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Let G be a connected compact type Lie group equipped with an AdG -invariant
inner product on the Lie algebra g of G. Given this data there is a well known left
invariant ``H 1-Riemannian structure'' on L=L(G)��the infinite dimensional
group of continuous based loops in G. Using this Riemannian structure, we define
and construct a ``heat kernel'' &T ( g0 , } ) associated to the Laplace�Beltrami operator
on L(G). Here T>0, g0 # L(G), and &T ( g0 , } ) is a certain probability measure on
L(G). For fixed g0 # L(G) and T>0, we use the measure &T ( g0 , } ) and the
Riemannian structure on L(G) to construct a ``classical'' pre-Dirichlet form. The
main theorem of this paper asserts that this pre-Dirichlet form admits a logarithmic
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1. INTRODUCTION

1.1. Background

In this paper we consider the existence of a logarithmic Sobolev
inequalities on loop groups. The study of loop groups is motivated by
physics and the theory of group representations; see, for example, [26] and
the references therein. This work was motivated by the papers of Getzler
[21] and Gross [23]. In [21], Getzler shows that Bakry and Emery
criteria (see [8, 9]) for proving a logarithmic Sobolev inequality does not
hold in general for loop groups when the ``underlying'' measure is pinned
Wiener measure. However, Gross [23] (see also [22]) was able to show
(using pinned Wiener measure) that a logarithmic Sobolev inequality with
an added potential term does hold for loop groups. The question as to
when this potential is needed is still open.

In this paper, we will change the problem slightly. Instead of using
Wiener measure we will use a ``heat kernel measure'' on the loop group as
the underlying measure. In this setting, we will show that methods of Bakry
and Ledoux (see [7, 10, 11] and also [2, 4�6, 8, 18, 24, 33, 34]) may be
applied to give a logarithmic Sobolev inequality without a potential. This
result compliments the beautiful results already known about ``spectral
gaps'' and logarithmic Sobolev inequalities for general based path spaces
(see Fang [19], Hsu [24], and Aida and Elworthy [1]).

1.2. Statement of Results

Let G be a compact type Lie group, g#TeG be the Lie algebra of G, and
( } , } ) be an AdG invariant inner product on g. For ! # g, let |!|#- (!, !).
Let L=L(G) denote the based loop group on G consisting of continuous
paths g: [0, 1] � G such that g(0)=g(1)=e, where e # G is the identity
element.

Given a function h: [0, 1] � g such that h(0)=0, define (h, h)=� if h
is not absolutely continuous and set (h, h)=�1

0 |h$(s)| 2 ds otherwise. Let

H0#[h: [0, 1] � g | h(0)=h(1)=0 and (h, h)<�].

We will think of H0 as the Lie algebra of L.
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In order to define the tangent space TL of L, let % denote the Maurer
Cartan form, i.e., %(!)=Lg&1

*
! for all ! # TgG and g # G. We now define

TL#[X: [0, 1] � TG | %(X) # H0 and p b X # L], (1.1)

where (%(X) )(s)#%(X(s)) and p: TG � G is the canonical projection. By
abuse of notation also let p: TL � L denote the canonical projection on
TL defined by X # TL � p b X # L. As usual, define the tangent space at
g # L by TgL#p&1([ g]).

Using left translations, we may extend the inner product ( } , } ) on H0 to
a Riemannian metric on TL. Explicitly, for X # TL, set

(X, X)#(%(X) , %(X) )H0
.

In this way, L is to be thought of as an infinite dimensional Riemannian
manifold. The following theorem is paraphrased from Corollary 6.3 of
Section 6.

Theorem 1.1. For each t>0 there is a probability kernel ( g0 � &t( g0 , } )):
L(G) � M1(L(G)) (M1(L(G)) is the set of probability measures on L(G))
such that for all ``bounded cylinder functions '' f on L(G), u(t, g0)#

�L(G) f ( g) &t( g0 , dg) is the unique solution to the heat equation:

�u(t, } )��t= 1
22u(t, } ) with lim

t a 0
u(t, g)= f ( g).

Here 2 denotes the ``Laplace-Beltrami '' operator on L(G).

See Definition 4.2 and Definition 4.17 below for the notion of cylinder
functions and the Laplacian respectively. The main theorem of this paper
is Theorem 6.4 of Section 6 which we state using the convention that
0 log 0#0 and

&T ( g0 , f )#|
L(G)

f (x) &T ( g0 , dx),

whenever f is an integrable function on L(G) relative to &T ( g0 , } ).

Theorem 1.2 (Logarithmic Sobolev Inequality). There exists a constant
C # [0, �) (depending on G and ( } , } ) ) such that for all real valued bounded
cylinder functions f on L, g0 # L, and T>0,

&T ( g0 , f 2 log f 2)�
2
C

(eCT&1) &T( g0 , &{9 f &2)

+&T ( g0 , f 2) } &T ( g0 , log f 2), (1.2)
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where &{9 f &2=({9 f , {9 f ), and {9 f is the gradient of f related to the Riemannian
structure ( } , } ) on L. (If C=0 then (2�C)(eCT&1)#2T.)

Remark 1.3. Given g0 # L(G) and T>0, let E0
T, g0

be the symmetric
quadratic form defined by

E0
T, g0

(u, v)#|
L

({9 u( g), {9 v( g)) &T ( g0 , dg),

where u and v are smooth cylinder functions on L(G) which are bounded
and have bounded gradients. The form E0

T, g0
is studied in [16] where it

will be shown to be closable.

1.3. Outline of Paper

[9 2] In the second section, the finite dimensional version of heat kernel
logarithmic Sobolev inequalities is reviewed. A proof for the case of
unimodular Lie groups is given here since it is needed for the main
theorem. The heat kernel logarithmic Sobolev inequalities seem to have
been first discovered by Bakry and Ledoux [10].

[9 3] From Eq. (1.1), it follows that TL is isomorphic to L_H0 .
Similarly, any bundle associated to TL is trivial. Therefore, we may con-
sider tensor fields on L as functions from L to H} k

0 � (H0*)} l for some
non-negative integers k and l. This point of view is used implicitly in the
sequel. In the third section we develop the geometry of the ``Levi�Civita
covariant'' derivative restricted to constant functions from L to
H } k

0 � (H0*)} l. These functions correspond to left-invariant tensor fields.
In particular, we compute the curvature and the Ricci curvature tensor
of L. It is shown that the Ricci curvature tensor is bounded from below
by the metric on L. The computation of the Ricci curvature already
appears in Freed [20].

[9 4] Here the geometry of the Levi�Civita covariant derivative on L is
developed on ``cylinder'' functions from L to H } k

0 � (H0*)} l. In particular
we introduce the Laplacian on L and verify that the Bochner Wietzenbo� ck
formula still holds. This is done in more detail than necessary for the
purposes of this paper in anticipation of future work.

[9 5] In this section, we use the computations in Section 4 to verify that
the Ricci curvatures associated to certain finite dimensional ``cylindrical''
approximations to L are uniformly bounded below, see Corollary 5.3. This
fact in combination with the results from Section 2 enable us to prove a
preliminary version of Theorem 1.2, see Theorem 5.6.

[9 6] This section is devoted to constructing the heat kernel measures
associated to the heat equation on L(G). This is done by writing down the
finite dimensional distributions and verifying Kolmogorov's continuity
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criteria. After the construction of the heat kernel measure, the final form of
Theorem 1.2 is an immediate consequence of Theorem 5.6, see Theorem 6.4.

There is an alternative approach to constructing the heat kernel
measures, which is not pursued here. Namely, first construct an L(G)-
valued ``Brownian motion'' starting at g0 # L and then take &T ( g0 , } ) to be
the time T distribution of this Brownian motion. The construction of such
a Brownian motion in the case that G is compact is indicated by Malliavin
in [25].

2. LOG SOBOLEV INEQUALITIES FOR HEAT KERNELS
ON UNIMODULAR LIE GROUPS

In this section we will review the method of Bakry and Ledoux for prov-
ing ``heat kernel'' logarithmic Sobolev inequalities. For further details the
reader is referred to Bakry and Ledoux [7, 11]. The main result of this
paper will be proved by applying the results of this section to finite dimen-
sional ``cylindrical'' approximations of L(G).

For the moment let M be a connected complete Riemannian manifold
without boundary of dimension N. We will write ( } , } ) for the induced
metric on any of the vector bundles T } kM� (T*M)} l for k, l=0, 1, 2, ...,
where as usual T } 0M=(T*M)} 0 is to be taken as the trivial vector
bundle M_R. Also let |!| 2#(!, !) for ! # T } kM� (T*M)} l. Let 2 be
the Levi�Civita Laplacian on M, and Ric be the Ricci tensor of the Levi�
Civita covariant derivative {.

By Theorem 2.4 of Strichartz [31], the Laplace�Beltrami operator 2 on
C �

c (M) is an essentially self-adjoint non-negative densely defined operator
on L2(M, dx), where dx denotes the Riemannian volume measure on M.
By abuse of notation, we will continue to denote the closure of 2 by 2. By
the spectral theorem 2 generates a L2(M, dx) contraction semigroup
[et2�2]t>0. The following theorem summarizes some well known properties
of et2�2.

Theorem 2.1. There is a smooth function pt(x, y) for t>0 and x, y # M
such that

(et2�2 f )(x)#|
M

pt(x, y) f ( y) dy \f # C �
c (M). (2.1)

Moreover the heat kernel ( pt(x, y)) has the following properties.

1. pt(x, y)=pt( y, x)>0 for all t>0 and x, y # M.

2. �pt(x, y)��t= 1
22x pt(x, y)= 1

22y pt(x, y) for all t>0 and x, y # M.
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3. If there is a constant C # R such that

Ric(v, v)� &C(v, v) \v # TM, (2.2)

then pt is conservative, i.e. �M pt(x, y) dy=1 for all t>0 and x # M.

Proof. See Strichartz [31] or Chavel [12] Chap. VIII for the first two
items. Item 3 is proved in Yau [35], see also Bakry [3]. Q.E.D.

Given a measurable function f : M � [0, �] let

(PT f )(x)#|
M

pT (x, y) f ( y) dy. (2.3)

Similarly if f : M � R is measurable and (PT | f | )(x)<� we define
(PT f )(x) by (2.3). We now want to consider the validity of the following
``heat kernel'' logarithmic Sobolev inequality:

PT ( f 2 log f 2)�2[(eCT&1)�C] PT |{f | 2+PT ( f 2) log PT f 2. (2.4)

The fact that such an inequality should hold seems to have been first dis-
covered by D. Bakry and M. Ledoux [10]. If M is compact there are by
now a number of proofs that (2.4) holds for all f # C �(M), see Bakry and
Ledoux [11], Bakry [7], E. Hsu [24], and F. Wang [33, 34], and Driver
and Hu [18]. These proofs follow the circle of ideas introduced by Bakry
and Emery [8, 9], see also Bakry [2, 4�6]. All of these proofs formally
hold for noncompact manifolds as well. However, in the noncompact case,
there are a number of technical details to attend to, see Bakry [7]. Since,
a complete proof of (2.4) is rather difficult to find in one single source in
the current literature, we will give the technical details for the special case
needed in the body of this paper; namely the case when M is a unimodular
Lie group.

2.1. The Unimodular Lie Groups Case

From now on M will be a unimodular Lie group and ( } , } ) is any fixed
inner product on m=TeM��the Lie algebra of M. We will extend ( } , } ) to
a Riemannian metric on TM by demanding that all the left translations are
isometries. Given A # m=Te M=Lie(M), let A� denote the unique left
invariant vector field on M such that A� (e)=A.

Definition 2.2. The distance metric d: M_M � M is defined by

d( g, h)=inf |
1

0
|_$(s)| ds,
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where the infimum is taken over all C 1-paths _ in M such that _(0)=g and
_(1)=h. Also set

| g|.d( g, e) \g # M.

Notice that

d(xg, xh)=d( g, h)

for all g, h, x # M. Indeed, if _ is a curve joining g to h, then x_( } ) is a
curve joining xg to xh which has the same length as _. Because of the
above displayed equation,

d( g, h)=| g&1h|= |h&1g|.

Setting h=e in this equation shows that | g|=| g&1| for all g # M.
Because d is left invariant, it is easily checked that (M, d ) is a complete

metric space so that (M, ( } , } )) is a complete Riemannian manifold. Also,
the left invariance of the metric ( } , } ) implies that the curvature tensor and
hence the Ricci tensor are also left invariant. In particular, this guarantees
that there is a constant C # R such that (2.2) holds.

Remark 2.3. Because ( } , } ) is left invariant, the Riemannian volume
measure dx is a left invariant Haar measure. Since M is assumed to be
unimodular, dx is also a right invariant Haar measure. In this setting it is
well known and easy to check that the Laplace-Beltrami operator 2 may
be written as 2=�N

i=1 A� 2
i , where [Ai]N

i=1 is any orthonormal basis of
(m, ( } , } )), see for example Remark 2.2 of [17].

Definition 2.4. A function f : M � R is exponentially bounded if there
are constants B and ; such that | f (x)|�Be; |x| for all x # M.

We will need the following well known properties of the heat kernel
pt(x, y).

Proposition 2.5. For t>0, define &t(x)#pt(x, e)=pt(e, x), where e # M
is the identity. Then:

1. pt(x, y)=&t( y&1x), so that

(Pt f )(x)=|
M

f ( y) &t( y&1x) dy=|
M

f (xy) &t( y&1) dy. (2.5)

2. &t is symmetric: &t(x&1)=&t(x).
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3. &t is conservative:

|
G

&t(x) dx=1. (2.6)

4. &t is an approximate $-function, i.e.,

lim
t a 0 |

M
f (xy) &t( y) dy= f (x) if f # Cc(M). (2.7)

5. [Heat Kernel Bounds] For T>0 and = # (0, 1] there is a constant
C(T, =)<� such that for all t # (0, T] and x # M;

&t(x)�C(T, =) t&N�2 exp[&|x| 2�2(1+=) t]. (2.8)

Proof. Item 1 follows from the fact that left translations commute
with 2, item 2 follows from item 1 and the symmetry of pt , item 3 is a con-
sequence of Theorem 2.1 (item 3), and item 4 holds because pt(x, y) is a
fundamental solution to the heat equation. For a further discussion on the
first four items see Section III.2 of [29], Section 2.2 of [15], and Proposi-
tion 3.1 of [17]. The heat kernel bounds in (2.8) may be found on page
257 of Robinson [29], see also Section 5 of Davies [14] and Section 3 of
Varopoulos [32]. Q.E.D.

The next proposition facilitates the use of heat kernel bound in the above
proposition. In the proof of this proposition it is necessary to recall the
volume estimates which follows from Bishop's comparison theorem.

Lemma 2.6 (Bishop's Comparison Theorem). Let (M, g) be an
N-dimensional complete Riemannian manifold, }�0, and assume that

Ric(!, !) �&(N&1) }g(!, !) \! # TM.

Let o # M and V(r) denote the Riemannian volume of the ball of radius r
centered at o # M. Then

V(r)�|N&1 |
r

0 \
sinh - } \

- } +
N&1

d\, (2.9)

where |N&1 is the surface area of the unit N&1 sphere in RN. Also

V(r)�|N&1rNe- }r. (2.10)
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Proof. By Bishops' comparison theorem (see Theorem 3.9, p. 123 of
Chavel [13]) V(r)�V}(r), where V}(r) is the volume of a ball of radius r
in N-dimensional hyperbolic space with constant sectional curvature
&(N&1) }. This proves (2.9), since V}(r) is exactly the right member of
(2.9), see Eq. (2.48) on page 72, the formula after Eq. (3.7) on p. 104, and
the formula for the volume of a metric disk above Proposition 3.2 on
p. 116 of Chavel [13].

Elementary calculus shows that (1&e&x)�x�1, from which it easily
follows that sinh(- } \)�- }�\e- } \. Substituting this inequality into 2.9
shows that

V(r)�|N&1 |
r

0
\N&1e- } \ d\.

The inequality (2.10) follows from this inequality and elementary calculus.
Q.E.D.

It is possible to prove an estimate of the form in (2.10) in the Lie group
case just using the translation invariance of the metric, see Lemma 5.8 of
[15]. However, this method does not give any control over the constants
|N&1 and - } in (2.10). We now return to the setting where M is a
unimodular Lie group.

Proposition 2.7. There exists finite constants C1 and C2 such that for
all bounded continuous functions g: M � [0, �),

|
M

g(x) dx�C1 |
�

0
g*(r) eC2r dr, (2.11)

where g*(r)#sup| y| �r | g( y)|.

Proof. We will first assume that g has compact support. Then g* has
compact support in [0, �) and g*(r) is a decreasing function on [0, �).
Let g~ (r)#lim= a 0 g*(r+=), then &g~ is increasing, right continuous, and
g~ =g* except on an at most a countable set. For r>0 let V(r) denote the
Riemann volume measure (i.e., Haar measure) of [x # M: |x|�r]. By
Proposition 3.2 of [13], V is a continuous function. Using these observa-
tions we have

|
M

g(x) dx�|
M

g*( |x| ) dx=|
�

0
g*(r) dV(r)

=|
�

0
g~ (r) dV(r)= &|

�

0
V(r) dg~ (r).
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By Lemma 2.6, there exists constants c>0 and C<� such that
V(r)�CrNecr. Using this in the above displayed equation gives

|
M

g(x) dx�&C |
�

0
rNecr dg~ (r)=C |

�

0
g~ (r)(NrN&1+crN) ecr dr

=C |
�

0
g*(r)(NrN&1+crN) ecr dr�C1 |

�

0
g*(r) eC2 r dr,

where C2 is any constant larger than c and C1 is sufficiently large. This
proves (2.11) when g has compact support. For general g, choose hn #
C(M, [0, 1]) such that hn A 1 as n � �. Since (hn g)*�g* it follows that

|
M

hn(x) g(x) dx�C1 |
�

0
g*(r) eC2 r dr.

We may now use the monotone convergence theorem to take the limit as
n � � in the above equation to get (2.11). Q.E.D.

The following corollary is an easy consequence of standard Gaussian
integral estimates, the heat kernel bound in (2.8), and Proposition 2.7. See
Lemma 4.3 in [17] for more details.

Corollary 2.8. For all ;>0 and T>0,

sup
0<t�T

|
M

e; | y|&t( y) dy<� (2.12)

and for all $>0 and ;>0,

lim
t a 0 |

| y|�$
e; | y|&t( y) dy=0. (2.13)

By Eq. (2.12), PT | f |<� for any exponentially bounded functions. We
may now state the main theorem of this section.

Theorem 2.9 (Bakry and Ledoux). Assume M is a unimodular Lie
group given a left invariant Riemannian structure as above. Let T>0 and f
and |{f | be exponentially bounded, then

PT ( f 2 log f 2)�2[(eCT&1)�C] PT |{f | 2+PT ( f 2) log PT f 2, (2.14)

where 0 log 0#0 as usual.
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Our proof of Theorem 2.9 will consist of showing that the argument
given in Driver and Hu [18] for the case of a compact manifold can be
carried out in this case also. We will give the proof of Theorem 2.9 after
a number of preparatory results.

Lemma 2.10. Suppose k: (0, T)_M_M � V (V being a finite dimen-
sional normed vector space) is continuous and assume for each closed interval
J/(0, T) there is a constant BJ<� such that |k(t, x, y)|�BJeBJ[ |x|+| y|]

for all t # J and x, y # M. For t # (0, T) and x # M, define

K(t, x)=|
M

k(t, xy, y) &t( y) dy.

Then K: (0, T)_M � R is continuous and there exists CJ<� such that

sup
t # J

|K(t, x)|�CJeBJ |x| \x # M. (2.15)

Moreover if k: [0, T]_M_M � V is continuous and there exists a constant
B<� such that |k(t, x, y)|�BeB[ |x|+| y|] for all t # [0, T] and x, y # M,
then

K(t, x)#{�M k(t, xy, y) &t( y) dy
k(0, x, e)

if t>0
if t=0

(2.16)

is continuous [0, T]_M and there is a constant C<� such that

sup
0�t�T

|K(t, x)|�CeB |x| \x # M. (2.17)

Proof. For t # J, we have

|K(t, x)|�|
M

BJeBJ[ |xy|+| y|]&t( y) dy�BJeBJ |x| |
M

e2BJ | y|&t( y) dy.

Hence (2.15) holds with

CJ= sup
0<t�T

|
M

BJe2BJ | y|&t( y) dy

which is finite by (2.12). Similarly one shows that (2.17) is also valid. The
continuity of K(t, x) for (t, x) # (0, T)_M follows from the dominated
convergence theorem using the heat kernel estimate in Eq. (2.8) and
Proposition 2.7. We need only prove the continuity of K(t, x) at t=0.
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For this let $>0, then since &t is a probability density we have

|K(t, x)&K(0, z)|= } |M
[k(t, xy, y)&k(0, z, e)] &t( y) dy }

�\| | y|�$
+|

| y|>$+ |k(t, xy, y)&k(0, z, e)| &t( y) dy

� sup
| y|�$

|k(t, xy, y)&k(0, z, e)|

+B |
| y|>$

[eB[ |x|+2 | y|]+eB |z|] &t( y) dy.

By Eq. (2.13) for any $>0,

lim
(t, x) � (0, z) || y|>$

[eB[ |x|+2 | y|]+eB |z|] &t( y) dy=0.

By the continuity of k it follows that

sup
| y|�$

|k(t, xy, y)&k(0, z, e)|

can be made arbitrarily small by choosing (t, x) sufficiently close to (0, z)
and $ sufficiently close to 0. Hence |K(t, x)&K(0, z)| � 0 as (t, x) � (0, z).

Q.E.D.

Notation 2.11. If k: M � R is a n times continuously differentiable and
m # M, let Dnk(m) # (m*)} n be defined by

(Dnk(m), ;1 � } } } �;k)#(;� 1 } } } ;� kk)(m),

where ;1 , ;2 , ..., ;n # m are arbitrary and ( } , } ) is used (routinely) to
denote the natural pairing between a vector space and its dual. As usual we
will set D0k#k. If k: (0, T)_M � R, let Dnk(t, m)#Dn(k(t, } ))(x), if
k: M_M � R, let Dn

1k(x, y)#Dn(k( } , y))(x), and if k: (0, T)_M_M � R,
let Dn

1k(t, x, y)#Dn(k(t, } , y))(x).

Note that (dk, Lm*
;) =(Dk(m), ;) for all ; # m and m # M, where

Lm*
is the differential of left translation by m on M. Since Lm*

is an
isometry, it follows that |dk|=|{k|=|Dk|=|{9 k| , where {k#dk and {9 k
denotes the gradient of k where k is a function. In the sequel, we will freely
use these identities.
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Lemma 2.12. Let k: M_M � R be a C 1-function and assume there
exists B<� such that |k(x, y)|+|D1k(x, y)|�BeB( |x|+| y| ) for all x, y # M.
Then for each t>0, the function x � K(x)#�M k(xy, y) &t( y) dy is C 1 and

(DK(x), ;) =|
M

(D1k(xy, y), Ady&1 ;) &t( y) dy, (2.18)

for all ; # m and x # M. Alternatively, we may write (2.18) as

(;� K)(x)=|
M

;� xk(xy, y) &t( y) dy,

where the subscript x on the ;� above is used to indicated that ;� is acting only
on the x variable.

Proof. First let us recall that there is a constant c<� such that

&Ady&�ec | y| \y # M. (2.19)

To prove this choose a C 1-path _: [0, 1] � G such that _(0)=e and
_(1)= y. Then

d
dt

Ad_(t)=
d
d= }0 Ad_(t)Ad_(t)&1 _(t+=)=Ad_(t)ad%(_* (t)) ,

where %(_* (t))#L_(t)&1
*

_* (t). Hence

&Ad_(t) &="I+|
t

0
Ad_({)ad%(_* ({)) d{"

�1+c |
t

0
&Ad_({) & |%(_* ({)) | d{,

where c=max[&ad:&: : # g, |:|=1] and &ad: & is the operator norm of
ad: . By Gronwall's inequality,

&Ady&=&ad_(1) &�exp \c |
1

0
|%(_* (t)) | dt+=ecl(_),

where l(_) is the length of the curve _ relative to the left-invariant Rieman-
nian metric on M. Minimizing this last inequality over all C 1-paths _
joining e to y # G proves (2.19).

For :, ; # m, let Q(:) ;#(d�ds)| 0 e&:e(:+s;)=Le&:
*

exp
*

(;:), where
;:=(d�ds)| 0 (:+s;) # T:m. Notice that (: � Q(:)): m � End(m) is a
smooth map, in fact Q(:)=�1

0 e(1&s) ad: ds but we will not need this explicit
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formula. Now fix :, ; # m and x # M and define h(s, y)#k(xe(:+s;)y, y)
and h$(s, y)#dh(s, y)�ds. Then

h$(s, y)=(D1 k(xe(:+s;)y, y), Ady&1 Q(:+s;) ;)

and hence

|h$(s, y)|�|D1k(xe(:+s;)y, y)| |Ady&1 Q(:+s;) ;|

�BeB[ |xe(:+s;)y|+| y|] &Ady&1 & } &Q(:+s;)& } |;|

�B &Q(:+s;)& } |;| eB[ |x|+|e(:+s;)|+2 | y|]ec | y|

=B &Q(:+s;)& } |;| eB[ |x|+|e(:+s;)|]e(2B+c) | y|.

From this estimate and Eq. (2.12) it follows that H(s)#�M h(s, y) &t( y) dy
is differentiable, H $(0)=�M h$(0, y) &t( y) dy. Hence we have shown for
each x # M and :, ; # m that

d
ds } 0 K(xe(:+s;))=|

M
(D1 k(xe:y, y), Ady&1 Q(:) ;) &t( y) dy. (2.20)

By the dominated convergence theorem, one may show that the right mem-
ber of (2.20) is a continuous function of : for each ; # m. Therefore, the
directional derivatives of the function : � K(xe:) exist and are continuous.
Since x # M is arbitrary it follows that x � K(x) is C 1. Equation (2.18)
follows from (2.20) with :=0. Q.E.D.

Proposition 2.13. Let k: (0, T)_M � R be a C 1 function such that
D2k(t, y) exists and is continuous for (t, y) # (0, T )_M and for each com-
pact interval J/(0, T ) there is a constant B=BJ such that

|k4 (t, y)|+ :
2

r=0

|Drk(t, y)|�BeB[ |x|+| y|] \t # J,

where k4 (t, y)#�k(t, y)��t. Define

K(t)#(Pt k(t, } ))(e)=|
M

k(t, y) &t( y) dy.

Then K: (0, T ) � R is differentiable and

K4 (t)=|
M

[k4 (t, y)+ 1
22k(t, y)] &t( y) dy, (2.21)
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i.e.,

d
dt

(Pt k(t, } ))(e)=\Pt {k4 (t, } )+
1
2

2k(t, } )=+ (e).

Proof. To simplify notation define G(t) to be the right hand side of
(2.21). Let hn # C �

c (M, [0, 1]) such that limn � � hn#1, Dhn and 2hn con-
verges to zero boundedly, see for example Lemma 3.6 of [17]. Define
kn(t, y)#hn( y) k(t, y) and Kn(t)#�M kn(t, y) &t( y) dy. Then

K4 n(t)=|
M

�
�t

(kn(t, y) &t( y)) dy

=|
M \k4 n(t, y)+

1
2

2kn(t, y)+ &t( y) dy=: Gn(t),

where the second equality is a consequence of two integration by parts and
the fact that �&t ��t= 1

22&t . Using 2kn=2hn } k+2(Dhn , Dk)+hn 2k, the
assumptions on k, the properties of [hn], and (2.12), we see that Kn(t) and
Gn(t) converges uniformly for t in compact subset of (0, T ) to K(t) and
G(t) respectively. Therefore K(t) is differentiable and K4 (t)=G(t). Q.E.D.

Lemma 2.14. Let T>0 and suppose that ,: (0, T)_M � R is a smooth
function such that

sup {} �l

�tl Dk,(t, x) }: (t, x) # (0, T )_M=<� (2.22)

for all l, k # N _ [0]. Then 9(t, x)#(Pt,(t, } ))(x) is also smooth for (t, x) #
(0, T )_M and the bounds in (2.22) hold with , replaced by 9.

Proof. Write Dk,(t, xy) for (Dk,(t, } ))(xy). Using (2.19) one may easily
show

sup[ |2l
y[(Ad tr

y&1)} k Dk,(t, xy)]|: (t, x) # (0, T )_M]�C(k, l ) ekc | y|,

(2.23)

where Ad tr
y&1 denotes the transpose of Ady&1, C(k, l ) is a finite constant, and

c is the constant in (2.19).
Writing 9(t, x)=�M ,(t, xy) &t( y) dy, it follows by repeated use of

Lemma 2.12 and Eq. (2.23) with l=0 that Dk9(t, x) exists for all integers
k and

Dk9(t, x)=|
M

&t( y)(Ad tr
y&1)} k Dk,(t, xy) dy.
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By Lemma 2.10 we know that Dk9(t, x) is continuous in (t, x). Similarly
using Eq. (2.23) and Proposition 2.13 we may show (�l��tl) Dk9(t, x) exists
for all integers l and

�l

�tl Dk9(t, x)=2&l |
M

&t( y) 2l
y[(Ad tr

y&1)} k Dk,(t, xy)] dy. (2.24)

Again by Lemma 2.10, (�l��tl) Dk9(t, x) is continuous in (t, x). Since k
and l are arbitrary we have shown that 9 is smooth. Finally

sup {} �l

�tl Dk9(t, x) }: (t, x) # (0, T )_M=�C(k, l ) sup
0<t<T

|
M

&t( y) ekc | y| dy

which is finite by (2.12). Q.E.D.

Corollary 2.15. Suppose that f # C 2(M) such that f , Df , and D2f are
bounded and set u(t, x)#(Pt f )(x). Then u solves the heat equation
�u��t=2u�2 for t>0.

Proof. First recall that

u(t, x)=|
M

f (xy) &t( y) dy=|
M

f (xy&1) &t( y) dy

and hence by an application of Proposition 2.13 with k(t, y)# f (xy&1)
shows that

�u(t, x)��t= 1
2 |

M
(2y f (xy&1)) &t( y) dy.

Now

2y f (xy&1)= :
A # g0

d 2

dt2 }0 f (xe&tAy&1)=2x f (xy),

and hence

�u(t, x)��t= 1
2 |

M
2x f (xy&1) &t( y) dy.

As in the proof of Lemma 2.14, by two applications of Lemma 2.12,

(A� 2u)(t, x)=|
M

A� 2
x f (xy&1) &t( y) dy
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for all A # g. Hence summing this equation over A # g0 shows

(2u)(t, x)=|
M

2x f (xy&1) &t( y) dy.

Thus u satisfies �u��t=2u�2. Q.E.D.

We may use the above results to easily prove the following special case
of a theorem of Dodziuk, see Theorem 3, p. 183 in Chavel [12].

Corollary 2.16. Suppose that u # C 1([0, �)_M � R) satisfies

1. D2u(t, x) exists and is continuous for (t, x) # (0, �)_M,

2. u solves the heat equation �u��t= 1
22u, and

3. for all 0<T<�, u, Du and D2u are bounded on (0, T)_M.

Then u(t, x)=(Ptu(0, } ))(x).

Proof. Let T>0 be fixed and consider U(t, x)#(PT&tu(t, } ))(x). By
Proposition 2.13, we have for (t, x) # (0, T )_M that

�U(t, x)��t=(PT&t[�u(t, } )��t& 1
2 2u(t, } )])(x)=0.

Therefore, U(t, x) is a constant for t # (0, T ). But by Lemma 2.10,
limt A T U(t, x)=u(T, x) and limt a 0 U(t, x)=(PTu(0, } ))(x). Hence
u(T, x)=(PTu(0, } ))(x). Q.E.D.

Proof of Theorem 2.9. For the moment let f # C �
c (M, [0, �)). Let

F(T, x)# f (x) and

F(t, x)#(P(T&t) f )(x)=|
M

f (xy) &(T&t)( y) dy=|
M

f (xy&1) &(T&t)( y) dy

for t # (&1, T ) and x # M. By Lemma 2.14, F is a smooth function on
(&1, T)_M with all its derivatives bounded. It follows, either by
Corollary 2.15 or by the fact that f # D(2) and F(t, x)=(e(T&t) 2�2 f )(x),
that F4 (t, } )=&2F(t, } )�2 for all t # (&1, T ).

Let =>0 and define ,(x)#(x+=) log(x+=) and 9(t, x)#(Pt(,(F(t, } )))
(x). By Lemma 2.14, 9(t, x) is smooth for (t, x) # (0, T )_M and all the
derivatives of 9 are bounded. Suppressing t and x from the notation when
possible, we have by Proposition 2.13 that

94 =P _\ �
�t

+
1
2

2+ (, b F )&
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and

9� =P _\ �
�t

+
1
2

2+
2

(, b F )& .

By elementary computations (see for example Lemma 3.2, Lemma 4.3, and
Corollary 4.5 in [18]) one shows

94 =P { |{F| 2

2(F+=)= and 9� � &C94 on (0, T)_M, (2.25)

where C # R such that Ric( } , } ) �&C( } , } ). Therefore (d�dt) log 94 �&C,
and hence for 0<t<{<T,

94 (t)�94 ({) eC({&t).

Integrating this last equation over [$, {] (0<$<{<T ) gives

9({)&9($)�94 ({)(eC({&$)&1)�C. (2.26)

Using Lemma 2.10 (repeatedly) shows: F is continuous on [0, T]_M,
limt A T 9(t, x)=(PT (,( f ))(x), limt a 0 9(t, x)=F(0, x)=,((PT f (x)),

lim
t A T

DF(t, x)=lim
t A T |

M
Ad tr

y&1Df (xy) &(T&t)( y) dy=Df (x),

and

lim
t A T

94 (t, x)=\PT { |{f | 2

2( f +=)=+ (x).

Using the above limits in (2.26) gives:

PT (,( f ))&,(PT f )�
(eCT&1)

2C
PT (( f +=)&1 |{f | 2). (2.27)

Now for arbitrary f # C �
c (M), apply (2.27) to f 2 to find

PT (,=( f 2))&,=(PT f 2)�
(eCT&1)

2C
PT (( f 2+=)&1 4f 2 |{f | 2)

�
2(eCT&1)

C
PT ( |{f | 2),
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where ,=(s)=,(s)=(s+=) log(s+=). Using the fact that s log s is bounded
on (0, K) for any K>0, we may use the dominated convergence theorem
to pass to the limit as = a 0 in the above displayed equation. This proves
logarithmic Sobolev inequality in (2.14) for f # C �

c (M).
If f # C 1

c(M) we may convolve f with a sequence of approximate $-func-
tions to produce a sequence of functions [ fn]/C �

c (M) such that fn and
Dfn converges uniformly to f and Df respectively. Applying (2.14) to fn and
then letting n tend to infinity shows that (2.14) holds for all f # C 1

c(M).
Finally, for f # C 1(M) such that f and Df are exponentially bounded, let
fn#hn f , where [hn]/C �

c (M) is a sequence as in the proof of Lemma
2.12. Then again (2.14) holds with f replace by fn for each n and one may
easily pass to the limit to conclude that (2.14) holds for f also. Q.E.D.

3. GEOMETRY OF THE LOOP ALGEBRA

In this section we will be developing the geometry of the left invariant
tensor fields on L(G). Since the left invariant tensor fields may be iden-
tified with their values at the identity loop, the geometry of these tensor
fields may be developed without explicit mention of the loop group L(G).
This explains the title of this section and the reason that L(G) does not
appear until the next section where more general tensor fields are con-
sidered.

The Ricci tensor computed in Theorem 3.12 below has already been
worked out by Freed [20]. Also see [21, 30] for closely related computa-
tions. Nevertheless, we supply full details since we will need the notation
later and we also need to develop the geometry of L(G) a little further.
The main subtlety in computing the Ricci tensor is that the curvature ten-
sor is not trace class. This point is clearly explained in Freed [20], see also
Remark 3.13 below. Since the Ricci tensor is a trace of the curvature ten-
sor, this causes some problems. However, these problems may be overcome
by using only ``good'' (see Definition 3.10) orthonormal bases for H0 when
computing the trace of the curvature tensor.

Throughout this section let g be a real Lie algebra of compact type.
A Lie algebra is said to be of compact type if there exists an inner product
( } , } ) on g with the property that the adjoint operators [adA]A # g are all
skew-symmetric. We will fix such an inner product on g in the sequel. For
A # g let |A|#- (A, A). Let g0/g denote an orthonormal basis for
(g, ( } , } ) ) and

K(A, B) #&tr(adA adB) \A, B # g0 , (3.1)

i.e., &K is the Killing form on g.
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Notation 3.1. Given a finite dimensional inner product space (V,
( } , } ) ) let H(V) denote the ``Cameron�Martin'' Hilbert space of absolutely
continuous functions h: [0, 1] � V such that h(0)=0 and

(h, h)#|
1

0
|h$(s)| 2 ds<�. (3.2)

Let

H0(V)=[h # H(V) | h(1)=0].

If V=g we will simply write H for H(g) and H0 for H0(g).

Definition 3.2. Let T 0, 0
0 =R, T 0, n

0 =H} n
0 and T m, 0

0 =(H0*)} m, with
their natural crossed norms. For a pair of positive integers m, n let T m, n

0

denote the Hilbert operators from H} m
0 to H} n

0 , equipped with the
Hilbert Schmidt norm, i.e. for : # T m, n

0 ,

&:&2
T0

m, n= :
�

i=1

&:(!i)&
2
H0

} n , (3.3)

where [!i]�
i=1 is any orthonormal basis for H} m

0 .

For notational convenience, it is helpful to encode all of the spaces
[T m, n

0 ]�
m, n=0 into one larger inner product space.

Notation 3.3. Let

T0# �
�

m, n=0

T m, n
0 (algebraic direct sum),

i.e., : # T0 iff :=��
m, n=0 :m, n with :m, n # T m, n

0 and :m, n=0 for all but
a finite number of pairs (m, n) # N2. For :=��

m, n=0 :m, n and ;=
��

m, n=0 ;m, n in T0 , let

(:, ;)# :
�

m, n=0

(:m, n , ;m, n)T0
m, n .

With this definition T0 is an inner product space such that T m, n
0 is a sub-

space of T0 for all m, n # N. Moreover, ( } , } ) agrees with ( } , } )T0
m, n on T m, n

0

for all m, n # N. We will write & }& for - ( } , } ).

Remark 3.4. The Hilbert space T m, n
0 is naturally isomorphic to

(H0*)} m�H} n
0 . The isomorphism may be described as the continuous

400 DRIVER AND LOHRENZ



File: 580J 292421 . By:BV . Date:02:09:96 . Time:11:46 LOP8M. V8.0. Page 01:01
Codes: 2794 Signs: 1572 . Length: 45 pic 0 pts, 190 mm

linear map from (H0*)} m �H} n
0 to T m, n

0 determined uniquely by requir-
ing for all [h1 , ..., hm , k1 , ..., kn]/H0 that

(h1 , } )� } } } � (hm , } )�k1� } } } �kn # (H0*)} m�H} n
0 � : # T m, n

0 (3.4)

where : # T m, n
0 is determined by

:(v1� } } } �vm)#(h1 , v1) } } } (hm , vm)k1� } } } �kn (3.5)

for all v1 , ..., vm # H0 . In the future, we will identify : in (3.5) with the LHS
of (3.4).

The following Lemma summarizes some basic well known facts about
the Hilbert Schmidt norm.

Lemma 3.5. Suppose that : # T m, n
0 and ; # T n, k

0 . Recall that
:: H} m

0 � H} n
0 and ;: H} n

0 � H k
0 are Hilbert Schmidt operators

1. Let :* denote the adjoint of :, then &:&=&:*&.

2. ;: # T m, k
0 and &;:&�&;& &:&.

3. If ! # H} m
0 , then &:!&�&:& &!& , i.e., &:&op�&:& where &:&op

denote the operator norm of :.

3.1. Covariant Derivative on Left Invariant Vector Fields

In preparation for introducing a ``covariant derivative'' on H0 , let
P: H � H denote orthogonal projection of H onto H0 . It is easily checked
that P is given by Ph=h&4h(1), where 4(s)#s for s # [0, 1].

Definition 3.6. Let D: H0 � T 1, 1
0 $H0*�H0 denote the linear

operator determined by

(Dk)h=P |
}

0
[h, dk]=|

}

0
[h, dk]&4 |

1

0
[h, dk], (3.6)

for all h, k # H0 , where 4(s)#s and dk(s)#k$(s) ds. (D is a bounded
operator, see Lemma 3.9 below.) We will usually write (Dk)h as Dh k.

In Theorems 3.15 and 3.18 below we will extend D to T m, n
0 . We now

adopt the following notation throughout the remainder of this paper.

Notation 3.7. Let h/H0(R) and g0/g be fixed orthonormal bases. Let
S0 denotre an (arbitrary) orthonormal basis of H0=H0(g) and hg0 denote
the specific orthonormal basis of H0 defined by

hg0#[hA # H0(g) : h # h and A # g0].
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Lemma 3.8. Let G0(s, t)#s 7 t&st for s, t # [0, 1]. Then

:
a # h

|a(s) a(t)|�1�4, \s, t # [0, 1], (3.7)

:
h # S0

|h(s)| |h(t)|� 1
4 dim g, (3.8)

:
a # h

a(s) a(t)=G0(s, t), (3.9)

and

:
h # S0

h(s)�h(t)=G0(s, t) :
A # g0

A�A # g�g. (3.10)

Proof. It is well known and easy to check that G0 is the reproducing
Kernel for H0(R), i.e., for all a # H0(R) and s # [0, 1],

(G0(s, } ), a)#|
1

0
(�G0(s, t)��t) a$(t) dt=a(s). (3.11)

Therefore,

:
a # h

a2(s)= :
a # h

(a, G0(s, } ))2=(G0(s, } ), G0(s, } ))=G0(s, s)�1�4

and hence

:
a # h

|a(s) a(t)|�\ :
a # h

a2(s)+
1�2

\ :
a # h

a2(t)+
1�2

�1�4.

This proves (3.7). By (3.11) and the assumption that h is an orthonormal
basis

G0(s, t)=(G0(s, } ), G0(t, } ))= :
a # h

(G0(s, } ), a)(a, G0(t, } ))= :
a # h

a(s) a(t),

which proves (3.9). We prove (3.8) by using the Cauchy Schwarz inequality
and the identity:

:
h # S0

|h(s)| 2= :
h # S0

:
A, B # g0

(h, G0(s, } )A)(h, G0(s, } )B)

= :
A, B # g0

(G0(s, } )A, G0(s, } )B)

= :
A # g0

G0(s, s)�dim g�4.
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Finally,

:
h # S0

h(s)�h(t)= :
h # S0

:
A, B # g0

(h, G0(s, } )A)(h, G0(t, } )B)A�B

= :
A, B # g0

(G0(s, } )A, G0(t, } )B)A�B

= :
A # g0

G0(s, t)A�A. Q.E.D.

Lemma 3.9. Let k # H0 , then

&Dk&2=|
1

0
G0(s, s) K(k$(s), k$(s)) ds

&|
1

0
|

1

0
G0(s, t) K(k$(s), k$(t)) ds dt (3.12)

�|
1

0
G0(s, s) K(k$(s), k$(s)) ds (3.13)

where K is defined in (3.1). In particular, D is a bounded operator.

Proof. Recall that &Dk&2 is the Hilbert Schmidt norm of Dk, so

&Dk&2= :
h # S0

&Dh k&2
H0

= :
h # S0

{|
1

0 } [h(s), k$(s)]&|
1

0
[h(t), k$(t)] dt }

2

ds=
= :

h # S0
{|

1

0
|[h(s), k$(s)]|2 ds

&�|
1

0
[h(t), k$(t)] dt, |

1

0
[h(s), k$(s)] ds�= .

It now follows by Lemma 3.8 and the dominated convergence theorem that

&Dk&2= :
A # g0

|
1

0
G0(s, s)([A, k$(s)], [A, k$(s)]) ds

& :
A # g0

|
1

0
|

1

0
G0(s, t)([A, k$(s)], [A, k$(t)]) ds dt
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= :
A # g0

|
1

0
G0(s, s)(&adk$(s) adk$(s) A, A) ds

& :
A # g0

|
1

0
|

1

0
G0(s, t)(&adk$(s) adk$(t) A, A) ds dt

=|
1

0
G0(s, s) tr(&adk$(s) adk$(s)) ds

&|
1

0
|

1

0
G0(s, t) tr(&adk$(s) adk$(t)) ds dt

=|
1

0
G0(s, s) K(k$(s), k$(s)) ds&|

1

0
|

1

0
G0(s, t) K(k$(s), k$(t)) ds dt.

This proves (3.12). Equation (3.13) follows from (3.12) after noting that

|
1

0
|

1

0
G0(s, t) K(k$(s), k$(t)) ds dt= :

h # S0
} |

1

0
[h(t), k$(t)] dt }

2

�0.

Setting M 2#sup[K(!, !) | ! # g and |!|=1], it follows easily from (3.13)
that

&Dk&2�M 2(sup
s

G0(s, s)) &k&2=(M 2�4) &k&2.

Therefore D is a bounded operator with &D&op�M�2. Q.E.D

In order to have the infinite sums exist in the definition of the Ricci ten-
sor (and also in the definition of the Laplacians below), it will be necessary
to choose a ``good'' basis of H0 .

Definition 3.10. An orthonormal basis S0 of H0=H0(g) is a good
basis if for each h # S0 , [h(s), h$(s)]=0 for almost every s # [0, 1].
Example: S0=hg0 .

Notation 3.11. For h, k, l # H0 , define:

1. [Lie Bracket] [h, k] # H0 by [h, k](s)#[h(s), k(s)] for all
s # [0, 1].

2. [Torsion Tensor] T(h, k)#Dh k&Dk h&[h, k] # H0 .

3. [Curvature Tensor] R(h, k) l#[Dh , Dk] l&D[h, k] l # H0 .

4. [Ricci Tensor] Ric(h, l ) #�k # S0
(R(h, k) k, l ), where S0 is any

good orthonormal basis of H0 . (We will see in the next theorem that this
sum exists.)
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Theorem 3.12. Let h, k, l, p # H0 , then:

1. [Metric Compatible] (Dh k, l )+(k, Dh l)=0, i.e. Dh is skew
adjoint (Dh*=&Dh).

2. [Zero Torsion] T#0.

3. [Curvature] Let 4(s)=s for s # [0, 1], then

R(h, k) l=P \_|
}

0
k d4, |

1

0
[h, dl ]&&_|

}

0
h d4, |

1

0
[k, dl ]&+ (3.14)

and

(R(h, k) l, p)=�|
1

0
[h, dp], |

1

0
[k, dl ]�&�|

1

0
[k, dp], |

1

0
[h, dl ]�.

(3.15)

4. [Ricci] (See Freed [20].) The sum in the definition of the Ricci
tensor is absolutely convergent and

Ric(h, p)=&|
1

0
|

1

0
G0(s, t) K(h$(t), p$(s)) ds dt (3.16)

=K(h� , p� ) &|
1

0
K(h(s), p(s)) ds (3.17)

where

h� #|
1

0
h(s) ds and p� #|

1

0
p(s) ds.

Proof. Let h, k, l, p # H0 . Because ad! for ! # g is skew-adjoint,

([h, k$], l $)+(k$, [h, l $]) #0.

Integrating this equation over the interval [0, 1] shows that

0=\|
}

0
[h, dk], l++\k, |

}

0
[h, dl ]+

=\P |
}

0
[h, dk], l++\k, P |

}

0
[h, dl ]+ ,

which is the first assertion.
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For the second assertion notice that

T(h, k) :=P |
}

0
[[h, dk]&[k, dh]]&[h, k]

=P |
}

0
d[h, k]&[h, k]=P[h, k]&[h, k]=0,

since [h, k] # H0 .
Equation (3.15) is a simple consequence of (3.14). To prove (3.14)

consider

Dh Dk l=Dh \|
}

0
[k, dl ]&4 |

1

0
[k, dl ]+

=\P {|
}

0
[h, [k, dl ]]&_|

}

0
h d4, |

1

0
[k, dl&=+ .

By this equation and the corresponding equation with h and k inter-
changed,

[Dh , Dk] l=P |
}

0
[[h, [k, dl ]]&[k, [h, dl ]]]

&P {_|
}

0
h d4, |

1

0
[k, dl ]&&_|

}

0
k d4, |

1

0
[h, dl ]&=

=P |
}

0
[[h, k], dl ]

&P {_|
}

0
h d4, |

1

0
[k, dl ]&&_|

}

0
k d4, |

1

0
[h, dl ]&=

=D[h, k] l+P \_|
}

0
k d4, |

1

0
[h, dl ]&&_|

}

0
h d4, |

1

0
[k, dl ]&+ ,

where the Jacobi identity has been used in the second equality. This last
equation and the definition of R implies Eq. (3.14).

Now let S0 be a good basis for H0 . Then by Eq. (3.15) and Definition 3.10,

(R(h, k) k, p)= &�|
1

0
[k, dp], |

1

0
[k, dh]� , (3.18)
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for all k # S0 and h, p # H0 . Hence

Ric(h, p)= & :
k # S0

�|
1

0
[k, dp], |

1

0
[k, dh]� . (3.19)

Using Lemma 3.8 and the dominated convergence theorem, one easily shows
for an arbitrary orthonormal basis S0 of H0 that

:
k # S0

�|
1

0
[k, dp], |

1

0
[k, dh]�

=|
1

0
|

1

0
G0(s, t) :

A # g0

(adp$(s) A, adh$(t) A) ds dt,

=|
1

0
|

1

0
G0(s, t) K( p$(s), h$(t)) ds dt. (3.20)

Equations (3.19) and (3.20) prove (3.16). Two integration by parts and the
fundamental theorem of calculus yields

Ric(h, p) =|
1

0
|

1

0

�G0(s, t)
�s

K( p(s), h$(t)) ds dt

=|
1

0
|

1

0
[1s�t&t] K( p(s), h$(t)) ds dt

=&|
1

0
K( p(s), h(s)) ds&|

1

0
|

1

0
tK( p(s), h$(t)) ds dt

=&|
1

0
K( p(s), h(s)) ds+|

1

0
|

1

0
K( p(s), h(t)) ds dt

=K(h� , p� ) &|
1

0
K(h(s), p(s)) ds,

which proves (3.17). Q.E.D.

Remark 3.13. If g is non-abelian, it is possible to find an orthonormal
basis S0/H0 such that �k # S0

�1
0 [k, dk] is not convergent. Hence some

restriction on the choice of S0 is necessary when computing the Ricci tensor.
We will see below that such a restriction is also necessary when computing
the Laplacian as the trace of the Hessian, see Definition 4.17 and Proposi-
tion 4.19 below.
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To verify the above remark, it suffices to construct an orthonormal
sequence [hn]�

n=1/H0 such that ��
n=1 �1

0 [hn , dhn] is divergent. For this
choose and orthonormal set [A, B]/g such that [A, B]=C{0 and define

hn (s)#\sin(2n?s)
2n? + A+\sin((2n+1)?s)

(2n+1)? + B.

Then one may check that [hn]�
n=1 is an orthonormal sequence in H0 and,

with the aid of one integration by parts, that

|
1

0
[hn , dhn]=C |

1

0 \sin(2n?s)
n? + cos((2n+1) ?s) ds.

Hence

:
�

n=1
|

1

0
[hn , dhn]= :

�

n=1

2
?2 \ 1

n(4n+1)
&

1
n+ C=&� } C.

Lemma 3.14. By abuse of notation let R denote the Linear operator from
H} 3

0 � H0 determined by

R(h�k� l)=R(h, k) l. (3.21)

Then R # T 3, 1
0 , i.e. R is Hilbert Schmidt.

Proof. Since P: H � H0 is orthogonal projection, it follows by (3.14) that

&R(h�k� l )&2�"_|
}

0
k d4, |

1

0
[h, dl ]&&_|

}

0
h d4, |

1

0
[k, dl ]&"

2

�2 "_|
}

0
k d4, |

1

0
[h, dl ]&"

2

+2 "_|
}

0
h d4, |

1

0
[k, dl ]&"

2

.

Let M be a constant such that |[A, B]|�M |A| } |B| for all A, B # g. Then

&R&2= :
h, k, l # S0

&R(h�k� l)&2

�4 :
h, k, l # S0

"_|
}

0
k d4, |

1

0
[h, dl ]&"

2

�4M :
h, k, l # S0

} |
1

0
[h, dl ] }

2

} |
1

0
|k(s)| 2 ds,

�M } dim g } :
h, l # S0

} |
1

0
[h, dl ] }

2

, (3.22)
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wherein the last inequality we have used Lemma 3.8. By (3.19), (3.20),
and (3.17),

:
h, l # S0

} |
1

0
[h, dl ] }

2

= & :
l # S0

Ric(l, l)

= :
l # S0

{|
1

0
K(l(s), l(s)) ds&K(l� , l� )=

� :
l # S0

|
1

0
K(l(s), l(s)) ds

= :
A # g0

K(A, A) |
1

0
G0(s, s) ds�

1
4

:
A # g0

K(A, A) <�,

where the sum on l # S0 was done using Lemma 3.8. The lemma now follows
from this equation and Eq. (3.22). Q.E.D.

3.2. Covariant Derivative on Left Invariant Tensor Fields

Our next task is to extend D to an operator acting on T m, n
0 for arbitrary

m and n. This is the content of the next two theorems.

Theorem 3.15. There exists unique bounded operators D(n): T 0, n
0 =

H} n
0 � T 1, n

0 such that the following three conditions hold.

1. D(0): T 0, 0
0 =R � H0* is the zero operator,

2. D(1)=D,

3. [Product Rule] If ! # T 0, n
0 , ' # T 0, k

0 , and h # H0 then

D(n+k)
h (!�')=(D (n)

h !)�'+!� (D (k)
h '), (3.23)

where D (k)
h '#(D(k)')h.

Moreover,

&D(n)&op�n &D&op (3.24)

and, for each h # H0 , D (n)
h is a skew adjoint operator on T 0, n=H} n

0 .

Proof. (Uniqueness) Assume D(n) exists for all n # N. Repeated use of
the product rule shows that

D (n)
h (h1� } } } �hn)=(Dh h1)�h2 } } } �hn+h1� (Dh h2) } } } �hn

+ } } } +h1�h2 } } } �Dn hn , (3.25)

for all h, h1 , ..., hn # H0 . This shows that D (n)
h is unique.
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(Existence) Let D(n) denote the operator defined on the algebraic tensors
in T 0, n

0 =H} n
0 such that (3.25) holds for all h, h1 ..., hn # H0 . We claim that

D(n) is bounded on the algebraic tensors. To show this, for each i=1, 2, ..., n,
let _i: H} n � H} n be the unitary map determined by

_i (h1� } } } �hi� } } } �hn)=hi�h1� } } } � hi@� } } } �hn

for all subsets [hi]n
i=1/H0 , where the hat over hi indicates that this hi should

be omitted. Letting I denote the identity operator on H} (n&1) and I the
identity opeator on H0*, we have

D(n)= :
n

i=1

I�_&1
i (D�I)_i . (3.26)

Since I�_&1
i and _i are unitary, &D(n)&op�n &D�I&op . But by Lemma 3.16

below, &D�I&op=&D&op which is finite by Lemma 3.9.
It is now a simple matter to show that the bounded operators D (n)

h satisfy-
ing (3.25) for all n=1, 2, ... also satisfies Eq. (3.23). This is first done on
decomposable tensors which implies the result for algebraic tensors. The
result for general tensors then follows by continuity.

Finally, to show that D (n)
h is skew adjoint consider the inner product of

both sides of Eq. (3.25) with k1� } } } �kn ([ki]n
i=1/H0):

(D (n)
h (h1� } } } �hn), k1� } } } �kn)

= :
n

i=1

(Dh hi , ki)(h1 , k1) } } } (hi , ki@ ) } } } (hn , kn)

=& :
n

i=1

(hi , Dh ki)(h1 , k1) } } } (hi , ki@ ) } } } (hn , kn)

=&(h1� } } } �hn , D (n)
h (k1� } } } �kn)),

where in the second equality the skew-symmetry of Dh (Theorem 3.12) was
used n-times. Q.E.D.

Lemma 3.16. Suppose that A: H1 � H2 and B: K1 � K2 are bounded
linear maps, where Hi and Ki for i=1, 2 are Hilbert spaces. Then A�B:
H1 �K1 � H2�K2 is also bounded and &A�B&op=&A&op } &B&op . If An :
H1 � H2 and Bn : K1 � K2 for n=1, 2, 3, ... are two sequences of bounded
linear maps such that A and B are the strong limits of An and Bn respectively,
then A�B is the strong limit of the sequence An�Bn .

Proof. See the proposition on p.299 of Reed and Simon [28], for
the assertion &A�B&op=&A&op } &B&op . For the second assertion first
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note, by the uniform boundedness principle, that supn &An&op<� and
supn &Bn&op<�. Using this remark and the easily proved fact that

lim
n � �

(An�Bn)!=(A�B)! (3.27)

for any algebraic tensor ! # H1�K1 , it is easy to verify that (3.27) holds for
all ! # H1 �K1 . Q.E.D.

In preparation for the next theorem we need the following notation.

Notation 3.17. Let J (m, n): T 0, (m+n)#H} (m+n)
0 � T m, n

0 be the unitary
isomorphism uniquely determined by

J (m, n)(h1� } } } �hm�k1 � } } } �kn)

=(h1 , } )� } } } � (hm , } )�k1� } } } �kn ,

where [hi]m
i=1/H0 and [ki]n

i=1/H0 . Here we are using the identification
of T m, n

0 with (H0*)} m �H � n
0 given in Remark 3.4.

Theorem 3.18. There exists unique bounded operators D(m, n): T m, n
0 �

Tm+1, n
0 such that:

1. D(0, n)=D(n): T 0, n
0 � T 1, n

0 ,

2. [Product Rule] If ! # T 0, m
0 =H} n

0 , : # T m, n
0 , and h # H0 then

D(n)
h (:!)=(D (m, n)

h :)!+:D (m)
h ! (3.28)

where (D (m, n)
h :)!#(D (m, n):)(h�!).

Moreover (letting I denote the identity operator on H0*)

D(m, n)J (m, n)=(I�J (m, n))D(m+n), (3.29)

&D(m, n)&op�(m+n) &D(1)&op , (3.30)

and for each h # H0 , D (m, n)
h is a skew adjoint operator on T m, n

0 .

Proof. First assume that D(m, n) exists. Then Eq. (3.28) implies that

(D (m, n)
h :)!=D (n)

h (:!)&:D (m)
h !, (3.31)

which proves the uniqueness assertion. Now let [hi]m
i=1 , [li]m

i=1, and
[ki]n

i=1 be subsets of H0 ,

:~ #h1� } } } �hm�k1� } } } �kn ,

:#J (m, n):~ =(h1 , } )� } } } � (hm , } )�k1 � } } } �kn , (3.32)

C# `
m

j=1

(hj , lj), Ci# `
m

j : j{i

(hj , lj),
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and !#l1� } } } � lm . Then using (3.31), (3.25), and Theorem 3.15,

(D (m, n)
h :)!=C } D (n)

h (k1� } } } �kn)&\ :
m

i=1

Ci (hi , Dh li)+ } (k1� } } } �kn)

=C } D (n)
h (k1� } } } �kn)+\ :

m

i=1

Ci (Dh hi , li)+ } (k1� } } } �kn)

=C } D (n)
h (k1� } } } �kn)

+(D (m)
h (h1� } } } �hm), !) } (k1� } } } �kn)

=(J (m, n)D (m+n)
h :~ )!.

This computation verifies Eq. (3.29).
For existence just define D(m, n) by (3.29), i.e.,

D(m, n)#(I�J (m, n)) D(m+n)(J (m, n))&1.

Then D(m, n) is a bounded operator and satisfies the norm estimate in (3.30)
because of Theorem 3.15 and the facts that I�J (m, n) and J (m, n) are unitary.
Similarly, D (m, n)

h is skew adjoint for all h # H0 , since (by Theorem 3.15)
D(m+n)

h is skew adjoint. Q.E.D.

So as not to have to write the superscript (m, n) in D(m, n) constantly we will
use the following notation.

Notation 3.19. Let D denote the unique linear operator from T0 to T0

such that D | T 0
m, n=D(m, n), where T0 is defined in Notation 3.1. We will also

write Dh : for D (m, n)
h : when : # T m, n

0 . In this way, Dh is now viewed as a linear
operator on T0 .

Lemma 3.20 (Product Rule). Suppose that : # T m, n
0 and ' # H} k

0 . Let
'�: # T m, n+k

0 be defined by

('�:)!='� (:!), \! # H} m
0 . (3.33)

Then

Dh ('�:)=(Dh ')�:+'�Dh :, \h # H0 . (3.34)

Proof. By repeated use of the product rules in Eqs. (3.23) and (3.28),

(Dh ('�:))!=Dh ('� (:!))&('�:) Dh !

=(Dh ')� (:!)+'�Dh (:!)&('�:) Dh !

=((Dh ')�:)!+'� ((Dh :)!). Q.E.D.
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Definition 3.21. For k # N, ! # H} k
0 , and : # T m, n

0 , let Dk
! : # T m, n

0 be
determined by

(Dk
! :)#=(Dk:)(!�#), (3.35)

where

Dk:#D } } } D

k-times

:.

Definition 3.22 (Curvature Operator). The curvature operator R is the
linear operator from T0 to T0 determined by:

1. RT m, n
0 /T m+2, n

0 and R | T 0
m, n is bounded from T m, n

0 to T m+2, n
0 and

2. for : # T m, n
0 , h, k # H0 and ! # H} m

0 ,

(R:)(h�k�!)=(D2
(h 7k):)!=(D2:)((h7 k)�!), (3.36)

where

h 7 k#h�k&k�h. (3.37)

We also denote (R:)(h�k�!) by (R(h, k):)!. With this conven-
tion for each h, k # H0 , R(h, k) is a linear operator on T0 such that R(h, k)
restricted to T m, n

0 is a bounded operator from T m, n
0 to T m, n

0 .

Notice for : # Tm, n
0 that

&R:&2= :
h, k # S0

:
! # S0

} m
&(D2:)((h 7 k)�!)&2�2 &D2:&2.

Hence it follows from this equation and two applications of the bound in
(3.30) that

&R | T0
m, n&op�- 2(m+n)(m+n+1) &D(1)&op ,

where D(1)#D |H0
. Some further properties of the curvature are summarized

in the next proposition.

Proposition 3.23. Let h, k # H0 . The curvature operator R satisfies the
following properties.

1. [Commutator Formula]

R(h, k)#[Dh , Dk]&D[h, k] , (3.38)

where Dh is thought of as an operator on T0 as in Notation 3.19.
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2. [Product Rule 1] If ! # H} m
0 and : # T m, n

0 , then

R(h, k)(:!)=(R(h, k):)!+:(R(h, k)!). (3.39)

3. [Product Rule 2] If ! # H} m
0 and ' # H} n

0 , then

R(h, k)(!�')=(R(h, k)!)�'+!�R(h, k)'. (3.40)

4. [Skew Adjointness] R(h, k) acts as a skew adjoint operator on each
Hilbert space T m, n

0 .

Proof. For the first item let ! # H} m
0 , and : # T m, n

0 . Then

(D2
h�k :)!=(D2:)(h�k�!)=(Dh (D:))k�!

=Dh [(D:)(k�!)]&(D:)(Dh (k�!))

=Dh [(Dk :)!]&(D:)((Dh k)�!+k�Dh !)

=(Dh Dk :)!+(Dk :) Dh !&(D:)((Dh k)�!)&(Dk :) Dh !

=(Dh Dk :)!&(D:)((Dh k)�!).

Therefore by this equation and the zero torsion assertion in Theorem 3.12,

(R(h, k):)!#(D2
h 7 k :)!

=([Dh , Dk]:)!&(D:)((Dh k&Dk h)�!)

=([Dh , Dk]:)!&(D:)([h, k]�!)

=([Dh , Dk]:&D[h, k] :)!,

which proves (3.38).
By repeated use of the product rules for D,

Dh Dk (:!)=Dh ((Dk :)!+:Dk !)

=(Dh Dk :)!+(Dk :)Dh !+(Dh :) Dk !+:(Dh Dk !).

Also note that

D[h, k](:!)=(D[h, k] :)!+:D[h, k] !.

Hence Eq. (3.39) follows, since

R(h, k)(:!)=([Dh , Dk]:)!+:([Dh , Dk]!)&[(D[h, k] :)!+:D[h, k] !]

=(R(h, k):)!+:(R(h, k)!).
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A completely analogous proof works for (3.40). The skew adjointness of
R(h, k) follows from (3.38) and the assertion in Theorem 3.18 that Dh and Dk

act as skew adjoint operators on T m, n
0 . Q.E.D.

Remark 3.24. Using (3.39) and (3.40) it is easy to verify that R may be
expressed in terms of the curvature tensor R. For example if u, v, h, k # H0 and
:v#(u, v) then

(R(h, k):)v=R(h, k)(:v)&:R(h, k)v=0&(u, R(h, k)v)

=(R(h, k)u, v).

Using this result and the product rule for R, it follows that

R(h, k)[(u, } )�v]=(R(h, k)u, } )�v+(u, } )�R(h, k)v.

Similar formulas hold for : # T m, n
0 given as in Eq. (3.32).

Lemma 3.25. Suppose h, k, l # H0 , ! # H} m
0 and : # T m, n

0 , then

(D3
(h� (k 7 l )) :)!=(Dh (R:))(k� l�!). (3.41)

Warning: In general (Dh (R:))(k� l�!){(Dh (R(k, l):))!.

Proof. Unwinding definitions along with repeated use of the product
rules gives

(D3
(h� (k7 l )) :)!=(D3:)(h� (k 7 l )�!)

=Dh [(D2:)((k7 l )�!)]&(D2:) Dh ((k 7 l )�!)

=Dh [(R(k, l):)!]&(D2:) Dh ((k 7 l )�!)

=Dh [(R:)(k� l�!)]&(R:) Dh (k� l�!)

=(Dh (R:))(k� l�!).

In the second to last equality, we have used

Dh ((k 7 l)�!)=((Dh k) 7 l)�!+(k 7 (Dh l))�!+(k 7 l)�Dh !,

so that

(D2:) Dh ((k 7 l )�!)=(R:)(Dh k� l�!+k�Dh l�!+k� l�Dh !)

=(R:) Dh (k� l�!). Q.E.D.
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4. GEOMETRY OF LOOP GROUPS

For the sequel, let G be a connected Lie group of compact type and
g#Te G be the Lie algebra of G. Recall that G is of compact type if there exists
an AdG-invariant inner product on g. This is equivalent to the statement that
G is isomorphic to K_Rd for some compact Lie group K and some d�0. For
a brief summary of the structure of compact type Lie groups, see Section 2.1
in [15].

For the remainder of this paper, ( }, } ) will be a fixed AdG -invariant inner
product on g. As in Section 2, we will continue to denote the extension of
( }, } ) to a left invariant (and in this case also right invariant) Riemannian
metric on G by ( }, } ) . It should be noted that ( }, } ) satisfies the hypothesis
in Section 3, i.e., (adA B, C) =&(B, adA C) for all A, B # g.

4.1. Vector Fields on L(G)

Notation 4.1. Let L#L(G) denote the based loops on G, i.e., g # L iff
g: [0, 1] � G is a continuous path such that g(0)=g(1)=e # G.

Definition 4.2. Let P=[0<s1<s2< } } } <sn<1] be a partition of
[0, 1]. Let GP#Gn and ?P: L(G) � GP denote the projection

?P(g)#(g(s1), ..., g(sn)). (4.1)

We will also write gP for ?P(g). A function f : L � R is said to be a smooth
cylinder function if f has the form

f (g)=F b ?P(g)=F(gP) (4.2)

for some partition P and some F # C�(GP). Let FC� denote the collection
of all smooth cylinder functions on L. Let FC �

b denote those f # FC� such
that f =F b ?P as in (4.2) where now F and all of its derivatives by left
invariant differential operators on GP are assumed to be bounded.

We will view H0=H0(g) as the Lie algebra of L(G). Given h # H0 , let h�
denote the left invariant vector field on L(G) defined by

h� (g)(s)#Lg(s)*
h(s). (4.3)

The inner product on H0(g) (see Eq. (3.2) with V=g) extends uniquely to a
left invariant Riemannian metric on L(G). This Riemannian metric will still
be denoted by ( } , } ) and satisfies (h� , k� )=(h, k) for all h, k # H0 . We will
define the tangent space to L at g to be Tg L#[h� (g) | h # H0]. With this
definition, L is formally a Riemannian manifold and the map (g, h) #
L_H0 � h� (g) # TL is an isometric trivialization of the tangent bundle.
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Under this trivialization, tensor fields on L may be identified with functions
from L to T k, m

0 $(H0*)} k�H} m
0 for appropriately chosen integers k

and m.

Definition 4.3 (Vector Valued Cylinder Functions). Given an inner
product space T, let FC�(T ) (FC �

b (T )) denote the collection of functions
f : L � T which have the form

f= :
N

i=1

fi:i , (4.4)

where fi # FC� (FC �
b ) and :i # T. For g # L, we will often write fg instead

of f (g).

Notation 4.4. If ( } , } )T is the inner product on T (T as in Definition 4.3)
and f, k # FC�(T), let ( f, k)T denote the function in FC � defined by
( f, k)T (g)=( f (g), k(g))T .

The vector fields h� may be viewed as first order differential operators on
FC�(T ) or FC �

b (T ) for any Hilbert space T. The explicit definition is:

Definition 4.5. Let h # H0 , g # L and f # FC�(T), then define

(h� f )(g)#
d
dt } 0 f (geth). (4.5)

Remark 4.6. Suppose that f # FC� is presented as in (4.2) then

(h� f )(g)= :
n

i=1

(h(si )
(i ) F )(gP), (4.6)

where for any A # g and i # [1, 2, ..., n], A(i ) denotes the left invariant vector
field on GP=Gn given by

(A(i )F )(g1 , g2 , ..., gn)#
d
d= } 0 F(g1 , ..., gi&1 , gie=A, gi+1 , ..., gn). (4.7)

Let Di F(g1 , g2 , ..., gn) denote the unique element of g such that
(A(i )F )(g1 , g2 , ..., gn)=(Di F(g1 , g2 , ..., gn), A) for all A # g. Then (4.6) may
be written as

(h� f )(g)= :
n

i=1

( (DiF )(gP), h(si )) . (4.8)
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Remark 4.7. If f # FC�(T) is presented as in (4.4) then

h� f=: (h� fi ) :i # FC�(T ).

It is necessary to generalize the above definition from h # H0 to any
X # FC�(H0).

Definition 4.8. Suppose that f # FC�(T ) is presented as in (4.4) and
X # FC�(H0) has the form

X= :
k

j=1

Xjhj , (4.9)

where Xj # FC � and hj # H0 . Let X� denote the first order differential
operator on FC�(T ) given by

X� f#: Xj (h� j f ). (4.10)

Lemma 4.9. The operator X� is well defined.

Proof. It is necessary to show: if �k
j=1 Xjhj=0 then �k

j=1 Xjh� j#0 as an
operator on FC�(T ). For this, let f # FC�(T) and g # L. Let dfg denote
the bounded operator from H0 � T defined by

dfgh#(h� f )(g). (4.11)

Then

0=dfg \ :
k

j=1

Xj (g) hj+= :
k

j=1

Xj (g) dfg hj=\ :
k

j=1

Xjh� j f + (g).

Q.E.D.

Definition 4.10. Given X, Y # FC�(H0), let

[X, Y]L#X� Y&Y� X+[X, Y], (4.12)

where [X, Y] # FC �(H0) is the pointwise Lie bracket given by

[X, Y]( g, s)=[X(g, s), Y(g, s)]g . (4.13)

Lemma 4.11. Suppose that X, Y # FC�(H0), then

X� Y� &Y� X� =[X, Y
t

]L . (4.14)
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Proof. Without loss of generality, it suffices to show the equality in (4.14)
holds as operators on FC�. To begin with let h, k # H0 and X and Y be the
constant functions X(g)=h and Y (g)=k for all g # L. Suppose f # FC� is
of the form in (4.2). Then using the notation in Remark 4.6, we have

([h� , k� ] f )(g)=:
i, j

([h(si )
(i ), k(sj )

( j )]F)(gP).

Since

[h(si )
(i ), k(sj )

( j )]=$ij[h(si ), k(si )]
(i ),

it follows that

([h� , k� ] f )(g)=:
i

([h(si ), k(si )](i ) F )(gP)=([h, k
t

] f )(g). (4.15)

Because h� k=0 and k� h=0, the above displayed equation implies (4.14) when
X and Y are constant.

Since both sides of (4.14) are bilinear in X and Y, to finish the proof it suf-
fices to consider the case where X=uh and Y=vk, with u, v # FC� and
h, k # H0 . Now

X� Y� f=X� (v } k� f )=X� v } k� f+vu } h� k� f=(X� Y )t f+uv } h� k� f. (4.16)

Using a similar formula for Y� X� f, we find that

[X� , Y� ] f=(X� Y&Y� X )t f+uv } [h� , k� ] f

=(X� Y&Y� X )t f+(uv[h, k])t f

=(X� Y&Y� X+[X, Y])t f.

=[X, Y
t

]L f. Q.E.D.

4.2. Levi�Civita Covariant Derivative

Definition 4.12 (Levi�Civita Covariant Derivative). Given X #
FC�(H0), let {X denote the linear operator on FC �(T0) determined by

{X:=X� :+DX :, (4.17)

where

(DX :)(g)#DX ( g)(:g), (4.18)
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and DX ( g) is defined in Notation 3.19. Also let { denote the linear operator
on FC�(T0) determined on : # FC�(T m, n

0 ) by

({:)g (h�!)=({h :)g !, (4.19)

for all h # H0 and ! # H } m
0 .

Notation 4.13. Given ' # FC�(H } k
0 ) and : # FC�(T m, n

0 ), let {k
' :

denote the element of FC�(T m, n
0 ) determined by

({k
' :)g !=({k:)g ('g�!), \! # H } m

0 . (4.20)

Proposition 4.14. Let X, Y # FC�(H0). The operator { has the follow-
ing properties:

1. [Tensorial in '] If ' # FC�(H �k
0 ), : # FC�(T0), and f # FC�,

then

{k
f '

:=f {k
' :. (4.21)

2. [Product rule 1] If : # FC�(T m, n
0 ) and # # FC �(H } k

0 ) then

{X (#�:)=({X #)�:+#�{X:. (4.22)

3. [Product rule 2] If : # FC�(T m, n
0 ) and # # FC �(H �m

0 ) then

{X (:#)=({X :)#+:{X #. (4.23)

4. [Metric compatible] If S, T # FC�(Tm, n
0 ) and X # FC �(H0), then

X� (S, T)=({XS, T )+(S, {X T ). (4.24)

5. [Torsion free 1] With [X, Y ]L as in (4.12),

{XY&{YX&[X, Y ]L=0. (4.25)

6. [Torsion free 2] If f # FC� and X, Y # FC�(H0), then

{2
X 7Y f=0, (4.26)

where X 7 Y#X�Y&Y�X.

Proof. The first item is clear. The product rules both have similar
proofs, so we will only give a proof of the first product rule. Without loss
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of generality we may assume the #=u#� and :=v:� , where u, v # FC�,
#� # H} k

0 , and :� # T m, n
0 . Then

{X (#�:)={X (uv#� �:� )

#X� (uv) } #� �:� +uvDX (#� �:� )

=(vX� u+uX� v) #� �:� +uv(DX#� )�:� +uv#� �DX:�

=({X #)�:+#�{X:,

where we have used the product rules for X� and DX in the third equality.

Metric Compatibility. It is easy to show that

X� (S, T)=(X� S, T )+(S, X� T ). (4.27)

Since (by Theorem 3.18) DX acts as a skew-symmetric operator,

0=(DX S, T )+(S, DXT ). (4.28)

Thus Eq. (4.24) follows by adding Eqs. (4.27) and (4.28).

Torsion Free 1. Using Theorem 3.12 we find,

{X Y&{YX=X� Y&Y� X+DXY&DYX

=X� Y&Y� X+[X, Y ]=[X, Y ]L . (4.29)

Torsion Free 2. By the product rules,

{2
X�Y f={X (({ f )Y )&({f ) {X Y={X{Y f&{{ XY f

=X� Y� f& {X Y
t

f. (4.30)

Therefore by (4.29) and Lemma 4.11,

{2
X 7Y f=[X� , Y� ] f&[ X, Y

t
]L f=0. Q.E.D.

4.3. The Curvature Tensor and Operators

Theorem 4.15 (Curvature). Suppose that : # FC�(T m, n
0 ) and X, Y #

FC�(H0), then

{2
X 7 Y :=R(X, Y ):, (4.31)

where R(X, Y ): # FC�(T m, n
0 ) is defined by

(R(X, Y ):)g=R(Xg , Yg) :g , \g # L(G). (4.32)
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Moreover

R(X, Y ):=[{X , {Y ]:&{[X, Y ]L
:. (4.33)

Proof. We may assume that :=f:� , where f # FC� and :� # T m, n
0 . Then

{:={f�:� +fD:� ,

and so by the product rules:

{X {:=({X {f )�:� +{ f�DX:� +({X f ) D:� +fDX D:� .

Therefore,

{2
X�Y:=({2

X�Y f ):� +{Y f } DX:� +{X f } DY :� +fD2
X�Y:� ,

and hence

{2
X 7Y :=({2

X 7Y f ):� +fD2
X 7 Y :� =fR(X, Y ):� =R(X, Y ):,

where we have used (4.26) and Definition 3.22 for R. This proves
Eq. (4.31).

Let R� (X, Y ): denote the RHS of (4.33). Elementary computations
(the same as the finite dimensional case) show that R� is tensorial, i.e.,
if u, v, w # FC� then

R� (uX, vY )(w:)#uvwR� (X, Y ) :. (4.34)

Since R(X, Y ): has the same property, it suffices to prove (4.33) in the
special case where X, Y, and : are constant functions on L(G ). But then

R� (X, Y ):=[DX , DY ]:&D[X, Y ] :=R(X, Y ):,

where we have used Eq. (3.38) of Proposition 3.23 and [X, Y ]=[X, Y ]L

for constant functions X and Y. Q.E.D.

The following Lemma is an extension of Lemma 3.25.

Lemma 4.16. Suppose h, k, l # H0 , ! # H } m
0 and : # T m, n

0 , then

({3
(h� (k 7 l )):)!=({h(R:))(k� l�!). (4.35)

Proof. Because of Theorem 4.15, this lemma may be proved simply by
replacing Dh by {h everywhere in the proof of Lemma 3.25. Q.E.D.

4.4. The Laplacian on L(G )

Recall that g0 , h, and S0 are orthonormal bases for g, H0(R), and
H0=H0(g) respectively.
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Definition 4.17 (Laplacian). For : # FC�(T m, n
0 ), let

2:# :
h # S 0

{2
h�h :, (4.36)

where S0 is any good orthonormal basis of H0 as in Definition 3.10.

The next proposition guarantees that the sum in (4.36) exists. We first
need the following definition.

Definition 4.18. Given an partition P=[0<s1<s2< } } } <sn<1],
let 2P be the second order elliptic differential operator on GP defined by

2P# :
A # g0

:
n

i=1

:
n

j=1

G0(si , sj ) A( j )A(i ), (4.37)

where A(i ) is defined in (4.7).

Proposition 4.19. For any good orthonormal basis S0 , h # S0 and,
: # T m, n

0 ; {2
h�h:={2

h:, where {2
h :#{h({h:). Now suppose that S0 is any

orthonormal basis of H0 . Then for each g # L and : # T m, n
0 , the sum

�h # S 0
({2

h:)g is convergent in T m, n
0 and the sum is independent of the choice

of orthonormal basis S0 . In particular 2: defined in Eq. (4.36) is well defined.
Moreover 2 has the following properties.

1. If f=F b ?P # FC� is presented as in Eq. (4.2), then

2f=(2P F ) b ?P . (4.38)

2. Let S0 be any basis of H0 , : # FC�(T m, n
0 ), T # FC �(H } k

0 ), and
S # FC�(H } m

0 ) then

2:= :
h # S 0

{2
h:, (4.39)

2(T�:)=(2T )�:+2 :
h # S0

{h T�{h:+T�2:, (4.40)

and

2(:S )=(2:) S+2 :
h # S 0

({h :)({hS )+: 2S. (4.41)

3. If : # FC�(T m, n
0 ) or FC �

b (T m, n
0 ) then 2: # FC �(T m, n

0 ) or
2: # FC �

b (T m, n
0 ) respectively.

Before proving this proposition, we will first prove a couple of preparatory
lemmas.
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Lemma 4.20. Let S0/H0 be an arbitrary orthonormal basis of H0 . Set
Cad#�A # g0

ad 2
A , the Casimir operator for the adjoint representation of g.

Then for : # H0 ,

:
h # S 0

D2
h :=P {|

}

0
ds G0(s, s) Cad:$(s)&|

}

0
ds |

1

0
dt G0(s, t) Cad:$(t)= , (4.42)

where P: H � H0 is orthogonal projection. Also if : # H0 �H0 , then the sum

:
h # S 0

(Dh�Dh): (4.43)

converges in H0�H0 and the sum is independent of the choice of ortho-
normal basis S0 . Stated briefly: �h # S 0

D2
h and �h # S 0

(Dh�Dh) are strongly
convergent and basis independent.

Proof. Recall that P#k&4k(1), where k is in H and 4(s)=s. Using
the definition of Dh ,

D2
h:=P {|

}

0
adhd(Dh:)=

=P |
}

0 {ad 2
h(s) :$(s)&|

1

0
adh(s)adh(t) :$(t) dt= ds. (4.44)

Let 1 be a finite subset of S0 , then

" :
h # 1

|
}

0
ad 2

h(s):$(s) ds&|
}

0
G0(s, s) Cad:$(s) ds"

2

=|
1

0 } { :
h # 1

ad 2
h(s)&G0(s, s) Cad= :$(s) }

2

ds

�|
1

0 " :
h # 1

ad 2
h(s)&G0(s, s) Cad"

2

op
|:$(s)|2 ds

and

"|
}

0
ds :

h # 1
|

1

0
adh(s) adh(t) :$(t) dt&|

}

0
ds |

1

0
G0(s, t) Cad:$(t) dt"

2

=|
1

0 } |
1

0 \ :
h # 1

adh(s) adh(t)&G0(s, t) Cad+ :$(t) dt }
2

ds
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�|
1

0 \|
1

0 " :
h # 1

adh(s) adh(t)&G0(s, t) Cad"op
|:$(t)| dt+

2

ds

�&:&2 |
1

0
|

1

0 " :
h # 1

adh(s) adh(t)&G0(s, t) Cad"
2

op
ds dt,

where & }&op denotes the operator norm on End (g). Using Lemma 3.8, it
follows that the last terms in the above displayed equations tend to zero as
1 A S0 . Eq. (4.42) follows by combining these two limits with Eq. (4.44) and
using the fact that P is bounded.

To prove (4.43) it is helpful to identify H�H with L2#L2([0, 1]2, g�g).
Explicitly, let U : H�H � L2 be the unitary map determined by

U(k� l )(s, t)#k$(s)� l$(t) # g�g \k, l # H0 .

Notice that

Dh �Dh(k� l )=P�P((D� hk)�D� h l ), (4.45)

where D� h k#� }
0 [h, dk] for k # H. Setting :=k� l for k, l # H, we have

U((D� h�D� h):)(s, t)=(adh(s) �adh(t))(U:)(s, t). (4.46)

Since that map !(s, t) # L2 � (adh(s)�adh(t)) !(s, t) # L2 is bounded (because
h is continuous and hence a bounded function), it follows that Eq. (4.46)
holds for all : # H�H. By arguments similar to those given above, one may
use Lemma 3.8 in conjunction with the dominated convergence theorem to
show, for any ! # L2, that

:
h # S 0

(adh(s)�adh(t)) !(s, t)=G0(s, t) :
A # g 0

(adA�adA) !(s, t),

where the left sum is L2(ds, dt)-convergent. In view of Eq. (4.46), this shows
that �h # S0

(D� h �D� h): is convergent in H�H for all : # H�H and the sum
is independent of the choice of basis S0 . Hence, using Eq. (4.45) and the
boundedness of P�P (Lemma 3.16) we see that the sum in (4.43) is
convergent in H0�H0 and is basis independent. Q.E.D.

We now generalize the first assertion of the last Lemma to include general
: # T0 .

Lemma 4.21. Let S0 be an arbitrary basis for H0 . Then for each : # T0

the sum

:
h # S 0

D2
h: (4.47)

converges in T0 , where D2
h is shorthand for DhDh . Moreover the sum is

independent of the basis S0 .
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Proof (Case 1: m=0 and n # N). By the product rule D2
h acting on H } n

0

may be written as

D2
h= :

n

i=1

I } (i&1)� (D (1)
h )2 �IU } (n&i )

+2 :
i< j

I} (i&1) �D (1)
h �I} ( j&i&1)�D (1)

h �I } (n&j ), (4.48)

where I} k is the identity operator on H } k
0 and D (1)

h =Dh | H0
. By choosing

unitary maps on H} n which correspond to appropriate permutations of the
factors, one may easily verify that the first and second summands above are
unitarily equivalent to (D (1)

h )2�I } (n&1) and D (1)
h �D (1)

h �I } (n&2) respec-
tively. Using this remark and Lemma 3.16 it follows that �h # S0

D2
h | H0

} n is
strongly convergent.

(Case 2: m, n # N.) Let J#J (m, n) be the isometry of H } (m+n)
0 onto T m, n

0

defined in Notation 3.17. By Eq. (3.29), this isometry intertwines Dh on T m, n
0

with Dh on H } (m+n)
0 , i.e.,

JDh | H 0
} (m+n)=Dh | T 0

m, n J.

Therefore the sum

:
h # S0

D2
h |T0

m, n=J :
hS 0

D2
h | H 0

} (m+n) J&1

is convergent and is basis independent by case 1 above. Q.E.D.

Definition 4.22. For f # FC� presented as in Eq. (4.2), let

({9 f )g# :
A # g 0

:
n

i=1

(DiF(gP), A) G0(si , } )A, (4.49)

where Di is defined in Remark 4.6.

Clearly, {9 f # FC�(H0). It is also easy to check that {9 f is the unique
element of FC�(H0) such that

(({9 f )g , k)=(k� f )(g)=({k f )g . (4.50)

We are now ready for the proof of Proposition 4.19.

Proof of Proposition 4.19. If S0 is a good basis, then {h h=
P � }

0 [h, dh]=0 for all h # S0 . Combining this observation with the product
rule shows, for ! # H } m

0 , that
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({2
h�h:)!=({h({:))(h�!)

={h({:(h�!))&{:({h(h�!))

=({h{h:)!+({h:) {h !&{:(({hh)�!)&{:(h�{h!)

=({h{h:)!, (4.51)

which verifies that {2
h�h:={2

h :. So to verify that 2 is well defined and to
prove Eq. (4.39) it suffices to show that the sum in Eq. (4.39) is convergent
and is independent of the choice of orthonormal basis.

For the rest of the proof, let S0 be an arbitrary orthonormal basis of H0 .
We now prove (4.38). Let f=F b ?P # FC� as in Eq. (4.2), then using the
notation in Remark 4.6 we find:

\ :
h # S0

{2
h f+ (g)=\ :

h # S0

h� 2 f+ (g)

=\ :
h # S0

:
n

i, j=1

:
A, B # g 0

(h(si ), A)(h(sj ), B)(A(i )B( j )F )(gP)

= :
A # g 0

:
n

i, j=1

G0(si , sj )(A(i )A( j )F )(gP)

=(2P F) b ?P(g),

wherein Lemma 3.8 was used to compute the sums on h # S0 and B # g0 . It
also follows from Lemma 3.8 that all of the sums are absolutely convergent.
We have verified (4.38) and the fact that for :=f # FC�, the sum in (4.39)
is independent of the choice of basis S0 . It is also clear from (4.38) that
2(FC�)/FC� and 2(FC �

b )/FC �
b .

Now suppose that :=f:� , where f=F b ?P # FC� and :� # T m, n
0 , then by

the product rule:

:
h # S 0

{2
h:= :

h # S 0

({2
h f ) :� +2 :

h # S 0

({h f ) Dh:� + :
h # S0

fD2
h:� , (4.52)

provided the sums converge. We have just shown the first sum on the RHS
of (4.52) is absolutely convergent on L and is independent of S0 . We also
know, by Lemma 4.21, that the third sum is convergent and independent
of S0 . Moreover, the first and the third sum on the RHS of (4.52) are
in FC�(T m, n

0 ) or FC �
b (T m, n

0 ) if : is in FC�(T m, n
0 ) or FC �

b (T m, n
0 )

respectively.
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We now consider the middle sum in the RHS of (4.52). Since

\ :
h # S0

&({h f ) Dh:� &+
2

� :
h # S 0

|{h f | 2 } :
h # S0

&Dh:� &2=&{ f&2 &D:� &2<�,

the middle sum is absolutely convergent. Moreover

:
h # S0

({h f ) Dh:� | g= :
h # S 0

({9 f (g), h) Dh:� =D{9 f (g):�

= :
A # g 0

:
n

i=1

( (Di F )(gP), A) } DG0 (s i , } )A:� ,

which shows the middle sum in (4.52) is basis independent and the sum is
in FC�(T m, n

0 ) or FC �
b (T m, n

0 ) if : is in FC�(T m, n
0 ) or FC �

b (T m, n
0 )

respectively. Therefore, we have verified the sum in (4.39) is convergent and
independent of the choice of orthonormal basis S0 . We have also proved
the last assertion of the Lemma.

The proofs of the product rules in Eqs. (4.40) and (4.41) are silimar to
arguments used in the above paragraph and are thus left to the reader.

Q.E.D.

4.5. Square Field Operators

Proposition 4.23. Let S, T # FC�(T m, n
0 ), then

2(S, T)=(2S, T )+2({S, {T)+(S, 2T ). (4.53)

Proof. Let h # H0 , then by metric compatibility:

{2
h(S, T )={h [({hS, T )+(S, {hT)]

=({2
hS, T )+2({hS, {hT)+(S, { 2

h T).

The proposition is proved by summing this last equation on h # S0 .
Q.E.D.

Definition 4.24 (Gamma one and two). For u, v # FC�, let

11(u, v)# 1
2 [2(uv)&u2v&v2u] (4.54)

and

12(u, v)# 1
2 [211(u, v)&11(u, 2v)&11(v, 2u)], (4.55)

where 211(u, v)=2(11(u, v)).
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Proposition 4.25. For u, v # FC�,

11(u, v)=({u, {v)=({9 u, {9 v) (4.56)

and

12(u, v)=({2u, {2v)+ 1
2 [([2, {]u, {v)+({u, [2, {]v)]. (4.57)

Note: {2u is often called the Hessian of u.

Proof. For (4.56) apply Proposition 4.23 with S=u and T=v to find,
2(uv)=2u } v+2({u, {v)+u2v. This implies (4.56). To prove (4.57) apply
Proposition 4.23 with S={u and T={v to find,

211(u, v)=2({u, {v)=(2{u, {v)+2({2u, {2v)+({u, 2{v).

This equation and the definition of 12 implies (4.57). Q.E.D.

We now wish to compute 12 more explicitly. For this we will need the
infinite dimensional version of the Bochner Wietzenbo� ck formula.

Theorem 4.26 (Bochner Wietzenbo� ck Formula). Let u # FC� and
k # H0 , then

([2, {]u)k=Ric (k, {9 u) ,

where {9 u is defined in Definition 4.22, Ric is the Ricci tensor defined in
Notation 3.11 and is computed in Theorem 3.12.

Before giving the proof of this theorem we will state and prove the main
theorem of this section.

Theorem 4.27 (Gamma-2 Formula). Let f # FC� and g # L, then

12( f, f )(g)=&({2f )g &2+Ric({9 fg , {9 fg) . (4.58)

(See Eqs. (3.16) and (3.17) for formulae for the Ricci tensor.) Moreover,
setting C(( } , } ) )#max|!|=1 K(!, !)�?2<� where K is the negative of the
Killing form on g, then

12( f, f )�&C11( f, f ), \ f # FC�. (4.59)

Proof. Equation (4.58) follows from Theorem 4.26 and Proposition 4.25.
To prove (4.59), it suffices to show Ric(h, h)�&C(h, h) for all h # H0 .
By Eq. (3.17)
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|Ric(h, h) |=|
1

0
K(h(s), h(s)) ds&K(h� , h� )

�|
1

0
K(h(s), h(s)) ds

�*o |
1

0
|h(s)| 2 ds,

where *0#max|!|=1 K(!, !). Now by a standard isoparametric inequality,

&h&2�?2 |
1

0
|h(s)| 2 ds, \h # H0 .

(This is easily verified by writing h in a Fourier sine series of the form
h(s)=��

n=1 hn sin(n?s) with hn # g.) Combining the two above displayed
equations shows

|Ric(h, h) |�
*o

?2 &h&2.

Therefore Ric(h, h)�&C(h, h) where C=*0�?2 and *0#max|!|=1 K(!, !).
Q.E.D.

Proof of Theorem 4.26. Let f=F b ?P # FC� as in (4.2). We will start
by showing that for all k # H0 ,

{k2f= :
h # S 0

{k{2
h f. (4.60)

By Eqs. (4.37), (4.38), and (4.6), for all g # L(G )

({k2f )(g)= :
A # g 0

:
n

i, j, l=1

G0(si , sj )(k(sl ))(l ) A(i )A( j ) F )(gP).

Since the map (A, B) # g2 � G0(si , sj )(k(sl )
(l ) A(i )B( j )F )(gP) # R is linear

for each fixed i, j, l # [1, 2, ..., n] and g # L(g), we may apply Lemma 3.8
to find

:
A # g0

G0(si , sj )(k(sl ))(l ) A (i )A( j )F )(gP)

= :
h # S0

(k(sl ))(l ) (h(si ))(i ) (h(sj ))( j ) F )(gP).
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Hence

({k2f )(g)= :
h # S0

(k� h� h� f )(g)= :
h # S0

({k{2
h f )(g),

which is (4.60).
Now let S0 be a good orthonormal basis of H0 , k # H0 , and f # FC �,

then by the definition of 2, Eq. (4.60), and Eq. (4.51),

([2, {] f )k=(2{ f )k&{k2f

= :
h # S0

({3 f )(h�h�k)& :
h # S0

{k{2
h f

= :
h # S0

({3 f )(h�h�k)& :
h # S0

{k[({2 f )(h�h)]

= :
h # S0

[({3 f )(h�h�k&k�h�h)&({2f ) {k(h�h)].

Since { has zero torsion (item 6 of Proposition 4.14), we have Rf=0.
Thus it follows by Lemma 4.16 that

({3 f )(h�h�k)=({3 f )(h�k�h).

By the definition of the curvature operator R and Remark 3.24,

({3f )((h 7k)�h)=(R(h, k) { f )h=&({ f ) R(h, k)h=({ f ) R(k, h)h.

Combining the above three displayed equations gives

([2, {] f )k= :
h # S 0

[({ f ) R(k, h)h&({2 f ) {k(h�h)]

= :
h # S 0

[(R(k, h) h, {9 f )&({2 f ) {k(h�h)]

=Ric(k, {9 f ) & :
h # S0

({2 f ) {k(h�h), (4.61)

where in the second equality we have used the definition of {9 f and in the
third equality we used the definition of Ricci tensor, see Notation 3.11.
Notice that the last sum in (4.61) is necessarily convergent and inde-
pendent of the choice of good basis S0 . The proof is completed using the
following Lemma. Q.E.D.
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Lemma 4.28. Let f # FC�, l # H0 , and S0 be a good orthonormal basis
of H0 , then

:
h # S0

({2 f ) {l (h�h)=0. (4.62)

Remark 4.29. Formally (4.62) should be true because �h # S 0
h�h

corresponds to the identity operator on H0 under the natural isomorphism
of H0�H0 with operators on H0 determined by h�k � (l # H0 �
h(k, l ) # H0). Using the product rules, one easily shows formally that
the identity operator should be covariantly constant. Hence we expect
�h # S 0

h�h also to be covariantly constant. The problem with this argu-
ment is that �h # S 0

h�h does not exist in H0�H0 or equivalently the
identity operator on H0 is not Hilbert Schmidt. This argument does of
course work for finite dimensional Riemannian manifolds.

Proof of Lemma 4.28. Write f=F b ?P as in Eq. (4.2). Let [ } ]: g�g � g

denote the unique linear map on g�g such that [A�B]=[A, B] for all
A, B # g. Also let ( } , } ) g } 2 denote the inner product on g�g determined by
(A�B, C�D) g } 2=(A, C)(B, D) for all A, B, C, D # g.

Now for p, q # H0 ,

({2 f )g ( p�q)=( p~ q~ f )(g)&( {pq
t

f )(g)

= :
A, B # g 0

:
n

i, j=1

(A(i)B ( j )F )(gP)(A�B, p(si )�q(sj )) g }
2

& :
A # g 0

:
n

i=1

(A(i )F )(gP)(A, ({pq)(si ))

= :
A, B # g 0

:
n

i, j=1

(A(i)B ( j )F )(gP)(A�B, !(si , sj )) g } 2

& :
A # g 0

:
n

i=1

(A(i )F )(gP)

_�A, |
s i

0
[!4 (t, t)] dt&si |

1

0
[!4 (t, t)] dt� ,

where !(s, t)#p(s)�q(t), and !4 (s, t)#�!(s, t)��t=p(s)�q* (t). By linearity,
the above equation extends to arbitrary algebraic tensors ! # H } 2

0 , i.e.,
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({2 f )g != :
A, B # g0

:
n

i, j=1

(A(i )B ( j )F )(gP)(A�B, !(si , sj )) g � 2

& :
A # g0

:
n

i=1

(A(i )F )(gP)

_�A, |
s i

0
[!4 (t, t)] dt&si |

1

0
[!4 (t, t)] dt� . (4.63)

By the observation at the end of the proof of Theorem 4.26, we may
compute the sum in (4.62) using the good basis S0=hg0 , where h is an
orthonormal basis to H0(R) and g0 is an orthonormal basis for g. Let
hn/h be an increasing sequence of finite subsets of h such that � hn=h,
1n#[aA # S0 | a # hn , A # g0], and !n#�h # 1n

{k(h�h) # H } 2
0 . Our goal

is to show that limn � �({2f )g !n=0. According to (4.63), it suffices to
show that

lim
n � �

!n(s, t)=0 and lim
n � � |

t

0
[!4 n({, {)] d{=0, \s, t # [0, 1]. (4.64)

Let K(s)#�s
0 k(r) dr and for a # H0(R) set

Ja(s)#|
s

0
a$(r) k(r) dr&s |

1

0
a$(r) k(r) dr

=a(s) k(s)&|
s

0
a dk+s |

1

0
a dk (Integrate by Parts) (4.65)

then

!n(s, t)# :
h # 1 n

{k(h�h) | (s, t)

= :
a # hn

:
A # g0

[[Ja(s), A]� (a(t)A)+a(s)A�[Ja(t), A]]. (4.66)

By Lemma 3.8, the sum �a # h a(t) Ja(s) converges absolutely and satisfies

:
a # h

a(t) Ja(s)=G0(t, s) k(s)&|
s

0
G0(r, t) k$(r) dr+s |

1

0
G0(r, t) k$(r) dr

=|
s

0
�G0(r, t)��r } k(r) dr&s |

1

0
�G0(r, t)��r } k(r) dr

=|
s

0
[1r�t&t] k(r) dr&s |

1

0
[1r�t&t] } k(r) dr

=K� (s, t),
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where

K� (s, t)#K(s 7 t)&(tK(s)+sK(t))+stK(1).

This shows

lim
n � �

!n(s, t)= :
A # g 0

[[K� (s, t), A]�A+A�[K� (s, t), A]]=0 (4.67)

where we have used Lemma 4.30 below to get the last equality.
For the second limit in (4.64), let Qn(t)#�t

0 [!4 n({, {)] d{ and
Cad#�A # g0

ad 2
A . Then

Qn(t)= :
a # hn

:
A # g0

|
t

0
[a$(s)[[Ja(s), A], A]+a(s)[A, [J$a(s), A]] ds

= :
a # h n

|
t

0
[a$(s) Cad Ja(s)&a(s) CadJ$a(s)] ds

=Cad :
a # hn

{a(t) Ja(t)&2 |
t

0
a(s) J$a(s) ds= (integrate by parts),

so that

lim
n � �

Qn(t)=Cad {K� (t, t)&2 :
a # h

|
t

0
a(s) \a$(s) k(s)&|

1

0
a$({) k({) d{+ ds= ,

provided the sum converges. Now

2 :
a # h

|
t

0
a(s) a$(s) k(s) ds= :

a # h
|

t

0
k(s) da2(s)

= :
a # h

{k(t) a2(t)&|
t

0
a2(s) dk(s)=

=k(t) G0(t, t)&|
t

0
G0(s, s) dk(s)

=|
t

0
k(s)

d
ds

G0(s, s) ds

=|
t

0
k(s)(1&2s) ds

=K(t)&2 |
t

0
k(s) s ds,
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where we have again used Lemma 3.8 in the third equality. Similarly we
compute

2 :
a # h

|
t

0
ds a(s) |

1

0
d{ a$({) k({)=&2 :

a # h
|

t

0
ds a(s) |

1

0
d{ a({) k$({)

=&2 |
t

0
ds |

1

0
d{ G0(s, {) k$({)

=2 |
t

0
ds |

1

0
d{ �G0(s, {)��{ } k({)

=2 |
t

0
ds |

1

0
d{ [1{�s&s] } k({)

=2 |
t

0
(t&{) k({) d{&2 |

t

0
sK(1) ds

=2tK(t)&2 |
t

0
sk(s) ds&t2K(1).

Assembling the three above displayed equations shows

lim
n � �

Qn(t)=Cad {K� (t, t)&\K(t)&2 |
t

0
k(s) s ds+

+2tK(t)&2 |
t

0
sk(s) ds&t2K(1)=

=Cad [(K(t)&2tK(t)+t2K(1))&K(t)+2tK(t)&t2K(1)]=0.

Q.E.D.

Lemma 4.30. For all B # g,

:
A # g0

[adB A�A+A�adBA]#0. (4.68)

Proof. It is easily checked that �A # g 0
A�A is independent of the

choice of orthonormal basis g0 of g. (Indeed, under the isomorphism
g�g � End(g) determined by A�B � A(B, } ) , the sum �A # g0

A�A
corresponds to the identity operator on g.) Since etad B is an orthogonal
transformation for all B # g,

:
A # g0

(etad B A)� (etad B A)= :
A # g0

A�A, \t # R.

Equation (4.68) is proved by differentiating this least equation in t at
t=0. Q.E.D.
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5. LOGARITHMIC SOBOLEV INEQUALITY

In this section we will prove the first version of the logarithmic Sobolev
inequality on L(G ). We will first need some more notation.

Definition 5.1. Let P=[0<s1<s2< } } } <sn<1] be a partition of
[0, 1]. Define:

1. ( } , } )P to be the unique left-invariant Riemannian metric on GP

such that

(A(i ), B( j ))P=(A, B) Qij \A, B # g, (5.1)

where Q is the inverse of the matrix [G0(si , sj )]n
i, j=1 and A(i ) and B( j ) are

the vector fields on GP defined in Eq. (4.7).

2. {9 P to be the gradient operator on G P relative to Riemannian
metric ( } , } )P .

3. For F # C�(GP), let

1 P(F, F )# 1
2 [2P(F2)&2F2P F] (5.2)

and

1 P
2 (F, F )# 1

2 [2P 1 P(F, F )&21 P(F, 2PF )], (5.3)

where 2P was defined in Definition 4.18.

4. Let RicP denote the Ricci tensor on GP relative to the Riemannian
metric ( } , } )P .

In the sequel, GP will be used to mean the Riemannian manifold
(Gn, ( } , } )P), where the metric, ( } , } )P , is defined in (5.1). The next two
results relate the geometry of GP with that of L(G ).

Lemma 5.2. Let F, H # C�(GP), then

({9 P F, {9 PH )P= :
A # g 0

:
n

i=1

:
n

j=1

G0(si , sj ) A( j )F } A(i )H, (5.4)

2P is the Levi�Civita Laplacian on GP relative to the Riemannian metric
( } , } )P , and

1 P(F, F )=({9 P F, {9 P H)P . (5.5)
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Now suppose g # L(G ), f=F b ?P # FC�, and gP=?P(g), then

(2P F )(gP)=(2f )(g), (5.6)

1 P(F, F )(gP)=1 ( f, f )(g) (5.7)

(or equivalently &{9 P F(gP)&2
P=&{9 f (g)&2), and

1 P
2 (F, F )(gP)=12( f, f )(g). (5.8)

Proof. The verification of Eq. (5.4) is an exercise in linear algebra that
will be left to the reader. Recall that the Levi�Civita Laplacian may be
characterized as the unique operator (2P) on C�(GP) satisfying

|
GP

(2P F ) } H d*P=&|
G P

({9 PF, {9 P H)P d*P \h # C �
c (GP), (5.9)

where *P denotes the Riemannian volume element on GP which is also a
biinvariant Haar measure on GP. By the right-invariance of *P , it follows
that the first order differential operators A(i ) are skew adjoint. Hence (5.9)
is easy to verify using (4.37) and (5.4). It is straight forward to verify (5.5)
using the definitions.

Equation (5.6) is the same as Eq. (4.38) in Proposition 4.19. Combining
(5.6) and (5.2) gives

1 P(F, F )(gP)# 1
2 [2P(F2)&2F2P F](gP)

= 1
2 [2( f 2)&2f2f ](g)

=1 ( f, f )(g),

which verifies (5.7). The proof of (5.8) is completely analogous. Q.E.D.

Corollary 5.3. Let C=C(( } , } ) )<� be the constant in Theorem
4.27. Then for all partitions P=[0<s1<s2< } } } <sn<1] of [0, 1],
RicP�&C( } , } )P .

Proof. For F # C�(GP) let FP#F b ?P # FC�. Let g� # G P and
v # Tg

P
G P. Choose g # L(G ) such that gP=g� . Then by Lemma 2.1 in [18]

RicP(v, v)=inf[1 P
2 (F, F )(gP): F # C �(G P) % {9 P F(g� )=v].

Therefore, using Eq. (5.2), Theorem 4.27, Eq. (5.11), and Eq. (5.5),

RicP (v, v)=inf[1 P
2 (F, F )(gP): F # C �(GP) % {9 P F(g� )=v]

=inf[12(FP , FP)(g): F # C �(GP) % {9 P F(g� )=v]
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�inf[&C1 (FP , FP)(g): F # C�(GP) % {9 P F(g� )=v]

=inf[&C1 P(F, F)(gP): F # C�(GP) % {9 PF(g� )=v]

=&C(v, v)P. Q.E.D.

Definition 5.4. Let f=F b ?P where P=[0<s1<s2< } } } <sn<1] is
a partition of [0, 1] and F # C�(GP) is an exponentially bounded function,
see Definition 2.4. For g # L(G ), define

(et2 f )(g)#|
GP

F( gP y ) &P
t ( y) d*P( y ), (5.10)

where &P
t is the convolution heat kernel density described in Proposition 2.5

when M=GP with metric ( } , } )P and *P is the Riemannian volume measure
on GP.

Proposition 5.5. The definition of et2 in Definition 5.4 is well defined

Proof. Suppose P/P� are two partitions of [0, 1] and that f=F b ?P ,
where F is a smooth bounded function on GP with bounded first and
second derivatives. Let ?: GP� � GP denote the canonical projection, then
?P=?P� b ? and f=F� b ?P� where F� =F b ?. Since f=F� b ?P� =F b ?P , it
follows from (4.38) that 2f=(2P� F� ) b ?P� =(2P F ) b ?. In particular,

2P� (F b ?)=2PF. (5.11)

This identity may also be checked directly.
Set u(t, x)#�GP F(xy) &P

t ( y ) d*P( y ) for t�0 and x # G P. Then by
Corollary 2.15, u solves the heat equation

�u��t=2Pu with u(0, x)=F(x).

Let u~ (t, } )#u(t, } ) b ? for all t�0. Using (5.11), u~ is seen to solve the heat
equation:

�u~ ��t=2P� u~ with u~ (0, } )=F� ( } ).

Let x~ # GP� , then by Corollary 2.16 of the Section 2,

u(t, ?(x~ ))=u~ (t, x~ )=|
G P�

F� (x~ y~ ) &P�
t ( y~ ) d*P� ( y~ ).

Hence

|
GP

F(?(x~ )y ) &P
t ( y ) d*P( y )=|

G P�
F� (x~ y~ ) &P�

t ( y~ ) d*P� ( y~ ).
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Taking x~ =?P� (g)=gP� so that ?(x~ )=?P(g)=gP shows that

|
GP

F(gP y ) &P
t ( y ) d*P( y)=|

GP�
F� (gP� y~ ) &P�

t ( y ) d*P� ( y~ ),

and hence Definition (5.4) is well defined independent of how f is
represented. Q.E.D.

We are now ready to state the first version of the logarithmic Sobolev
inequality on L(G ) describe in Theorem 1.2.

Theorem 5.6 (Logarithmic Sobolev). Let C=C(( } , } ) ) be the constant
in Theorem 4.27. Then for all f # FC �

b and T # (0, �),

et2�2( f 2 log f 2)�
2
C

(eCT&1) et2�2(&{9 f&2)+et2�2( f 2) } et2�2(log f 2), (5.12)

where (2�C )(eCT&1)#2T if C=0.

Proof. Let P be a partition of [0, 1] and f=F b ?P # FC �
b . In view of

Eqs. (5.10) and (5.7), Eq. (5.12) follows by applying Theorem 2.9 to
Riemannian manifold (GP, ( } , } )P) and using Corollary 5.3 to check that
RicP�&C( } , } )P. Q.E.D.

6. HEAT KERNEL MEASURE

In this section, we will show that et2�2 may be represented as a probability
kernel on L(G ). Once this is done, Theorem 5.6 may be written in the form
described in Theorem 1.2 of the introduction, see Theorem 6.4 below.

Definition 6.1. Let G denote the smallest _-algebra on L(G ) such
that ?P : L(G ) � GP is measurable for all finite partitions P on [0, 1].
(The _-algebra on GP is taken to be the Borel _-algebra.)

Theorem 6.2 (Heat Kernel Measure). For each T>0 there exists a
unique probability measure &T on (L(G ), G ) such that

(et2�2f )(e)=|
L(G )

f (g) d&T (g) (6.1)

for all bounded f # FC�.

The proof of this theorem will be given after Theorem 6.4 below.
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Corollary 6.3. For each T>0 and g0 # L(G ) there exists a unique
probability measure &T (g0 , } ) on (L(G ), G) such that

(et2�2f )(g0)=|
L(G )

f (g) &T(g0 , dg) (6.2)

for all bounded cylinder functions f on L. Moreover, &T (g0 , } )=Lg0
V &T=

&T b L&1
g0

, where Lg0
: L(G ) � L(G ) denotes left translation by g0 .

Proof. The proof of uniqueness is routine and will be left to the reader.
To prove existence of the measure &T (g0 , } ), notice by the left translation
invariance of 2 (more precisely the left translation invariance of 2P for all
partitions P), it follows that

(et2�2f )(g0)=(et2�2f )(Lg 0
(e))=(et2�2( f b Lg 0

))(e),

where e is the identity in L, i.e. the constant loop at the identity in G.
Therefore by the definition of &T ,

(et2�2f )(g0)=|
L(G)

f (Lg0
(g)) d&T (g)=|

L(G )
f (g)(Lg 0

V &T )(dg).

Hence &T (g0 , } )#Lg0
V &T is the desired measure. Q.E.D.

For completeness we now restate Theorem 5.6 of the last section in the
form of Theorem 1.2.

Theorem 6.4 (Logarithmic Sobolev). Let C=C(( } , } ) ) be the constant
in Theorem 4.27, g0 # L=L(G ), f # FC� be such that f and &{9 f& are
bounded, and T # (0, �). Then

|
L

f 2 log f 2 d+�
2
C

(eCT&1) |
L

&{9 f&2 d++|
L

f 2 d+ } |
L

log f 2 d+, (6.3)

where + is the measure &T (g0 , } ) and (2�C )(eCT&1)#2T if C=0. As usual
0 log 0#0.

Proof of Theorem 6.2. Using Proposition 5.5, one may apply
Komogorov's extension theorem to show that there is a measure &� T on
G� (0, 1) (with the product _-algebra) such that

(et2�2f )(e)=|
G� (0, 1)

f (g) d&� T(g) (6.4)

for all bounded f # FC�, where G� =G _ [V] denotes the one point com-
pactification of G. As usual, for any F : GP � R we extend F to G� P by
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setting F(g)#0 if g(si )=V for some si # P. In this way we may consider
f # FC� as functions on G� (0, 1).

To finish the proof we must now show that &� T ``restricts'' to a measure on
L(G ). Let d: G_G � [0, �) be the metric on G induced by the biinvariant
Riemannian metric on G determined by ( } , } ) on g, see Definition 2.2. By
Lemmas 6.6 and 6.9 below, for any p�1, there is a finite constant Kp such
that for all u, v # (0, 1),

|
G� (0, 1)

d (g(v), e) p d&� T�Kp(v(1&v)) p�2, (6.5)

and

|
G� (0, 1)

d (g(u), g(v)) p d&� T�Kp |u&v| p�2, (6.6)

where d (V, V)#0 and d (x, V)#� if x # G. For u # (0, 1) define
7� u : G� (0, 1) � G by

7� u(g)={g(u)
e

if g(u){V
if g(u)=V

and set 7� 0(g)=7� 1(g)=e. Then (6.5) and (6.6) may be combined to show
that there is a constant Kp<� such that

|
G� (0, 1)

d (7� u(g), 7� v(g)) p d&� T�Kp |u&v| p�2 \u, v # [0, 1].

Kolmogorov's continuity criteria (see Protter [27] Theorem 53, p. 171 for
example) shows that the process 7� has a continuous version 7. Notice that
7(g) # L(G) for &� T almost every g. The desired measure &T on L(G ) is the
law of 7, i.e. &T is uniquely determined by

|
L(G )

f d&T=|
G� (0, 1)

f (7 ) d&� T ,

where f is an arbitrary bounded cylinder function. Q.E.D.

An alternative proof Theorem 6.2 in the case that G=K is compact, may
be given using Proposition 1.1 in Malliavin [25] which asserts the exist-
ence of a ``Brownian motion'' on L(G ) starting at the identity loop. The
time T distribution of this process is &T . In the case that G=Z is abelian,
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one may easily construct a ``Brownian'' motion on L(G ) by taking a
Brownian motion on L(g) with variance determined by the H0(g)-norm
and composing this Brownian motion with the exponential map on G.
Again &T is the time T distribution of this Brownian motion. For general
compact Lie groups, one may decompose G as G=KZ, where K and Z are
Lie subgroups of G, K is compact, and Z is in the center of G. The product
of an L(K )-valued Brownian motion with an L(Z)-valued Brownian
motion gives an L(G )-valued Brownian motion. The time T distribution of
this L(G )-valued Brownian motion is the desired measure &T . Complete
details of this construction may be found in Driver [16], where the L(G )-
valued Brownian motion is used to prove Remark 1.3 in Section 1.

Remark 6.5. The Brownian motion construction of &T has the added
benefit of showing that &T is concentrated on the homotopy class contain-
ing the constant loop at the identity. Since, pinned Wiener measure charges
all homotopy classes, it follows, for non-simply connected groups, that &T

is different then any pinned Wiener measure. The exact relationship
between &T and pinned Wiener measures on L(G ) is still an open question.

Lemma 6.6. For each p # (0, �) there is a constant Kp such that

|
G� (0, 1)

d (g(v), e) p d&� T�Kp(v(1&v)) p�2, \v # (0, 1). (6.7)

Proof. Let v # (0, 1) and P=[0<v<1] then for any non-negative
measurable function f on G we have

|
G� (0, 1)

f (g(v)) d&� T=(eT2 P �2 f )(e). (6.8)

By Definition 4.8

2P=G0(v, v) 2G=v(v&1) 2G ,

where 2G#�A # g0
A� 2. Hence Eq. (6.8) may be written as

|
G� (0, 1)

f (g(v)) d&� T ( g)=|
G

f (x) \t(x) dx, (6.9)

where t#G0(v, v)T and \t is the convolution heat kernel density for et2
P

�2.
Let V(r) be the volume of the ball of radius r centered at e # G, relative to
the metric ( } , } ) on G. By Lemma 2.6, there is a constant # # (0, �) such
that V(r)�#rne#r. We may use (6.9) and the heat kernel estimate in
Proposition 2.5 to find (for any =>0) that
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|
G� (0, 1)

d (g(v), e) p d&� T�C(T, =) t&n�2 |
�

0
r p exp { &r2

2(1+=) t= dV(r)

=&C(T, =) t&n�2 |
�

0
[ pr p&1&r p+1�(1+=) t]

_exp { &r2

2(1+=) t= V(r) dr

�Kt&n�2 |
�

0

r p+1

(1+=) t
rn exp { &r2

2(1+=) t= e#r dr,

where K#C(T, =)#. Now an easy scaling argument shows that

|
�

0
rke&r2�:e#r dr=:(k+1)�2 |

�

0
rke&r2e- : #r dr.

Hence it follows from the two above displayed equations that there is a
constant Kp=Kp(T, =) such that

|
G� (0, 1)

d (g(v), e) p d&� T��Kpt p�2=Kp(v(1&v)) p�2. Q.E.D.

The next two Lemmas will be used in the proof of Lemma 6.9 which
was the key to the proof of Theorem 6.2. The following notation will be
used in the next three Lemmas. Let u, v # (0, 1) with u<v and let
P=[0<u<v<1]. We will let & }&2=( } , } )P so that for [A, B] # g_g,

&[A, B]&2=a |A| 2&2b(A, B)+c |B| 2 \A, B # g,

where a, b, c # R are determined by

_ a
&b

&b
c &=_G0(u, u)

G0(u, v)
G0(u, v)
G0(v, v)&

&1

,

see Definition 5.1. Thus a=G0(v, v)�$, b=G0(u, v)�$, and c=G0(u, u)�$,
where

$#G0(u, u) G0(v, v)&G 2
0(u, v)=u(1&v)(v&u).

Lemma 6.7. Let u, v # (0, 1) with u<v, ;#G0(u, v)�G0(v, v)<1, A, B # g,
and & }&=- ( } , } )P . Then

|A&;B|�- u(v&u)�v &[A, B]&, (6.10)
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and

|B|�- v(1&v) &[A, B]&� 1
2&[A, B]&. (6.11)

Proof. By completing the squares we have

&[A, B]&2=a \}A&
b
a

B }
2

+\c
a

&
b2

a2+ |B| 2+
=a }A&

b
a

B }
2

+
ac&b2

a
|B| 2

=
G0(v, v)

$ }A&
G0(u, v)
G0(v, v)

B }
2

+
1

G0(v, v)
|B| 2.

=
:
$

|A&;B| 2+
1
:

|B| 2, (6.12)

where :=G0(v, v)=v(1&v). Now :�$=(v�u)�(v&u), and ;=u�v<1.
Hence it follows from (6.12) that

|A&;B|�- u(v&u)�v &[A, B]&

and

|B|�- v(1&v) &[A, B]&� 1
2&[A, B]&. Q.E.D.

Lemma 6.8. Keep the same notation as in Lemma 6.7. Let d respectively
dP be the Riemannian distance function on G respectively G P=G2 relative
to ( } , } ) respectively ( } , } )P . We will also set |x|#d (x, e) and
|[x, y]|#dP([x, y], [e, e]) for all x, y # G. Then for x, y # G,

d (x, y)=|x&1y |�2 - |v&u| } |[x, y]|. (6.13)

Proof. Let x, y # G, _: [0, 1] � G and {: [0, 1] � G be two smooth paths
such that _(0)={(0)=e, _(1)=x, and {(1)=y. Since _{&1: [0, 1] � G is
a path joining e to xy&1, it follows that |xy&1 |��1

0 |(_{&1)$ (s)| ds. Define
A#%(_$) and B#%({$) , then

({&1)$=@
*

L{*
B=

d
dt } 0 @({etB)=

d
dt } 0e&tB{&1= &R{

&1
*

B,
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where @(g)#g&1. Therefore

%( (_{&1)$)=L{_&1
*

[R{ &1
*

_$+L_*
({&1)$]

=L{_&1
*

[R{ &1
*

L_*
A&L_*

R{ &1
*

B]

=Ad{(A&B).

To simplify notation, let ;=u�v # (0, 1) and l(_, {) denote the length of the
curve (_, {) in the Riemannian manifold G P. Using the orthogonality of
Ad{ , Eq. (6.10) and Eq. (6.11), it follows that

|xy&1 |�|
1

0
|Ad{(A&B)| ds=|

1

0
|A&B| ds

�|
1

0
[ |A&;B|+(1&;)|B| ] ds

�|
1

0
[ |A&;B|+(1&;)|B| ] ds

�|
1

0
(- (u�v)(v&u)+(1&;) - v(1&v))&[A, B]& ds

�(- (u�v)(v&u)+
(v&u)

- v + l(_, {)

�2 - v&u l(_, {),

wherein we have used 1&;=1&u�v=(v&u)�v. Minimizing this last
inequality over all _ joining e to x and all { from e to y shows that

|xy&1|�2- v&u |[x, y]|.

Eq. (6.13) follows by replacing x by x&1 and y by y&1 in the above
inequality and using |[x&1, y&1]|=|[x, y]|. Q.E.D.

Lemma 6.9. Let u, v # (0, 1) with u<v. Then for each p # [1, �) there is
a constant Kp such that

|
G� (0, 1)

d (g(u), g(v)) p d&� T ( g)�Kp |u&v| p�2 \u, v # (0, 1). (6.14)
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Proof. Let P=[0<u<v<1], & }&=& }&P be as above. Let *P denote
the Riemannian volume element on GP and &P

T (x, y) denote the convolu-
tion heat kernel on GP=G2 determined by

|
G 2

f (x, y ) &P
T (x, y ) d*P(x, y) :=(eT2 P �2f )(e, e),

for all f # C �
c (G2). Then for any non-negative measurable function f on G 2

we have

|
G� (0, 1)

f (g(u), g(v)) d&� T ( g)=|
G 2

f (x, y) &P
T (x, y ) d*P(x, y).

Taking f (x, y )=d p(x, y), using Eq. (6.13) and the heat kernel estimate in
Eq. (2.8), there is a constant Kp=Kp(T, =)<� such that

|
G� (0, 1)

d p(g(u), g(v)) d&� T (g)

�(2 - v&u) p |
G P

|[x, y]| p &P
T ([x, y]) d*P([x, y])

�Kp |v&u| p�2 |
�

0
r p exp { &r2

2(1+=)T= dV(r), (6.15)

where V(r)=*P([[x, y] # G2 : |[x, y]|�r]). Now by Corollary 5.3 and
Lemma 2.6 there are constant c>0 and K<� independent of u and v
such that V(r)�Kr2necr. Using the same methods as in the proof of
Lemma 6.6, it is easily seen that

|
�

0
r p exp { &r2

2(1+=)T= dV(r)�Ap<�, (6.16)

where Ap is a constant independent of u, v # (0, 1). Combining (6.15) and
(6.16) proves (6.14). Q.E.D.

Remark 6.10. With some extra effort, it is possible to use similar
methods to generalize Theorem 6.2 to the case where G is an arbitrary
Lie group and ( } , } ) is an arbitrary left invariant Riemannian metric
on G.
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15. B. K. Driver, On the Kakutani�Itô�Segal�Gross and the Segal�Bargmann�Hall iso-
morphisms, J. Funct. Anal. 133 (1995), 69�128.

16. B. K. Driver, An integration by parts formula on the path space of a loop group, in preparation.
17. B. K. Driver and L. Gross, Hilbert spaces of holomorphic functions on complex Lie

groups, in ``Proceedings of the 1994 Taniguchi Symposium,'' in press.
18. B. K. Driver and Yaozhong Hu, On the heat kernel logarithmic Sobolev inequalities, in

``Proceedings of the Fifth Gregynog Symposium'' (I. M. Davies, A. Truman, and K. D.
Elworthy, Eds.), Stochastic Analysis and Applications, pp. 189�200, World Scientific, N.J.,
1996.

19. S. Fang, Ine� galite� du type de Poincare� sur un espace de chemins, Univ. de Paris VI
preprint, October 1993.

20. D. S. Freed, The geometry of loop groups, J. Diff. Geom. 28 (1988), 223�276.
21. E. Getzler, Dirichlet forms on loop space, Bull. Soc. Math. (2) 113 (1989), 151�174.
22. E. Getzler, An extension of Gross's log-Sobolev inequality for the loop space of a compact

Lie group, in ``Proc. Conf. on Probability Models in Mathematical Physics, Colorado

447LOGARITHMIC SOBOLEV INEQUALITIES



File: 580J 292468 . By:BV . Date:02:09:96 . Time:11:39 LOP8M. V8.0. Page 01:01
Codes: 2213 Signs: 1665 . Length: 45 pic 0 pts, 190 mm

Springs, 1990'' (G. J. Morrow and W-S. Yang, Eds.), pp. 73�97, World Scientific, N.J.,
1991.

23. L. Gross, Logarithmic Sobolev inequalities on loop groups, J. Funct. Anal. 102 (1992),
268�313.

24. Elton P. Hsu, Ine� galite� s de Sobolev logarithmic sur un space de chemins, C.R. Acad. Sci.
Paris Se� r. I Math. 320, No. 8 (1995), 1009�1012.

25. P. Malliavin, Hypoellipticity in infinite dimension, in ``Diffusion Process and Related
Problems in Analysis'' (Mark A. Pinsky, Ed.), Vol. I, Birkha� user, Basel, 1989�1991.

26. A. N. Pressley and G. Segal, ``Loop Groups,'' Oxford Univ. Press, London, 1986.
27. P. Protter, ``Stochastic Integration and Differential Equations; A New Approach,''

Springer-Verlag, Berlin, 1990.
28. Michale Reed and Barry Simon, ``Methods of Modern Mathematical Physics. I: Func-

tional Analysis,'' Academic Press, New York, 1980.
29. Derek W. Robinson, ``Elliptic Operators and Lie Groups,'' Clarendon Press, Oxford,

1991.
30. Ichiro Shigekawa, Differential calculus on a based loop group, preprint, 1994.
31. R. S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Funct.

Anal. 52 (1983), 48�79.
32. N. Th. Varopoulos, Small time Gaussian estimates of heat diffusion kernels. Part I: The

semigroup technique, Bull. Soc. Math. 2 113 (1989), 253�277.
33. Feng-Yu Wang, On estimation of logarithmic Sobolev constant and gradient estimates of

heat semigroups, preprint, 1995.
34. Feng-Yu Wang, Logarithmic Sobolev inequalities for diffusion processes with application

to path space, preprint, 1995.
35. S. T. Yau, On the heat kernel of a complete Riemannian manifold, J. Math. Pures Appl.

57 (1978), 191�201.

448 DRIVER AND LOHRENZ


