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Classifications of Bundle Connection Pairs
by Parallel Translation and Lassos*

Bruck K. Driver

Department of Mathematics, C-012, University of California,
San Diego, La Jolla, California 92093

Let M be a connected manifold and G be a closed Lie subgroup of GL(V)—
the general linear group on a finite dimensional vector space V. Denote by (£2,,) the
space of H'-loops in M starting at a fixed point (m). Let .# be the set of
PeC=>(2,,G), modulo conjugation by an element of G, such that
P(at)= P(0) P(1) for 0,1€R,, (ot is the concatenation of the loops ¢ and 1),
P(c')y=P(0) if ¢’ is reparameterization of ¢, and the diflerential of P satisfies a
“locality” condition. It is shown that the bundle connection pairs (E, V) (up to
equivalence), with structure group G and fiber ¥, are in one to one correspondence
with .#—a similar result has been announced by Kobayashi. The correspondence is
induced by the parallel translation operators of connections. Furthermore, if the
manifold (M} is simply connected, then the space of bundle connection pairs can be
classified by a collection of Lie algebra valued 1-forms on the manifold 2,, (called

- integrated lassos). These 1-forms are related to the diflerentials of elements of .#.
This last result generalizes Weil’s characterization of U(1)—line bundle connection
pairs by the curvature 2-form. It is also a generalization of Gross’ results to base
manifolds (M) other than R”".  © 1989 Academic Press, Inc.

1. INTRODUCTION

Let F be a closed imaginary valued (iR is the Lie algebra of U(1)) 2-form
on a connected manifold M. Set w= (2ni)~' F, and denote by [w], the De
Rham cohomology class of w. Then it is known [We] that F is the cur-
vature 2-form for a U(1)-connection V on some complex line bundle E over
M if and only if [w] is integral. (For a short review see Pressley and Segal
[PrS] Section 4.5 and for a detailed treatment see Kostant [Ko]. That is
_[ <o should be an integer for all integral 2-chains (c). Alternatively [w]
should be in the image of the natural homomorphism 1: H(M, Z) -
HYM,R), where H?*(M,R) .stands for any one of the equivalent
cohomologies—Cech, De Rham, or simplicial—and H*(M, Z) is either Cech
or simplicial. The theory of the first Chern class gives a 1-1 correspondence

* This research was supported in part by N.S.F. Grant No. DMS 84-01997, while the
author was at the Institute for Advanced Study, Princeton, NJ 08540.
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dence with the topological types of U(1)-line bundles E over M and
elements of H3(M, Z). Let & = &( M, C, U(1)) denote the space of U(1)-line
bundle connection pairs (E, V) modulo equivalence (see Definition 5.1).

By the above comments the map p: & — 2ni (integral closed 2-forms
on M) defined by

p(LE,V])=F¥ (1.1)

is onto (see Proposition 2.1.1 of [Ko]). In (1.1), [E, V] denotes the
equivalence class containing (E, V) and FY is the curvature of the connec-
tion V. If M is simply connected, the map in (1.1) is also injective
(Theorem 2.2.1 of [Ko]). On the other hand (Theorem 2.5.1 of [Ko]), if
M is not simply connected, p ~'({F}) is in one to one correspondence with
IT,(M)*~the homomorphisms from IT,(M) to U(l). In the physics
literature, the property that p is not 1 —1 is called the gauge field copy
problem. _

In [Ko], there is another description of the space & in terms of the
parallel translation operators on loops. Let Q2= {oePC™([0,1], M):
6(0)=0(1)} be the space of piecewise smooth loops on M. Let PY be
parallel translation on Q with respect to the connection V. Since, P¥(0) is
an endomorphism of E,, (E,, =the fiber of E at m), which is a 1-dimen-
sional complex vector space, PY(6) can be identified with a complex
number. Proposition 1.12.3 of [Ko] (also see-Theorem 5.1 below) states
that two U(1)-bundles with connections, (E, V) and (£’, V'), are equivalent
if and only if P¥Y=PY on Q. o

The purpose of this paper is to prove analogous statements for more
general vector bundles. We are interested in considering G-vector bundles,
where G is a closed subgroup of GL(V) (see Section 2). The goal is to
classify the space, & =&(M, V, G), of G-vector bundle connection pairs
(E, V) modulo equivalence.

The first question is what should play the role of the curvature 2-form
when the structure group (G) is not U(1). The obvious choice of using the
curvature tensor as before is not satisfactory. The main reason being that
the curvature tensor (FY) is a 2-form on M with values in End(E)—the
endomorphism bundle associated to E. So in order to specify an F, one has
to first specify the bundle. Leaving this issue aside for a moment, the
natural analogue of dF =0 is the Bianci identity DVF =0, where DV is the
covariant differential associated to V. As discussed in Gross [G1], when G
is not commutative, the equation DYF=0 depends on the connection V
(which we are trying to classify) unlike the U(1) case. A third drawback of
the curvature is the “gauge copy problem.” For example, Wu and Yang
[WY ] have shown when G is not commutative that the curvature FY is not
sufficient to determine the connection V up to the equivalence even when
M =R" (See also [MS] and its bibliography.) Nevertheless, K. Mackenzie

.

BUNDLE-CONNECTION CLASSIFICATIONS 187

[Ma] has announced a criterion for the existence of principal bundle con-
nections with prescribed curvature form. This result is not in the spirit of
this paper, since the formulation requires the bundle to be prescribed at the
outset.

In [G1], Gross proposes to use “lassos” as an analogue for the cur-
vature tensor. In order to define a lasso, let 2, be the space of H '-paths on
M starting at m (see Section 3). The lasso associated to a connection V on
a vector bundle E is L¥(¢){u,v) = P%0) ' F¥{u,v) P¥(6)e End(E,,),
for 6€#, and u,veT,;)M (see Definition 4.3). It should be noted,
if G=U(1), that L¥(0){u, v) = F¥(a(1)){u, v) is essentially the curvature
2-form again. We refer the reader to the discussion in [G1] motivating the
study of these objects as related to “quantized gauge fields.” Such path
dependent objects have also been discussed in the physics literature, see
Birula [B] and Mandelstam [Manl-3].

Now choose a local trivialization () over a neighborhood of m, and use
¥ to identify E,, with the model space V. Because of this identification we
may consider LY(6){u, v) e ¥4 =Lie Algebra of G which is a subspace of
End(¥). (LY is now only defined up to conjugation by an element of G.)
A lasso is an example of a more general object called a path
2-form. A path 2-form is a (smooth) function (L) with values in %, defined
on triples (o,u,v)e@,xTMxTM with u, € T, ;,M—L(c){u,v) is
assumed skew symmetric in ¥ and v. The main theorems of [G1] give
necessary and sufficient conditions for a path 2-form L to be a lasso in case
M = R". These conditions generalize the equation dF =0 for G= U(1). The
conditions formulated in [G1] are intrinsic conditions, i.e., not requiring a
vector bundle or a connection for their formulation. Furthermore, it is
shown in [G1] that the lassos modulo conjugation by elements of the
structure group G are in one to one correspondence with elements of
S(R", V,G).

In Theorem 6.1 and Theorem 6.2 of this paper we extend this result to
general simply connected manifolds M. This requires an added condition
on a path 2-form which is an analogue of the integrality condition for F if
G=U(1). In fact, for U(1)-bundles, the added condition reduces to the
integrality condition, see Corollary 6.1.

In case where M is not simply connected, the lassos are no longer in one
to one correspondence with &. In close analogy to the U(1) case, given an
“irreducible” lasso (L), the sct of pairs (E, V) such that LY =L modulo
conjugation by elements of G is in one to one correspondence with the set
of homomorphisms of I7,(M) to the center of G, see Theorem 7.1.
Therefore, lassos suffer from a gauge copy problem only in the case M is
not simply connected, just as in the case G = U(1).

Unfortunately if M is not simply connected, an intrinsic characterization
of the lassos is still unknown. The criteria given in Theorem 6.1 for M
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simply connected are not sufficient to guarantee that a path 2-form is a
- lasso on 2, (Example 7.1). However (Theorem 7.2 and Corollary 7.1), the
criteria of Theorem 6.1 do imply that the path 2-form is the “pullback” of a
lasso on the path space of the universal cover of M. The author feels the
non-simply connected case may be a good application for the non-abelian
cohomology theory in Decker [D1-2] and Brown [Br].

Despite the difficulty with the lassos for non-simply connected
manifolds—in analogy with the U(1) case-the space &(M, V, G) can always
be classified by the parallel translation operators. In Theorem 5.1 (also see
[Kob]), we show that &(M, V, G) is in one to one correspondence with a
subset A of C*(R2,,, G) (see Definitions 5.2-5.4).

It should be remarked that by Theorem 4.1 (see also Theorem 2.2 and
Corollary 2.16 of [G1]) the differential of the parallel translation operator
PY¥ may be expressed in terms of the lasso LY. So Theorem 6.1 involving the
lassos may be thought of as the infinitesimal version of Theorem 5.1.

This paper is divided into seven sections. In section 2, some basic
definitions and notations are introduced. Section 3 is a review of some
basic properties about the Hilbert manifold of H'-paths (£) on a manifold
M. This section also contains some technical results which are needed for
determining when a function, which has & as either the domain or the
range space, is smooth. In Section 4, the parallel translation operator is
shown to be smooth, and its differential is computed (Theorem 4.1) in
terms of lassos and integrated lassos (see Definitions 4.2 and 4.3). Section 5
gives the loop characterization of &, see Theorem 5.1. Section 6 deals with
the lasso characterization of &, see Theorems 6.1 and 6.2 and Corollary 6.1.
Section 7 contains some remarks for non-simply connected manifolds. The
results of Sections 5-7 have already been discussed in this introduction.

It is a pleasure to thank Leonard Gross and Mitchell Rothstein for many
useful discussions, and the Institute for Advanced Study where much of this
work was done.

2. NOTATION

For the purposes of this paper all manifolds will be C*; however, there
will be numerous occasions for using functions of different degrees of
smoothness. The following prefixs will be used to denote the smoothness of
a particular function: C” for r-continuous derivatives (C=C?), AC for
absolutely continuous, H' for absolutely continuous and the derivative in
L? and PC’ for piecewise C".

Throughout this paper (E, V, n, M, G) or E for short will denote a vector
bundle E over M with fiber V' (V is a complex or real finite dimensional
vector space), m: E— M is the projection map, and G is the structure
group. The group G is assumed to be a closed Lie subgroup of GI(V), the
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linear automorphisms of V. To say that E has structure group G means
that there is a distinguished class of “admissible” local tivializations (y, U)
of E covering M for which the transition functions are G-valued. (Here, U
is an open subset of M and (m, ¥):n~'(U)—» Ux V is a diffeomorphism.)
More explicitly, if (, U) and (¢, W) are admissible, then there is a C*
function g: Un W — G such that (n, ¢)o(n, @)~ (m, &)= (m, g(m)¢&) for
all (m, £)e(Un W) x V. (In the sequel, the phrase local trivialization will
always mean an admissible local trivialization.) To simplify such
statements, it is often convenient to write E,, for n~'({m}), and y,, for
Y|, if ¥ is any function on E.

Given a covariant derivative (or connection) V on E and a local
trivialization (i, U), the associated connection one form (4¥) is defined by

AV YE=V (m-y;' &) U-»n"'(U)) for veTU.

(As a general rule, an argument of a function which is enclosed by the
brackets ¢-> will indicate that the function is linear or fiber linear in this
variable.) The terminology covariant derivative and connection will be
used interchangebly in this paper. We will only consider connections on E
compatible with the structure group G. This means for all admissible
(¢, U), A% is a 1-form on TU taking values in the Lie algebra 4 of G,
which may be considered to be a subspace of End(V).

Remark 2.1. For later purposes we note that A¥ is related to A? by
AV=g 'A%g+g ' dg
=g '4%g—d(g7")-g on T(UNYV), 2.1
where (, U) and (¢, V) are two local trivializations of E.
The curvature of a connection (V) is F¥ € A*(T*M) ® End(E) defined by
FUX, Y=V, Vy1-Vixn (22)

for X and Y vector fields of M. In terms of a local trivialization (i, U), the
local expression for the curvature is

Y FY(m) ¢, = (dAY + A¥ A AY)(m) (2.3)

for me U, where the following notation is being used. If w is a k-form, then
w(m) denotes restriction of w to A*(T,,M). The term AY A A¥ in (2.3)
denotes the 2-form with values in 4 given by

AY A AV uvd = [AYud, A ()] (2.4)

for u,ve T, M.
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DEerINITION 2.1. Given a 1-form 4 on an open subset (U) of M taking
values in 9(A4 e I(T*U® %)), the curvature (F*) of 4 is

FA=dA+A A A (2.5)

Of course in terms of (25) and (2.3) one may write F¥(m)=
v, F*(m)y ! for me U.

DErFINITION 2.2. If A4 is a %-valued 1-form on an open set U of M, and
6:[0,1] = U is a C'-path, then parallel translation along ¢ with respect to
A up to time s is the element P4(c)e G, where P4(g) satisfies

d

a;P;‘(a)wLA(a’(s)}P,‘(a):O and Pi(o)=1€G.
Remark 22. If A=AY is the connection 1-form of a covariant

derivative (V) with respect to a local trivialization (y, U), the parallel

translation operator PY(g) can be expressed as

PY(o)= w;(,',P,‘(a) Yooy (2.6)

for any C'-path in U.

If f: N— M is a map, the notation I'{E) will be used to denote the
C=-sections S: N — E along f. As indicated above CI'{E) would then
denote the continuous sections along f, with analogous statements for
different prefixs.

3. HILBERT MANIFOLDS OF BASED Loops

This section introduces notation and reviews some basic facts about cer-
tain submanifolds of the Hilbert manifold of H'-curves on a manifold M.
(For a thorough treatment of this material see [Kl1].)

Let (¥, (-,-)) be a finite dimensional inner product space, and J be a sub-
interval of I=[0, 1]. Put H'(J, V)= {oe€ AC(J, V): and |lo||, < o0} where
loll2={, (la’(£)|* + |a(1)|*) dt — H'(J, V) is an infinite dimensional Hilbert
space. Let M be a fixed n-dimensional manifold. A path o:J— M will be
called H', if xoo| e H'(K, R") for each subinterval K= J and coordinate
chart (x, U) of M for which o(K)< U. (The notion of a curve being H' is
chart independent.) The set of H' curves o:J— M will be denoted by
H'(J, M).

It is fairly standard that H'(J, M) is Hilbert manifold modeled on
H'(J,R"). (The manifold structure will be described presently.) For the
basic definitions and facts about infinite dimensional manifolds, see Lang
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[L] and Eells [E2]. For discussions on spaces of maps between manifolds
as infinite dimensional manifolds, see [E1-2], [ES1-2], [E1], [P] and
[PS] and especially [KL1-3].

‘In order to describe the manifold structure on H'(J, M), fix a Rieman-
nian metric on M, which will be denoted by (g) or (-, ). Let exp denote
the geodesic flow associated to the Levi-Civita connection of g, and d(-,)
be the induced metric on M. It is easy to check that the space H'(J, M)
may alternately be characterized as

H'(J, M)={0€ AC(J, M): |0’ o< o0} (3.1)

where
I1X03= | <xto), x(0)) (32)

for any Borel measurable X: 7 — TM. Let D denote the covariant derivative
on M of the Levi-Civita connection for g. For any o e H'(J, V), let ¢*D be
the pullback of D to ACI",(TM), the absolutely continuous sections of TM
alpng 0. To be more explicit, suppose that I is the connection form for D
with respect to some local trivialization of TM, and X: I — R” is the local
expression of a section along g, then

(the local form of a*DX)(1) = X'(£) + I'(a"(1) YX(1). (33)
For any e H'(J, M), let

T,H'(J,M)={Xe ACI,(TM): XN, <o}, (34)
where || X||, is defined as

1X1% = 1X13+ lo*DXI3.

As the notation suggests this will be the tangent space to H!(J, M). In view
of (3.3) T,H'(J, M) may alternately be described as the set of H' sections
along g, a notion independent of the metric g.

In order to describe the coordinate charts on H Y(J, M), we recall a basic
fact from Riemannian geometry.

THEOREM 3.1. Let (M, g) be a Riemannian manifold and K< M be a
compact set, then there exists an >0 such that for each point peK the
exponential map restricted to {Xe T,M: (X, X) <&*} is a diffeomorphism
onto the neighborhood B,(e)={me M:d(m, p)<e} which is geodesically
convex. (Recall that a neighborhood N is geodesically convex if for any pair



192 SRUCE K. osiVER

of points p, g€ N there exists a unique geodesic of minimal length joining p to
*q which lies entirely in N.) Furthermore, let K,= {peM:d(p, K)<e}
(d(p, K)=inf{d(p, k) ke K}) and U,={(p,q)e K. xK,:d(p,q)<¢e} (an
open subset of M x M), then there is a C* map v:U,—» TM such that
v(p, q)e T,M and exp, v(p, ) =q (ie., v(p, ) = exp;' (q)). As discussed in
Section 2, exp, denotes exp restricted to its domain intersected with T, M.

Proof. This is a slight generalization of the method outlined in Spivak
[Sp, pg. 491, problem 32f] for the case where K is a point. Also see
pages 32-36 of [H]. To generalize this to arbitrary K compact, it is enough
to show that each point of M has a neighborhood for which the theorem
holds. (This fact is theorem 1.9.10 of [KL1].) But for this case the proof
outlined in Spivak still goes through, if one observes by smoothness that
the key estimates hold uniformly in a neighborhood of a point. Q.ED.

We are now in a position to describe the coordinate neighborhoods on
H'(J, M). Let g€ C'(J, M); choose ¢>0 as in Theorem 3.1 for the com-
pact set K=image of . Put W(a,¢)= {te H'(J, M): d(z(t), (1)) <e for
te I}, then for each te W(a, ¢) and €[ the point (a(¢), ©(¢)) is in U, with
U, as above. Hence the map V,: W(a, &) » W(o,e)={Xe T, H'(J, M):
1 Xl o <&} given by V,(z)(t) = v(a(t), (1)) = exp,)(t(t)) is well defined (by
Lemma 3.1 below) and is bijective, where

1 X1 o =sup {(<X(2), X(13)"*: te J}.

THEOREM 3.2 (Restatement of 2.3.23 Theorem of [KL1]). The collec-
tion of charts {(V,, W(0, €))},ccty,m)» induces a C* manifold structure on
H'(J, M) which is modeled on any one of the equivalent Hilbert spaces
T,H'(J, M) for any o € C'(J, M). In particular the charts (V,, W(o, £)) are
C® related.

For a proof of this theorem we refer the reader to [KL1-3] or [E1].

Remark 3.1. The sets W(o, ) do not form a basis for the topology on
H'(J, M), but sets of the form V, ({Xe T, H'(J, M): | X||, <¢e}) do form a
basis.

Remark 3.2. T,H'(J,M) is naturally isomorphic to H'(J, T, M),
where m=o0(a), J=[a, b], and the inner product on T, M is the metric
(g) restricted to T,, M. To demonstrate this let g(¢) = parallel translation in
TM along o with respect to the Levi Civita connection D. For
XeH'U, T, M), put Xt)=q(t)X(¢) so that X?eT,H'(J, M). Then
(6*DX?)(t)=¢q(t) X'(¢), hence | X?||,=|X], for all Xe H'(J, T,,) because
q(t) preserves the metric g(a()) on T, M. Thus X - X% H'(I, T,,M) —~
T,H'(J, M) is a Hilbert space isomorphism.
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For later purposes it is convenient to develop some techniques for show-
ing that maps having H'(J, M) as the range or the domain space are
smooth. The reader might wish to skip to Lemma 3.2 and only refer to
these results when necessary. The next proposition is useful for computing
derivatives of functions on H'.

PrOPOSITION 3.1. Let f: B— K be a continuous map between two Banach
spaces B and K with norms both denoted by |-|. Let D= B be a dense sub-
space and assume there exists a continuous function F: B —» Hom(B, K) such
that for all d and d' in D, (8, f)(d)=(d/ds)\o f(d+ sd') exists and is equal
1o F(d){d'). Then [ is in fact C" and the differential of [ is F.

Proof. By the fundamental theorem of calculus,
1 1
fld+ d')-f(d):j (a,,,f)(d+rd')dr=j F(d+1d'){d"> dt
0 0

for all 4 and d’ in D. Both sides of this last equation are continuous
function on all of B x B, so in fact the last equation hold for all d and d’ in
B. So for d fixed,

|f(d+d")— f(d)— F(d)<{d"}|

<jl \F(d+ td){d"y — F(d)<d" Y\ dt
<sup{|F(d+sd")— F(d)|:se T} - 1d'|
=0(d'Dld", for dinB.

This shows that f'is differentiable with differential equal to F. Q.E.D.

Remark 3.3. It is clear that Proposition 3.1 is true if the domain of
f(D(f)) is an open convex subset of B and D is a dense convex subset of

D(f).

LeMMA 3.1. Suppose X € H'(I, R?), and f is a C"*-function defined in a
neighborhood (N) of the graph of X taking values in R (A function f(1, x) is
C= if all partial derivatives of f with respect to the x variables are jointly
C! in (1,x).) Then for ¢>0 sufficiently small, the map Y- F(Y)=
f(, Y(+)): B(X, &) » H\(I, R?) is C=. (B(X, ¢) is the e-ball about X inside
H'(I, RY).)

Proof. This is a special case of 1.2.5 Lemma of [KL3]. A direct proof

is easily given using Proposition 3.1. The fact that F is continuous on
B(X, ¢) is fairly straightforward by uniform continuity arguments. Let
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D=C*B(X,e)=B(X,e)n C™(I,R¥), then it is easy to compute
(0, F)Y)()=D,f(1, Y(£)){Z(t)) for all Y and Z in D, where D,f(t,-) is
the differential of f(¢,-). The mapping (Y - D,f(-, Y(:)){->): B(X,¢) -
End(H (I, RY)) is continuous for the same reasons f was continuous. Thus
by Proposition 3.1, F is C'. All higher derivatives may be computed in a
similar fashion. Q.E.D.

PROPOSITION 3.2. Let J be a subinterval of I Let r,: H'(I, M)—->
H'(J, M) be defined by r (c)=0|,. Then

(a) r,isC™.
Also let f: N - HY(I, M), where N is a smooth manifold, then:

(b) The map f is smooth lfand only if there exists J,=1[1;_,, ;] for
i=0 to n with 0=ty<t,< --- <t,=1 such that r;of: N> H W, M) is

smooth.

(c) Analogous statements hold if H'(I, M) is replaced by the tangent
space TH'(I, M).

Proof. The fact that r, is smooth follows directly upon localization to
the case where M is R” (n=dim(M)). But in this case r, is linear and
continuous and hence C*.

If fis C™ then r,ofis C®, being the composition of two C* maps.
Conversely, let ne N and choose a coordinate chart (V,, W(o, ¢)) about
f(n)e H'(I, M). Then Ve, W(o,,¢€)) is a coordinate neighborhood of
f(n)],,. By the use of these charts and parallel translation in TM along the
curve ¢ as in Remark 3.2, one may assume that M =R". In this case it is
easy to show that the derivatives of f exist and are found by piecing
together the derivatives for f(-)| .

The last statement (c) has a proof similar to that of (b). Q.E.D.

PROPOSITION 3.3. Let N be a smooth manifold, fe C(Ix N, M), and {J,}
be a collection of subintervals of I as in Proposition 3.2. I f|,.n is C L for
each i, then : N —» H'(I, M) defined by F(n)=f(-,n) is C®. Furthermore
the differential of [ is described by (],,,(v))(l) = f(t,-) {0

Proof. By Proposition 3.2, it suffices to assume fe C*(Ix N, M). By

using a coordinate chart and Remark 3.2, we can localize to the case where
M = R". But this case is covered by Lemma 3.1. Q.E.D.

The remainder of this section will be devoted to describing two sub-
manifolds of H'(I, M)—the based path space and the based loop space.
For this purpose, we will fix a distinguished point me M.

LEMMA 3.2. The map (1, 6)eIx H\(I, M) > a(t)e M is C**=.
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Proof. Let ae C'(I, M), then the lemma is equivalent to showing that
(t, X) - exp,(,(q(t) X(1)) is C*= for X near zero in H'(I, T, M), where
q(-) is parallel translation along ¢ as in Remark 3.2. But this is easily seen
to be the case by the same techniques of Lemma 3.1. Q.ED.

DEerINITION 3.1. For each tel, put (o) =0(t)e M for s € H'(I, M)—
B, is C* by Lemma 3.2. If 1= 1, write § for §,.

DEFINITION 3.2. The based paths at m are 2,=f54({m})=
{ceH'(I, M): 6(0)=m}.

DerINITION 3.3. The loop space based at m is Q,={ce?,:
a(l)=m}=Biz!({m}).

The space 2, is a submanifold of H'(I, M) and the space £2,, is a sub-
manifold of #,,. This is seen by the implicit function theorem (see Corollary
25 of [L]) coupled with the fact that the differential of 8, is surjective. The
tangent bundle of &, may be identified with the subbundle of TH(f, M)
given by {Xe TH'(I, M): X(0)=0}, and the tangent bundle of £2,, may be
identified with the subbundle of T#, given by {Xe T2,: X(1)=0}.

4. PARALLEL TRANSLATION, LASsOS, AND INTEGRATED LASsoS

Our next goal is to show that parallel translation along a curve g€ £, is
well defined (Corollary 4.1). In fact, it will be shown that the parallel trans-
lation operator P¥=PY is a C*-function on &,. We first prove a local
version of this fact. This discussion closely parallels the discussion in [G1]
in the case M =R".

LemMA 4.1. Let V be a finite dimensional inner product space. Then
there exists a unique C*®-function P:L*(I,End(V))—- H'(I, Aut(V))
(H'(I, Aut(V))= {o e H'(I, End(V)): a(t) e Aut(V) for all t}, an open
subset of H'(I, End(V))) which satisfies:

DEL  (d/dt) P(A)(t) + A(t) P(A)(t) =0 for almost all t,
DE2. P(A)(0)=Ide Aut(V).

Furthermore, the differential of P is
DP(A){(B)(t)= —P(A)1) Ll P(A)(z)~" B(z)P(4)(z)dr.  (41)

{Duhamel’s Principle)
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Remark 4.1. The interval I may be replaced by any other interval with
* the obvious changes in notation.

Proof. By standard theorems on linear ordinary differential equations,
for each 4 e C*(I, End(¥)) there is a unique continuous (in fact C*® in t)
function (P(-)(-)) satisfying DE1 and DE2, We will now show that this
solution satisfies the estimates

[P(A)(t)— P(B)(t) < K(l4fi,- 1 Bll2) - 14— Bll2 (4.2)
and
d
E-{P(A)(t)—P(B)(t)} <K(|402-1Bl2)- 14— Bl,, (4.3)
where |-| denotes any of the equivalent norms on End(V), |-||, is the

L?-norm on C*(I, End(¥V)) where the norm on End(¥) is taken to be the
Hilbert Schmitt norm. The function K denotes a continuous positive
function increasing in each of its arguments. This last estimate shows
that the function P extends uniquely to all of L*(/,End(V)) from
C *(1, End(V)). The extended function will again be called P.-

In the argument below, K will denote a continuous function which is
increasing in any of its arguments. We will now prove the assertion in (4.3).
Set f(t)=|h(1)| = |P(A)(t)— P(B)(¢)|, and then by DEl we can estimate
h'(1) by

[R' ()l = <|B(t) = A(D)] [P(B)(D)] + |A()] f(2).

Upon integration and by the fact that 2(0) =0 we find the inequality
t . t
f < 1465) = BN 1PBYS) ds+ [ 14 fis) s (44a)

Now first suppose that 4 =0 in (4.4a); using Gronwall’s lemma (see [Di])
we find the estimate

|P(B)(1)| < K(||Bll)=[1+ || Bl exp(l| BIl)].
Putting this last inequality into (4.4a) one finds

O 1A= BIK(IBI)+ [ 14()] f(5) ds. (4:4b)

Applying Gronwall’s lemma to (4.4b) yields (4.2). The inequality in (4.3) is
easily derived from (4.2) by integration.
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Now to prove (4.1) holds, start with 4 and B in C*(J, End(V)). Note
that
8, P(A) )~ = —P(A)(1)~" (8, P(4)(2)) P(A)(1)~"
= P(A)(1)~" A1) (45)
by DEI1, and that
0,0,P(A+sB)(t)+ B(s)P(A4 +sB)(t)

+ (A(t)+sB(1)) 0,P(4 +sB)(t)=0 (4.6)
by differentiating the differential equation (DE1) for P(A4 + sB) with respect
to 5. Using (4.5) and (4.6), it follows that

0.[P(A+sB)(t)~ ' 0,P(A+sB)(1)]
= —P(A+sB)(t) "' B(t) P(4 + sB)(7). 4.7)

Integrating equation (4.7) from 0 to ¢ with respect to = and then left mul-
tiplying by P(A + sB)(t) imply

0gP(A)t)=—P(A)1) '[0’ P(A)(z)~ " B(t) P(A)(7) dr. (4.8)

The relation ¢,P(A4 + sB)(0)=0 has been used in this last step.
We now want to apply Proposition 3.1. In order to apply this
proposition we note the following maps are C*.

S1. (g— g~ Y): H'\(I, Aut(V)) - H'(I, Aut(V)) where g~ '(¢) = g(1) ",
since h—h L Aut(V)—> Aut(V) is a C* map so that Lemma 3.1 is
applicable.

S2. ((g,h)—gh): H'(I, End(V)x H'(I, End(V))—H (I, End(V)) where
gh(r) = g(1)h(1).

S3. (g, h, A) > [, g(t)A(t)h(z) d: H'(I, End(V))* x L*(1, End(V)) -
H'(I, End(V)).

.Since the maps in S2. and S3. are multilinear, it is enough to check

continuity, but this is quite straight forward using the fact that the
l-lle <2 -1 (2-3.5 Proposition of [KL1]).

Using S1-S3, it is easy to see that the right hand side of (4.8) is
continuous as a mapping from L2(I, End(V)) to Hom(L?(, End(V),
H'(I, Aut(V)). So by Proposition 3.1, P is differentiable with differential as
in (4.1). Higher derivatives of P may be computed by differentiating (4.1).
This may easily be done first on C*(Z, End(V)), and then extended to
H'(I, End(V)) by Proposition 3.1, using simple properties like S1-S3
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above to conclude the formal expression for the differential is actually
continuous. Q.E.D.

From this result follows a number of corollaries.

COROLLARY 4.1. Let PV be the parallel translation operator on E with
respect to the connection V. Then PV: #,(M)— Hom(E,,, E) is C*, where
Hom(E,,, E) is the vector bundle over M with the fiber over pe M given by
Hom(E,,, E,).

Proof. Let 6€2,, and choose local trivializations {(¥, U,)}% ,, and
subintervals J,=[t,_,, t,] for i=1 to k such that 0=¢f,<#; < --- <t, =1
and a(J,) < U,. Let A'= A" be the connection form associated to the local
trivalization (y,, U;), see Section 2. Choose &> 0, such that W(s,¢) is a
coordinate neighborhood of £, as in Theorem 3.2, and such that for
ae W(s,¢); a{J)c U,. Then by using a proof similar to that for
Lemma 3.1, the map a € W(a, £) —» A'(o’|,,> € L*(J;, End(V)) is C*. Hence
by Lemma 4.1, the functions Pi(a)= P(a)(t,) are C* where P'(a) is the
solution to the differential equation:

d _. : .
P Pia)(t) + A'<al}, (1)) - P(a)(2)
=0  with  Pia)(t,_,)=1d. (49)
From this it follows that PY is C®, since P¥ may be written (see (2.6)) as

PY(a) =¥l al) PH@) b (alte 1)) P (@) - y(a(ty)) Pl o) il
(4.10)

where A (x)= (Y, , ) {@)) HHorxeU,,  nU,. Q.E.D.

COROLLARY 4.2. TP, is trivial. More precisely let Q (o) denote the
parallel translation operator on TM with respect to the Levi Civita con-
nection D along a curve o up to time t. Then F. T#, > %, xH o, T M)
given by F(X)= (0, Q(0) ™' X) for Xe T, %, is a vector bundle isomorphism
where (Q(6) ™' X)(1)=Q (o)~ X(1), and H{(I, T,M)={X¢€ H\(I, T, M):
X(0)=0}.

Proof. It is clear that F is bijective and fiber linear, so the only issue is
the smoothness of Fand F~'. Let te C'2,, and ¢ >0 such that W(z,¢) is
a coordinate neighborhood of #,. To make notation manageable, let
Z(X)(t) =exp.(1)(Q (1) X(1)) for Xe H\(I, T, M) with ||X]|, <e (Note
that = is C®, since it is the inverse of a coordinate chart.) Also let

b
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q(X)(£) = @ (Z(X)). The local expression (F) for F with respect to the coor-
dinate patch W(r,z¢) is

FX, Y)=(X,qX)"' 2, (Y>)e HI, T,M)x H\I, T,,M)

for X,Y in HYI, T,M) such that ||X]|,<e In this last expression
2 KY) =(d/ds)lo (X +5Y)e Ty xy%,, and (g(X)"' 2, (Y))t)=
g.(X) 7' 2, LY ().

Due to Proposition 3.2, it is enough to prove that

G(X, Y)=(qg(X) ™' Z, L),

is C* if the J; are as in Corollary 4.1. Let i, be a local trivialization of TM
over the open set U; where now V=R" Again using the notation of
Corollary 4.1 (applied to the vector bundle TM) we may write

G(X, Y)=q(X)t: )" W) 5o PUEX) ! 0 2, (YD

By Lemma 3.1, the map (X, Y) —» ¢,0 2, (Y)|,: H'(J,, R)x H'(J,,R") >
H'(J;, V) is C® and by the proof of Corollary 4.1, P' is C®. Hence by
Corollary 4.1 applied to (¥;)sxy,_9(X)(t;~1) and properties S1 and S2
stated in the proof of Lemma 4.1, we conclude that G|, is C*. Similarly
one can show that F~! is also C*®. Q.ED.

COROLLARY 4.3. Let E be any vector bundle over M with covariant
derivative V. Put f: P, > M equal to f(6)=0(1). Then the pullback
bundle B*E over %, is trivial. The map H. f*E—- P, x E, given by
H(o, &)= P¥(c) ™" & is a fiber linear isomorphism. Recall that B*E is the
bundle over #, with fibers B*E, = {(0, ¢): £ € Eg,y=E, 1)}

Proof. Similar to Corollary 4.2 but easier. Q.E.D.

Now that we know PV is C*, it is natural to compute its differential.
This computation of the differential is done in Theorem 2.2 of [G1] for the
case where the base manifold is R and in Corollary 2.16 for general M. To
be complete I will rederive this result using a slightly different derivation.
In order to state the results it is necessary to introduce the main objects of
study for this paper.

DeFiNITION 4.1, Let W be a finite dimensional vector space. The
elements of I ,,(AZ(T *M)® W) will be called W-valued path two forms.
More explicitly, a path two form is a smooth function (L) such that for
each ae#,, L(o){-,-) is an alternating bi-linear function of T,,M with
values in W. Particular cases of interest will be for W=End(E,) and
W =%, the Lie algebra of the structure group G.
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DeriNITION 4.2. Given a connection V on E as in section 2, then the
‘Lasso associated to V is the End(E,,)-valued path two form LY defined by

LY(0){u,v)=P%(a) "' F¥{u,v) P¥(0) (4.11)

for u, ve T,y M. (It is clear that LY is C* since PY and FY are C*.)
In order to define the “integrated lassos” we need the following result.

PROPOSITION 4.1. For each ce®, and rel, put ¢'(t)=a(rt), then the
map (r,0) = a":IxP,—» P, is C>=.

Proof. Fix rel, and se%,. Choose ae C*%, and £>0 such that
W(a, €) is a neighborhood of . Then W(a'", &) is a neighborhood of ¢”. Let
g(1) be parallel translation along the curve o in TM with respect to the
connection D. Then locally the operation (s, 0) — ¢* may be expressed as
X (t—f(s, t, X(st))) from a neighborhood of 0 in Hy(I, T, M) to
H{(I, T, M), where

f(S, L “) = expa_(rll) o expa(st)(q(s’)“)

for s, tel and u in a neighborhood of 0 in T,, M. By Lemma 2.7 of [G1],
the map (s, X) = X Ix HYI, T,,M)— HY(I, T,, M) is jointly continuous.
Since for fixed s, the map X — X* from HY(I, T,,M) to Hyl, T, M)
is linear, it follows that (s, X)— X* is C*®. Now f(s,t,u) is C* on
its domain, so by techniques similar to those of Lemma 3.1, the map
(s, X) > f(s,-, X(-)) is jointly C® in a neighborhood of (r,0)e
Ix Hi(I, TM). Therefore, the composite map (s, X)— f(s,-, X*(-)) of
(s, X) = f(s,-, X(-)) composed with (s, X) - X* is also C**. Q.E.D.

Given an End(E,,)-valued path two form L on £, we can define a 1-form
on 2, with values in End(E,,) by

BYX) ELI L(c"){a'(t), X(t)) dt for XeT,2,. (4.12)

The fact that BX is C*® may be deduced with the aid of Propositions 3.2
and 4.1 and properties S1-S3 used in Proposition 4.1. There are no
additional ideas introduced, so I will omit the details.

DeriNiTioN 4.3. If L=LY is a path 2-form which is a lasso, then we
write BY for BL and in this case we call BY an integrated lasso.

Remark 4.2. The reason for calling LY a lasso is described in [G1].
Basically, LY(d){u, v) may be computed by taking appropriate limits of
the parallel translation operators as one traverses a collection of paths
which have the shape of a lasso.
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We now restate Theorem 2.2 and Corollary 2.16 of [G1]. For some
history on this theorem see Remark 2.12 of [G1].

THEOREM 4.1. Assume the notation above, then PY is C* on 2,. Let
ce?,, XeT,P,, ¥ be alocal trivialization of the bundle E about o(1), and
f(0)=VY1,4,PY(0). The derivative of f in the direction X is

Xf=f(0) BY(X) — 4¥<X(1)) f(o). (4.13)
Proof. We will use the notation introduced in Corollary 4.1. We can

assume that ¢ =,. Then

XP'= —Pi(a) L Pi(a)(t)_‘-;—s —oA <—d— exp,(,,sX(t)> Pi(o)(t) dt

dt

— _Pi(o) L Pi(o)(x) {dA'(X(t), a'(7)>

4 A"<X(r)>} P(o)(x) db,
dr

where (4.1) (Duhamel’s principle) was used to derive the first equality and
the definition of the exterior derivative (d) was used for the second.
Integrating by parts on the second term of this last equation yields

-~

XP'= o) | {P(o)(0) {dd"CX(2), o'

—[4¢a’(2), <X(1)>1} Pi(o)(7)} dr
— AX(1,)> P(0) + Pl(o) ACX(1:-1))

or
XP'= Pi(0) B,— AiCX(1)> Plo)— P(0) ACX(t,_1)y,  (414)
where
B, = j Pi(o)())"! Fi¢a'(x), X(1))P(0) () do (4.15)
and

Fidu, vy =dd'Cu,v) + [4'Cu), 40> 1= () F w0 (¥ (4.16)
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for u and ve T, U,. Now recall (sce equation (4.10) that

fl@)=yP¥(a)=P*a) by _\(a(t, ) P~ " () - hy(alty)) Pl(a), (4.17)

where h(x)= (¥, 1).(¥.); " for xe U, , n U,. To ease notation, let
R,=ha(1) Pi(a)---hi(a(1)) P'(@) ¥yl

and

Ki(a)=h{a(1)) Pi(o).
Then by the product rule

Xf=(ka)Rk—l+F’k(a)(XKk—l)Rk~2
+P*(0) K- (XKi_3) Rk + -+ + P*(0) Ki -1 Ki— 2 -+ Ko(XK).

(4.18)
So by (4.14)
XK= h(o(1,)){P'(c) B,— A'(X(1;)> Pi(0)
+ Pi(a) ACX(t,_ 1))} + dh(X(1)> Pla)
which may be written by (2.1) as
XK, =K,B,— A (X (t; 1)) Ki+ K, AX(1;21)). (4.19)

Plugging (4.19) into (4.18) one finds that the “boundary. terms” involving
A'(X(t,) all cancel except for the term A% {X(t)>. Noting that

pk(a)Kk—lKk—Z "'KiEiKi—l 3 .¢

= flo) L PY(a)(zx) " F¥<a'(), X(2)) P¥(o)(x) dr,  (4.20)

the expression in (4.18) sums to (4.13). Q.E.D.

As an immediate corollary we have:
COROLLARY 44. If XeT,P, such that X(0)=X(1)=0, then
XPY¥ = PY(a) BY(X ). (4.21)

The derivative of LY may also be computed.
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COROLLARY 4.5. Under the assumptions above,

(B*D)xLY = [L¥(a), BY(X)>]+ P¥(0) ' ((V®Dx,F")(a(1)) P¥(a),
(4.22)

where B: 2, - M is defined by f(a)=a(1), and B*D is the pullback of the
Levi-Civita connection (D) to sections along B. (Both sides of equation (4.21)
are in A*(T%, M) where XeT,%,.)

Before proving this corollary we will pause to introduce some notation
which will be useful in the proof.

DEeFINITION 44. Let F be a function on £, taking values in some set,
then F (o) = F(o*) for all sel.

Remark 4.3. 1f PV is the parallel translation operator of a connection
V, then P¥(0) is parallel translation along ¢ up to time s. We also write
P¥(q) for parallel translation along a curve ¢ up to time s for a curve which
is defined on some interval (—z¢, ¢) about the origin. This should not cause
confusion, since when there is any ambiguity the two definitions agree.

DEFINITION 4.5. Let o and 7 be in 2 such that 7(1) = ¢(0). Then o7 is
defined to be the element in 2 given by,

or(t) = {r(Zt) 0t 1/2}.

42
o2t—1) 12<1<1 (4.23a)

Similarly if XeT,# and YeT.2 with X(0)= Y(1), then XYe T, 2 is
defined by

(4.23b)

XY(1)= {X(Zt) 0<t< 1/2}'

YQi—1) 12<t<1

PROPOSITION 4.2.  Suppose that y and n are C* maps of (—¢, &) to P such
that y(s)(1)=n(s)(0) for all se (—¢, ¢), then the map

(s—=n(s)y(s)): (—&,6) > 2P (4.24)
is also of class C* and furthermore

d ! ’

e =0n(5)v(5)=n (s) '(s).

Proof. An easy application of Proposition 3.2. Q.E.D.
Proof of Corollary 4.5. Put y(s)(t) =exp,,(sX(t)) for s small and tel
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Then y:(—¢,¢e) =2, is C® (for some ¢>0) and (d/ds)y(s)lo=X. Set
- pls) = PY(Boy) = PY((-)(1)) and g(s) = 0,(Boy) where Q= Q? is parallel
translation on TM defined by the Levi-Civita connection (D) on M). Then
by definition

d
(ﬂ D)XLV =$

. LY(y(s)<g() ™"+ q(s)™"+>

s=

-2 PN Fneae) e o) PIs))
(4.25)
Define the function I': (—¢, ¢} —» £, by .
_ {¥(s)20) 0<1<1/2
rs)n= {y(—Zs(t-— D)) 12<1< 1} (4.26)

for se(—¢,¢) and tel It is easy to check using Proposition 42 and
Lemma 3.2 that I" is a C'-function, and in fact even C®. We now may
write out (4.25) more explicitly as

. _d
(B*D) L7 ==

{P¥(I(s))~" p(s)~" F¥(Boy(s))

s=0
{q(s)™'+, q(s)="-> p(s) P¥(I(s))}, (4.27)

since PY(I'(s)) = p(s)~' P¥(y(s)) by the “multiplicative” property of parallel
translation. But, by definition,

d
(V®D)X(1)F=_

ds {p(s)"" F¥(B¥(5))Xq(s)~ ", q(s)™"-> p(s)}. (4.28)

s=0

Therefore, by the product rule, Corollary 4.5, and equations (4.27), (4.28),
and (4.5) one can easily verify equation (4.22). Q.E.D.

In the sequel we will find the following form of Corollary 4.5 to be more
useful.

COROLLARY 4.6. Let u, we I'(TM)-vector fields on M; put U(s)=
u(a(1)) and W(o)=w(o(1)). With this notation LYU, W) is an End(E,,)
valued path function. The derivative of this function is

X(LYU, W) =[LYU, W)(a), BY<X>]
+ P¥(0) " (Vyy F¥)u, w) P¥(0), (4.29)

where Xe T, ®,, and u, w in (4.29) should be evaluated at o(1).
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Proof. First note that ,
X(LYCU, W)= (B*Dx LIXU, W) + LY(0)<{B*D, U, W>
+LY(0)<U, B*Dx W>,

and that B*D, U= D,u. Equation (4.29) now follows from (4.22) and
the fact that

qu)(FV<ua w))= (V®D,\’(|)FV)<u» w) +FV<D,\’(1)u, w)
+ F¥{u, D yyw>,

where u and w should be evaluated at o(1). Q.ED.

5. LooP VARIABLE CHARACTERIZATION OF (E, V)

This section shows that the set of equivalence classes (defined below) of
vector bundle connection pairs are in one to one correspondence with a
certain class of functions, P:,, — G, defined up to conjugation by an
element of G. In order to formulate this statement precisely, it is necessary
to introduce some more definitions and notation. For the rest of this paper,
(E, V) or (E, V') will denote vector bundles over M with connection V or
V', respectively, structure group G, and fiber model space V' as described in
Section 2.1. We also fix a distinguished base point me M.

DEFINITION 5.1. A pair (E, V) is said to be equivalent to (E’, V') if there
is a vector bundle isomorphism K: E— E’ such that KV=V'K and K
respects the structure group G. To be more explicit, the first condition
requires that for any se I'(E) and ve TM, then KV,S=V’,(K-S). The
second condition requires that /.o K, oy 7! be in G for all admissible local
trivializations ¥’ of E’ and ¢ of E about any point xe M. (K, =Klg,_.)

The notation [E, V] will denote the equivalence class containing (E, V),
and €=¢&(M, V,G) will denote the collection of equivalence classes
(£, V]

DErFINITION 5.2. A function P:2,,— G is said to be strongly differen-
tiable if P is C® on £2,,, and there is a non-negative function ¢ on £, such
that

IXP| <c(o)|Xl, forall XeT,2,, (5.1)

where || X]2= [} <X(¢), X(1)) dt for XeT,%, as in (3.2).
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DeFINITION 5.3. A function P:$2, — G is said to be parametrization
invariant if P(cor)= P(c) for all PC'-functions r: I - I such that r(0)=0
and r(1) = 1. Such a function (r) is called a reparametrization.

DEeFINITION 5.4. A function P:Q,, — G is called multiplicative if
P(a1)= P(0)P(1) (5.2)

for all o, Te 2,,, where o1 is the concatenation of paths defined in (4.23a).
Note that if P is multiplicative then P(C,,)=1, where C,, is the constant
path at m, since C,,C,,=C,,.

ExampPLE S5.1. Let ¢ be a local trivialization of a bundle connection
pair (E, V), then the function P(¢)=y,P¥(s)¥,,' for ceQ,, is strongly
differentiable, parametrization invariant and multiplicative, where PV is the
parallel translation operator on £,,.

Given a strongly differentiable, parametrization invariant, and mul-
tiplicative (SDPIM) function P: 2,, — G, we can always define another by
P'(6) = gP(c) g~ " for any ge G. Two SDPIM functions P and P’ related
by conjugation in this way will be called equivalent, and the equivalence
class will be denoted by [P]. Let A4 = .#(M, m, V, G) be the collection of
all equivalence classes [P] of SDPIM functions.

DEFINITION 5.5. A linear isomorphism «:E, -V is said to be
admissible if xoy '€ G for any admissible local trivialization of E about
me M.

We now can state the main theorem of this section. An informal version
of this theorem is mentioned in Giles [Gi].

THEOREM 5.1. There is a one to one correspondence between & and M
given by

[E V] - [P"], | (53)

where [ PY] is by definition [ko PY(-)| g, ok~ '] for any admissible k as in
Definition 5.5. (Note that [xo P%(-)| g, ok '] is independent of the choice of
admissible x.)

A statement similar to this theorem has been announced by Kobayashi
[Kob]. However, the necessary condition of strong diflerentiability seems
to be missing from his statement. The proof of this theorem will be carried
out in a sequence of lemmas and propositions to follow.
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PROPOSITION 5.1. The map defined in (5.3) is well defined and is one to
one.

Proof. Suppose K:(E,V)—(E,V') is a bundle isomorphism as in
Definition 5.1. Then it is easily checked that P¥(¢)=K ' PV (o) K,, for all
o€, Let ¥ and §’ be local trivializations of E, and E’ respectively about
m. Then :

U PY(0) Y0t = WK Wi VU0 PY () Y (W0 Kl )
=gy PY0) ¥ g™,

where g € G, since K respects the structure group G of E and E’. This shows
that [P¥]=[PY], so the map (5.1) is well defined.

Now suppose that (E,V) and (E, V') are two pairs such that
[PY]=[PY']. This implies, by definition, that there is a linear
isomorphism k: E,, — E,, which respects the structure group G and satisfies

PY(6)=kP(c) k™!
for 6 €Q,,. We now define K: E— E' by
K. =P (a)kP%(c)"“E,— E,, (5.4)

where ¢ is any path in &, with a(1) = x. To show that K is well defined, we
must show that PY(c)kP(o)~'=PY(t)kP¥(zr)~"' if 1€, such that
(1) = x. This is equivalent to showing that P¥'(ta)k =kP"(za) by the mul-
tiplicative property of parallel transport, where t is the “reverse” path in
Q,, defined by t(t)=1(1—1t). But now t¢ is in 2,, and so this last
statement follows from the equation above (5.4).

The map K, is a fiber linear isomorphism and respects the structure
group G. Furthermore, it is easy to check that K: E— E’ is C®, since in a
small neighborhood U of a point x € M one may easily construct a smooth
map Z: U— 2, such that Z(x)(1)=x. Thus K,= PV (Z(x)) kP (Z(x))~"
for x € U, which is C®, since PY and P¥" are C*. Q.E.D.

So in order to finish the proof of Theorem 5.1, it suffices to show that the
map (5.1) is onto. In order to see how to construct a bundle connection
pair from an SDPIM function, it is useful to introduce the notion of an
m-contraction. This will lead to a prefered class of local trivializations on
a vector bundle connection pair (E, V).

DEFINITION 5.6. Let U be an open set of M. A smooth function
@: Ix U— M satisfying ¢(1, x)=x and ¢(0, x)=m for all x in U will be
called an m-contraction over U or simply an m-contraction if the set U is
understood or not important. (It is easy to see that there exists m-contrac-
tions over any open set U in M that is difftomorphic to a Euclidean ball.)
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Given an m-contraction over U and an admissible isomorphism
" k. E,, >V, there is a natural local trivialization E over U induced by
parallel translation as

¢ =Ko PY@(-, x)) " E~ ¥V (5.5)

for all xe U. (Clearly ¢* is C®.)

PROPOSITION 5.2. Let ¢ be an m-contraction over U, and ve T, U, then
A (o) =Ko BV X Yox !, (5.6)

where Xe T,P, is the vector field along the path o= (-, x) given by
X(t)=o(t,-),v, A®" is the connection 1-form of V with respect to ¢*, and B¥
is the integrated lasso of Definition 4.5.

Proof. Set f(0)=¢"|,,P¥(c) k™" for all ¢ € P, with g(1)€ U. Let a be
a smooth curve in M such that «'(0)=v, so that X(#)=
(d/ds)| ;o (1, a(s)). By the definition of ¢*, f(¢(-, x))=1€G for all xe U,
so that Xf=(d/ds)|,_o f(o(-,a(s)))=0. Noting that X(0)=0, the
proposition now follows directly from Theorem 4.1. Q.ED.

PROPOSITION 5.3. Let k: E,, > V be an admissible isomorphism, and let ¢
and \y be two m-contractions over open sets U and W of M, respectively.
Then the transition function between Y* and ¢* is

LX) = KPY(@(, )Y (-, x)) k™' for xeUnW.  (57)
Notice that the path ¢@(-, x) (-, x) is in 2,,.

Proof. A simple matter of unwinding definitions. Q.E.D.

Propositions 5.2 and 5.3 will be the main motivation for the construction
of a pair (E, V) from an SDPIM function P. In order to carry out this
construction it is necessary first to develop some properties of SDPIM
functions.

LemMa 5.1. Let P be an SDPIM function on S2,,. Define a one form B
on Q,, by B= P~ dP. The following properties hold.

(1) For each o€ R,,, there is a function b(a,-){-> € L*T' (T*M) (the
L2-sections of T*M along o) such that

B(X) = fo' b(o, ){X()>dt  forall XeT,Q,,
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(2) LetoeQ,, and J=(a,b)c<I If o|, is C? then b(a, ){a'(t)>=0
Jor almost every (with respect to Lebesque measure) te€ J.

(3) P((ad)(81))= P(e1) for all 0,1,0€ P, such thatc=1=05 at t =1.

Proof. First note that |B{X )| =|P(c) ' dP{X)| <|P(a) "} c(o) | X|lo
for all X in T,Q,,. Since T,R,, is a dense subspace of the Hilbert space
(L*I,(TM)) of L%-sections along o, the above estimate shows that B(c)
extends uniquely to a bounded linear function on L2I',(TM). So (1) is an
easy consequence of the Riesz Representation theorem.

Let r be any C'-reparameterization of the unit interval such that r(t)=¢
for te I\J, put r(t)=sr(t)+ (1 —s)t. Then for each sel, r_is also such a
reparameterization of 1. So by assumption P(gor,)= P(c) for all s and by
differentiation this implies that B{(d/ds)|y, gor,>=0. (Note that
(d/ds)|o, oor,exists in T,R,,, since a|,is C2.) As a result of property (1),
one finds that

j bt ) (r(1) 1) &' (1) dt =0 (5.8)
0

for all reparametrizations of 7 with r(¢)=t¢ on I\J. By taking limits of
different reparametrizations, one can easily show that (5.8) implies that

f,b(t, a){a'(t)> dt =0 (5.9)

for all subintervals J’ of J. From (5.9), and standard measure theoretic
arguments the statement (2) follows.

It suffices to prove (3) for a,8, 1€ C?Q,,, since the general result will
then follow by continuity of P. Fix a C?reparametrization (r) of I such
that r is strictly increasing on I, r(1/2)=1/2, and r'(1/2)=r"(1/2)=0.
Then for any o,1€ C*®, ator=(oor)(tor), and (ot)ore C*P because
r'(1/2)=r"(1/2) =0. By the reparameterization invariance of P we know
that '

p(s) = P((66°)(8°t)) = P([(a6°)(8°t) J o r)
=P((66°)or-(8°t)or)=P((6or-8°cor)(8*cr-tor))=P(a(s)),

where a(s)=(6or-6%or)(8°cr-1or)e C'Q,,. So we may compute
d 1 d
2 06)=p6) [ b0t a(5)) (S #(5)0)) =0

since (d/ds) a(s)(¢) is proportional to (d/dt) a(s)(¢) so that (2) applies. As a
result of this computation p(0)= p(1). But (¢6°)(8°z) differs from o1 by a
reparameterization, so that P((66)(87))= p(1)= p(0)= P((¢5°)(8%)=
P(o71). Q.E.D.
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The next goal is to show that B=P~'dP can be extended naturally to
T#,. First we note that B extends by continuity uniquely to L*I",(TM) for
ce,,. Now suppose that ce#, and Xe T,2,; the next lemma shows
that B{0,X) is independent of 7€ £, such that 7(1)=a(1). Here

X(21) 0<t<1/2

L (TM). 5.10
OeT, oM 1/2<IS1}€ o{ ) ( )

0.X(¢)= {
Thus we extend B (using the same symbol) to T2, by B{X) = B0, X).

LEMMA 5.2. Assuming the notation above, B{0 X) is independent of
e P, such that t1(1)=a(1). Furthermore, the extended 1-form B on %, is
Cc=.

Proof. We will show that B<0,X)»=B{0,X) in the special case that
X(1)=0. This restriction is easily removed by the continuity of B on
L*r,(TM). Define, for small s, af(s)=exp,(sX)eZ,. Note that
a(s)(1) =a(1) for all s. By property (3) of Lemma 5.1,

P(67) P(ta(s)) = P(oa(s)). (5.11)
Differentiate both sides of (5.11) at s=0 to conclude that
P(6t)P(t0)B{0,X>=P(og)B{0,X>. (5.12)

By another application of property (3) of Lemma 5.1, (5.12) implies that
B0 X>=B{0,X).

To show that Bis C*® on 2, let W(g, £) be a coordinate neighborhood
of 2, and XeT,W(ao, ) for some 1€ W(ag, ). Choose an m-contraction
(@, U) about t(1) and J > 0 sufficiently small such that exp,,(6X(1))e U.
Let fe C*(I, [0, 8]) such that f(t)=t for ¢ near 0, and f(t)=0 for t>3.
For all Y sufficiently close to X such that exp(1Y(1))e U for 0<t<3é,
define Fye C*2 by F(t)=(d/dt)exp(f(t) Y(1)). Then the concatenation
(¥) of 0, cxpsvaryy» Fr» and Y given by

7= [0q>('.exp(6Y(l))) 'FY] Y

is in 782,,. Using Proposition 3.2¢, it is easy to show that the map Y — Y
from a neighborhood of X in T#, to TR, is C*. Finally, let ye 2, such
that Ye T,8,, then
-~ ! -~ 172 ~
B(Ty={ b < F> de=] " by, < T
o

by property (2) of Lemma 5.1 and the fact that ¥Y(¢) is proportional to y'(t)
for <t < 1. (Note that y| (2,17 is C*.) From this last equation it is clear
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that B(Y) = B<0,,, Y> = B{Y). Since B{Y)=B(¥) and Y- ¥ is C*,
it follows that B is C*. Q.ED.

Conclusion of the Proof of Theorem 5.1. We will construct a bundle
connection pair (E, V) from the SDPIM function P. The pair (£, V) will be
described by prescribing a collection of transition functions and connection
1-forms.

Let {(¢., U,)} be a collection of m-contractions over an open cover
{U,} of M. In analogy with (57) and (5.6), define g,(x)=
P(e.(*y x) 0,(-, x))eG for xeU,nU,, and put A°{v) =B{(X, )€ ¥ for
veTU,, where X (1) =o,(1,-),v.

Claim 1. The {g,,} form the transition functions for a vector bundle E
over M. Let ¥“ denote the local trivializations of E over the set U, satisfy-
ing Y20 (Y8) ™' = gu(x) for all xe U, n U,.

Claim 2. The {4°} are the connection 1-forms with respect to the local
trivializations {§“} for a connection V on the bundle E constructed in
Claim 1.

Claim 3. Let y® be any local trivialization of £ about me M. Then
P(o)=y2 P¥(a)(y2) ! for all ce R2,,.

First note that the g,’s are C* since the map x — @,(*, x) ¢,(-, x) is
C® from U,n U, — Q2,,. Furthermore, by property (3) of Lemma 5.1, the
g’s obey the cocycle condition g,,(x) g,.(x) = goo(x) for xe U,nU,n U..
So the g, ’s are the transition functions for a vector bundle E with local
trivializations as described in Claim 1. By Lemma 5.2, each A4¢ is a smooth
%-valued 1-form on TU,, since the map (v — X,): TU,— T2, is C™.

Suppose that o e C*(J, U,), put p%(g) = P(a(s)), where a(s) is the con-
catenation; a(s)=@,(+, 6(s))[d° - ¢,(-, 0(0))] e 2,,.

We will now show that p? is parallel translation along ¢ with respect to
the connection 1-form A* by showing p° satisfies the correct differential
equation. Using the definition of B and p? one finds that

d d d
PO =5 Pla(s) ! = =B (£ 4®)) pilo).

So now compute

B (5 a(s) )= B(ZAT0.C, a0) '] 0,(- o(6) )

d
B <0[o.<-,c<o))a'] B ®al- U(S))>

d
B (501090 ) = 4o 5))
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where in the second equality we have used property (2) of Lemma 5.1.

Because of these last two equations, p?(c) satisfies the desired differential |

equation. Furthermore p3(o) = 1€ G by property (3) of Lemma 5.1.
Now suppose that ¢ is also in C?(J, U,) for some other index b, then

PA0) = 85a(0(5)) Pi(0) g.s(0(0)), (5.13)

using the definitions of p% p® g.,, and g,, along with property (3) of
Lemma 5.1. Using the above computation, take the derivative of both sides
of (5.13) at s=0 to show that

Ab<v> =dgba<v> gab(x)+ gba(x) Aa<v> gab(x)’ (5'14)

where v=0'(0)e T, M. Since the curve ¢ was arbitrary, equation (5.14)
holds for all ve T(U,n U,). In view of Remark 2.1, this shows that the
connection 1-forms {A4°} are consistently related, and hence define a
connection V on the bundle E as in Claim 2.

Furthermore our computations show that

PY(0)= (o))~ P(9.(; o(s))[o0a(-, 0(0)D(¥50)  (5.15)

for all ceC?(I,U,). Now suppose that s=ar with teC3(, U,),
aeCX1,U,), and t(1)=a(0)=x. Then by (5.15), the multiplicative
property of PV, and the relation g,,(x) = %0 (Y4) ™" = P(@.(*,X) - @,( -, X))
one shows

PY(0)= 5y "' P(9u(+5 a(D)) [ 9,(-,x)]) gar(x)
x P(@y(*, X)[1-@5(+, 7(0))])(¥3(0))
= Wiy ™" P(.(, a(1))[a- @+, x)1) P(9,(*, X) @,(-, X))
X P(@u(*5 X)[7- @4(+, 7(0)) 1)(¥30))
= (o))" Pe.(-s a(1))[a-[1-9,(-,0))1D (¥ 0)
=Won) ™" P@u(c, s(1))o - 9,(-, 6(0) (W50,

where we have used repeatedly the reparameterization invariance of P and
the properties of Lemma 5.1. Now any curve o € C*(1, M) (if appropriately
reparameterized) may be split into a finite product of paths 6 =0,0,--- 7,
with each o,e C*(1, U,,) for some a;,. So by repeating the above argument
n—1 times one finds that

PY(0)=(¥50) " P(@u(*s0(1))[0-0,(-, 6(0) D)W 5)  (5.16)

provided a(0)e U, and a(1) € U,,. Since both sides of (5.16) are continuous
in o, (5.16) holds for 0 € 2. Claim 3 is a special case of (5.16).

Because of Claim 3, [PY] = [P]. Hence the map in (5.1) is onto. This
fact along with Proposition 5.1 proves Theorem 5.1. Q.ED.

6. CHARACTERIZATION OF [E, V] BY LAssos

The main result of this section (Theorem 6.1) states that if M is simply
connected, then the space & = &(M, G, V) is parameterized by the set of
path two forms L such that B% has curvature 0 on 2,, and L satisfies a
monodromy condition associated with I7,(M, m). In Theorem 6.2 the zero
curvature condition is reformulated so as to be in closer analogy with the
condition dF =0 for ordinary closed 2-forms. Using Theorem 6.2, it is easy
to show that the Weil’s integrality condition for U(1)-line bundle can be
recovered from Theorem 6.1. In order to state the main results of this
section we need the following two propositions.

PROPOSITION 6.1. Let Q be a connected Hilbert manifold and B be a
%-valued 1-form on Q. Suppose that F®=dB+ B A B=0, then the parallel
translation operator (P®) associated to B (see definition 2.2) induces a
homomorphism from I1,(R, 6) to G, where ¢ is a fixed point in L.

Proof. Suppose that a, fe C2(L, Q)= {te C=(I,Q):1(0)=1(1)=0}
(the C*® loops based at ¢) and that there is a C*-homotopy y between a
and f. We may view y as a map from / to C (I, ), such that y(0) =« and
y(1)=p. Had we developed the loop space of an infinite dimensional
Hilbert manifold we could apply Corollary 4.1 to see that P?(y(s)) is dif-
ferentiable. Then by Corollary 4.4 it would follow that (d/ds) P®(y(s))=0,
since the integrated lasso associated to B would be zero because B has zero
curvature. To make this rigorous one only needs to note that y may be
used to pullback all objects to a bundle over IxI where one can use
Corollaries 4.1 and 4.4. (The fact that I x I has boundaries and corners does
not cause any difficulties.)

Therefore, if « and § are C®-homotopic, then PZ(a)=P*(#). Now sup-
pose y is only a continuous homotopy. Since Hilbert manifolds admit par-
titions of unity (see [L] or [E1]), the standard smoothing techniques (see
[Mu] or [St]) may be used to modify y to produce a C* homotopy from
@ to B. So again P®(a)= P®(B). Since, each ae C,(I, Q) is homotopic to
some o' € C*(I, Q2), one may define P*(a’)= P®(a), which is well defined
by the above comments. Thus, PZ is constant on homotopy classes and is
multiplicative, hence defines a homomorphism from I7,(22, o) to G. Q.E.D.

PROPOSITION 6.2. [1,(M, m) is in one to one correspondence with the
connected components of Q,,~the H'-loops on M based at m.
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Sketch of Proof. Suppose that ¢ and 1€, and there is a continuous
path y connecting ¢ to t. Then o and 7 are homotopic, and so define the
same element in /7,(M, m). Thus, any ¢ in the same connected component
of Q,,, gives rise to the same element of IT,(M, m). Conversely suppose
that ¢,7€Q,, are homotopic by a homotopy y. If it were sufficiently
smooth, the homotopy (y) would supply in a natural way a path between ¢
and 1. But as noted above if ¢ and t happened to be smooth then it is
possible to modify y to get a C *-homotopy, so that ¢ and t would be path
connected. Finally, any o € 2,, is path connected, and hence homotopic, to
a ¢' e C*Q,, with ¢ =exp,(X) for some Xe C*T, #,. So if ¢ and 7 are
homotopic, then ¢ and t are in the same path component of 2,,.  Q.E.D.

DErINITION 6.1. A %-valued path 2-form (L) is called closed if the
%-valued one form B* has curvature zero on £,,. That is
FB“ =dB" + BL A B =0 when restricted to T%,,.

At the end of this section in Theorem 6.2, another characterization for L
to be closed will be given. This will be closer to the usual definition for an
ordinary 2-form to be closed.

DerINITION 6.2, If L and L' are %-valued path 2-forms, L is said to be
equivalent to L’ if there exists a ge G such that gL{-,-> g7 '=L'(-,-).
Denote the equivalence class containing L by [L].

If L is a closed %-valued path 2-form, then by Proposition 6.1, the
parallel translation operator associated to BY on £, induces a
homomorphism from I71,(82,,, C,,)=IT1,(M, m) to G, where C,,€ 2, is the
constant loop at m e M. If this homomorphism is trivial, then L is said to
have zero monodromy. We now state the main theorem of this section.

THEOREM 6.1. Suppose that M is simply connected so that 82, is connected.
Let ¥ =% (M, V,G)={[L]: L is a G-valued closed path 2-form with trivial
monodromy}. Then the mapping

([E,V]1-[LY]):6-» ¥ (6.1)

is a one to one correspondence, where [LY]=[xoLV{-,-> k'] for any
admissible x: E,, — V. Note that the equivalence class [ LY] is independent of
the K chosen.

If IT,(M,m) is trivial then the monodromy condition is of course
vacuous. The analogous theorem for the case in which M is not simply
connected is still open. The problem is to find a characterization of the set
of [LY7’s in this case. (For an indication of the difficulties of this problem
see Example 7.1.) Even if a characterization was found, we will see in
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Theorem 7.1 that the correspondence in (6.1) would no longer be one to
one.

The proof of Theorem 6.1 will be postponed until we have proved a
number of useful propositions which will also help to motivate the
theorem. Let BY be the integrated lasso form for a connection V as in
Definition 4.3. Our main point of view is that BY should be considered as a
globally defined connection one form on the trivial vector bundle &, x E,,.
Recall from Corollary 4.3 that f*E is isomorphic to &, x E,,. Since B*E is
the pullback of a bundle with a connection V, there is a natural connection
B*V on B*E. The next proposition shows that under the identification of
2, x E, with B*E, the connection one form for *V is BY.

ProOPOSITION 6.3. Let B*PY denote the induced parallel translation
operator on the bundle B*E, and H:B*E— P,xE, be the global
trivialization defined in Corollary 4.3. Suppose that y:I - %, is a C* map,
then

R¥(y)= H,1,8*P¥(y) H 73,= P¥(y(1))~' PY(B-7y) P¥(3(0)), (6.2)
and BY is the connection 1-form for B*V with respect to the trivialization (H)
of the bundle B*E = {(0, £): € E,,, where 6 € 2,,}.

Proof. Recall that (B*PY)(y) - (y(0), &) = ((1), P¥(Boy)¢), where
¢e Eg4. ) Hence, the fact that (6.2) holds is an immediate consequence of
the definition of H in Corollary 4.3. In order to show that BY is the connec-
tion 1-form for f*V with respect to the trivialization (H), it suffices to
show

% R¥(y*) + B¥(y'(s)> RY(y") =0. (6.3a)

This is equivalent to showing that

& R = RG") ™ BYG 6D, (63b)

To this end define I": I - £, by

7(s)(2¢)
(s(1—21))(1)

o
NN
VAN/A\

r(s)(t)s{ ’f}, (64)

Nl

which is seen to be C* by Lemma 3.2, Proposition 3.3, and Propo-
sition 4.2. In terms of (6.4), R¥(y*) = = P¥(y(0)) ' P¥(I(s)). We may apply



216 BRUCE K. BRIVER

Corollary 4.4 to this last expression to find (d/ds) R¥(y*)~'=
R¥(y")~! BY(I"(s)), where by definition

BI')) = [ LTG0, 3T6)0) d

= J‘Ol/z LY(I(s)")<0, I(s)(r), 8, I'(s)()) dt. (6.5)

The second equality follows from the fact that d, I'(s)(¢) and 8, I'(s)(t) are
parallel for 4 <t<1 as is easily seen from (6.4). (Note: L is'a 2-form and
hence zero on parallel vectors.) By a change of variables in (6.5) and the
expression (6.4) for I', one easily shows that BY(I"'(s) > = BY(y'(s) ).
Q.ED.

PROPOSITION 6.4. Let F2 =dBY+ BY A BY denote the curvature of B
as in Definition 2.1, then

F&(6)=L(6){B.- By (6.6)

for all 6€P,. In particular, the curvature of B, when restricted to the sub-
manifold 2, is identically zero.

Proof. The curvature (F#°Y) of B*V on B*E is simply the pullback
B*FY¥ of F¥. So equation (6.6) now follows immediately from how
F?'V and F® are related (see Definition 2.1) and the definition of LY
(see Definition 4.2). Finally, F 8 is zero when restricted to Q,., since B,
restricted to 2, is identically zero. Q.E.D.

Remark. The fact that F#' is zero on ,, is also evident in the fact that
the parallel translation operators (RY) defined by BY are path independent
for paths in 2,,.

PROPOSITION 6.5. Let Q be a connected Hilbert manifold and B be a
smooth %-valued 1-form on Q. Then there exists a smooth function P: Q - G
such that ’

XP=P(c) B(X) (6.7)

for all 6e and XeTQ if and only if FP=dB+ BA B=0 and the
homomorphism from I1,(R2, 6) to G described in Proposition 6.1 is trivial.
(Such a B is said to have trivial monodromy.)

This proposition is the “curved” version of Lemma 3.6 of [G1].

Proof. Suppose that P is a solution to (6.7). Let o:(—¢g, &)x
(—&e)—> R be a smooth function. Let p(s, £)= P(a(s, t)), so that
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peC>((—¢ ¢e)x(—¢¢€),G). Therefore 0,0,p(s,t)=0,0,p(s,t). So
compute

0, 0,p(s, 1)=0,{p(s, 1) BLd,als, 1)>}
= p(s, 1){0, B0, a(s, 1)) + B{d, a(s, 1)) B(d,u(s, 1)>}.  (6.8)
Interchange s and ¢ in (6.8) and subtract from (6.8) to get
0,B(0,a(s,t)> — 8, B{a,a(s, 1)) + [B{8,als, 1)), B{d,a(s, 1) >]=0.

But the left hand side of this last equation is F2{d, a(s, ), 8, a(s, t) ). Since
a was arbitrary we conclude that F2 is identically zero.

Let ye C'(, ), and set R,(y)= P(y(s))~" P(y(0)). Then an easy com-
putation using equation (6.7) shows that

d
7 B+ B (9)) Ri(v) =0, (6.9)

so that R is the parallel translation operator associated to B, see
Definition 2.2. Clearly R(y)=R,(y)=1 if y is a loop. So the induced
representation on I7,(2) is trivial. (We could have deduced the curvature
zero condition from the path independence of R.)

Conversely, suppose that B is given with curvature zero and trivial
monodromy. In other words, if R (y) denotes the solution to (6.9) with
Ry(y)=1€G, then R(y)=1€G if y is a loop based at some fixed o€ Q.
Suppose that 1€, choose any C' path (y) from ¢ to 7, and then define
P(1)=R(y)~'. The function P:Q2 — G is well defined since R is path
independent (R(closed loop)=1). Suppose that XeT.Q, choose
ye C®([0,1+¢), 2) such that p(0)=¢ and y'(1)=X. Then by (6.9),
(d/ds) P(y(s)) = (d/ds) R,(y) ™' = R,(y) ' B{y'(s)). Evaluating this last
expression at s=1 shows that XP=P(t)B{(X) for all re 2 and Xe T, Q.

The only thing left to prove is that the function P is C*. Let 1€, and
choose a t-contraction ¢ over neighborhood U< of 7. Since P satisfies
equation (6.7), it follows that

d d
2 Plo(t, )= Plo(t, o) B {5 0(0.0)) (6.10)

for all pe U, and rel Thus P(¢(t, p) is a solution to a linear ordinary
differential equation, with the coefficients (B{(d/dt) ¢(t, p))>) depending
smoothly on a parameter (p). So by standard regularity theorems of
ordinary differential equations (see Lang [L]), it follows that P(p)=
P(p(1, p))is smooth for pe U. Q.E.D.

Remark 6.1. A solution to the system of equations (6.7) is uniquely
determined by specifying P at one point. This is the case since P(t) can be
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found by solving a differential equation of the form (6.10) once P(g) is
specified. Furthermore, the value at any one point can be specified
arbitrarily, since for any ge G, gP(-) is a solution to the system (6.7)
provided P(-) is a solution.

LEMMA 6.1. Let M be simply connected so that ,, is connected. Suppose
that L is a 9-valued path 2-form on 2, with trivial monodromy. Then by
Proposition 6.5, there exists a solution P to XP = P(d) B"*(X) for all 0 € 2,,
and X e T,S2,,. Furthermore, by Remark 6.1, it is possible to choose P such
that P(C,,) = 1€G, where C,,, is the constant loop at m. This function P is a
strongly differentiable, parameterization invariant, and multiplicative (i.e.,
SDPIM).

Proof. 1t is obvious that P is strongly differentiable. Now let r be a
reparameterization of I and set r(t)=(1—s)r(t)+st so that s—»gor, is a
path in ,, from cor to o, provided o e CQ,,. Using (6.7),

d ./ d
d—sP(aor,)—P(aorx)B <Ivaor:>—0

because (d/ds)aor,(t) and (d/ds)cor(t) are both proportional to
a'or(t), so that L{(d/ds)aor,t),(d/ds)a-r(t)>=0 and hence
B {(d/ds)oor,>=0. Therefore, P(c)=P(aor) for all C* loops o. By
continuity, this holds for all loops 0 €£,,.

Let g, T€8,,, and choose a smooth path y: I — Q,, starting at C,, and
ending at 1. Since tC,, is a reparameterization of 1, P(1C,)= P(t). The
strategy now is to show that both P(ty(s)) and P(t) P(y(s)) satisfy the
same differential equation. By (6.7), this amounts to showing that
B{(d/ds) ty(s) ) = B{(d/ds) y(s)). But

d 1 d d
B (3 6) = [ L) (5 [0, Z o010 ) d
! d d
= % Leeror) (5 0110, [0 ) e

12 d d
= [ Leeror) (e, e ) de
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where (d/ds)(ty(s))(1)=0 for ¢>4 was used in the first equality, and a
change of variables was performed to get the fourth equality. The other
steps are all a matter of using the definitions. Q.E.D.

The proof of Theorem 6.1 is now an easy matter.

Proof of Theorem 6.1. By Proposition 6.3 and 6.4, if L=xL% ™', for
some lasso LY, where k: E,, — V is an admissible isomorphism, then L is
closed and has trivial monodromy. Furthermore, suppose that (£, V) and
(E', V') are equivalent and K: E— E’' is a vector bundle isomorphism
exibiting this equivalence. Then it is easy to check that X, LY(.,-> K} =
LY, so [LY]=[LY]. Thus the map in (6.1) ([E,V]—[L"]) is well
defined.

Now suppose that [L] e .. By Proposition 6.5 and Lemma 6.1, there is
a unique SDPIM function (P) such that XP=P(s)B*(X) for all
XeT,Q, and geR,,. By Theorem 5.1, there is an [E, V]e& such that
[PY] = [P]. Thus, there is an admissible isomorphism «x: E,, = V such that

koPY(:)ox"'=Pon Q,,. (6.11)

Differentiating (6.11) by Xe T, £,, implies that ko BY{X)ox = B"{X) for
XeTQ,,. Lette?, and u,ve T .M where x =1(1). Choose a path €42,
such that ¢"?=1 and (d/dt)|,,T=u. Choose X,eT,R,, such that
X,()=0if <34, and X, - vd,,,. In other words, choosc X, such that
{3 S()X, (1)) dt - f(1/2)<v> for any fe CI,(T*M)—the continuous
sections of T*M along ¢. Then L(o){u,v)=lim,_, B"<(X,)=
lim, ., ke BY(X,>ox "'=KkoL¥(c){u,v) k™ '. This shows that [L]=
[LY], and hence [E, V] — [L"] is onto.

Now suppose that [LY]=[LY']; that is suppose there exists an
admissible k: E,,—» E', such that kLY(-){-->k~'=LV(-){-->. This
implies that kBY{-» k~'=BY'(-). By the uniqueness of solutions to the
system of equations (6.7) (see Remark 6.1), it follows that kP¥(-) k' = PV’
on £,,. That is [PY]=[PY]. So again by Theorem 5.1, it follows that
[E,V]=[E’, V']. Hence the map in (6.1) is one to one. Q.E.D.

From the proof it is fairly evident that Theorem 6.1 could be formulated
directly in terms of -valued 1-forms B on £,,. That is the path 2-forms L
could be eliminated altogether. I refer the reader to Theorem 3.13 of [G1]
for a result along these lines which has an obvious generalization to this
setting.

We will finish this section by discussing characterizations for a ¥-valued
path 2-form L to be closed. Gross, in [G1], gives a number of charac-
terizations using the notion of “end point derivative.” The definitions and
characterization used in [G1] all carry over to this more general case with
only minor changes. So I will concentrate on one specific characterization
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of closedness given in Corollary 4.12 and Remark 4.13 of [G1]. This is not
a serfous omission, since the other characterizations can be easily deduced
from the results to follow. The following lemma allows us to define the
endpoint derivative. The reader is urged to consult [G1] for a more
natural definition of this derivative.

LEMMA 6.2. Let u,zeI'(TM), and U=uof and Z=z-f be as in
Corollary 4.6. Suppose that L is a %-valued path 2-form on P, which
satisfies

X(L{U, Z)+ [B{X), LU, Z»]=0 (6.12)

Jor all X e T#,, for which X(1)=0, where B= B". Also suppose that {X,} is
a sequence in T P, for which

0 if 0<t<1
Xn(r)~x<1}(t)ws{ if

weT,yM if t=1 } as - n= e,

and

|X(1)| SC< o0

Jor all n, and some constant C. Then the limit lim, _, X, (L{U, Z)) exists
and is independent of the particular sequence converging to y,,w. This limit
will be denoted by w(L{U, Z)), and will be called the endpoint derivative of
L{U, Z) with respect to w. The endpoint derivative satisfies the relation

X)) LU, ZY(0)=X(L{U, Z>)+ [BL{X), LU, Z>(a)], (6.13)
where X € T, 2, and X(1) need not be zero.

Remark. The endpoint derivative is interpreted to be the variation of a
function as one varies the endpoint of a path. Equation (6.13) may be inter-
preted as saying that the end point derivative of L{U, V') is the same as
the covariant derivative with respect to the connection determined by the
%-valued 1-form (B) on 2,,.

Proof. Fix XeT,%, such that X(1)=weT,,,M. Then Y,=X-X,
satisfies ¥,(1)=0. So by hypothesis

Y.(LLU, Z>) + [BLY,>, LU, Z)(a)]=0  for all n.

Or in other words
Xu(L{U, Z3) + [B{X,>, L{U, Z)(0)]
=X(L<U, Z>)+ [B{X>, LU, Z }(0)]

for all n. By the dominated convergence theorem, B{X,) converges to zero

st L ESUONNECTION CLASBSIFIC A FTONS 221

as n— oo. This shows that the lim,_, ., X,(L{U, Z)) exists and satisfies
(6.12). Q.ED.

Remark 6.2. If the path 2-form L is a lasso, then by Corollary 4.6, LY
satisfies condition (6.12), and furthermore the end point derivative of LY
with respect to we T,,M (d€2,) is

w(LY(U, Z>)a)=P(a) "'V (F'{u, z)) P¥(0). (6.14)

DerINITION 6.3. Let L be a path 2-form satisfying (6.12). The endpoint
differential of L is a path 3-form defined by

(d°LYU, Z, WY=UL{Z, W)+ L{[U, Z], W) + cyclic combinations
(6.15)

where U, Z, W are uo f, zo f, wo f8, respectively, and u, z, w are vector fields
on M. The notation [U, Z] denotes [u,z]<f.

Remark 6.3. One can easily check that d°L{U, Z, W) is antisymmetric
and tensorial in U, V, W. If x=(x!, x?, .., x") is chart for M, then write
Ly(0)=L{d;,0;>(c) and d°Ly(c)=(d°L){d;, 0;,0,>(s) where 0,=
(8/0x") o B. In these local coordinates (6.15) becomes

d°L = 0; Ly + cyclic, (6.16)

valid for ¢ such that ¢(1) in the domain of the chart x.

By Remarks 6.2 and the definition of d°, if L=LY is a lasso, then
d°L¥ =0, since FV satisfies the Bianchi identity dVFY =0. This suggests the
following theorem, see Theorem 4.5 of [G1] for the case M =R".

THEOREM 6.2. Let L be a path 2-form which satisfies condition (6.12)
and the “Bianchi” identity d°L = 0. Then L is closed—that is the curvature of
B=B" is zero on Q,,.

Proof. The proof will be quite similar to the proof of Theorem 4.5 of
[G1]. We must show that FZ(X,Y)»=0 for X and Y in T,Q, and
oce®,,, where F=(dB+ B A B). By continuity it is sufficient to prove it
for the special case where X and Y in T,Q,, are C ®-sections along a C*-
path 6eQ,,. Let y(s, £)(r) be the C®-map given by exp,,(sX(r) + 1¥(r))
for s and t near zero. Then y=7(-,-)(:): (—& &) x (—¢& &) > 2,,is C* and
X =7,(0,0) and Y =17,(0, 0), where y, and y, denote partial derivatives of y
with respect to s and ¢, respectively. Since the differential 4 commutes with
pullbacks, dB{y,(s, t),7,(s,1)> may be computed as J, By (s, 1)) —
0, By s, 1)).

In order to simplify notation, the s and ¢ parameters will be suppressed.
If f is a function of f(s, t, r), then f, will denote 9,1, f,=40,/f, and f=a.f
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Also let 37 = (s, 1), Y. =745 ), Vi =75, 1), v =7(s, )(r), v, =25 D)),

and §=0,7(s, t)(r). Then a straightforward but tedious calculation using
the fact that d°L =0 (see the appendix to this section) shows that

ALy, 742) — 0L )<V ¥52)
=0,(L(")<v5s 700) + [LCH 1.0, BT = [LCH, 7.0, BEYD ) (617)

Now observe
0.8<1,> = ULGIGHI 7)) dr (6.18)
and

[} 0ALO) G 2,3) dr =2, (LG ) 7N =0,

since 7,(s, )(r)=0 at r=0 and r = 1. Therefore, by integrating (6.17) with
respect to r over the unit interval (I) we find

a: B<71> -‘alB<'y_v>

= | {LLOGH0) 201>, B

— [LGNCH(r), 15(r) >, By )} dr. (6.19)

But by the definition of B and a simple change of variables, we get
1
BGy = [ L) <ritru), p.(rw) ) du

= [ 20")<G3w), 7.0
So by this last equation, (6.19) may be rewritten as
0, B y,>—0, By
= [ [ ALLOIGH0, 703, LI, 7,0)))
— CLONG, 141D, L)), 7)Y 1} du dr
= [ [ (TR 703, L), 0]

+ [L(*)<h), ) >y LONKH(), v(r) > 1} dudr. (6.20)
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After interchanging the letters u and r and the order of integration in the
second term, one shows that the two terms in (6.20) add up to give
[B{y,>, B{y,>] This proves B has zero curvature on £2,,. Q.ED.

As a consequence of this last characterization for a path 2-form to be
closed, we can easily see that Theorem 6.1 reduces for the U(1) structure
group to the standard result of Weil’s stated in the introduction.

COROLLARY 6.1. Let F be an imaginary valued 2-form on a simply con-
nected manifold M for which [(2ri)~"' F] is integral, then there exists a
U(1)-line bundle connection pair (E,V) such that the curvature 2-form
F¥ =F. This correspondence characterizes the pairs (E, V) up to equivalence.

Proof. Let L(c)= L"(c)= F(o(1)), a path 2-form on £,. Condition
(6.12) is easily seen to hold in this case and it is easy to check that
(d¢L)(0)=dF(c(1)) which is zero by assumption. Set B{X) = B*(X) =
_\'(‘, F(o(s){a'(s), X(5)) ds. Now suppose that y: I, is a smooth path
such that y(0)=17(1)=C,—the constant path at m. Since U(l) is com-
mutative, the operators B{y'(s)) all commute among themselves, so that
differential equation for parallel translation may be explicitly solved to give

P =exp {[ B (00> o}
—exp{[! [ FroX0K2a6)0. 23600 .

Now thinking of y as a map from Ix/ to M, the last double integral
may be written as |, F={,, ,y*F—using the standard differential form
notation. According to Theorem 6.1, L is a lasso if and only if
PE(y)=exp(f, F)=1€ U(1) for all such y. That is |, Fe 2niZ. Now by the
Hurewicz isomorphism theorem (see Bott and Tu [BT] Theorem 17.21),
the second fundamental group I71,(M, m) is isomorphic to H,(M, Z), since
M is simply connected. Making use of this isomorphism, the map y: /- 2,
with y(0)=y(1)= C,, may be identified as representative of a homology
class [y] in Hy(M, Z). Since this mapping from I1,(M, m) to H,(M, Z) is
onto it follows that j’,F e(2ri) Z for all y: I >, is equivalent to the
statement that [(2ni)~' F] is integral. Hence, F is closed and integral if
and only if LF is closed and has trivial monodromy. This shows that
F— Lf is a map from the space of closed imaginary valued 2-forms such
that [ (2ni) ! F] is integral onto the space of lassos. This map is also easily
seen to be one to one. The Corollary now follows from Theorem 6.1, and
the fact that the conjugacy classes [L] contain only the single element (L)
because of the commutativity of U(1). Q.E.D.
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APPENDIX TO SECTION 6

The calculation showing (6.17) holds will be presented in this appendix.
Introduce a chart (x= (x', x*---x")) on M in a neighborhood of (s, 1)(r)
and let y=x'oy. We continue the notation introduced in the proof of
theorem 6.2 with obvious extensions to the functions iy, for example
lyr = (xlo,y)r.

With this notation and the notation of Remark 6.3,

LG y> =ZLy(3") -5 %y,
where all sums are on the indicies i and j from 1 to n. Therefore,

O(L(YNKH(r), 74(r)))
=0,(ZLy(y") 5(r), "y {r))
=Z{(riLy) T+ Ly(y") v+ Liy(y") 57,5}
=Z{yr) Ly ¥y, + Ly(y") 57y, + Ly(y") 59,5}
+ LLOTH(), vi(r) >, Byo(r)D ], (6.21)

where (6.13) was used in the last equality. Taking (6.21) and subtracting
the same expression with s replaced by ¢ one finds

(LY, v, > — 0L )T, v5)
=Z{((r) Ly) -y, Ty, + Ly(y") 5%y — Ly(¥") 9.7}

+ LL(Y)H(r), 7Ar) 3, BLys(r) > — [LGY)H(r), v5(r) >, BLy ()],
(6.22)

where the Bianchi identity (6.16) has been used in the form
((r) L) -5 -7y,= (vs(r) Ly)- -7y, — (y{r) Ly) -5 - Py,

to get the first term, (All derivatives in this last expression are end point
derivatives). Now notice that

0Ly )Y527e2)
=Z{(0, Ly(y")) s Ty + Ly(¥") - "y, + Ly(y") - 5 - 0.}
=Z{((r) Ly) sy + Ly¥") B 7y + Lyy") - 5%}, (6.23)
Where, in the second equality, we have used the fact that

0, Ly(y")=7(r) Ly
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which follows from (6.13) using B<d,y">=0, and 4,y (1)=7(r).
(B{8,y"> =0, since 8,y" is parallel to 7.) So (6.23) can be used to replace
the sum in (6.22) by 8,(L(y"){,, y,>), which results in the desired equation
(6.17).

7. REMARKS FOR M Not SiMPLY CONNECTED

In this section, the manifold M is no longer assumed to be simply
connected. For the purposes of this section let ¥ =2(M,V,G)=
{[LV]: (E, V) is a G-bundle connection pair }. If M is not simply connected,
we no longer have an intrinsic characterization of % even in the case
G=U(1) (see Example 7.1 below). We first show (Theorem 7.1) that in
general the space % is no longer in 1-1 correspondence with
& =&(M, V, G). This “gauge copy” problem is intimately related with our
difficulty in characterizing the space . However, in Theorem 7.2 and
Corollary 7.1, it is shown that the closed path 2-forms (L) (modulo con-
jugation) with trivial monodromy are in one to one correspondence with
&'=&M', V,G) where M is the universal covering space of M.

THEOREM 7.1. Suppose that [E,V]e&, and P(c)=x°P(c)x~" for
ce®,, where k:E,,— V is an admissible isomorphism. Set p(LE,V]) =
[L], then p~'([LV]) is in one to one correspondence with the set of
functions h: IT'(M, m) - G, modulo conjugation by elements of G, which

satisfy
h([o1[x]) P(a)=h([e]) P(x) h([*]) . (11)

for all 6,t€8,,. The notation [a] e IT'(M, m) denotes the homotopy class
(ie, path component of R,) containing a. In particular any
he Hom(IT'(M, m), Z(G)) (the homomorphisms from IT'(M,m) to the
center (Z(G)) of G) satisfies (1.1). Conversely if G is connected and V
is irreducible in the sense that the span{xoL%(c){u,vd> k"
ce?, uvel, M}=%, then every h satisfying (7.1) is actually

in Hom(IT'(M, m), Z(G)).
Proof. Set B{-)=xoB¥(-) k~'. So by Corollary 4.4
XP=P(c) B(X) (7.2)
for all XeT,Q, and ceQ,,. Using Theorem 5.1, it is caéy to see that

p~([L¥]) is in 1-1 correspondence with {[ P’]€ .#: for which gP'()g!
satisfies (7.2) for some g€ G}. This is the same as saying that p N([L¥])is



226 BRUCE K. DRIVER

in 1-1 correspondence with {[P']e #: XP' = P'(c) B{X) for Xe TQ,.}.
Because of Remark 6.1, the most general solution to (7.2) is of the form

P'(6)=h([o]) P(o) (7.3)

where h: I1,(M, m) = G, since I1, indexes the path components of £2,,. Any
function of the form (7.3) is strongly differentiable and parameterization
invariant. Thus we need only find conditions on k4 for P’ to be mul-
tiplicative. It is easily checked, by demanding that P'(at)= P'(c) P'(1)
holds for all o and r, that the condition (7.1) is precisely what is needed to
make P’ defined by (7.3) multiplicative.

Now suppose that G is connected and V is irreducible. If [t]=
1€ IT,(M, m), then (7.1) reduces to P(t)h([e])=h([c]) P(t)forall o€ £2,,.
By the Ambrose Singer Theorem (see for example Corollary 2.17 of [G1]
for a proof in the spirit of this paper), we can conclude that
{P(z): [1]=1eIT"(M, m)} =G, since G is connected. Therefore, h([c])
must be in the center of G for all ¢ €, in which case (7.1) requires 4 to
be a homomorphism of groups. Q.E.D.

Let M be a connected but non-simply connected manifold, with univer-
sal cover M' and covering map 6: M' —» M. Choose m'e M' and set
m=0(m'). Let 2,=2 (M) and Z,=2,(M"). IfoceP,, set 5e P, to be
the unique curve such that §(0)=m', and f-6=o0.

Suppose that L! is a path 2-form on £,:. Using L' we may define a path
2-form on £, by

L(o)<u,v)=L'(5)<4, b), (74)

where = 0,5{,(u). In the future, # may be written as u, since by context it
will be clear when u should be lifted to TM'. One can easily check that

BE¢ X)) =B"(X) (7.5)

where X is the unique element of T;2, such that B,X’ =XeT,%,.

THEOREM 7.2. Let L be a %-valued closed path 2-form on 2, (M), such
that L has trivial monodromy in the sense that the representation it induces
on I’ (M, m)=I'(R2,(M),C,) is trivial. Then there exists a unique
element [E',V']e&'=&M", V, G) such that [6*L]=[L"'], where

(0*L)(o){u,v>=L(0a){O,u, 0,v) (7.6)

for ae 2, and u,ve T, \M".
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Proof. Let L'=6*L as in equation (7.6). Then if B'=B*' and B= B,
it is easy to check that

B'=0*B (1.7)

where (6*B)(X)=B{(0,X)> for all XeT%,. Note that the map
0: M! - M naturally induces a map, which is again called 6, from £, to
2, and consequently from £, to Q,,. It is this latter map that § represents
in (7.7). Since exterior derivatives and pullbacks commute, it follows that
dB' =d0*B=0*dB. Also pullbacks respect wedge products so that
0*(B A B)=0*B A 0*B. Therefore,

FB =9*F2, (7.8)

from which it follows that F2' is 0 on £2,,,. Furthermore it is easy to check
that

P? =P2.0 (7.9)

where P2, and P?' are the parallel translation operators with respect to the
connection 1-forms B and B' respectively. So suppose that y: /-, is a
smooth loop based at C,:. Then Goy:I— Q,, is a smooth loop based at
C,,. Since B has trivial monodromy, P2'(y) = P#(-y)=1, so that B' has
trivial monodromy. Thus L' satisfies the hypothesis of Theorem 6.1, which
may now be used to conclude the proof. Q.E.D.

COROLLARY 7.1. Let &' be the collection of %-valued closed path
2-forms (L) on 2, such that B* has zero monodromy on the path component
of Q,, containing C,,. Then the map

([L1-[0*L]): ¥ » &', (7.10)

is a 1-1 correspondence where ¥'=¥(M", V, G). Hence by Theorem 6.1,
&' is in 1-1 correspondence with &' = &M, V, G).

Proof. This follows immediately from Theorem 7.2, and the relation
(7.4) which enables one to define the inverse map to (7.10). Q.E.D.

We now give an example which demonstrates that the characterization
of the set of lassos given in Theorem 6.1 is no longer sufficient if the
manifold (M) is not simply connected.

ExaMPLE 7.1. Let G=U(1) and M be a connected manifold for which
II1,(M, m) is non-trivial but IT,(M, m) is trivial. Using the notation above,
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let F' be a closed imaginary valued 2-form on M for which F' is not 6*F
for some 2-form on M. (All of this is easily accomplished on S'x R for
instance.) Using F', construct a path 2-form (L) on 2, by

L(a)=F'(&(1)). (7.11)

So if Xe T,%, such that X(1)=0, then XL =0, since the variation of g by
X does not change the homotopy class of g, and hence does not change
d(1). So L satisfies the condition in equation (6.12). Furthermore, it is easy
to check that d°L(c)=dF'(G(1)) which is zero by assumption. So by
Theorem 6.2, L is closed. The path 2-form L also has trivial monodromy,
since IT,(M, m)={1}. Nevertheless, L need not be a lasso, because if it
were it would imply that L(e) = F(a(1)), for some 2-form F. But this would
imply that F'=6*F.

This last example shows that the conditions of Theorem 6.1 no longer
characterize the lassos. Furthermore, using this same example wth
M=S"'xR, one may easily show that the representations induced by
B=B" on the other fundamental groups I7,(R2,, c) are trivial, where
g€, is a path not homotopic to C,,. This shows that requiring trivial
monodromy on the fundamental groups I7,(R,,, a) for each path com-
ponent of £, is still not enough to guarantee that L is a lasso.

To finish this section we record a result which may be useful for future
considerations of non-simply connected M. In order to state the result, let
Cov(M"') denote the space of covering transformations (u) of M' with
respect to the covering map 6: M' — M. Recall that Cov(M') is a group
under composition which is isomorphic to I7,(M, m).

THEOREM 7.3. Let 8: M' - M, and m = 6(m") be as above. Suppose that
(E', V") is a vector bundle over M with connection V', fiber model space V
and structure group G. Then there exists a bundle connection pair (E, V) over
M such that (E*, V") is equivalent to the pullback of (E, V) by 0 if and only
if the following conditions hold:

(1) For each peCov(M') there exists a lifting to a smooth map
ji: E' - E" for which Ay=flg isa linear isomorphism from E} to E),,.
Furthermore, the lifts should satisfy fieV=(uov)~ for all u and
ve Cov(M?).

(2) If SeI(E") is a smooth section, then the connection V' should

satisfy

ViS=a=!(V, (fFoSopu™"), (7.12)
for any ve TM .
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Remark. The theorem gives a criterion for when one can “push
forward” the bundle (E*!, V') over M to a bundle connection pair (E, V)
over M.

Sketch of Proof. First suppose that (E', V') is the pullback of (E, V).
Then by definition of the pullback, the fibers of E' are El=
{(x, &): £€ Ey(yy}. So the desired lifts may be defined by j((x,¢))=
(u(x), &) € E .- For this choice of lifts, it is easily checked that conditions
(1) and (2) hold.

Conversely assume that (E', V') is a bundle connection pair for which
conditions (1) and (2) hold. Define an equivalence relation on E' by ¢~ n
if there is a pe Cov(M") such that &= jfi(n). It is clear that E should be
defined as E'/~ with the obvious projection map onto M. To define the
local trivializations of E, let (¥', U") be a local trivialization of E' over an
open set of M! such that 8| is a diffcomorphism of U' onto an open set
U=60(U") of M. For any (€ E', let [¢] denote the element of E given by
the equivalence class containing ¢. Set Y([£]) =y'(¢) for all Een—(U"),
where 7 is the projection map from E' to M'. It is easy to check using
property (1) that these local trivializations define a vector bundle structure
on E with structure group G. Now suppose that Se I'(E) is a section of E,
and ve T,, M. Let U be a neighborhood of {m}, which is covered by U"' in
such a way that oa~'=6|,: is a diffeomorphism. The section S can be
written as S(p)=[S'(a(p))] for pe U, where S' is a local section of E'
over U!. With this notation, define

V,S=[V!,S'].

One can check using properties (1) and (2) that this last expression is well
defined and in fact defines a covariant derivative on E. Furthermore, the
bundle pair (E', V') is equivalent to the pullback of the bundle pair (E, V).

Q.ED.

So in order to characterize the lassos it is sufficient to find conditions on
a path 2-form L such that the bundle connection pair (E', V') constructed
in Theorem 7.2 satisfies the hypothesis of Theorem 7.3.

REFERENCES

[A] T. AusiN, “Nonlinear Analysis on Manifolds. Monge-Ampere Equations,” Springer,
New York/Heidelberg/Berlin, 1980.

[Bi] 1. BiaLYNICKI-BIRULA, Gauge invariant variables in the Yang-Mills theory, Bull. de
I’Acad. Polonaise des Sciences 11 (1963), 135-138.

{Br] R. BrowN, Some non-abelian methods in homotopy theory and homological
theory, U.C.N.W. Pure Mathematics Preprint 83.15 University of Wales, Nov. 1983,
revised May 1984.



230 BRUCE K. DRIVER

[BT] R. BorT AND L. W. Ty, “Differential Forms in Algebraic Topology,” Springer, New
York/Heidelberg/Berlin, 1982.

[D1]  P. DECKER, Sur la cohomologie non abelian, I (dimension deux), Canad. J. of Math.
12 (1960), 231-251.

[D2]  P. DECKER, Sur la cohomologie non abelian, II, Canad. J. of Math. 15 (1963), 84-93.

[Di] J. A. DIEUDONNE, Treatise on analysis I. Vol. 10-1, in “Pure and Applied
Mathematics,” Academic Press, New York, 1969.

[EM] D. G. EpiN AND J. MARSDEN, Groups of diffeomorphism and the motion of incom-
pressible fluid, Ann. of Math. 92 (1970), 102-163.

[E1] J. EELLS JR., On the geometry of function spaces, Symp. Int. De Topol. Alg., Univ.
Mexico (1965), 303-308.

[E2] J. EELLs JRr., A setting for global analysis, A.M.S. Bull. 72 (1966), 751-807.

[ES1] J. EELLs JR. AND J. H. SaMpsoN, Energie et déformations en géométrie différentielle,
Ann. Inst. Fourier, Grenoble 14, 1 (1964), 61-70.

[ES2] J. EeLis JR., AND J. H. SaMPsoN, Variational theory in fiber bundles, “Proc. of the
U.S.-Japan Seminar in Differential Geometry, Kyoto, Japan™ (1965), 22-32.

[E1] H. 1. ELiassoN, Geometry of manifolds of maps, J. Differ. Geom. 1 (1967), 169-194.

[Gi] R. GiLes, Reconstruction of gauge potentials from Wilson loops, Phys. Rev. D. 24
(1981), 2160-2168.

[G1] L. Gross, A Poincar¢ lemma for connection forms, J. Funct. Anal. 63 (1985), 1-46.

[G2] L. Gross, Lattice gauge theory: Heuristics and convergence, in “Stochastic
Processes—Mathematics and Physics,” Lect. Notes in Math. Vol. 1158, Albeverion
(S. Blanchard Ph., and L. Streit, Eds.), Springer, Berlin/Heidelberg/New York, 1986.

[H] S. HeLgasoN, “Differential Geometry and Symmetric Spaces,” Academic Press,
New York/San Francisco/London, 1962.

[KH] W. KLINGENBERG, “Riemannian Geometry,” de Gruyter, Berlin/New York, 1982.

[KI2] W. KLINGENBERG, Closed geodesics on Riemannian manifolds (Regional conference
series in mathematics; no. 53), Am. Math. Soc. (1982).

[KI3] W. KLINGENBERG, “Lectures on Closed Geodesics,” Springer, Berlin/Heidelberg/
New York, 1978.

[Kob] S. KoBayasHi, La connexion des variétés fibrées II, Comptes Rendus, Paris 238
(1954), 443-444.

[Ko] B. KoSTANT, Quantization and unitary representations; Prequantization Part I, in
“Lectures in Modern Analysis and Application IIL,” Lect. Notes in Math. Vol. 170,
Springer, Berlin/Heidelberg/New York, 1970.

[L] S. LANG, “Differential Manifolds,” Addison-Wesley Publishing Company, Inc.,
Massachusetts/California/London/Ontario, 1972.

[Ma] K. MacKenzig, Criteria for the existence of principal bundle connections with
prescribed curvature form, University of Melbourne, Dept. of Math. Research
Report No. 15 (1986).

[Manl] S. MANDELSTAM, Quantum electrodynamics without potentials, Ann. Physics 19
(1962), 1-24.

[Man2] S. MANDELSTAM, Quantization of the gravitational field, Ann. Phys. 19 (1962),
25-66.

[Man3] S. MANDELSTAM, Feynman rules for electromagnetic and Yang-Mills fields from the
gauge-independent and field theoretic formalism, Phys. Rev. 175 (1968), 1580-1603.

[Ms] M. A. MosTow AND S. SHNIDER, Does a generic connection depend continuously on
its curvature?, Comm. Math. Phys. 90 (1983), 417-432.

[Mu] J. R. Munkres, “Elementary Differential Topology,” Princeton University Press,
Princeton, New Jersey, 1963.

[Pa] R. S. PaLais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340.

[PS]
[PrS]
[SP]
[sT]
(W]

[We]l

[ 4
BUNDLE-CONNECTION CLASSIFICATIONS 231

R. S. PALAIS AND S. SMALE, A generalized Morse theory, Bull. of Amer. Math. Soc.
70 (Jan-Dec 1964), 165-172.

A. PressLEY AND G. SEGAL, “Loop Groups,” Oxford University Press, Oxford/
New York/Toronto, 1986.

M. Spivak, “A Comprehensive Introduction to Differential Geometry,” Vol. 1,
Second Edition, Publish or Perish Inc, Wilmington, Delaware, 1979.

N. SteenrOD, “The Topology of Fiber Bundles,” Princeton University Press,
Princeton, New Jersey, 1951.

F. W. WARNER, “Foundation of Differential Manifolds and Lie Groups,” Springer,
New York/Berlin/Heidelberg/Tokyo, 1983.

A. WELL, “Variétés Kahlériennes,” Herman, Paris, 1958.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium



