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Abstract: We use a variant of the Segal–Bargmann transform to study canonically
quantized Yang–Mills theory on a space-time cylinder with a compact structure group
K. The non-existent Lebesgue measure on the space of connections is “approximated”
by a Gaussian measure with large variance. The Segal–Bargmann transform is then
a unitary map from theL2 space over the space of connections to aholomorphicL2

space over the space of complexified connections with a certain Gaussian measure. This
transform is given roughly byet1A/2 followed by analytic continuation. Here1A is the
Laplacian on the space of connections and is the Hamiltonian for the quantized theory.

On the gauge-trivial subspace, consisting of functions of the holonomy around the
spatial circle, the Segal–Bargmann transform becomeset1K/2 followed by analytic
continuation, where1K is the Laplacian for the structure groupK. This result gives
a rigorous meaning to the idea that1A reduces to1K on functions of the holonomy.
By letting the variance of the Gaussian measure tend to infinity we recover the standard
realization of the quantizedYang–Mills theory on a space-time cylinder, namely,− 1

21K

is the Hamiltonian andL2(K) is the Hilbert space. As a byproduct of these considera-
tions, we find a new one-parameter family of unitary transforms fromL2(K) to certain
holomorphicL2-spaces over the complexification ofK. This family of transformations
interpolates between the two previously known unitary transformations.

Our work is motivated by results of Landsman and Wren and uses probabilistic
techniques similar to those of Gross and Malliavin.
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1. Introduction

This paper uses techniques of stochastic analysis to address the problem of canonically
quantizing Yang–Mills theory on a space-time cylinder. We outline our results briefly
here, leaving a detailed description of the Yang–Mills interpretation to Sect. 2. LetK
be a connected compact Lie group andk be its Lie algebra, endowed with a fixed Ad-
K-invariant inner product. Let̄A be a certain subspace of thek-valued distributions on
[0,1] andP̃s be a scaled white noise measure onĀ. See (4.2) and Definition 4.1 below.
By taking the indefinite “integrals” of elements of̄A, the measure space (̄A, P̃s) may be
identified with the space ofk-valued paths on [0,1] starting at 0 equipped with a Wiener
measure of variances. Elements ofĀ are to be interpreted as (generalized) connections
on the spatial circle.

Our objective is to understand the infinite-dimensional Laplacian operator1A, where
A is the Cameron–Martin subspace ofĀ, namely, the Hilbert space of square-integrable
k-valued functions. Since1A is poorly behaved (e.g., non-closable) as a operator on
L2(Ā, P̃s), we work with a variant̃Ss,t of theSegal–Bargmann transform. This is defined
to be et1A/2 followed by analytic continuation. The transform is defined at first on
cylinder functions but extends to a unitary map ofL2(Ā, P̃s) onto theholomorphic
subspace ofL2(ĀC, M̃s,t). HereĀC is a space ofkC-valued distributions (wherekC =
k + ik) andM̃s,t is a certain Gaussian measure on̄AC.

We are particularly interested in the Itˆo mapθ, which associates to almost every
A ∈ Ā a continuousK-valued pathθ· (A). Geometrically,θτ (A) represents the parallel
transport of the connectionA from 0 toτ , andh (A) := θ1 (A) represents theholonomy
of A around the spatial circle. We similarly consider the Itˆo mapθC and the holonomy
hC for complex connectionsC ∈ ĀC, whereθC

τ (C) andhC (C) take values in the
complexificationKC of the compact groupK.

The main result is Theorem 5.2 of Sect. 5, which states:

Supposef ∈ L2(Ā, P̃s) is of the form

f (A) = φ (h (A)) ,

whereφ is a function onK. Then there exists a unique holomorphic function8 on
KC such that

S̃s,tf (C) = 8 (hC (C)) .
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The function8 is determined by the condition that

8|K = et1K/2φ.

Here1K refers to the Laplacian for the compact groupK. Recall thatS̃s,t is defined
to beet1A/2 followed by analytic continuation. Theorem 5.2 says that on functions of
the holonomyS̃s,t reduces toet1K/2 followed by analytic continuation. This is formally
equivalent to the following imprecise principle:

On functions of the holonomy1A reduces to1K .

As a consequence of Theorem 5.2 and the “averaging lemma” in [H1] we obtain a
Segal–Bargmann type transform for the compact groupK (Theorem 5.3). To describe
this theorem letρs denote the distribution ofh (A) with respect toP̃s andµs,t denote the
distribution ofhC (C) with respect toM̃s,t. The measuresρs andµs,t are certain heat
kernel measures onK andKC, respectively. Then Theorem 5.3 asserts:

The map

φ → analytic continuation ofet1K/2φ

is an isometric isomorphism ofL2 (K, ρs) onto the holomorphic subspace of
L2
(
KC, µs,t

)
.

This generalized Segal–Bargmann transform forK was known previously [H1] in
the cases = t and also in the limiting cases → ∞. (See also [H2, H3, H4, D2, DG].)
For generals and t this transform is new and interpolates continuously between the
two previously known cases. An analysis of this new transform, from a purely finite-
dimensional point of view, is given in [H5].

There is a simple explanation (not a proof) for Theorem 5.2. The Hilbert spaceA
(the Cameron–Martin subspace) may be thought of as an infinite-dimensional flat Rie-
mannian manifold. LetH (K) be the infinite-dimensional group of finite-energy paths
with values inK, starting at the identity. This has a natural right-invariant Riemannian
metric. Theorem 8.1 in Sect. 8 asserts that the Itˆo mapθ, restricted to the Cameron–
Martin subspaceA, is an isometry ofA ontoH (K). From this observation, one formally
concludes that1A (f ◦ θ) =

(
1H(K)f

) ◦ θ, where1H(K) is the “Laplace–Beltrami”
operator associated to the right-invariant Riemannian structure onH(K). Furthermore,
if f depends only on the endpoint of the path (i.e.,f ◦ θ is a function of the holonomy)
then an easy calculation shows that1H(K) reduces to1K (Theorem 8.9). However,
even working onA there are serious domain issues to deal with, and of courseA is a
measure-zero subset of̄A. So the proof of Theorem 5.2 does not make direct use of this
calculation. Nevertheless we present it as motivation, with a precise treatment of the
domain issues, in Appendix A.

The main tool in the proof of Theorem 5.2 is the Hermite expansion, which for
L2(Ā, P̃s) takes the form of an expansion in terms of multiple Wiener integrals, the so-
called Wiener chaos or homogeneous chaos expansion [Ka, Ito]. The Segal–Bargmann
transformS̃s,t has a very simple action on this expansion, given in Theorem 4.7 of
Sect. 4.2.

Although it is natural from the standpoint ofYang–Mills theory to consider functions
of the holonomyh (A) := θ1 (A), it makes sense to applỹSs,t to arbitrary functions of
the parallel transportθτ , τ ∈ [0,1]. Results similar to Theorem 5.2 hold, described in
Sect. 6.
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Finally, let us mention the paper [AHS], which considers a sort of Segal–Bargmann
transform in the context of two-dimensionalEuclideanYang–Mills theory. That paper is
not so much concerned with constructing the theory as with understanding the structure
of the EuclideanYang–Mills measure. Despite a superficial similarity, there is no overlap
of results between [AHS] and the present paper.

2. The Yang–Mills Interpretation

This section explains the motivation for, and the desired interpretation of, the results of
the paper. It may be skipped without a loss of understanding of the statements.

The Segal–Bargmann transform was developed independently in the early 1960’s by
Segal [S1, S2, S3] in the infinite-dimensional context of scalar quantum field theories
and by Bargmann [B] in the finite-dimensional context of quantum mechanics onR

n.
The paper [H1] introduced an analog of the Segal–Bargmann transform in the context of
quantum mechanics on a compact Lie group.A natural next step is to attempt to combine
the compact group with the field theory in order to obtain a transform in the context of
quantum gauge theories. One such transform has already been obtained by Ashtekar,et
al. [A], with application to quantum gravity.

This paper considers the canonical quantization ofYang–Mills theory in the simplest
non-trivial case, namely that of a space-time cylinder. We consider first briefly the classi-
calYang–Mills theory. (See also [L, RR].) LetK be a connected compact Lie group (the
structure group) together with an Ad-K-invariant inner product〈·, ·〉 on its Lie algebra
k. We work in the temporal gauge, in which case the configuration space for the classical
Yang–Mills theory is the space ofk-valued 1-forms on the spatial circle. More precisely,
let A denote the space of square-integrablek-valued 1-forms, which can be identified
with L2 ([0,1] ; k), where the circle is[0,1] with ends identified. The phase space of the
system is thenAC = A + iA. The dynamical part of theYang–Mills equations (e.g., [Di,
Eq. (2)]) may be expressed in Hamiltonian form, with the Hamiltonian function onAC

given by

H (A + iP ) =
1
2

‖P‖2 =
1
2

∫ 1

0
|Pτ |2 dτ. (2.1)

Note that since our spatial manifold is one-dimensional, the curvature term which usually
appears in the Hamiltonian is zero.

There is also a constraint part to theYang–Mills equation (e.g., [Di, Eq. (1)]), namely,

dPτ
dτ

+ [Aτ , Pτ ] = 0, τ ∈ [0,1] (2.2)

or equivalently,
Jh (A,P ) := − 〈h′ + [A, h] , P 〉A = 0

for all h ∈ C1
(
S1 → k

)
. The set of points(A,P ) satisfying this constraint is preserved

under the time evolution generated by (2.1).
Now letG be thegauge group, namely, the group of maps of the spatial circle into

K. This acts onA by

(g ·A)τ = gτAτg
−1
τ − dg

dτ
g−1
τ
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and onAC by

(g · (A,P ))τ =
(
(g ·A)τ , gτPτg

−1
τ

)
.

The gauge action preserves both the dynamics and the constraint. The functionJh on
AC is the Hamiltonian generator of the action of the one-parameter subgroupeth in G,
where

(
eth
)
τ

= ethτ . That is,J is the moment mapping for the action ofG [L, Sect.
IV.3.6].

The parallel transportθτ (A) of a connectionA ∈ A, is the solution to theK-valued
differential equation

dθ

dτ
= θτAτ , θ0 = e, (2.3)

andθ transforms under gauge transformations as

θτ (g ·A) = g0θτ (A) g−1
τ , g ∈ G. (2.4)

Theholonomy of A is the parallel transport around the circle:h (A) := θ1 (A). (In the
interest of consistency with [G, GM, HS] we have putθτ to the left ofAτ in (2.3).
Although this is the reverse of the usual definition of parallel transport, it makes little
difference. Theorem 5.2 would be unchanged with the other definition and Theorem 6.3
would require just the reversal ofx andg in (6.2).)

If we formally apply the usual canonical quantization procedure to this classical
Yang–Mills theory, we find that the quantum mechanical Hilbert space isL2 (A,DA)
and the Hamiltonian operator corresponding to the classical Hamiltonian (2.1) is
−1A/2. HereDA is thenon-existentLebesgue measure onA and1A is the Laplacian
operator, that is, the sum of squares of derivatives in the directions of an orthonormal
basis. The quantum operator corresponding to the functionJh is the vector fieldĴh given
by

ĴhF (A) = i
d

dt

∣∣∣∣
t=0

F
(
A + t

(
h′ + [A, h]

))
= −i d

dt

∣∣∣∣
t=0

F
(
eth ·A) .

Thus the quantum analog of the constraint equation is to require thatF ∈ L2 (A,DA) be
G-invariant. (More precisely, this is true ifG is connected, i.e., ifK is simply connected.
We will simply assumeG-invariance even ifK is not simply connected, and will not
address here the issue of “θ-angles”. See [LW, W, L].)

We consider at first thebased gauge groupG0,

G0 = {g ∈ G |g0 = g1 = e} .

It is not hard to verify using (2.4) (see [L]) that two connections areG0-equivalent if and
only if they have the same holonomy. Thus, theG0-invariant functions are precisely the
functions of the formφ (h (A)), whereφ is a function onK. For invariance under the
full gauge group,φ would be required to be a class function.

Now let1K denote the Laplacian (quadratic Casimir) operator onK associated to
the chosen invariant inner product onk.
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Claim 2.1 (Main Idea). Consider a function onA of the formφ (h (A)), whereφ is a
function onK. Then

1Aφ (h (A)) = (1Kφ) (h (A)) .

That is, on functions of the holonomy, the Laplacian for the space of connections
should reduce to the Laplacian on the structure group. This idea is not new. It is stated
without proof in [Wi, pp. 166, 169], and a rigorous result in this direction is given in [Di,
Lem. 3.2]. (See the end of this section.) The challenge is not so much to prove the result
but to give it a rigorous interpretation. (See also [Ra], where reduction is done before
quantization.)

One approach is to approximate the non-existent Lebesgue measure by a Gaussian
measureP̃s with large variances, where “large” means that at the appropriate point in
our calculationss will tend to infinity. The measurẽPs does not exist onA itself, but
does exist on a certain spacēA of generalized connections. We then takeG0 to be the
group offinite-energymapsg : [0,1] → K satisfyingg0 = g1 = e, where finite energy
means thatg is absolutely continuous and

∫ 1
0

∣∣g−1
τ dg/dτ

∣∣2 dτ < ∞. The action ofG0

onA may be extended to an action on̄A, and this action leaves̃Ps quasi-invariant. We
consider the Hilbert spaceL2(Ā, P̃s) and define the gauge-trivial subspace to be:

L2(Ā, P̃s)G0 =
{
f ∈ L2(Ā, P̃s)

∣∣∀g ∈ G0, f
(
g−1 ·A) = f (A) a.e.

}
. (2.5)

Note that the mapf (A) → f
(
g−1 ·A) is not unitary, sinceG0 leavesP̃s quasi-invariant

but not invariant. We are deliberately not unitarizing the action ofG0 as in [LW]; the
point of lettings → ∞ is to avoid having to do so. The following result shows clearly
our motivation for not unitarizing.

Theorem 2.2. Let U (g) be the unitary gauge action, as for example in [Di]. Iff ∈
L2(Ā, P̃s) andU (g) f = f for all g ∈ G0, thenf = 0.

The corresponding results in dimensions 3+1 and higher (and in certain (2+1)-
dimensional cases) is a consequence of the irreducibility of the energy representa-
tion [Wa,AKT, GGV], at least for the case whenK is semisimple. In the one-dimensional
case considered here, the energy representation is reducible, so a different proof is
needed, and is given in [DH]. Defining the gauge-trivial subspace in terms of the un-
unitarized action as in (2.5) gives a non-zero Hilbert space, as we shall see momentarily.
Unitarity is recovered, at least formally, in thes → ∞ limit. (However, in cases where
the energy representation is irreducible, the space defined in (2.5) contains only the
constants. So our approach will not work without modification in high dimensions.)

The parallel transport mapθ, and so also the holonomy, may be “extended” fromA
to Ā by replacing the differential equation (2.3) with astochasticdifferential equation,
the Itô map (Sect. 5). A deep theorem of Gross asserts that the elements ofL2(Ā, P̃s)G0

are precisely functions of the holonomy. (See also [Sa1].) The reason this is not obvious
is that although we have enlarged the space of connections by replacingA with Ā,
we cannot unduly enlarge the group of gauge transformations without losing quasi-
invariance, without which (2.5) does not make sense. As a result, two connections inĀ
with the same holonomy need not be gauge-equivalent. (IfK is simply connected, then
the characterization ofL2(Ā, P̃s)G0 is obtained by composing [G, Thm. 2.5] with the Itˆo
map. The general case is easily reduced to the simply connected case. Note that ourG0
corresponds tôK0 (notK0) in the notation of Gross.)
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We are back, then, to the matter of computing the Laplacian on functions of the
holonomy. Unfortunately, while1A is densely defined inL2(Ā, P̃s) (say on smooth,
compactly supported cylinder functions), it is not closable. So it is not clear what it
means to apply the Laplacian to a function of the holonomy. We consider, then, a variant
of the Segal–Bargmann transform. The transform involves the heat operatoret1A/2,
instead of the1A itself. More precisely, the Segal–Bargmann transform consists of
et1A/2 followed by analytic continuation. The transform maps fromL2(Ā, P̃s) onto a
certainL2 space of holomorphic functions on a spaceĀC of complexified connections,
rather than fromL2(Ā, P̃s) to itself. Although the Segal–Bargmann transform is defined
initially only on cylinder functions, it is an isometric map and so extends by continuity
to all ofL2(Ā, P̃s). In particular, it makes sense to apply the Segal–Bargmann transform
to functions of the holonomy.

Our main result is Theorem 5.2, described already in the introduction. It asserts
that for functions of the holonomy the Segal–Bargmann transform (roughly, the heat
operatoret1A/2, followed by analytic continuation) becomes the heat operatoret1K/2

for the structure groupK, followed by analytic continuation. This holds for each fixed
s, not just in thes → ∞ limit. Thus Theorem 5.2 gives a rigorous meaning to the Main
Idea in Claim 2.1.

Now, the gauge-trivial subspace, which consists of functions of the formφ (h (A)),
may be identified withL2 (K, ρs), whereρs is the distribution ofh (A) with respect
to P̃s. Similarly, the space of functions of the form8 (hC (C)) may be identified
with L2

(
KC, µs,t

)
, whereµs,t is the distribution ofhC (C) with respect to the rel-

evant Gaussian measure on̄A. So restricting the Segal–Bargmann transform to the
gauge-trivial subspace gives an isometric map fromL2 (K, ρs) into the holomor-
phic subspace ofL2

(
KC, µs,t

)
, given byet1K/2 followed by analytic continuation.

A finite-dimensional argument shows that this transform mapsonto the holomorphic
subspace. This gives a unitary Segal–Bargmann-type transform (Theorem 5.3) forK,
Bs,t : L2 (K, ρs) → HL2

(
KC, µs,t

)
given by

Bs,tf = analytic continuation ofet1K/2f.

HereHL2 denotes the space of square-integrable holomorphic functions. This unitary
transform was previously obtained in [H1] for the cases = t and the limiting case
s → ∞, which we now discuss.

Note that the formula forBs,t depends only ont; thes-dependence is only in the
measures. Hence it makes sense to lets tend to infinity. In this limitρs converges to
normalized Haar measure onK andµs,t converges to a certainK-invariant measureνt
onKC. So taking the Segal–Bargmann transform forĀ, restricting to the gauge-trivial
subspace, and taking the large variance limit yields a unitary transformCt, mapping
L2 (K, Haar) onto the holomorphic subspace ofL2 (KC, νt). The transform is given,
as always, by the timet heat operator followed by analytic continuation. Heret is an
arbitrary positive parameter, which is to be interpreted physically as Planck’s constant.
See Theorem 5.5.

We arrive, then, at the expected conclusion: the physical Hilbert space for quantized
Yang–Mills on a space-time cylinder isL2 (K, Haar) and the Hamiltonian operator
is −1K/2. As a bonus, we obtain a natural Segal–Bargmann transformCt for the
physical Hilbert space. Let us mention two other matters in passing. First, for invariance
under the full gauge groupG we would restrict attention to the Ad-invariant subspace of
L2 (K, Haar). Second, theWilson loop operators naturally act as multiplication operators
in L2(Ā, P̃s) and so also inL2 (K, Haar).
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Let us briefly compare our approach to others. Landsman and Wren [LW, W, L] use
a method called Rieffel induction, in which gauge symmetry is implemented by means
of a certain integral over the gauge group. Under this integration the classical coherent
states forA map to the coherent states that are associated to the transformCt described
above (thes → ∞ limit of Bs,t). However, it is not clear how to derive by this method
the relevant measureνt onKC, and the computation of the reduced Hamiltonian [W] is
complicated.

Dimock [Di] adds a mass term to the Hamiltonian, which makes it self-adjoint in
L2(Ā, P̃s). However, because the mass term destroys gauge-invariance, Dimock obtains
a result like the Main Idea only in thes → ∞ limit [Di, Lem. 3.2].

The Euclidean method forYang–Mills on a cylinder constructs a probability measure
directly on connections modulo gauge transformations. Letht denote the holonomy
around the spatial circle at timet. Then it can be shown that: 1) for eacht,ht is distributed
as the Haar measure onK, and 2)ht is aK-valued Brownian motion. Thinking in
terms of the temporal gauge, it is then reasonable to take as the time-zero Hilbert space
L2 (K, Haar), and (since the infinitesimal generator of Brownian motion onK is1K/2)
to take as the Hamiltonian−1K/2. Since the Euclidean Yang–Mills measure does not
exist on the space of connections, but only on connections modulo gauge transformations,
the Euclidean method does not directly address the relationship between1A and1K .

Finally in Appendix A,1A is considered as an operator acting on functions on
A rather than onĀ. While functions of the formφ (h (A)), with φ smooth onK, are
differentiable onA, the Hessian of such a function is not in general trace-class. Hence, it
is not possible to define1Aφ (h (A)) as the trace of the Hessian ofφ (h (A)).This problem
is circumvented by computing the trace by a two-step procedure–see Definition 8.5.With
this definition, we prove a rigorous version of the Main Idea in Claim 2.1 (Theorem 8.9).
SinceA is a set ofP̃s-measure zero, these results do not bear directly on Theorem 5.2.

3. Segal–Bargmann forRd

We consider a variant of the classical Segal–Bargmann transform that depends on two
parameters, one of which we wish to let tend to infinity. See Sect. 2 for motivation. This is
in contrast to the conventional version of the transform, which has only one parameter (or
none, depending on the author). However, in theR

d case, this two-parameter transform
is not truly new, but can be reduced to the classical one-parameter version by elementary
changes of variable. This reduction is described in [H5]. In Sect. 3.1 we describe the
transform itself. In Sect. 3.2 we describe Hermite expansions on both the domain and
range of the transform, and we describe the action of the transform on these expansions.
Hermite expansions play a key role in the proof of our main result, Theorem 5.2 in
Sect. 5.

3.1. The transform forRd. Let 1 be the standard Laplacian onRd andPs be the
associated Gaussian measure. Explicitly fors > 0, dPs (x) = Ps (x) dx, where

Ps (x) = (2πs)−d/2 e−x2/2s.

Herex = (x1, · · · , xd), x2 = x2
1 + · · · +x2

d, anddx is the standard Lebesgue measure on
R
d. Note that the functionPs (x) admits an analytic continuation toCd, denotedPs(z).

Now for any numbert with t < 2s (i.e.,s > t/2) define a map
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Ss,t : L2
(
R
d, Ps

)→ H (Cd)
by

Ss,tf (z) =
∫

Rd

Pt (z − x) f (x) dx, z ∈ C
d, (3.1)

whereH (Cd) denotes the space of holomorphic functions onC
d. The integral is well

defined since fort < 2s, Pt (z − x) /Ps (x) is inL2(Rd, Ps (x)). Using Morera’s theorem
one may show thatSs,tf is indeed holomorphic.

SincePt is just the fundamental solution at zero of the heat equationdu/dt = 1
21u,

Ss,tf may be expressed as

Ss,tf = analytic continuation ofet1/2f. (3.2)

Here et1/2 is to be interpreted as the usual contraction semigroup onL2
(
R
d, dx

)
,

extended by continuity toL2
(
R
d, Ps

)
.

Definition 3.1. For s > t/2, let As,t be the constant-coefficient elliptic differential
operator onC

d given by

As,t =

(
s− t

2

) d∑
k=1

∂2

∂x2
k

+
t

2

d∑
k=1

∂2

∂y2
k

.

Let Ms,t denote the Gaussian measure given byeAs,t/2 (δ0). Explicitly dMs,t =
Ms,t(z) dz, wheredz is the standard Lebesgue measure onC

d and

Ms,t (z) = (πr)−d/2 (πt)−d/2 e−x2/re−y2/t.

Herer = 2
(
s− t/2

)
andz = x + iy.

The Gaussian measuresPs andMs,t may also be described by their Fourier trans-
forms: ∫

Rd

exp(iλ · x) dPs (x) = exp
(
−s

2
λ2
)
,∫

Cd

exp(iλ · x + iα · y) dMs,t(z) = exp(−1
4

(rλ2 + tα2)) (3.3)

for all λ andα in R
d.

LetHL2
(
C
d,Ms,t

)
denote the Hilbert space of holomorphic functions onC

d which
are square-integrable with respect toMs,t.

Theorem 3.2 (Extended Segal–Bargmann transform). For all s and t with s > t/2 >
0, the mapSs,t defined in (3.1) is an isometric isomorphism ofL2

(
R
d, Ps

)
onto

HL2
(
C
d,Ms,t

)
. The standard case iss = t.

We will prove this in Sect. 3.2, using Hermite expansions. The surjectivity ofSs,t
is proved by showing that the holomorphic polynomials are dense inHL2

(
C
d,Ms,t

)
,

which is item 4 of Theorem 3.6 below.

3.2. Action on the Hermite expansion.The classical Segal–Bargmann transform forR
d

takes the Hermite expansion of a function onR
d to the Taylor expansion of the corre-

sponding holomorphic function onRd, and this property determines the transform [B].
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Our variant of the Segal–Bargmann transform also has a simple action on the Hermite
expansion, which reduces to the above result whens = t. Since we require Hermite
expansions on bothRd andC

d, we will prove abstract results which cover both cases
simultaneously.

LetV be a real finite-dimensional vector space andL be a constant coefficient pure
second-order elliptic operator onV , i.e.,L =

∑N
i,j=1 gij∂

2/∂xi∂xj , whereN = dim(V ),
{xi}Ni=1 are linear coordinates onV,and{gij} is a positive-definite symmetric matrix. For
v, w ∈ V, let g (v, w) =

∑N
i,j=1 g

ijxi (v)xj (w), where{gij} denotes the matrix inverse
of {gij}. Theng is an inner product onV which is naturally induced byL. Indeed,
if g∗ denotes the dual inner product ofV ∗ andα, β ∈ V ∗, theng∗ (α, β) = 1

2L (αβ).

If {ei}Ni=1 is an orthonormal basis for(V, g), thenL =
∑N
i=1 ∂

2
i , where∂i = ∂ei . This

follows from the observation that

1
2

N∑
i=1

∂2
i (αβ) =

N∑
i=1

α(ei)β(ei) = g∗(α, β) =
1
2
L(αβ).

Definition 3.3 (Heat kernel measure). For a pair V andL be as above, we associate
the Gaussian measures

dQt (v) =

(
1

2πt

)N/2

exp

(
− 1

2t
g (v, v)

)
dv ∀t > 0,

wheredv denotes Lebesgue measure onV normalized so that the unit cube inV relative
to g has unit volume. We will abbreviateQ1 byQ. For any measurable functionf onV
andv ∈ V , let

etL/2f (v) =
∫
V

f (v − w) dQt (w) (3.4)

whenever the integral exists.

The measuresQt may also be described by their Fourier transforms, namely,Qt is
the unique measure onV such that∫

V

eiλ(w) dQt (w) = exp

(
− tg∗(λ, λ)

2

)
= exp

(
−tL

(
λ2
)

4

)
for all λ ∈ V ∗.

Given a reasonable functionf onV (say continuous and exponentially bounded), it is
well known and easily checked thatu(t, v) := etL/2f (v) is a solution to the heat equation
∂u(t, v)/∂t = 1

2Lu(t, v) such that limt↘0 u(t, v) = f (v). It is also easily checked that if
f is a polynomial function ofv, thenetL/2f may be computed by the finite Taylor series
expansion:

etL/2f =
∞∑
k=0

(
tL

2

)k
f. (3.5)

The above sum in finite sinceLkf = 0 whenever 2k is greater than the degree off . On
polynomials, (3.5) definesetL/2f for all t ∈ R in such a way thate−tL/2 is the inverse
of etL/2.
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Definition 3.4. Thenth level Hermite subspace ofL2 (V,Q) is the spaceFn (L) =
e−L/2Pn(V ), wherePn(V ) denotes the space of homogeneous polynomials of degreen
onV .

The following result is well known. We include a proof for completeness and so that
some calculations will be available for later use.

Proposition 3.5. LetV andL be as above. Then

1. L2 (V,Q) is the orthogonal Hilbert space direct sum of the subspacesFn (L) for
n = 0,1,2 . . . .

2. Fn (L) is the set of all polynomials onV of degreen which are orthogonal to all
polynomials of degree at mostn− 1.

3. For everyf ∈ L2 (V,Q), eL/2f is a well defined, real-analytic function onV . More-
over, if the “Hermite” expansion off ∈ L2 (V,Q) isf =

∑∞
n=0 fn withfn ∈ Fn (L),

thenfn = e−L/2pn, wherepn(v) = 1
n! (∂

n
v e

L/2f )(0) and (∂nv f )(0) = dn

dtn f (tv)|t=0.
We will write this succinctly as

f (v) =
∞∑
n=0

1
n!
e−L/2(∂nv e

L/2f )(0). (3.6)

Proof. Let {ei}Ni=1 be an orthonormal basis for (V, g) so thatL =
∑N
i=1 ∂

2
i , where

∂i = ∂ei
. For functionsp, q onV let (p, q) =

∫
V
p̄(v)q(v) dQ(v) be theL2 inner product.

Takingp andq to be polynomials onV andv = 0 in (3.4), we find, using the fact thatQ
is even, that

(e−L/2p, e−L/2q) = eL/2(e−L/2pe−L/2q)|0.

SinceetL/2(e−tL/2p e−tL/2q) is a polynomial in (t, v), it follows by Taylor’s theorem
that

eL/2
(
e−L/2pe−L/2q

)
=

∞∑
n=0

1
n!

dn

dtn

∣∣∣∣
t=0

etL/2(e−tL/2p̄e−tL/2q).

Using the product rule repeatedly shows that

d

dt
etL/2(e−tL/2p̄ · e−tL/2q)

= etL/2

(
L

2
(e−tL/2p̄e−tL/2q) − (

L

2
e−tL/2p̄e−tL/2q) − (e−tL/2p̄

L

2
e−tL/2q)

)
= etL/2

(
N∑
i=1

∂ie
−tL/2p̄∂ie

−tL/2q

)
.

This equation may now be used inductively to show

dn

dtn

∣∣∣∣
t=0

etL/2(e−tL/2p̄e−tL/2q). =
N∑

i1,i2,...in=1

∂i1∂i2 · · · ∂in p̄∂i1∂i2 · · · ∂inq.

Combining the previous four displayed equations shows that
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(e−L/2p, e−L/2q) =
∞∑
n=0

1
n!

N∑
i1,i2,...in=1

(
∂i1∂i2 · · · ∂in p̄(v)∂i1∂i2 · · · ∂inq(v)

) |v=0,
(3.7)

for all polynomialsp andq onV .
Using (3.7) we may prove items 1 and 2 as follows. Notice thatFn(L) consists

of polynomials of degreen and that⊕n−1
k=0 Fk(L) consists ofall polynomials onV of

degreen− 1 or less. By (3.7), it is easily seen that ifp ∈ Pn(V ) andq ∈ Pm(V ) with
m 6= n, then (e−L/2p, e−L/2q) = 0. HenceFn(L) is orthogonal to⊕n−1

k=0 Fk(L). Since
polynomials are dense inL2(V,Q), these observations immediately imply the first two
items of the theorem.

For item 3, suppose for the moment thatf is a polynomial onV . By Taylor’s theorem
applied toeL/2f ,

(eL/2f )(v) =
∞∑
n=0

1
n!

(∂nv e
L/2f )(0).

Applying e−L/2 to both sides of this equation then proves (3.6) whenf is a polynomial.
For generalf ∈ L2 (V,Q), we must first show thateL/2f is defined and smooth.

Letting q(v) = dQ(v)/dv, we may write

eL/2f (v) =
∫
V

f (v − w)q(w) dw =
∫
V

f (w)
q(v − w)
q(w)

q(w) dw. (3.8)

Sinceq(v − w)/q(w) = exp(− 1
2g(v, v) + g(v, w)) ∈ L2 (V,Q(dw)), it follows that

f (v − w)q(w) is integrable and henceeL/2f is defined. More generally one may show
supv∈K |∂αq(v − w)/q (w)| ∈ L2 (V,Q(dw)) for all compact setsK ⊂ V . Hence
eL/2f (v) is smooth and

∂αeL/2f (v) =
∫
V

f (w)
∂αq(v − w)

q(w)
q(w)dw. (3.9)

So for each integern ≥ 0, let (Pnf )(v) = 1
n! e

−L/2(∂nv e
L/2f )(0) ∈ Fn(L). Because of

(3.9),Pn : L2 (V,Q) → Fn(L) is a well defined continuous linear map. Moreover,Pnf
is the same as an orthogonal projection ontoFn(L) whenf is a polynomial. Hence it
follows by density of polynomials inL2 (V,Q) thatPn is an orthogonal projection onto
Fn(L). This proves (3.6) for generalf ∈ L2 (V,Q). �

We will need the following holomorphic version of Proposition 3.5.

Theorem 3.6. Suppose thatV is a real vector space andL is a pure second order
constant-coefficient differential operator onV . Also assume thatV is equipped with a
complex structureJ , i.e.,J : V → V is a linear map such thatJ2 = −I. UsingJ ,V may
considered to be a complex vector space by definingiv = Jv for v ∈ V . LetH(V ) denote
the space of holomorphic functions onV and letHL2 (V,Q) = H(V )∩L2 (V,Q) be the
space ofL2 holomorphic functions. LetHFn(L) = H (V ) ∩ Fn(L). Then

1. HL2 (V,Q) is the orthogonal Hilbert space direct sum of the subspacesHFn (L) for
n = 0,1,2 . . . .

2. HFn (L) is the set of all holomorphic polynomials onV of degreen or less which
are orthogonal to all holomorphic polynomials onV of degreen− 1 or less.
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3. Letf =
∑∞
n=0 fn be the Hermite expansion off ∈ HL2 (V,Q). Thenfn ∈ HFn(L)

for n = 0,1,2, . . . .
4. The holomorphic polynomials onV are dense inHL2 (V,Q).

Proof. SinceFm (L) andFn (L) are orthogonal form 6= n, HFn (L) andHFn (L) are
also clearly orthogonal form 6= n.

Now for f ∈ L2 (V,Q) we have already seen thateL/2f is a smooth function. Iff
is also holomorphic, theneL/2f is holomorphic. To see this it suffices to show, for each
u, v ∈ V , thateL/2f (u + zv) is holomorphic as a function ofz ∈ C. This is easily done
using Morera’s Theorem and the fact thatf is holomorphic. We omit the details.

Hence iff ∈ HL2 (V,Q), thenpn(v) := 1
n! (∂

n
v e

L/2f )(0) is a holomorphic poly-
nomial that is homogeneous of degreen. SinceL preserves the space of holomor-
phic functions, it follows thatfn = e−L/2pn is both holomorphic and inFn(L), i.e.,
fn ∈ HFn(L). Hence we have proved items 1, 3, and 4 of the theorem. Finally, for item
2, if p is a holomorphic polynomial of degree less than or equal ton, then

p(v) =
n∑
k=0

1
k!
e−L/2(∂kv e

L/2p)(0).

Since⊕n−1
k=0 HFk(L) is the collectionHn−1 of holomorphic polynomials of degree

less than or equal ton − 1, it follows p is orthogonal toHn−1 if and only if p(v) =
1
n! e

−L/2(∂nv e
L/2p)(0) which is equivalent top being inHFn(L). �

We now apply our results in two cases:V = R
d andL = s1, andV = C

d and
L = As,t.

Definition 3.7. LetFn,s
(
R
d
)

= Fn(s1) ⊂ L2
(
R
d, Ps

)
andFn,s,t

(
C
d
)

= Fn
(
As,t

)
⊂ L2

(
C
d,Ms,t

)
. LetHFn,s,t

(
C
d
)

denote the holomorphic polynomials inFn,s,t
(
C
d
)
.

Theorem 3.8. The transformSs,t in (3.1) takesFn,s
(
R
d
)

ontoHFn,s,t

(
C
d
)
. Specif-

ically, let p be a homogeneous polynomial of degreen on R
d and letpC be its analytic

continuation toCd. Then

Ss,t

(
e−s1/2p

)
= e−As,t/2 (pC) . (3.10)

Note that ifs = t, then the operatorAs,t is zero on all holomorphic functions. So when
s = t the holomorphic subspace ofFn,s,t

(
C
d
)

is precisely the space of holomorphic
polynomials which are homogeneous of degreen. In that case, the transformSt,t takes
the Hermite expansion off ∈ L2

(
R
d, Pt

)
to the Taylor expansion ofSt,tf . If s 6= t, then

by Theorem 3.6 and Theorem 3.8,Ss,t takes the Hermite expansion off ∈ L2
(
R
d, Ps

)
to anL2-convergent expansion ofSs,tf in terms of non-homogeneous holomorphic
polynomials. Fors 6= t it is not clear (to us) whether the Taylor series of a function in
HL2

(
C
d,Ms,t

)
is alwaysL2-convergent.

Proof. By the definition ofSs,t,

Ss,t

(
e−s1/2p

)
= (et1/2e−s1/2p)C = (e(t−s)1/2p)C.



262 B. K. Driver, B. C. Hall

On the other hand sincepC is holomorphic,∂pC/∂yk = i∂pC/∂xk and hence

As,tpC =

(
s− t

2
− t

2

) d∑
k=1

∂2

∂x2
k

pC = (s− t)
d∑
k=1

∂2

∂x2
k

pC = −(t− s)(1p)C.

Therefore,e−As,t/2 (pC) = (e(t−s)1/2p)C = Ss,t
(
e−s1/2p

)
. �

Proof of Theorem 3.2.If p andq are polynomials onRd, then

As,t(pCqC) − (As,tpC)qC − pC(As,tqC)

= 2

(
s− t

2

) d∑
k=1

∂pC

∂xk

∂qC

∂xk
+
t

2

d∑
k=1

∂pC

∂yk

∂qC

∂yk

= 2

(
s− t

2

) d∑
k=1

∂pC

∂xk

∂qC

∂xk
+
t

2

d∑
k=1

(
−i∂pC

∂xk

)(
i
∂qC

∂xk

)

= 2s
d∑
k=1

∂pC

∂xk

∂qC

∂xk
.

This formula and computations similar to those used to prove (3.7) show that

(e−As,t/2pC, e
−As,t/2qC)L2(Ms,t)

= eAs,t/2(e−As,t/2pCe
−As,t/2qC)|z=0

=
∞∑
n=0

sn

n!

d∑
k1,k2,...k,n=1

∂xk1
∂xk2

· · · ∂xkn
pC∂xk1

∂xk2
· · · ∂xkn

qC

∣∣
z=0

(3.11)

=
∞∑
n=0

sn

n!

d∑
k1,k2,...k,n=1

∂xk1
∂xk2

· · · ∂xkn
p∂xk1

∂xk2
· · · ∂xkn

q
∣∣
x=0

(3.12)

= es1/2(e−s1/2pe−s1/2q) (0) = (e−s1/2p, e−s1/2q)L2(Ps).

Here∂xi
= ∂/∂xi. In light of (3.10), which holds by linearity for all polynomials, this

shows thatSs,t is isometric on polynomials.
Since polynomials are dense inL2

(
R
d, Ps

)
and the linear functionals

f ∈ L2
(
R
d, Ps

)→ (
Ss,tf

)
(z) ∈ C

are continuous for eachz ∈ C
d, it follows thatSs,t is isometric on all ofL2

(
R
d, Ps

)
.

Note thate−s1/2 is invertible on the space of polynomials of degree at mostn. This
plus the fact that every holomorphic polynomial onC

d is the analytic continuation
of its restriction toR

d shows that every holomorphic polynomial is in the image of
Ss,t. But Item 4 of Theorem 3.6 asserts that the holomorphic polynomials are dense in
HL2

(
C
d,Ms,t

)
and thereforeSs,t is surjective. �
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4. Segal–Bargmann for the Wiener Space

Because it is formulated in terms of Gaussian measures, our variant of the Segal–
Bargmann transform admits an infinite-dimensional (d → ∞) limit. While this could
be formulated in terms of an arbitrary abstract Wiener space, we will for concreteness
consider only the classical Wiener space case relevant to this paper. ThusR

d will be
replaced by an infinite-dimensional space of Lie algebra-valued generalized functions
on [0,1], with a white noise measure. By integrating once, this space may be identified
with the space of continuous Lie algebra-valued functions on[0,1] with a Wiener mea-
sure. Similarly,Rd will be replaced by a space of generalized functions with values in
the complex Lie algebra (with a white noise measure), which may be identified with the
space of continuous functions with values in the complex Lie algebra (with a Wiener
measure).

4.1. The transform for the Wiener space.LetK be a compact connected Lie group. Fix
once and for all an Ad-K-invariant inner product〈·, ·〉 on the Lie algebrak of K. Let
KC be the complexification ofK in the sense of [Ho, H1], and letkC = k + ik be the Lie
algebra ofKC.

We then consider the space of connections on the spatial circle. These are Lie algebra-
valued 1-forms, which can be identified with Lie algebra-valued functions on the interval
[0,1], where the circle is this interval with ends identified. Specifically, let

A = L2 ([0,1] ; k) , (4.1)

where the norm is computed using Lebesgue measure on[0,1] and the inner product on
k. We need also a larger spacēA, which may be taken to be

Ā = {A =
daτ
dτ

|a ∈ W (k)}, (4.2)

a subspace ofk-valued distributions. HereW (k) denotes the set of continuous pathsa
from [0,1] to k such thata0 = 0, anddaτ

dτ denotes the distributional derivative ofa. For
eachA ∈ Ā, the functiona ∈ W (k) is unique, and so may be thought of as a function
of A. We will write, suggestively,

aτ (A) =
∫ τ

0
Aσ dσ. (4.3)

Note that we are reversing convention by using the lowercase lettera for the anti-
derivative ofA. We can makeĀ into a Banach space whose norm is the supremum norm
ona.

We similarly define

AC = L2 ([0,1] ; kC)

using Lebesgue measure on[0,1] and the sesquilinear extension of the inner product
from k to kC; and

ĀC = {C =
dcτ
dτ

|c ∈ W (kC)},
whereW (kC) is defined analogously toW (k). As in the real case,c is unique and we
will write

cτ (C) =
∫ τ

0
Cσ dσ. (4.4)
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Definition 4.1. Let P̃s denote the unique Gaussian measure onĀ such that for all
continuous linear functionalsφ on Ā,∫

Ā
eiφ(A) dP̃s (A) = exp

(
−s

2
‖φ‖2

)
,

where‖φ‖ denotes the norm ofφ as a linear functional onA.
Let M̃s,t denote the unique Gaussian measure onĀC such that for all continuous

linear functionalsφ andψ on Ā,∫
ĀC

eiφ(A)+iψ(B) dM̃s,t (A + iB) = exp

(
−1

4
(r ‖φ‖2 + t ‖ψ‖2)

)
,

where‖φ‖ and‖ψ‖ denote norms as linear functionals onA andr = 2
(
s− t/2

)
.

These measures have the formal expressions:

dP̃s (A) =
1
Z1

e−‖A‖2/2s DA and

dM̃s,t (A + iB) =
1
Z2
e−‖A‖2/r−‖B‖2/t DADB.

Here‖·‖ is theL2-norm forA,DA andDB refer to the (non-existent) Lebesgue measure
onA, andZ1, Z2 are “normalization constants.” Note that the measureP̃s may be thought
of as the heat kernel measure at the origin, that is, the fundamental solution at the origin
of the equationdu/dt = 1

21Au, where1A is the sum of squares of derivatives in the
directions of an orthonormal basis forA.

The spaceA is the Cameron–Martin subspace for the Gaussian measure space
(Ā, P̃s) and is a set ofP̃s-measure zero. Similarly,AC is the Cameron–Martin sub-
space for (ĀC, M̃s,t) and is a set ofM̃s,t-measure zero.

The measurẽPs is the law of a scaledk-valued white noise on[0,1]. This is equivalent
to saying that ifA is distributed asP̃s then aτ (A) (defined in (4.3)) is a scaledk-
valued Brownian motion. Specifically, if

{
Xk
}

is an orthonormal basis fork, then
akτ :=

〈
Xk, aτ

〉
are real-valued Brownian motions satisfying

E
{
akσa

l
τ

}
= smin{σ, τ} δkl. (4.5)

Similarly, the measurẽMs,t is the law of a scaledkC-valued white noise on[0,1]. Let c
be as in (4.4), and decomposec ascτ = Recτ + iImcτ , with Recτ and Imcτ taking values
in k. Then

〈
Xk,Recτ

〉
and

〈
X l, Imcτ

〉
are independent real-valued Brownian motions

satisfying:

E
{〈Xk,Recσ〉

〈
X l,Recτ

〉}
=

(
s− t

2

)
min{σ, τ} δkl,

E
{〈
Xk, Imcσ

〉 〈
X l, Imcτ

〉}
=
t

2
min{σ, τ} δkl. (4.6)

We now define the two-parameter version of the Segal–Bargmann transform for
L2(Ā, P̃s). The reader should keep in mind that we are “trying” to work on the spaceA,
with the larger spacēA introduced as a technical necessity.
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Definition 4.2. Let {e1, · · · , ed} be a finite orthonormal set in the real Hilbert space
A with the property that each linear functional〈ej , ·〉 extends continuously tōA. Each
linear functional〈ej , ·〉 then has a unique complex-linear extension from̄A to ĀC. A
cylinder function on Ā is a function that can be expressed in the form

f (A) = φ
(〈e1, A〉 , · · · 〈ed, A〉) , (4.7)

whereφ is a measurable function onRd and {e1, · · · , ed} is a orthonormal basis as
above. Aholomorphic cylinder function on ĀC is a function of the form

F (C) = 8
(〈e1, C〉 , · · · 〈ed, C〉) ,

where8 is a holomorphic function onCd. Theholomorphic subspaceofL2(ĀC, M̃s,t),
denotedHL2(ĀC, M̃s,t), is theL2 closure of theL2 holomorphic cylinder functions.

The transformS̃s,t will be defined in Theorem 4.3 below so as to coincide with
the finite dimensional transformSs,t acting on cylinder functions, and then extending
by continuity to all ofL2(Ā, P̃s). In the standard case (s = t) one can and often does
define the transform differently (e.g., [BSZ, GM]), with the range Hilbert space being a
certain space of holomorphic functions onAC rather than onĀC. Since the necessary
dimension-independent pointwise bounds hold only whens = t, this approach does
not work whens 6= t. Formally, S̃s,tf is the analytic continuation ofet1A/2f ; this
description may be taken fairly literally whenf is a cylinder function.

Theorem 4.3. Fix s andt with s > t/2 > 0. There exists a unique isometric mapS̃s,t
ofL2(Ā, P̃s) ontoHL2(ĀC, M̃s,t) such that for allf ∈ L2(Ā, P̃s) of the form

f (A) = φ
(〈e1, A〉 , · · · , 〈ed, A〉)

with {e1, · · · , ed} as in Definition 4.2,S̃s,tf is given by

S̃s,tf (C) =
(
Ss,tφ

) (〈e1, C〉 , · · · , 〈ed, C〉) .
Proof. We want to definẽSs,t to coincide withSs,t on cylinder functions. The fact that
S̃s,tf is well defined independent of howf is represented as a cylinder function is a
consequence of the two observations: 1) the measurePt onR

d is rotationally-invariant,
and 2) the(d + k)-dimensional measurePt factors as the product of the corresponding
d-dimensional andk-dimensional measures.

Now isometricity on cylinder functions follows immediately from Theorem 3.2.
Since cylinder functions are dense,S̃s,t has a unique isometric extension toL2(Ā, P̃s).
The surjectivity in Theorem 3.2 shows that everyL2 holomorphic cylinder function is in
the image ofS̃s,t. Since by definition theL2 holomorphic cylinder functions are dense
in the holomorphic subspace, we conclude thatS̃s,t maps ontoHL2(ĀC, M̃s,t). �

Definition 4.4. Let1A be the unique operator on cylinder functions such that

1Af (A) = (1φ)
(〈e1, A〉 , · · · , 〈ed, A〉)

whenf is a cylinder function as in (4.7) of Definition 4.2. The domain of1A is taken to
be the set of those cylinder functions for whichφ is smooth and bothφ and1φ are in
L2
(
R
d, Ps

)
.
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One checks as in the proof of Theorem 4.3 that1A is well defined, independent
of how f is represented as a cylinder function. Although it is densely defined,1A is a
non-closable operator.

4.2. Action on the Hermite expansion.We now turn to the infinite-dimensional version
of the Hermite expansion, and the action ofS̃s,t on it.

Definition 4.5. Thenth level Hermite subspace ofL2(Ā, P̃s), denotedFn,s
(Ā), is

theL2 closure of the space of functions of the form

f (A) = φ
(〈e1, A〉 , · · · , 〈ed, A〉) ,

where{e1, · · · , ed} is as in Definition 4.2 and whereφ ∈ Fn,s
(
R
d
)
. Thenth level

holomorphic Hermite subspace ofL2(ĀC, M̃s,t), denotedHFn,s,t

(ĀC

)
, is theL2

closure of the space of functions of the form

F (C) = 8
(〈e1, C〉 , · · · , 〈ed, C〉) ,

where8 is in HFn,s,t

(
C
d
)

as defined in Definition 3.7.

Recall thataτ =
∫ τ

0 Aσ dσ is a scaledk-valued Brownian motion whose components
with respect to an orthonormal basis

{
Xk
}

for k are denotedakτ . Now consider then-
simplex

1n = {(τ1, · · · , τn) ∈ R
n |0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ 1} .

Let H = {Hk1,··· ,kn
|ki = 1, . . . ,dim k} be a collection of square-integrable complex-

valued functions on1n and let

dim k∑
k1,··· ,kn=1

∫
1n

Hk1,··· ,kn
(τ1, · · · , τn) dak1

τ1
· · · dakn

τn

denote the multiple Wiener integral ofH relative toa – see [Ito] or Definitions 4.10
and 4.12 below.

Similarly, cτ =
∫ τ

0 Cσ dσ for C ∈ (ĀC, M̃s,t) is a kC-valued Brownian motion.
Regard the orthonormal basis{Xk} for k as a basis ofkC as a complex vector space and
let ckτ be the corresponding complex-valued components ofcτ . If H = {Hk1,··· ,kn

} as
above let

dim k∑
k1,··· ,kn=1

∫
1n

Hk1,··· ,kn
(τ1, · · · , τn) dck1

τ1
· · · dckn

τn

denote the multiple Wiener integral ofH with respect toc. By expanding in terms of the
real and imaginary parts ofckτ , we could express this as an integral in terms of independent
real-valued Brownian motions. Note that this integral is a formally holomorphic function
of c (and hence ofC) since it depends only on the complex increments ofc.
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Proposition 4.6. The Hilbert spaceL2(Ā, P̃s) is the orthogonal direct sum of the sub-
spacesFn,s

(Ā). The Hilbert spaceHL2(ĀC, M̃s,t) is the orthogonal direct sum of the
subspacesHFn,s,t

(ĀC

)
.

A functionf ∈ L2(Ā, P̃s) is in Fn,s
(Ā) if and only if there exist square-integrable

complex-valued functionsHk1,··· ,kn on1n such that

f (A) =
dim k∑

k1,··· ,kn=1

∫
1n

Hk1,··· ,kn
(τ1, · · · , τn) dak1

τ1
· · · dakn

τn
.

A functionF ∈ HL2(ĀC, M̃s,t) is in HFn,s,t

(ĀC

)
if and only if there exist square-

integrable complex-valued functionsHk1,··· ,kn
on1n such that

F (C) =
dim k∑

k1,··· ,kn=1

∫
1n

Hk1,··· ,kn
(τ1, · · · , τn) dck1

τ1
· · · dckn

τn
.

Here as usualaτ =
∫ τ

0 Aσ dσ andcτ =
∫ τ

0 Cσ dσ, and in either case theH ’s are unique
up to a set of measure zero in1n.

The expansion of a functionf ∈ L2(Ā, P̃s) into a sum overn of such stochastic
integrals is called the Wiener chaos expansion and goes back to Kakutani [Ka] and
Itô [Ito]. Nevertheless, we will give a proof of this result (after Lemma 4.11 below)
to emphasize the relation of this result to those in Sect. 3. The transformS̃s,t has the
following simple action on the Wiener chaos expansion, which will be used in the proof
of Theorem 5.2 in Sect. 5.

Theorem 4.7. The transformS̃s,t takesFn,s
(Ā) onto HFn,s,t

(ĀC

)
. Specifically, if

f ∈ L2(Ā, P̃s) is of the form

f =
dimK∑

k1,··· ,kn=1

∫
1n

Hk1,··· ,kn
(τ1, · · · , τn) dak1

τ1
· · · dakn

τn
,

thenS̃s,tf is given by

S̃s,tf =
dimK∑

k1,··· ,kn=1

∫
1n

Hk1,··· ,kn
(τ1, · · · , τn) dck1

τ1
· · · dckn

τn
.

This result is the infinite-dimensional analog of Theorem 4.3, withe−s1/2 and
e−As,t/2 hidden in the definition of the stochastic integrals. The proof will be given
at the end of this section.

We use a slightly unorthodox definition of the multiple Wiener integral, which em-
phasizes the role of the heat equation. Equation (4.12) below shows that our definition
agrees with the usual one. The symmetric groupSn acts on the complex Hilbert space
L2
(
[0,1]n ; k⊗n

C

)
by (σ · f ) (x1, x2, . . . , xn) := σf (xσ1, xσ2, . . . , xσn), whereσf de-

notes action ofSn onk⊗n
C

determined byσ(ξ1⊗· · ·⊗ξn) = ξσ−11⊗· · ·⊗ξσ−1n. In particu-
lar, if f = f1⊗· · ·⊗fnwith fi ∈ L2 ([0,1] ; kC), thenσ·f = fσ−11⊗· · ·⊗fσ−1n.The sym-
metric subspace, denotedSL2

(
[0,1]n ; k⊗n

C

)
, is the space of thosef ∈ L2

(
[0,1]n ; k⊗n

C

)
for whichσ·f = f for allσ ∈ Sn.A functionf ∈ SL2

(
[0,1]n ; k⊗n

C

)
is determined by its

restriction to1n. The restriction is inL2
(
1n; k⊗n

C

)
and every element ofL2

(
1n; k⊗n

C

)
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arises as such a restriction. For a symmetricf , its norm-squared over[0,1]n isn! times
its norm-squared over1n. Finally, note that given functionsHk1,··· ,kn

∈ L2 (1n) there
is a uniquef ∈ SL2

(
[0,1]n ; k⊗n

C

)
such that(

f (τ1, · · · , τn) , Xk1 ⊗ · · · ⊗Xkn

)
= Hk1,··· ,kn

(τ1, · · · , τn) for (τ1, · · · , τn) ∈ 1n,

i.e.,f |1n
=
∑
Hk1,··· ,kn

Xk1 ⊗ · · · ⊗Xkn
. Here(·, ·) refers to the bilinear extension of

the inner product fromk to kC.

Definition 4.8. LetE denote the subspace ofL2
(
[0,1]n ; k⊗n

C

)
consisting of finite linear

combinations of functions of the form

f (τ1, · · · , τn) = f1 (τ1) ⊗ · · · ⊗ fn (τn) , (4.8)

wherefi ∈ L2 ([0,1] ; kC) is of finite variation. As above,f will be denoted byf1⊗· · ·⊗
fn. Themultiple Stratonovich integral is the linear mapStratn,s : E → L2(Ā, P̃s)
determined by

Stratn,s (f1 ⊗ · · · ⊗ fn) =
1
n!

n∏
i=1

∫ 1

0
(fi (τ ) , daτ ) . (4.9)

Here(·, ·) refers to the bilinear extension of the inner product fromk to kC.

Remark 4.9.Sincefi is assumed to be of finite variation, the integrals in (4.9) make
sense for all continuous functionsa as Stiltjies integrals. Moreover each(fi (τ ) , daτ ) is a
continuous linear function ofa. Using these remarks Stratn,s (f ) for f ∈ E is completely
determined by its values onA which are:

Stratn,s (f ) (A) =
1
n!

(f,A⊗ · · · ⊗A)
L2
(

[0,1]n;k⊗n
C

) for all A ∈ A. (4.10)

Thus the right side of (4.10) is a cylinder function, where theφ in Definition 4.2 is a
homogeneous polynomial of degreen, and every such cylinder function arises in this
way.

We will be interested in this map just on the symmetric subspace ofE , denotedES .

Definition 4.10. The multiple It ô integral is the bounded linear mapIn,s from
SL2

(
[0,1]n ; k⊗n

C

)
toL2(Ā, P̃s) which is determined uniquely by

In,s (f ) = e−s1A/2Stratn,s (f ) for all f ∈ ES . (4.11)

The fact that there exists a bounded linear operator satisfying this equation is a conse-
quence of Lemma 4.11 below.

As an example, fori = 1,2, , . . . , n, let fi = Xki1[li,mi] ∈ L2 ([0,1] ; kC) where
l1, · · · , ln andm1, · · · ,mn are real numbers such that 0≤ li < mi ≤ li+1 ≤ 1. Because
of the conditions on thel’s andm’s, f :=

∑
σ∈Sn

fσ1 ⊗· · ·⊗fσn is the unique function
in ES such that

f |1n
(τ1, · · · , τn) =

(
Xk11[l1,m1] (τ1)

)⊗ · · · ⊗ (Xkn1[ln,mn] (τn)
)
.
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By Definition 4.8,

Stratn,s (f ) =
n∏
i=1

∫ 1

0
(fi (τ ) , daτ ) =

n∏
i=1

(
aki
mi

− aki

li

)
.

Again the assumptions on thel’s andm’s imply that{f1, f2, . . . , fn} ⊂ L2 ([0,1] ; kC)
is an orthogonal set and hence that1AStratn,s (f ) = 0. Therefore the multiple Wiener
integral coincides with the multiple Stratonovich integral, i.e.,

In,s (f ) =
n∏
i=1

(
aki
mi

− aki

li

)
. (4.12)

This expression agrees with any other reasonable definition of the multiple Wiener
integral. For more on multiple Stratonovich integrals and their relationship to multiple
Itô integrals, see [HM, JK] and the references therein.

Lemma 4.11. For f ∈ ES ,

‖In,s (f )‖2
L2(Ā,P̃s) =

sn

n!
‖f‖2

L2
(

[0,1]n;k⊗n
C

) = sn ‖f‖2
L2
(
1n;k⊗n

C

)
.

Proof of Lemma 4.11.Choose an orthonormal set{e1, · · · , ed} ⊂ A with eachei of
finite variation and such that

f ∈ span{ei1 ⊗ · · · ⊗ ein}dij=1 . (4.13)

Then there is a homogeneous polynomialp of degreen onR
d such that Stratn,s (f ) (A) =

p(〈e1, A〉, . . . , 〈ed, A〉). Since the distribution (under̃Ps) of (〈e1, A〉, . . . , 〈ed, A〉) is the
Gaussian measurees1Rd/2δ0, (3.7) withL = s1Rd implies that

‖In,s (f )‖2
L2(Ā,P̃s) =

sn

n!

d∑
i1,i2,...in=1

∣∣(∂i1∂i2 · · · ∂inp
)

(0)
∣∣2 , (4.14)

where∂i = ∂/∂xi and the factorsn results from the fact thatL = s1Rd rather than1Rd .
By (4.10) of Remark 4.9,

p(〈e1, A〉, . . . , 〈ed, A〉) =
1
n!

〈f,A⊗ · · · ⊗A〉
L2
(

[0,1]n;k⊗n
C

).
This equation and the chain rule gives,(

∂i1∂i2 · · · ∂inp
)

(0) =
1
n!
∂ei1

∂ei2
· · · ∂ein

〈f,A⊗ · · · ⊗A〉
L2
(

[0,1]n;k⊗n
C

)|A=0

=
1
n!

∑
σ∈Sn

〈f, eiσ1 ⊗ · · · ⊗ eiσn
〉
L2
(

[0,1]n;k⊗n
C

)
= 〈f, ei1 ⊗ · · · ⊗ ein〉

L2
(

[0,1]n;k⊗n
C

), (4.15)

where in the last equality we have usedf ∈ ES . Combining (4.13)–(4.15) proves the
lemma. �

We may now define the integrals that appear in Proposition 4.6.
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Definition 4.12. For f ∈ L2 (1n), let∫
1n

f dak1
τ1

· · · dakn
τn

= In,s (g) ,

whereg is the symmetric extension to[0,1]n of the functionf · Xk1 ⊗ · · · ⊗ Xkn in
L2
(
1n; k⊗n

C

)
.

Proof of Proposition 4.6.IdentifyingSL2
(
[0,1]n ; k⊗n

C

)
with L2

(
1n; k⊗n

C

)
by restric-

tion, the Itô integral is an isometric map ofL2
(
1n; k⊗n

C

)
intoL2(Ā, P̃s). From the proof

of Lemma 4.11, the image ofL2
(
1n; k⊗n

C

)
in L2(Ā, P̃s) is preciselyFn,s

(Ā) in Defi-
nition 4.5. This gives the characterization ofFn,s

(Ā) given in the proposition. That the
spacesFn,s

(Ā) are orthogonal and that their sum is all ofL2(Ā, P̃s) follow from the
corresponding results (Proposition 3.5) for the spacesFn,s

(
R
d
)

in L2
(
R
d, Ps

)
and the

density of cylinder functions.
We now turn to the complex case. As in the real case we think of the integrand

as an element ofL2
(
1n; k⊗n

C

)
, which we then identify with the symmetric subspace

of L2
(
[0,1]n ; k⊗n

C

)
. Continuing the notation of Definition 4.4, let̃As,t be the unique

operator on cylinder functions such thatÃs,tf (A) =
(
As,tφ

) (〈e1, A〉 , · · · , 〈ed, A〉).
Define the complex Stratonovich integral by analogy to (4.9) to be

Stratn,s,t (f1 ⊗ · · · ⊗ fn) =
1
n!

n∏
i=1

∫ 1

0
(fi (τ ) , dcτ ) (4.16)

and the complex Itˆo integral to be

In,s,t (f ) = e−Ãs,t/2Stratn,s,t (f ) . (4.17)

The analog of Lemma 4.11 in the complex case is:

‖In,s,t (f )‖2
L2(ĀC,M̃s,t) =

sn

n!
‖f‖2

L2
(

[0,1]n;k⊗n
C

) = sn ‖f‖2
L2
(
1n;k⊗n

C

)
.

The proof is the same provided that (3.12) is used in place of (3.7). Alternatively, this
equation is a consequence of Theorem 3.8 and the isometricity ofSs,t in Theorem 3.2.
The rest of the proof is the same as the real case.�

Proof of Theorem 4.7.Identify the integrand as above with an element ofSL2
(
[0,1]n ;

k⊗n
C

)
. By the continuity of the transform and the integrals it suffices to prove the result

on the dense subspaceES . But comparing (4.9) and (4.11) to (4.16) and (4.17) and using
Theorem 3.8 gives the result onES . �

Remark 4.13.In Sect. 5 we will need to know that, at least in certain cases, themul-
tiple Wiener integral coincides with theiterated Itô integral. It is easily seen that the
two coincide for nice integrands, as in (4.12). Moreover, using repeatedly the isometry
property of the one-dimensional Itˆo integral shows that the iterated Itˆo integral has the
same isometry property (Lemma 4.11) as the multiple Wiener integral. It follows that the
multiple Wiener and iterated Itˆo integrals coincide,providedthat the iterated Itˆo integral
makes sense. For us it is enough to have this for integrands which are constant on a set
of the form 0≤ u ≤ τ1 ≤ · · · ≤ τn ≤ v and zero elsewhere (Lemmas 5.7 and 5.8), in
which case there is no difficulty.
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5. Functions of the Holonomy

5.1. Statements.Recall thataτ (A) :=
∫ τ

0 Aσ dσ andcτ (A) :=
∫ τ

0 Cσ dσ are Brownian
motions with values ink andkC respectively.

Definition 5.1 (Itô maps). Let θτ and θC
τ denote the solutions to the Stratonovich

stochastic differential equations

dθτ = θτ ◦ daτ with θ0 = e ∈ K, (5.1)

dθC

τ = θC

τ ◦ dcτ with θC

0 = e ∈ KC. (5.2)

We define the holonomiesh (A) andhC (C) by

h (A) = θ1 (A) ,

hC (C) = θC

1 (C) .

Notice thatθ andh are defined on(Ā, P̃s), and thatθC andhC are defined on(ĀC, M̃s,t).

Recall thatθτ (A) andθC
τ (C) are to be interpreted as the parallel transport from 0 to

τ of the generalized connectionsA andC, respectively. The meaning of the stochastic
differential equations (5.1) and (5.2) is described in detail in Sect. 5.3. We are now ready
to state our main result.

Theorem 5.2. Fix s andt with s > t/2> 0. Supposef ∈ L2(Ā, P̃s) is of the form

f (A) = φ (h (A)) ,

whereφ is a function onK. Then there exists a unique holomorphic function8 onKC

such that

S̃s,tf (C) = 8 (hC (C)) .

The function8 is determined by the condition that

8|K = et1K/2φ.

Here1K is the Laplace–Beltrami operator onK associated to the bi-invariant Rie-
mannian metric that agrees at the identity with the chosen inner product onk. The
meaning ofet1K/2 is discussed following Theorem 5.3.

Observe that the space of functionsf ∈ L2(Ā, P̃s) of the formφ◦hmay be identified
with L2 (K, ρs), whereρs is the distribution ofh with respect toP̃s. It is known thatρs
coincides with the heat kernel measure onK; thus the Hilbert spaceL2 (K, ρs) coincides
with the one considered in [H1]. Similarly, the space of functionsF ∈ L2(ĀC, M̃s,t) of
the formF = 8 ◦ θC, with 8 a not-necessarily-holomorphic function onKC, may be
identified withL2

(
KC, µs,t

)
, whereµs,t is the distribution ofhC with respect toM̃s,t,

which is a certain heat kernel measure onKC. So if we apply the isometric transform
S̃s,t to functions of the formφ ◦ h, then we obtain an isometric map ofL2 (K, ρs)
into the holomorphic subspace ofL2

(
KC, µs,t

)
. The proof of surjectivity in Theorem 2

of [H1] applies essentially without change to show that this map is onto the holomorphic
subspace. The following theorem summarizes these observations.
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Theorem 5.3. For all s andt with s > t/2> 0, the map

φ → analytic continuation ofet1K/2φ

is an isometric isomorphism ofL2 (K, ρs) onto the space of holomorphic functions in
L2
(
KC, µs,t

)
.

This result was proved in [H1] for the cases = t. Part of the theorem is thatet1K/2φ
always has a unique analytic continuation toKC. Note that the measureρs has a density
with respect to Haar measure which is strictly positive and continuous, and therefore
bounded and bounded away from zero by compactness. This means thatL2 (K, ρs) is the
same space of functions asL2 (K, Haar). Soet1K/2 is to be interpreted as the standard
contraction semigroup onL2 (K, Haar).

If we restrict the transform̃Ss,t to functions of the holonomy, then it makes sense to
allow s to tend to infinity. See Sect. 2 for a discussion of why this limit is natural from
the point of view of Yang–Mills theory.

Theorem 5.4. Normalize the Haar measuredx on the compact groupK to have mass
one. Thenφ ∈ L2 (K, ρs) if and only ifφ ∈ L2 (K, dx), and

‖φ‖L2(K,dx) = lim
s→∞ ‖φ‖L2(K,ρs) .

The measure

dνs,t (g) =
∫
K

dµs,t (gx) dx, g ∈ KC

is independent ofs and will be denotedνt (g). For all 8 ∈ H (KC), 8 ∈ L2
(
KC, µs,t

)
if and only if8 ∈ L2 (KC, νt), and

‖8‖L2(KC,νt) = lim
s→∞ ‖8‖L2(KC,µs,t) .

Thus the map

φ → analytic continuationet1K/2φ

is an isometric isomorphism ofL2 (K, dx) ontoHL2 (KC, νt).

The last isometric isomorphism, with domainL2 (K, dx), was obtained in [H1, Thm.
2], and was denotedCt.

Recall that the transform̃Ss,t maps into the holomorphic subspace ofL2(ĀC, M̃s,t).
Theorem 5.2 together with the “onto” part of Theorem 5.3 gives the following.

Theorem 5.5. Suppose8 is a holomorphic function onKC such that8 ◦ hC is in
L2(ĀC, M̃s,t). Then8 ◦ hC is in HL2(ĀC, M̃s,t).

It would be desirable to have a direct proof of this result. See the discussion in
Sect. 2.5 of [HS], which contains thes = t case of Theorem 5.5. (Note that there is a gap
in one of the two proofs of this result in [HS]. The paper [DHu] will close this gap. See
the discussion at the end of Sect. 7.) A more general version of Theorem 5.5 is given in
Theorem 6.3 of Sect. 6.

5.2. Heuristics.We now give a simple heuristic argument for Theorem 5.2 based on the
following proposition. The proof will be given in the next subsection. We are grateful to
Ambar Sengupta for showing us the significance of Proposition 5.6. See also Appendix
A for another “explanation” of Theorem 5.2.
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Proposition 5.6. If A ∈ Ā is distributed according to the measurẽPs andB is a fixed
element ofA, thenθ(A +B) has the same distribution asθ (A) θ (B).

Proof. Direct calculation shows that forA andB smooth,

θτ (A) θτ (B) = θτ
(
Adθ (B)−1 (A) +B

)
.

Standard stochastic techniques show that this remains true almost surely ifA is a white
noise andB is in A. But the white noise measurẽPs is invariant under the pointwise
adjoint action, which is just a “rotation” ofA. �

Using Proposition 5.6, we may formally calculateet1A/2f . The measurẽPt is the
fundamental solution at the origin of the heat equation, which means thatet1A/2 should
be given by convolution with̃Pt. Similarly,ρt is the fundamental solution at the identity
of the heat equation onK. So if f (A) = φ (θ1 (A)) then

et1A/2f (B) =
∫

Ā
φ (θ1 (A +B)) dP̃t (A) =

∫
Ā
φ (θ1 (A) θ1 (B)) dP̃t (A)

=
∫
K

φ (xθ1 (B)) dρt (x)

= et1K/2φ (θ1 (B)) .

We have used the proposition between the first and second lines. Assuming this is valid
for B ∈ Ā and then analytically continuing formally tōAC we obtain Theorem 5.2.

Some rigorous variant of this argument is used in [GM, Sa2, HS, AHS], all of which
consider only thes = t case. In that case it is possible to work with holomorphic
functions onAC instead ofĀC, so that the above argument is essentially rigorous. The
results of [GM] are stated only onAC, while the other papers work first onAC and then
extend toĀC. However, this approach does not work whens 6= t, since the pointwise
bounds needed to obtain (everywhere-defined) holomorphic functions onAC do not
hold whens 6= t.

5.3. Proofs.Let us explain more precisely Definition 5.1 of the Itˆo maps. A continuous
K–valued semi-martingaleθτ satisfies (5.1) if and only if for allf ∈ C∞([0,1] ×K),

f (τ, θτ ) = f (0, e) +
∫ τ

0

∂f

∂σ
(σ, θσ) dσ +

dim k∑
k=1

∫ τ

0
Xkf (σ, θσ) ◦ dakσ, (5.3)

whereaτ =
∑dim k
k=1 akτXk. Here{Xk}dim k

k=1 is an orthonormal basis fork, with eachXk

viewed as a left-invariant vector field onK.
Noting that{ak· }dim k

k=1 are independent Brownian motions with variances, (5.3) may
be written in Itô form as

f (τ, θτ ) = f (0, e) +
∫ τ

0

(
∂f

∂σ
(σ, θσ) +

s

2
1Kf (σ, θσ)

)
dσ

+
dim k∑
k=1

∫ τ

0
Xkf (σ, θσ) dakσ, (5.4)

where1K =
∑
X2
k.
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Write cτ =
∑dim k
k=1 akτXk +

∑dim k
k=1 bkτYk, whereYk = JXk. Warning: we are using

the same lettera for both the process ink and the real part of the process inkC, which do
not even have the same distribution. The context should make it clear whether we are in
the real or the complex setting. A continuousKC–valued semi-martingaleθC

τ is said to
solve (5.2) provided that for allu ∈ C∞ ([0,1] ×KC),

u(τ, θC

τ ) = u(0, e) +
∫ τ

0

∂u

∂σ
(σ, θC

σ ) dσ

+
dim k∑
k=1

∫ τ

0
Xku(σ, θC

σ ) ◦ dakσ +
dim k∑
k=1

∫ τ

0
Yku(σ, θC

σ ) ◦ dbkσ. (5.5)

Noting that{ak· }dim k
k=1 and{bk· }dim k

k=1 are independent Brownian motions with variances(
s− t/2

)
andt/2, respectively, (5.5) may be written in Itˆo form as

u
(
τ, θC

τ

)
= u (0, e) +

∫ τ

0

(
∂u

∂σ

(
σ, θC

σ

)
+

1
2
AKC

s,t u
(
σ, θC

σ

))
dσ

+
dim k∑
k=1

∫ τ

0
Xku

(
θC

σ

)
dakσ +

dim k∑
k=1

∫ τ

0
Yku

(
θC

σ

)
dbkσ, (5.6)

whereAKC

s,t is defined, by analogy toAs,t, to be
(
s− t/2

)
6X2

k + t
26Y 2

k . For exis-
tence and uniqueness of solutions to (5.5) and (5.6) see, for example, Elworthy [El],
Emery [Em], Ikeda and Watanabe [IW], or Kunita [Ku, Theorem 4.8.7].

We now begin working toward the proof of Theorem 5.2. For use in Sect. 6, we will
actually computẽSs,t on functions of the formφ(θ−1

u θv), for two fixed timesu andv.

The transformed function is then8
((
θC
u

)−1
θC
v

)
, where8 is holomorphic onKC and

where8|K = e(v−u)t1K/2φ. Theorem 5.2 is the special caseu = 0, v = 1.
The following lemma is essentially a special case of the results of Veretennikov and

Krylov [VK].

Lemma 5.7. Suppose that0 ≤ u < v ≤ 1, andφ is a measurable function onK such
thatφ(θ−1

u θv) ∈ L2(Ā, P̃s). Then the Wiener Chaos expansion ofφ(θ−1
u θv) is

φ(θ−1
u θv) =

∞∑
n=0

dim k∑
k1,··· ,kn=1

∫
1n(u,v)

αk1,··· ,kn
dak1
τ1

· · · dakn
τn
, (5.7)

where
αk1,··· ,kn

=
(
Xk1 · · ·Xkn

e(v−u)s1K/2φ
)

(e) (5.8)

and1n(u, v) = {(τ1, . . . , τn) |u ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ v }.

Proof. To simplify notation, letξτ = θ−1
u θτ for u ≤ τ ≤ 1. Let us first assume that

φ(x) = 〈h, π(x)w〉, whereπ : K → End(W ) is a finite-dimensional representation of
K, h ∈ W ∗ andw ∈ W . Set

f (τ, x) =
(
e(v−τ )s1K/2φ

)
(x) =

〈
h, π(x)e(v−τ )sπ(1K )/2w

〉
, (5.9)

whereπ (1K) =
∑dim k
k=1 π(Xk)2 and by abuse of notation we are writingπ(X) for

d
dt |0π(etX ) whenX ∈ k. The second equality in (5.9) follows from uniqueness of
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solutions to the heat equation. (See also [H1]). Notice thatf solves the backward heat
equation∂f (τ, x)/∂τ + s1f (τ, x)/2 = 0 withf (v, x) = φ(x). Therefore by the analog
of (5.4) forξτ ,

f (τ, ξτ ) = f (u, e) +
dim k∑
k=1

∫ τ

u

Xkf (σ, ξσ) dakσ.

Since1 andXk commute, it follows thatXkf also satisfies the backward heat equation.
Hence, the previous equation applies withf replaced byXkf , namely

Xkf (τ, ξτ ) = Xkf (u, e) +
dim k∑
l=1

∫ τ

u

XlXkf (r, ξr) da
l
r.

Combining the two previous equations gives

f (τ, ξτ ) = f (u, e) +
dim k∑
k=1

∫ τ

u

Xkf (u, e) dakσ +
dim k∑
k,l=1

∫ τ

u

(∫ σ

u

XlXkf (r, ξr) da
l
r

)
dakσ.

Iterating this procedure gives (Remark 4.13)

φ(θ−1
u θv) = φ(ξv) = f (v, ξv)

=
N∑
n=0

dim k∑
k1,··· ,kn=1

∫
1n(u,v)

αk1,··· ,kn
dak1
τ1

· · · dakn
τn

+RN (u, v),

whereαk1,··· ,kn
is defined by (5.8) and where

RN (u, v) =
dim k∑

k1,··· ,kN+1=1

∫ v

u

∫ τN+1

u

· · ·
∫ τ2

u

Xk1 · · ·Xknf (τ1, ξτ1) daτ1 · · · daτN+1.

Using the isometry property of the iterated Itˆo integral together with the assumption that
φ is a matrix entry of a finite-dimensional representation one shows that

‖RN (u, v)‖2
L2(Ā,P̃s) ≤ CN+1

(N + 1)!
→ 0 asN → ∞.

Therefore, (5.7) holds whenφ(x) is a linear combination of matrix elements of finite-
dimensional representations ofK.

We now consider generalφ. Note that the distribution ofθ−1
u θv is the same as

that of θv−u, namely, the heat kernel measureρ(v−u)s. This measure has a smooth
strictly positive density with respect to Haar measure onK, which by compactness is
bounded and bounded away from zero. Thus by the Peter-Weyl theorem, there exist
functionsφn which are finite linear combinations of matrix entries such thatφn → φ
in L2

(
K, ρ(u−v)s

)
and thusφn(θ−1

u θv) → φ(θ−1
u θv) in L2(Ā, P̃s). The smoothness of

the heat kernel shows that the mapφ → (
Xk1 · · ·Xkn

e(v−τ )s1K/2φ
)

(e) is a continuous
linear functional onL2

(
K, ρ(v−u)s

)
. So passing to the limit gives the lemma in general.

�

We have the following holomorphic analog of the previous lemma. Recall thatAKC

s,t =(
s− t/2

)
6X2

k + t
26Y 2

k , whereYk = JXk.
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Lemma 5.8. Suppose that8 is a holomorphic function onKC which is a finite lin-
ear combination of matrix entries. Then the holomorphic Wiener chaos expansion of

8
((
θC
u

)−1
θC
v

)
is

8
((
θC

u

)−1
θC

v

)
=

∞∑
n=0

dim k∑
k1,··· ,kn=1

∫
1n(u,v)

βk1,··· ,kn
dck1
τ1

· · · dckn
τn
, (5.10)

where

βk1,··· ,kn
=
(
Xk1 · · ·Xkn

e(v−u)A
KC

s,t /28
)

(e) (5.11)

and1n(u, v) = {(τ1, . . . , τn) |u ≤ τ1 ≤ τ2 ≤ · · · ≤ τn ≤ v }.

Proof. The argument is very similar to the preceding one. If8 (g) = 〈h, π (g)w〉, where
π is a finite-dimensional holomorphic representation ofKC, then we set

u (τ, g) = e(v−τ )A
KC

s,t /28 (g) =

〈
h, π (g) e(v−τ )π

(
A

KC

s,t

)
w

〉
.

Again it may be verified that the second and third expressions are equal (see for exam-
ple [H1]), with the second interpreted as convolution against the relevant heat kernel.
Thenu (τ, g) is holomorphic ing for eachτ . ThusYku = iXku, and the last two terms in
(5.6) combine into one term involving integration againstdaτ +idbt = dcτ . Iteration then
proceeds as in the real case. The remainder estimate is similar as well after using the stan-

dard fact that theL2 norm ofπ
((
θC
u

)−1
θC
v

)
is bounded uniformly for 0≤ u ≤ v ≤ 1.

The lemma in fact holds for all holomorphic8 for which 8
((
θC
u

)−1
θC
v

)
is square-

integrable, but we will not require this. �
Proof of Theorem 5.2.Let φ ∈ L2(K) andf = φ(θ−1

u θv) ∈ L2(Ā, P̃s). We will show

that there exists a unique holomorphic function8 such thatS̃s,tf (C) = 8
((
θC
u

)−1
θC
v

)
and such that8|K = e(v−u)t1K/2φ. Theorem 5.2 is the special case,u = 0, v = 1.

By standard density arguments it suffices to prove the theorem in the case where
φ(x) = 〈h, π(x)w〉 with π : KC → End(W ) being a finite-dimensional holomorphic
representation ofKC, h ∈ W ∗ andw ∈ W . In this case the holomorphic function in
the statement of Theorem 5.2 is

8(g) = (e(v−u)t1K/2φ)(g) =
〈
h, π(g)e(v−u)tπ(1K )/2w

〉
.

By Lemma 5.7 and Theorem 4.7,

S̃s,t(φ(θ−1
u θv)) =

∞∑
n=0

dim k∑
k1,··· ,kn=1

∫
1n(u,v)

αk1,··· ,kn
dck1
τ1

· · · dckn
τn
,

whereαk1,··· ,kn
=
(
Xk1 · · ·Xkn

e(v−u)s1K/2φ
)

(e). Lemma 5.8 will now give the the-
orem, provided that the coefficientsβk1,··· ,kn

in Lemma 5.8 with8 as above coincide
with the coefficientsαk1,··· ,kn

. So we require that(
Xk1 · · ·Xkn

e(v−u)s1K/2
)
φ(e) =

(
Xk1 · · ·Xkn

e(v−u)As,t/2e(v−u)t1K/2φ
)

(e).
(5.12)
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But 8 = e(v−u)t1K/2φ is holomorphic, andAs,t8 = (s− t) 1K8 on holomorphic
functions, so (5.12) holds. �

Proof of Theorem 5.4.Since we are assuming thatK is compact,ρs (x) will be bounded
and bounded away from zero. Thus theL2 norm with respect toρs (x) dx is finite if and
only if theL2 norm with respect to the Haar measure is finite. It is an easy and standard
result thatρs (x) converges uniformly to the constant function 1, which establishes the
first limit in the theorem.

Now, letδK denote the Haar measure onK, viewed as a measure onKC. Then since
As,t is a left-invariant operator, we have formally

νs,t = eAs,t (δK) .

But the two terms in the definition ofAs,t commute, so

νs,t = et/2
∑

JX2
ke(s−t/2)

∑
X2

k (δK) .

SinceδK is K-invariant, the exponential involving
∑
X2
k has no effect, and thes-

dependence vanishes.
The equivalence of square-integrability with respect toµs,t andνt is implied by the

“averaging lemma” [H1, Lem. 11]. This is stated in [H1] for the cases = t, but the same
proof applies in general. Using the commutativity of

∑
X2
k and

∑
(JXk)2,

µs,t = e(s−t)
∑

X2
k et/2

∑
JX2

k et/2
∑

X2
k (δe) ∀ s > t.

Thus

µs,t (g) =
∫
K

µt,t
(
gx−1

)
ρs−t (x) dx,

from which it follows that lims→∞ µs,t (g) = νt (g) for all g. Furthermore, applying the
averaging lemma toµt,t we see that for alls > t, µs,t (g) is dominated by a constant
(independent ofs) timesνt (g). So Dominated Convergence gives the second limit in
the theorem. The methods of [H1] are sufficient to make all of this rigorous.�

6. General Functions of the Parallel Transport

Recall thatθ andθC are the Itô maps satisfying the stochastic differential equations (5.1)
and (5.2) of Definition 5.1.

Definition 6.1. LetW (K) denote the group of continuous pathx with values inK,
with time interval[0,1] and satisfyingx0 = e. DefineW (KC) similarly. Let ρ̃s be the
Wiener measure onW (K), that is, the law of the processθ· (A), whereA is distributed
as P̃s. Similarly let µ̃s,t be theWiener measure onW (KC), the law of the process
θC

· (C), whereC is distributed asM̃s,t.
For each partitionP = {0 = τ0 < τ1 < · · · < τn = 1} of [0,1], let θP =(

θτ1, · · · , θτn

)
,KP = Kn andρP

s denote the law ofθP , a probability measure onKP .
DefineθC

P ,KP
C

andµP
s,t similarly.
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As in Theorem 5.3, letρs denote the measureρP
s onK, whereP = {0,1}. This

measure has a smooth strictly positive density with respect to the Haar measure, which
we also callρs. If x = (x1, · · · , xn) is a typical element inKP , then (as is well known)

dρP
s (x) =

n∏
i=1

ρs1iτ (x−1
i−1xi) dxi, (6.1)

where1iτ = τi − τi−1. As forρs, we will also useρP
s to denote the density on the right

side of (6.1).
If P is a partition andx ∈ W (K) andg ∈ W (KC), letxP =

(
xτ1, · · · , xτn

) ∈ KP

andgP =
(
gτ1, · · · , gτn

) ∈ KP
C

.

Definition 6.2. Let P = {0 = τ0 < τ1 < · · · < τn = 1} be a partition of[0,1]. A
functionf ∈ L2(W (K), ρ̃s) is said to be acylinder function based onP if f is the
formf (x) = φ(xP ) for some measurable functionφ : KP → C.

Similarly, we say a functionF ∈ L2(W (KC), µ̃s,t) is a holomorphic cylinder
function based onP provided thatF is of the formF (g) = 8(gP ), where8 is a
holomorphic function onKP

C
.

Theholomorphic subspace ofL2
(
W (KC) , µ̃s,t

)
, denotedHL2

(
W (KC) , µ̃s,t

)
,

is theL2 closure of theL2 holomorphic cylinder functions.

Theorem 6.3. There exists a unique isometric isomorphismB̃s,t : L2 (W (K) , ρ̃s) →
HL2

(
W (KC) , µ̃s,t

)
such that for all partitionsP and allL2 cylinder functions

f (x) = φ (xP )

based onP, B̃s,t is of the form

B̃s,tf (g) = 8 (gP ) ,

where8 is holomorphic onKP
C

which is determined uniquely by the condition that

8(g) =
∫
KP

ρP
t

(
gx−1

)
φ(x) dx (6.2)

for all g ∈ KP . If F ∈ HL2
(
W (KC) , µ̃s,t

)
is a holomorphic cylinder function, then

B̃−1
s,tF is a cylinder function based on the same partition.

The following diagram is well defined and commutative, and all maps are one-to-one,
onto, and isometric.

L2(Ā, P̃s) S̃s,t→ HL2(ĀC, M̃s,t)
↑ θ ↑ θC

L2 (W (K) , ρ̃s)
B̃s,t→ HL2

(
W (KC) , µ̃s,t

)
,

whereθ andθC are being used here to denote the unitary maps,f ∈ L2 (W (K) , ρ̃s) →
f ◦θ ∈ L2(Ā, P̃s) andF ∈ L2

(
W (KC) , µ̃s,t

)→ F ◦θC ∈ L2(ĀC, M̃s,t), respectively.



Yang–Mills Theory and the Segal–Bargmann Transform 279

Note that the vertical arrow on the right side is not obviously well defined, since
composition withθC does not take cylinder functions to cylinder functions. Theorems 5.2
and 5.3 are special cases in which the partition isP = {0 = τ0 < τ1 = 1}. Thes = t case
of this theorem is part of Theorem 17 of [HS]. The theorem implies that iff ∈ L2(Ā, P̃s)
is a function of the parallel transportθ at a finite number of timesτ1, · · · , τn, thenS̃s,tf
is a function of the complex parallel transport at the same timesτ1, · · · , τn.

The heuristic argument for Theorem 5.2 applies just as well when applyingS̃s,t to a
function of the formφ

(
θτ1 (A) , · · · θτn

(A)
)
, and so provides a heuristic argument for the

commutative diagram in Theorem 6.3. Isometricity ofB̃s,t would then follow from the
isometricity ofS̃s,t. Appendix A provides another heuristic argument for Theorem 6.3.
See especially Example 8.8 and Theorem 8.9. The actual proof of Theorem 6.3 will be
by reduction to Theorem 5.2, using the following result. (See also [AHS, Prop. 3.3.1].)

Proposition 6.4 (Factorization proposition). For 0 ≤ l < m ≤ 1, let F[l,m] be
the σ-algebra in Ā generated byas − al, with s ∈ [l,m]. Supposec ∈ (0,1),
f ∈ L2(Ā,F[0,c] , P̃s) andg ∈ L2(Ā,F[c,1], P̃s). Thenfg ∈ L2(Ā, P̃s) and

S̃s,t(fg) = S̃s,t(f )S̃s,t(g).

Proof. First suppose that

f (A) = φ
(〈e1, A〉 , · · · 〈ed, A〉) andg (A) = ψ

(〈u1, A〉 , · · · 〈uk, A〉) ,
where{e1, · · · , ed} and{u1, · · · , uk} are orthonormal subsets ofA which are contained
in A ∩ C∞([0, c] ; k) andA ∩ C∞([c,1] ; k) respectively. Then

〈ei, A〉 = −
∫ c

0
〈e′
i(τ ), aτ (A)〉 dτ,

〈ui, A〉 = −
∫ 1

c

〈u′
i(τ ), aτ (A) − ac(A)〉 dτ.

Approximating the integrals by Riemann sums, one shows that these expressions
areF[0,c] - andF[c,1]-measurable, respectively. Thereforef and g are cylinder func-
tions that areF[0,c] - and F[c,1]-measurable, respectively. Since eachei is orthogo-
nal to eachuj , {e1, · · · , ed, u1, · · · , uk} is an orthonormal set andF[0,c] and F[c,1]

are P̃t independentσ-fields. The heat kernel onRd+k factors, so applying the finite-
dimensional transformSs,t in (3.1) to the functionφ (x)ψ (y) givesSs,t (φ)Ss,t (ψ).
HenceS̃s,t(fg) = S̃s,t(f )S̃s,t(g).

For generalf ∈ L2(ĀC,F[0,c] , P̃s) and g ∈ L2(ĀC,F[c,1], P̃s), choose cylinder
functionsfn andgn as above such thatfn → f in L2(ĀC,F[0,c] , P̃s) andgn → g in
L2(ĀC,F[c,1], P̃s). Because of the independence ofF[0,c] andF[c,1], fngn → fg in
L2(ĀC,F[0,1], P̃s). Furthermore, it is easily seen thatS̃s,t (fn) and S̃s,t (gn) are mea-
surable with respect to independentσ-algebras inĀC. Thus by the isometry property of
S̃s,t,

S̃s,t (fg) = lim
n→∞ S̃s,t (fngn) = lim

n→∞ S̃s,t(fn)S̃s,t(gn) = S̃s,t(f )S̃s,t (g) . �
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Proof of Theorem 6.3.Our strategy is to use Theorem 5.2 and the Factorization Propo-
sition to computeS̃s,t on functions of the formφ

(
θτ1, · · · , θτn

)
. The result shows that

S̃s,t (f ◦ θ) =
(
B̃s,tf

) ◦ θC and hence that̃Bs,t is isometric becausẽSs,t is isometric. A
surjectivity argument for̃Bs,t then establishes the well-definedness and commutativity
of the diagram.

It is easily seen that there is at most one isometric isomorphism having the given
action on cylinder functions. We will now prove the existence ofB̃s,t and establish the
commutative diagram in the theorem.

Supposef ∈ L2(Ā, P̃s) is of the form

f = ψ1
(
θτ1

)
ψ2
(
θ−1
τ1
θτ2

) · · ·ψn
(
θ−1
τn−1

θτn

)
,

whereψ1, · · · , ψn are functions onK. Thenψi
(
θ−1
τi−1

θτi

)
is F[τi−1,τi] -measurable.

So by the strong form of Theorem 5.2 proved in Sect. 5.3 and by the Factorization
Proposition 6.4 (extended by induction to hold for products ofn factors),

S̃s,tf = 91
(
θC

τ1

)
92

((
θC

τ1

)−1
θC

τ2

)
· · ·9n

((
θC

τn−1

)−1
θC

τn

)
, (6.3)

where9i is a holomorphic function onKC whose restriction toK is e(τi−τi−1)t1K/2ψi.
Now supposef ∈ L2(Ā, P̃s) is any function of the form

f = ψ
(
θτ1, θ

−1
τ1
θτ2, · · · , θ−1

τn−1
θτn

)
(6.4)

with ψ ∈ L2
(
Kn, ρs11τ × · · · × ρs1nτ

)
. Then we claim that

S̃s,tf = 9

(
θC

τ1
,
(
θC

τ1

)−1
θC

τ2
, · · · ,

(
θC

τn−1

)−1
θC

τn

)
, (6.5)

where9 is the unique holomorphic function onKn
C

whose restriction toKn is given by

9 (a1, · · · , an) =
∫
K

· · ·
∫
K

ρt11τ

(
a1b

−1
1

)
(6.6)

· · · ρt1nτ

(
anb

−1
n

)
ψ (b1, · · · , bn) db1 db2 · · · dbn.

If ψ is a product function then this assertion is simply (6.3); since linear combinations
of product functions are dense inL2

(
Kn, ρs11τ × · · · × ρs1nτ

)
the assertion holds in

general. (Recall (6.1).)
Equations (6.4)–(6.6) express the action ofS̃s,t on cylinder functions in terms of the

“incremental coordinates”θ−1
τi−1

θτi
. We wish to have in addition a formula for the action

of S̃s,t on cylinder functions in terms of the “direct coordinates”θτ1, · · · , θτn . (See the
proof of Theorem 3 in [HS, Sect. 3.2].) So supposef is any cylinder function based on
the partionP:

f = φ
(
θτ1, · · · , θτn

)
(6.7)

with φ ∈ L2
(
KP , ρP

s

)
. Then we claim that

S̃s,tf = 8
(
θC

τ1
, θC

τ2
, · · · , θC

τn

)
, (6.8)
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where8 is the unique holomorphic function onKP
C

such that

8(g) =
∫
KP

ρP
t

(
gx−1

)
φ(x) dx, (6.9)

for all g ∈ K P . Explicitly, by (6.1) this means that

8 (g1, · · · , gn) =
∫
Kn

[
n∏
i=1

ρt1iτ

((
gi−1x

−1
i−1

)−1
gix

−1
i

)]
φ (x1, · · · , xn) dx1 · · · dxn.

(6.10)

(Hereg0 = x0 = e.)
To verify this, we note thatf can be expressed in the form (6.4) with

ψ (a1, · · · , an) = φ (a1, a1a2, · · · , a1a2 · · · an) ,

in which caseφ can be expressed in terms ofψ by

φ (x1, · · · , xn) = ψ
(
x1, x

−1
1 x2, · · · , x−1

n−1xn
)
.

ThusS̃s,tf is given by (6.5). But theñSs,tf can be expressed in the form (6.8), where

8 (g1, · · · , gn) = 9
(
g1, g

−1
1 g2, · · · , g−1

n−1gn
)
,

with 9 given in (6.6). We need only verify the relationship between8 andφ. Putting
together the definitions we get

8 (g1, · · · , gn) =
∫
Kn

[∏
ρt1iτ

(
g−1
i−1gib

−1
i

)]
ψ (b1, · · · , bn) db1 · · · dbn. (6.11)

We then make successive changes of variable(x1, · · · , xn) = (b1, b1b2, · · · , b1b2 · · · bn),
so thatbi = x−1

i−1xi. Since the heat kernel onK is a class function, we have

ρt1iτ

(
g−1
i−1gib

−1
i

)
= ρt1iτ

(
g−1
i−1gix

−1
i xi−1

)
= ρt1iτ

((
gi−1x

−1
i−1

)−1
gix

−1
i

)
.

Thus (6.11) agrees with (6.10).
Now recall thatθ is a measure-theoretic isomorphism of (Ā, P̃s) with (W (K) , ρ̃s)

andθC is an isomorphism of (̄AC, M̃s,t) with
(
W (KC) , µ̃s,t

)
. So let us nowdefinea

transformB̃s,t by

B̃s,tf =
[
S̃s,t (f ◦ θ)] ◦ (θC

)−1
.

This is a well-defined isometric map ofL2 (W (K) , ρ̃s) into L2
(
W (KC) , µ̃s,t

)
. But

(6.7)-(6.10) tell us thatB̃s,t takes cylinder functions to holomorphic cylinder func-
tions. Since cylinder functions are dense inL2 (W (K) , ρ̃s) then by the definition of
HL2

(
W (KC) , µ̃s,t

)
, B̃s,t maps into the holomorphic subspace. Equations (6.7)-(6.10)

assert thatB̃s,t satisfies (6.2) of the theorem. By the definition ofB̃s,t, the diagram in
the theorem would commute if theHL2’s were replaced byL2’s.

It remains then to show that composition withθC takesHL2
(
W (KC) , µ̃s,t

)
onto

HL2(ĀC, M̃s,t), and thatB̃s,t mapsontoHL2
(
W (KC) , µ̃s,t

)
. We address the second

point first. We computẽBs,t in “incremental coordinates” using (6.4)–(6.6). So we are
applying the heat equation in the “increments”x−1

i−1xi. Since in incremental coordinates
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bothρP
s andµP

s,t factor as product measures, the surjectivity argument in Theorem 5.3
(using the method of [H1]) applies to show that everyL2 holomorphic cylinder function
8 (gP ) comes from anL2 cylinder functionφ (xP ). For the details of this argument see
again the proof of Theorem 3 in [HS]. Since holomorphic cylinder functions are dense
by definition inHL2

(
W (KC) , µ̃s,t

)
, B̃s,t is surjective.

Now that we knowB̃s,t is surjective, we may show that composition withθC takes
the holomorphic subspace onto the holomorphic subspace. IfF ∈ HL2

(
W (KC) , µ̃s,t

)
,

then lettingf = B̃−1
s,tF , we have

F ◦ θC =
(
B̃s,tf

) ◦ θC = S̃s,t (f ◦ θ) .

But S̃s,t maps into the holomorphic subspace, soF ◦ θC ∈ HL2(ĀC, M̃s,t). A similar
argument using the surjectivity of̃Ss,t shows that ifF ∈ HL2(ĀC, M̃s,t) thenF ◦(
θC
)−1 ∈ HL2(ĀC, M̃s,t). �

7. Another Proof of Theorem 5.2

In this section, we sketch another method for proving Theorem 5.2. The idea is to
approximateh (A) by cylinder functions and to computẽSs,t by first principles. So for
a partitionP we make a piecewise-linear approximationaP to the Brownian motiona,
and then apply the deterministic Itˆo map toaP . This gives an approximationhP (A) to
the holonomyh (A), given explicitly by

hP (A) = e11(a)e12(a) · · · e1N (a), (7.1)

where1i (a) = aτi
− aτi−1 is theith increment ofa. Standard approximation results

(e.g., [IW, Thm. VI.7.2]) show that for any finite-dimensional irreducible representation
π of K,

lim
|P|→0

π ◦ hP = π ◦ h

in L2(Ā, P̃s), where|P| is the partition size. The proof relies on the fact thatπ ◦ θ
satisfies its own (matrix-valued) stochastic differential equation.

Meanwhile, applying the Segal–Bargmann transform to the (matrix-valued) cylinder
functionπ ◦ hP gives

S̃s,t
(
π ◦ hP) (C) =

∫
Ā
π
(
e11(c+a) · · · e1N (c+a)

)
dP̃s (A) , (7.2)

whereπ now refers to the holomorphic extension ofπ toKC. Unfortunately the authors
have not been able to find in the current literature similarL2 convergence results which
are applicable whenK is replaced byKC. This is because for a non-compact group
the vector fields entering in the stochastic differential equations are not bounded as is
required in all references known to the authors. Nevertheless, it is possible to show [DHu]
by essentially standard arguments that

lim
|P|→0

π
(
e11(c+a) · · · e1N (c+a)

)
= π (hC (A +C))
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in L2
(Ā × ĀC, P̃s × M̃s,t

)
, wherehC (A +C) = g1, gτ being theKC-valued solution

to the stochastic differential equation,dgτ = gτ ◦ d(a + c).
Because conditional expectations are contractive, we may interchange the|P| → 0

limit with the integral in (7.2) to find that

S̃s,t (π ◦ h) (C) =
∫

Ā
π (hC (A +C)) dP̃t (A) . (7.3)

To compute this integral we write out in Itˆo form the matrix-valued s.d.e. satisfied by
θπ := π

(
θC (A +C)

)
:

θπτ = I +
∫ τ

0
θπσ da

π
σ +

t

2

∫ τ

0
θπσπ (1K) dσ +

∫ τ

0
θπσ dc

π
σ +

s− t

2

∫ τ

0
θπσπ (1K) dσ.

(7.4)

Here aπτ = π (aτ ) and cπτ = π (cτ ), where as aboveπ(ξ) = dπ(etξ)/dt|t=0 for
ξ ∈ kC. (We are usingπ for both the representation onKC and the induced rep-
resentation onkC.) We now wish to take the expectation inA with C fixed. So let
θ̄πτ (C) =

∫
θπτ (A +C) dP̃t (A). By the Martingale property of stochastic integrals, the

term
∫ τ

0 θ
π
σ da

π
σ integrates to zero so that

θ̄πτ (C) = I +
t

2

∫ τ

0
θ̄πσπ (1K) dσ +

∫ τ

0
θ̄πσ dc

π
σ +

s− t

2

∫ τ

0
θ̄πσπ (1K) dσ

= I +
t

2

∫ τ

0
θ̄πσπ (1K) dσ +

∫ τ

0
θ̄πσ ◦ dcπσ. (7.5)

Sinceπ is assumed irreducible,π (1K) is simply a multiple of the identity, and so it is
easily verified that the (unique) solution to (7.5) is

θ̄πτ = eτtπ(1K )/2π
(
θC

τ (C)
)
.

Puttingτ = 1 and recalling (7.3) we see that Theorem 5.2 holds for the matrix entries
of π. Using the Peter-Weyl theorem it follows that Theorem 5.2 holds in general.

Note that the second of two proofs of [HS, Lem. 24] mistakenly applies [IW] even
onKC; that proof is therefore incomplete. The convergence results in [DHu] correct this
error.

8. Appendix A: Laplacians onA and H(K)

Let 〈·, ·〉 denote the unique bi-invariant Riemannian metric onK which agrees with the
given Ad-K-invariant inner product onk. Forv ∈ T (K) we will simply write |v|2 for
〈v, v〉. LetH(K) denote the finite-energy paths inK. Explicitly,H(K) is the collection
of absolutely continuous pathsx : [0,1] → K such thatx(0) = eand

∫ 1
0 |ẋ(τ )|2dτ < ∞.

It is well known thatH(K) is a Hilbert Lie group under pointwise multiplication and
that the map

(x, h) ∈ H(K) ×H(k) → Rx∗h ∈ T (H (K))

is a trivialization of the tangent bundle ofH(K). (We are usingRx : H(K) → H(K) to
denote right multiplication byx.)This trivialization induces a right-invariant Riemannian
metric (·, ·) onH(K) given explicitly by
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(Rx∗h,Rx∗h) =
∫ 1

0

〈
ḣ(τ ), ḣ(τ )

〉
dτ ∀x ∈ H(K) andh ∈ H(k).

The following theorem appears (in a disguised form) in Theorem 3.14 and Lemma 3.15
of Gross [G].

Theorem 8.1. Let θ : A → H(K) denote the deterministic solution to (5.1), i.e.,
dθτ (A)/dτ = θτ (A)Aτ with θ0(A) = e. Thenθ is an isometric isomorphism of infinite-
dimensional Riemannian manifolds. In particular,H(K) is flat.

Proof. For simplicity of notation, we will assume, without loss of generality sinceK
is compact, thatK is a matrix group. In order to compute the differential ofθ, let
x(τ, s) = θτ (A + sB), x(τ ) = x(τ,0) = θτ (A) andh(τ ) = x′(τ,0)x(τ )−1. To simplify
the exposition, first assume thatAandB areC1. Then by smooth dependence of ordinary
differential equations on parameters,h is differentiable and satisfies

ḣ(τ ) = ẋ′(τ,0)x(τ )−1 − x′(τ,0)A(τ )x(τ )−1

=
d

ds

∣∣∣∣
s=0

(x(τ, s) [A(τ ) + sB(τ )])x(τ )−1 − x′(τ,0)A(τ )x(τ )−1

= Adx(τ )B(τ ) = Adθτ (A)B(τ ).

Here· indicates a derivative with respect toτ and′ a derivative with respect tos. The
above equation says that

θ∗BA = Rθ(A)∗
∫ ·

0
Adθτ (A)B(τ )dτ (8.1)

and therefore

(θ∗BA, θ∗BA) = (x′(·,0), x′(·,0)) =
∫ 1

0
〈ḣ(τ ), ḣ(τ )〉 dτ

=
∫ 1

0
|Adx(τ )B(τ )|2dτ =

∫ 1

0
|B(τ )|2dτ = (B,B)A. (8.2)

Since the mapθ : A → H(K) is smooth as a mapping of infinite-dimensional Hilbert
manifolds (see for example [P] or [D1]), both (8.1) and (8.2) extend by continuity to
A,B ∈ A. �

Definition 8.2 (Directional derivatives). For a functionF : A → C andA,B ∈ A let

∂BF (A) =
d

dt

∣∣∣∣
0

F (A + tB),

provided the limit exists. For a functionf : H(K) → C andx ∈ H(K) andh ∈ H(k),
let

∂hf (x) =
d

dt

∣∣∣∣
0

f
(
ethx

)
,

provided the limit exists, where
(
ethx

)
(s) = eth(s)x(s) for all s ∈ [0,1].
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Definition 8.3 (Hessians). Suppose that bothF : A → C and f : H(K) → C are
twice continuously differentiable atA ∈ A andx ∈ K, respectively. The Hessians ofF
andf atA andx, respectively, are the quadratic formsD2F (A) on A andD2f (x) on
H(K) defined by

D2F (A)(B1, B2) =
(
∂B1∂B2F

)
(A)

and
D2f (x)(h1, h2) =

(
∂h1∂h2f

)
(x).

Notice thatD2f (x)(h1, h2) is not symmetric inh1 andh2, a reflection of the fact that we
did not use the Levi-Civita connection onH(K) to defineD2f . See Remark 8.6 below.

Using the above notation, it would be natural to define1AF (A) and1H(K)f (x) by

1AF (A) = trAD2F (A) and 1H(K)f (x) = trH(k)D
2f (x), (8.3)

provided that the quadratic formsD2F (A) andD2f (x) were trace-class. The above
definitions certainly would be suitable ifF andf were smooth cylinder functions on
A andH(K), respectively. However, the definition in (8.3) is too restrictive for our
purposes. In particular, we are interested innon-cylinderfunctions onA of the form
F = f ◦ θ, wheref is a cylinder function onH(K). For such a functionF ,D2F (A) is
typically not trace-class and hence the1AF would not be defined. Definition 8.5 below
overcomes this problem by using a more inclusive notion of the trace ofD2F (A).

Notation 8.4. Let β = {ei}di=1 be an orthonormal basis fork, 0 an orthonormal basis of
L2 ([0,1]; R), andγ the orthonormal basis ofH(R) given by

γ = {v(·) =
∫ ·

0
V (τ )dτ |V ∈ 0}.

Notice that

0β := {V ei |V ∈ 0 andi = 1, . . . , d}
and

γβ := {vei |v ∈ γ andi = 1, . . . , d}

are orthonormal bases forA andH(k) respectively.

Definition 8.5 (Laplacians). Let F : A → C, f : H(K) → R, A ∈ A andx ∈ K.
Then

(1AF )(A) =
∑
V ∈0

(
dim k∑
i=1

D2F (A)(V ei, V ei)

)
=
∑
V ∈0

(
dim k∑
i=1

(∂2
V ei

F )(A)

)
(8.4)

and

(1H(K)f )(x) =
∑
v∈γ

(
dim k∑
i=1

D2f (x)(vei, vei)

)
=
∑
v∈γ

(
dim k∑
i=1

(∂2
vei
f )(x)

)
,

(8.5)

provided the derivatives and the sums exist and are independent of the choice of bases.
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Remark 8.6.This two-step procedure for defining an infinite-dimensional trace appears
already in Freed [F] and in [DL]. Moreover, it is shown in [DL] thatD2f (x)(vei, vei)
is the same as Hessf (x)(vei, vei), where Hessf denotes the Hessian off relative to the
Levi-Civita connection onH(K). So despite the fact that Hessf (x) is not trace-class
([DL, Remark 3.13]) whenf is a cylinder function onH(K), it is reasonable to interpret
1H(K) defined in (8.5) as the Levi-Civita Laplacian.

Definition 8.7. Given a partitionP = {0 = τ0 < τ1 < · · · < τn = 1} of [0,1], let
KP = Kn andxP = (xτ1, xτ2, . . . , xτn

) ∈ KP for all x ∈ H(K). We also define a
second-order elliptic operator1P acting onC∞(KP ) by

(1Pφ) (x1, x2, . . . , xn) =
n∑

i,j=1

dim k∑
m=1

min(τi, τj)
(
D(i)
em
D(j)
em
φ
)

(x1, x2, . . . , xn),

where(
D(i)
A φ
)

(x1, x2, . . . , xn) =
d

ds

∣∣∣∣
s=0

φ(x1, x2, . . . , xi−1, e
sAxi, xi+1, . . . , xn)

for all A ∈ k andi = 1, . . . , n.

Example 8.8.Suppose thatP = {0 = τ0 < τ1 < · · · < τn = 1} is a partition of [0,1]
andf : H(K) → C is a smooth cylinder function of the formf (x) = φ(xP ), where
φ : Kn → C is a smooth function.

1. Then1H(K)f exists and (
1H(K)f

)
(x) = (1Pφ) (xP ) (8.6)

for all x ∈ H(K). See the proof of Proposition 4.19 in [DL] for details.
2. Forx ∈ H(K) let

x′
P = (xτ1, x

−1
τ1
xτ2, . . . , x

−1
τn−1

xτn
)

be the “incremental coordinates” ofx relative to the partitionP. If f : H(K) → C

is a smooth cylinder function of the formf (x) = ψ(x′
P ) with ψ : Kn → C being a

smooth function, then

1H(K)f (x) =
n∑
i=1

(τi − τi−1)
(
1

(i)
Kψ
)

(x′
P ). (8.7)

Here1
(i)
Kψ denotes1K acting on the ith variable ofψ while holding the remaining

variables fixed. This can be proved by a finite-dimensional calculation showing that

(1Pφ)(x1, x2, . . . , xn) =
n∑
i=1

(τi − τi−1)
(
1

(i)
Kψ
)

(x1, x
−1
1 x2, . . . , x

−1
n−1xn),

whereφ(x1, x2, . . . , xn) = ψ
(
x1, x

−1
1 x2, . . . , x

−1
n−1xn

)
or by a calculation similar to

the proof of Proposition 4.19 in [DL].
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Sinceθ : A → H(K) is an isometry by Theorem 8.1 and1A and1H(K) deserve
to be thought of as the Laplace–Beltrami operators onA andH(K) respectively (see
Remark 8.6 above), we should expect that1A(f ◦ θ) = (1H(K)f ) ◦ θ for all “nice”
functionsf onH(K). This would certainly be true in finite dimensions. It remains true
in this infinite-dimensional context when we use the “two step” trace in Definition 8.5
of the Laplacians.

Theorem 8.9. Suppose thatf : H(K) → C is a smooth cylinder function. Then1A(f ◦
θ) and1H(K)f exist and

1A(f ◦ θ) = (1H(K)f ) ◦ θ. (8.8)

In particular if φ is a smooth function onK, then

1A (φ ◦ h) = (1Kφ) ◦ h. (8.9)

Recall thath (A) = θ1 (A). The following lemma will be needed in the proof of this
theorem.

Lemma 8.10. Let a, b ∈ k, x ∈ H(K) and k : [0,1]2 → k be given byk(r, τ ) =
[Adx(r)a,Adx(τ )b]. Then, fort ∈ [0,1],∑

V ∈0

∫
[0,t]2

1r≤τk(r, τ )V (r)V (τ ) drdτ =
1
2

∫ t

0
k(τ, τ ) dτ. (8.10)

Proof. Let St be the left member of (8.10) and forV ∈ 0, let v(·) =
∫ ·

0 V (τ )dτ . Also
define

AV (t) =
∫

[0,t]2

1r≤τk(r, τ )V (r)V (τ ) drdτ,

so thatSt =
∑
V ∈0AV (t). Integration by parts shows:

AV (t) =
∫ t

0
k(τ, τ )v(τ )V (τ )dτ −

∫
[0,t]2

1r≤τkr(r, τ )v(r)V (τ ) drdτ

=
1
2

∫ t

0
k(τ, τ )

dv2(τ )
dτ

dτ +
∫

[0,t]2

1r≤τkr,τ (r, τ )v(r)v(τ ) drdτ

−
∫ t

0
(kr(r, t)v(r)v(t) − kr(r, r)v(r)v(r)) dr

=
1
2
k(t, t)v2(t) − 1

2

∫ t

0

dk(τ, τ )
dτ

v2(τ ) dτ +
∫

[0,t]2

1r≤τkr,τ (r, τ )v(r)v(τ ) drdτ

−
∫ t

0
(kr(r, t)v(r)v(t) − kr(r, r)v(r)v(r)) dr,

wherekr = ∂k/∂r andkr,τ = ∂2k/∂r∂τ . Summing this equation onV ∈ 0 implies
that

St =
1
2
k(t, t)t− 1

2

∫ t

0

dk(τ, τ )
dτ

τ dτ +
∫

[0,t]2

1r≤τkr,τ (r, τ )r drdτ

−
∫ t

0
(kr(r, t)r − kr(r, r)r) dr,
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wherein we have used the identity
∑
V ∈0 v(r)v(τ ) = min(r, τ ). (This identity is a con-

sequence of the reproducing kernel property of min(r, τ ) and Bessel’s equality – see for
example the proof of Lemma 3.8 in [DL].) An integration by parts on the second and
third terms above shows thatSt = 1

2

∫ t
0 k(τ, τ ) dτ . �

Proof of Theorem 8.9.LetA,B ∈ A, x = θ(A), andw(·) =
∫ ·

0 Adθτ (A)B(τ )dτ . By (8.1)
and the chain rule,∂B (f ◦ θ) (A) = (∂wf ) (θ(A)) and

∂2
B (f ◦ θ) = (∂2

w
f )(x) + ∂∫

[0,·]2
1r≤τ [Adx(r)B(r),Adx(τ )B(τ )] drdτf (x). (8.11)

Because of the second term on the right side of (8.11) it may be seen thatD2(f ◦ θ) is
not trace-class–see [DL, Remark 3.13]. On the other hand the two-step trace does exist.
To compute this trace, letB = V ei ∈ 0β and sum (8.11) oni = 1, . . . , d and then on
V ∈ 0. Letting

k(r, τ ) =
dim k∑
i=1

[Adx(r)ei, Adx(τ )ei], (8.12)

and noting thatk(τ, τ ) = 0, we may apply Lemma 8.10 to find

1A(f ◦ θ)(A) =
∑
V ∈0

dim k∑
i=1

(
∂2∫ ·

0
Adx(τ )V (τ )eidτ

f

)
(x). (8.13)

SinceAdxτ is an isometry onk, {∫ ·
0 AdxτV (τ )eidτ : V ∈ 0, i = 1, . . . , d} is an

orthonormal basis forH(k). Therefore by Example 8.8, the sum appearing in (8.13) is
precisely1H(K)f (x). �
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