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Integration by parts formulas are established both for Wiener measure on the
path space of a loop group and for the heat kernel measures on the loop group. The
Wiener measure is defined to be the law of a certain loop group valued “Brownian
motion” and the heat kernel measures are time ¢, ¢>0, distributions of this
Brownian motion. A corollary of either of these integrations by parts formulas is
the closability of the pre-Dirichlet form considered by B. K. Driver and T. Lohrenz
[1996, J. Functional Anal. 140, 381-4487]. We also show that the heat kernel
measures are quasi-invariant under right under right and left translations by finite
energy loops.  © 1997 Academic Press
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1. INTRODUCTION

Let G be a connected compact' Lie group equipped with an Ad,-
invariant inner product {-,-)> on the Liec algebra (q=7,G) of G. Let
Z(G) denote the space of continuous loops in G based at the identity.
Following Malliavin [17], a #(G)-valued processes {X,},., is con-
structed; see Theorem 3.8. In Theorem 3.10 below this processes is shown
to satisfy the martingale characterization of a Brownian motion on Z(G).
Let v=Law(2.)) and v;=Law(X;) so that v (Wiener measure) and v,
(heat kernel measure) are probability measures on the path space of Z(G)
and Z(G), respectively. Two types of integration by parts formulas are
established.

The first integration by parts formula is for the measure v relative to a
certain class of vector fields on the path space. This version is an “infinite”
dimensional version of the integration by parts theorem in Driver [4], see
Theorem 9.1 on p. 363.

The second is for the left-invariant first order differential operators on
Z(G). This version is a infinite dimensional analogue of the fact that heat
kernel on a finite dimensional Lie group has a logarithmic derivative. Of
course, the finite dimensional version follows from the fact that the heat
kernel measure is absolutely continuous relative to the Riemannian volume
measure and the Radon—-Nikodym density is smooth and never zero.

In Driver and Lohernz [6], a Logarithmic Sobolev inequality for cylin-
der functions was proved on a loop group with the underlying reference
measure being the heat kernel measure v,. The Logarithmic Sobolev
inequality as stated in [6] is really a collection of Logarithmic Sobolev
inequalities for certain finite dimensional approximations to the Loop
group with the constants being independent of the approximation. A
corollary of either of the integrations by parts formulas in this paper is that
the pre-Dirichlet form considered in [6] is closable. This elevates the
Logarithmic Sobolev inequality in [6] to a truly infinite dimensional
inequality.

We will also show that the heat kernel measure v, is quasi-invariant
under right and left translations by “finite energy” loops in #(G). This will
be done using an argument due to Cruzeiro [2] (see also Dennis Bell [1]
and Gunnar Peters [20,21]) for proving quasi-invariance of flow from
integration integration by parts formulas.

"'To avoid certain technical complications, G is assumed to be compact in the body of this
paper. However, it would be possible to extend the results in this paper to the case where G
is a Lie group of compact type, ie, G=Kx R where K is a compact Lie group and
de{0,1,2,..}.
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1.1. Statement of Results

Let G be a compact Lie group, g=T7,G be the Lie algebra of G, and
{-,-» be an Ad invariant inner product on g. Let .¥ = %(G) denote the
based loop group on G consisting of continuous paths g: [0, 1] — G such
that g(0)=g(1)=e¢, where e€ G is the identity element. Similarly, #(g)
will denote the continuous paths /: [0, 1] — g such that 2(0)=A(1)=0.

Given he #(g), define (h, h) = oo if & is not absolutely continuous and
set ( = [ I1'(s)|? ds otherwise. Let

Hy(g)={h:[0,1]1>g | h(0)=h(1)=0and (h,h)<ow}.  (1.1)

Hence Hy(g) = £(g) is Hilbert space with inner product (4, k) jo Ch'(s
k'(s)> ds. The Hilbert space H,(g) is to be thought of as the Lie algebra of
Z(G). Using left translation, we may extend the inner product (-,-) to a
“Riemannian metric” on the Cameron-Martin tangent space (7.¢) to &.
Explicitly,

TL={X:[0,11-TG|0{X> e Hyg)}, (1.2)

where (0( X ))(s)=60<{ X(s)> and 6 is the Maurer Cartan form on G, i.e.,
K&y =L, Eéeg for all £eT,G and geG. Let n: TG — G denote the
projection of a tangent verctor in 7G to its base point. Given g e %, the
tangent space to £ at g is

T,9={XeT¥:n-X=g} cT¥.
The length (X, X') of a tangent vector X e T.¥ is now defined by

(X, X)=(0<X ), 0X D) py )

In this way, % is to be thought of as an infinite dimensional “Riemannian”
manifold.

The Levi-Civita covariant derivative (D) acting on H,(g), which should
be identified with left-invariant vector fields on %, is determined by

(D) =] (ko) (o) do—s [ ko). Wio) do, (1)

where h, ke Hy(g). See Proposition 1.6 in Freed [10] and Definition 3.6
and Theorem 3.12 in Driver and Lohernz [ 6]. As for finite dimensional Lie
groups,” Eq. (1.3) uniquely determines the Levi-Civita covariant derivative
V acting on paths in 7.%. Namely, if t > X(z) is path in 7% such that

2 For the case of finite dimensional Lie groups see Section 6 in [5].
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ht)=0{X(t)) e Hy(g) and g(t)=no-X(t)e¥ are sufficiently smooth
paths, then Levi-Civita covariant derivative of X(-) is

VX(1)/dt = Ly {h(1) + Dy (1)},

where f(t) =0{g(1)> € Hy(g). In particular, parallel translation (//) along a

sufficiently smooth path r—g(1)e £(G) is defined by //,= L, U(t),
where U solves the ordinary differential equation,
dU(t) .
7 + Dy, U(t)=0 with  U(0) =1 ). (1.4)

Let {f(t)},~0 be an #(g)-valued Brownian motion with covariance
determined by Hilbert norm (-, -). A more precise description of f is that
B={P(t,5)},~0.scro.17 is a jointly continuous two parameter g-valued
Gaussian process with mean zero and covariance given by

E[<A, p(1,5))<{B, f(t,0))]= A, B)(1 A 1)(s A 6 —50),

where A4, Beg, t,7€[0,0), s,6€[0,1], and s A c=min(s, g). (See
Section 3.1 for a more detailed discussion.) Following Malliavin [17],
we have the following theorem which is proved in Section 3 below, see
Theorem 3.8.

THEOREM 1.1 (Brownian Motion on ). Given gy€ £(G), there is a
Jjointly continuous solution X(t, s) to the stochastic differential equation

2(0t,8) =Ly, 4 B(3L, 5) with  2(0,s)=g(s) Vse[0,1], (L5)

where for each fixed se [0, 1], X(Jt, s) and f(dt, s) denote the Stratonovich
differentials of the processes t — X(t, s) and t — B(t, s) respectively. (In the
sequel, for concreteness we will assume that X is the process defined in
Eq. (1.5) above with gy(s)=e for all 0 <s<1.)

Notation 1.2. The Wiener space based on ¥ = £ (G) is the set of paths
W(L)={oe ([0, 0), ¥):0(0)=ee ZL}. (1.6)

Similarly, let H(H,(g)) be the set of continuous functions %:[0, c0) —
H,(g) such that 4#(0)=0 and there is a function 4 e L*([0, o), dt; Hy(g))
such that A(r) = |}, h(7) dr for all 1[0, o). (The integral is taken to be the
Bochner integral. As in the scalar valued case, one may show that such a
function / is absolutely continuous, the derivative of / exists for almost
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every t€ [0, o0), and dh(z)/dt = h(t) a.e.) Then H(H,(g)) becomes a Hilbert
space with inner product defined by

o) s = [ G0 K(1)) g
for all h, ke H(Hy(g)).

DermNITION 1.3 (Cylinder Functions). A function f: % — R is said to be
a smooth cylinder function on & if f has the form

S(g) = F(g(sy), ., &(5,)) (L.7)

for some partition Z={0<s,<s,< --- <s,<1} of [0,1] and some
Fe C*(G"). The collection of smooth cylinder functions on % will be
denoted by #C*(¥). A function f: W(¥)— R is said to be a smooth
cylinder function on W( ) if f can be written in the form

flo)=F(a(ty, s,), ., 0(2,,5,)) Voe W(Z), (1.8)

where Fe C*(G") and {(1,,s;)}7_,<[0,0)x(0,1). The collection of

i=1

smooth cylinder functions on W(.%) will be denoted by # C*(W(Z)).

To simplify notation in the sequel we will let

g =(8(51), - &(5,)) (1.9)

when ge ¥ and Z2={0<s,<s,<--- <s,<1}. With this notation
Eq. (1.7) may be written as f(g) =F(g,).

Theorem 3.10 below shows that the process 2, =2(t)=2(t,-) e L(G)
deserves to be called Brownian motion on #(G) starting at g,. Let v
denote the law of {2(7,5)},~0 scr0.17 and v, denote the law of X, =
2(T,-). Also let //, be “stochastic parallel translation” along the Brownian
motion X(#). In analogy to the smooth case as above, //,= Ly, UQ?),
where U(t) is process taking values in the unitary group of H(g) which
“solves” the Stratonovich stochastic differential equation,

SU(t) + Dyisy U1) =0,  with U(0)=T (1.10)

Hy(g)*

See Theorem 4.1, Definition 4.2, Lemma 4.3 and the discussion at the
beginning of Section 4 for more details. The following integration by parts
theorem for W(.%) is completely analogous to the well known integration
by parts theorem (see for example Theorem 9.1 in [4]) for the Wiener
space W(M) of compact Riemannian manifold M.
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THEOREM 1.4 (Integration by Parts on W(¥)). For each he H(Hy(g))
let X" denote the vector-field on W( L (G)) defined by

X{(Z)=//h(t) = L), Ut) h(2).
Then for all smooth cylinder functions f on W(%L)

E[(X"f)]1=E[ f(Z(T)) z4(h)], (L.1T)
where
d 0
(X”/‘)(Z)E% S(Ze X)), (1.12)

and z(h) is a random variable described in Eq. (4.17) below.

This theorem is proved in Section 4 using the method which has been
described in Hsu [12] and Sections 2 and 3 of Driver [ 5] when the loop
group is replaced by a finite dimensional Riemannian manifold, see
Theorems 4.10 and 4.12 below. The next theorem describes an integration
by parts formula for the left invariant vector fields on %Z.

THEOREM 1.5 (Integration by Parts on ). Let t>0, he Hy(g), f be a
cylinder function on ¥, and ﬁf(g) =(d/dt)|, f(ge™). (So T is a first order left
invariant differential operator on ¥.) Define H(t), t€[0, t], to be the solu-
tion to the Stratonovich stochastic differential equation:

dH(t) + D s H(7) =0 with final data H(t)=h. (1.13)

(The precise meaning of this equation is explained in Theorem 6.1 below.)
Then

EUREN = E| A5 [ ({1-5 e Rief sy @i )| (114)

where (d_ﬁ in Eq. (1.14) denotes the backwards stochastic differential and Ric
is the Ricci tensor on . See Section 8.3 of the Appendix for a short review
of the backwards Ité integral and Definition 2.4 below for the meaning of the
Ricci tensor Ric.

Theorem 1.5 is a special case of Theorem 6.2 below. Theorems 1.5 and
6.2 turn out to be more delicate than Theorem 1.4. The proof is based on
Corollary 6.4 in Driver [5], which is a finite dimensional analogue to
Theorem 1.5. The basic idea of the proof is to apply Corollary 6.4 in [5]
to certain finite dimensional approximations to the loop group and then
to pass to the limit of finer and finer approximations. The necessary
geometry and estimates for the finite dimensional approximations, which
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are needed to carry out this limiting procedure, are developed in Section 5.
See in particular Theorems 5.8 and 5.10.

An application of either of the above integration by parts formulas is the
closability (see Theorem 4.14 below) of the symmetric pre-Dirichlet form
on LA Z(G), v;) defined as: 2(&£°) =F C* (&) and for fe 2(&°),

S SV=] 1) gy va(de),

Here Vf(g) denotes the gradient of f at ge %, ie., Vf(g) is the unique
element in Hy(g) such that

(Vf(g), i) = (hf)(g) ~ Vhe H(g). (1.15)

A second application of Theorem 1.5 is the quasi-invariance of the heat
kernel measure v, under left and right translations by “finite energy” loops
in #(G), see Corollary 7.7 and 7.10 in Section 7 below. The quasi-
invariance under right translations by finite energy loops will be proved
using the second integration by parts formula coupled with an argument
due to Cruzeiro [2] (see also Dennis Bell [1]) for proving quasi-
invariance of flows from integration by parts formulas. The quasi-
invariance under left translations by finite energy loops then follows
easily from the fact that v, is invariant under the transformation
ge Z(G)— g 'e L(G), see Proposition 7.9 below.

2. NOTATION AND PREREQUISITES

This section gathers some needed additional notation and results
from Driver and Lohrenz [6] and in Driver [5]. Let HS(Hy(g))=
Hy(g)* ® Hy(g) be the Hilbert Schmidt operators on H(g), S, < Hy(g) be
an orthonormal basis for H,(g) and g, <g be an orthonormal basis of g.
For Aeg, let A be the unique left invariant vector field on G such that
A(e)=A. The following theorem may be found in Lemma 3.9 and
Theorem 3.12 of [6].

THEOREM 2.1. For ke Hy(g), let D,: Hy(g) — H,(g) denote the operator
defined in Eq.(1.3). We will also think of D as an operator from Hy(g) —
HS(H(g)) via (Dh) k=D, h. Then D is a bounded operator such that

IDII;, = sup Y [Dih]*<oo

op =
1l gy(a) =1 kes,

and D, is skew adjoint operator on Hy(g) for all ke Hy(g).
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If T is a Hilbert space, we will say that /1 ¥ — T is a smooth cylinder
function if f has the form

=3 flg)x Vge,

i=1

where f;€ # C*(¥) and x,€ T. The set of smooth cylinder functions on ¥
with values in 7" will be denoted by # C* (%, T). The left invariant vector
fields 4 for he H(g) extend naturally to operators on & C*(%, T'), namely

()

d th
AR

DerFINITION 2.2 (Covariant Derivative). Let he Hy(g). Define V,, via:
1. if feFC(L), set V, f=hf.
2. If feFCH(ZL, Hyg)), set V,f=hf+D,f, where (D,f)(g)=
D,(f(g)).
3. If feFCP(L, Hyg)*), set V,f=h—D"f, where (D!f)(g)=

Di(f(g)) and D}: Hy(g)* — Hy(g)* is the transpose of the operator D,;
ie, Dil=1l-D, for e Hy(g)*.

DeriNITION 2.3 (Laplacian). For fe ZC™ (&) or fe FCP(ZL, Hy(g))
or feFCP(Y, Hy(g)*), the Laplacian of f is defined by

Af= Y Vif= Y ViVif) (2.1)
hesS, hesS,

The existence of the above sum is guaranteed by Proposition 4.19 of [6].
We now introduce the Ricci tensor on %, see Freed [ 10] and Driver and
Lohrenz [6] for more details and motivation. This tensor naturally
appears in all of the integration by parts formulas that we consider.

DerNITION 2.4 (Ricci Tensor). The Ricci tensor is the symmetric
quadratic form on H(g) defined by

Ric(h, k> = fjol jol Gola, 5) K<H'(s), K'(0))> dods  Yh, ke Hy(g), (2.2)

where Gy(o, s) =g A s —so and

K{B,Cy= > <ad,B,ad,C)y= —tr(adgzad.),

Aeg,
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for all B, Ceg. That is K is the negative of the Killing form on g. We will
also view Ric as a bounded symmetric linear operator on H,(g), explicitly
(Ric i, k) =Ric{h, k.

The following theorem summarizes the properties of the gradient
(defined in Eq. (1.15)), the Laplacian and the Ricci tensor that we will need
in the sequel.

THEOREM 2.5. Let fe #C (%), be given as in Eq. (1.7), then

Af(g)= Y. X G5 s)HADATF)(g(s)), ... g(s,)), (23)

Aegy L j=1
and
Vi)=Y Y (A"F)(g,) Golsi, ) 4, (2.4)
Aegy i=1

where for Aeg, A" is the left invariant vector-field on G" defined by

) d
(A(I)F)(gla'"a gn)Ei F(gla~"sgi719gie£A9gi+lsgn)' (25)

de|,

(As above, g, < g is an orthonormal basis of g.)
The Bochner Wietzenbock formula in this context is

([4,V] f) = AVf —VAf =Ric Vf. (2.6)

If H(g) is viewed as the subspace of constant functions in 7 C* (¥, Hy(g)),
then

(= _ 2
AV =4y = L D

kesS,

This sum is strongly convergent and A" is a bounded self-adjoint operator
on Hy(g).

Proof. See [6] Proposition 4.19 for Equation (2.3), Theorem 4.26 for
Eq.(2.6), and Lemma4.20 for the assertions concerning A4'Y. Equa-
tion (2.4) is easily checked using the definition of V£ in Eq. (1.15) and the
reproducing kernel property of G, see Eq.(3.11) in [6] or the discussion
preceding Eq. (3.3) below. Q.E.D.
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3. BROWNIAN MOTION ON LOOP GROUPS

Let Z(g)={xe C([0,1] > g | x(0)=x(1)=0} be the continuous based
loops in g. It is well known that (Hy(g), £(g)) is an abstract Wiener space
as introduced by Gross in [11]. As usual in the abstract Wiener space
setting, we have Z(g)* = Hy(g)* = H,(g) = Z£(g). Let us recall the explicit
description of Z(g)* in Hy(g)*.

To this end we will say, for he Hy(g), that i’ is of bounded variation if
there is a right continuous function (4) of bounded variation such that
h(s)=A(s) ae.. Let

HE"={heH,| I is of bounded variation}.

Now suppose that ke Hy(g), then by an integration by parts (see for
example Theorem 3.30 of [9])

(h, k) = fol CH(s), K'(s)) ars=j01 Cs), dik(s)> = — jﬂl Ck(s), di(s)>. (3.1)

In the future we will abuse notation and write [ <k(s), dh'(s)) for [ {k(s),
di(s)>.

LEMMA 3.1. For each he H{" and xe Z(g) let o,(x)=—[§ (x(s),
dh'(s)>. Then the map he H§" — o, e #(g)* is an isomorphism. Moreover
o, (k)= (h, k) for all ke Hy(g).

Proof. The last assertion of the Lemma clearly follows from (3.1). Now
suppose that o, =0 then 0=o,(k)=(h, k) for all ke Hy(g) which implies
that 7=0 in H,(g). Therefore &1 — a,, is injective.

Since Z(g)* = Hy(g)*, for ae ¥(g)* there exists he Hy(g) such that
a(k)=(h, k) for all ke Hy(g). Since Hy(g) is dense in #(g), if we can show
that he H§", it will follow that « =a,,. Hence the map /& — a,, is surjective.

Noting that #(g) is a closed subspace of C([0, 1], g), the Hahn-Banach
theorem asserts that « has an extension (&) to a bounded linear functional
on C([0, 1], g). By the Riesz theorem (e.g., Theorem 7.17 of [9]) there is
a g-valued measure x4 such that

a(x) = | <o) plds)y  ¥xeC([01]. )

Define A(s)=u([0,s])eg for se[0,1]. Then A is of bounded variation
and we have

a(x) = jol (x(s), di(s)>  Vxe Z(q).
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Restricting this last identity to k€ H(g) and then doing an integration by
parts shows that

j<h $)> ds=(h, k) =a(k j Ck(s), di(s)>

—[l Cs), K (s)) ds.

Since {k'eL*([0,1],8)|keHy(g)} is the orthogonal compliment of
the Constant functions in L*([0, 1], g) the above equation implies that
— [ A(s) ds a.e. This proves that he H " Q.E.D.

Notation 3.2. 1In the sequel, we will write (%, x) instead of o,(x) when
he HE” and xe Z(g)*.

3.1. Z(g)-Valued Brownian Motion

Let ¢ denote the smallest o-field on % such that all of the smooth
cylinder functions in & C*(%) are measurable. For the sequel, fix a filtered
probability space (¥, {Z,},~,, 7, P) and a #(g)-valued process { f(1)},-
on " with the following properties:

FcF,cF forall 0<r<r.

Z, is right continuous, i.e., =%, = ;=0 Zi4e»

Z, contains all of the null sets of F#

for all we ¥, the map te[0, o0) — f(t)(w)e L(g) is continuous.
B(t) is F /%-measurable for all 1 >0, and

S e S e

{p(1)},~ is a mean-zero Gaussian process with convariance,

ET(h, p(0))(k, p(t))] =1 A 2(h, k), (3:2)

where h, ke HZ” and t,7€ [0, ).
We say that such a process { (1)}, is a Z(g)-valued Brownian motion.

Remark 3.3. The existence of an .#(g)-valued Brownian motion f(¢) is
well known. In fact, it is known more generally that Brownian motions
exist on arbitrary abstract Wiener spaces. One possible construction is to
first use Kolomogorov’s existence theorem to construct a Brownian motion
B(1) satisfying all of the properties above except for the continuity. Then by
Fernique’s theorem (e.g., Theorem 3.1 of Kuo [15]) and scaling it can be
seen that Kolomogorov’s continuity criteria may be applied to yield a
version f(¢) of ﬁ(t) which is a holder continuous for all a € (0, 1/2).
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Suppose that A(s)=Gy(s,u) A where Aeg and as above G(s, u)=
s A u—su. Then for x e Z(g)

(h )= = [ <xto ' (5)> = = [ Cx(6), 4> {1,

= —fol Cxls), A (—3,(ds)) = (x(u), A,

where J, is the Dirac measure concentrated at u. Let k(s)=Gq(s, v) B.
Notice that (h, k)= <A, B) Gy(u, v).

Write f(¢, s) for the g-valued random variable determined by f(¢, s)(w)
= f(t)(w)(s). Using the previous paragraph and (3.2), for all 4, Be g and
t,7€[0, c0) with >,

E[<A, p(1,u)><B, f(z,v)) ]
=E[{<4, p(r,u)) + {4, B(t,v) = Bz, u) >} (B, B(z,v)> ]
= E[<4, p(z,u) ){B, (z, v))]
=< A, B) 1Gy(u, v)
=<{A4, B)(t A7) Gy(u, v). (3.3)
For each he Hy(g) and >0, let

(h, B(1)) = L?- lim (h,, B(1)),

n— oo

where {h,} = H§" and h, - h in H(g) as n — co. Then it is easily checked
that ¢t— (h, f(¢)) is a (not necessarily continuous) Brownian motion
with variance (4, h). Let B"(¢) denote a continuous version of (A, B(1)).
Such a version exists by Kolomogorov’s continuity criteria. Then " is a
Brownian motion with variance (4, #) on the filtered probability space
(W, {#}, Z, P). The next Lemma records the mutual quadratic variation
< p" B> for h, ke Hyg).

LemmA 3.4. For each h, ke Hy(g),
< B = (k) as.
Proof. Decompose h as h=ak+ j, where j Lk and (h, k)=ua(k, k).

Then " is indistinguishable from «f* + /. Since the pair {p/, f*} is a
Gaussian process and

E(p/(1) p(2)) =t A (). k) =0,
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it follows that 7 and B* are independent Brownian motions. Hence

<P P =a< Bl B+ <P B> =alk, k) t+0=(hk)r.  QED.
COROLLARY 3.5. Let u,ve[0,1] and A, Beg, then

<<A9 ﬁ(s u)>’ <B9 ﬂ(? U)>>[ =l<As B> GO(us U)' (34)

Proof. Take h=Gy(-,u) A and k=G,(-,u) B in Lemma 3.4 and use
(h, k) =< A, B) Go(u, v). Q.ED.

3.2. X(G)-Valued Brownian Motion

Notation 3.6. Given an %-valued process {Z(7)},., on ¥, let
2(t, s)(w)=2(t)(w)(s). In this way we will identify #-valued processes on
" with two parameter G-valued processes.

In preparation for proving the existence of a “Brownian Motion” on
ZL(G), we will introduce a metric on G.

DermNtTION 3.7.  The distance metric d: G x G — G is defined by
1
dg, h)=inf [ |'(s)| ds,
0

where the infimum is taken over all C'-paths ¢ in G such that ¢(0) = g and
o(1)=nh. Also set

gl =d(g,e) VgeG.
Notice that
d(xg, xh)=d(g, h)

for all g, h, x € G. Indeed, if ¢ is a curve joining g to 4, then xa(-) is a curve
joining xg to xA4 which has the same length as a. Set |g| =d(g, ¢) =d(e, g),
then because of the above displayed equation,

d(g, h)=1g~'h|=1h""gl.

Setting & = e in this equation shows that |g| =|g | for all g€ G.
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The next theorem is stated in Malliavin [17]. For the readers con-
venience we will supply a proof.

THEOREM 3.8 (Malliavin). Suppose that G is a compact Lie group and
{-,-> is an Adg invariant inner product on §. There exists a continuous
adapted process {2(t)},~, on the filtered probability space (W', {7} 0,
F, P) such that for each s€[0,1], X(-,s) solves the stochastic differential
equation:

2(ot, s)=2(t, s) p(ot, s) with  2(0, s) = go(s). (3.5)

More precisely, Eq. (3.5) is shorthand notation for the stochastic differential
equation

XSt s)= Y A(XZ(t,5)) Bt 5) with X0, 5)=g(s), (3.6)

where g, < g is an orthonormal basis of g, A is the left invariant vector field
on G such that A(e)= A, and p(t,s) = { A, (1, 5)>. Here B(t, s) denotes
the Stratonovich differential of the process t — B(t, s). In the sequel, we will
use “0” for Stratonovich differential and “d” for the differential of a semi-
martingale.

Before starting the proof of this theorem, let us recall the following easy
lemma.

LEMMA 3.9. Let M and N be two finite dimensional manifolds, { X;}"_
and { Y} 7_, be a collection of smooth vector fields on M and N respectively,
and b(t) = (b,(t), b,(1), ..., b,(1t)) (for t =0) be an R"-valued continuous semi-
martingale. (As usual b is defined on a filtered probability space satisfying
the usual hypothesis.) Suppose that x and y are semi-martingales on M and
N which satisfy the stochastic differential equations,

ox=> X;(x)éb; and  JSy=) Y,y)ob,

respectively. Then (x, y) is a M x N-valued semi-martingale satisfying the
stochastic differential equation

n

5()&', y) = Z (X/[(X, J/) + Yi(-xa y)) 6bi’
i=1
where X, and Y, are the smooth vector fields on M x N defined by X,(x, y) =
(X:(x),0,) and Yi(x,y)=(0,, Y:(y)). Here 0, and 0, denote the zero
tangent vectors in T, M and T, M respectively.
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Proof. Let z be the M x N-valued semi-martingale which solves the
stochastic differential equation,

oz=Y (X,(z)+ Y,(2))6b,  with z(0)=(x(0), ¥(0)).  (3.7)

1

e

1

To finish the proof it suffices to show that z=(x, y).

Define 7,: MxN—> M and 7,: M x N— N to be projections onto the
first and second factor of M x N respectively and z;==;(z). If fe C*(M)
then for, € C*(M x N). So by definition of z solving Eq. (3.7), we have

[(Xi(2)+ Yi(2))(fom1)] 0.

1

o(femi(z)) =

H.Ms

i

Now X;(z)(fem)=(n,Xi(2)) f=X,(z,) f and similarly Y(z)(f°7,)=
(7, Y.(z)) f=0. Therefore, the last displayed equation may be written as

SfE)= X 1X() /10b,

ie, z; 1s a semi-martingale on M solving the stochastic differential
equation,

oz, = z X,(z,) with z,(0) = x(0).

Since this is the same equation solved by x it follows by uniqueness of
solutions that z; =x. The same argument also shows that z, =y. That is
(x,y)=z. Q.E.D.

Proof of Theorem 3.8. For the purposes of the proof we will adopt the
following notation. If fe C*(G), let f' € C*(G, g*) be defined by

(&) Ay =df{A(g)>=—| flge)

da
dtl,
and let

Adgf= ), A%

Aeg
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We also start with the special case where g,(s)=e for all s€[0,1]. For
each se[0, 1], let Z°(-, s) be a solution to the stochastic differential equa-
tion in Eq. (3.5) (or equivalently Eq. (3.6)) with initial condition X'((0, s) =
go(s)=eeG. (For the existence of solutions to this equation see for
example [8, 13, 14].) In this way we construct a G-valued two parameter
process X°(¢, s). Our immediate goal is to show that there exists a con-
tinuous version (X(¢, s)) of this process.

For the moment, fix 1€ [0, co) and let u(t) =2z, s) ' X%zt s) for t > 1.
Then u(t) =ee G and u solves the stochastic differential equation,

ou(t)= LE“(r -1k z A ZS) ﬁA((Sl s)

Aeg

=Y AZ%t,s5)""' 2%, 5)) pAIt, $)

Aeg,

=Y A(u(t)) pA(t, s),

Aeg,

wherein we have used the left invariance of 4 along with Eq. (3.6). So if
f e C™(G) such that f(e) =0, then using Corollary 3.5 we find for all t>7
that

t

f(u(l))=f(u(f))+j Y. (Af)ul(r)) p(or, s)

T Adeg,

4 - 1 rt
=[ Y (AN pUdr s +5 [ Y (AL () Gols. ) dr

t - G . t
[ Ay g )+ 2 ) @

For any pe[2, o0) and ¢ >, it follows from Burkholder’s inequality that

t p/2
E A0 < €0 E [ 17t Gl o)

P

+C(N)E

[ destwr) Gots. s) dr

SCN{(t=0)" +(t—1)"}, (3.8)
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where C,(f) denotes a constant depending only on p and bounds on /" and

Agf. Let {f;}7_, = C*(G) be a suitable collection of functions such that
f:(e)=0 for all i and

sl=dg. <Y Ifie)  YgeG,

cf,, the Whitney imbedding theorem. This equation and Eq. (3.8) implies,
for all 1>t and all se[0, 1], that

E[d(X°(t,5), 2%, ) 1P =E | 2%z, 5) "' X0t 8)|7 = E |u(t)|?

<Cp{(l—f)”/2+(t—7:)”},

where C,=n?"V3" | C,f). So we have proven for all se[0, 1] and
t,7€[0, o0) that

E{d(X°%(t,5), 2°(t, 5))} ? < C,{ |t —1|"* + |t — 1| 7}. (3.9)

Now fix 5, 6€[0,1], and set u(t) =21, 5) 2°t, )~ ". In the case that
G is a matrix group, we may compute du(¢) to find

du(t) = X1, ){ B(St, 5) — P(Jt, &)} X°(t, 7) "
= u(t) B(Jt),

where

B(1)= L Adso 1 B(0T, 5) = p(OT, 0)}. (3.10)

To prove the analogous formula in the general case we will use
Lemma 3.9. To this end let fe C*(G) and F(g, k)= f(gk™"') so that
fu(t)) =F(2°4, s), 2°t, o). For A eg, we have

d
de

d
f(gk—]kegAk—l):i f(gk—legAdkA)

Fge*, k) =—
(g ) . |,

o de
=((Ad ) f)(gk™")

and, by essentially the same computation,

Flg, ke") = —((Ad A) f)(gh ).

0

de




LOOP GROUP QUASI-INVARIANCE 487

therefore,

dl f(u(0))1=Y (Adso, »A) ) u(1)-(B4(3t, 5) — (01, 7))

Aeg

= Y (Adso A, CO(Cf)u(1))- < B3t 5)— f(0t, 0), 4>

A, Ceg

= ¥ (CNu(1) - {Adso,, o f(3t, 5) = B(0t, 0)), C>

Ceg,

= ¥ (C)u(1) 0B(1),

Ceq

where B is the process defined in Eq. (3.10).
We now claim that B may be expressed as

t
=L Adyo, o Bl 5)— Bldz, 0)}. (3.11)
The main point here is that

d(Adso, )= Y (AAd. . )(Z°(t, a)) 5Bt 0)

Aeg

=Y Adso, ,ad, 5B, 0).

Aeg

Using this equation we find
(1)= | Adsu o) Plde. 5) = plae. o)}

5j S Adso, o ad { fldz, s)— B(dr, o)} pA(dr, o)

0 Aeg,

from which Eq. (3.11) follows because

Y ad {p(dr, s)— pde, 0)} p(de, o)

Aeg

= Z adAC'dr<{ﬁC(‘ss)_ﬁC('9O-)}’ﬁA("J)>r

A, Ce 9

= Y ad,A-(Gy(s,0)— G0, 0)) dt =0.

Aeg,
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Since Ad,:g— g acts isometrically for all ge G, we conclude from
Eq. (3.11) that B(¢) is again a Brownian motion with the same covariance
as the Brownian motion ¢t — f(t, s) — (¢, o). This covariance is

E{(P(t,5) = B(1, 0)) @ (B(t, s) = B(t, o))} =tF(s,0) I,
where .4 = ZAGG A® Aeg®gand F(s, a) =Gy(s, s)+ Gyla, a) —2G (s, 7).
Notice for each fixed o e [0, 1] that s —» F(s, o) is a piecewise C'-function
such that F(o, 0) =0 and
|OF(s, 0)/0s| =1 —25s—2(1,.,—0)| <4
Therefore

F(s,0)<4|s—o0], Vs,ae[0,1].

By computatlons similar to those which lead to Eq. (3.8), if fe C*(G)
and f(e) =0, then

E o) < £ 4[| 17wt s a)dr}”/z

P

+CEU Agf(u(?)) (s, 0) de

<C

WOL(EEs, )72 + (tF(s, 0))"},

where C,(f) denotes a constant depending only on p and the bounds on
f" and 4. f as above. As in the proof of Eq. (3.9), we may conclude

E{d(X°(t,5), 2%t,0))} P =E 2%, 5) ' 2, 0)|” = E |u(t)|”
< C{(tF(s, 0))" + (1F(s, 0))"}
<C(tls—a)”?+(t|s—al)"}, (3.12)

where C, is a constant only depending on p and the compact group G.
The triangle inequality and the estimates in (3.9) and (3.12) yields

E{d(2°(t, 5), 27, 0))} ”
SCltls—al”?+(tls—al)’ + |t —1|”?+|t—1|"},

where C, is a constant dependig only on p and the compact group G.
Consequently, for each Te(0, o), there is a constant C,(T') such that

E{d(X°(1,5), 2%, 0))} " < C(T){|s —a| "+ |t — 1|77},
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for all 5,0€[0,1] and #,7€[0, T]. Hence, by Kolmogorov’s continuity
criteria (see for example Theorem 1.4.4 of Kunita [14] and Theorem 53,
Chapter4 of Protter [22]) there is a continuous version (X(t,s)) of
X°(t, s) such that for all e (0, 1/2) there exists a positive random variable
(Kj4) on " such that

d(2(1,5), 21, 0)) <Kg{ [t —1|" +|s—a]’}  as. (3.13)

Furthermore, EK% < co for all pe(1, o). Since, for each se [0, 1], 2(-, s)
is a version of X°(-, s), it follows that X satisfies all the hypothesis of the
theorem when g(s) =e.

For the general case let 2 be as in the special case just proved and define
2(t,5)=go(s) X(t,s). Then {X(¢)},., is a continuous adapted #-valued
process satisfying the differential equation in Eq. (3.5). Q.E.D.

3.3. Generator of the Process X

The next theorem shows that the #(G)-valued process X(z) constructed
above satisfies the standard martingale criteria of a Brownian motion. For
this reason X(¢) deserves to be called an #(G)-valued Brownian motion.

THEOREM 3.10. Let ?={0<s,<s,<--- <s,<l} be a partition on
[0, 1], GZ be the set of functions from P to G, X(t) be the & -valued process
in Theorem 3.8 and - [0, T]1x ¥ — R be a function of the form f(t, g) =
F(t,g,). Assume that F:[0,T]xG”—>R is a continuous function
satisfying:

L. Fl.7)xg» is smooth and

2. The derivatives of F| 1y .g» up to second order extend to
continuous functions on [0, T] x G7.

Then

0o 1

7t 20 = 0. 20) + M+ [[ (5454 ) ) ) (2t e

where M, is the martingale:

M=% % [ AR 20 5, A

i=1 Aeg

= [ (e s, .
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Proof. Set
2 (1) =(2(1),) = (2(1, 51), ..., 2(1, 5,))-

Then, by Lemma 3.9, X ,(7)eG" satisfies the stochastic differential
equation

=73 Y ADZU)POL,s;), 4D, (3.14)

i=1 Aeg

where for 4 eg, A is defined in Eq. (2.5).
Equations (3.4) and (2.3) allows us to compute, using Itd’s lemma in
finite dimensions, the differential of f(z, 2(¢)) as

dl f(1, 2(1))]

1))/0t + Z Y (AVF)(t, 2 (1) p(dt, s;), A)

i=1 Aeg

=0of(t, 2(1)jor+ 3, Y (AVF)(t, 2 (1)< Bldt s;), 4)

i=1 Aeg,

n

SEDIED) i Y (BYAVF)(t, 2 (1)< Bldt, s,), ADL Bldt, s,), BY

i=1 Adegy, j=1 Beg,

—dM, +0f (1, X(1)))ot + 4 Z > Z (AVADVF)(t, Z (1)) Go(s;, 5,) dt

i=1 Adegy j=1

=dM,+f(t, 2(1)))ot + 3(Af)(t, 2(1)) dt

In the above computation we have used < B(z, s), 4> = %) 4(¢1), see the
proof of Corollary 3.5, and Eq. (2.4) to conclude that

n

Y Y (AVF)1 E,(0) fldr,s,). Ay = (Vf(t. (1)) df(r).  QED.

i=1 Aeg,

Notation 3.11. For definiteness, in the remainder of this paper let
{2(1)},~0 denote the #(G) valued process constructed in Theorem 3.8
with go(s)=e for all se[0, 1].
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By the proof of Theorem 3.10, if Fe C*(G?”) then

(2(1)) Z 2 (AVF) (X, (0)< Bt 5), 4D

i=1 Aeg,
+3 2 Z (AVADF)NZ (1) Gols;s ;) dt.
Aegy i, j=1

Thus X ,(¢) is a diffusion process on G 7 with generator

S=3 Y Z Go(s;,8) AV AY. (3.15)

Aegy i,j=1

LEMMA 3.12. Let Z2={0<s,<s,<--- <s,<l} be a partition of
[0, 1], then the matrix {G(s,, s;)} " j—1 Is positive definite. In particular 4,
is a second order elliptic differential operator on G?.

Proof. Let Hy(R) be the set of absolutely continuous functions
[:10,1] > R such that [(1)=/(0)=0 and (L /) Es(l) (I'(s))? ds < 0. Choose
an orthonormal basis ) of Hy(R). Then by Lemma 3.8 of [6], Gy(s, o) =
ey l(s) (o) with the sum being absolutely convergent therefore, if

f = (61’ 627 sees én) € Rn’

n—1 n—1

Y Golsns)EE= Y Y Ms)ls) Z[Zl ”TZO

iLj=1 i,j=1 lebh leh

with equality iff >7= i(s;) &,;=0 for all /el. Since b is an orthonormal
basis for Hy(R) and the map /e Hy(R)— [(s) e R is a continuous linear
functional, the condition Y7~ /(s;) ;=0 for all /el, is equivalent to
S (s;) E;=0 for all Ie Hy(R). Choosing /€ H,(R) such that / is nonzero
on exactly one of the partition points in £ allows us to conclude that

1o Golsi, s;) E,&,=0iff E=0. Q.E.D.

ihj=1
Before ending this section let us record a slight extension of

Theorem 3.10 which will be needed in the sequel. (The proof will be left to
the reader.) We will first need the following definition.

DEerFINITION 3.13. Given a Hilbert space 7T, let V° denote the “flat”
covariant derivative on ZC*(%,T) defined by Vif =hf for all fe
FC®(L, T) and he Hy(g). Let A4° denote the “flat” Laplacian on
FC* (&, T) defined by

A=Y (V) f=Y I

hesS, hes,
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THEOREM 3.14. Suppose that T is a Hilbert space and f:[0, T] x
L(G)->T is a function of the form f=3"_, f;&; where f;:[0,T]x
L(G)— T are functions satisfying the assumptions in Theorem 3.10 and
EeT fori=1,2,..,n Then

0

1
At 200 = (Vo NN+ ((545.4°) 1) (1 S e 6

4. INTEGRATION BY PARTS ON THE PATH SPACE OF ¥#(G)

In this section, integration by parts formulas on the path space of the
loop group are derived. As a corollary we will show that the pre-Dirichlet
form introduced in Driver and Lohrenz [6] is closable. Before doing this
however, it is first necessary to discuss parallel translation (//,) along the
Brownian motion X(¢). Pretending for the moment that #(G) is a finite
dimensional Lie group, //, ko= Ly, k(t), where k(¢) is the solution to the
stochastic differential equation,

dk(t) + Dsp k(1) =0 with k(0)=k,, (4.1)

where Jf denotes the Stratonovich differential of . For motivation, see
Theorem 6.3 in [5]. Formally, writting “f =3, s, p'h,>

D()‘/jk:Dd/jk'i'%Dd/; dk:Dd/jk— %Dd/ﬁ Dd/jk

=Dyk—5% Y D,D,kdt

hesS,

=Dk —35 Ak dr.
Hence we should interpret Eq. (4.1) as the 1td equation,
dic(1) = — D g k(1) + 5 A Vk(1) dt with  k(0) =k,. (4.2)
See the Appendix (Section 8) for a review of the It6 integral in this context.

4.1. Parallel Translation

THEOREM 4.1 (Parallel Translation). For each ky,e Hy(g), there exists a
unique solution to Eq.(4.2). Moreover if hye Hy(g) and h is the solution to
Eq. (4.2) with k and k replaced by h and h, respectively, then for all t >0,
(h(2), k(t)) = (hy, ko) alomost surely.
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Proof. Eq.(4.2) may be solved using the usual Picard iterates scheme.
Recall that 4’ =41,  is a bounded operator and notice that

2 t
=E[ Y IDkI?de<|DI3

op
0 hesS,

E f &[> de

L) Dﬁ(dr)k(f)

when {k(7)},-, is a continuous adapted H,(g)-valued process such that
E [ |Ik||> dr < .

To simplify notation, if f'is a possibly random function on [0, c0) taking
values in a normed space 7, let f*(7) =sup{|f(7)]: 0<t<¢}. If

k()= ko [ Dyaeky 1(0)+3 [ 4V, () d, (43)

then
k) =k (1) = = | D2 =k, ()
F1] A0k, (7))
Hence using Burkholder’s inequality
. *2
E(kn+1 _kn)>X<2 (t) <2E <J‘0 Dﬁ(dr)(kn(f) _knl(T))> (l)
1AV, [ Bk, — k1) () dr
<4IDIZ, | Elk(0) K, 1 (0)] de
3 1412, [ B, =k )* (7) e
<4IDI2, | Ek,~k,_)* (x) de
0
3 14012, [ B~k )* (7)o

< HDHip |A(l)|op>J (kn_knfl)*2 (T) dr.
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Fix T>0 and let K= (4|D|2, + (T/2) [4V|%,), and f,(1) =
E(k,—k, ,)**(t). Then for 0<t<T,

S <K [ 7)o

which implies after iteration that

rin<Fr par

Thus > o fHT)<f&T) -exp(K;T), from which we learn that k,(¢) is
L*-uniformly convergent for 7 in compact subsets of [0, c0) to a continuous
process, say k(¢). Passing to the limit in Eq. (4.3) shows that k solves,

Ky =ko— | Dyak(e) | 4k(x) de. (4.4)

Let k be as above and A(¢) be a solution to Eq. (4.2) (or equivalently
(4.4)) with h(0)=h, and set F,I=—D,h(t) and G,I=—D,k(t) for all
le Hy(g). Then

dh(t)=F,df(t)+ 5 AVh(z) dt
and
dk(t)= G, dp(t) + 1 AVk(¢) dr.
Therefore by 1t&’s Lemma, see Theorem 8.5 of the Appendix,
d(h(t), k(1)) = (FFk(1), df(t)) + 3(4Vh(1) dt, k(1))
+(GFh(), dp(t)) + 3(h(t), A Vk(2) dt)

+(F,, G,) ysdt,

where, for all u,ve HS(Hy(g))= Hy(g)* ® Hy(g) (the Hilbert Schmidt
operators on Hy(g)) and

(,0)ys= Y. (uh, vh). (4.5)

hesS,
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For all /e Hy(g),

(F7k(0), 1) + (GFh(1), I) = (k(1), F,1) + (h(2), G, 1)

(k(1), =D(1)) + (h(1), —D;k(1)) =0,

since D, is skew adjoint. Also

(FtsGr)HS: z (Ftla th): Z (D/h(t), D/k(t))

le S, le S,

=Y (h(t), =D7k(1)) = —(h(t), AVk(1)).

le S,

Combining the last four equations and using 4" is self-adjoint shows that
d(h(t), k(1)) =0. Q.E.D.

DerFINITION 4.2. Let O(Hy(g)) be the group of unitary operators on
H,(g) and U(r) be the O(H(g))-valued process defined by

Ut)ho= ). (ko, ho) k(1) for all hoe Hy(g), (4.6)
kye S,

where for each k,€ S,, k() is the solution to (4.2) with k(0) =k,.

LemMa 4.3. Suppose that hye Hy(g) and h(t) = U(t) hy, then h is a solu-
tion to (4.2) with h(0) =h,. Moreover, t — U(t) is a.s. strongly continuous.

Proof. Let {S,} be an increasing sequence of finite subsets of S, such
that (J S,,=S,. Set

H ()=}, (ko ho) k(2),
kg€ S,

so that

2

I(U(2) ho — H,,(1)|]* =

Y. (ko ho) k(1)

kye SH\S,

= Z |(k09h0)|2

ke SO\S,,

which tends to zero uniformly in ¢z as n— oo. This shows that U(z) i, is
continuous, i.e., U(?) is strongly continuous.
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Let () denote the solution to (4.2) with 4(0) =h,. In order to prove
that U(t) h, solves Eq.(4.2) with initial condition #,, it suffices to show
that U(t) hy=h(t) or equivalently that

lim E | H,(t)—h(1)]>=0.

n— oo

Now it is clear that H, solves (4.2) with initial condition #/,=
Ykes, (Ko, ho) ko. Therefore we have

t
h(t) — H,(t) = (hy—h,) — fo D g 4ey(h(7) — H (7))
3[40 h(x) — B, () .
0
from which it follows that

E|H,(t)—h(1)]*<3 I\(ho—h,,)\|2+3EJol Y. IDi(h(z) — H,(1))|* de
le S,

2
+3E

[ 14 he) — ) e

<3 [[(ho—h,) |1+ 3(IDII3, + 14717 1/2)

<[ B 1) ,2)) P d.

It now follows by Gronwall’s Lemma that E | H, () —h(t)|*>— 0 as n — co.
Q.E.D.

THEOREM 4.4. Suppose that h: [0, oo)x W — Hy(g) is a progressively
measurable process, ie., }i|[0ﬂX s s B([0,1])® F,/%B(Hy(g))-measurable
for all te (0, o0). (Here A([0, t]) and B(H,(g)) are the Borel g-algebras on
[0, t] and Hy(g) respectively.) Also assume that

E{j |h(r)|2df}<oo V>0 (4.7)

and set h(t) = f(’) ﬁ(‘c_) dt. Hence h is almost surely absolutely continuous with
derivative given by h(t). Then

d(U(t) h(1)) = =D 45, (U(1) h(1)) + 5 AV (U(t) h(1)) dt + U(t) h(t)dt (4.8)
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or equivalently, because h(0) =0,

UG0) h(1) = = [/ Dy Ule) b)) + | $2(U(e) b)) di

+ f U(t) h(z) dx. (4.9)

Proof.  Let us first assume there is a constant M < oo such that almost
surely, SUP,cpo, o) [A(1)] g S M. Let m={0=1o<t; <t,<--- <t,=1}
= [0,¢] be a partition of [0,¢] and |z|=max{|t;,,—1;]:i€{0, 1,2, ..,

n—1}}. Fort=t,enlet 1+ =1, 4, Then

U(t) h(1)—h(0)= Y, {U(z+) h(t+)— U(z) h(7)}

TET

= Y (Ult+) = U(1)) h(z) + ). Ult)(h(z+) —h(z))

TET TET

+ Y (Ult+) = U(x)(h(z+) — h(7))

TET

= A, +B,+C,.

For &e(r,7+ 1], let h(&)=h(t), and U, (&)=Ur), 6,(&)=(Uz+)—
U(7)). With this notation we have

A= —L Dy (U(S) ho(£)) + L FAD(U(E) h(&)) dé,

B, = U&)ie) de.
0

and
Co= [ 6,8 &) d.
0
If
A= —L' D g5 (Ulz) h(7)) + Lt 3 4V(U(z) h()) dr
and

B= Jl U(z) h(z) dr,



498 BRUCE K. DRIVER

then

ElA—AP<2E[ Y ID(UE)AE) (&) de

0/es,

#26( [ 114U (@) &

<2UD13, E [ IhE) = (&) de+2 4"

op

< ([ o) haer dc )

which tends to zero as |z| — 0 by the Dominated convergence theorem.
Similarly

1B B, <[ 1(U&) = U(&) h()] de.

Therefore, the strong continuity of U and the dominated convergence
theorem implies that B— B, as |n| — 0 a.s. Finally the estimate

1< [ 168 HE

the strong continuity of U, and the dominated convergence theorem
implies that lim, _,, C,=0. This proves Eq.(4.9) in the case that B is
bounded.

For the general case, let /(1) = I[O,n](l\ﬁ(r)H) h(z) and

)= [ LoV fice) de.

Since ||h,(1)| <n, we know that Eq. (4.9) holds with A replaced by 4,, ie.,
V) 1) = = Do U) hyf2)) 4 | $40(U) hy(2)) de

+ f U(z) (1) d. (4.10)
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By the Dominated convergence theorem,

[ 1) = b2 de = [ 1= 140U DI? TR de =0
as. n— oo. (4.11)

We also have the Sobolev estimate,
4 . . 2
o) =002 < ([ o) (o)1 i |
<zf () — ()12 de. (4.12)
0

Using equations (4.11), (4.12), the facts that 4" is bounded and U(¢) is
unitary, and the L*-isometry property of the 1td integral, it is easy to let
n— oo in Eq. (4.10) to conclude that Eq. (4.9) holds for this general / as
well. Q.E.D.

4.2. Inegration by Parts
LEeMMA 4.5. Let Ge FC* (¥, Hy(g)) and ke Hy(g), then
31 (4G(g), k) =3{(4°G(g), k) + (G(g), 4Vk)} — (V°G(g), Dk) s,

where (-, ) ys IS defined in Eq. (4.5), A in Definition 2.3, A, in Definition 3.13
and A" = A|H<q) in Theorem 2.5.

Proof. Using the skew symmetry properties of D, we find

(4G(g), k)= Y, (V;Glg), k)= Y. ((h+D,)* G(g), k)

hesS, hesS,
=(4°G(g), k)+2 Y (D,hG(g),k)+ Y (D}G(g), k)
hesS, hesS,
=(4°G(g). k) =2 ). (V;G(g), D,k)+ ) (G(g), Dyk)
hesS, hesS,

=(4°G(g), k) —2(V°G(g), Dk) ys+(G(g), 4Vk).  Q.E.D.

Notation 4.6. Suppose that fe FC*(¥) of the form f(g)=F(g,),
where 2 is a partition of [0,1] and F: G” —» R is a smooth function.
Define (e"*f): £(G)— R by

(e"f)(g) = (e"**F)(g ,), (4.13)

where 4, is defined in Eq. (3.15) above.
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Since 4, is the generator of X' ,(-), we could also write Eq. (4.13) as

(e"Pf)(g) = E[F(g ,2 ,(1))]1=E[ f(gX(1)], (4.14)

where 2 solves Eq. (3.5) with X(0, s)=e for all se [0, 1]. It should also be
noted that

1
(4,¢ " 2F)(g,) =5 (4“7 )(g)

a(e"f)(g)
ot

I\J\'—‘

where we have used Egs. (2.3) and (3.15) to conclude that

(4,eF)(g ) = (4e""°f)(g). (4.15)

ProrosiTiON 4.7. Let he H(Hy(g)), fe FC*(¥), and T>0. Set F,=
e T=DA2E then

d(VEZ(1)), U(t) h(1)) = ((V g0 VF )(Z(2)), U(2) h(1))
+(VF(2(1)), U(t) h(t) + 1 Ric U(t) h(1)) dt

_Proof. By 1Itd’s Lemma, Theorem 3.14 above and the equalities
OVF,/0t =VAF,/2 and OF,/0t = AF,/2, we have

d(VF(2(1))) = (V55 VE)(Z(1)) + L(A°VF( (1)) — VAF (X(1))) dt.

Using this equation, Theorem 4.4 and Itd’s Lemma (see Theorem 3.14
above and Theorem 8.5 in the Appendix),

d(VF(Z(1)), U(t) h(1))
= (Vi VE (1)) + 2(4° VF(£(1)) =V AF (X(1))) dt, U(2) h(1))
+ (VF(Z(1)), =D gy U(1) h(1)) + 5 ACU(2) (1)) dt + U(t) h(2) di)
+(VOVF(Z(1)), —D(U(1) h(1))) s di.

The above expression may be simplified using V=V°+ D and Lemma 4.5
above to get

—

d(VF(X(1)), U(?) k(1)) = (VdB(1) VF,)(Z(1)), U(t) h(1))
+(VF(2(1)), U() k(1)) dt
+1((4 VF, =V AF)(2(1)), U(1) h(1)) dt.
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This equation and the Bochner Wietzenbock Formula in Eq. (2.6) proves
the proposition. Q.E.D.

Notation 4.8. For each unitary map U: Hy(g) — Hy(g), let Ric,=
U ' Ric U, where Ric is defined in Eq. (2.2).

COROLLARY 4.9. Continuing the notation from Proposition 4.7,

—

VST, OT) M) =E [ (VE(Z(0), Uy HO
where
H(z)zh(t)+§£ Ricy,., h(z) dr. (4.16)
Proof. By Proposition 4.7 and the assumption that 4(0) =0,

(VAT UTY D) = [ (Vo VENZ(0), U1 hi0)

The proof is completed by taking expectations of both sides of this
equation. Q.E.D.

We now may state the first version of the main theorem of this section.

THEOREM 4.10 (Integration by Parts I). For each he H(Hy(g)) and
feF7CH(L),

EL(V/(X(T)), UT) (T))] = ELA(Z(T)) z ()],

where

z7(h)

[ (00 Gitry + 4 Ric o)), o)

jT(U(z) hi(t) + L Ric U(1) (1), dB(t)). (4.17)
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Proof. Let H be defined as in Eq. (4.16). Then using the L>-isometry
property of the It6 integral and 1t&’s lemma (Theorem 3.10) we find

E[f(2(T)) z7(h)]

wherein the last equality we have used Corollary 4.9. Q.E.D.

DEFINITION 4.11.  For each he H(H(g)) let X" denote the vector-filed on
W(L(G)) defined by

X(Z) =L, U(1) h(2).

THEOREM 4.12 (Integration by Parts II). For each he H(H,(g)) and
feFCH(WML)),

E[(X"f)(2)]=ELA(Z(T)) zr ()], (4.18)
where X'f is defined in Eq. (1.12) and z(h) is defined in Eq.(4.17).

Proof. Write f(X)=F(X) where 2= (2(t,), ... 2(1;)), 0<1t, <t,<
<t,, and F: £* - R is a smooth cylinder function. That is

(g, 8)=F((g) s (81),)  Vg€Z,

where #={0<s,<s,<--- <s,<l} is partition of [0,1] and Fe
C*(G*"). We will prove the theorem by induction on k. The case k=1 is
the content of Theorem 4.10. Suppose k> 1 and the theorem is true when
there are k —1 ¢,’s. The induction step will be completed by showing that
Eq. (4.18) holds for f(X) = F(X) described above.

For he Hy(g), let A'F denote the action of /2 on the ith variable of F,
ie.,

- d
(hOF)(Z) = 2| FUE@), .. 2(5) e, ., X(1y))  Vhe Ho(g).
0
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Also let

ADVF=Y (WD) F

hesS,

and (V?F)(Z) denote the gradient of F in the ith variable, ie., (VF)(X)
is the unique element of Hy(g) such that

(VOF)Z), )= (ROF)E)  Vhe Hylg).

Then
EXCNE) = Y E(VOFE), Ue) )+ E(VOF)E), Ulty) hty))

= S+T (4.19)

Let GE(Z(ll)r ey E(Zkfl))y u= Zkfls v= lks 551‘/(_11(715 and Fl(o-9 g)
= (e~ "41Y2F)(g, g). Then by Proposition 4.7 and Corollary 4.9,

T=E| (VOF )0, S(u)). Ulu) h(u j d(VOF (g, 2(1)), U(t) h(t))}

E| (V4R 2, U h) + | (FF o, 200, U0 ‘(r))dr]

=E ((V””F )(a, 2(u)), Ulu) h(u))

+ [ (W), 20, dptoy)- | () (), dﬂ(m] .

u u

By Theorem 3.14,

| ((V9F )@, 2(1)), dB(1) = F, (0, 2(0)) ~ F,(6, Z(w))

u

=F(Z)—F (0, 2(u)).

Since v— |4 (U(t) H(t), df(t)) is a Martingale,

ELF (o, () [ (U(1) (1), df(1))] =

u
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Combining the three above displayed equations gives

7= £ {(VF,)a. S, Vo) )+ FE)- [ (000 B0 dpto) | (420)

u

Using the Markov property, S may be written as
k—1 o
S= 3 E(VYF,) (g, Z(u)), Ut,) h(t,)). (4.21)
i=1
Set V(X)=F,0,2(u)) so that Ve #C*(W(¥)), and notice that
k—1

(X'V)(2)= Y (VOF,)(a, £(u)), U1,) k(1)

i=1

+ ((VOF,)(a, Z(u)), Uu) h(u)). (4.22)

Therefore, by Equations (4.20-4.22),

S+T=E {(X”V)(Z) +FAZ). j (U(t) H(2), d/)’(z))}

u

=E{V(2) |, o . apoy+ £ [ v fo), dﬂ(z))},

u

wherein the second equality we have used the induction hypothesis. Using
the Markov property once again,

E{V(z) J, (o) Hi, dﬂ(z))} —E {Fu(a, () [ (Ut Ao dﬁ(z))}
=E{F(a, () [ (o) Ao dﬁ(z))}

= £ R [ W oo

The Theorem now follows from the last two equations and (4.19). Q.E.D.

4.3. Closability of the Dirichlet Form

Recall that v is the Law of 2= X(T'), where 2 is the Brownian motion
on ¥ constructed in Theorem 3.8 with 2(0, s)=e for all se[0, 1].
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DErFINITION 4.13. Let &9 denote the symmetric quadratic form on
L*(Z(G), v;) with domain (&%) =7 C*(¥) and for u,ve FC* (L),

—

&% (u,v) = j% (Vu(g). Vo(2)) 1) Vr(dg) = EL(VU(Z 1), VB(Z 1)) 1]

THEOREM 4.14. The quadratic form &Y. is closable.

Proof. To simplify notation, let &%.(f)=&%(f, f). Suppose that f, e
FC*(Z) such that lim,, , , f,=0 in L*(v;) and

ENf—f)—>0 as mon— . (4.23)

We must show that lim, _, &9%.(f,)=0. Because of (4.23) the functions
G,= Vf,,e./C*(g H(g)) form a Cauchy sequence in L*ZL(G), vy;
Hy(g)). Hence there exists GeL*(%#(G),vs; Ho(g)) such that L>—
lim G, =G. Since

n— oo

E9f) =] G dvr=E G (Z)I2,
2(G)
it follows that lim,_ , &%(f,)=FE |G(Z;)|* So to finish the proof it
suffices to show that G(2';) =0 a.s.
To this end let he Hy(g), Qe Z C*(W(Z)), and set k(t) =(¢/T) h. Then
ke H(Hy(g)) and using the integration by parts Theorem 4.10 we find
E{(G(X(T)), U(T) h) Q(2)} = lim E{(V/,(Z(T)), UT)k(T)) Q(2)}

n— oo

= lim E{(X"f,(X7) Q(2)}

n— 0o

— tim E{/,(Z)(~X* +2,(k) O(2)} =0,
Because # C*(W(%)) is dense in LA W(%), v) and because Q € # C*(W( L))
was arbitrary, the last displayed equation implies (G(X ), U(T) h)=0 a.s.
Hence

IGEZA)I?= Y (G(Z7), UT)h)*=0  as,

hes,
Le., G(X ;) =0 as. Q.E.D.

Remark 4.15. Theorem 4.14 may be stated equivalently as saying that
the gradient operator V with domain Z#C *(&) has a densely defined L>-
adjoint. However, the method of proof does not give any explicit informa-
tion as to what is in the domain in L*(%, v;; Hy(g)) of the adjoint
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operator V*. This deficiency will be remedied in Theorem 6.2 of Section 6
below where it is shown that & C* (%, Hy(g)) = 2(V*).

5. THE FINITE DIMENSIONAL APPROXIMATIONS

5.1. Finite Dimensional Integration by Parts Formula

In this section let Z?={0<s,<s,<--- <s5,<1} be a partition of
[0, 1]. In order to prove Theorem 1.5 above, we will apply Corollary 6.5 of
Driver [5] to the Lie group G and then pass to the limit of finer and finer
partitions £. In order to carry out this procedure it is necessary to
introduce the unique Riemannian metric, (-, -),, on G” for which 4, in
Eq. (3.15) will become the Laplace Beltrami operator on (G7, (-, -),,).

Let g7 be the Lie algebra of G? which may naturally be identified with
the set of functions from £ to g. In the sequel, 4 and k will typically denote
elements of g7 or Hy(g).

PROPOSITION 5.1 (Metric on G”). Let 2 ={0<s,<s,< --+ <s5,<1}
be a partition of [0, 1], and Q be the inverse to the matrix {G(s,, s;)} et
and

(hK),= ¥ 0,Chs)kls)>  forall hkeg”

Lj=1

We extend (-,-)., to a left invariant Riemannian metric on G” which will
still be denoted by (-, -),. Then the elliptic differential operator A, defined
in (3.15) is the Laplace Beltrami operator on G” with metric (-,-) .

Proof. 1t is an exercise in linear algebra to check that 4, may be
written as A”=Z,,Er7z2, where I is an orthonormal basis of (g7, (-,-),)
and 7 denotes the unique left invariant vector field on G such that h(e)
= h. It is well known that 3, * is the Laplace-Beltrami operator on G”
because G” is compact and hence uni-modular, see for example

Remark 2.2 in Driver and Gross [ 7]. Q.E.D.

Notation 5.2. Let f,(t) be the standard Brownian motion on
(gyn ('9 )%) given by ﬂy(l):(ﬁ(la Sl)a ﬂ(ln S2)7 ooy ﬁ(ly Sn))) and Vg/) and
Ric, be the Levi-Civita covariant derivative and the Ricci tensor on
(G”?,(-,-),) respectively. For all h,keg”, define D/ k=(VZk)(e) with
ee G” being the identity element. Also define U, to the solution to the
Stratonovich differential equation,

dU () + Dg"}fy(r) U,(t)=0 with U_(0)=1¢€ End(g,).
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The operators D and Ric,, are computed explicitly in Proposition 5.7
and Eq. (5.9) below. We now may state a finite dimensional verion of
Theorem 1.5. Q.E.D.

THEOREM 5.3. Let T>0 and I: [0, T] - R be an absolutely continuous
function mch that 1(0)=0, (T )—1 and so (t) dt < oo. Suppose that
feFCP(L) is of the form f(g)=F(g,) where Fe C*(G”) and P =
{0<s, <s2 c<s,<l}isa partmon of [0, 1]. Then for all he Hy(g),

EL(Rf)(2(T))] = E[f(Z(T))(Uy(T)“h%

[ usiodo - o Rie,) di |, )

where h,=h|, and dﬁ » denotes the backwards Ité differential.

Proof. By Proposition 5.1 and the dicussion leading up to Eq. (3.15),
X, and B, are Brownian motions on G” and g” respectively which are
related to each other by Eq.3.14. Using this remark and the identities,
SE(T))=H2Z (1) and (Af)(2(T)) = (h,F)(2 (1)), Eq.(5.1) follows as
an application of Corollary 6.5 in [5]. Q.E.D.

The proof of Theorem 1.5 will be given in Section 6 by passing to the
limit of finer and finer partitions 2 of [0, 1] in Eq. (5.1). In order to take
this limit it is necessary to understand the geometry on G7 and its rela-
tionship to the geometry on #(G). This is the topic of the next subsection.

5.2. Geometry of the Finite Dimensional Approximations

To facilitate our computations, it will be convenient to identify g” with
the orthogonal compliment to the null space, nul(A,)c Hy(g), where
A, Hy(g) > g” is defined by A _,(h)=h|,. The next lemma shows that

nul(4,)* = H ,(g) = {he Hy(g) n CX((0, 1\Z, g): k" =0 on [0, 11\2}.

(Notice that he H ,(g) iff he Hy(g) and £ is piecewise linear.) The following
notation will be used in the next lemma and the remainder of this section.

Notation 54. Given a partition 2 ={0<s, <s,< --- <s,<1} of [0, 1]
and he Hy(g), for i=0,1,2, ..,n, let 6,h=h(s;,,)—h(s;) and §,=s,,,—;
where so=0 and s, ., =1.

LEMMA 5.5.  The orthogonal compliment H (g)" of H(g) in Hy(g) is

H,(g) =nul(4,)={heHyg): h|,=0}.
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Proof. Suppose that he Hy(g) and k€ H ,(g), then

(hly=Y [ (o), k(0 do=Y <o,h8k)/6,  (52)
i=0 "% i=0
Hence if henul(4,,), ie, k|, =0, then (h, k)=0 for all ke H ,(g). Hence
nul(4,,) = H,(g)".

For the other inclusion, suppose that A4,eg is given such that
"_oA;=0. Define

n

k(s) Ej <Z I, SHI](G)Al/&)da— S (Si1 AS—5; A S)A)S,

i=0

Since k'(s)=06,;k/0;,=A;/0; for se(s;,s;,.,] and k(1)=>"_,A4,=0, k is in
H,(g). If he H,(g)" then, using the k just constructed in Eq. (5.2),

Co;h, A;3 /0, (5.3)

o
i
OM=

for all 4,€g such that >7_, A4,=0. Since
Y 6:h=h(1)—h(0)=0,
i=0

we may put 4,=0,h in (5.3) to find

M:

9,1, 9;h [0,

i=0

ie, 0,h=0 for all i=0,1,2,..,n—1. Because #(0)=0, this implies that
h|_,=0. Thus we have shown that if H ,(g)" =nul(A4,). Q.ED.

In general H ,(g) is a subspace of Hy(g) but not a Lie subalgebra with
the inherited pointwise commutator. In order to remedy this, let P:
Hy(g) » H ,(g) denote the orthogonal projection map and define [-,-],
on H,(g) by [h,k],=P,[h k]. One may check that (H_(g),[-,-],) is
a Lie algebra. Indeed the only non-trivial property to verify is the Jacobi
identity. Since [ A, [k,!],]1,=P,[h, [k, 1] ,] is uniquely determined by it
values on 2, ie., by the values [A(s), [k, [],(s)]1=[h(s), [k(s), I(s)]] for
s € 2, the Jacobi identity simply follows from the Jacobi identity for the Lie
bracket ([ -,-]) on g.

LEmMMA 5.6. Let H,(g) and g” be the Lie algebras described above
equipped with the inner products (-,-)=(-, i) and (-, ), respectively.
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Then linear map A ,: H (g)—>g” (A (h)=h,=h|,) is an isometric Lie
algebra isomorphism.

Proof. The only assertion which is not obvious to check the asser-
tion that A, is an isometry. For A=(A4,, 45, ..,A4,)€g" let h, =

"_1 Go(s;,-) A; and notice that &, e H ,(g). Using the reproducing kernel
property for G, see Eq.3.11 in [6],

(hy,hg)= Z (Go(s;, ), Go(sj>'))H0(R)<Afs Bj>: z Go(s;, ,)<AnB>

i j=1 ij=1

Because { G(s;, s,) } 7 ;=1 1s a positive definite matrix, the last equation with
B=A, shows that 4eg"—h, e H_,(g) is injective hence surjective by the
rank nullity theorem. On the other hand,

(Aphy, Ayhp),= - Z Qk, 1<ha(se), hip(s))

- Z Ok, 1Go(s:5 51) Gols;, 5)< Ay, By

Z Go(s;, Sj)<An Bj>-

ij=1

Comparing the last two displayed equations proves the isometry assertion.
Q.E.D.

Alternate proof of the isometry property. In this proof we will use the
fact that second order elliptic differential operators on a manifold induce a
unique Riemannian metric on the manifold.

Let Fe C*(G?), f=Fon ,e FC*(¥), and S, be an orthonormal basis
for H ,(g). Then, using Lemma 5.5 and the fact that the sum defining the
Laplace operator 4 in Eq. (2.1) is basis independent, we have

Af(g)= Y (Ff)g)= Y (hLF)g,)  VgeZ.

heS, heS,

On the other hand by Eq. (2.3), 4f(g)=(4,F)(g,). Hence we learn that

=2es, h Wthh is the Laplace Beltrami operator on G” equipped
Wlth the metrlc on g” for which the map 4, is an isometry. But this inner
product must agree with (-,-),, since we have seen in the proof of
Proposition 5.1 that 4, is also the Laplacian relative to the metric (-, -),
on GZ. Q.ED.

In the sequel we will identify g” with H ,(g).
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PROPOSITION 5.7. For he H,(g), let D}: H,(g)—> H,(g) denote Lie
algebra version of the Levi-Civita covariant derivative (V”) on G” as defined
in Notation 5.2 (Recall that we are identifying g” with H,(g) as in
Lemma 5.6.) Then D} =P, D,,, where as above P , is the orthogonal projec-
tion of H(g) onto H ,(g).

Proof. We need to check that D} is metric compatible and Torsion
free. Both of these properties follow directly from the corresponding
properties of D, described in Theorem 3.12 of Driver and Lohrenz [6].
Indeed if A, k € H ,(g), then

(D7 k, k)= (P, Dk, k) = (D,k, k) =0
and

D)k —D[h="P,(D,k—D;h)="P,([hk])=[h k], QED.

THEOREM 5.8. Let S, be an orthonormal basis for H,(g) and
A% H,(g) — H (g) be defined by

AP=Y D! DY

keS,
Then
\:/BIEO ”Py(A(l) _A('yl))) Py“op = 05
where |-, is the operator norm on bounded linear operators on H(g).

The following lemma is used in the proof of this theorem.

LemMmA 59. Let S, be an orthonormal basis for H ,(g) and A, Beg.
Then

Y. ([k(s;), AL, Tk(s), B1> = Go(s;, s;) K{A, B) (54)
kesS,

Sor all i, je{l,2, .., n}.

Proof. Ttis easily checked that the left member in Eq. (5.4) is independent
of the orthonormal basis S, of H_(g). So to simplify the computation, we
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may take S, = {I/C} lev,. ceq, Where go is an orthonormal basis for g and

b, is an orthonormal basis for
H,(R)={le Hy(R) n C*((0, )\Z, R): 1" =0 on (0, 1)\?}.

Because

Y ([C AL [C Bly= Y <ad,C,adzCy= Y —<C ad,adzC)

Ceg, Cegq Ceg

= —tr(ad adz) = K{ A, B),

it follows that

Y ([k(s), A1, [k(s), B> = Y Us) Us)<[C, A1, [C, BI)

keSy, leby, Cegy

=Y Us,) U(s;) K{A, B).

leb,

To evaluate Z,eb I(s;) I(s;), let h= Hy(R) be an orthonormal basis of
H,(R) which contains . Notice if /e h\h,, then /e H_,(R)* and hence
/], =0. Therefore

Z I(Si Z l GO( 19 j)
leby, leh
where the last equality verified in Lemma 3.8 of [6]. Q.E.D.

Proof of Theorem 5.8. Let h, Je H,(g), then
(45h, )=} (D¢ D{hJ)
kesS,
=— Y (D/hDLJ)

keS,

=— 3 Y 3(Dyh), 0,(DyJ)Y/9,.

keS, i=0
Now

Sit1 1
5.(D,h) =j [k, dh] -0, L [k, dh]

8
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and

(0 —s))

i

5k5h/5}

52
K5 8,+55-0,k. 0,03 |

= {k(s,-)—i—;é,-k, (Sih}
[(k(s;) +k(s;:1))/2,0;:h].
Set k¢ =(k(s;)+k(s;,))/2, then the above two displayed equations show
that
0;(Dh)=[k¢ 6,h]—0; Z [k{, 0;h] (5.5)

Thus, using Lemma 5.9,

U )=~ Y za(w(m15z[¢@

keS, i=0

(k2,601 =0, 3. 065, 0,71)

-y Yo {<[k?, 5,1, T2 6,77

keS, i=0

+6%<§ (k2. 8,h, i [k7,5,J1>}
-y 26{ <Z k%, 6,1, [k, m>

keSS, i=0

swsam. 5 won)|

=—- 2 Z {07k, 0,1, [K{, 0,715

keS, i=0

zi {_ 5 K6, (5J>+ZGK<5h 5J>}
i=0

= —S+T,
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where
Gy=%{G&&,%%+GJSH4,%V+Gdsn%+1%+Gd&+nSH4H~

We now work on the two terms S and T separately.

Sit1 1
| GuK I (0). 7(0)) do = | p () K<H(6).(0)) do

S

where
p{,},(S)E Z Giil(s,-,sHl](S)'
i=0
Similarly,
T=5> 3 G,K{hd,J
i=0 j=0 ‘
=Y Y6, [ e[ as KO (5). )
i=0 j=0 Si Si
1 1
:f daj ds G (, s) KW (s), (),
0 0
where

G lo,5)=

i,

(s). (5.6)

G[/' l (5 A“-Jrl](o-) : l(xj,
0

Si+1]

NNeE

Assembling the above computations gives
1

(AP T)= = | p.,(0) KK (). (0)) do

+ jl do jl ds G (7, s) K (s), J'(0)).

0 0
From Eq. (4.42) in [6],

(AP, J) = —fl Golo, ) K{W'(0), ) (o)) do

1 1
+j daj ds Go(a, s) KCH(s), J'(a)).

0 0
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Combining the last two equations gives
1
(4D =45 h, J) =f (pola)—Golo, ) KW' (0), J'(0)) do
0

+ Jl do Jl ds(Gy(a, s) — G 4(a, 5)) K{H'(s), J'(0)).

It is now a simple matter to use this equation to show that
HP;///:(A(”_A.(;)) P.’%HB(H/,(q)) < Ce(2),
where

o2)= max {1p,(s) = Gols. ) +[Gols. )= G ols. D)}

By the uniform continuity of G,, lim, _,&(?)=0. This proves the
theorem. Q.E.D.

We now work on the Ricci tensor.

THEOREM 5.10. Let Ric,, be the Lie algebra version of the Ricci tensor
on G”7. (We will interchangeably view Ric, as a bi-linear form or an
operator on H ,(g). Then

[P ,(Ric—Ric,) P,|,,— 0 as |2|-0.

Proof. Let heH,(g) and S,< H_,(g) be an orthonormal basis of
H ,(g). Since the expressions of interest are independent of the choice of
orthonormal basis, we may assume with out loss of generality that S, is
a “good basis,” i.e., [/(s), h(a)] =0 for all s, 5[0, 1]. (For example take
the basis used in the proof of Lemma 5.9.) Then

Ric,(hhy =Y (R,{(h k) k. h)

keS,
= Y (D/D{k—D!D/k— D[/;lk] k, h)
kesS,
= ), (=D Dk—D{, ;1 k. h)
kesS,
kz { h/;k D;c/h ( [/1 k1y k h)}
€S,

= S-T.
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Using Eq. (5.5), S may be written as

S= Z Z 571<5ink95iD}?h>

keS,,,, i=0
-y ¥ 6,-1<[h;:5,-k] s, Z [he, 6k
keS,,,, i=0

[k?, 0] =9, Z Lk}, 0;h >

J=

-y ¥ {5,-'<[h?,5,~k], (ke 6,15 — 3 CTh% 5,kT, [k7,5,h1>}

keS, i=0 j=0

) { CICLh Sk Tk 8,h]> — Y, <[k 8,1, Tk 5,h]>}
keS, i= j=0

n 2
— Y Y o NIk AL 6K 6y — X | Y [k 6h)
keSS, i=0 keSS, li=0
n n 2
==Y Y 6 Kadpad, 5.k, 6,k — Y |'Y [k% 8,h]
keS, i=0 ' ' keS, li=0

wherein the fourth equality we did a summation by parts. Namely we have
used

0;Lh, k]1=L[h{,0;k]+[0:h ki1=L[h{,o,k]—L[k{, 0:h]
and the fact that >7_,J,[h, k] =0.
Similarly using Eq. (5 5)and X7_,0;h=0, T may be expressed as

T= ) i6i1{<[[h k1¢,6,k]—0; Z L[A k17, 0,k], 5h>}

keS, i=0 =

=) X 571<ad[/z,/<];'5,’ka 0:h).

keS, i=0
So combining the expressions for S and 7 shows
Ric {h,hYy=S—-T

== Z z 5;1<ad/c?/ad/1?/ 51k + ad[/i,k]j-/ 5ik’ 51h>

keS, i=0
n
-2 |2 [k
keS, li=0
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Now using the assumption that S, is a good basis,
adiadye 0,k +adpy, 100,k =[ad, ad,e] 6,k + ady), 1109k
= ad[kf;’ 71 0. k+ ad[h’k]g 0k
:ad{[h,k]‘,'f[hﬁ', K47} ok
=3 ad[o“.h, 5,k1 d:k.

Assembling the last two equations implies

n n 2
Ric, (hhy=—5 Y 5fl<ad[(,-l_h,5ik] 0:k,0;hy — Y | > [k¢ d;h]
keS, i=0 keS, li=0
n n 2
=3 2 X0, 'ohokIP— Y | X [k 6:R1 . (57
keS, i=0 keSS, li=0
The above sums on k€S, may be computed using Lemma 5.9,
1Y 20, [0k 0;k]P=73 6, 'K I;h,0;h)
keS, i=0 i=0
1
- L a,(0) K{'(0), W' () do,
where
O(iE{GO(Sibsi)+G0(Si+lbsi+l)_2G0(sia Si+l)}/4
and
a’,’?(s)E Z o 1(,&‘1-, ‘Yi+1](s)' (58)
i=0
Similarly,
n 2 n
YooY [ké 0;h]| = ), K{6:h,0;h) G,
kes, li=0 i j=0 ‘ '

1 1
- j do j ds G (a, s) K< (5), W' (),
0 0
where G, is defined in Eq. (5.6). Hence

Ric,(h, h) = j 1 o (0) KW (a), W (o)) do
0

—jl dajl ds G (, s) KCH(s), B (a). (5.9)
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The polarization of Eq. (5.9) and Eq. (2.2) shows

Ric ,(h, k> — Ric{h, k>

= [ a(0) K< (0). K'0)) do
— jl do jl ds{G ,(a,5)— Go(a, $)} KCH'(s), K'(a))
0 0

for all h, ke H ,(g).
Let ||- ||, denote the supremum norm on functions, then it easily follows
from the last equation, for all &, ke H ,(g), that

|((Ric —Ric,,) A, k)|
1 1
< Cllayly IH) 1K+ ] do | ds |Go(o, )= G o )| IKCH (5). K (0))]
Clllap |+ 1Go— G} 11 K.
Hence
IP(Ric —Ric,) P |, < ClI ]+ Gy — Goil). (5.10)

Looking at the definitions of a, and G, and using uniform continuity of
G,, it is easily seen that [ja,|, + [|Gy— G|, — 0 as |2| — 0. This observa-
tion and Eq. (5.10) finishes the proof. Q.E.D.

6. INTEGRATION BY PARTS ON THE LOOP GROUP

In this section we will prove Theorem 1.5 by passing to the limit in
Theorem 5.3. Before doing this it is first convenient to rewrite Eq. (5.1) as

EL(Rf\(Z(T))]

—

—E| ST [ (WA UT) 00— 510 Ric,) A1) .



518 BRUCE K. DRIVER

Setting U,,(t, T)=U (t) U(T) ™', H,()=U,(t, T) h,=U(t) U,T) ' h,,
we see that this last equation may be written as

E[(Ef)(zm)]=E[f<2<T)>jOT< A0, ()= L 1(1) Ric,,) 4B (1)) |,
(6.1)

where H ,(¢) is the solution to the Stratonovich stochastic integral equation
L
h=H 1)+ D3, . H.(z)=0. (62)
t

The reader should notice that the process H , is not adapted to the filtra-
tion {Z,},-,. Nevertheless the integral in (6.2) may be defined as the usual
L? limit of Riemann sum approximations of the form

[ DGt = tim LY Dl o (HAD+ G+, (63)

7l =0 TET

where 7 denotes a partition of [z, T'], for Ten, T+ denotes the successor
to 7 in 7, and |z| is the mesh size of the partition. To show the con-
vergence, notice from the usual adapted theory that

T .
J, D3, U)= lim 4 z Dy U D) + U (x4)), (64)

7| —>0

where the sum exists in L% Since Eq. (6.3) is obtained from Eq. (6.4) by
multiplication on the right by U_'(T)h,, Eq.(6.3) has the same con-
vergence properties as Eq. (6.4). Moreover, by the discussion in Section 4.1
in [5], the integrals in Eq. (6.3) and (6.4) may be expressed in terms of
Backwards 1to integrals,

j, D3 Ho(7) = L Dd/} oH f Dy ) AH (7)
r P » 2
:j D%, H,D)+} ¥ f D? D7 H (7) dr
4 ’ heS,
r P2 (1)
=L D7, H f ADH
where

T
2
fl D;,;;y(r) H,(t)= lim ) D([f(r+) peonHH(T+),

Izl =0 o,
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Therefore (6.2) is equivalent to the backwards stochastic integral equation,

T ) T
h=H,(0)+| D% H0)+%[ AVH (1) de=0. (6.5)
t

' dap ,¢( 7) z

Following the notation and discussion in Section 8.3 of the Appendix
below, let f7(t)=p(T—1t)—B(T) and HL(t)=H (T —1) for te[0, T]
and {7}, .(0.r7 denote the filtration generated by {B7(¢)}, .07
appropriately completed. Then {p”(¢)},.0.r; is again a standard
{# !} .cro. r-Brownian motion and Eq. (6.5) may be expressed as

=t  » T (T T
h=H,(0)= | Dig HYw) +5 | APH () de=o0.

Replacing ¢ by T—¢ in this last equation shows that Eq. (6.5) (for H,,) is
equivalent to the following standard forward stochastic differential
equation (for H7%):

H;(z)zh—fo D;’;;;(T)H;(r)+%L AWH (1) d. (6.6)

This last equation may be written in differential form as
dH 7(1) + D‘fj};;(,)H;(t) —1AQHL(7)=0 with HZL(0)=h.  (6.7)

In analogy to Eq. (6.5), for he Hy(g), we let H(t) denote the solution to
the backwards stochastic differential equation

T T
h—H(z)+£ thﬁ(r)H(‘L’)%-%L ADH(z) dr =0. (6.8)

THEOREM 6.1 (Backwards Parallel Translation). Given T>0 and
he Hy(q), there exists a unique H(g)-valued continuous backwards semi-
martingale H(t), relative to the filtration {F [}, 1o 11, solving Eq.(6.8).
Moreover there exists a process te[0, T]—- U(t, T)e O(Hy(g)) such that
for all he Hy(g), H(t) = U(t, T) h is the unique solution to Eq. (6.8).

Proof. Using Definition 8.6 of the backwards stochastic integral in
Section 8.3 of the Appendix and the same argument used above in passing
from Eq. (6.5) to Eq. (6.7), we find that Eq. (6.8) is equivalent to

HT(:):h—j Ddﬁr(,)HT(r)Jr%f AVHT(7) dr, (6.9)
0

0
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where H” = H(T —t). With this observation, the theorem follows from
Theorem 4.1 and Lemma 4.3 above. Q.E.D.

THEOREM 6.2 (Integration by Parts). Let T>0, /e HR) such that
(T)=1, he Hy(g), and H(t) (for te[0,T]) be the unique solution to
Eq. (6.8). Then for all fe FC*(ZL),

T .

ELRNE N =E| S50 [} (=310 Rie} 1o, o) (6.10)
where (d_[)’ denotes the backwards stochastic differential. In particular,
(1.14) of Theorem 1.5 follows from Eq.(6.10) by choosing I(t) = t/T.

Remark 6.3. The backwards stochastic integral appearing in Eq. (6.10)

is well defined and we have the estimate

Ez? Ej 1{i(t)— L I(1) Ric} H(1)|? dt

T . )
<1 | D)+ 3 1] IRic],, 1 di < oo.

More generally, using Burkholder’s inequality, for all pe[2, co) there are
constants C, < oo such that

T 12
=L < G ([ LU+ 31000 IR, 17 ) <.

6.1. Passing to the Limit

The rest of this section will now be devoted to the proof of Theorem 6.2
which will be carried out by letting |#| — 0 in Eq. (6.1). The following
theorem is the key result needed to take this limit. Recall the notation
used above Eq.(6.1), namely U,(t, T)=U,(t) U, (T) "' and H,(1)=
U t, T)h,=U_t) UT) " h,.

THEOREM 6.4. Let T (0, 0), heH,/,( ), and P, be a sequence of parti-
tions of [0, 1] such that 2, > 2, for all n and lim,_,  |2,|=0. Set

Ef({f(’)—%’(f) Ric} U(r, T) b, dB(1)), (6.11)
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and

I(1) Ric , (1, T) b, dB., (). (6.12)

[N

N

1l
—
SN

—

~—

~

=

=

N\'—

Then z, converges to z in L>.

Proof. To simplify notation let P, =P,: Hy(g) —» Hy(g) denote ortho-
gonal projection onto H,(g), Ric,=Ric,, and U,=U,. We will first
show that P, — I strongly asn— 0. To prove this it sufﬁces to show, since
ran(P, ;) oran(P,) for all n, that D=|),ran(P,) is dense in Hy(g). To
see that D is dense, first notice that Gy(s,-) Ae D for all se 0=, %, and
Aeg. Hence if & L D, then <A(s), A> =(h, Gy(s,-) A)=0 for all se Q and
Aeg. Since & is continuous and Q< [0, 1] is dense, it follows that #=0.
Therefore D is dense in H(g) and hence P, — I strongly.

In the remainder of the proof, ¢, will be used to denote any generic
sequence of non-negative real numbers such that lim &, =0. (The value
of &, may vary from line to line in the following proof, but in all cases
lim, ,  ¢&,=0.)

Using the isometry property of the It6 Integral,

n— oo

E|z—z,,|2—EU ({i(t)— L 1(1) Ric} U(t, T) h
— () = L I(1) Rie,} Uy(t, T) h, dB(1))
—E[ {0~ 110 Ric} U T
—{i(ty= L I(t) Ric,} U1, T) h|* dt
<2£)TE |P,{i(1)—L1(r) Ric} U(t, T) h
—{l(t) =3 l(t) Ric,} U,(t, T) h||* dr

+2 jTE I(I— P,){i(r)— L I(r) Ric} U(t, T) h|)? d.
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Because P, — 1, ,, strongly as n— oo, U(t, T) is unitary and Ric is a
bounded operator, we may apply the dominated convergence theorem to
find

T .

lim f E|(I—P,){l(t)—5 1) Ric} U(t, T) h|*>dt=0. (6.13)
n— oo YQ

The last two displayed equations imply that

El|z—z, |2<4f ) E |{P,U(t, T)— Uy(t, T)} h|)? dt

T
+f I2(1) E | { P, Ric U(t, T) — Ric, Uy(1, T)} hl|> dt +e,.
0

(6.14)
As in the proof of Eq. (6.13),
T
lim supj I2(1) E | P, Ric(I— P,) U, T) h|]? dt
n— oo 0
<lim supj I3(1) |Ric|> E |(I— P,) U, T) k|| dt =
which along with Eq. (6.14) implies that
T,
Elz—z,P<4 | P E|{P,ULT)= Uyt T)} bl di
0
+zf 1) E |{P, Ric P, U(1, T) — Ric, U,(t, T)} h|?dr +e,.
(6.15)

Recall that Theorem 5.10 asserts that

lim ||P, Ric P, —Ric, P, |2 =

op
n— oo
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and in particular this implies that C=sup,, ||Ric, P H2 < 00. Therefore

T
j 1%(1) E |{P, Ric P, U(t, T) — Ric, U(t, T)} h|* dt
0
T
<2j I%(t) | P, Ric P, —Ric, P, |2, E | U(t, T) h| dt
0
+2j 1) E | Ric,{ P, U(t, T) — U,(t, T)} h|?* dt
T
<2|P,Ric P,—Ric, P,|?, Hth-J 1%(1) dr
0
uj 1) [Ric, P, |12, E |{P,Ult, T)— U,(1, T)} h|* dr

T
<ch () E |{P,U(t, T)— Up(1, T)} h|*dt +e,.
0
Using this estimate in Eq. (6.15) gives

Elz—zP<4[ 0+ Cl)

<E|{P,U(t, T)—U,t, T)} h|*dt+¢,.  (6.16)

Since |{P,U(t, T)—U,(t, T)} h| <2 |h|, the theorem follows from
Eq. (6.16) and the dominated convergence theorem provided that

n— oo

This is the content of the next lemma. Q.E.D.

LEMMA 6.5. Keeping the notation of the previous theorem,

lim sup E|{P,U(t,T)— U1, T)} h|>=0

n— o tel[0,7T]
Proof. Recall that f is the ¥(g)-valued Brownian motion described in
Section 3.1. Let f,=P,f=p,, D"=D", AV=4), 0,=1-P,, H(t)=
Ut, T) h, H,(1)=U,(t, T) h, and «,(1) = H,(1) — P, H(1). By Eq. (63),

dH=—DyH—AVHdi=0  with H(T)=h
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and Eq. (6.5)
dH,,z—D;ﬁnH,,—%A;”H,,dtzo with H,(T)=h.
Therefore,

—do,= —dH,+ P, dH
=D37;”H,,—P,1D§;H+%(A;”H,,—PHA“)H) dt
=P,Dy(H,—H)—P,Dy iz H

+3[4 (e, +P,H)— P, AV(P,H+ Q,H)] dt
=P,Dga,—P,Dy O,H—P,Dgy izH
+ 3 A4Va, dt + 34— P, AVP,) P, Hdt—% P, AVQ, H dt,

with o, (7) =0. More precisely we have

an(l) =An(t) _Bn(l) - Cn(l) + % (Dn(l) + En(t) _Fn(t))y

where
T T
a0=] P, Dy,  B)=[ P,Dy 0,H,
t t
T T
Cy=[ P, DogH, D= APa(r)d,
t t
T
En(z)zj (40— p, AVP,) P, H(z) d,
t
and

F(1) ijPnA“)QnH(r) dr.

Let us now estimate the L*norms of the four terms not containing «,,.
B, -term,

T
E|B(0I>=E| Y P, Dy, 0,Hwu)|? du

4 le S,

<E[ Y ID,Q,Hw)’ du

0 le S,

T
<E[ IDJ2

op
0

10, H(u)|? du,
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which tends to zero by the dominated convergence theorem and the fact
that Q, converges strongly to zero.
C,-term,

T
EICOIP=E[ ¥ IP, Do H(w)| du

4 le S,

T
<E[ Y Do, Hw)|? du

0 Jes,

~E[ Qs @1 DG du, (617)

where QV: Hy(g)* —» Hy(g)* is the transpose of Q,. Since Q, is an
orthogonal projection operator, it easily follows that Q,, is unitarily equiv-
alent to Q7 under the natural unitary isomorphism between H,(g) and
its dual Hy(g)*. In particular Q7 — 0 strongly as n— oo and hence
(0 ®1)— 0 strongly as n— oo, see the proposition on p. 299 of Reed and
Simon [23]. So again by the dominated convergence theorem, it follows
from Eq. (6.17) that lim,,_, _ E | C,(t)||>=0.
E, -term,

T
E|E(D?<(T—1) |4} =P, 4VP,]I; Ef 1H(u)|* du
t

op

=T|4, =P, 4P,

op

T
LR
t
<T2 HA(nl)_PnA(l)PnHip ”hH27

which tends to zero as n — oo by Theorem 5.8.
F,-term,

T
E|F(01><(T=0) [P, AV, E [0, H(u)|* du
t
T
ST AV, E [ 10, Hiw)| du,
0

which again tends to zero as n — oo because of the dominated convergence
theorem and the fact that Q,, is strongly convergent to the zero.
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Combining the above four estimates with the expression for o yields

E oo (1) IP <2E | A,(1) + D,(1)* + &, <AE | A,(1)|* +4E | D,(1)]* +e,

2

+E

2

T T
<AE f P, Dy, j AWV (u) du| +e,
t t

T 2
=4 Y [ EIP, Dy )| du+ E te,

les, !

T
J A Vo, (u) du

T T
<412, [ Ela ) dut (T—1) E [ 40, (w)]? du +e,
t 1
T
<@IDIZ,+Tsup 4012 E [ la )| du+e,,
n t

where ¢, denotes a generic sequence of positive numbers with lim,,_, ¢,
=0. By Theorem 5.8, sup, [|4'"]2 < oo and hence the proof of the Lemma

op

may be concluded with an application of Gronwall’s inequality. Q.E.D.

Proof of Theorem 6.2. Let t>0 and fe #C*(Z). Choose a partition
2 of [0, 1] so that f=Fon, for some C'-function F on G”. Let # be a
partition which refines 2 (ie.,, 2 = %)) and for the moment assume that

heH%(g).
Let 2, be a sequence of partitions such that 4 <2 ,c%,, , for all
n=1,2, ... Let z and z, be the random variables as in Theorem 6.4, see

Egs. (6.11) and (6.12). By Eq. (6.1), with £ replaced by Z,,

EL(W)(E1)]=ELf(Z7) 2,] (6.18)

holds for all n. By Theorem 6.4, we may let n — oo in (6.18) to conclude
that

E[(f )N E)]1=E[f(Z7) 2]
=E[f(zT) Jf({[(z)—%l(t) Ric} U(t, T) h, dB(1))|. (6.19)

By Remark 6.3 and the fact that f'is bounded, the right hand side of (6.19)
is continuous in /2 € H(g). Similarly, since the H,(g) norm is stronger than
the supremum norm and df is bounded, it follows that the left-hand-side of
Eq. (6.18) is also continuous in &€ Hy(g). The continuity of both sides of
Eq. (6.19), coupled with the fact that the span of the union of H #(8) over
all finite partitions % of [0, 1] which refine 2 is dense in H(g), implies
that (6.19) is valid for all 1€ Hy(g). Q.E.D.



LOOP GROUP QUASI-INVARIANCE 527

COROLLARY 6.6. For each he Hy(g), the differential operator h with

domain F C*(Z(G)) is a densely defined closable operator on LA Z(G), vy).
Moreover the L*-adjoint of h* of h satisfies

| scraiay=—h+o,, (6.20)

where a,,: L(G)— R is a Borel measurable function such that

o, (5,) = lTE { f: ({1—; z Ric} H(z), %m)

O'(ZT):| as. (6.21)

Proof. Letu,ve FC*(¥) and [(t)=t/T. Then apply Theorem 6.2 with
feFC? (&) replaced by uve # C* (%) to find

E[(hu)(Z7) o(Z7) +u(Z ) (ho)(Z )] = E[u(Z7) a,(Z7)]

or equivalently

[, (@) el dvi(e) =] @) (o)) + () o(8)] ()

Z(G)

This proves Eq. (6.20) and the fact that / is closable, since the properties
of being closable and having a densely defined adjoint are equivalent.
Q.E.D.

7. QUASI-INVARIANCE OF THE HEAT KERNEL MEASURE

In this section we will show that the measure v,= Law(X;) is quasi-
invariant under both right and left translations by finite energy paths in
L(G), see Corollary 7.7 and 7.10 below. Our method will be modeled on
a technique in Cruzeiro [ 3] (see also Dennis Bell [ 1] and Gunnar Peters
[20,21]) for proving quasi-invariance of flows of certain vector fields on
an abstract Wiener space. In order to carry out the proof it is necessary to
recall a few results from the finite dimensional case.

7.1. Finite Dimensional Preliminaries

Let M be a finite dimensional manifold and X be a smooth complete
vector field on M. We will denote the flow of X by {e*},_ so that
e : M — M is a diffeomorphism for all teR such that e**=id,, and
de'*/dt = X o e'*. Suppose that ¢ is Borel measure on M such that, in every
coordinate chart, ¢ has a smooth positive density relative to Lebesgue
measure. Then the standard change of variable theorem guarantees that



528 BRUCE K. DRIVER

elfo=cgoe ¥ is absolutely continuous relative to ¢ and that the Radon-

Nikodym derivative Z,(m) = (de'}o/do)(m) may be chosen to be a smooth
positive function of (¢, m)e R x M.

DerFiniTION 7.1 (Divergence). The divergence div (X)) of X relative to o
may be defined as

d
div,(X)=——| Z.. (7.1)
0

(The reason for the minus sign is to adhere to the standard sign conventions
for the divergence defined by other means.)

The following proposition summarizes some well known properties of Z,
and div(X).
PropoOSITION 7.2. Let X, Z,, and div (X) be as above.

1. Suppose that B< M is a Borel subset of M such that B is compact,
then

4
di

o(e'*(B)) = L div,(X) do. (7.2)

So div_(X) measures the rate of spreading of the flow e as seen by the
measure a.

2. Viewing X as a first order differential operator, for fe C'(M), let
X*f=—Xf—div(X) f. (7.3)

Then for all f, g€ C'(M) such that the product fg has compact support,

jM(Xf) gda=fo(X*g) do. (7.4)

3. The Radon-Nikodym derivative Z, may be recovered from the flow
e'® and div (X) by the formula

Z,(m) = el X emde (Y e 0, (75)

Proof. The key point is that for f: M - R, bounded and measurable
with compact support, we have by the definition of Z, that

jMfo e do = jMfZ, do.
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Hence

d v 07,
anfoe da_jMf ! do. (7.6)

Taking f to be the characteristic function of B and 1 =0 in Eq. (7.6) implies
Eq. (7.2). If we replace f by fg, where f, g e C'(M) such that fg has compact
support, then differentiating under the integral sign in Eq. (7.6) implies

0Z,
t

5 do. (1)

JM {X(fo elX) . goelX—i-f'o e’XX(goe’X)} dJZJMfg

Taking =0 implies Eq. (7.3). Now suppose that g=1 in Eq. (7.7), then

jMfaaZt’da=fMX(foe'X).1da=jM (foe™). X*1 do

=—j (foeX)-div, X do

M

= _J (foerX)‘(dngX)OeirXoeleo'
M

=—j f-(div, X)oe *Z, do.

M

Since fe C}(M) is arbitrary in this last equation, Z, must satisfy the
differential equation:

0z . .
attz—Z,-(dlvaX)oe*’X with Z,=1.
The unique solution of this equation is given in Eq. (7.5). Q.E.D.

For the infinite dimensional application to the loop group, it will be
necessary to recall the following key estimate of Ana Bela Cruzeiro
(see Corollary 2.2 in [2]) for the L”-norms of Z, in terms of div, X. For
the readers convenience I will also give the short proof.

THEOREM 7.3 (Cruzeiro). Let pe(l, ) and M, X,0,Z, and a=
—div, X be as above. Assume now that o is probability measure and write
E_ f for jMfda. If for a given T>0, [(T)=sup, . E,[Z?] < oo, then for
all te[ -T,T17;

r’ r’
E[Z?]1< sup E,exp { soc} < E_exp { |¢] |oc|}. (7.8)
Is| < ] p—1 p—1
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Proof. Let J,=[0,s] if s=0 and J,=[s, 0] if s<0. Using Jensen’s

inequality, Eq. (7.5), the definition of Z, and Holder’s inequality we find for
|s| <|¢| < T that

’ d
E[ZP]=E, exp <pf ocoeTXdr>=E(,eXp <psj aoerXT>
0 J,

g |s]
d
<t ] Eoptpme =] Epomz
de oy 1/ 1 oy 1/ 1
J. |S

s

where 1/¢+ 1/p =1. Hence it follows that

I(t)< sup (E,er®)Va [(1)\r,

Is| <z

Solving this equation for /(¢) shows that

pZ pZ
I(1)< sup (E,e™™)= sup E, exp{ S“}<Ea exp{ |1 m}-
Is <1l sl <1l p—1 p—1
Q.E.D.

7.2. Quasi-Invariance for the Heat Kernel Measure on £ (G)

Let X be the #(G)-valued Brownian motion constructed in Theorem 3.8
with 2(0,s)=e for 0<s<1 and vy,=Law(X;). For heHyg), let
o, L(G)—> R be a Borel measurable function as in Corollary 6.6. By
taking u=fe #C*(¥) and v=1 in Corollary 6.6 we find

E,(hf)=EL()(E1)]=ELS(Z7) 0(Z1)] = E, (f,)- (7.9)

Since the flow of the vector field 7 is e g)=ge™ Eq.(7.9) and the finite
dimensional discussion above motivates the following theorem.

THEOREM 7.4. Let he Hy(g), then v is quasi-invariant under the trans-
formation g€ L(G) — ge" e L(G). Moreover, let Q, denote the set of loops
ge L(G) such that 5(1) loc,(ge ") du < oo, then v (2,)=1, the function
Z,: £(G)— R defined by

1
Z,(g)=1gg) exp <f0 o (ge™"") du> (7.10)
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is in LY(dv ;) and

L(G) flge" dv(g)= L(G) f(g) Z,(g) dv(g)

for all bounded measurable functions f on ¥(G). (This last equation may
also be equivalently expressed as E[ f(Xre")1=E[ f(Z1) Z,].)

Remark 7.5. For each finite partition of # of [0,1], n, vs is the
smooth measure on G7 given by (dr,, r/dA,)(x)= p7(e, x), where xe G7,
p5 is the heat kernel on G” associated Riemannian inner product (-, ),
ie., p7 is the integral kernel of the operator e’ “»/%,

Proof of Theorem 74. let A =P <=2 --- be a nested sequence of
partitions of [0, 1] such that lim,_, , |#,|=0. Suppose n,€ {0, 1,2, ...}
and f: ¥ — R is function such that f=F Ty for some bounded Borel
measurable function F: G”» — R. Let ¥, be the smallest g-algebra on Z(G)
such that the projection 7, : %(G)— G”" is measurable, where G” is
given the Borel o-algebra. Set

&'/1, n= _dIV Th | G7n

Ty *V
7n

and a;, , = &,y oM p . Then by Proposition 7.2 and Corollary 6.6,

o E7) 1TE [ LT <{1—; : Ric} H(v), %m)

@n} v-ae. (7.11)

Therefore, by Proposition 7.2 and Remark 7.5,

E[f(Z7e")1=E[f(27) Z), ], (7.12)

where

1
Zy n=exp {f %, (E7e™") ds}. (7.13)
0
The proof of Theorem 7.4 will continue after the following key lemma.

LemmA 7.6. Let Z, ,, be defined as in Eq. (7.13). Then for all pe (1, «©),

L/ ph|a)> 7 |
sup E, Z”,ngexp< I—— 7 Ric dr)
n e 2 (p_l)sz‘fO 2 op
=:M(p, h)< 0, (7.14)

and {Z, ,} 7_, is Cauchy in L?(vy).
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Proof. Since G”+ is compact and geG” —exp [y a, (ge ") ds is
smooth, Cruzeiro’s Theorem 7.3 may be applied to show

E,ZP
T

h,n

2 5 (T 1 . —
cone el (2o

— sup Evr[exp {p”_zl ;j;({l—;r Ric} H(), ‘@(ﬂ)”, (7.15)

Is|<1

wherein the second inequality we use Jensen’s inequality. For fixed
se[—1,1] and T as above, set

=57 (- Rl B, T for 0<i<T
= 1TL_,<{ —57 w} (), ﬁ(f)> or 0<t<T.

p_

Then M, is a martingale such that the quadratic variation of M at T is
given by
4.2

r’s 4
M>=—""—5—
< >T (p*l)szjo

2

7 dr.

{1—1 T Ric} H(7)

and thus, because |H(7)| = ||A],

2

di<ow.  (7.16)

op

1
I——7Ric

pt|h|?s? fT
o 2

| <M>7r| Ly <m

Hence, Novikov’s criterion (see Proposition 1.15, p. 308 in [24]) implies
that EeMr—(1/2<M>r =1 g0 that

EeMr — E(eMr*(1/2)<M>T, f3(1/2)<M>T) < e/ IKMD 7l oo

L/ s’p* A>T
<6Xp2<(p_1)2T2.[0

1 .
I—Eer

’ dr>. (7.17)

0

(Alternatively, see Lemma 1.4 in Kusuoka and Stroock [16].) Combining
equations (7.15) and (7.17) proves the bound in Eq. (7.14).
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Let m>n be two positive integers. By the fundamental theorem of
calculus, for all x, ye R,

1 1
ey—e"z(y—x)J e =) gy = (y — x) JO (e (e¥)! ~* du.

0

Applying this equation with x={ja, (Zre ") ds and y={[ja,
(X e ") ds gives

1
|Zh,n - Z/I, ml = ‘J 0(/1, ,,(ZTe_Xh) 7a'h~m(2Te_.Y/’) dS
0

1
(1 —u)
-JO Zu  Z4 0 du,

h, m

Using Holder’s inequality we find

E |Z/1, n_ Zh, m|

1

1
<J0 ch'h,n(z‘Te_Sh)_th,m(z‘Te_Sh)”L3/2 dSJ HZZ,)7Z(1_M)HL3 du

h, m
0

(7.18)
Now by the bound in Eq. (7.14)

1Z5 Z 3 N < 125l s 125,50 | o < M6, h)'7,

h,m

which combined with Eq. (7.18) shows that

1
E |Zh,n _Zh, m| < M(69 h)1/3 J;) Hah, n(ZTeim) _ah, m(Z‘Teixh)”L-32 dS.
(7.19)

Since m > n,

ot w2 7€ ™) =ty Z 7€ )| 122
=[E(la) 27) =0 il Z )P Z )17
= oy, n(Z7) — 0 i E )| (Z _ g, ) e
<ot (Z7) =y (D) 22+ 1(Z g ) 1o

< (M(45 h))1/6 : Ha’h, }7(27") - a’h, }11(2T)H 12
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This equation and Eq. (7.19) shows that

E |Z/1,n 7Zh,m| < M(6> h)1/3 (M(47 h))1/6 : ”a'/tn(ZT) 7“/1, IH(ZT)HLZ(V)'
(7.20)

Now

H(Xh, n(ZT) - ah, m(ZT) H L?

1 T 1 B
== (E,—E,) jo <{1—2 T Ric} H(z), dﬂ(r)>

where E,=E[-|9%,] denotes conditional expectation relative to the
g-algebra %,. Since E, converges strongly to E[ - | 6(X,)] in L? it follows
from Eq. (7.21) that

. (721

12

lim HOC/L H(ZT) - O(h, m(ZT) H 2= 0.

m, n— oo

In view of Eq. (7.20) this finishes the proof of the lemma. Q.E.D.

We now continBe the proof of Theorem 7.4. Let Z, be the L”(v,)-limit
of Z, ,. Of course Z, inherits the bounds in Eq. (7.14), namely that

E, Zh<M(p,h)y<oo  forall pe(l, ).
By the previous lemma, we may let n tend to infinity in Eq. (7.12) to find

E[f(Z7e"]=E[f(Z7) Z,(Z7)]. (7.22)

Eq.(7.22) is valid for all fe # C*(¥) which are based on Z, for some
positive integer n. So by a monotone class argument or Dynkin’s 7 — 4
theorem, one may easily show that this equation is in fact valid for all
bounded measurable functions on Z(G).

Setting 6 =v,, and g,= R, vy, we have shown that ¢, <<o and that
do,/do=Z,. We now show that ¢ << a,. To this end let /> £(G)— R be
a bounded measurable function, then

E,(f)=Ef(X7)=Ef(Zre"e")
=E[f(Z7e") Z_(Z)1=E[f(Zre") Z_(Zrete™")]
=E,(fZ_i((-)e™).

Therefore ¢ << g, and do/do,=Z ,((-)e™").
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So to finish the proof we need only show that Z, defined in Eq. (7.10)
is well defined and Z,(X,) = Z, v-a.e. First consider

2 1 2
[ (L] vtee tdn ) dvgte)= ([l zre ) au
2(G) 0

0

1
<f0 E |ay,(Z e )| du

1 ~
J, Bl Z 0> Z o Z7)) du
S(E Jay(Z7)1H'? M(2, h) < 0.
(Note that E |a,(X;)|* <o because of Remark 6.3 and the fact that
conditional expectations are contractions on L”-spaces.) This shows that
§o lou(ge ") du< oo for vo-a.e. g and hence that Z, is well defined.
Set &= (o, (Zre ") du and &, = (o, (Zre ") du. Since Z,(X ;) =e°

and Z,(2,)=lim, , , e, to show that Z,(X,)=Z,(2,) a.e. it suffices to
show that &, converges to ¢ in L'. We start with the estimate

1
ENE =&, <[ E o (Zre™) —o(Z7e™)] du
1 ~
= |, BTl (20— 2 Z )] Zo ol £1)] d

<o E) = )2 | 12 E )3
<l o Z7) = 0 Z )| 20y /M2, ).
Now by Eq. (7.11),
s, (Z7) =l E ) 2y

ElT H (E,—E.) LT <{1—; T Ric} H(7), (d_ﬁ(‘[)> . (7.23)

L*(P)

where E,=FE[-|%,] and E_(-)=E[-|a(2;)]. This finishes the proof
because E, converges strongly in L to E_, as n— 0. Q.E.D.

We now wish to extend Theorem 7.4 to include right translations by
ke #(G), where Z(G) denotes the space of contractible loops in Z(G)
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which have finite energy. A loop ke Z(G) is said to have finite energy
provided k is absolutely continuous and

1 1
J 10<K )12 ds = [ 1Ly 1K ()] ds < oo

COROLLARY 7.7. For each ke £ \(G), v, quasi-invariant under the right
translation map R,: L(G) - ZL(G) given by R, g = gk.

We will need the following simple lemma for the proof of this corollary.

LemMma 7.8. Let (¥, 9, u) be a probability space and T: ¥ — ¥ be an
invertible measurable map with a measurable inverse. Assume that T, u=
uoT ', To'lu=poT, and u are mutually absolutely continuous. Also let
% —[0,00) be a measurable function such that f>0 p-as. and
(o fdu=1.If fu denotes the probability measure defined by (fu)(A)=

Vafdu for all Ae%, then T (fu)=(fu)eT ", Ty'(fu)=(fu)eT, and pu
are all mutually absolutely continuous as well.

Proof. Let Z=dT, p/du and g: & — [0, 0) be a measurable function.
Then

|, gdITufin)=] g-T-fdu=] (g-7T")-Tdu

=] g (o) Zdu
This shows that

d[T*(f:u))]zz(fonl) (724)
du

Since u(f'({0}))=0 and p and T, 'y are mutually absolutely con-
tinuous, we have 0= (uo T)(f~'({0}))=u({ge &: fo T ~'(g)=0}). That
is foT ' is positive p-a.s. Thus it follows from Eq. (7.24) that T, (fu) and
u are mutually absolutely continuous. By symmetry, 7', '(fu) and u are
mutually absolutely continuous as well. Q.E.D.

Proof of Corollary 7.7. By Theorem 7.4 and repeated use of Lemma
7.8, it suffices to prove: for any ke Z)(G) there is an integer n and
h;e Hy(g) such that

k(s)=en®em) ... o), (7.25)
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To prove (7.25), choose a ball B in g centered at 0 such that
V:={e*: e B} is open and the map e B—e“eV is a diffeomorphism
with inverse denoted by log. Let (V)= {ge L(G):g([0,1]) =V}, so
that (V') is an open neighborhood of %(G). It is easily shown that
W=, _, (V)" is both open and closed in Z(G) (with the sup-norm
topology) and hence W= %,(G)-the connected component of the identity
in Z(G). (The space %4(G) may also be described as the space of contrac-
tible loops in #(G).) Therefore there is an integer ne Z . and k,e L (V)
such that k=kk,---k,. Let u;(s)=logk;(s), then u,e £(g) and
e e T"n-1...e7 " is the constant path sitting at ee G. Choose 4, € Hy(g)
sufficiently close to u; in the sup-norm topology on #(g) such that
e Mme=tm-1...e"Mke L(V), Define h,,, , =log(e e "-1...e7Mk) e Hy(g).
Then

ehn+l = eihrzeihn—l . eihlk’

which is equivalent to (7.25). Q.E.D.

PROPOSITION 7.9. The heat kernel measure v is invariant relative to the
inverse map ge L(G)— g e Z(G).

Proof. 1t suffices to show that each of the finite dimensional distribu-
tions, 7, v,=v,eo7m,' (where 2 is a finite partition of [0, 1]) is invariant
under the inverse map ge G” — g~ '€ G”. But this property is know to
hold, in general, for heat kernel measures on uni-modular Lie groups
equipped with a left invariant Riemannian metric, see for example
Remark 2.2 and Proposition 3.1 in Driver and Gross [ 7] Q.E.D.

CORLLARY 7.10. For each ke L (G), vy is quasi-invariant under the left
translation map L,: L (G)— L(G) given by L, g=kg.

Proof. This a direct consequence of Corollary 7.7 and Proposition 7.9
above. Indeed, let f: ¥ — R be a bounded and measurable function and for
each ke Z\(G) set Z, =dv,o R "/dv,. Then

Ef(kZ )= Ef(kX7) =Ef(Z7k~1) ™)
=E(f(X7") Zi-(27) = E(f(Z7) Ze(Z71)).

This shows that vyoL,'<<v, and dvyo L, 'Jdv,(g)=Z, (g ") for v,
almost every ge #(G). Since Z,-1>0 vy-a.s. and g — Z, (g~ ') has the
same distribution as Z, 1, it follows that dv,o L, '/dv;>0 v,-a.s. Hence v
is absolutely continuous relative to v;o L, ' as well. Q.E.D.
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8. APPENDIX: REVIEW OF THE ITO INTEGRAL IN
INFINITE DIMENSIONS

As in the body of the text, let (¥, 7, { %} -, P) be a filtered probab-
ility space satisfying the usual hypothesis as described in the beginning of
Section 3.1. The purpose of this appendix is to set up notation and review
some very basic facts about Hilbert space valued martingales and the It6
integral | Fdp. For Hilbert space martingale theory the reader is referred
to Métivier [18]. For the Itd integral on abstract Wiener space, see
Sections IIL1.5 of Kuo [15], p. 188-207, especially Theorem 5.1 of [15].
Also see Kusuoka and Stroock [16] p. 5 for a very short description of the
Ito integral in this context. For the notion and basic properties of condi-
tional expectations for Banach space valued Random variables, see
Section 8.3 in Chapter 2 in Métivier [ 18].

8.1. Continuous Hilbert Valued Local Martingales

Let K be a Hilbert space. We will use (-, -) to denote the inner product
on both of the Hilbert space Hy(g) and K.

THEOREM 8.1 (Quadratic Variations). Suppose that M and N are two
continuous local martingales with values in a Hilbert space K. Then there is
a real valued process of bounded variation <M, N> such that for any
increasing sequence of partitions {m,} " , of [0, o) such that |n,|—0 as
n— oo,

o0

<M, N>,= lim Z (MzAr,H_MrAz,JNtAtHl_Nt/\t,-)’ (8.1)

n— o0 ¢
i€7y

where the limit exists in probability uniformly for t in compact subsets of
[0, c0). Moreover the following properties hold.

. |[<KM,N>|</<M>- -<N> as., where <M>=<M, M >.
2. |<KM>—<N>|</<M—-N>.<M+N> as.

3. EM*2<AE |M,|*>+4E<M>,.
4

The following three conditions are equivalent:

(a) M is a square integrable martingale,
(b) EM#**< o0 for all t=0 and
(c) E|M,|I*> <o and EXM>(t) < oo for all t=0.
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5. If M, and M are continuous K-valued L*-martingales such that
E|(M,—M),|>—0 as n— oo then <M,>(t)— <M>(t) in L.

6. Suppose the {M,}_, is a sequence of K-valued continuous local
martingales such that M,(0)=0 for all n and <M, > — 0 a.s. as n— co.
Then M, — 0 in probability uniformly on compact subsets of [0, o).

For a proof of this theorem see, for example, Theorems 20.5 and 20.6 in
Meétivier [ 18] and Métivier and Pellaumail [ 19].

8.2. The Ité Integral on Our Abstract Wiener Space

For the rest of this Appendix we will adopt the notation in Section 3.1
of the body of the paper.

THEOREM 8.2. Suppose that {f,},~¢ is an (W, {F ,} =0, F, P)-adapted
and continuous process with values in Hy(g). Then there is a continuous
local martingale N such that for any orthonormal basis {h,}_, of Hy(g),
N=X7_,\(f., h,) dB", where the sum is convergent in probability
uniformly for t in compact subsets of [0, o). We will write N, as |, fdp or
N={fdp for short. The quadratic variation of | fdf is given by

<[ fdp>=, =[5\ 11> dv or <[ fdp>=1{|f|>dz for short.

Proof. Let keZ, and N =Y%_| [ (f., h,)dp"—a local martingale.
Then for k' >k,

K
<SNEI NS = [ Y |(fuh)Pdio0  as as kKoo,

n=k+1

Using theorem 8.1, this shows that N® converges uniformly on compacts
in probability to a local martingale N and moreover

N> =[ ¥ ((feh)Pde=[ 112 de.

n=1

Now suppose that {/,,} °_, is another orthonormal basis for H,(g) and
that
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Let P, and P, be orthogonal projections onto span{/, ks, .., h;} and
span{l,, l,, .., I, } respectively. Then

<P —NB > = < i {f (fi, h,) d/f”"—f (fis 1) dﬂ’"}>

mi_l <[ ey =] (g .

n,

{ [ Fr ) o= (£ 1) dﬁ,m}>

X[ A1 )P 107 L) d

22 [ ma e 1) 1)

n,m=1

=[PP+ IPS NP =2P, S, Bof)} di—0
as. as k— oo,
where we have used the fact that P, and P, are strongly convergent to /

as k — oo along with the dominated convergence theorem. This shows that
| fdp is basis independent. Q.E.D.

THEOREM 8.3 (Associativity). Suppose {f,},~o and {g,},~, are (W,
{Z} =0, F, P)-adapted and continuous process with values in H(g) and R
respectively. Set M = | (f, dp), then

[ gam =] (sf. ap) (8.2)

Proof. Let {h,} *, be orthonormal basis for Hy(g) and for Ne Z , set

My = il j (f.h,) df™.

Then

oo}

<jng—fngN>=jg2d<M—MN>=fg2< > I(f,hn)|2>dt

n=N+1
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and this last expression tends to zero almost surely as N — co. Therefore
{gdMy— | gdM uniformly on compacts in probability. On the other
hand, by associativity of the finite dimensional It6 integral,

N N

IngN: Z jgd<j(f’h")dﬂh”>: Z jg(fahn)dﬁh”

n=1 n=1

=Y [(efih)dp— [ (efdp) as N-co.

So we have shown that | g M converges to both | g dM and ((gf, dp).
Q.E.D.

THEOREM 8.4. Suppose that K is another separable Hilbert space,
{F,},~0 is an Z,-adapted and continuous process with values in
HS(H(g), K)—the Hilbert Schmidt operators from Hy(g) to K. Then there
is a continuous K-values local martingale N such that, for any orthonormal
basis {k,} | of K, X", | (F*k,, dp) k, converges uniformly on compacts
in probability to N. We will write N, as [y Fdf or N=|Fdp for short.
The quadratic variation of | Fdp is given by <[ Fdp>,={} |F|7sdt or
<|Fdp>=[|F|jsdr.

Proof. Let keZ, and NV=Y*_ [ (F*k,, dp) k,—a K-valued local
martingale. Then for k' >k,

.
SN NS <f y J(F*kn, dap) k>

n=k+1

Y <[ (F*hdp) [ (F*hi dB)> (K K,

mn=k+1

S [ 1P de.

n=k+1

Recall that

1F s = Z | Fh, |1 = Z Z |(Fh,, k)

n=1 n=1 m=1

2 Ny, F¥ke, )1 = [F* 35
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Therefore, 3., | | F*k,||* dv < oo and hence,
<N®) — NO = Z [ 1F*k, 2 dr >0 as ke k' oo,
n=k+1

Again by Theorem 8.1, this shows that N converges uniformly on
compacts in probability to a K-valued local martingale N and also that

<N> = [ IF s dr.

Now suppose that {/,,} _, is another orthonormal basis for H,(g) and
that

0" = z | (F*i,,.dp) 1,

Again let P, be orthogonal projection onto span {k,, k,, ..., k;}. Then
k
<QY-N®>=<y {f (F*k,., dp) k,— [ (F*I,. dp) ln}>

k
=< Y [k, dp) 4 < S | (=, a1

n=1 n=1

.
2y oy <[ (ke dp) e [ (F¥,,. dB) 1,

n=1 m=1

k k
=Y [IF*k, P de+ Y [IF*,|2 e
n=1

n=1

2 j G, dr, (8.3)

where

k
(F*kn’ F*lm)(kna lm): Z (F*Pklma F*lm)

1 m=1

||M*‘

Let P, =1— P, and notice that

Gl < | X IF*PL 17 [ X IF*L,01°

m=1 m=1

= 1F*Picll s |1 F* | s < | F 1 25
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and

k
Z |(F*P;(lm:F*lm)|
m=1
k k
> F*Pil, 12 [ X I1F*1,

m=1 m=1

SF*Plll s - 1F* | s

=] X NF*h, )17 IF| s
m=k+1

Therefore we are justified in applying the dominated convergence theorem
in Eq. (8.3) to find that

k
Gk_ Z (F maF l )

m=1

lim < Q"W — N> = [ (| F* |35+ [F* 35— 2 | F* |35} di=0.

k— o
Hence Q") — N —0 in probability which proves that | Fdp is basis
independent. Q.E.D.

THeOREM 8.5 (Itd’s Lemma). Suppose that K is a separable Hilbert
space, {F.},~o is an (W, {F} =0, F, P)-adapted and continuous process
with values in HS(H(g), K). Then

I

Proof. Let {k,}
Then

=2 L <F;“ jo Fdp, dﬁ(r)> + L IF. 12, d. (8.4)

be orthonormal basis for K and M, = j(F*kn, dp).

n—l

=¥ ([tFhndn ) = 5 a3

n=1

-y {ZIMndMn+<Mn>}

j (M, F*k,.df)+ Y [ IF*k,|* de

n=1

I|
H M8

8

wherein the third equality we used the Associativity Theorem 8.3.
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Let P, be orthogonal projection onto the subspace spanned by
{ki, ks, ... ky}. Then for any he Hy(g)

<h, F j PNFdﬂ> - <Fh, j Py F dﬂ)

_ <Fh, Y ky [ (PuF)* ko d))

n=1

% (ko FR) [ (F*k,, dB)= Y. M,(F*k,, h),

n=1

and hence

i j(M F¥k,, df) = lim Z j(M F*k,, df)

n=1 N—>ow 21

:Nlil“%f(F*fPNFdﬂ, dﬂ)- (8.6)

So to finish the proof it suffices to consider

<[ (F* [ Fap.as)~ [ (F* [ Prap.ap)>

2

F [ (I-Py) Fap
0 0

! 2
< IEI, (87)

(I-Py)
0

Since, |[(1— Py) Fh,|>< || Fh, | and 37, |Fh,|* = |F |35 < oo, it follows
by the dominated convergence theorem that

<f(1—PN)Fdﬁ>=fu(l—PN)Fni,SdHo as N— oo, (8.8)

and hence s(I — Py) Fdpf converges to zero uniformly on compacts in
probability. Therefore, the right side of Eq. (8.7) tends to zero as N — co.
This implies that | (F* | PyFdp, df)— | (F* [ Fdp, df) in probability as
N — 0. Equation (8.4) now follows from this limit and equations (8.5)
and (8.6). Q.E.D.

8.3. Backwards It6 Integrals

Let 7>0 be fixed. For the moment suppose that V' is a finite dimen-
sional vector space, {X(7)},~, is a continuous V-valued process and
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{A(#)},~ is continuous End(V')-valued process. Let 1 ={0=1,<1,<t, <
t,< .-+ <t,=T} denote a partition of [0, 7], |z| = max, |t,,, —1t,|. For
t=t;emn, let 1+ =1t,,,, be the successor to 7 in n. (By convention
t,.1=T.) Then the forward stochastic and respectively backwards
stochastic integral of A relative to X is

j’A dY= lim Y A1 A () =Xz A 1) (8.9)
0 7l = TET
and
fTA ax = lim Y AKXV (1) = Kz v 1), (8.10)

TET

provided that limits exists in probability uniformly for ¢ in [0, T]. For
example, if 4 and X are semi-martingales then the above limit exists and

ITA (d_ijTA dX+[TdA dx,

t t t

where |/ 4 X = ng;E’—j(’)A dX and

j'dAdXz lim Y (At A4 )— AD)X( A (14))— Xz A 1) (811)
0

|7Z"‘>0 TET

is the joint quadratic variation between 4 and X. Set A7(¢t)=A(T —1t),
XT(t)=X(T—1t)— X(T) and for each partition = of [0, T'] as above let 77
denote the partition

n"'={0=T—1,<T—t, < <T—1t,<T—t,=T}.
Noting that |z”| = |n| and
X(T—(T—t)A(t+) = X(T—(T—1t) A7)
=X(tv(T—1+))—X(t v (T—1)),

we have

jT”ATdXTE lim Y Y A(T—o)(X(T—(T—1) A (t+))

7| —>0 TEMTET

—X(T—(T—1) A 7))
=lim ) A(r+H)[X(tv1)—X(v1+)]

7l =0 .1

T
- —f A dX. (8.12)
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We will now use this last relationship as a definition for our infinite
dimensional backwards It integrals. We now formulate the precise defini-
tion that is used in the body of this paper. As in the last subsection let (%
{Z}.,~0, Z,P) be the filtered probability space and {f(7)},~, be the
Z(g)-valued Brownian motion as in the body of the text. Fix 7>0 and
set BT(t)=B(T—1t)—B(T) for te[0, T], #7 denote the completion of
the g-algebra generated by {S7(¢): 0<t< T } and Z be the o-algebra
generated by {B7(7):0<t<1} ={f( :T—t<t<T} augmented
by the null sets of F# 7.

DerINITION 8.6. Suppose that H(f) is a continuous (for simplicity)
H,(g)-valued process such that H(r) is # L _,-measurable. (Notice that
F 1._,is the o-algebra generated by { () — f(T): t <t < T} augmented by
the null sets of #7.) Then H™(t)=H(T—1t) is a continuous process
adapted to the filtration {#},.,., and we define, for 0<7r<T, the
backwards stochastic integral of H as

T T—1t r
|| (e dpe=~ [ T2, dp o)) (8.13)
t
Remark 8.7. Notice that the backward It6-integral defined in Eq. (8.13)
inherits the basis the L*isometry property from the forward Itd integral,
namely

T — 2 T
E“ (H(2), dﬁ(r))] —E [ |H0) dr (8.14)

provided the right side of Eq. (8.14) is finite.
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