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Integration by parts formulas are established both for Wiener measure on the
path space of a loop group and for the heat kernel measures on the loop group. The
Wiener measure is defined to be the law of a certain loop group valued ``Brownian
motion'' and the heat kernel measures are time t, t>0, distributions of this
Brownian motion. A corollary of either of these integrations by parts formulas is
the closability of the pre-Dirichlet form considered by B. K. Driver and T. Lohrenz
[1996, J. Functional Anal. 140, 381�448]. We also show that the heat kernel
measures are quasi-invariant under right under right and left translations by finite
energy loops. � 1997 Academic Press
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1. INTRODUCTION

Let G be a connected compact1 Lie group equipped with an AdG-
invariant inner product ( } , } ) on the Lie algebra (g#TeG ) of G. Let
L(G ) denote the space of continuous loops in G based at the identity.
Following Malliavin [17], a L(G )-valued processes [7t]t�0 is con-
structed; see Theorem 3.8. In Theorem 3.10 below this processes is shown
to satisfy the martingale characterization of a Brownian motion on L(G ).
Let &#Law(7( } )) and &T#Law(7T) so that & (Wiener measure) and &T

(heat kernel measure) are probability measures on the path space of L(G )
and L(G ), respectively. Two types of integration by parts formulas are
established.

The first integration by parts formula is for the measure & relative to a
certain class of vector fields on the path space. This version is an ``infinite''
dimensional version of the integration by parts theorem in Driver [4], see
Theorem 9.1 on p. 363.

The second is for the left-invariant first order differential operators on
L(G ). This version is a infinite dimensional analogue of the fact that heat
kernel on a finite dimensional Lie group has a logarithmic derivative. Of
course, the finite dimensional version follows from the fact that the heat
kernel measure is absolutely continuous relative to the Riemannian volume
measure and the Radon�Nikodym density is smooth and never zero.

In Driver and Lohernz [6], a Logarithmic Sobolev inequality for cylin-
der functions was proved on a loop group with the underlying reference
measure being the heat kernel measure &T . The Logarithmic Sobolev
inequality as stated in [6] is really a collection of Logarithmic Sobolev
inequalities for certain finite dimensional approximations to the Loop
group with the constants being independent of the approximation. A
corollary of either of the integrations by parts formulas in this paper is that
the pre-Dirichlet form considered in [6] is closable. This elevates the
Logarithmic Sobolev inequality in [6] to a truly infinite dimensional
inequality.

We will also show that the heat kernel measure &T is quasi-invariant
under right and left translations by ``finite energy'' loops in L(G ). This will
be done using an argument due to Cruzeiro [2] (see also Dennis Bell [1]
and Gunnar Peters [20, 21]) for proving quasi-invariance of flow from
integration integration by parts formulas.

471LOOP GROUP QUASI-INVARIANCE

1 To avoid certain technical complications, G is assumed to be compact in the body of this
paper. However, it would be possible to extend the results in this paper to the case where G
is a Lie group of compact type, i.e., G=K_Rd, where K is a compact Lie group and
d # [0, 1, 2, ...].
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1.1. Statement of Results

Let G be a compact Lie group, g#TeG be the Lie algebra of G, and
( } , } ) be an AdG invariant inner product on g. Let L=L(G ) denote the
based loop group on G consisting of continuous paths g : [0, 1] � G such
that g(0)= g(1)=e, where e # G is the identity element. Similarly, L(g)
will denote the continuous paths h : [0, 1] � g such that h(0)=h(1)=0.

Given h # L(g), define (h, h)=� if h is not absolutely continuous and
set (h, h)=�1

0 |h$(s)| 2 ds otherwise. Let

H0(g)#[h : [0, 1] � g | h(0)=h(1)=0 and (h, h)<�]. (1.1)

Hence H0(g)/L(g) is Hilbert space with inner product (h, k)=�1
0 (h$(s),

k$(s)) ds. The Hilbert space H0(g) is to be thought of as the Lie algebra of
L(G ). Using left translation, we may extend the inner product ( } , } ) to a
``Riemannian metric'' on the Cameron-Martin tangent space (TL) to L.
Explicitly,

TL#[X : [0, 1] � TG | %(X ) # H0(g)], (1.2)

where (%(X ) )(s)#%(X(s)) and % is the Maurer Cartan form on G, i.e.,
%(!) =Lg&1

*
! # g for all ! # Tg G and g # G. Let ? : TG � G denote the

projection of a tangent verctor in TG to its base point. Given g # L, the
tangent space to L at g is

TgL#[X # TL : ? b X=g]/TL.

The length (X, X ) of a tangent vector X # TL is now defined by

(X, X )#(%(X ) , %(X ) )H0(g) .

In this way, L is to be thought of as an infinite dimensional ``Riemannian''
manifold.

The Levi-Civita covariant derivative (D) acting on H0(g), which should
be identified with left-invariant vector fields on L, is determined by

(Dkh)(s)#|
s

0
[k(_), h$(_)] d_&s |

1

0
[k(_), h$(_)] d_, (1.3)

where h, k # H0(g). See Proposition 1.6 in Freed [10] and Definition 3.6
and Theorem 3.12 in Driver and Lohernz [6]. As for finite dimensional Lie
groups,2 Eq. (1.3) uniquely determines the Levi-Civita covariant derivative
{ acting on paths in TL. Namely, if t � X(t) is path in TL such that
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2 For the case of finite dimensional Lie groups see Section 6 in [5].
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h(t)#%(X(t)) # H0(g) and g(t)#? b X(t) # L are sufficiently smooth
paths, then Levi-Civita covariant derivative of X( } ) is

{X(t)�dt=Lg(t)*
[h4 (t)+D;4 (t) h(t)],

where ;4 (t)#%( g* (t)) # H0(g). In particular, parallel translation (��) along a
sufficiently smooth path t � g(t) # L(G ) is defined by ��t=Lg(t)*

U(t),
where U solves the ordinary differential equation,

dU(t)
dt

+D;4 (t) U(t)=0 with U(0)=IH0(g) . (1.4)

Let [;(t)]t�0 be an L(g)-valued Brownian motion with covariance
determined by Hilbert norm ( } , } ). A more precise description of ; is that
;=[;(t, s)]t�0, s # [0, 1] is a jointly continuous two parameter g-valued
Gaussian process with mean zero and covariance given by

E[(A, ;(t, s))(B, ;({, _))]=(A, B)(t 7 {)(s 7 _&s_),

where A, B # g, t, { # [0, �), s, _ # [0, 1], and s 7 _#min(s, _). (See
Section 3.1 for a more detailed discussion.) Following Malliavin [17],
we have the following theorem which is proved in Section 3 below, see
Theorem 3.8.

Theorem 1.1 (Brownian Motion on L). Given g0 # L(G ), there is a
jointly continuous solution 7(t, s) to the stochastic differential equation

7($t, s)=L7(t, s)*
;($t, s) with 7(0, s)=g0(s) \s # [0, 1], (1.5)

where for each fixed s # [0, 1], 7($t, s) and ;($t, s) denote the Stratonovich
differentials of the processes t � 7(t, s) and t � ;(t, s) respectively. (In the
sequel, for concreteness we will assume that 7 is the process defined in
Eq. (1.5) above with g0(s)#e for all 0�s�1.)

Notation 1.2. The Wiener space based on L=L(G ) is the set of paths

W(L)#[_ # C([0, �), L) : _(0)=e # L]. (1.6)

Similarly, let H(H0(g)) be the set of continuous functions h : [0, �) �
H0(g) such that h(0)=0 and there is a function h4 # L2([0, �), dt; H0(g))
such that h(t)=�t

0 h4 ({) d{ for all t # [0, �). (The integral is taken to be the
Bochner integral. As in the scalar valued case, one may show that such a
function h is absolutely continuous, the derivative of h exists for almost
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every t # [0, �), and dh(t)�dt=h4 (t) a.e.) Then H(H0(g)) becomes a Hilbert
space with inner product defined by

(h, k)H(H0(g))#|
�

0
(h4 (t), k4 (t))H0(g) dt

for all h, k # H(H0(g)).

Definition 1.3 (Cylinder Functions). A function f : L � R is said to be
a smooth cylinder function on L if f has the form

f (g)=F(g(s1), ..., g(sn)) (1.7)

for some partition P=[0<s1<s2< } } } <sn<1] of [0, 1] and some
F # C�(Gn). The collection of smooth cylinder functions on L will be
denoted by FC�(L). A function f : W(L) � R is said to be a smooth
cylinder function on W(L) if f can be written in the form

f (_)=F(_(t1 , s1), ..., _(tn , sn)) \_ # W(L), (1.8)

where F # C�(Gn) and [(ti , si)]n
i=1/[0, �)_(0, 1). The collection of

smooth cylinder functions on W(L) will be denoted by FC�(W(L)).

To simplify notation in the sequel we will let

gP#(g(s1), ..., g(sn)) (1.9)

when g # L and P=[0<s1<s2< } } } <sn<1]. With this notation
Eq. (1.7) may be written as f (g)=F(gP).

Theorem 3.10 below shows that the process 7t#7(t)#7(t, } ) # L(G )
deserves to be called Brownian motion on L(G ) starting at g0 . Let &
denote the law of [7(t, s)]t�0, s # [0, 1] and &T denote the law of 7T#
7(T, } ). Also let ��t be ``stochastic parallel translation'' along the Brownian
motion 7(t). In analogy to the smooth case as above, ��t#L7(t)*

U(t),
where U(t) is process taking values in the unitary group of H0(g) which
``solves'' the Stratonovich stochastic differential equation,

$U(t)+D;($t)U(t)=0, with U(0)=IH0(g) . (1.10)

See Theorem 4.1, Definition 4.2, Lemma 4.3 and the discussion at the
beginning of Section 4 for more details. The following integration by parts
theorem for W(L) is completely analogous to the well known integration
by parts theorem (see for example Theorem 9.1 in [4]) for the Wiener
space W(M) of compact Riemannian manifold M.
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Theorem 1.4 (Integration by Parts on W(L)). For each h # H(H0(g))
let X h denote the vector-field on W(L(G)) defined by

X h
t (7)=��th(t)=L7(t)*

U(t) h(t).

Then for all smooth cylinder functions f on W(L)

E[(X hf )]=E[ f (7(T)) zT (h)], (1.11)

where

(X hf )(7)#
d

du }0 f (7euXh(7)), (1.12)

and zT(h) is a random variable described in Eq. (4.17) below.

This theorem is proved in Section 4 using the method which has been
described in Hsu [12] and Sections 2 and 3 of Driver [5] when the loop
group is replaced by a finite dimensional Riemannian manifold, see
Theorems 4.10 and 4.12 below. The next theorem describes an integration
by parts formula for the left invariant vector fields on L.

Theorem 1.5 (Integration by Parts on L). Let t>0, h # H0(g), f be a
cylinder function on L, and h� f (g)#(d�dt)| 0 f (geth). (So h� is a first order left
invariant differential operator on L.) Define H({), { # [0, t], to be the solu-
tion to the Stratonovich stochastic differential equation:

dH({)+D$;({)H({)=0 with final data H(t)=h. (1.13)

(The precise meaning of this equation is explained in Theorem 6.1 below.)
Then

E[(h� f )(7t)]=
1
t

E _ f (7t) |
t

0 \{I&
1
2

{ Ric= H({)
�
d;({)+&, (1.14)

where
�
d; in Eq. (1.14) denotes the backwards stochastic differential and Ric

is the Ricci tensor on L. See Section 8.3 of the Appendix for a short review
of the backwards Itô integral and Definition 2.4 below for the meaning of the
Ricci tensor Ric.

Theorem 1.5 is a special case of Theorem 6.2 below. Theorems 1.5 and
6.2 turn out to be more delicate than Theorem 1.4. The proof is based on
Corollary 6.4 in Driver [5], which is a finite dimensional analogue to
Theorem 1.5. The basic idea of the proof is to apply Corollary 6.4 in [5]
to certain finite dimensional approximations to the loop group and then
to pass to the limit of finer and finer approximations. The necessary
geometry and estimates for the finite dimensional approximations, which
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are needed to carry out this limiting procedure, are developed in Section 5.
See in particular Theorems 5.8 and 5.10.

An application of either of the above integration by parts formulas is the
closability (see Theorem 4.14 below) of the symmetric pre-Dirichlet form
on L2(L(G), &T) defined as: D(E0)=FC�(L) and for f # D(E0),

E0( f, f )#|
L

&{9 f (g)&2
H0(g) &T (dg).

Here {9 f (g) denotes the gradient of f at g # L, i.e., {9 f (g) is the unique
element in H0(g) such that

({9 f (g), h)=(h� f )(g) \h # H0(g). (1.15)

A second application of Theorem 1.5 is the quasi-invariance of the heat
kernel measure &T under left and right translations by ``finite energy'' loops
in L(G ), see Corollary 7.7 and 7.10 in Section 7 below. The quasi-
invariance under right translations by finite energy loops will be proved
using the second integration by parts formula coupled with an argument
due to Cruzeiro [2] (see also Dennis Bell [1]) for proving quasi-
invariance of flows from integration by parts formulas. The quasi-
invariance under left translations by finite energy loops then follows
easily from the fact that &T is invariant under the transformation
g # L(G ) � g&1 # L(G ), see Proposition 7.9 below.

2. NOTATION AND PREREQUISITES

This section gathers some needed additional notation and results
from Driver and Lohrenz [6] and in Driver [5]. Let HS(H0(g))$
H0(g)*�H0(g) be the Hilbert Schmidt operators on H0(g), S0/H0(g) be
an orthonormal basis for H0(g) and g0/g be an orthonormal basis of g.
For A # g, let A� be the unique left invariant vector field on G such that
A� (e)=A. The following theorem may be found in Lemma 3.9 and
Theorem 3.12 of [6].

Theorem 2.1. For k # H0(g), let Dk : H0(g) � H0(g) denote the operator
defined in Eq. (1.3). We will also think of D as an operator from H0(g) �
HS(H0(g)) via (Dh) k#Dk h. Then D is a bounded operator such that

&D&2
op# sup

&h&H0(g)=1

:
k # S0

&Dkh&2<�

and Dk is skew adjoint operator on H0(g) for all k # H0(g).

476 BRUCE K. DRIVER
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If T is a Hilbert space, we will say that f : L � T is a smooth cylinder
function if f has the form

f (g)= :
n

i=1

fi (g) xi \g # L,

where fi # FC�(L) and xi # T. The set of smooth cylinder functions on L

with values in T will be denoted by FC�(L, T ). The left invariant vector
fields h� for h # H0(g) extend naturally to operators on FC�(L, T ), namely

h� f (g)#
d
dt } 0 f (geth).

Definition 2.2 (Covariant Derivative). Let h # H0(g). Define {h via:

1. if f # FC�(L), set {h f #h� f.
2. If f # FC�(L, H0(g)), set {h f #h� f +Dh f, where (Dh f )(g)#

Dh( f (g)).

3. If f # FC�(L, H0(g)*), set {h f #h� &Dtr
h f, where (Dtr

h f )(g)#
Dtr

h ( f (g)) and Dtr
h : H0(g)* � H0(g)* is the transpose of the operator Dh ;

i.e., Dtr
h l#l b Dh for l # H0(g)*.

Definition 2.3 (Laplacian). For f # FC�(L) or f # FC�(L, H0(g))
or f # FC�(L, H0(g)*), the Laplacian of f is defined by

2f # :
h # S0

{2
h f # :

h # S0

{h({h f ). (2.1)

The existence of the above sum is guaranteed by Proposition 4.19 of [6].
We now introduce the Ricci tensor on L, see Freed [10] and Driver and
Lohrenz [6] for more details and motivation. This tensor naturally
appears in all of the integration by parts formulas that we consider.

Definition 2.4 (Ricci Tensor). The Ricci tensor is the symmetric
quadratic form on H0(g) defined by

Ric(h, k) =&|
1

0
|

1

0
G0(_, s) K(h$(s), k$(_)) d_ ds \h, k # H0(g), (2.2)

where G0(_, s)#_ 7 s&s_ and

K(B, C) # :
A # g0

(adAB, adAC) =&tr(adBadC),
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for all B, C # g. That is K is the negative of the Killing form on g. We will
also view Ric as a bounded symmetric linear operator on H0(g), explicitly
(Ric h, k)=Ric(h, k).

The following theorem summarizes the properties of the gradient
(defined in Eq. (1.15)), the Laplacian and the Ricci tensor that we will need
in the sequel.

Theorem 2.5. Let f # FC�(L), be given as in Eq. (1.7), then

2f (g)= :
A # g0

:
n

i, j=1

G0(si , sj)(A(i )A( j )F )(g(s1), ..., g(sn)), (2.3)

and

{9 f (g)= :
A # g0

:
n

i=1

(A(i )F )(gP) G0(si , } ) A, (2.4)

where for A # g, A(i ) is the left invariant vector-field on Gn defined by

(A(i )F )(g1 , ..., gn)#
d
d= } 0 F(g1 , ..., gi&1 , gi e=A, gi+1 , gn). (2.5)

(As above, g0/g is an orthonormal basis of g.)
The Bochner Wietzenbock formula in this context is

([2, {9 ] f )#2{9 f &{9 2f =Ric {9 f. (2.6)

If H0(g) is viewed as the subspace of constant functions in FC�(L, H0(g)),
then

2(1)#2| H0(g)= :
k # S0

D2
k .

This sum is strongly convergent and 2(1) is a bounded self-adjoint operator
on H0(g).

Proof. See [6] Proposition 4.19 for Equation (2.3), Theorem 4.26 for
Eq. (2.6), and Lemma 4.20 for the assertions concerning 2(1). Equa-
tion (2.4) is easily checked using the definition of {9 f in Eq. (1.15) and the
reproducing kernel property of G0 , see Eq. (3.11) in [6] or the discussion
preceding Eq. (3.3) below. Q.E.D.
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3. BROWNIAN MOTION ON LOOP GROUPS

Let L(g)#[x # C([0, 1] � g | x(0)=x(1)=0] be the continuous based
loops in g. It is well known that (H0(g), L(g)) is an abstract Wiener space
as introduced by Gross in [11]. As usual in the abstract Wiener space
setting, we have L(g)*/H0(g)*$H0(g)/L(g). Let us recall the explicit
description of L(g)* in H0(g)*.

To this end we will say, for h # H0(g), that h$ is of bounded variation if
there is a right continuous function (*) of bounded variation such that
h$(s)=*(s) a.e.. Let

H BV
0 #[h # H0 | h$ is of bounded variation].

Now suppose that k # H0(g), then by an integration by parts (see for
example Theorem 3.30 of [9])

(h, k)=|
1

0
(h$(s), k$(s)) ds=|

1

0
(*(s), dk(s))=&|

1

0
(k(s), d*(s)). (3.1)

In the future we will abuse notation and write �1
0 (k(s), dh$(s)) for �1

0 (k(s),
d*(s)).

Lemma 3.1. For each h # H BV
0 and x # L(g) let :h(x)#&�1

0 (x(s),
dh$(s)). Then the map h # H BV

0 � :h # L(g)* is an isomorphism. Moreover
:h(k)=(h, k) for all k # H0(g).

Proof. The last assertion of the Lemma clearly follows from (3.1). Now
suppose that :h#0 then 0=:h(k)=(h, k) for all k # H0(g) which implies
that h=0 in H0(g). Therefore h � :h is injective.

Since L(g)*/H0(g)*, for : # L(g)* there exists h # H0(g) such that
:(k)=(h, k) for all k # H0(g). Since H0(g) is dense in L(g), if we can show
that h # H BV

0 , it will follow that :=:h . Hence the map h � :h is surjective.
Noting that L(g) is a closed subspace of C([0, 1], g), the Hahn-Banach

theorem asserts that : has an extension (:~ ) to a bounded linear functional
on C([0, 1], g). By the Riesz theorem (e.g., Theorem 7.17 of [9]) there is
a g-valued measure + such that

:~ (x)=|
1

0
(x(s), +(ds)) \x # C([0, 1], g).

Define *(s)#+([0, s]) # g for s # [0, 1]. Then * is of bounded variation
and we have

:(x)=|
1

0
(x(s), d*(s)) \x # L(g).
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Restricting this last identity to k # H0(g) and then doing an integration by
parts shows that

|
1

0
(h$(s), k$(s)) ds=(h, k)=:(k)=|

1

0
(k(s), d*(s))

=&|
1

0
(*(s), k$(s)) ds.

Since [k$ # L2([0, 1], g) | k # H0(g)] is the orthogonal compliment of
the constant functions in L2([0, 1], g) the above equation implies that
h$(s)=*(s)&�1

0 *(s) ds a.e. This proves that h # H BV
0 . Q.E.D.

Notation 3.2. In the sequel, we will write (h, x) instead of :h(x) when
h # H BV

0 and x # L(g)*.

3.1. L(g)-Valued Brownian Motion

Let G denote the smallest _-field on L such that all of the smooth
cylinder functions in FC�(L) are measurable. For the sequel, fix a filtered
probability space (W, [Ft]t�0 , F, P) and a L(g)-valued process [;(t)]t>0

on W with the following properties:

1. Ft/Ft$/F for all 0�t�t$.

2. Ft is right continuous, i.e., Ft=Ft+#�=>0 Ft+= ,

3. F0 contains all of the null sets of F,

4. for all | # W, the map t # [0, �) � ;(t)(|) # L(g) is continuous.

5. ;(t) is Ft �G-measurable for all t�0, and

6. [;(t)]t�0 is a mean-zero Gaussian process with convariance,

E[(h, ;(t))(k, ;({))]=t 7 {(h, k), (3.2)

where h, k # H BV
0 and t, { # [0, �).

We say that such a process [;(t)]t�0 is a L(g)-valued Brownian motion.

Remark 3.3. The existence of an L(g)-valued Brownian motion ;(t) is
well known. In fact, it is known more generally that Brownian motions
exist on arbitrary abstract Wiener spaces. One possible construction is to
first use Kolomogorov's existence theorem to construct a Brownian motion
;� (t) satisfying all of the properties above except for the continuity. Then by
Fernique's theorem (e.g., Theorem 3.1 of Kuo [15]) and scaling it can be
seen that Kolomogorov's continuity criteria may be applied to yield a
version ;(t) of ;� (t) which is : holder continuous for all : # (0, 1�2).
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Suppose that h(s)#G0(s, u) A where A # g and as above G0(s, u)=
s 7 u&su. Then for x # L(g)

(h, x)=&|
1

0
(x(s), dh$(s))=&|

1

0
(x(s), A) ds[1s�u&u]

=&|
1

0
(x(s), A)(&$u(ds))=(x(u), A) ,

where $u is the Dirac measure concentrated at u. Let k(s)#G0(s, v) B.
Notice that (h, k)=(A, B) G0(u, v).

Write ;(t, s) for the g-valued random variable determined by ;(t, s)(|)
#;(t)(|)(s). Using the previous paragraph and (3.2), for all A, B # g and
t, { # [0, �) with t�{,

E[(A, ;(t, u))(B, ;({, v))]

=E[[(A, ;({, u))+(A, ;(t, v)&;({, u))](B, ;({, v))]

=E[(A, ;({, u))(B, ;({, v))]

=(A, B) {G0(u, v)

=(A, B)(t 7 {) G0(u, v). (3.3)

For each h # H0(g) and t�0, let

(h, ;(t))#L2- lim
n � �

(hn , ;(t)),

where [hn]/H BV
0 and hn � h in H0(g) as n � �. Then it is easily checked

that t � (h, ;(t)) is a (not necessarily continuous) Brownian motion
with variance (h, h). Let ;h(t) denote a continuous version of (h, ;(t)).
Such a version exists by Kolomogorov's continuity criteria. Then ;h is a
Brownian motion with variance (h, h) on the filtered probability space
(W, [Ft], F, P). The next Lemma records the mutual quadratic variation
O;h, ;ko for h, k # H0(g).

Lemma 3.4. For each h, k # H0(g),

O;h, ;kot=(h, k) t a.s.

Proof. Decompose h as h=:k+ j, where j = k and (h, k)=:(k, k).
Then ;h is indistinguishable from :;k+; j. Since the pair [; j, ;k] is a
Gaussian process and

E(; j(t) ;k({))=t 7{( j, k)=0,
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it follows that ; j and ;k are independent Brownian motions. Hence

O;h, ;kot=:O;k, ;kot+O; j, ;kot=:(k, k) t+0=(h, k) t. Q.E.D.

Corollary 3.5. Let u, v # [0, 1] and A, B # g, then

O(A, ;( } , u)) , (B, ;( } , v))ot=t(A, B) G0(u, v). (3.4)

Proof. Take h=G0( } , u) A and k=G0( } , u) B in Lemma 3.4 and use
(h, k)=(A, B) G0(u, v). Q.E.D.

3.2. L(G )-Valued Brownian Motion

Notation 3.6. Given an L-valued process [7(t)]t�0 on W, let
7(t, s)(|)#7(t)(|)(s). In this way we will identify L-valued processes on
W with two parameter G-valued processes.

In preparation for proving the existence of a ``Brownian Motion'' on
L(G ), we will introduce a metric on G.

Definition 3.7. The distance metric d : G_G � G is defined by

d(g, h)=inf |
1

0
|_$(s)| ds,

where the infimum is taken over all C1-paths _ in G such that _(0)=g and
_(1)=h. Also set

|g|=* d(g, e) \g # G.

Notice that

d(xg, xh)=d(g, h)

for all g, h, x # G. Indeed, if _ is a curve joining g to h, then x_( } ) is a curve
joining xg to xh which has the same length as _. Set |g|#d(g, e)=d(e, g),
then because of the above displayed equation,

d(g, h)=|g&1h|=|h&1g|.

Setting h=e in this equation shows that |g|=|g&1| for all g # G.
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The next theorem is stated in Malliavin [17]. For the readers con-
venience we will supply a proof.

Theorem 3.8 (Malliavin). Suppose that G is a compact Lie group and
( } , } ) is an AdG invariant inner product on g. There exists a continuous
adapted process [7(t)]t�0 on the filtered probability space (W, [Ft]t�0 ,
F, P) such that for each s # [0, 1], 7( } , s) solves the stochastic differential
equation:

7($t, s)=7(t, s) ;($t, s) with 7(0, s)=g0(s). (3.5)

More precisely, Eq. (3.5) is shorthand notation for the stochastic differential
equation

7($t, s)= :
A # g0

A� (7(t, s)) ;A($t, s) with 7(0, s)=g0(s), (3.6)

where g0/g is an orthonormal basis of g, A� is the left invariant vector field
on G such that A� (e)=A, and ;A(t, s)#(A, ;(t, s)) . Here ;A($t, s) denotes
the Stratonovich differential of the process t � ;A(t, s). In the sequel, we will
use ``$'' for Stratonovich differential and ``d '' for the differential of a semi-
martingale.

Before starting the proof of this theorem, let us recall the following easy
lemma.

Lemma 3.9. Let M and N be two finite dimensional manifolds, [Xi]n
i=1

and [Yi]n
i=1 be a collection of smooth vector fields on M and N respectively,

and b(t)=(b1(t), b2(t), ..., bn(t)) ( for t�0) be an Rn-valued continuous semi-
martingale. (As usual b is defined on a filtered probability space satisfying
the usual hypothesis.) Suppose that x and y are semi-martingales on M and
N which satisfy the stochastic differential equations,

$x= :
n

i=1

Xi (x) $bi and $y= :
n

i=1

Yi ( y) $bi ,

respectively. Then (x, y) is a M_N-valued semi-martingale satisfying the
stochastic differential equation

$(x, y)= :
n

i=1

(X� i (x, y)+Y� i (x, y)) $bi ,

where X� i and Y� i are the smooth vector fields on M_N defined by X� i (x, y)#
(Xi (x), 0y) and Y� i (x, y)#(0x , Yi (y)). Here 0x and 0y denote the zero
tangent vectors in TxM and TyM respectively.
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Proof. Let z be the M_N-valued semi-martingale which solves the
stochastic differential equation,

$z= :
n

i=1

(X� i (z)+Y� i (z)) $bi with z(0)=(x(0), y(0)). (3.7)

To finish the proof it suffices to show that z=(x, y).
Define ?1: M_N � M and ?2 : M_N � N to be projections onto the

first and second factor of M_N respectively and zi#?i (z). If f # C�(M )
then f b ?1 # C�(M_N ). So by definition of z solving Eq. (3.7), we have

$( f b ?1(z))= :
n

i=1

[(X� i (z)+Y� i (z))( f b ?1)] $bi .

Now X� i (z)( f b ?1)=(?
*

X� i (z)) f =Xi (zi) f and similarly Y� i (z)( f b ?1)=
(?

*
Y� i (z)) f =0. Therefore, the last displayed equation may be written as

$( f (z1))= :
n

i=1

[Xi (z1) f ] $bi ,

i.e., z1 is a semi-martingale on M solving the stochastic differential
equation,

$z1= :
n

i=1

Xi (z1) $bi with z1(0)=x(0).

Since this is the same equation solved by x it follows by uniqueness of
solutions that z1=x. The same argument also shows that z2=y. That is
(x, y)=z. Q.E.D.

Proof of Theorem 3.8. For the purposes of the proof we will adopt the
following notation. If f # C�(G ), let f $ # C �(G, g*) be defined by

f $(g)(A)=df(A� (g))=
d
dt } 0 f (getA)

and let

2G f # :
A # g0

A� 2f.
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We also start with the special case where g0(s)#e for all s # [0, 1]. For
each s # [0, 1], let 70( } , s) be a solution to the stochastic differential equa-
tion in Eq. (3.5) (or equivalently Eq. (3.6)) with initial condition 70(0, s)=
g0(s)#e # G. (For the existence of solutions to this equation see for
example [8, 13, 14].) In this way we construct a G-valued two parameter
process 70(t, s). Our immediate goal is to show that there exists a con-
tinuous version (7(t, s)) of this process.

For the moment, fix { # [0, �) and let u(t)#70({, s)&1 70(t, s) for t�{.
Then u({)=e # G and u solves the stochastic differential equation,

$u(t)=L70({, s)&1
*

:
A # g0

A� (7 0(t, s)) ;A($t, s)

= :
A # g0

A� (70({, s)&1 7 0(t, s)) ;A($t, s)

= :
A # g0

A� (u(t)) ;A($t, s),

wherein we have used the left invariance of A� along with Eq. (3.6). So if
f # C�(G ) such that f (e)=0, then using Corollary 3.5 we find for all t�{
that

f (u(t))=f (u({))+|
t

{
:

A # g0

(A� f )(u(r)) ;A($r, s)

=|
t

{
:

A # g0

(A� f )(u(r)) ;A(dr, s)+
1
2 |

t

{
:

A # g0

(A� 2f )(u(r)) G0(s, s) dr

=|
t

{
:

A # g0

(A� f )(u(r)) ;A(dr, s)+
G0(s, s)

2 |
t

{
(2f )(u(r)) dr.

For any p # [2, �) and t�{, it follows from Burkholder's inequality that

E | f (u(t))| p�Cp( f ) E {|
t

{
| f $(u(r))| 2 G0(s, s) dr=

p�2

+Cp( f ) E } |
t

{
2G f (u(r)) G0(s, s) dr }

p

�Cp( f )[(t&{) p�2+(t&{) p], (3.8)
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where Cp( f ) denotes a constant depending only on p and bounds on f $ and
2G f. Let [ fi]n

i=1/C �(G ) be a suitable collection of functions such that
fi (e)=0 for all i and

|g| :=d(g, e)� :
n

i=1

| fi (g)| \g # G,

cf., the Whitney imbedding theorem. This equation and Eq. (3.8) implies,
for all t�{ and all s # [0, 1], that

E[d(7 0(t, s), 70({, s))] p=E |70({, s)&1 70(t, s)| p=E |u(t)| p

�Cp[(t&{) p�2+(t&{) p],

where Cp#n( p&1) �n
i=1 Cp( fi). So we have proven for all s # [0, 1] and

t, { # [0, �) that

E[d(70({, s), 70(t, s))] p�Cp[ |t&{| p�2+|t&{| p]. (3.9)

Now fix s, _ # [0, 1], and set u(t)#70(t, s) 70(t, _)&1. In the case that
G is a matrix group, we may compute du(t) to find

du(t)=70(t, s)[;($t, s)&;($t, _)] 70(t, _)&1

=u(t) B($t),

where

B(t)=|
t

0
Ad70({, _)[;(${, s)&;(${, _)]. (3.10)

To prove the analogous formula in the general case we will use
Lemma 3.9. To this end let f # C�(G) and F(g, k)# f (gk&1) so that
f (u(t))=F(70(t, s), 7 0(t, _)). For A # g, we have

d
d= } 0 F(ge=A, k)=

d
d= }0 f (gk&1ke=Ak&1)=

d
d= } 0 f (gk&1e=Adk A)

=((AdkA� ) f )(gk&1)

and, by essentially the same computation,

d
d= } 0 F(g, ke=A)=&((Adk A� ) f )(gk&1).
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therefore,

d[ f (u(t))]= :
A # g0

((Ad70(t, _) A� ) f )(u(t)) } (;A($t, s)&;A($t, _))

= :
A, C # g0

(Ad70(t, _) A, C)(C� f )(u(t)) } ( ;($t, s)&;($t, _), A)

= :
C # g0

(C� f )(u(t)) } (Ad70(t, _)(;($t, s)&;($t, _)), C)

= :
C # g0

(C� f )(u(t)) $BC(t),

where B is the process defined in Eq. (3.10).
We now claim that B may be expressed as

B(t)=|
t

0
Ad70({, _)[;(d{, s)&;(d{, _)]. (3.11)

The main point here is that

dt(Ad70(t, _))= :
A # g0

(A� Ad( } ))(7 0(t, _)) $;A(t, _)

= :
A # g0

Ad70(t, _)adA $;A(t, _).

Using this equation we find

B(t)=|
t

0
Ad70({, _)[;(d{, s)&;(d{, _)]

+ 1
2 |

t

0
:

A # g0

Ad70(t, _)adA[;(d{, s)&;(d{, _)] ;A(d{, _)

from which Eq. (3.11) follows because

:
A # g0

adA[;(d{, s)&;(d{, _)] ;A(d{, _)

= :
A, C # g0

adA C } d{O[;C( } , s)&;C( } , _)], ;A( } , _)o{

= :
A # g0

adAA } (G0(s, _)&G0(_, _)) d{=0.
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Since Adg : g � g acts isometrically for all g # G, we conclude from
Eq. (3.11) that B(t) is again a Brownian motion with the same covariance
as the Brownian motion t � ;(t, s)&;(t, _). This covariance is

E[(;(t, s)&;(t, _))� (;(t, s)&;(t, _))]#tF(s, _) I,

where I#�A # g0
A�A # g�g and F(s, _)#G0(s, s)+G0(_, _)&2G0(s, _).

Notice for each fixed _ # [0, 1] that s � F(s, _) is a piecewise C1-function
such that F(_, _)=0 and

|�F(s, _)��s|=|1&2s&2(1s�_&_)|�4.

Therefore

F(s, _)�4 |s&_|, \s, _ # [0, 1].

By computations similar to those which lead to Eq. (3.8), if f # C�(G )
and f (e)=0, then

E | f (u(t))| p�Cp E {|
t

0
| f $(u({))| 2 F(s, _) d{=

p�2

+CpE } |
t

0
2G f (u({)) F(s, _) d{ }

p

�Cp( f )[(tF(s, _)) p�2+(tF(s, _)) p],

where Cp( f ) denotes a constant depending only on p and the bounds on
f $ and 2G f as above. As in the proof of Eq. (3.9), we may conclude

E[d(70(t, s), 7 0(t, _))] p=E |70(t, s)&1 7 0(t, _)| p=E |u(t)| p

�Cp[(tF(s, _)) p�2+(tF(s, _)) p]

�Cp[(t |s&_| ) p�2+(t |s&_| ) p], (3.12)

where Cp is a constant only depending on p and the compact group G.
The triangle inequality and the estimates in (3.9) and (3.12) yields

E[d(70(t, s), 7 0({, _))] p

�Cp[t |s&_| p�2+(t |s&_| ) p+|t&{| p�2+|t&{| p],

where Cp is a constant dependig only on p and the compact group G.
Consequently, for each T # (0, �), there is a constant Cp(T ) such that

E[d(70(t, s), 70({, _))] p�Cp(T )[ |s&_| p�2+|t&{| p�2],
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for all s, _ # [0, 1] and t, { # [0, T ]. Hence, by Kolmogorov's continuity
criteria (see for example Theorem 1.4.4 of Kunita [14] and Theorem 53,
Chapter 4 of Protter [22]) there is a continuous version (7(t, s)) of
70(t, s) such that for all ; # (0, 1�2) there exists a positive random variable
(K;) on W such that

d(7(t, s), 7({, _))�K;[ |t&{| ;+|s&_| ;] a.s. (3.13)

Furthermore, EK p
;<� for all p # (1, �). Since, for each s # [0, 1], 7( } , s)

is a version of 7 0( } , s), it follows that 7 satisfies all the hypothesis of the
theorem when g0(s)=e.

For the general case let 7 be as in the special case just proved and define
7� (t, s)#g0(s) 7(t, s). Then [7� (t)]t�0 is a continuous adapted L-valued
process satisfying the differential equation in Eq. (3.5). Q.E.D.

3.3. Generator of the Process 7

The next theorem shows that the L(G)-valued process 7(t) constructed
above satisfies the standard martingale criteria of a Brownian motion. For
this reason 7(t) deserves to be called an L(G )-valued Brownian motion.

Theorem 3.10. Let P=[0<s1<s2< } } } <sn<1] be a partition on
[0, 1], G P be the set of functions from P to G, 7(t) be the L-valued process
in Theorem 3.8 and f : [0, T ]_L � R be a function of the form f (t, g)=
F(t, gP). Assume that F : [0, T ]_GP � R is a continuous function
satisfying:

1. F | (0, T )_GP is smooth and

2. The derivatives of F | (0, T )_G P up to second order extend to
continuous functions on [0, T ]_G P.

Then

f (t, 7(t))= f (0, 7(0))+Mt+|
t

0 \\
�
�{

+
1
2

2+ f ({, } )+ (7({)) d{,

where Mt is the martingale:

Mt= :
n

i=1

:
A # g0

|
t

0
(A(i )F )({, 7P({))( ;(d{, si), A)

=|
t

0
(({9 f )({, 7({)), ;(d{)).
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Proof. Set

7P(t)#(7(t)P)=(7(t, s1), ..., 7(t, sn)).

Then, by Lemma 3.9, 7P(t) # Gn satisfies the stochastic differential
equation

$7P(t)= :
n

i=1

:
A # g0

A(i )(7P(t))( ;($t, si), A), (3.14)

where for A # g, A(i ) is defined in Eq. (2.5).
Equations (3.4) and (2.3) allows us to compute, using Itô's lemma in

finite dimensions, the differential of f (t, 7(t)) as

d[ f (t, 7(t))]

=�f (t))��t+ :
n

i=1

:
A # g0

(A(i )F )(t, 7P(t))( ;($t, si), A)

=�f (t, 7(t))��t+ :
n

i=1

:
A # g0

(A(i )F )(t, 7P(t))( ;(dt, si), A)

+ 1
2 :

n

i=1

:
A # g0

:
n

j=1

:
B # g0

(B( j )A(i )F )(t, 7P(t))( ;(dt, si), A)( ;(dt, sj), B)

=dMt+�f (t, 7(t))��t+ 1
2 :

n

i=1

:
A # g0

:
n

j=1

(A( j )A(i )F )(t, 7P(t)) G0(si , sj) dt

=dMt+�f (t, 7(t))��t+ 1
2(2f )(t, 7(t)) dt.

In the above computation we have used ( ;(t, s), A)=;G0(s, } ) A(t), see the
proof of Corollary 3.5, and Eq. (2.4) to conclude that

:
n

i=1

:
A # g0

(A (i )F )(t, 7P(t))( ;(dt, si), A)=({9 f (t, 7(t)), d;(t)). Q.E.D.

Notation 3.11. For definiteness, in the remainder of this paper let
[7(t)]t�0 denote the L(G ) valued process constructed in Theorem 3.8
with g0(s)#e for all s # [0, 1].
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By the proof of Theorem 3.10, if F # C�(G P) then

dF(7P(t))= :
n

i=1

:
A # g0

(A(i )F )(7P(t))( ;(dt, si), A)

+ 1
2 :

A # g0

:
n

i, j=1

(A( j )A(i )F )(7P(t)) G0(si , sj) dt.

Thus 7P(t) is a diffusion process on G P with generator

2P# 1
2 :

A # g0

:
n

i, j=1

G0(si , sj) A( j )A(i ). (3.15)

Lemma 3.12. Let P=[0<s1<s2< } } } <sn<1] be a partition of
[0, 1], then the matrix [G0(si , sj)]n

i, j=1 is positive definite. In particular 2P

is a second order elliptic differential operator on G P.

Proof. Let H0(R) be the set of absolutely continuous functions
l : [0, 1] � R such that l(1)=l(0)=0 and (l, l )#�1

0 (l $(s))2 ds<�. Choose
an orthonormal basis h of H0(R). Then by Lemma 3.8 of [6], G0(s, _)=
�l # h l(s) l(_) with the sum being absolutely convergent therefore, if
!=(!1 , !2 , ..., !n) # Rn,

:
n&1

i, j=1

G0(si , sj) !i !j= :
n&1

i, j=1

:
l # h

l(si) l(sj) !i !j= :
l # h

_ :
n&1

i=1

l(si) !i&
2

�0

with equality iff �n&1
i=1 l(si) !i=0 for all l # h. Since h is an orthonormal

basis for H0(R) and the map l # H0(R) � l(s) # R is a continuous linear
functional, the condition �n&1

i=1 l(si) !i=0 for all l # h, is equivalent to
�n&1

i=1 l(si) !i=0 for all l # H0(R). Choosing l # H0(R) such that l is nonzero
on exactly one of the partition points in P allows us to conclude that
�n&1

i, j=1 G0(si , sj) !i !j=0 iff !=0. Q.E.D.

Before ending this section let us record a slight extension of
Theorem 3.10 which will be needed in the sequel. (The proof will be left to
the reader.) We will first need the following definition.

Definition 3.13. Given a Hilbert space T, let {0 denote the ``flat''
covariant derivative on FC�(L, T ) defined by {0

h f #h� f for all f #
FC�(L, T ) and h # H0(g). Let 20 denote the ``flat'' Laplacian on
FC�(L, T ) defined by

20f # :
h # S0

({0
h)2 f = :

h # S0

h� 2f.
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Theorem 3.14. Suppose that T is a Hilbert space and f : [0, T ]_
L(G ) � T is a function of the form f =�n

i=1 fi !i where fi : [0, T ]_
L(G ) � T are functions satisfying the assumptions in Theorem 3.10 and
!i # T for i=1, 2, ..., n. Then

d( f (t, 7(t)))=({0
d;(t) f )(7(t))+\\ �

�t
+

1
2

20+ f + (t, 7(t)) dt. (3.16)

4. INTEGRATION BY PARTS ON THE PATH SPACE OF L(G )

In this section, integration by parts formulas on the path space of the
loop group are derived. As a corollary we will show that the pre-Dirichlet
form introduced in Driver and Lohrenz [6] is closable. Before doing this
however, it is first necessary to discuss parallel translation (��t) along the
Brownian motion 7(t). Pretending for the moment that L(G ) is a finite
dimensional Lie group, ��t k0=L7(t)*

k(t), where k(t) is the solution to the
stochastic differential equation,

dk(t)+D$;(t)k(t)=0 with k(0)=k0 , (4.1)

where $; denotes the Stratonovich differential of ;. For motivation, see
Theorem 6.3 in [5]. Formally, writting ``;=�h # S0

;hh,''

D$; k=Dd; k+ 1
2 Dd; dk=Dd; k& 1

2 Dd; Dd; k

=Dd; k& 1
2 :

h # S0

Dh Dh k dt

=Dd; k& 1
2 2(1)k dt.

Hence we should interpret Eq. (4.1) as the Itô equation,

dk(t)=&Dd;(t)k(t)+ 1
2 2(1)k(t) dt with k(0)=k0 . (4.2)

See the Appendix (Section 8) for a review of the Itô integral in this context.

4.1. Parallel Translation

Theorem 4.1 (Parallel Translation). For each k0 # H0(g), there exists a
unique solution to Eq. (4.2). Moreover if h0 # H0(g) and h is the solution to
Eq. (4.2) with k and k0 replaced by h and h0 respectively, then for all t�0,
(h(t), k(t))=(h0 , k0) alomost surely.
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Proof. Eq. (4.2) may be solved using the usual Picard iterates scheme.
Recall that 2(1)=2 | H0(g) is a bounded operator and notice that

E "|
t

0
D;(d{) k({)"

2

=E |
t

0
:

h # S0

&Dhk&2 d{�&D&2
op E |

t

0
&k&2 d{

when [k(t)]t�0 is a continuous adapted H0(g)-valued process such that
E �t

0 &k&2 d{<�.
To simplify notation, if f is a possibly random function on [0, �) taking

values in a normed space T, let f *(t)#sup[& f ({)& : 0�{�t]. If

kn(t)#k0&|
t

0
D;(d{)kn&1({)+ 1

2 |
t

0
2(1)kn&1({) d{, (4.3)

then

kn+1(t)&kn(t)=&|
t

0
D;(d{)(kn({)&kn&1({))

+ 1
2 |

t

0
2(1)(kn({)&kn&1({)) d{.

Hence using Burkholder's inequality

E(kn+1&kn)*2 (t)�2E \|
}

0
D;(d{)(kn({)&kn&1({))+*2

(t)

+
t
2

&2(1)&2
op |

t

0
E(kn&kn&1)*2 ({) d{

�4 &D&2
op |

t

0
E &kn({)&kn&1({)&2 d{

+
t
2

&2(1)&2
op |

t

0
E(kn&kn&1)*2 ({) d{

�4 &D&2
op |

t

0
E(kn&kn&1)*2 ({) d{

+
t
2

&2(1)&2
op |

t

0
E(kn&kn&1)*2 ({) d{

=\4 &D&2
op+

t
2

&2 (1)&2
op+ |

t

0
E(kn&kn&1)*2 ({) d{.
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Fix T > 0 and let KT # (4 &D&2
op + (T�2) &2(1)&2

op), and fn(t) =
E(kn&kn&1)*2 (t). Then for 0�t�T,

fn+1(t)�KT |
t

0
fn({) d{

which implies after iteration that

fn(t)�
(KT t)n

n !
f 0*(T ).

Thus ��
n=0 f n*(T )� f 0*(T ) } exp(KT T ), from which we learn that kn(t) is

L2-uniformly convergent for t in compact subsets of [0, �) to a continuous
process, say k(t). Passing to the limit in Eq. (4.3) shows that k solves,

k(t)#k0&|
t

0
D;(d{)k({)+ 1

2 |
t

0
2(1)k({) d{. (4.4)

Let k be as above and h(t) be a solution to Eq. (4.2) (or equivalently
(4.4)) with h(0)=h0 and set Ft l#&Dl h(t) and Gt l#&Dl k(t) for all
l # H0(g). Then

dh(t)=Ft d;(t)+ 1
2 2(1)h(t) dt

and

dk(t)=Gt d;(t)+ 1
2 2(1)k(t) dt.

Therefore by Itô's Lemma, see Theorem 8.5 of the Appendix,

d(h(t), k(t))=(F t*k(t), d;(t))+ 1
2 (2(1)h(t) dt, k(t))

+(Gt*h(t), d;(t))+ 1
2(h(t), 2(1)k(t) dt)

+(Ft , Gt) HS dt,

where, for all u, v # HS(H0(g))$H0(g)*�H0(g) (the Hilbert Schmidt
operators on H0(g)) and

(u, v)HS# :
h # S0

(uh, vh). (4.5)

494 BRUCE K. DRIVER



File: 580J 310326 . By:DS . Date:10:09:97 . Time:10:32 LOP8M. V8.0. Page 01:01
Codes: 2279 Signs: 992 . Length: 45 pic 0 pts, 190 mm

For all l # H0(g),

(Ft*k(t), l )+(Gt*h(t), l )=(k(t), Ftl )+(h(t), Gtl )

=(k(t), &Dl (t))+(h(t), &Dl k(t))=0,

since Dl is skew adjoint. Also

(Ft , Gt)HS= :
l # S0

(Ft l, Gtl )= :
l # S0

(Dl h(t), Dl k(t))

= :
l # S0

(h(t), &D2
l k(t))=&(h(t), 2(1)k(t)).

Combining the last four equations and using 2(1) is self-adjoint shows that
d(h(t), k(t))=0. Q.E.D.

Definition 4.2. Let O(H0(g)) be the group of unitary operators on
H0(g) and U(t) be the O(H0(g))-valued process defined by

U(t) h0# :
k0 # S0

(k0 , h0) k(t) for all h0 # H0(g), (4.6)

where for each k0 # S0 , k(t) is the solution to (4.2) with k(0)=k0 .

Lemma 4.3. Suppose that h0 # H0(g) and h(t)#U(t) h0 , then h is a solu-
tion to (4.2) with h(0)=h0 . Moreover, t � U(t) is a.s. strongly continuous.

Proof. Let [Sn] be an increasing sequence of finite subsets of S0 such
that � Sn=S0 . Set

Hn(t)# :
k0 # Sn

(k0 , h0) k(t),

so that

&(U(t) h0&Hn(t)&2=" :
k0 # S0"Sn

(k0 , h0) k(t)"
2

= :
k0 # S0"Sn

|(k0 , h0)|2

which tends to zero uniformly in t as n � �. This shows that U(t) h0 is
continuous, i.e., U(t) is strongly continuous.
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Let h(t) denote the solution to (4.2) with h(0)=h0 . In order to prove
that U(t) h0 solves Eq. (4.2) with initial condition h0 , it suffices to show
that U(t) h0=h(t) or equivalently that

lim
n � �

E &Hn(t)&h(t)&2=0.

Now it is clear that Hn solves (4.2) with initial condition hn#
�k0 # Sn

(k0 , h0) k0 . Therefore we have

h(t)&Hn(t)=(h0&hn)&|
t

0
D;(d{)(h({)&Hn({))

+ 1
2 |

t

0
2(1)(h({)&Hn({)) d{,

from which it follows that

E &Hn(t)&h(t)&2�3 &(h0&hn)&2+3E |
t

0
:

l # S0

&Dl(h({)&Hn({))&2 d{

+ 3
2E } |

t

0
&2(1)(h({)&Hn({))& d{ }

2

�3 &(h0&hn)&2+3(&D&2
op+&2(1)&2 t�2)

_|
t

0
E &(h({)&Hn({))&2 d{.

It now follows by Gronwall's Lemma that E &Hn(t)&h(t)&2 � 0 as n � �.
Q.E.D.

Theorem 4.4. Suppose that h4 : [0, �)_W � H0(g) is a progressively
measurable process, i.e., h4 | [0, t]_W is B([0, t])�Ft �B(H0(g))-measurable
for all t # (0, �). (Here B([0, t]) and B(H0(g)) are the Borel _-algebras on
[0, t] and H0(g) respectively.) Also assume that

E {|
t

0
&h4 ({)&2 d{=<� \t>0 (4.7)

and set h(t)=�t
0 h4 ({) d{. Hence h is almost surely absolutely continuous with

derivative given by h4 (t). Then

d(U(t) h(t))=&Dd;(t)(U(t) h(t))+ 1
2 2(1)(U(t) h(t)) dt+U(t) h4 (t) dt (4.8)
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or equivalently, because h(0)=0,

U(t) h(t)=&|
t

0
Dd;({)(U({) h({))+|

t

0

1
2 2(1)(U({) h({)) d{

+|
t

0
U({) h4 ({) d{. (4.9)

Proof. Let us first assume there is a constant M<� such that almost
surely, supt # [0, �) &h4 (t)&H0(g)�M. Let ?=[0=t0<t1<t2< } } } <tn=t]
/[0, t] be a partition of [0, t] and |?|#max[ |ti+1&ti | : i # [0, 1, 2, ...,
n&1]]. For {=ti # ? let {+#t (i+1) 7 n . Then

U(t) h(t)&h(0)= :
{ # ?

[U({+) h({+)&U({) h({)]

= :
{ # ?

(U({+)&U({)) h({)+ :
{ # ?

U({)(h({+)&h({))

+ :
{ # ?

(U({+)&U({))(h({+)&h({))

=: A?+B?+C? .

For ! # ({, {+], let h?(!)=h({), and U?(!)=U({), $?(!)#(U({+)&
U({)). With this notation we have

A?=&|
t

0
Dd;(!)(U(!) h?(!))+|

t

0

1
2 2(1)(U(!) h?(!)) d!,

B?=|
t

0
U?(!) h4 (!) d!,

and

C?=|
t

0
$?(!) h4 (!) d!.

If

A#&|
t

0
Dd;({)(U({) h({))+|

t

0

1
2 2(1)(U({) h({)) d{

and

B#|
t

0
U({) h4 ({) d{,
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then

E &A&A?&2�2E |
t

0
:

l # S0

&Dl (U(!)(h(!)&h?(!))&2 d!

+2E \|
t

0

1
2 &2(1)(U(!)(h(!)&h?(!))& d!+

2

�2 &D&2
op E |

t

0
&h(!)&h?(!)&2 d!+2 &2(1)&2

op

_E \|
t

0
&h(!)&h?(!)& d!+

2

which tends to zero as |?| � 0 by the Dominated convergence theorem.
Similarly

&B&B?&�|
t

0
&(U(!)&U?(!)) h4 (!)& d!.

Therefore, the strong continuity of U and the dominated convergence
theorem implies that B � B? as |?| � 0 a.s. Finally the estimate

&C?&�|
t

0
&$?(!) h4 (!)& d!,

the strong continuity of U, and the dominated convergence theorem
implies that lim|?| � 0 C?=0. This proves Eq. (4.9) in the case that h4 is
bounded.

For the general case, let h4 n(t)#1[0, n](&h4 ({)&) h4 ({) and

hn(t)#|
t

0
1[0, n](&h4 ({)&) h4 ({) d{.

Since &h4 n(t)&�n, we know that Eq. (4.9) holds with h replaced by hn , i.e.,

U(t) hn(t)=&|
t

0
Dd;({)(U({) hn({))+|

t

0

1
2 2(1)(U({) hn({)) d{

+|
t

0
U({) h4 n({) d{. (4.10)
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By the Dominated convergence theorem,

|
t

0
&h4 ({)&h4 n({)&2 d{=|

t

0
|1&1[0, n](&h4 n({)&)| 2 &h4 ({)&2 d{ � 0

a.s. n � �. (4.11)

We also have the Sobolev estimate,

&h(t)&hn(t)&2�\|
t

0
&h4 ({)&h4 n({)& d{+

2

�t |
t

0
&h4 ({)&h4 n({)&2 d{. (4.12)

Using equations (4.11), (4.12), the facts that 2(1) is bounded and U(t) is
unitary, and the L2-isometry property of the Itô integral, it is easy to let
n � � in Eq. (4.10) to conclude that Eq. (4.9) holds for this general h as
well. Q.E.D.

4.2. Inegration by Parts

Lemma 4.5. Let G # FC�(L, H0(g)) and k # H0(g), then

1
2 (2G(g), k)= 1

2 [(20G(g), k)+(G(g), 2(1)k)]&({0G(g), Dk)HS ,

where ( } , } )HS is defined in Eq. (4.5), 2 in Definition 2.3, 20 in Definition 3.13
and 2(1)=2 | H0(g) in Theorem 2.5.

Proof. Using the skew symmetry properties of Dh we find

(2G(g), k)= :
h # S0

({2
h G(g), k)= :

h # S0

((h� +Dh)2 G(g), k)

=(20G(g), k)+2 :
h # S0

(Dhh� G(g), k)+ :
h # S0

(D2
h G(g), k)

=(20G(g), k)&2 :
h # S0

({0
hG(g), Dhk)+ :

h # S0

(G(g), D2
hk)

=(20G(g), k)&2({0G(g), Dk)HS+(G(g), 2(1)k). Q.E.D.

Notation 4.6. Suppose that f # FC�(L) of the form f (g)=F(gP),
where P is a partition of [0, 1] and F : G P � R is a smooth function.
Define (et2�2f ) : L(G ) � R by

(et2�2f )(g)#(et2P �2F )(gP), (4.13)

where 2P is defined in Eq. (3.15) above.
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Since 2P is the generator of 7P( } ), we could also write Eq. (4.13) as

(et2�2f )(g)#E[F(gP7P(t))]=E[ f (g7(t))], (4.14)

where 7 solves Eq. (3.5) with 7(0, s)#e for all s # [0, 1]. It should also be
noted that

�(et2�2f )(g)
�t

=
1
2

(2P et2P �2F )(gP)=
1
2

(2et2�2f )(g),

where we have used Eqs. (2.3) and (3.15) to conclude that

(2P et2P �2F )(gP)=(2et2�2f )(g). (4.15)

Proposition 4.7. Let h # H(H0(g)), f # FC�(L), and T>0. Set Ft#
e(T&t) 2�2f then

d({9 Ft(7(t)), U(t) h(t))=(({d;(t){9 Ft)(7(t)), U(t) h(t))

+({9 Ft(7(t)), U(t) h4 (t)+ 1
2 Ric U(t) h(t)) dt.

Proof. By Itô's Lemma, Theorem 3.14 above and the equalities
�{9 Ft ��t={9 2Ft �2 and �Ft��t=2Ft�2, we have

d({9 Ft(7(t)))=(({0
d;(t) {9 Ft)(7(t))+ 1

2(20{9 Ft(7(t))&{9 2Ft(7(t))) dt.

Using this equation, Theorem 4.4 and Itô's Lemma (see Theorem 3.14
above and Theorem 8.5 in the Appendix),

d({9 Ft(7(t)), U(t) h(t))

=(({0
d;(t) {9 Ft)(7(t))+ 1

2(20 {9 Ft(7(t))&{9 2Ft(7(t))) dt, U(t) h(t))

+({9 Ft(7(t)), &Dd;(t)(U(t) h(t))+ 1
2 2(U(t) h(t)) dt+U(t) h4 (t) dt)

+({0 {9 Ft(7(t)), &D(U(t) h(t)))HS dt.

The above expression may be simplified using {={0+D and Lemma 4.5
above to get

d({9 Ft(7(t)), U(t) h(t))=(({d;(t) {9 Ft)(7(t)), U(t) h(t))

+({9 Ft(7(t)), U(t) h4 (t)) dt

+ 1
2 ((2 {9 Ft&{9 2Ft)(7(t)), U(t) h(t)) dt.
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This equation and the Bochner Wietzenbock Formula in Eq. (2.6) proves
the proposition. Q.E.D.

Notation 4.8. For each unitary map U : H0(g) � H0(g), let RicU#
U &1 Ric U, where Ric is defined in Eq. (2.2).

Corollary 4.9. Continuing the notation from Proposition 4.7,

E({9 f (7(T )), U(T ) h(T ))=E |
T

0
({9 Ft(7(t)), U(t) H4 (t)) dt,

where

H(t)#h(t)+ 1
2 |

t

0
RicU({) h({) d{. (4.16)

Proof. By Proposition 4.7 and the assumption that h(0)=0,

({9 f (7(T )), U(T ) h(T ))=|
T

0
(({d;(t) {9 Ft)(7(t)), U(t) h(t))

+|
T

0
({9 Ft(7(t)), U(t) H4 (t)) dt.

The proof is completed by taking expectations of both sides of this
equation. Q.E.D.

We now may state the first version of the main theorem of this section.

Theorem 4.10 (Integration by Parts I). For each h # H(H0(g)) and
f # FC�(L),

E[({9 f (7(T )), U(T ) h(T ))]=E[ f (7(T )) zT (h)],

where

zT (h)#|
T

0
(U(t) (h4 (t)+ 1

2 RicU(t) h(t)), d;(t))

=|
T

0
(U(t) h4 (t)+ 1

2 Ric U(t) h(t), d;(t)). (4.17)
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Proof. Let H be defined as in Eq. (4.16). Then using the L2-isometry
property of the Itô integral and Itô's lemma (Theorem 3.10) we find

E[ f (7(T )) zT(h)]

=E _{F0(7(0))+|
T

0
({9 Ft(7(t)), d;(t))= |

T

0
(U(t) H4 (t), d;(t))&

=E _|
T

0
({9 Ft(7(t)), U(t) H4 (t)) dt&

=E({9 f (7(T )), U(T ) h(T )),

wherein the last equality we have used Corollary 4.9. Q.E.D.

Definition 4.11. For each h # H(H0(g)) let X h denote the vector-filed on
W(L(G )) defined by

X h
t (7 )=L7(t)*

U(t) h(t).

Theorem 4.12 (Integration by Parts II). For each h # H(H0(g)) and
f # FC�(W(L)),

E[(X hf )(7)]=E[ f (7(T )) zT (h)], (4.18)

where X hf is defined in Eq. (1.12) and zT (h) is defined in Eq. (4.17).

Proof. Write f (7)=F(79 ) where 79 #(7(t1), ..., 7(tk)), 0<t1<t2< } } }
<tk , and F : Lk � R is a smooth cylinder function. That is

F(g1 , ..., gk)=F� ((g1)P , ..., (gk)P) \gi # L,

where P=[0<s1<s2< } } } <sn<1] is partition of [0, 1] and F� #
C�(Gkn). We will prove the theorem by induction on k. The case k=1 is
the content of Theorem 4.10. Suppose k>1 and the theorem is true when
there are k&1 ti 's. The induction step will be completed by showing that
Eq. (4.18) holds for f (7)=F(79 ) described above.

For h # H0(g), let h� (i )F denote the action of h� on the ith variable of F,
i.e.,

(h� (i )F )(79 )#
d
d= } 0 F((7(t1), ..., 7(ti) e=h, ..., 7(tk)) \h # H0(g).
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Also let

2(i )F# :
h # S0

(h� (i ))2 F

and ({9 (i )F )(79 ) denote the gradient of F in the i th variable, i.e., ({9 (i )F )(79 )
is the unique element of H0(g) such that

(({9 (i )F )(79 ), h)=(h� (i )F )(79 ) \h # H0(g).

Then

E(X hf )(7)= :
k&1

i=1

E(({9 (i )F )(79 ), U(ti) h(ti))+E(({9 (k)F )(79 ), U(tk) h(tk))

=: S+T. (4.19)

Let _#(7(t1), ..., 7(tk&1)), u=tk&1 , v=tk , $#tk&tk&1 , and Ft(_, g)
#(e(v&t) 2(k)�2F )(_, g). Then by Proposition 4.7 and Corollary 4.9,

T=E _(({9 (k)Fu)(_, 7(u)), U(u) h(u))+|
v

u
d(({9 (k)Ft)(_, 7(t)), U(t) h(t))&

=E _(({9 (k)Fu)(_, 7(u)), U(u) h(u))+|
v

u
(({9 (k)Ft)(_, 7(t)), U(t) H4 (t)) dt&

=E _(({9 (k)Fu)(_, 7(u)), U(u) h(u))

+|
v

u
(({9 (k)Ft)(_, 7(t)), d;(t)) } |

v

u
(U(t) H4 (t), d;(t))& .

By Theorem 3.14,

|
v

u
(({9 (k)Ft)(_, 7(t)), d;(t))=Fv(_, 7(v))&Fu(_, 7(u))

=F(79 )&Fu(_, 7(u)).

Since v � �v
0 (U(t) H4 (t), d;(t)) is a Martingale,

E[Fu(_, 7(u)) |
v

u
(U(t) H4 (t), d;(t))]=0.
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Combining the three above displayed equations gives

T=E {(({9 (k)Fu)(_, 7(u)), U(u) h(u))+F(79 ) } |
v

u
(U(t) H4 (t), d;(t))= . (4.20)

Using the Markov property, S may be written as

S= :
k&1

i=1

E(({9 (i )Fu)(_, 7(u)), U(ti) h(ti)). (4.21)

Set V(7)=Fu(_, 7(u)) so that V # FC�(W(L)), and notice that

(X hV )(7)= :
k&1

i=1

(({9 (i )Fu)(_, 7(u)), U(ti) h(ti))

+(({9 (k)Fu)(_, 7(u)), U(u) h(u)). (4.22)

Therefore, by Equations (4.20�4.22),

S+T=E {(X hV )(7)+F(79 ) } |
v

u
(U(t) H4 (t), d;(t))=

=E {V(7) |
u

0
(U(t) H4 (t), d;(t))+F(79 ) } |

v

u
(U(t) H4 (t), d;(t))= ,

wherein the second equality we have used the induction hypothesis. Using
the Markov property once again,

E {V(7) |
u

0
(U(t) H4 (t), d;(t))==E {Fu(_, 7(u)) |

u

0
(U(t) H4 (t), d;(t))=

=E {F(_, 7(v)) |
u

0
(U(t) H4 (t), d;(t))=

=E {F(79 ) |
u

0
(U(t) H4 (t), d;(t))= .

The Theorem now follows from the last two equations and (4.19). Q.E.D.

4.3. Closability of the Dirichlet Form

Recall that &T is the Law of 7T=7(T ), where 7 is the Brownian motion
on L constructed in Theorem 3.8 with 7(0, s)#e for all s # [0, 1].
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Definition 4.13. Let E0
T denote the symmetric quadratic form on

L2(L(G ), &T) with domain D(E0
T)=FC�(L) and for u, v # FC�(L),

E0
T (u, v)#|

L(G )
({9 u(g), {9 v(g))H0(g) &T (dg)=E[({9 u(7T), {9 v(7T))H0(g)].

Theorem 4.14. The quadratic form E0
T is closable.

Proof. To simplify notation, let E0
T ( f )=E0

T ( f, f ). Suppose that fn #
FC�(L) such that limn � � fn=0 in L2(&T) and

E0
T ( fn& fn) � 0 as m, n � �. (4.23)

We must show that limn � � E0
T ( fn)=0. Because of (4.23) the functions

Gn#{9 fn # FC�(L, H0(g)) form a Cauchy sequence in L2(L(G), &T ;
H0(g)). Hence there exists G # L2(L(G ), &T ; H0(g)) such that L2&
limn � � Gn=G. Since

E0
T ( fn)=|

L(G )
&Gn&2 d&T=E &Gn(7T)&2,

it follows that limn � � E0
T ( fn)=E &G(7T)&2. So to finish the proof it

suffices to show that G(7T)=0 a.s.
To this end let h # H0(g), Q # FC�(W(L)), and set k(t)=(t�T ) h. Then

k # H(H0(g)) and using the integration by parts Theorem 4.10 we find

E[(G(7(T )), U(T ) h) Q(7)]= lim
n � �

E[({9 fn(7(T )), U(T ) k(T )) Q(7)]

= lim
n � �

E[(X kfn(7T)) Q(7)]

= lim
n � �

E[ fn(7T)(&X k+zT (k)) Q(7)]=0.

Because FC�(W(L)) is dense in L2(W(L), &) and because Q # FC�(W(L))
was arbitrary, the last displayed equation implies (G(7T), U(T ) h)=0 a.s.
Hence

&G(7T)&2= :
h # S0

(G(7T), U(T ) h)2=0 a.s.,

i.e., G(7T)#0 a.s. Q.E.D.

Remark 4.15. Theorem 4.14 may be stated equivalently as saying that
the gradient operator {9 with domain FC�(L) has a densely defined L2-
adjoint. However, the method of proof does not give any explicit informa-
tion as to what is in the domain in L2(L, &T ; H0(g)) of the adjoint

505LOOP GROUP QUASI-INVARIANCE



File: 580J 310337 . By:DS . Date:10:09:97 . Time:10:32 LOP8M. V8.0. Page 01:01
Codes: 3188 Signs: 2029 . Length: 45 pic 0 pts, 190 mm

operator {9 *. This deficiency will be remedied in Theorem 6.2 of Section 6
below where it is shown that FC�(L, H0(g))/D({9 *).

5. THE FINITE DIMENSIONAL APPROXIMATIONS

5.1. Finite Dimensional Integration by Parts Formula

In this section let P=[0<s1<s2< } } } <sn<1] be a partition of
[0, 1]. In order to prove Theorem 1.5 above, we will apply Corollary 6.5 of
Driver [5] to the Lie group GP and then pass to the limit of finer and finer
partitions P. In order to carry out this procedure it is necessary to
introduce the unique Riemannian metric, ( } , } )P , on G P for which 2P in
Eq. (3.15) will become the Laplace Beltrami operator on (G P, ( } , } )P).

Let gP be the Lie algebra of G P which may naturally be identified with
the set of functions from P to g. In the sequel, h and k will typically denote
elements of gP or H0(g).

Proposition 5.1 (Metric on G P). Let P=[0<s1<s2< } } } <sn<1]
be a partition of [0, 1], and Q be the inverse to the matrix [G0(si , sj)]n

i, j=1 ,
and

(h, k)P# :
n

i, j=1

Qij (h(si), k(sj)) for all h, k # gP.

We extend ( } , } )P to a left invariant Riemannian metric on G P which will
still be denoted by ( } , } )P . Then the elliptic differential operator 2P defined
in (3.15) is the Laplace Beltrami operator on G P with metric ( } , } )P .

Proof. It is an exercise in linear algebra to check that 2P may be
written as 2P=�h # 1 h� 2, where 1 is an orthonormal basis of (gP, ( } , } )P)
and h� denotes the unique left invariant vector field on G P such that h� (e)
=h. It is well known that �h # 1 h� 2 is the Laplace-Beltrami operator on G P

because G P is compact and hence uni-modular, see for example
Remark 2.2 in Driver and Gross [7]. Q.E.D.

Notation 5.2. Let ;P(t) be the standard Brownian motion on
(gP, ( } , } )P) given by ;P(t)=(;(t, s1), ;(t, s2), ..., ;(t, sn)), and {P and
RicP be the Levi-Civita covariant derivative and the Ricci tensor on
(G P, ( } , } )P) respectively. For all h, k # gP, define DP

h k=({P
h� k� )(e) with

e # G P being the identity element. Also define UP to the solution to the
Stratonovich differential equation,

dUP(t)+DP
$;P(t) UP(t)=0 with UP(0)=I # End(gP).
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The operators DP
h and RicP are computed explicitly in Proposition 5.7

and Eq. (5.9) below. We now may state a finite dimensional verion of
Theorem 1.5. Q.E.D.

Theorem 5.3. Let T>0 and l : [0, T ] � R be an absolutely continuous
function such that l(0)=0, l(T )=1 and �T

0 l4 2(t) dt<�. Suppose that
f # FC�(L) is of the form f (g)=F(gP) where F # C�(G P) and P=
[0<s1<s2< } } } <sn<1] is a partition of [0, 1]. Then for all h # H0(g),

E[(h� f )(7(T ))]=E _ f (7(T ))(UP(T )&1 hP ,

|
T

0
U &1

P (t)(l4 (t)& 1
2 l(t) RicP) d;0 P(t))& , (5.1)

where hP#h | P and d;0 P denotes the backwards Itô differential.

Proof. By Proposition 5.1 and the dicussion leading up to Eq. (3.15),
7P and ;P are Brownian motions on G P and gP respectively which are
related to each other by Eq. 3.14. Using this remark and the identities,
f (7(T ))=F(7P(t)) and (h� f )(7(T ))=(h� PF )(7P(t)), Eq. (5.1) follows as
an application of Corollary 6.5 in [5]. Q.E.D.

The proof of Theorem 1.5 will be given in Section 6 by passing to the
limit of finer and finer partitions P of [0, 1] in Eq. (5.1). In order to take
this limit it is necessary to understand the geometry on G P and its rela-
tionship to the geometry on L(G ). This is the topic of the next subsection.

5.2. Geometry of the Finite Dimensional Approximations

To facilitate our computations, it will be convenient to identify gP with
the orthogonal compliment to the null space, nul(4P)/H0(g), where
4P : H0(g) � gP is defined by 4P(h)#h | P . The next lemma shows that

nul(4P)==HP(g)#[h # H0(g) & C 2((0, 1)"P, g) : h"=0 on [0, 1]"P].

(Notice that h # HP(g) iff h # H0(g) and h is piecewise linear.) The following
notation will be used in the next lemma and the remainder of this section.

Notation 5.4. Given a partition P=[0<s1<s2< } } } <sn<1] of [0, 1]
and h # H0(g), for i=0, 1, 2, ..., n, let $i h#h(si+1)&h(si) and $i#si+1&si

where s0#0 and sn+1#1.

Lemma 5.5. The orthogonal compliment HP(g)= of HP(g) in H0(g) is

HP(g)==nul(4P)=[h # H0(g) : h | P#0].
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Proof. Suppose that h # H0(g) and k # HP(g), then

(h, k)= :
n

i=0
|

si+1

si

(h$(_), k$(_)) d_= :
n

i=0

($i h, $i k)�$i . (5.2)

Hence if h # nul(4P), i.e., h | P=0, then (h, k)=0 for all k # HP(g). Hence
nul(4P)/HP(g)=.

For the other inclusion, suppose that Ai # g is given such that
�n

i=0 Ai=0. Define

k(s)#|
s

0 \ :
n

i=0

1(si , si+1](_) Ai�$i+ d_= :
n

i=0

(si+1 7 s&si 7 s) Ai�$i .

Since k$(s)=$i k�$i=Ai�$i for s # (si , si+1] and k(1)=�n
i=0 Ai=0, k is in

HP(g). If h # HP(g)= then, using the k just constructed in Eq. (5.2),

0= :
n

i=0

($i h, Ai)�$i (5.3)

for all Ai # g such that �n
i=0 Ai=0. Since

:
n

i=0

$i h=h(1)&h(0)=0,

we may put Ai#$i h in (5.3) to find

0= :
n

i=0

($i h, $i h)�$i ,

i.e., $i h#0 for all i=0, 1, 2, ..., n&1. Because h(0)=0, this implies that
h | P#0. Thus we have shown that if HP(g)=/nul(4P). Q.E.D.

In general HP(g) is a subspace of H0(g) but not a Lie subalgebra with
the inherited pointwise commutator. In order to remedy this, let PP :
H0(g) � HP(g) denote the orthogonal projection map and define [ } , } ]P

on HP(g) by [h, k]P#PP[h, k]. One may check that (HP(g), [ } , } ]P) is
a Lie algebra. Indeed the only non-trivial property to verify is the Jacobi
identity. Since [h, [k, l ]P]P=PP[h, [k, l ]P] is uniquely determined by it
values on P, i.e., by the values [h(s), [k, l ]P(s)]=[h(s), [k(s), l(s)]] for
s # P, the Jacobi identity simply follows from the Jacobi identity for the Lie
bracket ([ } , } ]) on g.

Lemma 5.6. Let HP(g) and gP be the Lie algebras described above
equipped with the inner products ( } , } )=( } , } )H0(g) and ( } , } )P respectively.
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Then linear map 4P : HP(g) � gP (4P(h)#hP#h | P) is an isometric Lie
algebra isomorphism.

Proof. The only assertion which is not obvious to check the asser-
tion that 4P is an isometry. For A=(A1 , A2 , ..., An) # gn let hA#
�n

i=1 G0(si , } ) Ai and notice that hA # HP(g). Using the reproducing kernel
property for G0 , see Eq. 3.11 in [6],

(hA , hB)= :
n

i, j=1

(G0(si , } ), G0(sj , } ))H0(R) (Ai , Bj) = :
n

i, j=1

G0(si , sj)(Ai , Bj).

Because [G0(si , sj)]n
i, j=1 is a positive definite matrix, the last equation with

B=A, shows that A # gn � hA # HP(g) is injective hence surjective by the
rank nullity theorem. On the other hand,

(4PhA , 4P hB)P= :
n

i, j, k, l=1

Qk, l (hA(sk), hB(sl))

= :
n

i, j, k, l=1

Qk, l G0(si , sk) G0(sj , sl)(Ai , Bj)

= :
n

i, j=1

G0(si , sj)(Ai , Bj).

Comparing the last two displayed equations proves the isometry assertion.
Q.E.D.

Alternate proof of the isometry property. In this proof we will use the
fact that second order elliptic differential operators on a manifold induce a
unique Riemannian metric on the manifold.

Let F # C�(G P), f #F b ?P # FC�(L), and SP be an orthonormal basis
for HP(g). Then, using Lemma 5.5 and the fact that the sum defining the
Laplace operator 2 in Eq. (2.1) is basis independent, we have

2f (g)= :
h # SP

(h� 2f )(g)= :
h # SP

(h� 2
PF )(gP) \g # L.

On the other hand by Eq. (2.3), 2f (g)=(2P F )(gP). Hence we learn that
2P=�h # SP

h� 2
P which is the Laplace Beltrami operator on G P equipped

with the metric on gP for which the map 4P is an isometry. But this inner
product must agree with ( } , } )P , since we have seen in the proof of
Proposition 5.1 that 2P is also the Laplacian relative to the metric ( } , } )P

on G P. Q.E.D.

In the sequel we will identify gP with HP(g).
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Proposition 5.7. For h # HP(g), let DP
h : HP(g) � HP(g) denote Lie

algebra version of the Levi-Civita covariant derivative ({P) on G P as defined
in Notation 5.2 (Recall that we are identifying gP with HP(g) as in
Lemma 5.6.) Then DP

h =PP Dh , where as above PP is the orthogonal projec-
tion of H0(g) onto HP(g).

Proof. We need to check that DP
h is metric compatible and Torsion

free. Both of these properties follow directly from the corresponding
properties of Dh described in Theorem 3.12 of Driver and Lohrenz [6].
Indeed if h, k # HP(g), then

(DP
h k, k)=(PP Dhk, k)=(Dhk, k)=0

and

DP
h k&DP

k h=PP(Dhk&Dk h)=PP([h, k])=[h, k]P . Q.E.D.

Theorem 5.8. Let SP be an orthonormal basis for HP(g) and
2(1)

P : HP(g) � HP(g) be defined by

2(1)
P # :

k # SP

DP
k DP

k .

Then

lim
|P| � 0

&PP(2(1)&2 (1)
P ) PP&op=0,

where & }&op is the operator norm on bounded linear operators on H0(g).

The following lemma is used in the proof of this theorem.

Lemma 5.9. Let SP be an orthonormal basis for HP(g) and A, B # g.
Then

:
k # SP

([k(si), A], [k(sj), B])=G0(si , sj) K(A, B) (5.4)

for all i, j # [1, 2, ..., n].

Proof. It is easily checked that the left member in Eq. (5.4) is independent
of the orthonormal basis SP of HP(g). So to simplify the computation, we
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may take SP#[lC]l # hP , C # g0
where g0 is an orthonormal basis for g and

hP is an orthonormal basis for

HP(R)#[l # H0(R) & C 2((0, 1)"P, R) : l"#0 on (0, 1)"P].

Because

:
C # g0

([C, A], [C, B]) = :
C # g0

(adAC, adBC) = :
C # g0

&(C, adA adBC)

=&tr(adA adB)=K(A, B) ,

it follows that

:
k # SP

([k(si), A], [k(sj), B]) = :
l # hP , C # g0

l(si) l(sj)([C, A], [C, B])

= :
l # hP

l(si) l(sj) K(A, B) .

To evaluate �l # hP
l(si) l(sj), let h/H0(R) be an orthonormal basis of

H0(R) which contains hP . Notice if l # h"hP , then l # HP(R)= and hence
l | P#0. Therefore

:
l # hP

l(si) l(sj)= :
l # h

l(si) l(sj)=G0(si , sj),

where the last equality verified in Lemma 3.8 of [6]. Q.E.D.

Proof of Theorem 5.8. Let h, J # HP(g), then

(2 (1)
P h, J )= :

k # SP

(DP
k DP

k h, J )

=& :
k # SP

(DP
k h, DP

k J )

=& :
k # SP

:
n

i=0

($i (Dk h), $i (Dk J ))�$i .

Now

$i (Dk h)=|
si+1

si

[k, dh]&$i |
1

0
[k, dh]
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and

|
si+1

si

[k, dh]=|
si+1

si
_k(si)+

(_&si)
$i

$i k, $i h�$i& d_

=_k(si) $i+
$ 2

i

2$i
$i k, $i h�$i&

=_k(si)+
1
2

$i k, $i h&
=[(k(si)+k(si+1))�2, $i h].

Set ka
i #(k(si)+k(si+1))�2, then the above two displayed equations show

that

$i (Dk h)=[ka
i , $i h]&$i :

n

j=0

[ka
j , $j h]. (5.5)

Thus, using Lemma 5.9,

(2 (1)
P h, J )=& :

k # SP

:
n

i=0

$ &1
i �[ka

i , $i h]&$i :
n

j=0

[ka
j , $j h],

[ka
i , $i J]&$i :

n

j=0

[ka
j , $j J]�

=& :
k # SP

:
n

i=0

$ &1
i {([ka

i , $i h], [ka
i , $i J])

+$ 2
i � :

n

j=0

[ka
j , $j h], :

n

l=0

[ka
l , $l J]�=

& :
k # SP

:
n

i=0

$ &1
i {$i � :

n

j=0

[ka
j , $j h], [ka

i , $i J]�
&$i �[ka

i , $i h], :
n

j=0

[ka
j , $j J]�=

=& :
k # SP

:
n

i=0

[$ &1
i ([ka

i , $i h], [ka
i , $i J])

&� :
n

j=0

[ka
j , $j h], [ka

i , $j J]�=
= :

n

i=0
{&Gii $ &1

i K($i h, $i J)+ :
n

j=0

Gij K($j h, $i J)=
= &S+T,
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where

Gij=
1
4 [G0(si , sj)+G0(si+1 , sj)+G0(si , sj+1)+G0(si+1 , sj+1)].

We now work on the two terms S and T separately.

S= :
n

i=0
|

si+1

si

Gii K(h$(_), J$(_)) d_=|
1

0
\P(_) K(h$(_), J$(_)) d_,

where

\P(s)# :
n

i=0

Gii 1(si , si+1](s).

Similarly,

T= :
n

i=0

:
n

j=0

Gij K($j h, $i J)

= :
n

i=0

:
n

j=0

Gij |
si+1

si

d_ |
sj+1

sj

ds K(h$(s), J$(s))

=|
1

0
d_ |

1

0
ds GP(_, s) K(h$(s), J$(_)) ,

where

GP(_, s)# :
n

i, j=0

Gij 1(si , si+1](_) } 1(sj , sj+1](s). (5.6)

Assembling the above computations gives

(2 (1)
P h, J )=&|

1

0
\P(_) K(h$(_), J$(_)) d_

+|
1

0
d_ |

1

0
ds GP(_, s) K(h$(s), J$(_)) .

From Eq. (4.42) in [6],

(2(1)h, J )=&|
1

0
G0(_, _) K(h$(_), J$(_)) d_

+|
1

0
d_ |

1

0
ds G0(_, s) K(h$(s), J$(_)).
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Combining the last two equations gives

((2(1)&2(1)
P ) h, J )=|

1

0
(\P(_)&G0(_, _)) K(h$(_), J$(_)) d_

+|
1

0
d_ |

1

0
ds(G0(_, s)&GP(_, s)) K(h$(s), J$(_)).

It is now a simple matter to use this equation to show that

&PP(2(1)&2 (1)
P ) PP&B(HP(g))�C=(P),

where

=(P)# max
s, t # [0, 1]

[ | \P(s)&G0(s, s)|+|G0(s, t)&GP(s, t)|].

By the uniform continuity of G0 , lim|P | � 0 =(P)=0. This proves the
theorem. Q.E.D.

We now work on the Ricci tensor.

Theorem 5.10. Let RicP be the Lie algebra version of the Ricci tensor
on G P. (We will interchangeably view RicP as a bi-linear form or an
operator on HP(g). Then

&PP(Ric&RicP) PP&op � 0 as |P| � 0.

Proof. Let h # HP(g) and SP/HP(g) be an orthonormal basis of
HP(g). Since the expressions of interest are independent of the choice of
orthonormal basis, we may assume with out loss of generality that SP is
a ``good basis,'' i.e., [h(s), h(_)]=0 for all s, _ # [0, 1]. (For example take
the basis used in the proof of Lemma 5.9.) Then

RicP(h, h)= :
k # SP

(RP(h, k) k, h)

= :
k # SP

(DP
h DP

k k&DP
k DP

h k&DP
[h, k]P

k, h)

= :
k # SP

(&DP
k DP

h k&DP
[h, k]P

k, h)

= :
k # SP

[(DP
h k, DP

k h)&(DP
[h, k]P

k, h)]

=: S&T.
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Using Eq. (5.5), S may be written as

S= :
k # SP

:
n

i=0

$ &1
i ($i DP

h k, $i DP
k h)

= :
k # SP

:
n

i=0

$ &1
i �[ha

i , $i k]&$i :
n

j=0

[ha
j , $j k],

[ka
i , $i h]&$i :

n

j=0

[ka
j , $j h]�

= :
k # SP

:
n

i=0
{$ &1

i ([ha
i , $i k], [ka

i , $i h]) & :
n

j=0

([ha
i , $i k], [ka

j , $j h])=
= :

k # SP

:
n

i=0 {$ &1
i ([ha

i , $i k], [ka
i , $i h]) & :

n

j=0

([ka
i , $i h], [ka

j , $j h])=
=& :

k # SP

:
n

i=0

$ &1
i ([ka

i , [ha
i , $i k]], $i h) & :

k # SP
} :

n

i=0

[ka
i , $i h] }

2

=& :
k # SP

:
n

i=0

$ &1
i (adki

a adhi
a $i k, $i h)& :

k # SP
} :

n

i=0

[ka
i , $i h] }

2

,

wherein the fourth equality we did a summation by parts. Namely we have
used

$i [h, k]=[ha
i , $i k]+[$i h, ka

i ]=[ha
i , $i k]&[ka

i , $i h]

and the fact that �n
i=0 $i [h, k]=0.

Similarly using Eq. (5.5) and �n
i=0 $i h=0, T may be expressed as

T= :
k # SP

:
n

i=0

$ &1
i {�[[h, k]a

i , $i k]&$i :
n

j=0

[[h, k]a
j , $j k], $i h�=

= :
k # SP

:
n

i=0

$ &1
i (ad[h, k]i

a $i k, $i h).

So combining the expressions for S and T shows

RicP(h, h)=S&T

=& :
k # SP

:
n

i=0

$ &1
i (adki

a adhi
a $i k+ad[h, k]i

a $i k, $i h)

& :
k # SP

} :
n

i=0

[ka
i , $i h] }

2

.
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Now using the assumption that SP is a good basis,

adki
a adhi

a $i k+ad[h, k]i
a $i k=[adki

a , adhi
a] $i k+ad[h, k]i

a $i k

=ad[ki
a , hi

a] $i k+ad[h, k]i
a $i k

=ad[[h, k]i
a&[hi

a, ki
a]] $i k

= 1
4 ad[$i h, $i k] $i k.

Assembling the last two equations implies

RicP(h, h)=&1
4 :

k # SP

:
n

i=0

$ &1
i (ad[$i h, $i k] $i k, $i h)& :

k # SP
} :

n

i=0

[ka
i , $i h] }

2

= 1
4 :

k # SP

:
n

i=0

$ &1
i |[$i h, $i k]|2& :

k # SP
} :

n

i=0

[ka
i , $i h] }

2

. (5.7)

The above sums on k # SP may be computed using Lemma 5.9,

1
4 :

k # SP

:
n

i=0

$ &1
i |[$i h, $i k]|2= :

n

i=0

$ &1
i K($i h, $i h) :i

=|
1

0
:P(_) K(h$(_), h$(_)) d_,

where

:i#[G0(si , si)+G0(si+1 , si+1)&2G0(si , si+1)]�4

and

:P(s)# :
n

i=0

:i 1(si , si+1](s). (5.8)

Similarly,

:
k # SP

} :
n

i=0

[ka
i , $i h] }

2

= :
n

i, j=0

K($i h, $j h) Gij

=|
1

0
d_ |

1

0
ds GP(_, s) K(h$(s), h$(_)) ,

where GP is defined in Eq. (5.6). Hence

RicP(h, h) =|
1

0
:P(_) K(h$(_), h$(_)) d_

&|
1

0
d_ |

1

0
ds GP(_, s) K(h$(s), h$(_)) . (5.9)
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The polarization of Eq. (5.9) and Eq. (2.2) shows

RicP(h, k) &Ric(h, k)

=|
1

0
:P(_) K(h$(_), k$(_)) d_

&|
1

0
d_ |

1

0
ds[GP(_, s)&G0(_, s)] K(h$(s), k$(_))

for all h, k # HP(g).
Let & }&u denote the supremum norm on functions, then it easily follows

from the last equation, for all h, k # HP(g), that

|((Ric&RicP) h, k)|

�C &:P&u &h& &k&+|
1

0
d_ |

1

0
ds |G0(_, s)&GP(_, s)| |K(h$(s), k$(_)) |

�C(&:P&u+&G0&GP&u) &h& &k&.

Hence

&PP(Ric&RicP) PP&op�C(&:P&u+&G0&GP&u). (5.10)

Looking at the definitions of :P and GP and using uniform continuity of
G0 , it is easily seen that &:P&u+&G0&GP&u � 0 as |P| � 0. This observa-
tion and Eq. (5.10) finishes the proof. Q.E.D.

6. INTEGRATION BY PARTS ON THE LOOP GROUP

In this section we will prove Theorem 1.5 by passing to the limit in
Theorem 5.3. Before doing this it is first convenient to rewrite Eq. (5.1) as

E[(h� f )(7(T ))]

=E _ f (7(T )) |
T

0
(UP(t) UP(T )&1 hP , (l4 (t)& 1

2 l(t) RicP)
�
d;P(t))& .
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Setting UP(t, T )#UP(t) UP(T)&1, HP(t)#UP(t, T) hP=UP(t) UP(T)&1 hP ,
we see that this last equation may be written as

E[(h� f )(7(T ))]=E _ f (7(T )) |
T

0
(HP(t), (l4 (t)& 1

2 l(t) RicP)
�
d;P(t))& ,

(6.1)

where HP(t) is the solution to the Stratonovich stochastic integral equation

h&HP(t)+|
T

t
DP

$;P({) HP({)=0. (6.2)

The reader should notice that the process HP is not adapted to the filtra-
tion [Ft]t�0. Nevertheless the integral in (6.2) may be defined as the usual
L2 limit of Riemann sum approximations of the form

|
T

t
DP

$;P({)HP# lim
|?| � 0

1
2 :

{ # ?

DP
(;({+)&;({))(HP({)+HP({+)), (6.3)

where ? denotes a partition of [t, T ], for { # ?, {+ denotes the successor
to { in ?, and |?| is the mesh size of the partition. To show the con-
vergence, notice from the usual adapted theory that

|
T

t
DP

$;P({)UP({)# lim
|?| � 0

1
2 :

{ # ?

DP
(;({+)&;({))(UP({)+UP({+)), (6.4)

where the sum exists in L2. Since Eq. (6.3) is obtained from Eq. (6.4) by
multiplication on the right by U &1

P (T ) hP , Eq. (6.3) has the same con-
vergence properties as Eq. (6.4). Moreover, by the discussion in Section 4.1
in [5], the integrals in Eq. (6.3) and (6.4) may be expressed in terms of
Backwards Itô integrals,

|
T

t
DP

$;P({)HP({)=|
T

t
DP

d;
�

P({)
HP({)& 1

2 |
T

t
DP

d;P({) dHP({)

=|
T

t
DP

d;
�

P({)
HP({)+ 1

2 :
h # SP

|
T

t
DP

h DP
h HP({) d{

=|
T

t
DP

d;
�

P({)
HP({)+ 1

2 |
T

t
2 (1)

P HP({) d{,

where

|
T

t
DP

d;
�

P({)
HP({)# lim

|?| � 0
:

{ # ?

DP
(;({+)&;({)) HP({+),
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Therefore (6.2) is equivalent to the backwards stochastic integral equation,

h&HP(t)+|
T

t
DP

d;
�

P({)
HP({)+ 1

2 |
T

t
2 (1)

P HP({) d{=0. (6.5)

Following the notation and discussion in Section 8.3 of the Appendix
below, let ;T(t)#;(T&t)&;(T ) and H T

P(t)#HP(T&t) for t # [0, T ]
and [FT

t ]t # [0, T ] denote the filtration generated by [;T(t)]t # [0, T ]

appropriately completed. Then [;T(t)]t # [0, T ] is again a standard
[FT

t ]t # [0, T ]-Brownian motion and Eq. (6.5) may be expressed as

h&HP(t)&|
T&t

0
DP

d;T
P({) H

T
P({)+ 1

2 |
T&t

0
2 (1)

P H T
P({) d{=0.

Replacing t by T&t in this last equation shows that Eq. (6.5) (for HP) is
equivalent to the following standard forward stochastic differential
equation (for H T

P):

H T
P(t)=h&|

t

0
DP

d;T
P({)H

T
P({)+ 1

2 |
t

0
2 (1)

P H T
P({) d{. (6.6)

This last equation may be written in differential form as

dH T
P(t)+DP

d;T
P(t) H

T
P(t)& 1

2 2 (1)
P H T

P({)=0 with H T
P(0)=h. (6.7)

In analogy to Eq. (6.5), for h # H0(g), we let H(t) denote the solution to
the backwards stochastic differential equation

h&H(t)+|
T

t
Dd;

�
({) H({)+ 1

2 |
T

t
2(1)H({) d{=0. (6.8)

Theorem 6.1 (Backwards Parallel Translation). Given T>0 and
h # H0(g), there exists a unique H0(g)-valued continuous backwards semi-
martingale H(t), relative to the filtration [FT

t ]t # [0, T ] , solving Eq. (6.8).
Moreover there exists a process t # [0, T ] � U(t, T ) # O(H0(g)) such that
for all h # H0(g), H(t)#U(t, T ) h is the unique solution to Eq. (6.8).

Proof. Using Definition 8.6 of the backwards stochastic integral in
Section 8.3 of the Appendix and the same argument used above in passing
from Eq. (6.5) to Eq. (6.7), we find that Eq. (6.8) is equivalent to

H T(t)=h&|
t

0
Dd;T({)H T({)+ 1

2 |
t

0
2(1)H T({) d{, (6.9)

519LOOP GROUP QUASI-INVARIANCE



File: 580J 310351 . By:DS . Date:10:09:97 . Time:10:32 LOP8M. V8.0. Page 01:01
Codes: 2592 Signs: 1308 . Length: 45 pic 0 pts, 190 mm

where H T#H(T&t). With this observation, the theorem follows from
Theorem 4.1 and Lemma 4.3 above. Q.E.D.

Theorem 6.2 (Integration by Parts). Let T>0, l # H(R) such that
l(T )=1, h # H0(g), and H(t) ( for t # [0, T ]) be the unique solution to
Eq. (6.8). Then for all f # FC�(L),

E[(h� f )(7T)]=E _ f (7T) |
T

0
([l4 (t)& 1

2 l(t) Ric] H(t),
�
d;(t))& , (6.10)

where
�
d; denotes the backwards stochastic differential. In particular,

Eq. (1.14) of Theorem 1.5 follows from Eq. (6.10) by choosing l(t)#t�T.

Remark 6.3. The backwards stochastic integral appearing in Eq. (6.10)
is well defined and we have the estimate

Ez2 :=E |
T

0
&[l4 (t)& 1

2 l(t) Ric] H(t)&2 dt

�&h&2 } |
T

0
[ |l4 (t)+ 1

2 |l(t)| &Ric&op]2 dt<�.

More generally, using Burkholder's inequality, for all p # [2, �) there are
constants Cp<� such that

&z&Lp(P)�Cp &h& \|
T

0
[ |l4 (t)+ 1

2 |l(t)| &Ric&op]2 dt+
1�2

<�.

6.1. Passing to the Limit

The rest of this section will now be devoted to the proof of Theorem 6.2
which will be carried out by letting |P| � 0 in Eq. (6.1). The following
theorem is the key result needed to take this limit. Recall the notation
used above Eq. (6.1), namely UP(t, T )#UP(t) UP(T )&1 and HP(t)#
UP(t, T ) hP=UP(t) UP(T )&1 hP .

Theorem 6.4. Let T # (0, �), h # HP0
(g), and Pn be a sequence of parti-

tions of [0, 1] such that Pn+1#Pn for all n and limn � � |Pn |=0. Set

z#|
T

0
([l4 (t)& 1

2 l(t) Ric] U(t, T ) h,
�
d;(t)), (6.11)
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and

zn#|
T

0
([l4 (t)& 1

2 l(t) RicPn
(t, T ) h,

�
d;Pn

(t)). (6.12)

Then zn converges to z in L2.

Proof. To simplify notation let Pn#PPn
: H0(g) � H0(g) denote ortho-

gonal projection onto HPn
(g), Ricn#RicPn

, and Un#UPn
. We will first

show that Pn � I strongly as n � �. To prove this it suffices to show, since
ran(Pn+1)#ran(Pn) for all n, that D#�n ran(Pn) is dense in H0(g). To
see that D is dense, first notice that G0(s, } ) A # D for all s # Q#�n Pn and
A # g. Hence if h = D, then (h(s), A)=(h, G0(s, } ) A)=0 for all s # Q and
A # g. Since h is continuous and Q/[0, 1] is dense, it follows that h#0.
Therefore D is dense in H0(g) and hence Pn � I strongly.

In the remainder of the proof, =n will be used to denote any generic
sequence of non-negative real numbers such that limn � � =n=0. (The value
of =n may vary from line to line in the following proof, but in all cases
limn � � =n=0.)

Using the isometry property of the Itô Integral,

E |z&zn | 2=E } |
T

0
([l4 (t)& 1

2 l(t) Ric] U(t, T ) h

&[l4 (t)& 1
2 l(t) Ricn] Un(t, T ) h,

�
d;(t)) }

2

=E |
T

0
&[l4 (t)& 1

2 l(t) Ric] U(t, T ) h

&[l4 (t)& 1
2 l(t) Ricn] Un(t, T ) h&2 dt

�2 |
T

0
E &Pn[l4 (t)& 1

2 l(t) Ric] U(t, T ) h

&[l4 (t)& 1
2 l(t) Ricn] Un(t, T ) h&2 dt

+2 |
T

0
E &(I&Pn)[l4 (t)& 1

2 l(t) Ric] U(t, T ) h&2 dt.
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Because Pn � IH0(g) strongly as n � �, U(t, T ) is unitary and Ric is a
bounded operator, we may apply the dominated convergence theorem to
find

lim
n � � |

T

0
E &(I&Pn)[l4 (t)& 1

2 l(t) Ric] U(t, T ) h&2 dt=0. (6.13)

The last two displayed equations imply that

E |z&zn | 2�4 |
T

0
l4 2(t) E &[Pn U(t, T )&Un(t, T )] h&2 dt

+|
T

0
l 2(t) E &[Pn Ric U(t, T )&Ricn Un(t, T )] h&2 dt+=n .

(6.14)

As in the proof of Eq. (6.13),

lim sup
n � �

|
T

0
l 2(t) E &Pn Ric(I&Pn) U(t, T ) h&2 dt

�lim sup
n � �

|
T

0
l 2(t) &Ric&2 E &(I&Pn) U(t, T ) h&2 dt=0,

which along with Eq. (6.14) implies that

E |z&zn| 2�4 |
T

0
l4 2(t) E &[PnU(t, T )&Un(t, T )] h&2 dt

+2 |
T

0
l 2(t) E &[Pn Ric PnU(t, T )&RicnUn(t, T )] h&2 dt+=n .

(6.15)

Recall that Theorem 5.10 asserts that

lim
n � �

&Pn Ric Pn&Ricn Pn&2
op=0
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and in particular this implies that C#supn &Ricn Pn&2
op<�. Therefore

|
T

0
l 2(t) E &[Pn Ric PnU(t, T )&Ricn Un(t, T )] h&2 dt

�2 |
T

0
l 2(t) &Pn Ric Pn&Ricn Pn&2

op E &U(t, T ) h&2 dt

+2 |
T

0
l 2(t) E &Ricn[PnU(t, T )&Un(t, T )] h&2 dt

�2 &Pn Ric Pn&Ricn Pn&2
op &h&2 } |

T

0
l 2(t) dt

+2 |
T

0
l 2(t) &Ricn Pn&2

op E &[PnU(t, T )&Un(t, T )] h&2 dt

�2C |
T

0
l 2(t) E &[PnU(t, T )&Un(t, T )] h&2 dt+=n .

Using this estimate in Eq. (6.15) gives

E |z&zn | 2�4 |
T

0
(l4 2(t)+Cl 2(t))

_E &[PnU(t, T )&Un(t, T )] h&2 dt+=n . (6.16)

Since &[PnU(t, T )&Un(t, T )] h&�2 &h&, the theorem follows from
Eq. (6.16) and the dominated convergence theorem provided that

lim
n � �

E&[PnU(t, T )&Un(t, T )] h&2=0.

This is the content of the next lemma. Q.E.D.

Lemma 6.5. Keeping the notation of the previous theorem,

lim
n � �

sup
t # [0, T ]

E &[PnU(t, T )&Un(t, T )] h&2=0.

Proof. Recall that ; is the L(g)-valued Brownian motion described in
Section 3.1. Let ;n#Pn ;=;Pn

, Dn#DPn, 2 (1)
n #2 (1)

Pn
, Qn#I&Pn , H(t)#

U(t, T ) h, Hn(t)#Un(t, T ) h, and :n(t)#Hn(t)&PnH(t). By Eq. (6.8),

dH=&Dd;
�H& 1

2 2(1)H dt=0 with H(T )=h

523LOOP GROUP QUASI-INVARIANCE



File: 580J 310355 . By:DS . Date:10:09:97 . Time:10:32 LOP8M. V8.0. Page 01:01
Codes: 2403 Signs: 656 . Length: 45 pic 0 pts, 190 mm

and Eq. (6.5)

dHn=&Dd;
�

n
Hn& 1

2 2 (1)
n Hn dt=0 with Hn(T)=h.

Therefore,

&d:n=&dHn+Pn dH

=Dn
d;
�

n
Hn&Pn Dd;

�H+ 1
2 (2 (1)

n Hn&Pn 2(1)H) dt

=Pn Dd;
�

n
(Hn&H )&Pn DQnd;

�H

+ 1
2 [2 (1)

n (:n+PnH )&Pn 2(1)(PnH+QnH)] dt

=Pn Dd;
�

n
:n&Pn Dd;

�
n
Qn H&Pn DQnd;

�H

+ 1
2 2 (1)

n :n dt+ 1
2(2 (1)

n &Pn 2(1)Pn) PnH dt& 1
2 Pn 2(1)Qn H dt,

with :n(T )=0. More precisely we have

:n(t)=An(t)&Bn(t)&Cn(t)+ 1
2 (Dn(t)+En(t)&Fn(t)),

where

An(t)#|
T

t
Pn Dd;

�
n
:n , Bn(t)#|

T

t
Pn Dd;

�
n
QnH,

Cn(t)#|
T

t
Pn DQnd;

�H, Dn(t)#|
T

t
2 (1)

n :n({) d{,

En(t)#|
T

t
(2 (1)

n &Pn 2(1)Pn) Pn H({) d{,

and

Fn(t)#|
T

t
Pn2(1)QnH({) d{.

Let us now estimate the L2-norms of the four terms not containing :n .
Bn-term,

E &Bn(t)&2=E |
T

t
:

l # S0

&Pn DPnl QnH(u)&2 du

�E |
T

0
:

l # S0

&Dl Qn H(u)&2 du

�E |
T

0
&D&2

op &QnH(u)&2 du,
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which tends to zero by the dominated convergence theorem and the fact
that Qn converges strongly to zero.

Cn-term,

E &Cn(t)&2=E |
T

t
:

l # S0

&Pn DQnl H(u)&2 du

�E |
T

0
:

l # S0

&DQnl H(u)&2 du

=E |
T

0
&(Qtr

n �I ) DH(u)&2 du, (6.17)

where Qtr
n : H0(g)* � H0(g)* is the transpose of Qn . Since Qn is an

orthogonal projection operator, it easily follows that Qn is unitarily equiv-
alent to Qtr

n under the natural unitary isomorphism between H0(g) and
its dual H0(g)*. In particular Qtr

n � 0 strongly as n � � and hence
(Qtr

n �I ) � 0 strongly as n � �, see the proposition on p. 299 of Reed and
Simon [23]. So again by the dominated convergence theorem, it follows
from Eq. (6.17) that limn � � E &Cn(t)&2=0.

En-term,

E &En(t)&2�(T&t) &2 (1)
n &Pn 2(1)Pn&2

op E |
T

t
&H(u)&2 du

=T &2 (1)
n &Pn 2(1)Pn&2

op |
T

t
&h&2 du

�T 2 &2 (1)
n &Pn 2(1)Pn&2

op &h&2,

which tends to zero as n � � by Theorem 5.8.
Fn-term,

E &Fn(t)&2�(T&t) &Pn 2(1)&2
op E |

T

t
&QnH(u)&2 du

�T &2(1)&2
op E |

T

0
&QnH(u)&2 du,

which again tends to zero as n � � because of the dominated convergence
theorem and the fact that Qn is strongly convergent to the zero.
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Combining the above four estimates with the expression for : yields

E &:n(t)&2�2E &An(t)+Dn(t)&2+=n�4E &An(t)&2+4E &Dn(t)&2+=n

�4E "|
T

t
Pn Dd;

�
n
:n"

2

+E "|
T

t
2 (1)

n :n(u) du"
2

+=n

=4 :
l # S0

|
T

t
E &Pn DPnl :n(u)&2 du+E "|

T

t
2 (1)

n :n(u) du"
2

+=n

�4 &D&2
op |

T

t
E &:n(u)&2 du+(T&t) E |

T

t
&2 (1)

n :n(u)&2 du+=n

�(4 &D&2
op+T sup

n
&2 (1)

n &2
op) E |

T

t
&:n(u)&2 du+=n ,

where =n denotes a generic sequence of positive numbers with limn � � =n

=0. By Theorem 5.8, supn &2 (1)
n &2

op<� and hence the proof of the Lemma
may be concluded with an application of Gronwall's inequality. Q.E.D.

Proof of Theorem 6.2. Let t>0 and f # FC�(L). Choose a partition
P of [0, 1] so that f =F b ?P for some C1-function F on G P. Let P0 be a
partition which refines P (i.e., P/P0) and for the moment assume that
h # HP0

(g).
Let Pn be a sequence of partitions such that P0/Pn/Pn+1 for all

n=1, 2, ... . Let z and zn be the random variables as in Theorem 6.4, see
Eqs. (6.11) and (6.12). By Eq. (6.1), with P replaced by Pn ,

E[(h� f )(7T)]=E[ f (7T) zn] (6.18)

holds for all n. By Theorem 6.4, we may let n � � in (6.18) to conclude
that

E[(h� f )(7T)]=E[ f (7T) z]

=E _ f (7T) |
T

0
([l4 (t)& 1

2 l(t) Ric] U(t, T ) h,
�
d;(t))& . (6.19)

By Remark 6.3 and the fact that f is bounded, the right hand side of (6.19)
is continuous in h # H0(g). Similarly, since the H0(g) norm is stronger than
the supremum norm and df is bounded, it follows that the left-hand-side of
Eq. (6.18) is also continuous in h # H0(g). The continuity of both sides of
Eq. (6.19), coupled with the fact that the span of the union of HP0

(g) over
all finite partitions P0 of [0, 1] which refine P is dense in H0(g), implies
that (6.19) is valid for all h # H0(g). Q.E.D.
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Corollary 6.6. For each h # H0(g), the differential operator h� with
domain FC�(L(G )) is a densely defined closable operator on L2(L(G ), &T).
Moreover the L2-adjoint of h� * of h� satisfies

h� * | FC�(L(G ))=&h� +:h , (6.20)

where :h : L(G ) � R is a Borel measurable function such that

:h(7T)#
1
T

E _|
T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+ } _(7T)& a.s. (6.21)

Proof. Let u, v # FC�(L) and l(t)=t�T. Then apply Theorem 6.2 with
f # FC�(L) replaced by uv # FC�(L) to find

E[(h� u)(7T) v(7T)+u(7T)(h� v)(7T)]=E[u(7T) :h(7T)]

or equivalently

|
L(G )

(h� u)(g) v(g) d&T (g)=|
L(G )

u(g)[&(h� v)(g)+:h(g) v(g)] d&T (g).

This proves Eq. (6.20) and the fact that h� is closable, since the properties
of being closable and having a densely defined adjoint are equivalent.

Q.E.D.

7. QUASI-INVARIANCE OF THE HEAT KERNEL MEASURE

In this section we will show that the measure &T#Law(7T) is quasi-
invariant under both right and left translations by finite energy paths in
L(G ), see Corollary 7.7 and 7.10 below. Our method will be modeled on
a technique in Cruzeiro [3] (see also Dennis Bell [1] and Gunnar Peters
[20, 21]) for proving quasi-invariance of flows of certain vector fields on
an abstract Wiener space. In order to carry out the proof it is necessary to
recall a few results from the finite dimensional case.

7.1. Finite Dimensional Preliminaries

Let M be a finite dimensional manifold and X be a smooth complete
vector field on M. We will denote the flow of X by [etX]t # R so that
etX : M � M is a diffeomorphism for all t # R such that e0X=idM and
detX�dt=X b etX. Suppose that _ is Borel measure on M such that, in every
coordinate chart, _ has a smooth positive density relative to Lebesgue
measure. Then the standard change of variable theorem guarantees that
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e
*
tX_#_ b e&tX is absolutely continuous relative to _ and that the Radon-

Nikodym derivative Zt(m)#(de
*
tX_�d_)(m) may be chosen to be a smooth

positive function of (t, m) # R_M.

Definition 7.1 (Divergence). The divergence div_(X ) of X relative to _
may be defined as

div_(X )=&
d
dt } 0 Zt . (7.1)

(The reason for the minus sign is to adhere to the standard sign conventions
for the divergence defined by other means.)

The following proposition summarizes some well known properties of Zt

and div_(X ).

Proposition 7.2. Let X, Zt , and div_(X ) be as above.

1. Suppose that B/M is a Borel subset of M such that B� is compact,
then

d
dt } 0 _(etX(B))=|

B
div_(X ) d_. (7.2)

So div_(X ) measures the rate of spreading of the flow etX as seen by the
measure _.

2. Viewing X as a first order differential operator, for f # C1(M ), let

X*f =&Xf &div_(X ) f. (7.3)

Then for all f, g # C1(M) such that the product fg has compact support,

|
M

(Xf ) g d_=|
M

f (X*g) d_. (7.4)

3. The Radon-Nikodym derivative Zt may be recovered from the flow
etX and div_(X ) by the formula

Zt(m)=e&�t
0 div_(X ) b e&{X(m) d{ (\m # M ). (7.5)

Proof. The key point is that for f : M � R, bounded and measurable
with compact support, we have by the definition of Zt that

|
M

f b etX d_=|
M

fZt d_.
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Hence

d
dt |M

f b etX d_=|
M

f
�Zt

�t
d_. (7.6)

Taking f to be the characteristic function of B and t=0 in Eq. (7.6) implies
Eq. (7.2). If we replace f by fg, where f, g # C 1(M ) such that fg has compact
support, then differentiating under the integral sign in Eq. (7.6) implies

|
M

[X( f b etX) } g b etX+ f b etXX(g b etX)] d_=|
M

fg
�Zt

�t
d_. (7.7)

Taking t=0 implies Eq. (7.3). Now suppose that g#1 in Eq. (7.7), then

|
M

f
�Zt

�t
d_=|

M
X( f b etX) } 1 d_=|

M
( f b etX) } X*1 d_

=&|
M

( f b etX) } div_ X d_

=&|
M

( f b etX) } (div_ X ) b e&tX b etX d_

=&|
M

f } (div_ X ) b e&tXZt d_.

Since f # C 1
c(M ) is arbitrary in this last equation, Zt must satisfy the

differential equation:

�Zt

�t
=&Zt } (div_ X ) b e&tX with Z0#1.

The unique solution of this equation is given in Eq. (7.5). Q.E.D.

For the infinite dimensional application to the loop group, it will be
necessary to recall the following key estimate of Ana Bela Cruzeiro
(see Corollary 2.2 in [2]) for the L p-norms of Zt in terms of div_ X. For
the readers convenience I will also give the short proof.

Theorem 7.3 (Cruzeiro). Let p # (1, �) and M, X, _, Zt and :#
&div_ X be as above. Assume now that _ is probability measure and write
E_ f for �M f d_. If for a given T>0, I(T )#sup|{|�T E_[Z p

{ ]<�, then for
all t # [&T, T ];

E_[Z p
t ]� sup

|s| �|t|

E_ exp { p2

p&1
s:=�E_ exp { p2

p&1
|t| |:|= . (7.8)
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Proof. Let Js#[0, s] if s�0 and Js#[s, 0] if s<0. Using Jensen's
inequality, Eq. (7.5), the definition of Zs and Holder's inequality we find for
|s|�|t|�T that

E_[Z p
s ]=E_ exp \ p |

s

0
: b e&{X d{+=E_ exp \ ps |

Js

: b e&{X d{
|s|+

�E_ |
Js

d{
|s|

exp( ps: b e&{X)=|
Js

d{
|s|

E_(e ps: } Z&{)

�|
Js

d{
|s|

(E_e pqs:)1�q (EZ p
&{)

1�p�(E_ e pqs:)1�q I(t)1�p,

where 1�q+1�p=1. Hence it follows that

I(t)� sup
|s|�|t|

(E_e pqs:)1�q I(t)1�p.

Solving this equation for I(t) shows that

I(t)� sup
|s| �|t|

(E_e pqs:)= sup
|s|�|t|

E_ exp { p2

p&1
s:=�E_ exp { p2

p&1
|t| |:|= .

Q.E.D.

7.2. Quasi-Invariance for the Heat Kernel Measure on L(G )

Let 7 be the L(G )-valued Brownian motion constructed in Theorem 3.8
with 7(0, s)#e for 0�s�1 and &T#Law(7T). For h # H0(g), let
:h : L(G ) � R be a Borel measurable function as in Corollary 6.6. By
taking u= f # FC�(L) and v=1 in Corollary 6.6 we find

E
T
(h� f )=E[(h� f )(7T)]=E[ f (7T) :h(7T)]=E&T

( f:h). (7.9)

Since the flow of the vector field h� is eth� (g)=geth, Eq. (7.9) and the finite
dimensional discussion above motivates the following theorem.

Theorem 7.4. Let h # H0(g), then &T is quasi-invariant under the trans-
formation g # L(G) � geh # L(G ). Moreover, let 00 denote the set of loops
g # L(G ) such that �1

0 |:h(ge&uh)| du<�, then &T (00)=1, the function
Zh : L(G ) � R defined by

Zh(g)=100
(g) exp \|

1

0
:h(ge&uh) du+ (7.10)
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is in L1(d&T) and

|
L(G )

f (geh) d&T (g)=|
L(G)

f (g) Zh(g) d&T (g)

for all bounded measurable functions f on L(G ). (This last equation may
also be equivalently expressed as E[ f (7Teh)]=E[ f (7T) Zh].)

Remark 7.5. For each finite partition of P of [0, 1], ?P*
&T is the

smooth measure on G P given by (d?P*
T�d*P)(x)= pP

T (e, x), where x # G P,
pG

T is the heat kernel on G P associated Riemannian inner product ( } , } )P ,
i.e., pP

T is the integral kernel of the operator eT 2P �2.

Proof of Theorem 7.4. Let P0/P1/P2 } } } be a nested sequence of
partitions of [0, 1] such that limn � � |Pn |=0. Suppose n0 # [0, 1, 2, ...]
and f : L � R is function such that f =F b ?Pn0

for some bounded Borel
measurable function F : G Pn0 � R. Let Gn be the smallest _-algebra on L(G )
such that the projection ?Pn

: L(G ) � G Pn is measurable, where G Pn is
given the Borel _-algebra. Set

:~ h, n#&div?Pn
V &T

h� | GPn

and :h, n#:~ h, n b ?Pn
. Then by Proposition 7.2 and Corollary 6.6,

:h, n(7T)#
1
T

E _|
T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+ } Gn& &-a.e. (7.11)

Therefore, by Proposition 7.2 and Remark 7.5,

E[ f (7T eh)]=E[ f (7T) Zh, n], (7.12)

where

Zh, n#exp {|
1

0
:h, n(7T e&sh) ds= . (7.13)

The proof of Theorem 7.4 will continue after the following key lemma.

Lemma 7.6. Let Zh, n be defined as in Eq. (7.13). Then for all p # (1, �),

sup
n

E&T
Zp

h, n�exp
1
2 \

p4 &h&2

( p&1)2 T 2 |
T

0 " I&
1
2

{ Ric"
2

op
d{+

=: M( p, h)<�, (7.14)

and [Zh, n]�
n=1 is Cauchy in L p(&T).
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Proof. Since G Pn is compact and g # G Pn � exp �1
0 :~ h, n(ge&sh) ds is

smooth, Cruzeiro's Theorem 7.3 may be applied to show

E&T
Z p

h, n

� sup
|s|�1

E&T _exp { p2

p&1
s:h, n=&

= sup
|s|�1

E&T \exp { p2

p&1
s
T

E&T _|
T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+ } Gn&=+

� sup
|s|�1

E&T \E&T _exp { p2

p&1
s
T |

T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+= } Gn&+

= sup
|s|�1

E&T _exp { p2

p&1
s
T |

T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+=& , (7.15)

wherein the second inequality we use Jensen's inequality. For fixed
s # [&1, 1] and T as above, set

Mt#
p2

p&1
s
T |

T

T&t \{I&
1
2

{ Ric= H({),
�
d;({)+ for 0�t�T.

Then Mt is a martingale such that the quadratic variation of M at T is
given by

OMoT=
p4s2

( p&1)2 T 2 |
T

0 "{I&
1
2

{ Ric= H({)"
2

d{.

and thus, because &H({)&=&h&,

&OMoT&L�(&)�
p4 &h&2 s2

( p&1)2 T 2 |
T

0 "I&
1
2

{ Ric"
2

op
d{<�. (7.16)

Hence, Novikov's criterion (see Proposition 1.15, p. 308 in [24]) implies
that EeMT&(1�2)(M)T=1 so that

EeMT=E(eMT&(1�2)(M)T } e(1�2)(M)T)�e(1�2) &(M)T&L�

�exp
1
2 \

s2p4 &h&2

( p&1)2 T 2 |
T

0 "I&
1
2

{ Ric"
2

op
d{+ . (7.17)

(Alternatively, see Lemma 1.4 in Kusuoka and Stroock [16].) Combining
equations (7.15) and (7.17) proves the bound in Eq. (7.14).
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Let m>n be two positive integers. By the fundamental theorem of
calculus, for all x, y # R,

e y&ex=( y&x) |
1

0
e(uy+(1&u) x) du=( y&x) |

1

0
(e y)u (ex)1&u du.

Applying this equation with x=�1
0 :h, n(7T e&sh) ds and y=�1

0 :h, m

(7T e&sh) ds gives

|Zh, n&Zh, m |= } |
1

0
:h, n(7T e&sh)&:h, m(7T e&sh) ds } } |

1

0
Z u

h, nZ (1&u)
h, m du.

Using Holder's inequality we find

E |Zh, n&Zh, m |

�|
1

0
&:h, n(7T e&sh)&:h, m(7T e&sh)&L3�2 ds |

1

0
&Z u

h, nZ (1&u)
h, m &L3 du.

(7.18)

Now by the bound in Eq. (7.14)

&Z u
h, nZ (1&u)

h, m &L3�&Z u
h, n&L6 &Z (1&u)

h, m &L6�M(6, h)1�3,

which combined with Eq. (7.18) shows that

E |Zh, n&Zh, m |�M(6, h)1�3 |
1

0
&:h, n(7T e&sh)&:h, m(7T e&sh)&L3�2 ds.

(7.19)

Since m>n,

&:h, n(7T e&sh)&:h, m(7T e&sh)&L3�2

=[E( |:h, n(7T)&:h, m(7T)| 3�2 Z&sh, m)]2�3

=&|:h, n(7T)&:h, m(7T)| (Z&sh, m)2�3&L3�2

�&:h, n(7T)&:h, m(7T)&L2 } &(Z&sh, m)2�3&L6

�(M(4, h))1�6 } &:h, n(7T)&:h, m(7T)&L2 .
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This equation and Eq. (7.19) shows that

E |Zh, n&Zh, m |�M(6, h)1�3 (M(4, h))1�6 } &:h, n(7T)&:h, m(7T)&L2(&) .

(7.20)

Now

&:h, n(7T)&:h, m(7T)&L2

#
1
T " (En&Em) |

T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+"L2

, (7.21)

where En#E[ } | Gn] denotes conditional expectation relative to the
_-algebra Gn . Since En converges strongly to E[ } | _(7T)] in L2 it follows
from Eq. (7.21) that

lim
m, n � �

&:h, n(7T)&:h, m(7T)&L2=0.

In view of Eq. (7.20) this finishes the proof of the lemma. Q.E.D.

We now continue the proof of Theorem 7.4. Let Z� h be the L p(&T)-limit
of Zh, n . Of course Z� h inherits the bounds in Eq. (7.14), namely that

E&T
Z� p

h �M( p, h)<� for all p # (1, �).

By the previous lemma, we may let n tend to infinity in Eq. (7.12) to find

E[ f (7T eh)]=E[ f (7T) Z� h(7T)]. (7.22)

Eq. (7.22) is valid for all f # FC�(L) which are based on Pn for some
positive integer n. So by a monotone class argument or Dynkin's ?&*
theorem, one may easily show that this equation is in fact valid for all
bounded measurable functions on L(G ).

Setting _#&T , and _h#RehV&T , we have shown that _h<<_ and that
d_h�d_=Z� h . We now show that _<<_h . To this end let f : L(G ) � R be
a bounded measurable function, then

E_( f )=Ef (7T)=Ef (7T e&heh)

=E[ f (7T eh) Z� &h(7T)]=E[ f (7T eh) Z� &h(7T ehe&h)]

=E_h
( fZ� &h(( } ) e&h)).

Therefore _<<_h and d_�d_h=Z� &h(( } ) e&h).
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So to finish the proof we need only show that Zh defined in Eq. (7.10)
is well defined and Zh(7T)=Z� h &-a.e. First consider

|
L(G ) \|

1

0
|:h(ge&uh)| du+

2

d&T (g)=E \|
1

0
|:h(7T e&uh)| du+

2

�|
1

0
E |:h(7T e&uh)| 2 du

=|
1

0
E( |:h(7T)| 2 Z� &uh(7T)) du

�(E |:h(7T)| 4)1�2 M(2, h)<�.

(Note that E |:h(7T)|4<� because of Remark 6.3 and the fact that
conditional expectations are contractions on L p-spaces.) This shows that
�1

0 |:h(ge&uh)| du<� for &T-a.e. g and hence that Zh is well defined.
Set !#�1

0 :h(7T e&uh) du and !n#�1
0 :h, n(7T e&uh) du. Since Zh(7T)=e!

and Z� h(7T)=limn � � e!n, to show that Zh(7T)=Z� h(7T) a.e. it suffices to
show that !n converges to ! in L1. We start with the estimate

E |!&!n |�|
1

0
E |:h, n(7T e&uh)&:h(7T e&uh)| du

=|
1

0
E[ |:h, n(7T)&:h(7T)| Z� &uh(7T)] du

�&:h, n(7T)&:h(7T)&L2 |
1

0
&Z� &uh(7T)&L2(P) du

�&:h, n(7T)&:h(7T)&L2(P) - M(2, h).

Now by Eq. (7.11),

&:h, n(7T)&:h(7T)&L2(P)

#
1
T " (En&E�) |

T

0 \{I&
1
2

{ Ric= H({),
�
d;({)+"L2(P)

, (7.23)

where En#E[ } | Gn] and E�( } )#E[ } | _(7T)]. This finishes the proof
because En converges strongly in L2 to E� as n � �. Q.E.D.

We now wish to extend Theorem 7.4 to include right translations by
k # L1

0(G ), where L1
0(G) denotes the space of contractible loops in L(G )
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which have finite energy. A loop k # L(G ) is said to have finite energy
provided k is absolutely continuous and

|
1

0
|%(k$(s)) | 2 ds=|

1

0
|Lk(s)&1Vk$(s)| 2 ds<�.

Corollary 7.7. For each k # L1
0(G ), &T quasi-invariant under the right

translation map Rk : L(G ) � L(G ) given by Rk g=gk.

We will need the following simple lemma for the proof of this corollary.

Lemma 7.8. Let (L, G, +) be a probability space and T : L � L be an
invertible measurable map with a measurable inverse. Assume that T

*
+#

+ b T &1, T
*
&1+#+ b T, and + are mutually absolutely continuous. Also let

f : L � [0, �) be a measurable function such that f >0 +-a.s. and
�L f du=1. If f+ denotes the probability measure defined by ( f+)(A)#
�A f d+ for all A # G, then T

*
( f+)#( f+) b T &1, T

*
&1( f+)#( f+) b T, and +

are all mutually absolutely continuous as well.

Proof. Let Z=dT
*

+�d+ and g : L � [0, �) be a measurable function.
Then

|
L

g d[T
*

( f+))]=|
L

g b T } f d+=|
L

(g } f b T &1) b T d+

=|
L

g } ( f b T &1) Z d+.

This shows that

d[T
*

( f+))]
d+

=Z } ( f b T &1). (7.24)

Since +( f &1([0]))=0 and + and T
*
&1+ are mutually absolutely con-

tinuous, we have 0=(+ b T )( f &1([0]))=+([g # L : f b T &1(g)=0]). That
is f b T &1 is positive +-a.s. Thus it follows from Eq. (7.24) that T

*
( f+) and

+ are mutually absolutely continuous. By symmetry, T
*
&1( f+) and + are

mutually absolutely continuous as well. Q.E.D.

Proof of Corollary 7.7. By Theorem 7.4 and repeated use of Lemma
7.8, it suffices to prove: for any k # L1

0(G ) there is an integer n and
hi # H0(g) such that

k(s)=eh1(s)eh2(s) } } } ehn+1(s). (7.25)
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To prove (7.25), choose a ball B in g centered at 0 such that
V :=[e! : ! # B] is open and the map ! # B � e! # V is a diffeomorphism
with inverse denoted by log. Let L(V )=[g # L(G ) : g([0, 1])/V ], so
that L(V ) is an open neighborhood of L0(G ). It is easily shown that
W#��

n=1 L(V )n is both open and closed in L(G) (with the sup-norm
topology) and hence W=L0(G )-the connected component of the identity
in L(G ). (The space L0(G ) may also be described as the space of contrac-
tible loops in L(G ).) Therefore there is an integer n # Z+ and ki # L(V )
such that k=k1k2 } } } kn . Let ui (s)#log ki (s), then ui # L(g) and
e&une&un&1 } } } e&u1k is the constant path sitting at e # G. Choose hi # H0(g)
sufficiently close to ui in the sup-norm topology on L(g) such that
e&hne&hn&1 } } } e&h1k # L(V ), Define hn+1#log(e&hne&hn&1 } } } e&h1k) # H0(g).
Then

ehn+1=e&hne&hn&1 } } } e&h1k,

which is equivalent to (7.25). Q.E.D.

Proposition 7.9. The heat kernel measure &T is invariant relative to the
inverse map g # L(G ) � g&1 # L(G).

Proof. It suffices to show that each of the finite dimensional distribu-
tions, ?P*

&T#&T b ?&1
P (where P is a finite partition of [0, 1]) is invariant

under the inverse map g # G P � g&1 # G P. But this property is know to
hold, in general, for heat kernel measures on uni-modular Lie groups
equipped with a left invariant Riemannian metric, see for example
Remark 2.2 and Proposition 3.1 in Driver and Gross [7] Q.E.D.

Corllary 7.10. For each k # L1
0(G ), &T is quasi-invariant under the left

translation map Lk : L(G ) � L(G ) given by Lk g=kg.

Proof. This a direct consequence of Corollary 7.7 and Proposition 7.9
above. Indeed, let f : L � R be a bounded and measurable function and for
each k # L1

0(G ) set Zk#d&T b R&1
k �d&T . Then

Ef (k7T)=Ef (k7&1
T )=Ef ((7Tk&1)&1)

=E( f (7&1
T ) Zk&1(7T))=E( f (7T) Zk&1(7&1

T )).

This shows that &T b L&1
k <<&T and d&T b L&1

k �d&T (g)=Zk&1(g&1) for &T

almost every g # L(G ). Since Zk&1>0 &T-a.s. and g � Zk&1(g&1) has the
same distribution as Zk&1 , it follows that d&T b L&1

k �d&T>0 &T -a.s. Hence &T

is absolutely continuous relative to &T b L&1
k as well. Q.E.D.
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8. APPENDIX: REVIEW OF THE ITO� INTEGRAL IN
INFINITE DIMENSIONS

As in the body of the text, let (W, F, [Ft]t�0 , P) be a filtered probab-
ility space satisfying the usual hypothesis as described in the beginning of
Section 3.1. The purpose of this appendix is to set up notation and review
some very basic facts about Hilbert space valued martingales and the Itô
integral � F d;. For Hilbert space martingale theory the reader is referred
to Me� tivier [18]. For the Itô integral on abstract Wiener space, see
Sections III.5 of Kuo [15], p. 188�207, especially Theorem 5.1 of [15].
Also see Kusuoka and Stroock [16] p. 5 for a very short description of the
Itô integral in this context. For the notion and basic properties of condi-
tional expectations for Banach space valued Random variables, see
Section 8.3 in Chapter 2 in Me� tivier [18].

8.1. Continuous Hilbert Valued Local Martingales

Let K be a Hilbert space. We will use ( } , }) to denote the inner product
on both of the Hilbert space H0(g) and K.

Theorem 8.1 (Quadratic Variations). Suppose that M and N are two
continuous local martingales with values in a Hilbert space K. Then there is
a real valued process of bounded variation OM, No such that for any
increasing sequence of partitions [?n]�

n=1 of [0, �) such that |?n | � 0 as
n � �,

OM, Not= lim
n � �

:
�

ti # ?n

(Mt 7 ti+1
&Mt 7 ti

, Nt7 ti+1
&Nt 7 ti

), (8.1)

where the limit exists in probability uniformly for t in compact subsets of
[0, �). Moreover the following properties hold:

1. |OM, No|�- OMo } ONo a.s., where OMo#OM, Mo.

2. |OMo&ONo|�- OM&No } OM+No a.s.

3. EMt*
2�4E &M0&2+4EOMot .

4. The following three conditions are equivalent:

(a) M is a square integrable martingale,

(b) EM t*
2<� for all t�0 and

(c) E &M0&2<� and EOMo(t)<� for all t�0.
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5. If Mn and M are continuous K-valued L2-martingales such that
E &(Mn&M)t&2 � 0 as n � � then OMno(t) � OMo(t) in L1.

6. Suppose the [Mn]�
n=1 is a sequence of K-valued continuous local

martingales such that Mn(0)=0 for all n and OMno � 0 a.s. as n � �.
Then Mn � 0 in probability uniformly on compact subsets of [0, �).

For a proof of this theorem see, for example, Theorems 20.5 and 20.6 in
Me� tivier [18] and Me� tivier and Pellaumail [19].

8.2. The Itô Integral on Our Abstract Wiener Space

For the rest of this Appendix we will adopt the notation in Section 3.1
of the body of the paper.

Theorem 8.2. Suppose that [ ft]t�0 is an (W, [Ft]t�0 , F, P)-adapted
and continuous process with values in H0(g). Then there is a continuous
local martingale N such that for any orthonormal basis [hn]�

n=1 of H0(g),
N=��

n=1 � ( ft , hn) d;hn, where the sum is convergent in probability
uniformly for t in compact subsets of [0, �). We will write Nt as �t

0 f d; or
N=� f d; for short. The quadratic variation of � f d; is given by
O� f d;ot=�t

0 & f{&2 d{ or O� f d;o=� & f &2 d{ for short.

Proof. Let k # Z+ and N (k)#�k
n=1 � ( ft , hn) d;hn��a local martingale.

Then for k$>k,

ON (k$)&N (k)o=| :
k$

n=k+1

|( ft , hn)| 2 d{ � 0 a.s. as k, k$ � �.

Using theorem 8.1, this shows that N (k) converges uniformly on compacts
in probability to a local martingale N and moreover

ONo=| :
�

n=1

|( f{ , hn)|2 d{=| & f{&2 d{.

Now suppose that [lm]�
m=1 is another orthonormal basis for H0(g) and

that

Q(k)# :
k

m=1
| ( ft , lm) d;lm.
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Let Pk and P� k be orthogonal projections onto span[h1 , h2 , ..., hk] and
span[l1 , l2 , ..., lk] respectively. Then

OQ(k)&N (k)o=O :
k

n=1
{| ( ft , hn) d;hn&| ( ft , ln) d;ln=o

= :
k

n, m=1

O{| ( ft , hn) d;hn&| ( ft , ln) d;ln= ,

{| ( ft , hm) d;hm&| ( ft , lm) d;lm=o

=:
k

n
| [ |( ft , hn)| 2+|( ft , ln)| 2] dt

&2 :
k

n, m=1
| ( ft , hm)( ft , lm)(hn , lm) dt

=| [&Pk ft&2+&P� k ft&2&2(Pk ft , P� k ft)] dt � 0

a.s. as k � �,

where we have used the fact that Pk and P� k are strongly convergent to I
as k � � along with the dominated convergence theorem. This shows that
� f d; is basis independent. Q.E.D.

Theorem 8.3 (Associativity). Suppose [ ft]t�0 and [gt]t�0 are (W,
[Ft]t�0 , F, P)-adapted and continuous process with values in H0(g) and R
respectively. Set M#� ( f, d;), then

| g dM=| (gf, d;). (8.2)

Proof. Let [hn]�
=1 be orthonormal basis for H0(g) and for N # Z+ set

MN# :
N

n=1
| ( f, hn) d;hn.

Then

O| gdM&| g dMNo=| g2 dOM&MNo=| g2 \ :
�

n=N+1

|( f, hn)| 2+ dt,
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and this last expression tends to zero almost surely as N � �. Therefore
� g dMN � � g dM uniformly on compacts in probability. On the other
hand, by associativity of the finite dimensional Itô integral,

| g dMN= :
N

n=1
| gd \| ( f, hn) d;hn+= :

N

n=1
| g( f, hn) d;hn

= :
N

n=1
| (gf, hn) d;hn � | (gf, d;) as N � �.

So we have shown that � g dMN converges to both � g dM and �(gf, d;).
Q.E.D.

Theorem 8.4. Suppose that K is another separable Hilbert space,
[Ft]t�0 is an Ft -adapted and continuous process with values in
HS(H0(g), K )��the Hilbert Schmidt operators from H0(g) to K. Then there
is a continuous K-values local martingale N such that, for any orthonormal
basis [kn]�

n=1 of K, ��
n=1 � (F*kn , d;) kn converges uniformly on compacts

in probability to N. We will write Nt as �t
0 F d; or N=� F d; for short.

The quadratic variation of � F d; is given by O� F d;ot=�t
0 &F&2

HS d{ or
O� F d;o=� &F&2

HS d{.

Proof. Let k # Z+ and N (k)#�k
n=1 � (F*kn , d;) kn��a K-valued local

martingale. Then for k$>k,

ON (k$)&N (k)o=O| :
k$

n=k+1
| (F*kn , d;) kno

= :
k$

m, n=k+1

O| (F*kn , d;), | (F*km , d;)o(kn , km)

= :
k$

n=k+1
| &F*kn&2

HS d{.

Recall that

&F&2
HS= :

�

n=1

&Fhn&2= :
�

n=1

:
�

m=1

|(Fhn , km)| 2

= :
�

m=1

:
�

n=1

|(hn , F*km)|2=&F*&2
HS .
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Therefore, ��
n=1 � &F*kn&2 d{<� and hence,

ON (k$)&N (k)o= :
k$

n=k+1
| &F*kn&2 d{ � 0 as k, k$ � �.

Again by Theorem 8.1, this shows that N (k) converges uniformly on
compacts in probability to a K-valued local martingale N and also that

ONo=| &F{&2
HS d{.

Now suppose that [lm]�
m=1 is another orthonormal basis for H0(g) and

that

Q(k)# :
k

m=1
| (F*lm , d;) lm .

Again let Pk be orthogonal projection onto span [k1 , k2 , ..., kk]. Then

OQ(k)&N (k)o=O :
k

n=1
{| (F*kn , d;) kn&| (F*ln , d;) ln=o

=O :
k

n=1
| (F*kn , d;) kno+O :

k

n=1
| (F*ln , d;) lno

&2 :
k

n=1

:
k

m=1

O| (F*kn , d;) kn , | (F*lm , d;) lmo

= :
k

n=1
| &F*kn&2 d{+ :

k

n=1
| &F*ln&2 d{

&2 | Gk d{, (8.3)

where

Gk# :
k

n=1

:
k

m=1

(F*kn , F*lm)(kn , lm)= :
k

m=1

(F*Pk lm , F*lm).

Let P$k#I&Pk and notice that

|Gk |�� :
�

m=1

&F*Pk lm&2 � :
�

m=1

&F*lm&2

=&F*Pk&HS } &F*&HS�&F&2
HS
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and

}Gk& :
k

m=1

(F*lm , F*lm) }� :
k

m=1

|(F*P$k lm , F*lm)|

�� :
k

m=1

&F*P$k lm&2 }� :
k

m=1

&F*lm&2

�&F*P$k&HS } &F*&HS

=� :
�

m=k+1

&F*hm&2 } &F&HS .

Therefore we are justified in applying the dominated convergence theorem
in Eq. (8.3) to find that

lim
k � �

OQ(k)&N (k)o=| [&F*&2
HS+&F*&2

HS&2 &F*&2
HS] dt=0.

Hence Q(k)&N (k) � 0 in probability which proves that � F d; is basis
independent. Q.E.D.

Theorem 8.5 (Itô's Lemma). Suppose that K is a separable Hilbert
space, [Ft]t�0 is an (W, [Ft]t�0, F, P)-adapted and continuous process
with values in HS(H0(g), K ). Then

"|
t

0
F d;"

2

=2 |
t

0 \F {* |
{

0
F d;, d;({)++|

t

0
&F{&2

HS d{. (8.4)

Proof. Let [kn]�
n=1 be orthonormal basis for K and Mn#�(F*kn , d;).

Then

"| F d;"
2

= :
�

n=1
\| (F*kn , d;)+

2

= :
�

n=1

M 2
n

= :
�

n=1
{2 | Mn dMn+OMno=

=2 :
�

n=1
| (MnF*kn , d;)+ :

�

n=1
| &F*kn&2 d{

=2 :
�

n=1
| (MnF*kn , d;)+| &F&2

HS d{, (8.5)

wherein the third equality we used the Associativity Theorem 8.3.
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Let PN be orthogonal projection onto the subspace spanned by
[k1 , k2 , ..., kN]. Then for any h # H0(g)

\h, F* | PN F d;+=\Fh, | PNF d;+
=\Fh, :

�

n=1

kn | ((PNF )* kn , d;))

= :
N

n=1

(kn , Fh) | (F*kn , d;)= :
N

n=1

Mn(F*kn , h),

and hence

:
�

n=1
| (Mn F*kn , d;)= lim

N � �
:
N

n=1
| (MnF*kn , d;)

= lim
N � � | \F* | PNF d;, d;+ . (8.6)

So to finish the proof it suffices to consider

O| \F* | F d;, d;+&| \F* | PNF d;, d;+ot

=|
t

0 "F {* |
{

0
(I&PN) F d;"

2

d{

�|
t

0
&F{&2

op "|
{

0
(I&PN) F d;"

2

d{. (8.7)

Since, &(I&PN) Fhn&2�&Fhn&2 and ��
n=1 &Fhn&2=&F&2

HS<�, it follows
by the dominated convergence theorem that

O| (I&PN) F d;o=| &(I&PN) F&2
HS d{ � 0 as N � �, (8.8)

and hence � (I&PN) F d; converges to zero uniformly on compacts in
probability. Therefore, the right side of Eq. (8.7) tends to zero as N � �.
This implies that � (F* � PNF d;, d;) � � (F* � F d;, d;) in probability as
N � �. Equation (8.4) now follows from this limit and equations (8.5)
and (8.6). Q.E.D.

8.3. Backwards Itô Integrals

Let T>0 be fixed. For the moment suppose that V is a finite dimen-
sional vector space, [X(t)]t�0 is a continuous V-valued process and
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[A(t)]t�0 is continuous End(V )-valued process. Let ?=[0=t0<t1<t1<
t2< } } } <tn=T ] denote a partition of [0, T ], |?|# maxi |ti+1&ti |. For
{=ti # ?, let {+#t(i+1) be the successor to { in ?. (By convention
tn+1#T.) Then the forward stochastic and respectively backwards
stochastic integral of A relative to X is

|
t

0
A dX# lim

|?| � 0
:

{ # ?

A({)(X(t 7 ({+))&X({ 7 t)) (8.9)

and

|
T

t
A

�
dX# lim

|?| � 0
:

{ # ?

A({+)(X(t 6 ({+))&X({ 6 t)), (8.10)

provided that limits exists in probability uniformly for t in [0, T ]. For
example, if A and X are semi-martingales then the above limit exists and

|
T

t
A

�
dX=|

T

t
A dX+|

T

t
dA dX,

where �T
t A

�
dX=�T

0 A
�
dX&�t

0 A
�
dX and

|
t

0
dA dX# lim

|?| � 0
:

{ # ?

(A(t 7{+)&A({))(X(t 7 ({+))&X({ 7 t)) (8.11)

is the joint quadratic variation between A and X. Set AT(t)#A(T&t),
X T(t)#X(T&t)&X(T ) and for each partition ? of [0, T ] as above let ?T

denote the partition

?T=[0=T&tn<T&tn&1< } } } <T&t1<T&t0=T ].

Noting that |?T |=|?| and

X(T&(T&t) 7 ({+))&X(T&(T&t) 7 {)

=X(t 6 (T&{+))&X(t 6 (T&{)),

we have

|
T&t

0
AT dX T# lim

|?| � 0
:

{ # ?

:
{ # ?

A(T&{)(X(T&(T&t) 7 ({+))

&X(T&(T&t) 7 {))

= lim
|?| � 0

:
{ # ?T

A({+)[X(t 6{)&X(t 6 {+)]

=&|
T

t
A

�
dX. (8.12)
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We will now use this last relationship as a definition for our infinite
dimensional backwards Itô integrals. We now formulate the precise defini-
tion that is used in the body of this paper. As in the last subsection let (W,
[Ft]t�0 , F, P) be the filtered probability space and [;(t)]t�0 be the
L(g)-valued Brownian motion as in the body of the text. Fix T>0 and
set ;T(t)#;(T&t)&;(T ) for t # [0, T ], FT denote the completion of
the _-algebra generated by [;T(t) : 0�t�T ] and FT

t be the _-algebra
generated by [;T({) : 0�{�t]=[;({)&;(T ) : T&t�{�T ] augmented
by the null sets of FT.

Definition 8.6. Suppose that H(t) is a continuous (for simplicity)
H0(g)-valued process such that H(t) is FT

T&t -measurable. (Notice that
FT

T&t is the _-algebra generated by [;({)&;(T ) : t�{�T ] augmented by
the null sets of FT.) Then H T(t)#H(T&t) is a continuous process
adapted to the filtration [FT

t ]0�t�T and we define, for 0�t�T, the
backwards stochastic integral of H as

|
T

t
(H({),

�
d;({))#&|

T&t

0
(H(T&{), d;T({)). (8.13)

Remark 8.7. Notice that the backward Itô-integral defined in Eq. (8.13)
inherits the basis the L2-isometry property from the forward Itô integral,
namely

E _|
T

t
(H(t),

�
d;(t))&

2

=E |
T

t
&H(t)&2 dt (8.14)

provided the right side of Eq. (8.14) is finite.
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