = [ [ peasr (@i i) dacs, (6.1)
=1

whereA;r = 7; — 7;_1. As for p,, we will also usey” to denote the density on the right
side of (6.1).
If P is a partition and: € W (K) andg € W(Kc), letzp = (25, -+ ,2,,) € K¥

andgp = (g”l‘lv"' 7g7'n) € K(ij

Definition 6.2. Let? = {0 =19 < 71 < --- < 7, = 1} be a partition of[0, 1]. A
function f € L?(W(K), p,) is said to be acylinder function based on?P if f is the
form f(z) = ¢(xp) for some measurable functian: K* — C.

Similarly, we say a functiod” € L*(W (Kc), fis.¢) is a holomorphic cylinder
function based onP provided thatF is of the formF(g) = ®(gp), whered is a
holomorphic function o[ .

Theholomorphic subspace ofL? (W (Kc), fis,:), denotedH L? (W (K¢), fist).
is the L2 closure of thel.? holomorphic cylinder functions.

Theorem 6.3. There exists a unique isometric isomorphiémt LP(W(K), ps) —
HL? (W (Kc), [is,) such that for all partitionsP and all L2 cylinder functions

f (@) =¢(xp)
based orP, B, , is of the form

Bs,tf(g) =0 (g'P)7

where® is holomorphic onK X which is determined uniquely by the condition that
0@ = [ o (@) o0 62)

forallg e K”.If F € HL? (W (Kc), Jis,:) is a holomorphic cylinder function, then
E;SF is a cylinder function based on the same partition.
The following diagram is well defined and commutative, and all maps are one-to-one,
onto, and isometric.
IAAP) XA IT,)
1o t6°

L2(W (K), 5) 25 HIZ (W (K fis)

where and6® are being used here to denote the unitary maps, L2 (W (K) , ps) —
fob € L¥(A, P,)andF € L?* (W (K¢) , fis,)) — Fo8 € L¥(Ac, M, ), respectively.
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Note that the vertical arrow on the right side is not obviously well defined, since
composition witld© does not take cylinder functions to cylinder functions. Theorems 5.2
and 5.3 are special cases in which the partitigR is {0 = 79 < 7, = 1}. Thes = ¢ case
of this theorem is part of Theorem 17 of [HS]. The theorem implies tbfaEsz(A B,)
is a function of the parallel transpdttat a finite number of times;, - - - , 7., thenSS of
is a function of the complex parallel transport at the same times- , 7,,.

The heuristic argument for Theorem 5.2 applies just as well when applyiptp a
function of the formy (971 (A),---6,, (A)) , and so provides a heuristic argument for the
commutative diagram in Theorem 6.3. Isometricityf, would then follow from the
isometricity ofS‘S,t. Appendix A provides another heuristic argument for Theorem 6.3.
See especially Example 8.8 and Theorem 8.9. The actual proof of Theorem 6.3 will be
by reduction to Theorem 5.2, using the following result. (See also [AHS, Prop. 3.3.1].)

Proposition 6.4 Factorization proposition For 0 < [ < m < 1, let Fj ., be
the o- alg_ebra in A generated bye, — a;, with s € [I,m]._Supposec € (0,1),
f e LXA, Fo.q, P.) andg € LX(A, Fi.15, P.). Thenfg € L(A, P,) and

gs,t(fg) = gs,t(f)gs,t(g)'

Proof. First suppose that

FA)=¢ (e, A), - (ea, A)) andg (A) =9 ((uz, 4) -~ (ux, 4)) ,

where{es, - -+ ,eq}and{u, - - - ,ux} are orthonormal subsetsdfwhich are contained
in AN C*>([0,c]; €& and AN C>([c, 1] ; ) respectively. Then

e A) = — /0 (e r). 0 (A)) dr
1
(s, A) = — / (), ar(A) — ac(A)) dr

Approximating the integrals by Riemann sums, one shows that these expressions
are Fp,q- and F. 1;-measurable, respectively. Therefofeand g are cylinder func-
tions that areFp - and Fi. 1-measurable, respectively. Since eaghis orthogo-
nal to eachu;, {e1, - - ,eq,u1,--- ,ux} is an orthonormal set ando  and F. 1
are P, independent-fields. The heat kernel oR?** factors, so applying the finite-
dimensNionaI transform?S ¢ in (3.1) to the functiony (x) ¥ (y) givesSs ¢ (¢) Ss.¢ (¥).
HenceS. «(f9) = S..+(£)Ss.4(9)-

For generalf € L2(Ac, Fio.q, Ps) andg € L2(Ac, c1],P) choose cylinder
functions f,, andgn as above such that, — f in L?(Ac, Fp, C]7P) andg, — gin
L2 (Ac, Ae, 1],P) Because of the mdependenceflt) q and F, 1, fngn — fgin

L*(Ac, Fo.1y, P,). Furthermore, it is easily seen théi ; (f,) and S, (g,) are mea-
surable with respect to independenéalgebras indc. Thus by the |sometry property of
Ss,tv

Sut(Fo) = lim 5. (fuga) = M S(£a)Ss(9n) = 55t(NSsr (9). O
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Proof of Theorem 6.30ur strategy is to use Theorem 5.2 and the Factorization Propo-
sition to computeSS + on functions of the formb( s, Or ) The result shows that
S‘S’t (foh)= ( B tf) o fc and hence tha.’BS + is isometric becauss,. + is isometric. A
surjectivity argument forBS + then establishes the well-definedness and commutativity
of the diagram.

It is easily seen that there is at most one isometric isomorphism having the given
action on cylinder functions. We will now prove the existenceésgf, and establish the
commutative diagram in the theorem.

Supposef € L2(A, P,) is of the form

J = s (0,) 2 (05207,) -+ (072,65, )

wheren, - - - , 1, are functions onk’. Then; ( 0 ) is ]—'[Tifl,n]-measurable.

So by the strong form of Theorem 5.2 proved in Sect. 5.3 and by the Factorization
Proposition 6.4 (extended by induction to hold for products &ctors),

Sar= w5 e ((05) 1 0) w (5) 02 ). 63

whereW; is a holomorphic function oic whose restriction td is elri—Ti- 1)tAK/2w
Now supposef € L2(A, P,) is any function of the form

J =0 (00720, 072,00, (6.4)

with i) € L? (K™, psa,r X -+ X psa,-). Then we claim that

~ -1
Seif :\11( C(05) TeE, (991 ) agﬂ), (6.5)
whereW is the unique holomorphic function dii¢ whose restriction td(" is given by
(ag, - ,an) = / e / Ptasr (albfl) (6.6)
K K

“prans (@nbyt) ¥ (b, -+ ,by) dbydby - dby,.

If ¢ is a product function then this assertion is simply (6.3); since linear combinations
of product functions are dense If (K™, psa,r X - -+ X psa,-) the assertion holds in
general. (Recall (6.1).)

Equations (6.4)—(6.6) express the actlom?g)t on cylinder functions in terms of the
“incremental coordinate®’-* 6... We wish to have in addition a formula for the action

of S‘S,t on cylinder functions in terms of the “direct coordinatés,, - - - , 6, . (See the
proof of Theorem 3 in [HS, Sect. 3.2].) So suppgsis any cylinder function based on
the partionp:

f = ¢ (07'11 o 7977”) (67)
with ¢ € L? (K7, pT’). Then we claim that
Seuf =@ (65,65, 6 ), (6.8)



Yang—Mills Theory and the Segal-Bargmann Transform 281

where® is the unique holomorphic function d§’ such that
@)= [ ol (o) o ix. ©9)

for all g € K”. Explicitly, by (6.1) this means that

(O] (gl, ce agn) = / [H PtA; T ((gi—lzi_ll)_lgi,l'i—l)] ¢(I1, ce ,CCn) dIl e dl‘n
o (6.10)

(Herego=x0=¢.)
To verify this, we note thaf can be expressed in the form (6.4) with

P(ay, - ,an) = ¢(at,a1az, - ,a1a2---ap),

in which casep can be expressed in termswby
(b(‘r]n e 7$n) = ’Q/J (w17$51x27 e 7377:&]_‘%71) .

ThusS, , f is given by (6.5). But they, , f can be expressed in the form (6.8), where

P (917 e agn) =y (.9179;1927 e 797:&1971) )

with ¥ given in (6.6). We need only verify the relationship betwaezand¢. Putting
together the definitions we get

(g1, . 90) = / [H Ptasr (g;_llgibgl)] Y (by, -+ ,by) dby---dby,.(6.11)
Kn

We then make successive changes of varighle - - , x,,) = (b1, biba, - -+ ,biba - - - by),
so thath; = xf_llxi- Since the heat kernel di is a class function, we have

peasr (9;729:0Y) = peasr (95907 *wim1) = prasr ((gi71$;f1)7lgi$; 1) -

Thus (6.11) agrees with (6.10). _ .
Now recall that is a measure-theoretic isomorphism g, (°,) with (W (K), ps)
anddC is an isomorphism ofdc, M, ;) with (W (Kc), fis+). So let us nondefinea

transformB, , by

~ _ ~ C 71

Bs,tf - [Ss,t (fo 9)} o (9 ) .
This is a well-defined isometric map &f (W (K), ) into L? (W (Kc), fis,). But
(6.7)-(6.10) tell us thatB, ; takes cylinder functions to holomorphic cylinder func-
tions. Since cylinder functions are denselif(W (K), j,) then by the definition of
HL? (W (Kc), fis,t), Bs,» maps into the holomorphic subspace. Equations (6.7)-(6.10)
assert thal3; ; satisfies (6.2) of the theorem. By the definition/{ ., the diagram in

the theorem would commute if t9¢ L?’s were replaced by.?’s.
It remains then to show that composition with takes# L? (W (Kc), fis,:) onto

HIL(Ac, M, ), and thatB, , mapsontoH L2 (W (Kc), i, ). We address the second
point first. We compute3, ; in “incremental coordinates” using (6.4)—(6.6). So we are
applying the heat equation in the “incremerﬁ;’flxi. Since in incremental coordinates
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both p” anduﬁt factor as product measures, the surjectivity argument in Theorem 5.3
(using the method of [H1]) applies to show that eveAholomorphic cylinder function
® (gp) comes from ard.? cylinder functiong (z7). For the details of this argument see
again the proof of Theorem 3 in [HS]. Since holomorphic cylinder functions are dense
by definition inH L2 (W (Kc), fis,t), Bs, is surjective.

Now that we knowés,t is surjective, we may show that composition withtakes
the holomorphic subspace onto the holomorphic subspakec I L (W (Kq¢), ﬁsyt) ,

then lettingf = B, F, we have
Fob®=(Byif)o8°=5,(fo0).

But S, maps into the holomorphic subspace /8o 6 € HL2(Ac, M, ,). A similar
argument using the surjectivity &f; ; shows that iftf’ € HL?*(Ac, Ms,) thenF o

(69) "t e HI?(Ac, BT,,). O

7. Another Proof of Theorem 5.2

In this section, we sketch another method for proving Theorem 5.2. The idea is to
approximatéh (4) by cylinder functions and to computg , by first principles. So for

a partition? we make a piecewise-linear approximatigh to the Brownian motiom,

and then apply the deterministioltiap toa” . This gives an approximatiol” (A) to

the holonomyh (A), given explicitly by

P (4) = PISTOPYAIC) I eAN(a)7 (7.1)

whereA; (a) = a,, — a,,_, i thei" increment ofa. Standard approximation results
(e.g., [IW, Thm. VI.7.2]) show that for any finite-dimensional irreducible representation
m of K,

lim mohP =7woh
|P|—0

in L2(A, P,), where|P]| is the partition size. The proof relies on the fact that 0
satisfies its own (matrix-valued) stochastic differential equation.

Meanwhile, applying the Segal-Bargmann transform to the (matrix-valued) cylinder
functionr o h” gives

Sei (moh?)(C) = / o (eAer) L An () B (A), (7.2)
A

wherer now refers to the holomorphic extensionmofo K. Unfortunately the authors

have not been able to find in the current literature simifaconvergence results which

are applicable whet is replaced byKc. This is because for a hon-compact group
the vector fields entering in the stochastic differential equations are not bounded as is
requiredin all references known to the authors. Nevertheless, itis possible to show [DHu]
by essentially standard arguments that

Jim (M) Ax(0) = 7 (e (A +C))
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in L2 (A x Ac, P, x J\7[S,t), wherehc (A + C) = g1, g, being theK¢-valued solution
to the stochastic differential equatialy, = g, o d(a + ¢).

Because conditional expectations are contractive, we may interchan(g? the0
limit with the integral in (7.2) to find that

S,4(roh)(C) = /Aw(hc (A+C)) dB; (4). (7.3)

To compute this integral we write out inolform the matrix-valued s.d.e. satisfied by
0™ =7 (0° (A +O)):

9::I+/ 9§dag+f/ 9g7r(AK)da+/ 9§dc§+8_t/ 077 (Ax) do.
0 2 Jo 0 2 Jo (7.4)

Here a™ = 7(a,) and ¢’ = w(c,), where as abover(¢) = dr(e®)/dt|s=o for

¢ € tc. (We are usingr for both the representation oR¢c and the induced rep-
resentation ortc.) We now wish to take the expectation i with C fixed. So let
67 (C) = [ 67 (A +C) dP, (A). By the Martingale property of stochastic integrals, the
term [, 67 da” integrates to zero so that

T

9‘3(0):“3/ (?;,TW(AK)dm/ 0 deT +
2 0 0

s—t

/0_(7TT7T(AK)dO'

0

:I+E/ 077 (Ax) d0+/ 07 o dcT. (7.5)
2 0 0

Sincer is assumed irreducible;, (A k) is simply a multiple of the identity, and so it is
easily verified that the (unique) solution to (7.5) is

o7 = T B0/27 (6C(C)) .

Putting7 = 1 and recalling (7.3) we see that Theorem 5.2 holds for the matrix entries
of 7. Using the Peter-Weyl theorem it follows that Theorem 5.2 holds in general.

Note that the second of two proofs of [HS, Lem. 24] mistakenly applies [IW] even
on K¢; that proof is therefore incomplete. The convergence results in [DHu] correct this
error.

8. Appendix A: Laplacians on.4 and H(K)

Let (-, -) denote the unique bi-invariant Riemannian metriddmhich agrees with the
given Ad-K -invariant inner product ob. Forv € T (K) we will simply write |v|? for
(v,v). Let H(K) denote the finite-energy pathsia Explicitly, H(K) is the collection

of absolutely continuous paths [0, 1] —+ K suchthat(0) = eandfol |z(7)[2dT < oo.
It is well known thatH (K) is a Hilbert Lie group under pointwise multiplication and
that the map

(z,h) € H(K) x H(®) = R,.h € T (H (K))

is a trivialization of the tangent bundle &f(K). (We are using?,. : H(K) — H(K)to
denote right multiplication by.) This trivialization induces a right-invariant Riemannian
metric (, -) on H(K) given explicitly by
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o1 X .
(Rysh, Ry h) = / (M), (7)) dr Yz € H(K)andh € H(E).
0
The following theorem appears (in a disguised form) in Theorem 3.14 and Lemma 3.15
of Gross [G].

Theorem 8.1. Letf : A — H(K) denote the deterministic solution to (5.1), i.e.,
df,(A)/dr = 0,.(A)A, with 6p(A) = e. Thend is an isometric isomorphism of infinite-
dimensional Riemannian manifolds. In particulaf( K) is flat.

Proof. For simplicity of notation, we will assume, without loss of generality sifice
is compact, thatk is a matrix group. In order to compute the differentialéoflet
2(7,8) = 0.(A + sB), 2(1) = z(r,0) = 0.(A) andh(r) = 2/(r, 0)z(7) 2. To simplify
the exposition, firstassume thaandB areC. Then by smooth dependence of ordinary
differential equations on parametekhsis differentiable and satisfies
iL(T) = &/(1,0)z(r) "t — 2/ (7, 0)A(7)z(r) 1
= di (@(7, 8) [A(7) + sB()]) (r) " — 2/ (7, 0)A(r)a(r)
5 1s=0
= Adz(T)B(T) = AdgT(A)B(T).

Here- indicates a derivative with respecttoand’ a derivative with respect te. The
above equation says that

Q*BA = Rg(A)* / AdgT(A)B(T)dT (8.1)
0
and therefore
l . .
(0.5.4,0.5.) = (0.0, /(00 = [ (). ) dr
0

1 1
:/ |Adx(T)B(T)‘2dT:/ |B(7)|2dr = (B, B) 4. (8.2)
0 0

Since the map : A — H(K) is smooth as a mapping of infinite-dimensional Hilbert
manifolds (see for example [P] or [D1]), both (8.1) and (8.2) extend by continuity to
A BeA O

Definition 8.2 (Directional derivatives For a functionF' : A — CandA, B € A let

d
OpF(A) = P

F(A+1B),
0

provided the limit exists. For a functioh: H(K) — C andx € H(K) andh € H(t),
let

of@)= 0

0

provided the limit exists, wherg'"z) (s) = e!"*)z(s) for all s € [0, 1].
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Definition 8.3 (Hessiang Suppose that botl’ : A — Cand f : H(K) — C are
twice continuously differentiable at € A andx € K, respectively. The HessiansBf
and f at A andz, respectively, are the quadratic forni% F'(4) on A and D?f(x) on
H(K) defined by

D?F(A)(B1, B) = (95,05, F) (A)
and
D? f(@)(ha, h2) = (On,On, f) ().

Notice thatD? f(z)(h1, ho) is not symmetric i, andhs, a reflection of the fact that we
did not use the Levi-Civita connection (K to defineD?f. See Remark 8.6 below.

Using the above notation, it would be natural to defgF'(A) andA g (k) f(x) by
AAF(A) = tI’ADZF(A) and AH(K)f(:L‘) = '[I')T{(E)sz(:);‘)7 (83)

providedthat the quadratic form®?2F(A) and D?f(x) were trace-class. The above
definitions certainly would be suitable F and f were smooth cylinder functions on
A and H(K), respectively. However, the definition in (8.3) is too restrictive for our
purposes. In particular, we are interestechan-cylinderfunctions onA of the form

F = f o 0, wheref is a cylinder function ori (K). For such a functiod”, D?F(A) is
typically not trace-class and hence thg F' would not be defined. Definition 8.5 below
overcomes this problem by using a more inclusive notion of the trad¥ 61 A).

Notation 8.4. Let g = {ei};?:l be an orthonormal basis féyI" an orthonormal basis of
L? ([0, 1]; R), and~y the orthonormal basis df (R) given by

v =A{v() = / V(r)dr|V € T}.
0
Notice that

rg:={Ve;|lVerlandi=1,...,d}
and
vB :={ve;lve~vyandi=1,... ,d}

are orthonormal bases fot and H (£) respectively.

Definition 8.5 (Laplaciang. LetF : A - C, f : HK) - R, A € Aandz € K.
Then

dim¢ dim ¢
(A4F)(A) =) (Z DZF(A)(Vei,Vei)> => (Z(a%eiF)(AO 6

ver =1 ver =1
and

dim ¢ dimée
(A @) =) (Z D?f(x)(ves, vei)> =y (Z(@fei f)(x)> :

vEY =1 veEY =1

provided the derivatives and the sums exist and are independent of the choice of bases.
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Remark 8.6.This two-step procedure for defining an infinite-dimensional trace appears
already in Freed [F] and in [DL]. Moreover, it is shown in [DL] thB2 f(z)(ve;, ve;)

is the same as Hegér)(ve;, ve;), where Hesg denotes the Hessian gfrelative to the
Levi-Civita connection orH (K). So despite the fact that Hg&s) is not trace-class
(IDL, Remark 3.13]) wherf is a cylinder function o (K), it is reasonable to interpret

A (k) defined in (8.5) as the Levi-Civita Laplacian.

Definition 8.7. Given a partitionP={0 =79 < 71 < --- < 7, = 1} 0of [0, 1], let
K? = K" andap = (¥4, Ty, ... ,¥,,) € K for all 2 € H(K). We also define a
second-order elliptic operatan» acting onC>°(K7) by

n dimeg
(AP¢) (.1317 Z2, ... ,l’n) = Z Z min(Tia T]) (Dg,)”Dg,l(b) (mla T2, .. - wxn))
1,j=1 m=1
where
(i) _d sA
(DA gi)) (z1,22,... ,2p) = T O(x1, 2, .o L1, €57 X, T, oo Tpy)
s=0

forall Ae tandi=1,... n.

Example 8.8.Suppose thaP = {0 =79 < 71 < --- < 7, = 1} is a partition of [01]
and f : H(K) — C is a smooth cylinder function of the forrf(x) = ¢(xp), where
¢ : K™ — Cis a smooth function.

1. ThenA k) f exists and

(Auof) (@) = (Apd) (zp) (8.6)

for all z € H(K). See the proof of Proposition 4.19 in [DL] for details.
2. Forx € H(K) let

- -1 -1
Tp = Ty, T Ty oo 5 T Tr)

be the “incremental coordinates” ofrelative to the partitiorP. If f : H(K) — C

is a smooth cylinder function of the forif(x) = (z) with 1) : K™ — C being a
smooth function, then

Ao f@) =3 (7 = 7io2) (AR0) (@h). 8.7)

=1

HereA(Il()w denotesA k¢ acting on the'f* variable ofy while holding the remaining
variables fixed. This can be proved by a finite-dimensional calculation showing that

n
(AP¢)($la Z2,. .. ,LUn) = Z(T’L - 7-ifl) (A([Z()’(/}) (.’171, xflx27 e 7:1;;E]_$n)7
=1

whereg(z1, 2, . .., zn) = (v1,21 '22, ...,z 1 12,) Or by a calculation similar to
the proof of Proposition 4.19 in [DL].
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Sincef : A — H(K) is an isometry by Theorem 8.1 and, and A (k) deserve
to be thought of as the Laplace—Beltrami operatorsdoand H (K) respectively (see
Remark 8.6 above), we should expect thai(f o 0) = (Am k) f) o 0 for all “nice”
functionsf on H(K). This would certainly be true in finite dimensions. It remains true
in this infinite-dimensional context when we use the “two step” trace in Definition 8.5
of the Laplacians.

Theorem 8.9. Suppose thaf : H(K) — Cis asmooth cylinder function. Then,(f o
0) and A g iy f exist and

Aa(fob)=(Anw)f)ob. (8.8)
In particular if ¢ is a smooth function o/, then
Aa(poh)=(Axd)oh. (8.9)

Recall thath (A) = 61 (A). The following lemma will be needed in the proof of this
theorem.

Lemma8.10. Leta,b € ¢ = € H(K) andk : [0,1]> — & be given byk(r,7) =
[Adyya, Adyb]. Then, fort € [0, 1],

1/
Vze:r/[(),t]z 1< k(r, )V (r)V(r)drdr = E/o k(r,7)dr. (8.10)

Proof. Let S; be the left member of (8.10) and fof € T, letw(:) = fd V(r)dr. Also
define

Ay () = /[O . 1<, k(r, 1)V )V (7) drdr,

so thatS; = o Av(?). Integration by parts shows:

Av(t)=/o k(r, T)U(T)V(T)dT—/

) L <k (r, Y0(r)V(7) drdr
[0,¢]

t 2
-1 / k(r. 1) % ) 4+ / 1< v (r, TY(r)0(7) drdr
0 [0,t]2

2 dr

- / (s D0 0) — o ()0 dr
JO

1 1 [t
= Zk(t, )v?(t) — = / L{;(T’ 7) v3(1) dr + / 1< kpr(r,)v(r)v(r) drdr
2 2 0 dT [O,t]z - ’

- / t (kv (r, )o(r)o(t) — ki (r, r)o(r)o(r)) dr,
0

wherek, = 90k/or andk, , = 0%k /0rdr. Summing this equation ol € T implies
that

1 1 [tdk
Sy = Zk(t, t)t — 7/ (7, T)TdT +/ 1<k (r, T)r drdr
2 2 0 dr [0,£]2 - ’

— /t (ky-(r, ) — ky(r,r)r) dr,
0
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wherein we have used the ident}ty,, .. v(r)v(r) = min(r, 7). (This identity is a con-
sequence of the reproducing kernel property of min) and Bessel’s equality — see for
example the proof of Lemma 3.8 in [DL].) An integration by parts on the second and

third terms above shows thét = % fot k(r,7)dr. O

Proof of Theorem 8.9.et A, B € A, x = 0(A), andw(:) = fo' Ady_ayB(T)dr. By (8.1)
and the chain rule)s (f o 6) (A) = (0., f) (0(A)) and

2 — (92
Op (f 0 0) = (9, f)(x) +0 oo 1r<r 1Ay BEr), Adur) B(7)] arar /@) (8.11)

Because of the second term on the right side of (8.11) it may be seeR1fab 6) is

not trace-class—see [DL, Remark 3.13]. On the other hand the two-step trace does exist.
To compute this trace, ld8 = Ve; € T'gand sum (8.11) oa=1,... ,d and then on

V € T. Letting

dim¢

k(r,7) = Y [Adyyer, Adagryed], (8.12)
=1

and noting thak(r, 7) = 0, we may apply Lemma 8.10 to find

dimég
Aalfot) =3 > |9 1) @) (8.13)
ver i=1 fo Adg(r)V(r)e;dT

Since Ad,., is an isometry ort, { [ Ad, V(r)e;dr : V € T,i =1,...,d} is an
orthonormal basis fof (t). Therefore by Example 8.8, the sum appearing in (8.13) is
preciselyA gy f(x). O
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