
ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE

VIKRAM K. SRIMURTHY

Abstract. Let K be a simply-connected compact Lie Group equipped with
an AdK -invariant inner product on the Lie Algebra K, of K. Given this data,
there is a well known left invariant "H1-Riemannian structure" on L (K) (the
in�nite dimensional group of continuous based loops in K), as well as a heat
kernel �T (k0; �) associated with the Laplace-Beltrami operator on L (K). Here
T > 0, k0 2 L (K), and �T (k0; �) is a certain probability measure on L (K).
In this paper we show that �1 (e; �) is equivalent to Pinned Wiener Measure
on K on Gs0 � � hxt : t 2 [0; s0]i (the �-algebra generated by truncated loops
up to \time" s0)
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1. Introduction

In this paper we consider the equivalence of two measures on the Loop space
of a compact Lie group. This so-called \Loop group" is the space of continuous
paths in the Lie group based at the identity equipped with a certain well-known
left-invariant \H1-Riemannian structure". The study of Loop groups is motivated
primarily by physics and the theory of group Representations. They have been
studied extensively in both the mathematics and the physics literature. See for
example [29], [19], [27],[3], [15], [16], [1], [24], [18], [12] and the references therein.

Heat Kernel and pinned Wiener measure are two natural measures that have been
advocated as the \right" measure on the Loop groups. Pinned Wiener measure on a
Loop group is the law of a group-valued Brownian motion that has been conditioned
on loops. This measure has been extensively studied in [17], [25], [2], [26]. Heat
Kernel measure has been studied in [13], [11] as another natural measure on Loop
Space. In [13], Driver and Lohrenz showed that there exists a certain process that
deserves to be called \Brownian motion" on the path space of a Loop group. The
Heat Kernel measures on the Loop Space are the time t, t > 0 distributions of this
Brownian motion. Thus it is a natural question to consider the equivalence of these
two measures.

A further motivation comes from logarithmic Sobolev inequalities and the pa-
pers of Getzler [16], Gross [17], Driver [11], Hsu, Aida, and Elworthy. The classical
Sobolev inequalities are a fundamental tool in analyzing �nite-dimensional mani-
folds. For in�nite-dimensional manifolds logarithmic Sobolev inequalities, because
of their dimension-independent character, are seen to be the proper analogues of
classical Sobolev inequalities. Logarithmic Sobolev inequalities have been studied
extensively over in�nite-dimensional linear spaces as well as �nite-dimensional man-
ifolds (see [8], [9] for surveys and [20]). If a logarithmic Sobolev inequality does
hold for pinned Wiener measure, �0, then the Dirichlet form �0 hrf;rfi associ-
ated with pinned Wiener measure will have a spectral gap (the so-called \Mass Gap
inequality").

In [16], Getzler showed that the Bakry and Emery criteria (see [4] and [5])
for proving a logarithmic Sobolev inequality does not hold in general for loop
groups when the \underlying measure" is pinned Wiener measure. In [17], us-
ing pinned Wiener measure, Gross showed that a logarithmic Sobolev inequality
on Loop space does hold, but with an added potential term (a so-called \defective"
logarithmic Sobolev inequality). Using Heat Kernel measure instead, Driver and
Lohrenz proved in [13] that a logarithmic Sobolev inequality does hold on Loop
groups, without Gross' potential. If Heat Kernel and pinned Wiener measures were
equivalent with Radon-Nikodym derivatives bounded above and below then the
Holley-Stroock Lemma (see [20])would tell us that pinned Wiener measure admits
a classical (i.e. \non-defective") logarithmic Sobolev inequality. Even if the equiv-
alence were not so nice, it might still be possible to use the Driver-Lohrenz result of
[13] to eliminate the Gross' potential term and thereby prove a logarithmic Sobolev
inequality for pinned Wiener measure.

In Section 5, using a result of Malliavin and Airault (see [26] and Theorem 4.1)
as well as a maximal-inequality argument, we show that Heat Kernel measure is
absolutely continuous with respect to pinned Wiener measure. Further, the relevant
Radon-Nikodym derivative is bounded. We also provide a simpler and more direct
proof of the result of the Malliavin-Airault Theorem in Section 4.
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In Section 7 we show that pinned Wiener measure is absolutely continuous (and
thus equivalent) with respect to Heat Kernel measure on Fs (Fs denotes the �-
algebra of functions depending on the loop up to time s < 1). We view the Loop-
Space-valued Brownian motion, developed by Driver and Lohrenz in [13], as a
group-valued two-parameter process. Viewing one of the parameters �xed, the
resulting process has the same distribution as Heat Kernel measure. In Section 6
we show that, in the other parameter, this process is a Brownian semimartingale
on the path space of the Lie group. To do this, we use extensively the theory
of two-parameter semimartingales developed by Cairoli, Walsh, Wang, and Zakai
(see [7], [31]). The fact that we can pull back this process to a Lie algebra valued
Brownian Semimartingale, Girsanov's Theorem, and the fact that Wiener measure
and pinned Wiener measure are equivalent on Fs; gives us our result that on Fs
Heat Kernel measure and pinned Wiener measure are equivalent. In our proof, the
analysis is done in a bigger space (the Wiener space of the compact Lie group)
which is why we require s to be strictly less than one.

Heat Kernel measure is a time t distribution of a process on the path space
of a Loop group which is started from the identity loop (i.e. the constant loop).
This describes a homotopy between the endpoint of this process and the identity
loop. As a consequence, Heat Kernel measure concentrates all its mass on null-
homotopic loops. On the other hand pinned Wiener measure is quasi-invariant
under translations by �nite-energy loops. Thus Pinned Wiener measure must assign
non-zero mass to all homotopy classes. Therefore if the Lie group is not simply
connected, pinned Wiener measure is not equivalent to Heat Kernel measure. Thus
our result showing absolute continuity on Fs for s < 1 is in a sense the best result
that can be obtained in the non-simply-connected case.

In our last section, Section 9, we conjecture that pinned Wiener measure is
absolutely continuous with respect to a weighted sum of Heat Kernel measures on
the various homotopy classes. These Heat Kernel measures are obtained by starting
the Driver-Lohrenz Loop-group-valued Brownian motion at the energy-minimizing
geodesics in each homotopy class. This results in a measure that assigns non-zero
mass to each homotopy class. The conjecture rests on a very informal computation
done by Driver and the fact that the conjecture is true in the case that the compact
Lie group is the circle S1.

2. Statement of Results

2.1. Loop group Geometry. Let K be a connected compact Lie group, K � TeK
be the Lie algebra of K, and h�; �i

K
be an AdK-invariant inner product on K. For

� 2 K, let j�j
K
� ph�; �i

K
. Let `g and �g be left and right translations on K

respectively. (i.e. `g and �g are maps taking K to K so that `g (x) = gx while
�g (x) = xg). Let

L (K) � f� 2 C ([0; 1]! K) j� (0) = � (1) = eg
denote the based loop group on K consisting of continuous paths � : [0; 1] ! K
such that � (0) = � (1) = e, where e 2 K, is the identity element.

De�nition 2.1 (Tangent Space of L (K)). We will need the following de�nitions:-

� Given a function h : [0; 1]! K such that h (0) = 0, de�ne (h; h)H =1 if h is

not absolutely continuous and set (h; h)H =
R 1
0 jh0 (s)j2 ds otherwise.
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� De�ne

H (K) � fh : [0; 1]! Kjh (0) = 0 and (h; h) <1g :
Then H (K) is a Hilbert space under (�; �)H .

� De�ne

H0 (K) � fh 2 H (K) jh (1) = 0g :
Then (H0 (K) ; (�; �)H) is also a Hilbert space.

In order to de�ne the tangent space TL (K) of L (K) let � denote the Maurer-
Cartan form. That is � h�i � (`k�1)� � for all � 2 TkK, and k 2 K and where `g
denotes left multiplication by g 2 K. Let � hXi (s) � � hX (s)i and p : TK ! K
be the canonical projection. We now de�ne

TL (K) � fX : [0; 1]! TKj� hXi 2 H0 and p �X 2 L (K)g :
By abuse of notation, use the same p to denote the canonical projection from
TL (K) ! L (K). As usual, de�ne the tangent space at k 2 L (K) by TkL (K) �
p�1 fkg. Using left translations, we extend the inner product (�; �)H0

on H0 to a

Riemannian metric on TL (K). Explicitly set

(X;X)L(K) � (� hXi ; � hXi)H0(K)
where X 2 TL (K) .

In this way, L (K) is to be thought of as an in�nite-dimensional Riemannian mani-
fold. Viewing the Lie algebra (K; 0) as a Lie group in its own right with Lie algebra
K, we obtain de�nitions for

L (K) � f� 2 C ([0; 1]! K) j� (0) = � (1) = 0g
as the \Lie group" with Lie algebraH0 (K) thought of as a commutative Lie algebra.

De�nition 2.2 (Good Orthonormal basis of H0). An orthonormal basis f�kgk2N
of H0 (K) is a good orthonormal basis if the Lie Bracket [�k (s) ; �

0
k (s)] is identically

zero for all values of s and k.

Example 2.3. We will provide a couple of examples for illustration:-

1. Take fhkg to be an orthonormal basis of H0 (R) and let fAg run through an
orthonormal basis of K. Then �A;k � hkA is a good orthonormal basis.

2. Let
�
�A;k

	
k2N;A be loops in H1

0 (K) where

�A;2k (� ) � A

�k
p
2
sin 2�k�

�A;2k�1 (� ) � A

�k
p
2
(cos 2�k� � 1)

and A runs through an orthonormal basis of K.

De�nition 2.4 (The Laplacian 4L(K) and 4L(K)). Take a good orthonormal ba-
sis of H0 (K). Then de�ne an operator 4L(K) on functions f on L (K) by setting

4L(K)f �
X

@2hf;

where

(@hf) (
) � @"f (
 exp "h) j"=0:
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De�ne the Laplacian 4L(K) on functions f on L (K) in the same way above by
setting

4L(K)f �
X

@2hf;

where

(@hf) (
) � @"f (
 + "h) j"=0:
De�nition 2.5 (Cylinder functions). Let (R; e) denote either the Lie group (K; e)
or the Lie algebra (K; 0). Let eL (R) denote either L (R) or We (R).

1. Then f : eL (R) ! R is a cylinder function i� f (�) � F (�t1 ; � � � ; �tn) where
f0 < t1 < � � � < tn < 1g. F 2 C (Rn).

2. f is a smooth cylinder function i� F 2 C1 (Rn). F 2 C (Rn).
3. f is a bounded cylinder function i� F 2 Cb (Rn). Here Cb (Rn) are the

bounded continuous functions on Rn.

4. Let FC
�eL (R)� denote the space of all cylindrical functions.

5. Let FC1
�eL (R)� denote the space of all smooth cylindrical functions.

6. Let FC1b
�eL (R)� denote the space of all bounded cylindrical functions.

7. A cylinder function is FP-measurable if and only if f (�) = F (�t1 ; � � � ; �tn)
where ftig � P where P is some partition of [0; 1] :

2.2. Measures on the Loop group.

2.2.1. Pinned Wiener measure. Let the Wiener space We (K) denote the space of
all continuous paths in K starting at the identity. Explicitly

We (K) � f� 2 C ([0; 1]! K) j� (0) = eg :
De�nition 2.6 (Heat Kernel measure on K). Let t > 0. The Heat Kernels PKt
on K are the unique functions so that for any smooth f on K, the function u on
[0;1)�K de�ned by setting u (t; x) � RK f (y)PKt �y�1x� dy is a solution to the
Heat equation with initial condition f . Explicitly

@tu =
1

2
4Ku

u (t; x) ! f (x) as t! 0.

It is well known that x ! PKt are smooth function on K and that PKt (x) =
PKt

�
x�1

�
.

De�nition 2.7 (Wiener Measure on We (K)). Wiener Measure, �t, onWe (K) with
parameter t, is the unique measure so that for any bounded cylinder function f of
the form f (x) = F (xs1 ; � � � ; xsn) we have

�t [f ] �
Z
Kn

F (x1; � � � ; xn)
nY
i=1

PKt(si�si�1)

�
x�1i�1xi

�
dxi;

where x0 = e and s0 = 0. [The measure �1 will also be denoted by � in the sequel.]

De�nition 2.8 (Brownian motion on K). We will state three equivalent de�ni-
tions. A process s! � (s) is a Brownian motion on K starting at e with parameter
t i�:-
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1. � is a We (K)-valued random variable distributed according to Wiener mea-
sure �t.

2. the process s ! � (s) is a di�usion starting at e with generator t
24K . This

means that the process s! � (s) is a martingale so that � (0) = e a.s. and

(� � �) (ds) = �0 � � (s)� (ds) + t

2
(4K�) � � (s) ds

for any smooth � on K. Here 4K is the Laplacian on K with respect to the
metric h�; �iK on K.

The �rst de�nition is easier in simpler cases like Rd or compact Lie groups. The
second de�nition is easier to extend to the in�nite-dimensional cases and manifolds.
See De�nitions 2.14 and 3.6.

De�nition 2.9 (Pinned Wiener Measure). PinnedWiener Measure, �0;t, on L (K)
with parameter t is the unique measure on L (K) so that for any bounded cylinder
functions f of the form f (x) = F (xs1 ; � � � ; xsn) where F 2 C1 (K), then

�0;t [f ] �
Z
Kn

F (x1; � � � ; xn)
PKt(1�sn) (xn; e)

PKt (e; e)

nY
i=1

PKt(si�si�1)
(xi�1; xi) dxi;(2.1)

where x0 = e and s0 = 0.[We will use the notation �0 to denote �0;1.]

Remark 2.10 (Pinned Wiener measure is really pinned!). Pinned Wiener measure
is really Wiener measure pinned at e. At least on cylinder functions,

�0;t [f ] =

Z
f (x) �e (x (1))�t (dx) =

Z
�e (x (1))�t (dx) :

As Malliavin showed, another way of looking at this measure is

�0 (f) �
�
d (�1)� (f�t)
d (�1)� �t

�
(e) ,(2.2)

where �1 : x� ! x1; �t is Wiener measure on K with parameter t; and (f�t) is that
measure on We (K) so that (f�t) (dx) = f (x) �t (dx). For cylinder functions, it is
trivial to check Eq. [2.2] by writing down �nite-dimensional distributions.

De�nition 2.11 (Brownian bridge on K). s! � (s) is a Brownian bridge from on
K with parameter t if � is an L (K)-valued random variable distributed according
to pinned Wiener measure �0;t.

2.2.2. Heat Kernel measure.

De�nition 2.12 (Brownian Bridge Sheet on K). A Gaussian process f� (t)gt2[0;1]
is a Brownian bridge Sheet on K if for (t; s) in [0; 1]

2
, � (t; s) is a K-valued mean-zero

Gaussian process with covariance given by

E hA;� (t; s)i
K
hB;� (� ; �)i

K
= hA;Bi

K
(t ^ � )G0 (s; �) ;

where � (t; s) � � (t) (s) 2 K; A;B 2 K; t; � ; s; � 2 [0; 1]; and G0 (s; �) � s^ �� s�.
Remark 2.13. It turns out that if � is a Brownian bridge sheet on K then �ts
is continuous in both its parameters, t ! �ts is a Brownian motion on K with
parameter G0 (s; s) and s! �ts is a Brownian bridge on K with parameter s.
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De�nition 2.14 (Brownian motion on L (K)). A process t! � (t; �) is an L (K)-
valued Brownian motion if and only if for any smooth cylinder function f : L (K)!
R, there is a real-valued martingale Mt so that

f (� (dt; �)) = dMt +
1

2

�4L(K)f
�
(� (t; �)) dt:

See Theorem 2.19 for the existence of this Brownian motion. So t ! � (t; �) is a
di�usion on L (K) with generator 1

24L(K). [De�ne a Brownian motion on L (K) by
thinking of K as a Lie group and applying the above de�nition]

Lemma 2.15 (4L(K) on cylinder functions, see [13]). Let G0 be as in De�nition
2.12. Let P be the partition f0 < s1 < � � � < sn < 1g. Let �P be the map taking a
loop � in L (K) to (�s1 ; � � � ; �sn) 2 Kn. For F 2 C1 (Kn), de�ne�

A(i)F
�
(g1; � � � ; gn) � d

dt
jt=0F (� � � ; gi exp tA; � � � ) :

De�ne an elliptic operator 4P on C1 (Kn) by setting

4P�
X
i;j;A

G0 (si; sj)A
(i)A(j):

Then letting A run through an orthonormal basis of K, for any smooth cylinder
function F : Kn ! R we have

4L(K) (F � �P) = (4PF ) � �P:
[This Lemma can also be used on the Lie algebra K by viewing K itself as a Lie
group, i.e. take K = K and g expA = g +A. ]

Proof. As in Example 2.3, take fhkg to be an orthonormal basis of H0 (R) and
let fAg run through an orthonormal basis of K. Then �A;k � hkA is a good
orthonormal basis of H0 (K). Then we have�

@�A;kF � �P
�
(
) =

d

dt
F � �P

�

 exp t�A;k

� #0
=

X
i

�k (si)
�
A(i)F

�
� �P(
) :

Thus

4L(K)F � �P =
X
k2N;A

@�A;k@�A;kF � �P

=
nX
i=1

X
k2N;A

�k (si) @�A;k

�
A(i)F

�
� �P(
)

=
X
A

nX
i;j=1

"X
k2N

�k (si) �k (sj)

#�
A(j)A(i)F

�
� �P(
) :

It remains only to show that
P
k2N �k (si) �k (sj) = G0 (si; sj). Let h 2 H0 (R).

Suppose we can show that

hG0 (s; �) ; hiH0(R)
= h (s) :(2.3)
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A priori we suspect that such elements G0 (s; �) exist because the evaluation map
h ! hs is a bounded linear functional on the Hilbert Space H0 (R). Then we will
be done since we shall haveX

k2N
�k (si) �k (sj) =

X
k2N

hG0 (si; �) ; �ki hG0 (sj ; �) ; �ki

= hG0 (si; �) ; G0 (sj ; �)i
= G0 (si; sj) :

We shall proceed to check Eq. [2.3].

hG0 (s; �) ; hiH0(R)
=

Z 1

0

@t (s ^ t� st)h0 (t) dt

=

Z 1

0

�
1[0;s] (t)� s

�
h0 (t) dt

= h (s)� (1� s)h (0)� sh (1)

= 0 since h is a loop based at 0.

Hence we are done.

Lemma 2.16 (Brownian Motion on L (K) exists). If �t � � (t; �) is a Brownian
Sheet then for any smooth cylindrical function f , there is a real-valued martingale
Mt so that

df (�t) = dMt +
1

2

�4L(K)f
�
(�t) dt:

Here 4L(K) is the Laplace-Beltrami operator de�ned in De�nition 2.4. So every
Brownian bridge Sheet on K is an L (K)-valued Brownian motion.

Proof. Let G0 be as in De�nition 2.12. Let �Ats denote as usual h�ts; AiK for any
A 2 K. Then the joint quadratic variation �Adts�

B
dt� = hA;Bi

K
G0 (s; �) dt. Let f

be a smooth cylinder function implies (see De�nition 2.5), f (�) = F (�s1 ; � � � ; �sn)
where F 2 C1 (Kn) and P �f0 < s1 < � � � < sn < 1g. Let �Pt denote

�
�ts1 ; � � � ; �tsn

�
.

Let
�
A(i)F

�
(g1; � � � ; gn) denote @"F (� � � ; gi + "A; � � � ) #"=0. Let 4P on K

n by

4P�
X
i;j;A

G0 (si; sj)A
(i)A(j):

Thus by Ito's Lemma we have

df (�t) = dF
�
�Pt
�

=
X
i;A

�
A(i)F

� �
�Pt
�
�Adtsi

+
1

2

X
i;j;A

�
A(j)A(i)F

� �
�Pt
�
�Adtsi�

A
dtsj

= dMartingale+
1

2

X
i;j;A

G0 (si; sj)
�
A(j)A(i)F

��
�Pt
�
dt

= dMartingale+
1

2
(4PF )

�
�Pt
�
dt:
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By Lemma 2.15 (view K as a Lie algebra in its own right with Lie algebra K while
applying this Lemma) this last expression is just

= dMartingale+
1

2

�4L(K)f
�
(�t) dt:

We will need the the following Theorem:

Theorem 2.17 (Malliavin). Let
�

0;F

0;
�
F0ts
	
(t;s)2[0;1]2 ; P0

�
be a �ltered com-

plete probability space where

F0ts � � h��u : � 2 [0; t] , u 2 [0; s]i ;
and F0 � _(t;s)2[0;1]2F0ts. Let k0 2 L (K) and let � be a K-valued Brownian bridge
sheet in the sense of De�nition 2.12. Recall `g : K ! K takes x! gx. Then there
is a jointly continuous solution � (t; s) to the stochastic di�erential equation

� (�t; s) =
X

A2ONB(K)

�
`�(t;s)�A

�
�A (�t; s)with � (0; s) = k0 (s) ;8s 2 [0; 1] ;(2.4)

where the A run through an orthonormal basis of K and where for each �xed
s 2 [0; 1] ;� (�t; s) and �A (�t; s) denote the Fisk-Stratonowicz di�erentials of the
processes t ! � (t; s) and t ! h� (t; s) ; Ai

K
respectively. Henceforth we write Eq.

(2.4) more concisely as

� (�t; s) =
�
L�(t;s)

�
� � (�t; s) with � (0; s) = k0 (s) ;8s 2 [0; 1] :(2.5)

[see Malliavin [27]; see also Theorem 3.8 of [11]]

Remark 2.18 (Explicit Matrix Representation of Eq. [2.5). ] LetMm (R) be allm�
m matrices on R and GLm (R) be all invertible matrices in Mm (R). We will work
with an explicit matrix representation of our Lie group K. K will be thought of as
a subgroup of GLm (R) � Mm (R) for some m. Such a representation exists as a
consequence of the Peter-Weyl Theorem. Hence Eq. (2.5) can be rewritten as

� (�t; s) = � (t; s)� (�t; s) with � (0; �) = k0;8s 2 [0; 1] ;(2.6)

where we have used matrix multiplication to de�ne � (t; s)� (�t; s). Explicitly if we
let Bij denote the i; j entry of the matrix B we have

�t (� (t; s))ij =
X
k

(� (t; s))ik �t (� (t; s))kj :

Theorem 2.19 (Brownian motion on L (K)). Let � (t; s) be the process from The-
orem 2.17 and Remark 2.18. Theorem 2.17 tells us that s! � (t; s) is a Loop a.s.
Let �t denote this loop s! � (t; s). Then t! �t is a Brownian motion on L (K)
in the sense of De�nition 2.14.

Proof. See Theorem 3.10 of Driver [11].

Now that we know that Brownian motion on L (K) exists, we can de�ne Heat
Kernel measure on L (K).

De�nition 2.20 (Heat Kernel measure on L (K)). Let k0 2 L (K) be a loop and
let t > 0. Let � (t; �) be an L (K)-valued Brownian motion so that � (0; �) = k0 in
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L (K) a.s. Then, as in the �nite-dimensional manifold case, Heat Kernel measure
�t (k0; dk) is de�ned to be the law of � (t; �). ExplicitlyZ

L(K)

f (k) �t (k0; dk) = Ef �� (t; �) :

The next Theorem shows that Heat Kernel measures behave as expected, in
that they may be used to solve the Heat Equation on L (K). See Remark 3.12 for
motivation of Theorem 2.21.

Theorem 2.21 (Driver&Lohrenz). For each t > 0, for all bounded cylinder func-
tions f on L (K), the function u on (0;1)� L (K) given by

u (t; k0) �
Z
L(K)

f (k) �t (k0; dk) ;

is the unique solution to the heat equation

@u (t; �) =@t = 1

2
4L(K)u (t; �) with lim

t#0
u (t; k) = f (k0) :

Here 4L(K) denotes the operator from De�nition 2.4. See Theorem 1.1 of [13].
See also De�nitions 3.10 and 4.17 in [13]. [Note:- In [13], results on Heat kernel
measures are obtained for groups of compact type, and not merely compact Lie
groups.]

2.3. The stochastic framework. We shall use the results of Section 2.2.2 to
obtain our probability space.

De�nition 2.22 (Ambient probability space).
�

;F; fFtsg(t;s)2[0;1]2 ; P

�
is going

to be our biparametrically-�ltered probability space where

� 
 � C ([0; 1]! L (K)) equipped with F, the completion of the Borel �-
algebra.

� Let � be the process from Theorem 2.17 so that �0 = e, where e denotes the
identity loop.

� P is de�ned to be Wiener Measure on C ([0; 1]! L (K)). Explicitly, P � Law
�.

� gt : C ([0; 1]! L (K))! L (K) by x! x (t) for any x 2 C ([0; 1]! L (K))
� By Theorem 2.19 we see that dLaw gt = d�t (e; �).
� gts (x) = [x (t)] (s) in K.
� F00 is a �-algebra containing all the null sets of F.
� Fts � � hg�� : � 2 [0; t] and � 2 [0; s]i _ F00.

De�nition 2.23. Let fGsg be a �ltration. Then U� is aK-valuedG�-semimartingale
i� for any smooth f : K ! R the process t! f (Ut) is an R-valued G�-semimartingale.

De�nition 2.24 (see Protter [30]). Let fGsg be a �ltration. An R-valued process
U� is called an R-valued G�-semimartingale if:-

1. the paths U� are continuous a.s.
2. U� is adapted with respect to the �ltration G� (i.e. Ut 2 Gt for all t 2 [0; T ])

3. Given any sequence of simple adapted processes fHg then
R T
0 HtUdt # 0 in

probability whenever H # 0 uniformly on compacts in probability. Here H is
a simple adapted process if H is an R-valued Gt-adapted process of the form
H (t; !) � Pn

i=0Hi (!) 1(Ti;Ti+1] with the Ti being a sequence of stopping
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times with 0 � T0 � � � � � Tn � T . The integral
R T
0
HtUdt is de�ned to be

the sum
Pn
i=0Hi

�
UTi+1 � UTi

�
for any simple adapted process H .

Theorem 2.25 (Semimartingale properties of g�s). The process g of De�nition 2.22
has the following properties:-

1. The process t! gts is a semimartingale.

2. Let Xts �
R t
0
g�1�s g��s. Then t ! Xt� is a Brownian bridge sheet on K with

respect to the measure P . Furthermore, X can be taken to be continuous in
both its parameters.

Remark 2.26. After the proof of Theorem 2.25 we shall never again refer to �;�
or the underlying abstract probability space. Also we will always use the version
of X that is continuous in both parameters t and s.

Proof. of Theorem 2.25
First we check that t ! gts is an F�s-semimartingale. For convenience we use

the \good integrator" de�nition of a semimartingale (see De�nition 2.23). Pick
f 2 C1 (K). It will su�ce to check that f (g�s) is a semimartingale. Let fHg be
a sequence of F�s-adapted processes which converge to zero uniformly on compacts
in probability. Then we have

P

 �����
Z T

0

Htgdts

����� > "

!
= P

 �����
nX
i=0

Hi

�
gTi+1s � gTis

������ > "

!

= P

 (
! :

�����
nX
i=0

Hi (� (!))
�
�Ti+1s ��Tis

������ > "

)!

= P

 (
! :

�����
Z T

0

Ht ���s (!) �dts
����� > "

)!
:

This last term goes to zero since t ! �ts is an F�s-semimartingale. Thus g�s is a
semimartingale.

Now we want to show that X�s �
R �
0 g

�1
ts g�ts has the same law as ��s. Let Eij

denote the m�m matrix with k; l-entries �ik�jl. We can write

X�s =
X
i;j;k

Z �

0

�
g�1ts
�
ik
�t (gts)kj Eij

=
X
j;k

Z �

0

"X
i

�
g�1ts
�
ik
Eij

#
�t (gts)kj ;

and

��s =
X
i;j;k

Z �

0

�
��1ts

�
ik
�t (�ts)kj Eij

=
X
j;k

Z �

0

"X
i

�
��1ts

�
ik
Eij

#
�t (�ts)kj :

Thus we can write

X�s =
X
k

Z �

0

fk (gts) �thk (gts) ;
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and

��s =
X
k

Z �

0

fk (�ts) �thk (�ts) ;

where fk and hk are matrix-valued and R-valued functions on K respectively. In
particular, by the de�nition of the Fisk-Stratonowicz integral, XTs is the limit (in
probability with respect to measure P ) of the sequence

XP
Ts �

X
k;P

Z �

0

1

2

�
fk
�
gti�1s

�
+ fk (gtis)

� �
hk (gtis)� hk

�
gti�1s

��
;

and �Ts is the limit (in probability with respect to the measure P ) of the sequence

�PTs �
X
k;P

Z �

0

1

2

�
fk
�
�ti�1s

�
+ fk (�tis)

� �
hk (�tis)� hk

�
�ti�1s

��
:

Now

P (f! : j�Ts �XTs ��j > "g) = P
��
! :
���PTs �XTs ��

�� > "
	�

= P
��
! :
��XP

Ts ���XTs ��
�� > "

	�
= P

���XP
Ts �XTs

�� > "
�! 0:

Thus �ts = Xts � � almost surely !. By continuity of � and X in both their
parameters, we have � = X � �and therefore t ! Xt� is a Brownian bridge sheet
on K with respect to P .

We have only to assert that a biparametrically continuous version of X can be
chosen. By Theorem 8.2 it su�ces to check that

P [jXts �X�� j"K] � C
h
(t� � )

2
+ (s� �)

2
im+�

2

;

for some positive ", C, � and m = dimK. Let t > � .

Xts �X�� = (Xts �X�s) + (X�s �X��) :

As in the proof of Lemma 8.3, if a martingaleM has independent increments, then
its quadratic variation

R
dMtdMt is given by

R
dtEM

2
t . The process t! Xts�X�s

is a Brownian motion on K with parameter G0 (s; s) and so has quadratic variation
(t� � )G0 (s; s). The process � ! XA

�s�XA
�� is also a martingale with independent

increments and so has quadratic variationZ �

0

�
XA
dus �XA

du�

�2
= � [G0 (s; s) +G0 (�; �)� 2G0 (s; �)] :

Thus by Burkholder's inequality we see that

P jXts �X�sj" � Cm
X
A

P
��XA

ts �XA
�s

��"
� C";m

X
A

j(t� � )G0 (s; s)j"=2

� C";m j(t� � )j"=2 :
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where the constant C";m depends only on " and m. Again by Burkholder, we have
the estimate

E jX�s �X�� j" � Cm
X
A

P
��XA

�s �XA
��

��"
� C";m�

"=2 jG0 (s; s) +G0 (�; �)� 2G0 (s; �)j"=2

� C";m

h
js� �j"=2 + js� �j"

i
:

� C";m js� �j"=2 :
Thus

P [jXts �X�� j"K] � C";m

h
js� �j"=2 + j(t� �)j"=2

i
:

Picking " > m+ �, we are done.

We are now in a position to state the main results of this paper.

Theorem 2.27. Let K be a compact Lie group. Then Heat Kernel measure,
�1 (e; �), is absolutely continuous with respect to pinned Wiener measure, �0. Fur-
thermore, the Radon-Nikodym derivative d�1 (e; �) =d�0 is bounded.

Proof. This Theorem is proved as Theorem 5.1 in Section 5.

Theorem 2.28. Let s0 < 1 and let Gs0 � � h�t : t 2 [0; s0]i where �t : L (K)! K
is the evaluation map at time t. Then pinned Wiener measure, �0, is absolutely
continuous with respect to Heat Kernel measure, �1 (e; �), on the �-algebra Gs0 .

Proof. This Theorem is proved as Theorem 7.1 in Section 7

3. Warm-up Section:

3.1. Path group cases for a Lie group: Let the Wiener space on K, the space
of all continuous paths in K starting at the identity, be given by

We (K) � f� 2 C ([0; 1]! K) j� (0) = eg :
The goal of this section is to assert that Heat Kernel measure onWe (K) and Wiener
measure on We (K) are the same.

De�nition 3.1 (Riemannian Structure on We (K)). De�ne H � H (K) to be the
Sobolev space of functions with one L2-derivative as in De�nition 2.1. We will think
of H as the Lie algebra of We (K). In order to de�ne the tangent space TWe (K)
of We (K) let � denote the Maurer-Cartan form. That is � h�i � (`k�1)� � for all
� 2 TkK, and k 2 K and where `g denotes left multiplication by g 2 K. Let
� hXi (s) � � hX (s)i and p : TK ! K be the canonical projection. We now de�ne

TWe (K) � fX : [0; 1]! TKj� hXi 2 H and p �X 2 We (K)g :
By abuse of notation, use the same p to denote the canonical projection from
TWe (K) ! We (K). As usual, de�ne the tangent space at k 2 We (K) by
TkWe (K) � p�1 fkg. Using left translations, we extend the inner product (�; �)H
on H to a Riemannian metric on TWe (K)). Explicitly set

(X;X)We(K)
� (� hXi ; � hXi)H where X 2 TWe (K) :
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In this way, We (K) is to be thought of as an in�nite-dimensional Riemannian
manifold. Viewing the Lie algebra (K; 0) as a commutative Lie group in its own
right with Lie algebra K, we obtain de�nitions for

W0 (K) � f� 2 C ([0; 1]! K) j� (0) = 0g
as the \Lie group" with Lie algebra H (K) thought of as a commutative Lie algebra.

De�nition 3.2 (Good Orthonormal basis of H). f�kgk2N, is a good orthonormal
basis of H if f�kgk2N, is an orthonormal basis of H so that the Lie Bracket
[�k (s) ; �

0
k (s)] is identically zero for all values of s and k.

Example 3.3 (Good bases exist). Take fhkg to be an orthonormal basis of H (R)
and let fAg run through an orthonormal basis of K. Then �A;k � hkA is a good
orthonormal basis of H .

De�nition 3.4 (The Laplacian 4We(K)). Take a good orthonormal basis S of
H (K). De�ne an operator 4 on functions on We (K) by taking

4f �
X
h2S

@2hf;

where

(@hf) (
) � @"f (
 exp "h) j"=0:
De�ne a Laplacian, denoted by 4W0(K), on functions on W0 (K) in the same way
as above by taking

4W0(K)f �
X
h2S

@2hf;

where

(@hf) (
) � @"f (
 + "h) j"=0:
It is well known that the operators 4 and 4W0(K) de�ned above are independent
of the choice of good orthonormal basis (see [13]).

De�nition 3.5 (Brownian Sheet on K). A Gaussian process f� (t)gt2[0;1] is a K-
valued Brownian sheet if for (t; s) in [0; 1]

2
, � (t; s) is a K-valued mean-zero Gaussian

process with covariance given by

E hA; � (t; s)i
K
hB; � (� ; �)i

K
= hA;Bi

K
(t ^ � )G (s; �) ;

where � (t; s) � � (t) (s) 2 K; A;B 2 K; t; � ; s; � 2 [0; 1]; and G (s; �) � min (s; �).

De�nition 3.6 (Brownian motion on We (K)). The process t! � (t; �) is aWe (K)-
valued Brownian motion if and only if for any smooth cylinder function f :We (K)!
R, there is a real-valued martingale Mt so that

f (� (dt; �)) = dMt +
1

2

�4We(K)f
�
(� (t; �)) dt:(3.1)

We can de�ne a Brownian motion on W0 (K) by thinking of K as a commutative
Lie group, and using 4W0(K) instead of 4We(K) in Eq. [3.1].
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Lemma 3.7 ( E�ect of the Laplacian 4We(K) on cylinder functions, see [13]). Let
G be as in De�nition3.5. Let P be the partition f0 < s1 < � � � < sn < 1g. De�ne
�P : � ! (�s1 ; � � � ; �sn) 2 Kn. For F 2 C1 (Kn), de�ne

�
A(i)F

�
(g1; � � � ; gn) � d

dt
jt=0F (� � � ; gi exp tA; � � � ) :

De�ne an elliptic operator LP on C1 (Kn) by setting

LP�
X
i;j;A

G (si; sj)A
(i)A(j):

Then letting A run through an orthonormal basis of K, for any smooth cylinder
function F : Kn ! R we have

4We(K) (F � �P) = (LPF ) � �P:

This Lemma can also be used on the Lie algebra K by viewing K itself as a commu-
tative Lie group.

Proof. Use the same proof as that of Lemma 2.15 by replacing H0 (K) ; H0 (R) ;
G0 (s; �) by H (K) ; H (R) ; G (s; �).

Lemma 3.8 (Brownian Motion on W0 (K) exists). Every Brownian Sheet on K is
a W0 (K)-valued Brownian motion. More precisely, if �t � � (t; �) is a Brownian
Sheet then for any smooth cylindrical function f , there is a real-valued martingale
Mt so that

df (�t) = dMt +
1

2

�4W0(K)f
�
(�t) dt:

Here4W0(K) is the Laplace-Beltrami operator de�ned in De�nition 3.4, where (K; 0)
is viewed as a Lie group.

Proof. Use the proof of Lemma 2.16 with �;G in place of �;G0.

Lemma 3.9 (Semimartingale properties of ht�). Let b be a K-valued Brownian Sheet
(see De�nition 3.5)Let hts be the solution to

h�ts = htsb�ts with h0s = e:(3.2)

Then the process s 7! hts is a K-valued Brownian motion with parameter t. Fur-
thermore one can choose a version of h which is jointly continuous in both parame-
ters s and t: In future, h will be taken to be this jointly continuous solution. Note:-
Eq. [3.2] is to be interpreted like Eq. [2.4].
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Proof. Let si = i=n. Then f0 = s0 < s1 < � � � < sn = 1g is a partition of [0; T ]. For
convenience, let 4ib (t) � btsi � btsi�1 . We compute

�t

�
htsih

�1
tsi�1

�
= htsib�tsih

�1
tsi�1

� htsib�tsi�1h
�1
tsi�1

= htsi4ib (�t)h
�1
tsi�1

=
�
htsih

�1
tsi�1

�
Adhtsi�1

4ib (�t)

=
�
htsih

�1
tsi�1

�
Adhtsi�1

4ib (dt) +
1

2
dt

�
htsih

�1
tsi�1

�
Adhtsi�1

4ib (dt)

+
1

2
Adhtsi�1

�
bdtsi�1 ;4ib (dt)

�
=
�
htsih

�1
tsi�1

�
Adhtsi�1

4ib (dt) +
1

2
dt

�
htsih

�1
tsi�1

�
Adhtsi�1

4ib (dt)

=
�
htsih

�1
tsi�1

�
�t

Z t

0

Adh�si�1
4ib (d� ) ;

where we have used that fact that btsi�1 2 F1si�1 and that 4ib (�) is independent
of F1si�1 . Thus

�t

�
htsih

�1
tsi�1

�
=
�
htsih

�1
tsi�1

�
�t

Z t

0

Adh�si�1
4ib (d� ) with h0sih

�1
0si�1

= e:

It su�ces to show that
nR �

0
Adhtsi�1

4ib (dt)
o
i2f1;��� ;ng

is a Kn-valued Brownian

motion with parameter 1=n, since this will imply that t!
n
htsih

�1
tsi�1

o
i2f1;��� ;ng

is

a Kn-valued Brownian motion with the same parameter. But this is true by Levy's
criterion and the following computation of quadratic variations.

Let Jt denote the joint quadratic variationZ t

0

Adh�si�1
4ib (d� )Adh�sj�1

4jb (d� ) :

Then

dJt = Adhtsi�1
4ib (dt)Adhtsj�1

4jb (dt)

=
X
A;B

�
Adhtsi�1

A
Adhtsj�1
B
�
4ib

A (dt)4jb
B (dt)

= �ij4isdt
X
A

�
Adhtsi�1

A
�
2

=
�ij
n

X
A

�
Adhtsi�1

A
�
2

dt

=
�ij
n

X
A

A
2dt:

Thus, in particular, Law
�
hTs1h

�1
Ts0

; � � � ; hTsnh�1Tsn�1

�
is Heat Kernel Measure on

Kn at time T=n. But this implies that s ! hT � is a K-valued Brownian motion
with parameter T .
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We have only to show that hts satis�es the hypothesis of Theorem 8.2. That is
we must show that

P [d (hts; h��)
p
] � C

h
(t� � )

2
+ (s� �)

2
im+�

2

:

The proof is essentially the same as that done in Theorem 3.8 of Driver [11] with
the modi�cation that G (s:�) is used in place of G0 (s; �). in particular, see Eq.
[3.12] of [11].

Theorem 3.10 (Brownian motion exists on We (K)). Let h be the jointly contin-
uous solution of Eq. [3.2]. Let ht denote the element s! hts in We (K). Let k be
an element of We (K). Then t! kht is a We (K)-valued Brownian motion starting
from the path k.

Proof. Let

f (�) � F (�s1 ; � � � ; �sn) ;
be a smooth cylindrical function where P is the partition f0 < s1 < � � � < sn < 1g.
Let A(i), �P and LP �

P
G (si; sj)A

(i)A(j) be as in Lemma 3.7. Let hP(t) �
(�P � ht) and let kP= �P�k. Let `kPdenote left translation by the element kP 2 Kn

and let `k be left translation by the path k 2We (K). Simplifying, we get

df (kht) = d (f � `k) (ht) = d (F � �P � `k) (ht) = d (F � `kP)
�
hP(t)

�
:

By Eq. [3.2] the Kn-valued process hP satis�es

hP(�t) = hP(t) bP(�t) with hP(0) = e;

where e denotes the identity element in Kn. Then by Ito's Lemma, we have

df (kht) =
X
A;i

�
A(i)F � `kP

� �
hP(t)

�
bA (�t; si)

=
X
A;i

�
A(i)F

�
� `kP

�
hP(t)

�
bA (dt; si)

+
1

2

X
A;i

dt

h�
A(i)F

�
� `kP

�
hP(t)

�i
bA (dt; si) :(3.3)

The quadratic variation

dt[
�
A(i)F

�
� `kP

�
hP(t)

�
]bA (dt; si)

=
X
B;j

�
B(j)A(i)F

�
� `kP

�
hP(t)

�
bB (dt; sj) b

A (dt; si)

=
X
j

�
A(j)A(i)F

�
� `kP

�
hP(t)

�
G (si; sj) dt:

Here we have used the fact (see Lemma 8.3) that the quadratic variation

bB (dt; sj) b
A (dt; si) = hA;Bi

K
G (si; sj) dt:

Returning to Eq. [3.3] yields

df (kht) = dmartingale+
1

2

X
A;i;j

G (si; sj)
�
A(i)A(j)F

��
kPhP(t)

�
dt:
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Invoking Lemma 3.7 yields

df (kht) = dmartingale+
1

2

�4We(K)f
�
(kht) dt

for any smooth cylinder function f . Thus t ! h (t; �) is a Brownian motion on
L (K).

De�nition 3.11 (Heat Kernel measure on We (K)). Let k be an element ofWe (K).
Let t ! ht be a We (K)-valued Brownian motion so that h0 = k a.s. Then, as in

the �nite-dimensional manifold case, Heat Kernel measure �
We(K)
T (k; d
) is de�ned

to be the law of h (T; �).
Remark 3.12 (Heat Kernel measures solve the Heat Equation). Let P be the par-
tition f0 < s1 < � � � < sn < 1g. Let A(i), �P and LP be as in Lemma 3.7. Let
f � F � �P be a smooth cylinder function for some F 2 C1 (Kn). Let

u (t; k) �
Z
f (
) �

We(K)
t (k; d
)

Let h be a We (K)-valued Brownian motion starting from k 2 We (K). Then

�
We(K)
t (k; d
) is the law of h. Let G�1 be the n � n matrix that is inverse
to (G (si; sj)). Endow Kn with the metric



A(i); B(j)

�
= hA;Bi

K
G�1kj so that

the Laplacian on Kn (viewed as a Riemannian manifold) is the operator LP =P
i;j;AG (si; sj)A

(i)A(j). Now t! hP(t) � �P � ht satis�es the martingale charac-
terization of a Brownian motion on Kn with this metric since by Lemma 3.7

F � hP(dt) = F � �P � hdt = dmartingale+
1

2
(LPF ) � hP(t) dt:

Thus

u (t; k) = Ef � ht = EF � hP(t) =
�
exp

�
t

2
LP

�
F

�
� �P(k) :(3.4)

By Lemma 3.7

(LnPF ) � �P= 4We(K)

�
Ln�1P F � �P

�
= 4n

We(K)
(F � �P) :

So in particular,�
exp

�
t

2
LP

�
F

�
� �P =

X
N

tn

2n
(LnPF ) � �P

=
X
N

tn

2n
4n
We(K)

(F � �P)

= exp

�
t

2
4We(K)

�
(F � �P) :

Returning to Eq. [3.4] yields

u (t; k) =

�
exp

�
t

2
4We(K)

�
f

�
(k) :

Corollary 3.13. Heat Kernel measure �
We(K)
T (e; d
) and Wiener measure with

parameter t are the same measure.

Proof. By De�nition 3.11, Heat Kernel measure is the law of ht�. By Lemma 3.9
s ! hts is a Brownian motion on K with parameter t. Thus heat kernel measure
and Wiener measure are the same.
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3.2. Semimartingale Properties of Xts: Let Xts be as in Theorem 2.25. Then
X is a Brownian bridge sheet on K. Brownian Sheets are easier to work with
than Brownian bridge Sheets (they are martingales in both their parameters for
instance). The goal of this section is to write Xt� as a linear functional of bt� ,a
Brownian sheet. To motivate this decomposition we �rst introduce Proposition

3.14. The Brownian bridge eX� is supposed to play the role of Xt� but with one
fewer parameter.

Proposition 3.14. Let eX be the canonical process on C ([0; 1]! R). That is eXs

sends a path 
 to its evaluation 
 (s) at time s. Let the

PRt (x) �
1p
2�t

exp

�
�x

2

2t

�
be Heat Kernels on R. De�ne a new process eb by setting

ebs � eXs �
Z s

0

r lnPR1��( eX�)d� = eXs +

Z s

0

eX�

1� �
d�:

Then eb is a standard R-valued Brownian motion.

Notation 3.15. Let �R be Wiener Measure on C ([0; 1]! R). Let �R0 = Law eX
be pinned Wiener measure on R (�R0 is the measure �0 in De�nition 2.9 if K is

taken to be R). Let Ft be the �-algebra generated by the eXt with t 2 [0; s]. Let
Zs � d

�
�R0 # Fs

�
=d (�R # Fs).

Proof. Now Zs = PR1�s
� eXs

�
=PR1 (0). By de�nition, eX� is a Brownian motion with

respect to the measure �R. Hence by The Meyer-Girsanov Theorem , which we
state as Theorem 3.16 below for convenience,

N� � eX� � Z �

0

d eXsdZs
Zs

is a local martingale. This expression has the same quadratic variation as eX� (since
the measures �R and �R0 are equivalent on Fs when s < 1). Thus this expression
N� is a Brownian motion by Levy's criterion. Computing directly, we see that

d eXsdZs = d eXsds exp
h
logPR1�s

� eXs

�
� logPR1 (0)

i
= exp

h
logPR1�s

� eXs

�
� logPR1 (0)

i �r logPR1�s
�� eXs

�
d eXsd eXs

= Zs
�r logPR1�s

� � eXs

�
ds

Thus N� = eX� � R �0 �r logPR1�s
� � eXs

�
ds = eb� and we are done.

Theorem 3.16 (Meyer-Girsanov, see [30]). Let P and Q be equivalent measures

and let Zs � E [dQ=dP jFs]. Let eX be a semimartingale under P with decomposition

M +A (where M is a local martingale and A has �nite variation). Then eX is also
a semimartingale under Q with decomposition N + C where

N� = eX� � Z �

0

d eXsdZs
Zs

is a Q-local martingale and C � eX �N is a �nite variation process.
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De�nition 3.17. De�ne the following linear maps:-

1. De�ne continuous K-valued linear maps on paths,

Tt; St : C ([0; 1]! K)! K,

by setting

Tt(!) � !(t)�
Z t

0

!(� )
(1� t)

(1� �)2
d� if t 2 [0; 1) .

St(!) � !(t) +

Z t

0

!(� )

(1� �)
d� if t 2 [0; 1) .

2. Let U1 and U2 be the subsets of C ([0; 1]! K) on which the limits limt!1 Tt(!)
and limt!1 St(!) exist respectively. Then de�ne maps T1 and S1 from C ([0; 1]! K)
to K by setting

T1 � 1U1 (!) lim
t!1

Tt(!):

S1 � 1U2 (!) lim
t!1

St(!):

Remark 3.18. Notice that in Proposition 3.14 we wrote the underlying Brownian

motion eb� as S � eX�� (�). Similarly we shall prove the process bt� � S (Xt�) is a

Brownian Sheet and that Xt� can be written as T (bt�).

Theorem 3.19 (Decomposition of the Brownian bridge sheet). Let X be the Brow-
nian bridge sheet from Theorem 2.25. De�ne b by setting

bts � Ss(Xt�) = Xts +

Z s

0

Xt�d�

1� �
for any t; s 2 [0; 1] :

Then b is a Brownian sheet on K and Xts can be recovered from b as:

Xts = Ts(bt�) = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�:(3.5)

We shall defer the proof of Theorem 3.19 until after the Lemma 3.21 below.

Remark 3.20. For another explicit computational proof of this Theorem, see The-
orem 8.5 in the Appendix 8.

Lemma 3.21 (Properties of the transformations S and T ). De�ne a map T from
H (K) to H0 (K) by setting T (!) (t) = Tt (!). De�ne a map S from H0 (K) to H (K)
by setting S (!) (t) = St (!). Then:-

1. S is well-de�ned and is a unitary isomorphism from H0 (K) to H (K).
2. T is well-de�ned and is the inverse of S:

Proof. Let ! 2 H (K). By an integration-by-parts we can express T more concisely
as

T (!)(t) = !(t)�
Z t

0

!(� )
(1� t)

(1� �)2
d�

= !(t)� (1� t)

Z �=t

�=0

!(� )d
1

1� �

=

Z t

0

(1� t)

1� �
!0(� )d� :
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Thus we have the inequality

jT (!)(t)j � (1� t)

Z t

0

1

1� �
j!0(� )j d�

� j!jH(K) (1� t)

sZ t

0

d�

(1� � )
2

= j!jH(K)
p
t (1� t)

! 0 as t! 1:

Thus Tt is continuous on H (K), and ImT � L (K).
Let U0 denote the subspace of functions of the form � =

R �
0 x (t) dt where x is

in the continuous maps from [0; 1] to K so that its average,
R 1
0 x (t) dt, is 0. By

the Stone-Weierstrass Theorem, C ([0; 1]! K) is dense in L2 ([0; 1]! K; d�) and
in particular continuous functions with zero average are dense in the space of L2

functions with zero average. Thus by the isometry provided by the map x! R
xdt

from L2 ([0; 1]! K; d�) to H (K) we see that U0 is dense in H0 (K) in the H0 (K)
norm topology.

We claim S is a norm-preserving map from U0 to H (K). Let � =
R �
0 x (t) dt in

U0. Computing, we see that

jS(�)j2H(K) =

Z 1

0

�����0(t) + �(t)

(1� t)

����2
K

dt

= j�j2H0(K)
+ 2

Z 1

0

�
�0(t);

�(t)

(1� t)

�
K

dt+

Z 1

0

j�(t)j2
K

dt

(1� t)2

= j�j2H0(K)
+ 2

Z 1

0

�
�0(t);

�(t)

(1� t)

�
K

dt+

Z t=1

t=0

j�(t)j2
K
d

�
1

1� t

�
= j�j2H0(K)

+ lim
t!1

j�(t)j2
K

1� t

= j�j2H0(K)
� 2 h�(1); x (1)i

K

= j�j2H0(K)
since � (1) = 0.

By the Bounded Limit Theorem, we can extend S to a map S on all of H0 (K) by
de�ning

S (!) � lim
n!1

S (!n) for any !n 2 U0, !n ! ! in H0 (K) .

Although S and S agree on U0 they could be di�erent maps on H0 (K). We will
check that this is not the case. Notice that the evaluation map sending ! in H (K)
to ! (t) in K is a bounded linear map. Also if s < 1, the map SsjH(K) is a continuous
map from H (K) to K in the H (K)-norm. Therefore, if !n in U0 converges to ! in
the H (K)-norm, we have for all s < 1,

S (!) (s) = lim
n!1

S (!n) (s) = lim
n!1

Ss (!n) = S (!) (s) .

Thus S = S which is a norm-preserving map from H0 (K) into H (K).
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Let x in H0 (K). Let y = S (x) in H (K) and z = T (y) in L (K) so that z =
T � S (x). As before, x (0) = z (0) = 0. Letting t < 1 and computing, we have

z0 (t) = y0 (t)�
Z t

0

y0 (� ) d�
1� �

= x0 (t) +
x (t)

1� t
�
Z t

0

x0 (� ) d�
1� �

�
Z t

0

x (�) d�

(1� � )
2

= x0 (t) +
x (t)

1� t
�
Z t

0

dx (� )

1� �
�
Z t

0

x (� ) d�

(1� �)
2

= x0 (t) :

So T � S is the identity on H0 (K) and so T is a surjective norm-preserving from
ImS to H0 (K).

Let x in H (K), y = T (x) in L (K) and z = St (y) so that zt = St � T (x). Since
x (0) = z0 = 0 and

d

dt
zt = y0 (t) +

y (t)

1� t

= x0 (t)�
Z t

0

x0 (� ) d�
1� �

+
y (t)

1� t

= x0 (t)� T (x) (t)

1� t
+
y (t)

1� t

= x0 (t) :

So St � T (x) = x (t) for any x in H (K).
Now we show that T maps a dense subspace U of H (K) into H0 (K). If x 2 U,

then

S � T (x) (t) = St � T (x) = x (t) :

In particular, x belongs to ImS. Thus ImS contains a dense set U and so is all of
H (K). So S will be a unitary isomorphism between H0 (K) and H (K), T will be
its inverse, and we shall be done.

Let U denote the subspace of functions of the form � =
R �
0 x (t) dt where x is

in C ([0; 1]! K). By the Stone-Weierstrass Theorem, C ([0; 1]! K) is dense in
L2 ([0; 1]! K; d�). Thus by the isometry provided by the map x ! R

xdt from
L2 ([0; 1]! K; d�) to H (K) we see that U is dense in H (K) in the H (K) norm
topology. Then

T (�)
0
(t) = �0 (t)�

Z t

0

�0(� )
1� �

d� = x (t)�
Z t

0

x(� )

1� �
d�:
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0

��T (�)
0
(t)
��2 dt

=

Z 1

0

����x (t)� Z t

0

x (�)

1� �
d�

����2
K

dt

< 2 sup
[0;1]

jx (t)j
Z 1

0

1 +

����Z t

0

1

1� �
d�

����2 dt
= 2 kxk1

Z 1

0

1 + jlog (1� t)j2 dt

= 2 kxk1
Z 1

0

1 + jlog tj2 dt:

Letting t = �u2=2 we have

jT (�)j2H0(K)
� 2 sup

[0;1]

j�0 (t)j
Z 1

0

u

�
1 +

u4

4

�
exp

��u2=2� du <1:

Proof. of Theorem 3.19:
First we show that

E hbts; AiK hb�� ; BiK = (t ^ � )G (s; �) hB;Ai
K

Recall bAts � hbts; AiK and XA
ts � hXts; AiK. Let

ls (x) �
Z 1

0

�s (du)x (u)

where

� (du) =

�
�s (u) + 1[0;s]

1

1� u

�
du

is a positive measure on [0; 1]. Then

ls (x) = x (s) +

Z 1

0

x (u)
du

1� u
= Ss (x) :

De�ne bts � Ss (Xt�) as in De�nition 3.17. So

EbAtsb
B
�� = E

Z
�s (du)�� (d�)X

A
tuX

B
�� :(3.6)

By Tonelli's Theorem and H�older's inequality, we have

E

Z
�s (du)�� (d�)

��XA
tuX

B
��

�� �
Z
�s (du)�� (d�)

q
E
�
XA
tu

�2
E (XB

��)
2

=

Z
�s (du)�� (d�)

p
t�G0 (u; u)G0 (�; �) <1:

Thus applying Fubini to Eq. [3.6] we see that

EbAtsb
B
�� =

Z
�s (du)�� (d�)EX

A
tuX

B
��

= (t ^ � ) hA;Bi
K

Z
�s (du)

Z
�� (d�)G0 (u; �) :(3.7)
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Let h run through an orthonormal basis of H0 (K). Then

G0 (u; �) = hG0 (u; �) ; G0 (�; �)iH0(K)

=
X

hG0 (u; �) ; hiH0
hG0 (u; �) ; hiH0(K)

=
X

h (u)h (�) :

Returning to Eq. [3.7] we get

E hbts; AiK hb��; BiK = (t ^ � ) hA;Bi
K

XZ
h (u)�s (du)

Z
h (�)�� (d�)

= (t ^ � ) hA;Bi
K

X
Ss (h)S� (h) :(3.8)

Let U � �xj[0;1] : x 2 C1 (R)
	
. The map S : H0 (K) ! H (K) is a unitary isomor-

phism by the previous Lemma 3.21 and so the S (h) run through an orthonormal
basis of H (K). Exploiting this fact,

E hbts; AiK hb�� ; BiK
= (t ^ � ) hA;Bi

K

X
S (h) (s)S (h) (�)

= (t ^ � ) hA;Bi
K

X
hG (s; �) ; S (h)iH(K) hG (�; �) ; S (h)iH(K)

= (t ^ � ) hA;BiK hG (s; �) ; G (�; �)iH(K)
= (t ^ � ) hA;Bi

K
G (s; �) :

Thus b is a K-valued Brownian sheet.
It remains to show that T (bt�) (s) = Xts. De�ne H

" (K) which is to be thought of
as \H (K) j[0;1�"]" as follows:- Given a function h : [0; 1� "]! K such that h (0) = 0,
de�ne (h; h)H"(K) = 1 if h is not absolutely continuous and set (h; h)H"(K) =R 1�"
0 jh0 (s)j2 ds otherwise. De�ne

H" (K) �
n
h : [0; 1� "]! Kjh (0) = 0 and (h; h)H"(K) <1

o
:

H" is dense in W "
0 ; where

W "
0 (K) � f� 2 C ([0; 1� "]! K) j� (0) = 0g

is equipped with the sup-norm topology. De�ne bounded linear transformations T "

and S" on W "
0 (K) by requiring

T "(x)(t) � x(t)�
Z t

0

x(� )
(1� t)

(1� � )2
d� ;

S"(x)(t) � x(t) +

Z t

0

x(� )

(1� � )
d� :

Now for any h 2 H (K) or H0 (K), hj[0;1�"] 2 H" (K). Also h 2 H (K) im-

plies that (T (h)) j[0;1�"] = T "
�
hj[0;1�"]

�
. Furthermore h 2 H0 (K) implies that

(S (h)) j[0;1�"] = S"
�
hj[0;1�"]

�
. For any x 2 H" there is some h 2 H0 (K) so that

hj[0;1�"] = x. Using this fact and the fact that T = S�1 from Lemma 3.21, we see
that for any x 2 H" (K)

T " � S" (x) = T " � �S (h) j[0;1�"]� = hj[0;1�"] = x:
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By continuity, we have T " �S" (x) = x for any x 2 W "
0 . Thus for any s < 1� ", we

have

T (bt�) (s) = T "
�
bt�j[0;1�"]

�
(s) = T " � S" �Xt�j[0;1�"]

�
(s) = Xts:

Thus

Xts = T (bt�) (s) = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�;

which is exactly Eq. [3.5].

3.3. Abelian Loop group Examples.

3.3.1. The Simply-Connected Lie group
�
Rd ;+

�
:

Lemma 3.22. On the Loop space of Rd , Heat Kernel measure and pinned Wiener
measure are the same.

Proof. Our Lie group here isK =
�
Rd ;+

�
with Lie algebra K = Rd . Our probability

space is (C ([0; 1]! K) ; Law �) as in De�nition 2.22. Eq. (2.6) becomes

� (�t; s) = � (�t; s) with � (0; s) = 0;8s 2 [0; 1] :

In other words, � = �. This implies that Heat Kernel measure on L
�
Rd
�
equals

Law � (t; �). But � (t; �) is a standard Brownian bridge from 0 to 0. Pinned Wiener
measure is the law of this Brownian bridge. Hence in Rd , Heat Kernel Measure and
Pinned Wiener Measure are the same measure.

3.3.2. The Lie group S1 with fundamental group Z: Realize the Lie group S1 as
f(cos 2��; sin 2��) : � 2 [0; 1]g, its imbedding in R2 . Specify the left-invariant metric
by setting j@�j = 1. Let Heat Kernel measure �S

1

T (x; �) be the family of measures in
De�nition 2.20. Let pinned Wiener measure �S

1

0;T be the measure on the loop space

L
�
S1
�
as in De�nition 2.9. Let Wiener measure �S

1

T on We

�
S1
�
be as in De�nition

2.7. Let

W0 (R) � fC ([0; 1]! R) : � (0) = 0g
be the Wiener space on R. Let �t : L

�
S1
� ! R be as usual the evaluation map.

By abuse of notation, let �t :We

�
S1
�! R be also be the evaluation map.

We show, in the K = S1 case, that Heat Kernel Measure is equivalent to Pinned
Wiener Measure restricted to the null-homotopic loops. Thus Heat Kernel Measure
is absolutely continuous with Pinned Wiener Measure. However, as mentioned
in the Introduction, the two measures are not equivalent since S1 is not simply
connected.

We shall need to explicitly compute the Heat Kernel Measure on S1 and this is
provided for the reader's convenience in the following Lemma:

Lemma 3.23 (Heat Kernel measure on S1). Let  be the local chart from R to S1

taking x 7! (cos 2�x; sin 2�x).Then Heat Kernel Measure on S1 has the following
representation:

PS
1

t ( (x)) =
X
�2Z

PRt (x+ �) :(3.9)



26 VIKRAM K. SRIMURTHY

Proof. Since the right hand side of Eq. [3.9] is periodic there exist a unique map
P (t; �) from [0;1)� S1 ! R so that P (t;  (x)) =

P
�2ZP

R
t (x+ �).

@xP (t;  (x)) = [@�P (t; �)] ( (x)) :
Thus �

@t � 1

2
@2�

�
P (t; �) j�= (x) =

�
@t � 1

2
@2x

�
P (t;  (x))

=
X
�2Z

�
@t � 1

2
@2x

�
PRt (x+ �) = 0:

For any F 2 C1 �S1�, de�ne a map u (t; �) from [0;1)� S1 ! R by

u (t; �) =

Z
S1
F (�)P

�
t; ��1�0

�
�ol
�
d�0
�
:

Take the support of F to be less than the entire circle. The appropriate local chart
here is  restricted to some open interval (a; b) with jb� aj < 1. Let � =  (y) for
some y 2 (a; b). Use this local chart and the fact that j@xjS1 = 1, to get

u (t;  (y)) =

Z
(a;b)

F ( (x))P (t;  (x� y)) dx

=
X
�2Z

Z
(a;b)

F ( (x))PRt (x� y + �) dx

=

Z
(a;b)+�

F ( (x))PRt (x� y) dx

=

Z
R

F ( (x))PRt (x� y) dx:

So u (t;  (y))! F ( (y)) as t! 0: Thus in this above sense, P
�
t; ��1�0

�! �� as

t! 0. Therefore P (t; �) must be the Heat Kernel on S1.

Remark 3.24. Recall from De�nition 2.22 the following:-

1. 
 � C
�
[0; 1]! L

�
S1
��
:

2. Let � be the process from Theorem 2.17 so that �0 = e, where e denotes the
identity loop.

3. P is de�ned to be Wiener Measure on C
�
[0; 1]! L

�
S1
��
. Explicitly, P �

Law �:
4. gts (x) � x (t) (s), where x 2 
, x (t) 2 L (K), and x (t) (s) 2 K.
5. By Theorem 2.19 we see that Law gt� = �t (e; �), the Heat Kernel measure on
L
�
S1
�
introduced in De�nition 2.20.

6. Fts � � hg�� : � 2 [0; t] and � 2 [0; s]i :
7. F � _(t;s)2[0;1]2Fts:

De�nition 3.25 (S1-speci�c de�nitions). We will need the following:-

1. L0
�
S1
� � �

� 2 L �S1� : � is homotopic to e
	
; the null-homotopic loops in

S1 based at e.
2. Abusing notation. let  also denote the map from W0 (R) to W1

�
S1
�
taking

the R-valued path � to the S1-valued path (cos 2��; sin 2��).

3.  has a unique inverse  �1 :W1

�
S1
�!W0 (R) which is the unique lift of �

starting from 0 in R.
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Let �RT be Wiener measure on W0 (R) with parameter T . Explicitly, use De�ni-
tion 2.7 with K = R and Pt

�
x�1y

�
replaced by the Heat Kernel

PRt (y � x) =
1p
2�t

exp
(y � x)

2

2t
:

De�nition 3.26 (Wiener Measure conditioned on the integers). Let �RZ;T be the

unique measure on W (R) such that on simple functions f of the form

f (x�) = F (xt1 ; � � � ; xtn) ;
where F 2 C1b (Rn ) and f0 = t0 < t1 < � � � < tn < 1g, we have;

�RZ;T [f ]

� 1

PS
1

T (e)

Z
Rn
F (x1; � � � ; xn)

X
�2Z

PRT (1�sn) (xn + �)

nY
i=1

PRT4is (4ix) dxi

=
1

PS
1

T (e)

Z
Rn
F (x1; � � � ; xn)PS

1

T (1�tn) ( (xn))
nY
i=1

PRT4it (4ix) dxi

=
1

PS
1

T (e)

Z
�RT (dx) f (x)P

S1

T (1�tn) ( (xtn)) :(3.10)

We have yet to show the existence of such a measure. See remark 3.27 to see
why �RZ;T deserves to be called \Wiener Measure conditioned on the integers with
parameter T".

Remark 3.27 (Motivation for De�nition 3.26). Our goal is to make explicit the heuris-
tic de�nition

�RZ;T [f ] = �RT [f (x) jx (1) 2 Z] :
Take the function

P
�2ZP

R
" (�1 + �) which concentrates on paths which are near

Z at time t = 1.We would like

�RZ;T [f ] = lim
"#0

�RT

"
f
X
�2Z

PR" (�1 + �)

#
=�RT

"X
�2Z

PR" (�1 + �)

#
to hold. Let F 2 C1b (Rn ) and

f (x) = F (xt1 ; � � � ; xtn) where f0 = t0 < � � � < tn+1 = 1g :
Then letting 4it = ti � ti�1 and 4ix = xi � xi�1, and using the fact that PR" (�)
goes to the delta function at 0 as "! 0; we should have

�RT;Z[f ]

= lim
"#0

R
Rn+1 F (x1; � � � ; xn)

P
�2ZP

R
" (xn+1 + �)

Qn+1
i=1 P

R
T4it

(4ix) dxiR
R

P
�2ZPR" (x+ �)PRT (x) dx

=

R
Rn
F (x1; � � � ; xn)

P
�2ZP

R
T (1�tn) (xn + �)

Qn
i=1 P

R
T4it

(4ix) dxiP
�2ZP

R
T (�)

;

where we have replaced xn+1 + � by xn+1 using the change-of-variables formula.
Thus for simple functions, we should have

�RT;Z[f ] =
1P

�2ZP
R
T (�)

Z
f (x)

X
�2Z

PRT (1�tn) (xtn + �)�RT (dx) :
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Now use Lemma 3.23 to see that
P
�2ZP

R
T (�) = PS

1

T (e) :

Theorem 3.28 (Heat Kernel and pinned Wiener measures on S1). Let  be as in
De�nition 3.25. Let �n (s) �  (ns), the minimum energy loop in the nth homotopy

class of S1. Let �S
1

T (�n; �) be as usual the Law of �n (�) gT �. De�ne a probability
measure e�T �X

�2Z
C�;T �

S1

T (��; �) ;

where

C�;T � PRT (0) exp

�
� 1

2T
�2
�
PS

1

T (e)
�1

= PRT (�)PS
1

T (e)
�1
:

Then Pinned Wiener Measure �S
1

0;T = e�T . Exploiting the fact that the measures

�S
1

T (��; �) live only on the �th homotopy classes, we see that Heat Kernel Measure

�S
1

T (e; �) is equivalent to Pinned Wiener Measure restricted to the null-homotopic
loops L0. Furthermore, the Radon-Nikodym derivative

d�S
1

0;T #L0

d�S
1

T (e; �) = C0;T

is a constant.

The proof of this Theorem will be deferred until we have some preliminary results.

Lemma 3.29 (The measure �RT;Zexists). Wiener Measure conditioned on the inte-

gers, �RZ;T, exists. Furthermore Pinned Wiener Measure on S1 pulls back to Wiener

Measure conditioned on the integers. Explicitly,  �1� �S
1

0;T = �RZ;T :

Proof.  from De�nition 3.25 is a continuous bijection between the Wiener spaces

W (R) andW
�
S1
�
. Let us compute  �1� �S

1

0;T for simple functions. By Ito's Lemma

it is easily seen that  takes R-valued Brownian motions with parameter T to S1-
valued Brownian motions with the same parameter. So let t ! bt be an R-valued
Brownian motion with parameter t. Then t !  (bt) is an S1-valued Brownian
motion. Thus Z

f (y)�S
1

T (dy) =

Z
f �  (y)�RT (dy) :

Let F 2 C1 �S1 � � � � � S1
�
and let

f (y) = F (ys1 ; � � � ; ysn) where f0 = s0 < � � � < sn < 1g ;
for any path y 2We

�
S1
�
. Then

 �1� �S
1

0;T [f ] = �S
1

0;T

�
f �  �1�

=

Z
f �  �1 (y)

PS
1

t(1�sn) (ysn)

PS
1

t (e)
�S

1

T (dy)

=
1

PS
1

t (e)

Z
f (y)PS

1

t(1�sn) ( (ysn))�
R
T (dy) :

This is precisely Eq. [3.10]. Thus the measure �RZ;T and �S
1

0;T is pulled back to it
under the map  .
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Lemma 3.30. Let 4iu denote ui � ui�1. Then the functions

J1 (x1; � � � ; xn) � PRT (1�sn) (xn � �)

nY
i=1

PRT4is (4ix) ;

and

J2 (x1; � � � ; xn) = exp

���2
2T

�
PRT (1�sn) (xn � �sn)

nY
i=1

PRT4is (4ix� �4is)

are the same. (i.e. J1 = J2).

Proof. We shall use the fact that

PRt (x) =
1p
2�t

exp�x
2

2t
:

Letting 4n+1s denote 1� sn, we have

J2 (x1; � � � ; xn) = exp
���2=2T �PRT (1�sn) (xn � �sn)

nY
i=1

PRT4is (4ix� �4is) :

Let

I = �2T
 
log J2 +

n+1X
i=1

log
p
2�T4is

!
:

Then

I = �2 +
(xn � �sn)

2

1� sn
+

nX
i=1

(4ix� �4is)
2

4is

= �2 +
x2n � 2�xnsn + �2s2n

1� sn
+

nX
i=1

�4ix
2

4is
� 2�4ix+ �24is

�

= �2 +
x2n � 2�xnsn + �2s2n

1� sn
� 2�xn + �2sn +

nX
i=1

4ix
2

4is

=
x2n + �2s2n
1� sn

� 2�xn

�
sn

1� sn
+ 1

�
+ �2 (1 + sn) +

nX
i=1

4ix
2

4is

=
x2n + �2s2n � 2�xn + �2

�
1� s2n

�
1� sn

+

nX
i=1

4ix
2

4is

=
(xn � �)2

1� sn
+

nX
i=1

4ix
2

4is

= �2T
 
log J1 +

n+1X
i=1

log
p
2�T4is

!
:

Hence we are done.

Proof. of Theorem 3.28
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Let the map  be as in De�nition 3.25. It will su�ce to show  �1� �S
1

0;T is

equivalent to  �1� e�T . If this is the case then for any measurable A � L
�
S1
�
we

have

A is a e�T -null set
() e�T �e; 1A �  �  �1� = 0

()  �1� e�T �e; 1 �1(A)

�
= 0

()  �1� �S
1

0;T

�
1 �1(A)

�
= 0

() A is a �S
1

0;T -null set.

Thus we would be done by the Radon-Nikodym Theorem. The rest of the proof is

devoted to computing  �1� �S
1

0;T and  �1� e�T and showing they are equivalent .

First we compute  �1� �S
1

T (h; �) where h is any loop in L
�
S1
�
. Let t! Xt� is an

L (R)-valued Brownian motion. Let g satisfy the stochastic di�erential equation

g�ts =
�
(Lgts)� @�

� �X�ts with g0s = 1;

as in Theorem 2.25. Here, since � ! (cos 2��; sin 2��) is our local chart,

(@�F ) (cos 2��; sin 2��) � @�F (cos 2��; sin 2��) :

Then �S
1

t (e; �) = Law h�gt� and thus

 �1� �S
1

T (e; �) = Law �1 (h�gT �) :

We claim gT � =  (XT �) and hence

 �1� �S
1

T (h; �) = Law
�
 �1 (h) (�) +XT �

�
:

To verify the claim that gt� =  (Xt�), it will su�ce to check that for any F 2
C1

�
S1;R

�
we have

�tF ( (Xts)) = (@�F ) ( (Xts))X�ts:

But by Ito's Lemma �tF ( (Xts)) = (F �  )0 (X�ts)X�ts = (@�F ) ( (Xts))X�ts

we are done. Thus

 �1� �S
1

T (h; �) = Law
�
 �1 (h) (�) +XT �

�
:

Since for �xed t, s! Xts is a Brownian bridge in R from 0 to 0 with parameter t,
we have �

 �1� �S
1

T (h; �)
�
f =

Z
f
�
x+  �1 (h)

�
�R0;T (dx) :

Now we compute  �1� �S
1

0;T explicitly. By Lemma 3.29 this is just �RZ;T or Wiener

Measure conditioned on the integers (see De�nition 3.26 and remark 3.27).
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Let f (x�) � F (xs1 ; � � � ; xsn) where F 2 C1 (Rn ) and 0 = s0 < � � � < sn < 1.
Then we have�

 �1� �S
1

0;T

�
[f ]

= �RZ;T [f ]

�
Z
Rn

F (x1; � � � ; xn)
PS

1

T (e)

X
�2Z

PRT (1�sn) (xn + �)

nY
i=1

PRT4is (4ix) dxi

=
X
�2Z

Z
Rn
F (x1; � � � ; xn)

PRT (1�sn) (xn + �)

PS
1

T (e)

nY
i=1

PRT4is (4ix) dx:

Also �
 �1� e�T � [f ]

=
X
�2Z

C�

�
 �1� �S

1

T (��; �)
�
[f ]

=
X
�2Z

C�

Z
f
�
x+  �1 (��)

�
�R0;T (dx)

=
X
�2Z

Z
Rn
F (x1 + �s1; � � � ; xn + �sn)

�
C�P

R
T (1�sn) (xn)

PRT (0)

nY
i=1

PRT4is (4ix) dxi

=
X
�2Z

Z
Rn
F (x1; � � � ; xn)

C�P
R
T (1�sn) (xn � �sn)

PRT (0)

�
nY
i=1

PRT4is (4ix� �4is) dx

=
X
�2Z

Z
Rn
F (x1; � � � ; xn)

nY
i=1

PRT4is (4ix� �4is) dx

� 1

PS
1

T (e)
exp

�
��

2

2T

�
PRT (1�sn) (xn � �sn) :

Using Lemma 3.30 this last expression is just

=
X
�2Z

Z
Rn
F (x1; � � � ; xn)

PR1�sn (xn � �)
Qn
i=1 P

R
4is

(4ix)

PS
1

1 (e)
dx

=
X
�2Z

Z
Rn
F (x1; � � � ; xn)

PR1�sn (xn + �)
Qn
i=1 P

R
4is

(4ix)

PS
1

1 (e)
dx

=
�
 �1� �S

1

0

�
f:
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4. The Airault-Malliavin Theorem

In the next section we shall use the Airault-Malliavin Theorem (Theorem 4.1).
For the reader's convenience, we give a direct (and to our mind simpler) proof of
this Theorem.

Let �t denote Wiener Measure onWe (K) with parameter t and let �0;t be Pinned
Wiener Measure as in De�nition 2.9.

Theorem 4.1 (Airault & Malliavin, [26]). Recall from De�nitions 2.9 and 2.7 that
�t denotes Wiener measure on K with variance t and �0;t denotes pinned Wiener
measure. Let 4L(K) be the operator from De�nition 2.4 and let Vt : L (K) ! R
denote the function

Vt (
) =
1

2t2

����Z 1

0


 (s)
�1

 (�s)

����2
K

�
�
dimK

2t
+ @t logP

K
t (e)

�
;

where the expressionZ 1

0


 (s)
�1

 (�s) � lim

"!0

Z 1�"

0


 (s)
�1

 (�s) in L2

�
�0;t
�
:

See Lemma 4.8 and Remark 4.9 Gross [17] for the existence of such a limit. Then
for any smooth cylindrical function f : L (K)! R (see De�nition 2.5)

@t�0;t [f ] = �0;t

�
1

2
4L(K) + Vtf

�
:(4.1)

We defer the proof of Theorem 4.1 until we have developed su�cient machinery.
We shall be using some results of Gross. Accordingly we will need to de�ne a few
terms so that we can state some results from [17], [19].

De�nition 4.2 (Notations from [17], [19]). The following de�nitions hold for Lem-
mas 4.4, 4.3 and 4.5:-

1.
�b
; bP� be an abstract probability space and let t > 0.

2. Let bE denote the expectation with respect to the measure bP .
3. Let s ! Gs be an arbitrary K-valued Brownian motion with parameter t

starting from e (i.e. Law G = �t).

4. De�ne a K-valued Brownian motion e� by setting e�� � R �0 G (�s)G (s)�1.
5. An element k in C ([0; 1]! K) is a �nite energy path if

k0 (s) exists ds-a.s. and

Z 1

0

��k�1k0��2
K
ds <1:

6. For any �nite-energy path k de�ne a �t-a.s. random variable eJk on We (K)
by setting

eJk � G = exp

�
� 1

2t

Z 1

0

��k�1k0��2
K
ds� 1

t

Z 1

0

D
k�1k0; e��sE

K

�
:

Lemma 4.3 (Albeverio&Hoegh-Krohn, [3]). Let t = 1. Let k be a �nite-energy
path on K. Then for any bounded measurable f :We (K)! R we havebE [f (G)] = bE hf (kG) � eJk � G�i :
This result goes through without trouble for any t > 0 (see Remark 4.6).
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Lemma 4.4 (Gross:[19], Corollary 3.7). Let t = 1. Then for any �nite-energy path
k

@"

� eJexp "h � G� j"=0 = Z 1

0

1

t

D
h0 (s) ; e��sE ;

and the limit exists in Lp
�b
� for any p < 1. Let ejh denote the �t-a.s. random

variable so that ejh � G = @"

� eJexp "h � G� j"=0. This result goes through without

trouble for any t > 0 (see Remark 4.6).

Lemma 4.5 (Gross:[17], Lemma 4.8 and Remark 4.9). Let t = 1. Then for any

p < 1; e�� converges in Lp
�
�t;0
�
as � " 1. Let e�1 denote this limit in L2

�
�t;0
�
.

[By Remark 4.6, this result goes through without trouble for any t > 0.

Remark 4.6 (Lemmas 4.4, 4.3 and 4.5 go though for any t > 0). Take t 6= 1. De-

�ne a new Ad-invariant metric gh�; �i = 1
t h�; �iK on K. Let

n eAo be a gh�; �i-orthonormal
basis for K. Then 1 =

D̂ eA; eAE = 1
t

D eA; eAE
K
. So

n eA=pto is a h�; �i
K
-orthonormal

basis for K. Thus e4K , the Laplacian on eK �
�
K;gh�; �i�is given by

e4K =
X
eA

@2
eA
= t
X
eA

@2
( eA=

p
t)
= t4K :

So let eG be a standard Brownian motion on eK. So let e�1 be Wiener Measure on eK
with parameter 1 (i.e. e�1 = Law eG). Then by the martingale characterization of a
standard Brownian motion we have

df
�eGs� = dMartingale+

1

2
t (4Kf)

�eGs� ds:
In other words on K = (K; h�; �i

K
), eG is a Brownian motion with parameter t. Thuse�1 = �t and e�1;0 = �t;0. So applying Lemmas 4.5, 4.4 and 4.3 to eK we see that

they extend to all t > 0.

Remark 4.7 (Our special case). For our purposes the space b
 is We (K), the mea-

sure bP is Wiener measure �t, and the Brownian motion Gs is the map ��1s . Here
�s : We (K) ! K is the map sending a path 
 2 We (K) to an element 
s 2 K.
We let Gs be ��1s rather than �s because we shall need d (Rg)� �t=d�t explicitly
to compute derivatives whereas the theorems of Gross we cite use d (`g)� �t=d�t.
Recall that (`g
) (s) = g (s) 
 (s) ; and (Rg
) (s) = 
 (s) g (s).

For the rest of this section, b
; bP , and Gs are to be interpreted as We (K) ; �t,
and ��1s respectively. For notational convenience, let � be the identity map from
We (K) to itself and let ��1 denote the map from We (K) to itself taking a path 

to the path s! 
�1s .

Lemma 4.8 (The L2 (�t)-adjoint @
�). For any �nite-energy path h 2 H (K) we

have the L2 (�t)-adjoint

@�h = �@h +
Z 1

0

1

t

D
h0 (s) ; 
 (s)�1 
 (�s)

E
:
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A more explicit statement is as follows:- Let f; g be elements of L1� (�t), where

L1� (�t) � \p<1Lp (�t) :
Let Rg : We (K) ! We (K) denote right multiplication by g (i.e. Rg (
) (s) =

 (s) g (s)). Let L1� (�t) denote \p<1Lp (�t). Let Dh be the following domain:-

Dh �
�
u 2 L1� (�t) : lim

"#0
1

"
[u �Rexp "h � u] exists in Lp (�t) ;8p <1

�
:

Let @hu denote lim"#0 1
" [u �Rexp "h � u] for any u 2 Dh. De�ne a �t-a.s. random

variable jh by setting

jh (
) =

Z 1

0

1

t

D
h0 (s) ; 
 (s)�1 
 (�s)

E
:

Then

�t [g@hf ] = ��t [f@hg] + �t [fgjh] :

We will give a proof below. This result can also be obtained by using the left
connection on K in Theorem 1.3 of Driver [10].

Proof. of Lemma 4.8
Let I : K ! K given by I (�) = ��1 for any � 2 K. Abuse notation so that is g

and 
 are paths in We (K) then `g (
) and Rg (
) denote the paths s ! g (s) 
 (s)
and s! 
 (s) g (s) in We (K) respectively.

�t [g@hf ] = �t

�
g lim
"#0

1

"
(f �Rexp "h � f)

�
(4.2)

= lim
"#0

1

"
(�t [gf �Rexp "h]� �t [gf ]) :

Apply Lemma 4.3 together with Remark 4.4 as well as the comments after Remark
4.7 to the �nite-energy path k" = exp "h and the bounded measurable functionef = f � I � `k�1 . We obtainbE h ef � ��1i = bE h ef �k��1� eJk � ��1i :
Upon simpli�cation, we obtainbE [f �Rk � �] = bE h(f � �) � eJk � ��1�i :
Here, as in De�nition 4.2,

eJk" � ��1 = exp

�
� 1

2t

Z 1

0

��k�1" k0"
��2
K
ds� 1

t

Z 1

0



k�1" k0"; �

�1
s ��s

�
K

�
:

For any �nite energy path k de�ne a �t-a.s. random variable Jk by requiring that

Jk � � = eJk � ��1. Then we see that with respect to the measure �t we have that

Jk" (
) = exp

�
� 1

2t

Z 1

0

��k�1" k0"
��2
K
ds� 1

t

Z 1

0



k�1" k0"; 


�1
s 
�s

�
K

�
;

and

�t [f �Rk" ] = �t [fJk" ] :(4.3)
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Replacing f by gf �Rexp "h and using Eq. [4.3] yields

�t [gf �Rexp "h] = �t

h�
g �Rk�1

"
f
�
�Rk"

i
= �t

h�
g �Rk�1

"

�
fJk"

i
:

Now we returning to Eq. [4.2] to get

�t [g@hf ] = lim
"#0

1

"
(�t [gf �Rexp "h]� �t [gf ])

lim
"#0

Z
f
1

"

h�
g �Rk�1

"

�
Jk" � g

i
d�t:

Now by assumption g 2 Dh, and so @"g �Rk�1
"
! @hg in L

p (�t) ;8p <1 as "! 0.

By Lemma 4.4, Remark 4.6 we know that @"

� eJk" � ��1�! �ejh � ��1� as "! 0 in

Lp (�t) ;8p <1. Notice that jh �� = ejh ���1 �t-a.s.. Thus @" (Jk" � �)! (jh � �)
in Lp (�t) ;8p < 1. Since Law � = �t, we have @"Jk" ! jh in Lp (�t) ;8p < 1
as " ! 0. Let o (") denote a family of functions so that 1

"o (") ! 0 as " ! 0 in
Lp (�t) ;8p <1. Then

g �Rk�1
"

= g � "@hg + o (") ;

and

Jk" = 1 + "jh + o (") :

Therefore

1

"

h�
g �Rk�1

"

�
Jk" � g

i
f = �f@hg + fgjh � "jhf@hg +R (") ;

where the remainder R is given by

R (") =
1

"
o (") (1 + g � "@hg + o (") + "jh) f:

Now jh; f; @hg are functions in L1� (�t). By using H�older's inequality repeatedly
if necessary one can see that jhf@hg and (1 + g � "@hg + o (") + "jh) f are also in
L1� (�t). Hence �t ["jhf@hg]! 0 and�Z

R (") d�t

�2
< �t

�
o (")

"

�2
�t [(1 + g � "@hg + o (") + "jh) f ]

2

! 0 as "! 0:

Therefore

lim
"#0

Z
f
1

"

h�
g �Rk�1

"

�
Jk" � g

i
d�t ! �t [�f@hg + fgjh] ;

and so we are done.

Corollary 4.9 (The L2 (�t)-Adjoint
�
@2h
��
). Let g; f be smooth cylinder functions

(see De�nition 2.5). Let h 2 H (K) be a �nite energy path. Then

�t[g@
2
hf ] = �t[f@

2
hg]� 2�t[jhf@hg] + �t[fgj

2
h]�

1

t
jhj2H(K) �t[gf ]
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Proof. By Lemma 4.8, we have

�t[g@
2
hf ] = ��t[@hg@hf ] + �t[gjh@hf ]

= I1 + I2:(4.4)

Applying Lemma 4.8 to I1, we see that

I1 = �t[f@
2
hg]� �t[jhf@hg]:(4.5)

To apply Lemma 4.8 to I2, it will be necessary to show that gjh is in the domain
of the operator @h; i.e. we must show [(gjh) �Rexp "h � gjh] has a limit in Lp (�t)
for any p < 1. Since g is a smooth cylinder function, we already know that
1
" [g �Rexp "h � g] converges to @hg in L

p (�t). Thus, as in the proof of Lemma 4.8,

if we can show that 1
" [jh �Rexp "h � jh] converges to some @hjh in Lp (�t) for any

p <1 then we will have

1

"
[(gjh) �Rexp "h � gjh]! [g@hjh + jh@hg](4.6)

as "! 0 in Lp (�t) for any p <1:
From Lemma 4.8 recall that, for any �nite-energy path h in H (K), the random

variable jh is given by

jh (
) =

Z 1

0

1

t

D
h0 (s) ; 
 (s)�1 
 (�s)

E
�t-a.s.

Let 
s denote the �t-a.s. random variable 
 (s). Thus jh �Rexp "h is given by

jh �Rexp "h (
)

=

Z 1

0

1

t

D
h0 (s) ; (
s exp "h (s))

�1
�s (
s exp "h (s))

E
=

Z 1

0

1

t



h0 (s) ; exp (�"h (s)) 
�1s 
�s exp "h (s)

�
+

Z 1

0

1

t
hh0 (s) ; exp (�"h (s)) exp0 ["h (s)]h0 (s) dsi :

Therefore

1

"
[jh �Rexp "h � jh] =

Z 1

0

1

t"



h0 (s) ; Adexp�"hs

�

�1s 
�s

��
�
Z 1

0

1

t"



h0 (s) ; 
�1s 
�s

�
+

Z 1

0

1

t
hh0 (s) ; exp (�"hs) exp0 ["h (s)]h0 (s)i ds:

By the Ad-invariance of the metric, we see that

1

"
[jh �Rexp "h � jh] =

Z 1

0

1

t"



Adexp "hsh

0 (s)� h0 (s) ; 
�1s 
�s
�

+

Z 1

0

1

t
hh0 (s) ; exp (�"hs) exp0 ["h (s)]h0 (s)i ds:
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However h was chosen to be good in the sense of De�nition 2.2. So the matrix h (s)
commutes with h0 (s) and thus Adexp "hsh

0 (s)� h0 (s) is 0. Observing this yields

1

"
[jh �Rexp "h � jh] =

Z 1

0

1

t
hh0 (s) ; exp (�"hs) exp0 ("hs)h0 (s)i ds:

which is independent of the path 
 (and thus a constant random variable). Hence
the above expression converges in Lp (�t) for all p <1 to the expressionZ 1

0

1

t
hh0 (s) ; exp (0) exp0 (0)h0 (s)i ds = 1

t
jhj2H(K) :

Thus @hjh = 1
t jh0j2H(K). Returning to Eq. [4.6] we see that @h (jhg) exists and

equals [g@hjh + jh@hg]. Thus

I2 = ��t[jhf@hg]�
1

t
jhj2H(K) �t[gf ] + �t[fgj

2
h]:

Now returning to Eqs. [4.4] and [4.5] we see that

�t[g@
2
hf ] = I1 + I2

= �t[f@
2
hg]� 2�t[jhf@hg]�

1

t
jhj2H(K) �t[gf ] + �t[fgj

2
h]:

De�nition 4.10 (Orthogonal Decomposition of H (K) and H0 (K)). We will need
the following notions:-

1. Recall from De�nition 2.1 that

H (K) � fh : [0; 1]! Kjh (0) = 0 and (h; h) <1g :

For any unit vector A 2 K and � in (0; 1) let eA be the unit vector in H (K)
de�ned by setting

eA (s) =
1p
a
A (s ^ �) :(4.7)

Write H (K) as U1
�

L
U2
�

L
U3
� where the U i� are de�ned by setting

U1
� � fh 2 H (K) jh = 0 on [�; 1]g ;

U2
� � fh 2 H (K) jh = 0 on [0; �]g ;

U3
� � span

D eA : A 2 K
E
:

Let Si be a good orthonormal basis of U i�. Then S � [iSi forms a good or-
thonormal basis ofH (K). Let4Ui

�
be de�ned as

P
h2Si @

2
h where the operator

(@hf) (
) � d
d"f (
 exp "h) [The map h! @h is just the usual identi�cation of

elements of H (K) with left-invariant vector �elds on We (K)]. Then we can
see that

4We(K) = 4U1
�
+4U2

�
+4U3

�
:(4.8)

2. Recall from De�nition 2.1 that

H0 (K) � fh 2 H (K) jh (1) = 0g :
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Decompose H0 (K) as W
1
�

L
W 2
�

L
W 3
�. W

1
� � U1

� which is de�ned as before.
W 2
� is de�ned to be U2

� \H0 (K). W
3
� is de�ned to be the span of the vectors

h`A : A 2 Ki where the unit vector `A is given by setting

`A (s) = As1[0;�]

r
1� �

�
+A (1� s) 1(�;1]

r
�

1� �
:(4.9)

. Let Si0 be a good orthonormal basis of W i
�. Then S0 � [iSi0 forms a

good orthonormal basis of H0 (K). Let 4W i
�
be de�ned as

P
h2Si0 @

2
h where

the operator (@hf) (
) � d
d"f (
 exp "h) [The map h ! @h is just the usual

identi�cation of elements of H0 (K) with left-invariant vector �elds on L (K)].
Then we see that

4L(K) = 4U1
�
+4W 2

�
+4W 3

�
:(4.10)

Proof. of Theorem 4.1:
Fix � < 1. Let f (�) = F (�s1 ; � � � ; �sn) so that�sn < �. Let S = S1 [ S2 [ S3

be the orthonormal basis of De�nition 4.10. Then

@t�0;t [f ] = lim
�!1

@t�t

"
f
PKt(1��) � ��
PKt (e)

#

= lim
�!1

�t

�
1

2PKt (e)
4We(K)

�
fPKt(1��) � ��

��
+ lim
�!1

�t

"
f@t

PKt(1��) � ��
PKt (e)

#
= I + J:(4.11)

Let us work on the second term �rst.

J = lim
�!1

1

PKt (e)
�t

h
f@tP

K
t(1��) � ��

i
� �0;t

�
f@t logP

K
t (e)

�
= J1 � �0;t

�
f@t logP

K
t (e)

�
;(4.12)

where

J1 = lim
�!1

1

PKt (e)
�t

h
f@tP

K
t(1��) � ��

i
= lim

�!1

1� �

2PKt (e)
�t

h
f4KP

K
t(1��) � ��

i
:(4.13)

De�ne

C� (xn+1)

=

Z
Kn

F (x1; � � � ; xn)PKt(��sn)
�
x�1n xn+1

� nY
i=1

PKt4is

�
x�1i�1xi

�
� (dxi) :

Then

lim
�!1

�t

h
f4KP

K
t(1��) � ��

i
= lim

�!1

Z
K

C� (x)4KP
K
t(1��) (x) � (dx)

= lim
�!1

Z
K

4KC� (x)P
K
t(1��) (x) � (dx)

= 4KC1 (e)

< 1:
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From Eq. [4.13] we have

J1 = 0:

Combining this fact with Eq. [4.12] gives

J = ��0;t
�
f@t logP

K
t (e)

�
:(4.14)

We proceed to work on the �rst term I of Eq. [4.11].

I = lim
�!1

1

2
PKt (e)�1 �t

h
4We(K)

�
fPKt(1��) � ��

�i
= lim

�!1

1

2
�0;t

�4We(K)f
�
+ lim
�!1

1

2
PKt (e)

�1
�t

h
f4We(K)P

K
t(1��) � ��

i
+ lim
�!1

PKt (e)
�1X

h2S
�t

h
@hf@hP

K
t(1��) � ��

i
= I1 + I2 + I3:(4.15)

From Eq. [4.8]

I1 = lim
�!1

1

2
�0;t

��4U1
�
+4U2

�
+4U3

�

�
f
�
:

Since f does not depend on the path on or after time �, 4U2
�
f = 0 and this last

expression is

lim
�!1

1

2
�0;t

�4U1
�
f
�
+ lim
�!1

1

2
�0;t

�4U3
�
f
�
:

Applying Eq. [4.10] and observing that 4W 2
�
f = 0 reduces this last to

I1 =
1

2
�0;t

�4L(K)f
�
+ lim
�!1

1

2
�0;t

�4U3
�
f
�� lim

�!1

1

2
�0;t

�4W 3
�
f
�
:(4.16)

Now letting A run through an orthonormal basis of K, we see from De�nition 4.10
that

4W 3
�
f =

X
A

@2`Af:

Since f does not depend on the path from time � onwards, we can see that from
Eqs. [4.7] and [4.9] that

@`Af =
p
1� �@

eAf and 4W 3
�
f = (1� �)4U3

�
f:

Thus Eq. [4.16] becomes

I1 � 1

2
�0;t

�4L(K)f
�

= lim
�!1

�

2
�0;t

�4U3
�
f
�

= lim
�!1

1

2PKt (e)
�t

"
PKt(1��) � ��

X
A

@2
eA
f

#
:

De�ne �� =
R �
0

 (s)�1 
 (�s), �t-a.s. Invoking Corollary 4.9 we obtain

�t[P
K
t(1��) � ��@2eAf ] = �t[f@

2
eA
PKt(1��) � ��]� 2�t[j eAf@ eAP

K
t(1��) � ��]

+�t[fP
K
t(1��) � ��j2eA]�

1

t

��� eA���2
H(K)

�t[P
K
t(1��) � ��f ]:
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Observing that eA (s) = ��1=2 (s ^ �)A, we see that
��� eA���2

H(K)
= 1, and j

eA (
) =

1
t�

�1=2 hA; ��i. Thus

I1 � 1

2
�0;t

�4L(K)f
�

= I2 + lim
�!1

1

2t2�
�t;e[f j��j2K]�

dimK

2t
�t;e[f ]

� lim
�!1

1

tPKt (e)

X
A

�t[hA; ��i f@APKt(1��) � ��]:

Invoking Lemma 4.8 on I3 and recognizing that @hP
K
t(1��) � �� = 0 for any h 2

S1 [ S2 yields
I3 = lim

�!1
PKt (e)

�1X
h2S

�t

h
@hf@hP

K
t(1��) � ��

i
= � lim

�!1
�PKt (e)

�1X
h2S

�t

h
f
�
4KP

K
t(1��)

�
� ��

i
+ lim
�!1

1

tPKt (e)

X
A

�t[hA; ��i f@APKt(1��) � ��]

= �2I2 + lim
�!1

1

tPKt (e)

X
A

�t[hA; ��i f@APKt(1��) � ��]:

Thus,

I =
1

2
�0;t

�4L(K)f
�� dimK

2t
�t;e[f ] + lim

�!1

1

2t2�
�t;e[f j��j2K]:

The expression

�� = �� � � = e�� =

Z �

0

��1s ��s:

Combining Lemma 4.5 with Remarks 4.6 and 4.7 we have e�� converges in L2
�
�t;0
�

as � " 1. Thus �� converges in L2
�
�t;0
�
as � " 1 to a limit �1 and so

I =
1

2
�0;t

�4L(K)f
�� dimK

2t
�t;e[f ] +

1

2t2
�t;e[f j�1j2K]:

and so returning to Eqs. [4.11] and [4.12] yields

@t�0;t [f ] =
1

2
�0;t

�4L(K)f
�� dimK

2t
�t;e[f ] +

1

2t2
�t;e[f j�1j2K]� �0;t

�
f@t logP

K
t (e)

�
:

5. Absolute continuity of Heat Kernel with respect to pinned

Wiener measure

Let 
 be a generic loop in L (K). Recall from De�nitions 2.9 and 2.7 that �t (d
)
denotes Wiener measure on K with variance t and �0;t (d
) denotes pinned Wiener
measure. Recall from De�nition 2.20 that �t (e; d
) denotes Heat Kernel measure
on L (K). The goal of this section is to demonstrate the absolute continuity of Heat
Kernel measure �t (e; d
) with respect to pinned Wiener measure �0;t (d
).

Theorem 5.1. Heat Kernel measure �t (e; �) on L (K) is absolutely continuous
with respect to pinned Wiener measure �0;t (d
) and the Radon-Nikodym deriva-
tive d�t (e; �) =d�0;t is bounded.
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We defer the proof until some basic machinery is established.

De�nition 5.2 (Basic Machinery). Let P be the partition f0 < s1 < � � � < sn < 1g.
Then:-

1. gP � (G0 (si; sj))
�1

as n � n matrices where G0 (s; �) � s ^ � � s� was
introduced in De�nition 2.12.

2. Let A(i) (x1; � � � ; xn) be the vector �eld on Kn so that�
A(i)f

�
(x1; � � � ; xn) � d

dt
f (x1; � � � ; xi exp tA; � � � ; xn) #t=0 :

3. h�; �iP is the left invariant metric on Kn such that


A(i); B(j)

�
P
= �ABgij .

4. Let KP be Kn equipped with h�; �iP :
5. Let 4P be the Laplacian on KP. Thus

4P=
X
A;i;j

G0 (si; sj) @A(i)@A(j) :

6. Let �s : L (K)! K denote the map �s : x! xs.
7. Let �P : L (K)! KP by �P= (�s1 ; � � � ; �sn).
8. pPt � d (�P)� �t (e; �) =d�. Explicitly if jPj = n and � denotes standard Haar-

measure onK, then pPt : K
n ! R is the function so that for any F 2 C1 (Kn)

we haveZ
L(K)

F � �P(
) �t (e; d
) =
Z
x2Kn

F (x) pPt (x)�

n (dx) :(5.1)

9. qPt � d (�P)� �0;t=d�. Explicitly if jPj = n and � denotes standard Haar-

measure onK, then qPt : K
n ! R is the function so that for any F 2 C1 (Kn)

we haveZ
L(K)

F � �P(
)�0;t (d
) =
Z
x2Kn

F (x) qPt (x) �

n (dx) :(5.2)

10. FP� � h�Pi :
11. ZPt �

�
pPt =q

P
t

� � �P = d (�tjFP) =d
�
�0;tjFP

�
. Explicitly for any F 2 C1 (Kn),

combining Eqs. [5.1] and [5.2] we haveZ
F � �P(
) �t (e; d
) =

Z
F
pPt
pPt

�
qPt d�


n� = Z F � �P(
)ZPt (
)�0;t (d
) :

The proof of Theorem 5.1 rests on Theorem 4.1, a result of Airault and Malliavin.
We shall also make use of Lemma 2.15.

Lemma 5.3 (Asymptotic properties of heat Kernels on K). Heat Kernel measure
on K has the following properties:-

1. "d=2PK" (e)! (2�)�d=2 as "! 0:
2. Let BK (e; ") denote the ball of radius " near e. Then

sup
"2(0;1);u2BK(e;")c

PK"(1�sn) (u) <1:

Proof. A generalization of this result is proved in Berline, Getzler, & Vergne, [6],
Theorem 2.30. See also [28].
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Lemma 5.4 (�0;" ! �e as "! 0). Let f : Kn ! R be continuous. Abusing nota-
tion, let e denote the element (e; � � � ; e) of Kn. Then

lim
"!0

(�P)� �0;" [f ] = f (e) :

Proof. Let �s be the evaluation map as in De�nition 5.2. Let 4is be si � si�1 as
usual. Then

lim
"!0

(�P)� �0;" [f ] = lim
"!0

Z
M

f (x1; � � � ; xn) qP" (x) d�

= lim
"!0

Z
M

f (x1; � � � ; xn)
PK"(1�sn) (xn)

PK" (e)

nY
i=1

PK"4is

�
x�1i�1xi

�
dxi

= lim
"!0

�0;"

"
f � �P

PK"(1�sn) � �sn
PK" (e)

#
:

Let BK (e; r) be the open ball of all points distant less than r from e in the metric
h�; �i

K
on K. Then our previous expression becomes

= lim
"!0

�"

�
f � �P
PK" (e)

�
1BK(e;") � �sn

� �
PK"(1�sn) � �sn

��
+ lim
"!0

�"

�
f � �P
PK" (e)

�
1BK(e;")c � �sn

� �
PK"(1�sn) � �sn

��
= I1 + I2:

By Lemma 5.3, we see that the expression

f (x1; � � � ; xn)
PK" (e)

1BK(e;")c (xn)P
K
"(1�sn) (xn)

is bounded and so I2 vanishes by Dominated Convergence. Thus

lim
"!0

(�P)� �0;" [f ]

= lim
"!0

�"

�
f � �P
PK" (e)

�
1BK(e;") � �sn

� �
PK"(1�sn) � �sn

��
= lim
"!0

(�P)� �0;" [f (x1; � � � ; xn�1; e)]
+ lim
"!0

�
��P�0;"

� �
(f (x1; � � � ; xn)� f (x1; � � � ; xn�1; e)) 1BK(e;") (xn)

�
= J1 + J2:

Now the expression

sup
KP

jf (x1; � � � ; xn)� f (x1; � � � ; xn�1; e)j 1BK(e;") (xn)

is bounded above by

sup
xn2BK(e;")

jf (x1; � � � ; xn)� f (x1; � � � ; xn�1; e)j :(5.3)

We claim that if xn is distance d from e in K then there is a constant CP, depending
only on the partition, so that the points (x1; � � � ; xn) and (x1; � � � ; xn�1; e) are
distance dCP apart in KP. If we can verify this, then Eq.[5.3] is bounded above by

sup
fx;yjy2BP(x;"=CP)g

jf (y)� f (x)j :
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By the uniform continuity of the continuous function f on the compact topological
space KP we see that this last expression tends to 0 as " ! 0. Thus J2 can be
made arbitrarily small. This, in turn, implies that

lim
"!0

(�P)� �0;" [f ] = lim
"!0

(�P)� �0;" [f (x1; � � � ; xn�1; e)] :
Now replace P by P1 � f0 < s1 � � � < sn�1 < 1g and f by

f1 (x1; � � � ; xn�1) � f (x1; � � � ; xn�1; e) :
f1 is still smooth on KP1 and the above reasoning applies inductively. Therefore

lim
"!0

(�P)� �0;" [f ] = f (e; � � � ; e) ;
and we are done once we verify the claim.

To do this, let x (s) � (c1; � � � ; cn�1; xn (s)) be a di�erentiable path in KP (with
the ci being held constant) then we have

x0 (s) =
X
A

hx0n (s) ; AiKA(n)

for any s. This implies thatZ 1

0

jx0 (s)j2Pds =

Z 1

0

X
A

hx0n (s) ; Ai2K
���A(n) (s)���2

P
ds

= (G0 (si; sj))
�1
nn

Z 1

0

jx0n (s)j2K ds

=
�
CP
�2 Z 1

0

jx0n (s)j2K ds:

Thus if xn is distance d from e inK then the points (x1; � � � ; xn) and (x1; � � � ; xn�1; e)
are distance dCP apart in KP.

Lemma 5.5. Let Ct � log
�
td=2PKt (e)

�� log lim"!0 "
d=2PK" (e). Ct is well-de�ned

by Lemma 5.3. Then pPt =q
P
t � expCt.

Proof. Given bounded smooth f , h � 0, on Kn de�ne

H (t; x) �
Z
h (xy) pPt (y) dy

F (t; x) �
Z
f (xy) ~qPt (y) dy:

Let 
 2 L (K) and let t ! gt be our standard Brownian motion on L (K) (see
De�nition 2.22). Let `x : k ! xk denote left translation by x on K. Now t ! 
gt
is a Brownian motion on L (K) starting at 
 in the sense of De�nition 2.14. Heat
Kernel measure, �t (
; �) is the law of 
gt.

�t (
; h � �P) = Eh � �P(
gt)
= Eh (�P(
)�P(gt))

= Eh � `�P(
) � �P(gt)
= �t

�
e; h � `�P(
) � �P

�
=

Z
h (�P(
) y) p

P
t (y) dy

= H (t; �P(
)) :
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Letting x = �P(
), we see from the Heat Equation, Theorem 2.21, and Lemma
2.15 that

@tH (t; x) =
1

2
4L(K)H (t; �P(
)) =

1

2
4PH (t; x)

H (t; x) ! h � �P(
) as t! 0:(5.4)

We shall now obtain a similar equation for F (t; x). Let ~qPt � qPt expCt. Then
for some smooth � on Kn, we haveZ

� (y)
�
@teqPt � (y) dy = @t exp (Ct)�0;t [� � �P]

= exp (Ct) @t�0;t [� � �P]

+�0;t [� � �P] exp (Ct)
�
dimK

2t
+ @t log p

K
t (e)

�
:

Applying Airault-Malliavin (Theorem 4.1) to the �rst term yields

= exp (Ct)�0;t

"
1

2t2

����Z 1

0

x (ds)x (s)
�1
����2
K

� � �P
#

+
exp (Ct)

2
�0;t

�4L(K)� � �P
�
:

De�ne �Pt � �P � �0;t

����R 10 
ds
�1s ���2
K
jFP
�

where
���R 10 
ds
�1s ���

K
is Gross' L2

�
�0;t
�
-

limit of
��R �
0

ds


�1
s

��
K
as � ! 1. Then using Lemma 2.15 our last expression

becomes

= exp (Ct) (�P)� �0;t

�
�Pt
2t2

�+
1

2
4P�

�
= exp (Ct)

Z �
�Pt (y)

2t2
� (y) +

1

2
(4P�) (y)

�
qPt (y) dy

=

Z
�Pt (y)

2t2
� (y) eqPt (y) dy + 1

2
(4P�) (y) eqPt (y) dy:

Using the smoothness of eqPt , perform an integration by parts on the second term to
get

=

Z
�Pt (y)

2t2
� (y) eqPt (y) dy + 1

2

�4PeqPt � (y)� (y) dy
=

Z �
�Pt (y)

2t2
eqPt (y) + 1

2

�4PeqPt � (y)�� (y) dy:
Therefore we have the dy-a.s. equality

�
@teqPt � (y) = �Pt (y)

2t2
eqPt (y) + 1

2

�4PeqPt � (y) :(5.5)
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Let s ! �s be a standard Brownian motion on K with parameter t. Then for
any continuous � on Kn we haveZ

� (y) ~qPt (y) dy = expCt�0;t [� � �P]

= expCt�t

"
� � �P

PKt(1�sn) � �sn
PKt (e)

#

= expCtE

"
�
�
�s1 � � ��sn

� PKt(1�sn) ��sn�
PKt (e)

#
:

Notice that s! ��1s is also a standard Brownian motion on K. This means that
our previous expression becomes

= expCtE

"
�
�
��1s1 � � ���1sn

� PKt(1�sn) ���1sn �
PKt (e)

#
:

Now using the fact that PKt (x) = PKt
�
x�1

�
on K yields

= expCtE

"
�
�
��1s1 � � ���1sn

� PKt(1�sn) ��sn�
PKt (e)

#

= expCt

Z
�
�

�1s1 � � � 
�1sn

�
�0;t (d
)

=

Z
�
�
y�1

�
~qPt (y) dy

=

Z
� (y) ~qPt

�
y�1

�
dy:

Thus for any continuous � on Kn we haveZ
� (y) ~qPt (y) dy =

Z
� (y) ~qPt

�
y�1

�
dy:(5.6)

Using this yields

F (t; x) =

Z
f (xy) ~qPt (y) dy

=

Z
f (xy) ~qPt

�
y�1

�
dy

=

Z
f (y) ~qPt

�
y�1x

�
dy:

Applying Eq. [5.5] to compute the derivative @tF (t; x) yields

@tF (t; x) =

Z
f (y) @t~q

P
t

�
y�1x

�
dy

=

Z
f (y)

�Pt
�
y�1x

�
2t2

eqPt �y�1x� dy + 1

2

Z
f (y)

�4PeqPt � �y�1x� dy
= I (t; x) +

1

2

Z
f (y)

�4PeqPt � �y�1x� dy:
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By the left-invariance of the Laplacian, 4P this last expression is

= I (t; x) +
1

2

Z
f (y)

�4PeqPt � `y�1

�
(x) dy

= I (t; x) +
4P

2

Z
f (y) eqPt �y�1x� dy

= I (t; x) +
4P

2

Z
f (xy) eqPt �y�1� dy:

Using Eq. [5.6] a second time yields

= I (t; x) +
4P

2

Z
f (xy) eqPt (y) dy

= I (t; x) +
4P

2
F (t; x) :

Therefore

@tF (t; x) = I (t; x) +
4P

2
F (t; x) :

As t gets small, we have

lim
t!0

F (t; x) = lim
t!0

Z
f (xy) ~qPt (y) dy

= lim
t!0

expCt

Z
f (xy) qPt (y) dy

= lim
t!0

(�P)� �0;t [f � `x]
= f (x) by Lemma 5.4.

Thus we have

@tF (t; x) = I (t; x) +
4P

2
F (t; x)

F (t; x) ! f (x) as t! 0:(5.7)

We are now ready to apply the Duhammel's principle. For any � > 0, pick
f (x) = � + h (x) � 0. Since f � 0 a.s., I � 0, since �Pt � �P is the conditional

expectation of the positive function
���R 10 
ds
�1s ���2

K
. Let

U (t; x) � (F �H) (t; x) :

Using the fact that f (x) = � + h (x) implies that

U (t; x) = � expCt +

Z
h (xy)

�
~qPt � pPt

�
(y) dy:(5.8)

By Eqs. [5.4] and [5.7] we see that

@tU (t; x) =
1

2
4PU (t; x) + I (t; x) :(5.9)

Formally guessing a solution by Duhammel's principle let us de�ne

eU (t; x) � exp

�
t� "

2
4P

�
U ("; x) +

Z t

"

exp

�
t� �

2
4P

�
I (� ; x) d�:
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Then eU ("; x) = U ("; x) and

@t eU (t; x) =
1

2
4Pexp

�
t� "

2
4P

�
U ("; x) + I (t; x)

+

Z t

"

4P

2
exp

�
t� �

2
4P

�
I (� ; x) d�

=
1

2
4P
eU (t; x) + I (t; x) :

Therefore U = eU and so

U (t; x) = exp

�
t� "

2
4P

�
U ("; x) +

Z t

"

exp

�
t� �

2
4P

�
I (� ; x) d�:(5.10)

Let t0 be \the �rst time that U goes below zero". Explicitly

t0 � inf
n
t > 0j inf

x
U (t; x) < 0

o
:(5.11)

If we can show that t0 > 0 then we can take " in Eq.[5.10] equal to t0=2. Then since
U ("; �) and I are non-negative we must have U (t; x) � 0 for any t and x. Then we
can let � ! 0 in Eq. [5.8] to obtainZ

h (xy)
�
~qPt � pPt

�
(y) dy � 0:

Then ~qPt � pPt will be non-negative almost surely and so pPt � qPt expCt and we shall
be done.

Thus the problem reduces to showing t0 > 0. Suppose t0 = 0. There exist times
� i; � i > 0; � i # 0 as i ! 1 so that infx U (� i; x) < �1=i. By the compactness of
Kn, for each � i there must exist an xi so that

U (� i; xi) = inf
x
U (� i; x) (� i; x) < �1=i:

Thus by compactness, there exist a convergent subsequence of the xi So without
losing generality, suppose xi ! x1 in Kn. Then (� i; xi)! (0; x1) in [0;1)�Kn

so that U (� i; xi)! (f � h) (x1) = � > 0. But U (� i; xi) � 0 for all i which implies
that (f � h) (x1) � 0 giving us our contradiction. Thus t0 > 0 and we are done.

We are now able to return to the proof of Theorem 5.1.

Proof. of Theorem 5.1
Let fPng be a re�ning sequence of partitions of (0; 1) (i.e. one is not allowed to

include the endpoints 0; 1 in the partition) such that jPnj ! 0. Since Pn a re�ning

sequence, ZPnt is a non-negative discrete FPn martingale, where FPn � � h�Pni.
To make this clear, let n > m and f 2 FPm. Then can �nd smooth functions

F1 : K
Pm ! R and F2 : K

Pn ! R so that f = F1 � �Pm = F2 � �Pn. Now
�0;tZ

Pn
t f =

�
��Pn�0;t

�
F2p

Pn
t =qPnt =

�
��Pm�t

�
F1 = �0;tZ

Pm
t f;

which shows that ZPnt is a discrete FPn martingale.
Suppose we can show

sup
n




ZPnt 



L2(�0;t)

<1:(5.12)
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Then we have
n
ZPnt

o
is uniformly integrable since

lim
M!1

sup
n
�0;t

h
ZPnt 1fZPnt >Mg

i
� lim
M!1

1

M
sup
n
�0;t

�
ZPnt

�2
= 0:

The fact that
n
ZPnt

o
a uniformly-integrable discrete L1-martingale implies the

following (see Durrett [14]):-

1. ZPnt converges in L1:

2. If Zt � limn!1 ZPnt then �0;t
�
ZtjFPn

�
= ZPnt .

But now �0;t [Ztf � �Pn] = �tf ��Pn for any n 2 N . Hence Zt must be d�t=d�0;t
on the desired �-algebra hxt : 
� ! 
t : t 2 [0; 1]i :

So the problem reduces to proving Eq. (5.12).
To this end, pick an arbitrary partition P � f0 < s1 < � � � < sn < 1g and let f

be smooth on KP.We want to compute

ZPt 

2L2(�0;t)
= ��Pn�0;t

�
pPt =q

P
t

�2
:

But by Lemma 5.5, pPt =q
P
t � expCt where Ct is �nite and de�ned by Lemma 5.5.

We have a stronger condition than Eq. (5.12). Hence we are done. Moreover
Zt < expCt.

6. Semi-Martingale Properties of gT;�

Let 
 = C ([0; 1]! L (K)) be our probability space, let P be the law of a
Brownian motion on L (K), and let gt : 
 ! L (K) be the evaluation map at t as
in De�nition 2.22. Then t! gt is an L (K)-valued Brownian motion and thus Law
gt equals Heat Kernel measure �t (e; �).
Remark 6.1 (gt� is a semimartingale). In Section 5 we showed that Heat kernel
measure �t (e; �) is absolutely continuous with respect to pinned Wiener measure
�0;t. Let 
s : L (K)! K be the evaluation map at time s. Then equipping L (K)
with pinned Wiener measure �0;t, we see that s ! 
s is a Brownian bridge and
thus a semimartingale. Since �t (e; �) � �0;t and s ! 
s is a �0;t-semimartingale,
we know (see Theorem 2, page 45 of [30]) that s! 
s is a �t (e; �)-semimartingale.
Now the random variables (
; �t (e; �)) and (gt; P ) share the same law. Therefore,
by De�nition 2.24 we see that s! gts is an Ft�-semimartingale.

In this section we provide an explicit decomposition for the Fts-semimartingale
s 7! gts and compute its pullback

R s
0 gt��g

�1
t� . We do this by approximating gt�

by the piecewise C1 functions gPt� (described in De�nition 6.9). Then we compute

the approximate pullback
R �
0

�
@sg

P
ts

� �
gPts
��1

ds (which is a semimartingale since it

is piecewise C1). Then as a result of Propositions 6.13, 6.19, 6.20, and 6.21 we
show that these approximations converge to a process Yts. In Theorem 6.11 we
then show that g satis�es gt� = 1 +

R �
0
Yt�sgts.

We care about the pullback Yt� because we will show in Section 7 that it has a
law to equivalent to that of a Brownian motion on a restricted �-algebra. This will
then imply that Pinned Wiener measure is absolutely continuous with Heat Kernel
measure on � h
sjs 2 [0; 1� ")i for any " > 0 (Recall 
s is evaluation at time s).

6.1. Preliminaries.
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6.1.1. Two parameter processes. We will need to introduce two-parameter stochas-
tic integration in order to state our main result, Theorem 6.11.

Remark 6.2 (The Brownian sheet b generates the �ltration). From De�nition 2.22
we see that Fts = � hg�� j� � t or � � si _ F00. From Theorem 2.25 we see that

g satis�es g�ts = gtsX�ts with g0s = e and Xts =

Z
g�tsg

�1
ts .

Therefore gts is in the �-algebra generated by the random variables

hX�� : (� ; �) 2 [0; t]� [0; s]i ;
and Xts is in the �-algebra generated by the variables

hg�� : (� ; �) 2 [0; t]� [0; s]i :
Again by Theorem 3.19, bts is in the �-algebra generated by the

hX�� : (� ; �) 2 [0; t]� [0; s]i ;
while Xts is in the �-algebra generated by

hb�� : (� ; �) 2 [0; t]� [0; s]i :
Therefore Fts = � hb�� j� � t or � � si _ F00. This observation is important to use
the results of Cairoli and Walsh in [7].

De�nition 6.3 (Cairoli & Walsh [7]). Wewill use the following notions from Cairoli
& Walsh:-

1. Let (
; fFtsg) be our probability space from De�nition 2.22.
2. F1ts � Ft1 _F1s: This is the �-algebra generated by hb��j� � t or � � si _F00

from Remark 6.2.
3. Let b be the Brownian sheet from Theorem 3.19 and let bA � hb; Ai

K
for any

A 2 K.
4. For t1s1 t1 < t2 and s1 < s2, let (t1s1; t2s2] denote the rectangle (t1; t2] �

(s1; s2].
5. Rts � (0; t]� (0; s] = (00; ts].
6. Let L be the set of all R-valued processes � : [0; 1]� [0; 1]�
, so that �ts (�) �
� (t; s; �) is Fts-measurable and the expectation E

R 1
0

R 1
0
�2ts (g) dsdt <1.

7. For any � 2 L, de�ne � ((t1s1; t2s2]) � �t2s2 � �t2s1 � �t1s2 + �t1s1 .
8. A two-parameter process M 2 L such that M vanishes on the axes (i.e.
M0t =Ms0 = 0 P -a.s..) is a strong martingale if E

�
M (t1s1; t2s2] jF1t1s1

�
= 0

for any (t1s1; t2s2] � R11.
9. For t1 < t2 and s1 < s2, let � 2 L be characteristic if � (t; s) = f (!) 1(t1s1;t2s2]

with f 2 F1t1s1 .
10. Let � 2 L be simple if it is a linear combination of characteristic functions.
11. For characteristic processes �ts (g) = f (g) 1(t1s1;t2s2], de�ne the integralZ

bAdtds�ts � f (g) b ((t1s1; t2s2]) :

We can do this because (t1s1; t2s2] \ R11 is a rectangle of the form (��; ts].
12. Extend the de�nition of

R
bAdtd� to simple functions by linearity.

We shall need the following results of Cairoli & Walsh which we state without
proof. They are to be found in [7].
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Theorem 6.4 (Cairoli & Walsh [7]). 1. For any simple � 2 L,

E

����Z bAdtds�ts (g)

����2 = E

����Z 1

0

Z 1

0

�ts (g) dtds

����2 jAj2K :
2.
R
bAdtds provides an isometry between L and L2 (
) and we can extend the

de�nition of
R
bAdtds to all of L via this isometry.

3. For any � 2 L, the process

Mts �
Z
Rts

bAd�d���� �
Z
bAd�d����1Rts (� ; �)

is a strong martingale.
4. For any strong martingale M and for any p � 1, we have

E sup
��t

sup
��s

jM�� jp �
�

p

p� 1

�2p
sup
��t

sup
��s

E jM��jp :

6.1.2. The Norm H2(s).

De�nition 6.5 (The Hilbert-Schmidt norm k�kHS on Mm (R)). LetMm (R) and
GLm (R) be as in Remark 2.18. The Hilbert-Schmidt norm k�kHS of a matrix
k 2Mm (R) with i; j-entries kij is given by

kkkHS =

0@ mX
i=1

mX
j=1

k2ij

1A1=2

:

[Note:- By the equivalence of norms on a linear space in �nite dimensions, k�kHS-
convergence on K is the same as h�; �i

K
-convergence on K.]

The next couple of de�nitions have been adapted for our purposes from Chap.
IV of Protter, [30].

De�nition 6.6 (Very Special Semimartingales). A semimartingale in the sense of
De�nition 2.24 is very special if it can be written as M +

R
�(�)d� where M is a

mean-zero martingale and � is an adapted process. [Such a decomposition is always
unique see Theorem 18, Chap III of [30]]. An Rd -valued semimartingale is very
special if its individual coordinates are very special. In particular, viewingMm (R)
as Rm�m we have a de�nition for very special Mm (R)-valued semimartingales.

De�nition 6.7 (The norm H2 (s) on Mm (R)-semimartingales). Let Mm (R) de-
notem�mmatrices as in De�nition 6.5. By Remark 2.18K � GLm (R) �Mm (R).
Let R be a very special Mm (R)-semimartingale which is Doob-decomposable as
M +

R
�(�)d�.

kRkH2(s) � kMskL2 +





Z s

0

k�(�)kHS d�





L2

=
�
E kMsk2HS

� 1
2

+

 
E

�Z s

0

k�(�)kHS d�
�2! 1

2

:

Theorem 6.8 (Closure of very special semimartingales under k�kH2(s)). LetH2(s)

be the space of all very special Mm (R)-semimartingales R so that kRkH2(s) < 1.

Then H2(s) is a Banach space.
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Proof. Clearly
�
H2(s); k�kH2(s)

�
is a normed vector space. It will su�ce to check

completeness. Let Rn = Mn +
R
�n (u) du be Cauchy. Then Mn is Cauchy in L2

and so converges to some martingale M .
R
�n (u) du is also Cauchy in k�kH2(s). To

show it converges, it will su�ce to show a subsequence converges and so without
losing generality we assume that

1 >
X
n

s
E

�Z s

0

k�n+1(u)� �n(u)kHS du
�2

> E

Z s

0

X
n

k�n+1(u)� �n(u)kHS du

Thus on a set A � 
 of measure 1, we see that the expressionZ s

0

X
n

k�n+1(u)� �n(u)kHS du <1.

Thus on A, Pn k�n+1(u)� �n(u)kHS < 1 a.s.-du. Thus on A there exists some
random variable � (u) so that, �n(u)! � (u) a.s.-du. �n is adapted so � is adapted
as well. hence we are done.

6.1.3. The approximation scheme.

De�nition 6.9. We will proceed to de�ne some basic terms we will need to state
the main Theorem of this section. Let g be the L (K)-valued Brownian motion
from De�nition 2.22. Let X be the K-valued Brownian bridge sheet given by the

Fisk-Stratonowicz integral Xts =
R t
0
g�1�s g��s in Theorem 2.25. Then:-

1. P a partition f0 = t0 < ::: < tn = Tg.
2.

XP(t; s) � Xti�1s
ti � t

ti � ti�1
+Xtis

t� ti�1
ti � ti�1

8t 2 (ti�1; ti]:

3. �jX(s) � Xtjs �Xtj�1s and �jX
A(s) � h�jX(s); Ai

K
for any A 2 K.

4. gP(t; s) be de�ned to be the solution of

@tg
P(t; s) = gP(t; s)@tX

P(t; s) and gP(0; s) = 1:

Observe that for any t 2 (ti�1; ti] the this equation reduces to

@tg
P(t; s) = gP(t; s)

4iX(s)

4it
:

5. Mm (R) be the set of all m�m matrices (see Remark 2.18).
6. De�ne G : GLm (R) ! GLm (R) by setting G (A) � A�1. Recall from Re-

mark 2.18 that GLm (R) denotes invertible m�m matrices.
7. F :Mm (R) !Mm (R) be the exponential map

F : A!
X

An=n!:

Notice that for any A 2 K, we have expA = F (A) where exp : K! K is the
intrinsic exponential map on K.

8. yi � gP(ti; s) = F (41X(s)) � � �F (4iX(s)) :
9. BP(T; s) � R s

0
gP(T; �s)gP(T; s)�1.
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Lemma 6.10. Recall that K � GLm (R) as in Remark 2.18. Let F and G be
transformations of GLm (R) as in De�nition 6.9. Then the following relations hold
where A 2 U and B;C 2 K:-

1.

F 0(A)B =

Z 1

0

F [(1� �)A]BF [�A] d�:(6.1)

2.

F 00(A)B 
 C

=

Z 1

0

d�

Z 1

0

(1� u)F [(1� �) (1� u)A]

� CF [� (1� u)A]BF [uA] du

+

Z 1

0

d�

Z 1

0

uF [(1� u)A]

�BF [(1� � )uA]CF [�uA] du:(6.2)

3.

G0(A)B = �A�1BA�1:(6.3)

4.

G00(A)B 
 C = A�1BA�1CA�1 +A�1CA�1BA�1:(6.4)

5.

sup
A2K

kF 0(A)BkHS � Const kBkHS :(6.5)

6.

sup
A2K




F (n)(A)B1 
 � � � 
Bn





HS

� Const kB1kHS � � � kBnkHS :(6.6)

Proof. See Lemma 8.8 in the appendix.

6.2. The Main Theorem .

Theorem 6.11 (Semimartingale properties of gT �). Let g be a L (K)-valued Brow-
nian motion. Then:-

1. s ! gTs is a K-valued FTs-semimartingale.[Note:-In Remark 6.1 we have
already reached the conclusion that gT � was a semimartingale. We provide
another independent proof since this fact is an easy consequence of our com-
putation.]

2. Z s

0

gT��g
�1
T� =

Z
RTs

Adgt� bdtd� �
Z s

0

d�

1� �

Z T

0

Adgt�Xdt�;

where the expression
R
RTs

Adgt� bdtd� is de�ned as in Theorem 6.4.

The proof of this Theorem will be given after the proof of Theorem 6.17.

Remark 6.12. (Theorem 6.11 is reasonable)g satis�es

g�ts = gtsX�ts with g0s = e;(6.7)
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where X�s is the Brownian bridge sheet from Theorem 2.25. By Theorem 3.19,
there is a Brownian sheet b on K so that

Xts = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�.(6.8)

If we replace X by b in Eq. (6.7), then Lemma 3.9 shows that s ! gTs would
be a K-valued Brownian motion with variance T and hence

R �
0
gT�sg

�1
Ts would be

a K-valued Brownian motion with variance T . In reality, because Xt� contains an
extra �nite-variation term, it turns out that the law of YT � is equivalent (but not
equal) to the law of a Brownian motion on K.

De�ne

YTs �
Z
RTs

Adgt� bdtd� �
Z s

0

d�

1� �

Z T

0

Adgt�Xdt�:(6.9)

In the proof of Theorem 6.11 we will show that gT�s = YT�sgTs with YT0 = 0.
Before we do that we shall need to state a few results.

Proposition 6.13 (Semimartingale decomposition of BPT �). As in De�nition 6.9
let P be a partition of [0:T ] and let

BPT (s) � BP(T; s) =

Z s

0

gP(T; �s)gP(T; s)�1:

De�ne

MP
T (s) �

Z s

0

nPX
i=1

yi�1 (�) (F 0(�iX)d�ib(�)) y
�1
i (�) ;(6.10)

�P1(T; s) � � 1

1� s

nPX
i=1

Adyi�1�iX(s);(6.11)

�P2(T; s) �
nPX
i=1

X
A

(�it)

2
yi�1

�
F 00(�iX)A
2

�
y�1i(6.12)

�
nPX
i=1

X
A

(�it)

2

�
yi�1 (F 0(�iX)A) y�1i

�2
:

Then

BPT (s) =MP
T (s) +

Z s

0

�P1(T; �)d� +

Z s

0

�P2(T; �)d�:(6.13)

This Proposition is proved in subsection 6.4.

Remark 6.14 (Idea of the proof of Theorem 6.11). Given Theorem 6.13 we can in-
dicate the idea of the proof of Theorem 6.11. Roughly speaking we have the fol-
lowing approximations

�P2(T; s)
�=

nPX
i=1

(�it)

2
yi�1

 
F 00(�iX)

X
A

A
2
!
y�1i�1 �

nPX
i=1

X
A

(�it)

2

�
yi�1 (F 0(�iX)A) y�1i�1

�2
=

nPX
i=1

X
A

(�it)

2
yi�1

�
F 00(�iX)A
2 � (F 0(�iX)A)

2
�
y�1i�1

�=
nPX
i=1

X
A

(�it)

2
yi�1

�
F 00(0)A
2 � (F 0(0)A)2 +O(�iX)

�
y�1i�1 �= 0:
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Also one expects

MP
T (s) �

Z s

0

nPX
i=1

yi�1 (�) (F 0(�iX)d�ib(�)) y
�1
i (�)!

Z s

0

Z T

0

Adg(t;�)b(dt; d�)

and

�P1(T; s) � �
1

1� s

nPX
i=1

Adyi�1�iX(s)! � 1

1� s

Z T

0

Adg(t;s)X(dt; s)

as jPj ! 0:

Lemma 6.15. Let z < 1. Let � 2 [�1; 1]. Then there exists a sequence of parti-
tions fPzrg of [0; T ], depending only on T and z with the following properties:-

1. jPzrj # 0 as r !1
2.

sup
fPzrg

sup
�2[0;z]

nPzrX
i=1

kF (��iX(�))� 1k2HS <1 P -a.s.

3. As r !1,




 sup
t2[0;T ]




gPzr(t; s)� gts





HS







Lp

! 0 8p 2 [1;1) ; T <1:

This result is proved in subsection 6.5.

Theorem 6.16. Let B
Pzr
T � be the approximation to

R �
0 gT�sg

�1
Ts as in De�nition 6.9.

LetM
Pzr
T � be the martingale part of B

Pzr
T � as in Proposition 6.13. LetMT � �

R
RT �

Adgtsbdtds
be the martingale part of YT � as in the proof of Theorem 6.11. Then as r !1 the
expression Z �

0

M
Pzr
Td�M

Pzr
Td�g

Pzr
T� !

Z �

0

MTd�MTd�gT� in H2 (z) :

Theorem 6.17. Let t 7! gt� be the canonical L (K)-valued Brownian motion from

De�nition 2.22. Let YT � be as in the proof of Theorem 6.11. Let B
P
z
r

T � be the approx-
imation to

R �
0 gT�sg

�1
Ts as in De�nition 6.9. Then as r !1, we haveZ �

0

B
Pzr
Td�g

Pzr
T� !

Z �

0

YTd�gT� in H2 (z) :

Proof of Theorem 6.11. Since � ! gT� is bounded and continuous, the integralZ �

0

YTd�gT� +
1

2
YTd�YTd�gT�

is well-de�ned. We have only to show that for any z < 1,

g
Pzr
Ts ! 1 +

Z s

0

YTd�gT� +
1

2
YTd�YTd�gT� in H2(z) as r !1:

If this is done, Lemma 6.15 will imply that

gTs = 1 +

Z s

0

YTd�gT� +
1

2
YTd�YTd�gT�:
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This will mean that gT � is a semimartingale and that

YT�sgTs = YTdsgTs +
1

2
YTdsgTds

= YTdsgTs +
1

2
YTdsYTdsgTs

= gT�s:

This will prove the Theorem completely.
So will su�ce to prove, for any z < 1,

g
Pzr
Ts ! 1 +

Z s

0

YTd�gT� +
1

2
YTd�YTd�gT� in H2(z) as r !1.

Doob-decompose YTs as M
Pzr
Ts +

R s
0 �

Pzr(T; �)d�. From De�nition 6.9, notice that

g
Pzr
T�s solves

g
Pzr
T�s = B

Pzr
T�sg

Pzr
Ts with g

Pzr
T0 = 1:

Now let M
Pzr
T � be the martingale part of M

Pzr
T � and let J denote



gPzrT � ��1 + Z �

0

YTd�gT� +
1

2
YTd�YTd�gT�

�




H2(z)

:

We see that

J =





Z �

0

�
B
Pzr
Td�g

Pzr
T� � YTd�gT�

�
+

1

2

�
B
Pzr
Td�B

Pzr
Td�g

Pzr
T� � YTd�YTd�gT�

�




H2(z)

=





Z �

0

�
B
Pzr
Td�g

Pzr
T� � YTd�gT�

�
+

1

2

�
M
Pzr
Td�M

Pzr
Td�g

Pzr
T� � YTd�YTd�gT�

�




H2(z)

By Theorem 6.16,Z �

0

M
Pzr
Td�M

Pzr
Td�g

Pzr
T� !

Z �

0

MTd�MTd�gT� in H2 (z) :

By Theorem 6.17, Z �

0

B
Pzr
Td�g

Pzr
T� !

Z �

0

YTd�gT� in H2 (z) :

Hence we are done.

Remark 6.18. By Eq. (3.5),

Xts = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�:

Computing informally with Ito's Lemma and using Eq. (6.9),

Xts = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�:

Xdts = bdts �
Z s

0

bdt�
(1� s)

(1� �)2
d�:

Xdtds = bdtds � bdtsds

(1� s)
+

Z s

0

bdt�
1

(1� �)2
d�ds

= bdtds � Xdtsds

(1� s)
:
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RTs

Adgt�Xdtd� =

Z
RTs

Adgt� bdtd� �
Z s

0

d�

(1� �)

Z T

0

Adgt�Xdt�:Z
RTs

Adgt�Xdtd� = YTs:

Thus we see that in spirit, YTs equals
R
RTs

Adgt�Xdtd�.

In future, de�ne

Z
RTs

Adgt�Xdtd� = YTs:

6.3. Proof of Theorems 6.16 and 6.17. We will need the following three Propo-
sitions (in addition to Proposition 6.13) in the proof of Theorems 6.16 and 6.17.

Proposition 6.19. Let z < 1 and let fPzrg be the sequence of partitions from

Lemma 6.15 and let M
Pzr
T (�) be the martingale part of B

Pzr
T � =

R s
0
g
Pzr
T��

�
g
Pzr
T�

��1
.

Then M
Pzr
T (s) converges in L2 as r ! 1 to

R
RTs

Adg��bd�d�. Furthermore the

process s! R
RTs

Adg��bd�d� is a Brownian motion on K with variance T .

Proposition 6.20. Let z < 1. Let fPzrg be the sequence of partitions in Lemma

6.15. Let �
Pzr
2 (T; �) be as in Proposition 6.13. Let convergence in H2 (z) be de�ned

as in De�nition 6.7. ThenZ �

0

�
Pzr
2 (T; �)d� ! 0 as jPzrj # 0 in H2(z):

Proposition 6.21. Let z < 1 and let convergence in H2 (z) be as in De�nition

6.7. �
Pzr
1 (T; �) be as in Proposition 6.13. Then as r !1 we have.Z �

0

�
Pzr
1 (T; �)d� ! �

Z �

0

d�

1� �

Z T

0

Adgt�Xdt� in H2(z).

Proof of Theorem 6.16. By Eq. (6.10)

M
Pzr
T (s) �

Z s

0

nPzrX
i=1

yi�1 (�) (F 0(�iX)d�ib(�)) y
�1
i (�) :

which implies

M
Pzr
TdsM

Pzr
Tds

=

nPzrX
i;j=1

yi�1 (s) (F 0(�iX)�ib(ds)) y
�1
i (s) yj�1 (s) (F 0(�jX)�jb(ds)) y

�1
j (s)

=
X
A

nPzrX
i=1

yi�1 (s) (F 0(�iX)A)
�
y�1i yi�1

�
(s) (F 0(�iX)A) y�1i (s)�itds:

By De�nition 6.9, yi = yi�1F (4iX(s)), so we have y�1i yi�1 = F (�4iX(s)). Thus

M
Pzr
TdsM

Pzr
Tds =

X
A

X
i=1

Adyi�1 [(F
0(�iX)A)F (�4iX)]

2
�itds:(6.14)

Also, by Theorem 6.19,

MTdsMTds = Tds
X
A

A2 = ds
X
A

nPzrX
i=1

�
Adyi�1A

2
�
�it:(6.15)
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Then using Equations (6.14) and (6.15) we have

jj
Z �

0

M
Pzr
Td�M

Pzr
Td�g

Pzr
T� �MTd�MTd�gT�jjH2(z)

=








R �
0

�
M
Pzr
Td�M

Pzr
Td� �MTd�MTd�

�
g
Pzr
T�

+
R �
0MTd�MTd�

�
g
Pzr
T� � gT�

� 






H2(z)

�




Z �

0

�
M
Pzr
Td�M

Pzr
Td� �MTd�MTd�

�
g
Pzr
T�






H2(z)

+





Z �

0

MTd�MTd�

�
g
Pzr
T� � gT�

�




H2(z)

= J1 + J2:

Using the de�nition of k�kH2(z) (see De�nition 6.7):

J22 =





Z �

0

MTd�MTd�

�
g
P
z
r

T� � gT�

�



2
H2(z)

=







Z �

0

Td�

 X
A

A2

!�
g
P
z
r

T� � gT�

�





2

H2(z)

= E

 Z z

0

Td�







 X

A

A2

!�
g
Pzr
T� � gT�

�





HS

!2

� CE

�Z z

0

Td�



gPzrT� � gT�





HS

�2
;

which vanishes by dominated convergence and Lemma 6.15.
Again using De�nition 6.7:

J21 =





Z �

0

�
M
Pzr
Td�M

Pzr
Td� �MTd�MTd�

�
g
Pzr
T�





2
H2(z)

=







Z �

0

d�
X
A

nPzrX
i=1

�itAdyi�1

�
[(F 0(�iX)A)F (�4iX)]

2 �A2
�
g
Pzr
T�







2

H2(z)

= E

"Z z

0

d�






X
A

nPzrX
i=1

�itAdyi�1

�
[(F 0(�iX)A)F (�4iX)]

2 �A2
�
g
Pzr
T�







#2

� CE

 Z z

0

d�
X
A

nPzrX
i=1

�it



[(F 0(�iX)A)F (�4iX)]

2 �A2




HS

!2
:

By Lemma 6.10, F 0(�iX)A is bounded in k�kHS . Thus k(F 0(�iX)A)F (�4iX)kHS
and kAkHS are bounded. Observing this and decomposing

[(F 0(�iX)A)F (�4iX)]2 �A2

= (F 0(�iX)A)F (�4iX) [(F 0(�iX)A)F (�4iX)�A]

+ [(F 0(�iX)A)F (�4iX)�A]A;
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we have

J21 � CE

0@Z z

0

d�
X
i;A

�it k(F 0(�iX)A) exp (�4iX)�AkHS

1A2

:

The integrand in this last expression is bounded and hence J21 vanishes by the
dominated convergence Theorem.

Proof of Theorem 6.17. Doob decompose YT � as the sum of its martingale part
MT � and its bounded variation part

R �
0 � (�) ds. Then, from Theorem 6.11 we have

MT � �
R
RT �

Adgtsbdtds and � (�) = � 1
1��

R T
0 Adgt�Xdt�.

By the de�nition of k�kH2(z) (see De�nition 6.7) and the expression for B
Pzr
Ts in

Eq. 6.13

jj
Z �

0

B
Pzr
Td�g

Pzr
T� � YTd�gT� jjH2(z)

�




Z �

0

�
B
Pzr
Td� � YTd�

�
g
Pzr
T�






H2(z)

+





Z �

0

YTd�

�
g
Pzr
T� � gT�

�




H2(z)

=





Z z

0

�
M
P
z
r

Td� �MTd�

�
g
P
z
r

T�






L2

+





Z �

0

d�
�
�
Pzr
1 (T; �) + �

Pzr
2 (T; �)� �T�

�
g
Pzr
T�






H2(z)

+





Z z

0

MTd�

�
g
Pzr
T� � gT�

�




L2

+





Z �

0

� (T; �)
�
g
Pzr
T� � gT�

�
d�






H2(z)

= I1 + I2 + I3 + I4:

I21 = E





Z z

0

�
M
Pzr
Td� �MTd�

�
g
Pzr
T�





2
HS

= E






X
A

Z s

0

D
M
Pzr
Td� �MTd�; A

E
K
Ag

Pzr
T�







2

HS

� dimK
X
A

E





Z s

0

Ag
Pzr
T�

D
M
Pzr
Td� �MTd�; A

E
K





2
HS

= dimK
X
A

E

Z s

0




AgPzrT�


2
HS

D
M
Pzr
Td� �MTd�; A

E2
K

� C
X
A

E

Z s

0

D
M
Pzr
Td� �MTd�; A

E2
K

= CE



MPzr

Td� �MTd�




2
K
! 0 as r !1;
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by Theorem 6.19 and the equivalence of norms on �nite-dimensional spaces.

I22 =





Z �

0

d�
�
�
Pzr
1 (T; �) + �

Pzr
2 (T; �)� �T�

�
g
Pzr
T�





2
H2(z)

= E

�Z z

0




�Pzr1 (T; �)� �(T; �) + �
Pzr
2 (T; �)





HS




gPzrT�



HS

d�

�2
� C





Z �

0

�
Pzr
1 (T; �)� �(T; �)





2
H2(z)

+ C





Z �

0

�
Pzr
2 (T; �)





2
H2(z)

! 0 as r !1 by Theorems 6.20 and 6.21.

I23 = E





Z z

0

MTd�

�
g
Pzr
T� � gT�

�



2
L2

= E







Z z

0

X
A

�
Ag

Pzr
T� �AgT�

�
MA
Td�







2

HS

= dimK
X
A

E





Z z

0

�
Ag

Pzr
T� �AgT�

�
MA
Td�





2
HS

= dimK
X
A

E

Z z

0




AgPzrT� �AgT�




2
HS

MA
Td�M

A
Td�

= dimK
X
A

E

Z z

0




AgPzrT� �AgT�




2
HS

Td�

! 0 by Dominated Convergence.

I24 = E

�Z z

0

k�(T; �)kHS



gPzrT� � gT�





HS

d�

�2
� E

Z z

0

k�(T; �)k2HS d�
Z z

0




gPzrT� � gT�





HS

d�

�
s
E

�Z z

0

k�(T; �)k2HS d�
�2s

E

�Z z

0




gPzrT� � gT�





HS

d�

�2

�
s
E

Z z

0

k�(T; �)k4HS d�
s
E

�Z z

0




gPzrT� � gT�





HS

d�

�2
:

We will be done by dominated convergence if we can only show that

E

Z z

0

k�(T; �)k4HS d� <1:

But �(T; �) = � 1
1��

eXT� where eX�� � R �0 Adgu�Xdu�. Thus

E

Z z

0

k�(T; �)k4HS d� � 1

(1� z)
4 sup
[0;z]

E



 eXT�




4
HS

<
1

(1� z)4
sup
[0;z]

3
�
T� � �2

�2
;
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since eX�� is a Brownian motion with parameter
�
� � �2

�
by Lemma 7.10. Hence

we are done.

6.4. Propositions 6.13, 6.19, 6.20, 6.21.

6.4.1. Proof of Proposition 6.13.

.

yn (s) = F (�1X (s)) � � �F (�iX (s))

�yn (s) =

nPX
i=1

yi�1 (s) (�F (4iX (s))) y�1i (s) yn (s)

�yn (s) y
�1
n (s) =

nPX
i=1

yi�1 (s) (�F (4iX (s))) y�1i (s)

=

nPX
i=1

Adyi�1 ((�F (4iX))F (�4iX))

=

nPX
i=1

Adyi�1 ((dF (4iX))F (�4iX))

+
1

2

nPX
i=1

Adyi�1 (dF (4iX) dF (�4iX))

+
1

2

nPX
i=1

�
dAdyi�1

�
(dF (4iX)F (�4iX))

= I + J +K:

Letting A run through an orthonormal basis of K we can write dF (4iX (s)) as

dF (4iX) =
X
A

d4ib
A (s) (F 0 (4iX (s))A) + �nite variation terms.(6.16)

From Lemma 8.3 we can see that

d4ib
A (s) d4jb

B (s) = �ij hA;BiK (4it) ds:(6.17)

From Eq. [6.16] and Eq. [6.17] above, we can conclude that

K = 0

and that

J =
1

2

nPX
i=1

Adyi�1

�
dF (4iX) d

�
F (4iX)

�1
��

= �1

2

nPX
i=1

yi�1 (dF (4iX))F (4iX)
�1

(dF (4iX))F (4iX)
�1
y�1i�1

= �1

2

nPX
i=1

�
yi�1 (dF (4iX)) y�1i

�2
= �1

2

nPX
i=1

X
A

�
yi�1 (F 0 (4iX)A) y�1i

�2
(4it) ds:
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By Ito's Lemma, I can be computed as

I =

nPX
i=1

yi�1

�
F 0(�iX) (d�iX) +

1

2
F 00(�iX) (d�iX)


2
�
y�1i :

Thus

�yn (s) y
�1
n (s) =

nPX
i=1

yi�1

�
F 0(�iX) (d�iX) +

1

2
F 00(�iX) (d�iX)


2
�
y�1i

�1

2

nPX
i=1

X
A

�
yi�1 (F 0 (4iX)A) y�1i

�2
(4it) ds:

Using this result , Ito's Lemma, and Eq. (3.5),

BPT (ds) =

nPX
i=1

yi�1 (F 0(�iX)d�iX) y�1i

+
1

2

nPX
i=1

X
A

(�it) yi�1
�
F 00(�iX)A
2

�
y�1i ds

�1

2

nPX
i=1

X
A

�it
�
yi�1 (F 0(�iX)A) y�1i

�2
ds

=

nPX
i=1

yi�1 (s)
�
F 0(�iX)ds

�
�ib (s)�

Z s

0

�ib (�)
(1� s)

(1� �)2
d�

��
y�1i (s)

+
1

2

nPX
i=1

X
A

(�it)

"
yi�1

�
F 00(�iX)A
2

�
y�1i

� �yi�1 (F 0(�iX)A) y�1i
�2 # ds:

Therefore,

dBPT (s) =

nPX
i=1

yi�1 (F 0(�iX)�ib(ds)) y
�1
i

�
nPX
i=1

yi�1

�
F 0(�iX)

�
�ib(s)

(1� s)
�
Z s

0

�ib(�)

(1� �)2
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y�1i ds

+
1

2

nPX
i=1

X
A

(�it)

"
yi�1

�
F 00(�iX)A
2

�
y�1i

� �yi�1 (F 0(�iX)A) y�1i
�2 # ds:

= dMP
T (s) + e�P1(T; s)ds+ �P2(T; s)ds;

where we have de�ned

e�P1(T; s) � �
nPX
i=1

yi�1

�
F 0(�iX)

�
�ib(s)

(1� s)
�
Z s

0

�ib(�)

(1� �)2
d�

��
y�1i :

So to be done, we only need to show that �P1 (T; s) = e�P1(T; s).
By Eq. (3.5) of Theorem 3.19

Xts

1� s
=

bts
1� s

�
Z s

0

bt�d�

(1� �)2
:
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So simplifying, we see that

e�P1(T; s) = � 1

1� s

nPX
i=1

yi�1 [F 0(�iX)�iX(s)] y�1i :

But again we must make the observation that F jK is the Lie group exponential
map. Therefore we have t 7! F (tA) satis�es F 0 (tA)A = F (tA)A. Therefore we
see that

e�P1(T; s) = � 1

1� s

nPX
i=1

yi�1 [F (�iX)�iX(s)] y�1i :

Now from De�nition 6.9 observe that yi (s) = yi�1 (s)F (4iX (s)). Thus y�1i yi�1 =
F (�4iX (s)).

Thus we are done since

e�P1(T; s) = � 1

1� s

nPX
i=1

Adyi�1 [F (�iX)�iX(s)F (�4iX (s))]

= � 1

1� s

nPX
i=1

Adyi�1�iX(s)

= �P1(T; s):

6.4.2. Proof of Proposition 6.19.

Lemma 6.22. Recall that M
Pzr
T (s) is the martingale part of B

Pzr
T (s). Then

M
Pzr
T (s) \approximates"

Z s

0

nPzrX
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yi�1 (d�ib) y
�1
i :

Speci�cally, for any s 2 [0; z],
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Proof.

Let J �
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Z s

0

nPzrX
i=1

yi�1 (d�ib) y
�1
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L2

:

Using Eq.(6.10) yields and Lemma 8.7,
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yi�1 (d�ib) y
�1
i �
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0
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yi�1 (F 0(�iX)d�ib) y
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= E
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0
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i=1

X
A

yi�1 (A� F 0(�iX)A) y�1i d�ib
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2
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:
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Applying Lemma 8.7 to this last term shows that

J2 = E
X
i;A

�it

Z s

0



yi�1 (A� F 0(�iX)A) y�1i


2
HS

d�

= C
X
i;A

�it

Z s

0

d�E kA� F 0(�iX)Ak2HS :

Appealing to Eq. (6.1), the expression

kA� F 0(�iX)Ak2HS =





Z 1

0

fA� F ((1� � )�iX)AF (��iX)g d�




2
HS

is bounded because e��iX is group valued (and hence bounded). Thus J2 ! 0 as
r !1 by Dominated Convergence.

Lemma 6.23. The expressionZ s

0

nPzrX
i=1

yi�1 (d�ib) y
�1
i \approximates"

Z s

0

nPzrX
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�
Adyi�1d�ib

�
:

Speci�cally, for any s 2 [0; z] we have as r !1
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! 0:

Proof. Using Lemma 6.15,and Dominated Convergence,
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2
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r!1

E







Z s

0

nPzrX
i=1

X
A
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2
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r!1

E
X
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Adyi�1 (A�AF (��iX))


2
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X
i

�it k1� F (��iX)k2HS d�

= CE

Z s

0

lim
r!1

X
i

�it k1� F (��iX)k2HS d� = 0:

The expression
P
i�it k1� F (��iX)k2HS is bounded since F (��iX) isK-valued

and
P
i�it = 1. So by Dominated convergence, this last term becomes

= CE

Z s

0

lim
r!1

X
i

�it k1� F (��iX)k2HS d�:

Now

lim
r!1

X
i

�it k1� F (��iX)k2HS

� lim
r!1

jPzrj sup
r

X
i

k1� F (��iX)k2HS :
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By Lemma 6.15 this last expression goes to 0 in the limit as r !1:

Lemma 6.24. Let P be a partition of [0; T ], gPt� the approximation to gt�, and
yi (�) = gPti� as in De�nition 6.9. Then for any s 2 [0; z],Z s

0

nPX
i=1

�
Adyi�1(�)d�ib (�)

�
=

Z
RTs

AdgP
[�]�

bd�d�:

where [� ] � ti�18� 2 (ti�1; ti].

Proof. It will su�ce to showZ s

0

Adyi�1(�)4ib (d�) =

Z
(ti�10;tis]

AdgPti�1�
bd�d�:

Letting Qr be a re�ning sequence of partitions of [0; s], we have, by Theorem 6.4

Z
(ti�10;tis]

AdgPti�1�
bd�d� = lim

r!1

X
sj2Qr

AdgPti�1sj�1
b (ti�1sj�1;tisj ] ;

where the limit is taken in L2. However,

lim
r!1

X
sj2Qr

AdgPti�1sj�1
b (ti�1sj�1;tisj ]

=

Z s

0

AdgPti�1�

�
btid� � bti�1d�

�
=

Z s

0

Adyi�1(�)4ib (d�) :

As usual, we use the fact that gP is bounded and the metric is Ad-invariant. So
dominated convergence goes through and L2 convergence is justi�ed.

Lemma 6.25. Let g
Pzr
�� be the approximation to g�� from De�nition 6.9. Then for

any s 2 [0; z], Z
RTs

Ad
g
Pzr
[�]�

bd�d� !
Z
RTs

Adg��bd�d� in L2 as r !1:

Proof. Let
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Z

RTs
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g
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[�]�

bd�d� �
Z
RTs

Adg��bd�d�





2
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:

By Theorem 6.4,

J = E
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Z
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�
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g
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A�Adg��A

�
bAd�d�







2

HS

:
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J � C
X
A

X
pq
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g
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�
pq
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!2
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g
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�
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A
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0
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g
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�
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� C
X
A

E

Z T

0
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0

d�



gPzr[� ]� � g��




2
HS

+





�gPzr[� ]���1 � (g��)
�1




2
HS

! 0 as r !1 by Dominated Convergence and Lemma 6.15.

Proof of Proposition 6.19. For the purposes of this proof, de�ne the symbol `v' to
mean \has the same limit in L2 as jPzrj ! 0"). De�ning [� ] � ti�1 8� 2 (ti�1; ti],
for any s 2 [0; z],

M
Pzr
T (s) v

Z s

0

nPzrX
i=1

yi�1 (d�ib) y
�1
i by Lemma 6.22;

Z s

0

nPzrX
i=1

yi�1 (d�ib) y
�1
i v

Z s

0

nPzrX
i=1

�
Adyi�1d�ib

�
by Lemma 6.23;

Z s

0

nPzrX
i=1

�
Adyi�1d�ib

�
=

Z
R1s

Ad
g
Pzr
[�]�

bd�d� by Lemma 6.24;Z
RTs

Ad
g
Pzr
[� ]�

bd�d� v

Z
RTs

Adg��bd�d� by Lemma 6.25.

Putting all this together yields

M
Pzr
T (s) v

Z
RTs

Adg��bd�d�:

We have still to show that
R
RTs

Adg��bd�d� is a K-valued Brownian motion with
parameter T . Let J denote the process

J �
Z �

0

nPzrX
i=1

�
Adyi�1d�ib

�
:

By Lemmas 6.24 and 6.25

Js v

Z
RTs

Adg��bd�d�:

Thus, since L2 limits of Brownian motions are Brownian motions, it su�ces to show
the process s! Js is a Brownian motion:

The rest of the proof is devoted to showing that s ! Js is a Brownian motion:
with parameter T . We shall use the notation [N ]� to denote the quadratic variation
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of a martingale N . If N is an Rd -valued martingale then

[N ]� =
X
i;j

h
N (i); N (j)

i
ei 
 ej ;

where ei is a basis for Rd and
�
N (i); N (j)

�
are the joint quadratic variations of the

R-valued martingales N (i) and N (j). Let Epq be the matrix with ij-entry �ip�jq .
Letting fAg run through an orthonormal basis of K, we have

[J ]s =
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X
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=
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2
!
Ts:

Thus by Levy's Theorem s! Js is a Brownian motion with parameter t.

6.4.3. Proof of Proposition 6.20.

Lemma 6.26. The expression
P
Pzr
(4it) yi�1

�
F 00 (4iX)A
2

�
y�1i is approximately

the same as the expression
P
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(4it)Adyi�1F

00 (4iX)A
2. Speci�cally, P -a.s. as
r !1,
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HS

! 0:

Proof. Recall yi = yi�1F (4iX) as in De�nition 6.9. Using the boundedness of the
Adjoint operator (i.e. the fact that supk2K jAdkj <1) gives us

Jr =
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By Lemma 6.15,

sup
r

X
Pzr

kF (�4iX)� 1k2HS <1, P -a.s.

Hence we are done.

Lemma 6.27. The expression
P
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�
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	2
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the same as the expression
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2
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Proof.
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+
X
Pzr
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�
y�1i yi�1 � 1

�
(F 0 (4iX)A)

	
:

Bringing the Hilbert-Schmidt norm within the sum, exploiting the boundedness of
the Adjoint operator, and using Eq. (6.6) of Lemma 6.10; we see that the norm of
this last expression is bounded above by

Const
X
Pzr

(4it)


y�1i yi�1 � 1




HS

� Const

0@X
Pzr

(4it)
2
X
Pzr



y�1i yi�1 � 1


2
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1A1=2

:

Now from De�nition 6.9 we see that y�1i yi�1 = F (�4iX). Now invoking Lemma
6.15 we see that this last expression vanishes in the limit.
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Lemma 6.28. As usual, let F be the exponential map as in De�nition 6.9. Then
as r !1 we have, P -a.s., thatX

Pzr

(4it)



F 00 (4iX)A
2 � (F 0 (4iX)A)

2




HS

! 0:

Proof. Let Ir ,Jr be de�ned as follows:
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;
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HS

:

It will su�ce to show that the random variables Ir and Jr vanish almost surely as
r !1. To do this, �rst notice that F 0 (0)A = A and that F 00 (0)A
2 = A2.

The expression
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X
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(4it) k4iXkHS , by Lemma 6.10.

However, the expression
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35X
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(4it)
2
:(6.18)

Invoking Eq. [6.24] in the proof of Lemma 6.15, we see that the right hand side
of Eq. [6.18] goes to zero as r !1. Thus Ir ! 0, P -a.s., as r !1.

Turning now to Jr, we see that

Jr =
X
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Therefore,

Jr � C
X
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(4it) k4iXkHS ! 0 by Eqs. [6.18] and [6.24].
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Proof of Proposition 6.20. Let yi (�) denote gP
z
r

ti� as in De�nition 6.9. Let F be the
exponential map acting on m�m matrices as in De�nition 6.9. Let A run through
an orthonormal basis of K. Let

Jr �
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�
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2
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:

Then using H�older's inequality and the fact that s � 1 yields
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:

Notice that by invoking Eq. (6.6) of Lemma 6.10 as well as the boundedness of
K, we see that the Hilbert-Schmidt norm in Eq. (6.19) is bounded. Thus we can
invoke dominated convergence and so it su�ces to show for �xed A that as r !1,
we have, P -a.s., that the expressionX
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For simplicity, we shall use \v" to mean \has the same limit in K". Explicitly�
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By Lemma 6.26 we haveX
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By Lemma 6.27 we haveX
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Invoking the boundedness of the Adjoint operator on (K; k�kHS), and letting J
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we have

J �
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However by Lemma 6.28 as r !1 we have, P -a.s., thatX
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Hence we are done.

6.4.4. Proof of Proposition 6.21.

. Let s 2 [0; z] and let yi (�) denote gP
z
r

ti� as in De�nition 6.9. Let F be the matrix-
exponential map as in De�nition 6.9. Let A run through an orthonormal basis of
K.

By Eq. (6.11)
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vanishes in the limit. Thus we have:
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Thus since z < 1, the problem reduces to showing
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vanishes in the limit. By Lemma 8.3 XA
dt�X

B
dt� = �AB

�
� � �2

�
dt. Evaluate our

last expression yields
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A
�2
pq

�
� � �2

�
dt

=
X
A

�
� � �2

�
E

Z T

0




Adgt�A�Ad


Pzr
t�

A



2
HS

dt

� C
X
A

�
� � �2

� Z T

0

E



gt� � 


Pzr
t�




2
HS

+E





g�1t� �
�


Pzr
t�

��1



2
HS

dt:

Thus by Dominated convergence and the continuity of inverses, it will su�ce to

show



gt� � 


P
z
r

t�





HS

! 0 P -a.s. De�ne [t] � ti�1 for any t 2 [ti�1; ti). Then



Pzr
t� = g

Pzr
[t]� . 


gt� � g

Pzr
[t]�





HS

�


gt� � g[t]�




HS

+



g[t]� � g

Pzr
[t]�





HS

:

By Lemma 6.15,

sup
t2[0;T ]




gPzr(t; �)� gt�





HS

! 0, P -a.s.

Thus, for each !, pick a partition Pzr so that



g�� � g

P
z
r��




1
< " for all m � n. Pick

m > n so that


gt� � g[t]�




HS

< ". Then we see that



gt� � g

Pzr
[t]�





HS

! 0 almost

surely and so we are done.

6.5. Good partitions(proof of Lemma 6.15).

Theorem 6.29. For any r 2 N, let ti � iT
2r , and letePr � f0 = t0 < � � � < t2r = Tg

be a partition of [0; T ]. Let t 7! gt� be an L (K)-valued Brownian motion and let

g
ePr
ts be the approximation from De�nition 6.9. Then g

ePr(�; s) converges to g�s in Lp
for any p 2 [1;1) as r !1. Speci�cally, we have




 sup

t2[0;T ]




gePr(t; s)� gts





HS







Lp

! 0 8p 2 [1;1) ; T <1:

This result is a direct consequence of Theorem 7.2 in [21]. See also Wong and
Zakai [31].

Proof of Theorem 6.29. View GLm (R) as Rm
2

. Then the path t ! Xts is an
element of the Wiener space

W0

�
Rm

2
�
�
n
� 2 C

�
[0; 1]! Rm2

�
j� (0) = 0

o
:
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Let �r = T=r. Then X
ePr
ts is an approximation to the Wiener process t ! Xts in

the sense of De�nition 7.1 of Ikeda and Watanabe [21]. Now apply Theorem 7.2 of
[21] to show that as r !1,

sup
t2[0;T ]




gePrts � gts





HS

! 0 in L2 (
) :

Both processes g
ePr
ts , and gts areK valued and hence bounded in the Hilbert Schmidt

norm. Conclude that

sup
t2[0;T ]




gePrts � gts





HS

! 0 in Lp (
) :

Lemma 6.30. Let fPrg be a sequence of partitions of the interval [0; T ] so that
jPrj ! 0 as r !1. Then there exists a subsequence of partitions fP0rg so that

sup
fP0rg

sup
1�s���0

������
n
P0rX
i=1

�ib
A(s)�ib

A(�)

������ <1, P -a.s.

Proof of Lemma 6.15. Let
nePro be the sequence of partitions chosen in Theorem

6.29. We will show that there exists a subsequence fPzrg of partitions of the
nePro

depending only on T and z, with jPzrj # 0 as r !1 and

sup
fPzrg

sup
�2[0;z]

nPzrX
i=1

kF (��iX(�))� 1k2HS <1 P -a.s.

Since fPzrg is a subsequence of the
nePro from Theorem 6.29, we will still have




 sup

t2[0;T ]




gPzr(t; s)� gts





HS







Lp

! 0 8p 2 [1;1) ; T <1;

as r !1 and so we shall be done.

Let
nePro be a re�ning sequence of partitions, so that

���ePr��� # 0 as r !1.

kF (��iX(s))� 1kHS �
1X
j=1

1

j!
k��iX(s)kjHS

� k��iX(s)kHS
1X
j=0

1

(j + 1)!
k��iX(s)kjHS

� k��iX(s)kHS
1X
j=0

1

j!
k��iX(s)kjHS :

By the equivalence of norms in �nite dimensions there is some �nite constant so
that for any A 2 K, we have kAkHS � C kAk

K
. Thus

kF (��iX(s))� 1kHS � k��iX(s)kHS exp fC j�j k�iX(s)k
K
g :(6.20)

But picking a particular orthonormal basis fAg of K, we have
k�iX(s)k2

K
=
X
A

�
�iX

A(s)
�2
:



ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE 73

By Eq. [3.5] we see that

k�iX(s)k2
K

=
X
A

�
�ib

A(s)�
Z s

0

�ib
A(�)

(1� s)

(1� �)2
d�

�2
�

X
A

����ib
A(s)

��+ Z s

0

���ib
A(�)

�� (1� s)

(1� �)2
d�

�2

�
X
A

"
sup

(�;�)2RTs

��bA���� �1 + Z s

0

(1� s)

(1� �)2
d�

�#2
;

where we have let RTs denote the rectangle [0; T ]� [0; s] in R2 . NowZ s

0

(1� s)

(1� �)2
d� = (1� s)

Z
d

�
1

1� �

�
= s � 1;

and therefore

k�iX(s)k2K � 4
X
A

sup
(�;�)2R1;1

��bA����2 :(6.21)

By Theorem 6.4 we have

E sup
R1;1

��bA����2 � 24 sup
R1;1

E
��bA����2 � 24 <1:(6.22)

Therefore by Eq. [6.21]

exp [C j�j k�iX(s)k
K
] � exp

"
C
X
A

sup
R1;1

��bA����2
#
=: eC:

By Eq. [6.22], eC <1, P -a.s.

Thus returning to Eq. [6.20], we have P -a.s..,

n
ePrX
i=1

kF (��iX(s))� 1k2HS � k��iX(s)k2HS expC j�j k�iX(s)k
K

� eC n
ePrX
i=1

k��iX(s)k2HS

� eCX
A

n
ePrX
i=1

���iX
A(s)

��2 :(6.23)

eC is independent of the partition sequence
nePro as well as the partition points

ftig. Thus it will su�ce to show that we can �nd a subsequence of partitions fPzg
so that

sup
r

sup
[0;1�"]

X
A

nPzrX
i=1

���iX
A(s)

��2 <1:(6.24)
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Let
�
P1r
	
be the subsequence of

nePro from Lemma 6.30. By Ito's Lemma,

n
P1rX
i=1

���iX
A(s)

��2 = sT +

n
P1rX
i=1

Z s

0

2�iX
A(�)�iX

A(d�):(6.25)

By Theorem 3.19

�iX
A (�) = �ib

A (�)�
Z �

0

�ib
A (u)

(1� �)

(1� u)2
du

and so

�iX
A (d�) = �ib

A (d�)� �ib
A (�)

(1� �)2
d� +

Z �

0

�ib
A (u) du

(1� u)2
d�:

Therefore

Z s

0

n
P1rX
i=1

�iX
A(�)�iX

A(d�)

�
Z s

0

n
P1rX
i=1

�iX
A(�)�ib

A (d�)�
Z s

0

n
P1rX
i=1

�iX
A(�)�ib

A (�)

(1� �)2
d�

+

Z s

0

Z �

0

n
P1rX
i=1

�iX
A(�)�ib

A (u) du

(1� u)2
d�

= I1 � I2 + I3:(6.26)

I1 =

Z s

0

n
P1rX
i=1

�iX
A(�)�ib

A (d�) is an F1s-martingale.

By Doob's Lp-inequality, we have

E

"
sup
s2[0;1]

I1

#2
� 2E

24Z 1

0

n
P1rX
i=1

�iX
A(�)�ib

A (d�)

352

= 2

n
P1rX
i=1

(�it)
2
Z 1

0

G0 (�; �) d�

! 0 as r !1:

Thus we can �nd a subsequence
�
P2r
	
of
�
P1r
	
so that sups2[0;1] jI1j ! 0 P -a.s. as

r !1 and so that

sup
r

sup
s2[0;1]

jI1j <1 P -a.s.
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Applying Theorem 3.19 to I2 yields

sup
r

sup
s2[0;1�"]

jI2j

= sup
r

sup
s2[0;1�"]

������
Z s

0

n
P2rX
i=1

�iX
A(�)�ib

A (�)

(1� �)2
d�

������
� sup

r
sup
s2[0;1]

������
n
P2rX
i=1

�ib
A (�)�ib

A (�)

������
Z 1�"

0

d�

(1� �)2

+ sup
r

sup
s2[0;1]

������
n
P2rX
i=1

�ib
A (�)�ib

A (u)

������
Z 1�"

0

Z �

0

d�du

(1� �)(1� u)2
:

This expression is �nite by Lemma 6.30. A last invocation of Theorem 3.19 and
Lemma 6.30 gives

sup
r

sup
s2[0;1�"]

jI3j

= sup
r

sup
s2[0;1�"]

������
Z s

0

Z �

0

n
P2rX
i=1

�iX
A(�)�ib

A (u) du

(1� u)2
d�

������
� sup

r
sup
s2[0;1]

������
n
P2rX
i=1

�ib
A (�)�ib

A (u)

������
Z 1�"

0

Z �

0

dud�

(1� u)2

+ sup
r

sup
s2[0;1�"]

������
n
P2rX
i=1

�ib
A (u)�ib

A (�)

������
�
Z 1�"

0

Z �

0

Z �

0

(1� �)d�dud�

(1� �)2(1� u)2

<1:

Therefore returning to 6.26 we see that

sup
r

sup
s2[0;1�"]

������
Z s

0

n
P2rX
i=1

�iX
A(�)�iX

A(d�)

������ <1 P -a.s.

Thus by Eq. [6.25] we see that

sup
r

sup
s2[0;1�"]

n
P2rX
i=1

���iX
A(s)

��2 <1 P -a.s.

Taking Pzr = P
2
r we see that Eq. [6.24] is satis�ed and so we are done.

Proof of Lemma 6.30. By Ito's Lemma,

nPrX
i=1

���ib
A(s)

��2 = sT +

Z s

0

nPrX
i=1

2�ib
A(�)�ib

A(d�):(6.27)
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Therefore,

sup
[0;1]

nPrX
i=1

���ib
A(s)

��2 = 1 + sup
[0;1]

�����
Z s

0

nPrX
i=1

2�ib
A(�)�ib

A(d�)

����� :
Since the process

s!
Z s

0

nPrX
i=1

2�ib
A(�)�ib

A(d�)

is an F1s-martingale, by Doob's Lp-inequality we have

E sup
s2[0;1]

�����
Z s

0

nPrX
i=1

�ib
A(�)�ib

A(d�)

�����
2

� 4E

�����
Z 1

0

nPrX
i=1

�ib
A(�)�ib

A(d�)

�����
2

�
nPrX
i=1

Z 1

0

E
�
�ib

A
�2
(�)�itd�

=

nPrX
i=1

Z 1

0

(�it)
2 �d� � 1

2
jPrj ! 0:

Therefore there exists a subsequence of partitions
�
P1r
	
so that the expression

sup
s2[0;1]

������
Z s

0

n
P1rX
i=1

�ib
A(�)�ib

A(d�)

������! 0, P -a.s. as r !1.

Returning to Eq.[6.27]we see that

sup
r

sup
s2[0;1]

n
P1rX
i=1

���ib
A(s)

��2 <1, P -a.s.(6.28)

If s � � then

s!
n
P1rX
i=1

�
�ib

A(s)��ib
A(�)

�
�ib

A(�) is an F1s-martingale,

and so by Doob's inequality, we have

E sup
s2[0;1]

������
n
P1rX
i=1

�
�ib

A(s)��ib
A(�)

�
�ib

A(�)

������
2

� 2E

������
n
P1rX
i=1

�
�ib

A(1)��ib
A(�)

�
�ib

A(�)

������
2

:
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By incremental independence of the Brownian sheet, this previous expression is just

= E

n
P1rX
i=1

E
�
�ib

A(1)��ib
A(�)

�2
E
�
�ib

A
�2
(�)

= E

n
P1rX
i=1

(�it)
2
(1� �)�

! 0 as r !1:

Thus there is a subsequence
�
P2r
	
so that

sup
r
sup
s>�

n
P2rX
i=1

�
�ib

A(s)��ib
A(�)

�
�ib

A(�) <1 P -a.s.(6.29)

If 1 � s � �, we can always replace a given sequence fPgof partitions by a subse-
quence

�
P2r
	
so that

sup
r

sup
1�s���0

������
n
P2rX
i=1

�ib
A(s)�ib

A(�)

������
� sup

r
sup

1�s��

������
n
P2rX
i=1

�
�ib

A(s)��ib
A(�)

�
�ib

A(�)

������+ sup
r

sup
�2[0;1]

n
P2rX
i=1

�
�ib

A
�2
(�)

<1 P -a.s. by Eqs. [6.29] and [6.28].

Letting fP0g denote this subsequence �P2r	, we are done.
7. HKM #Fsv PWM #Fs

Theorem 7.1. �1 (e; �)[Heat Kernel measure on L (K)] is equivalent to �0[Pinned
Wiener Measure on L (K)] as measures on (L (K) ;Gz) where Gz � � hxt : t 2 [0; z]i,
for any z < 1.

We supply the proof of this result at the end of this section.

De�nition 7.2. Let Bts be de�ned to solve the Fisk-Stratonowicz equation Bt�s =
bt�sBts with Bt0 = e where b is the Brownian sheet from Theorem 3.19. By the
following Remark, we see that t! Bts is a Brownian motion on K with parameter
s.

Remark 7.3 (t! Bts is a Brownian motion on K). Let hts solve ht�s = bt�shts with

ht0 = e. Let ehts � hst and ebts � bst. Then s! hts is the same process as s! ehst
and so ht�s = eh�st. Similarly, bt�s = eb�st. Thus ehst solves eh�st = eb�stehst witheh0t = e. To put it another way, ehts solves eh�ts = eb�tsehts with eh0s = e. Then

h � eh�1 solves h�ts = �htseb�ts with h0s = e. By Lemma 3.9 if � is a K-valued
Brownian sheet and hts solves h�ts = hts��ts with h0s = e then the process s 7! hts
is a K-valued Brownian motion with parameter t. Taking � = �eb, we see that

s 7! eh�1ts is a K-valued Brownian motion with parameter t. Thus s 7! ehts is also a
K-valued Brownian motion with parameter t and so s 7! hst is a Brownian motion
on K with parameter t. Switching t and s yields t 7! hts is a Brownian motion on
K with parameter s.
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Remark 7.4. Let �s : C ([0; 1]! L) ! C ([0; s]! L) ;�s (x�) (r) = x (r) for any
r � s. We make no distinction between a measure �1 on (C ([0; s]! L) ; � hxr : r � si)
and a measure �2 on (C ([0; 1]! L) ; � hxr : r � si) so long as �1 (F � �s) = �2 (F ) for
any F : C ([0; s]! L)! R. where L stands for either K or K.

Lemma 7.5. If �1 v �2 then �1 
 � v �2 
 �, where �1; �; � are probability
measures.

Proof. Will su�ce to show that if �1 � �2 then �1
� � �2
�. For rectangles, it is
clear that (�1 
 �) (1A (x) 1B (y)) = (�2 
 �) (1A (x) f (x) 1B (y)). This extends to
linear combinations of rectangles by linearity and all bounded measurable functions
by dominated convergence. Thus d (�1 
 �) =d (�2 
 �) (x; y) = d�1=d (�2) (x).
Thus �1 
 � � �2 
 �.

Theorem 7.6. Let t 7! gt� be our L (K)-valued Brownian motion from De�ni-
tion 2.22 and let s ! Bts be the K-valued Brownian motion of De�nition 7.2.
Then gT � and BT � have equivalent laws as measures on C ([0; s]! K) for any

s <
p
1+4T�1
2T .

We prove this result after the proof of Theorem 7.7.

Theorem 7.7. Law YT � v Law bT � as measures on C ([0; s]! K) for any s <p
1+4T�1
2T . Here the random variable

YT � �
Z
RT �

Adgt� bdtd� �
Z �

0

d�

1� �

Z T

0

Adgt�Xdt�

is as in Theorem 6.11.

The proof of Theorem 7.7 is given after that of Lemma 7.11.

Remark 7.8. Since for s < 1, Law XT: v Law bT: (as measures on C ([0; s]! K)),
one might suspect Law X v Law b (as measures on C ([0; 1]� [0; s]! K)) which
should then indicate that

Law YT : = Law

Z
RT �

Adgt�Xdtd� v Law

Z
RT �

Adgt�bdtd� = Law (bT �) :

Unfortunately in the t-variable, X:s and b:s are Brownian motions with param-
eters s� s2 and s respectively.

Thus LawX ? Lawb since

PX

 X
i

j�i!(s)j2 ! s� s2

!
= 1;

while

Pb

 X
i

j�i!(s)j2 ! s

!
= 1:

Hence these two measures live on di�erent sets.

The proof of Theorem 7.7 relies heavily on Girsanov's Theorem which we state
here for convenience.
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Theorem 7.9 (Girsanov, see [22]). Let (
;F; fF�g ; P ) be a �ltered probability space.
Let �� be a d-dimensional Brownian motion and let Z� be an Rd -valued adapted pro-

cess so that E exp 1
2

R S
0 jZsj2 ds is �nite and

R S
0

�
Zis
�2
ds <1 almost surely for any

i 2 f1; � � � ; dg. De�ne

Z� � exp

�Z �

0

Zs � d�s �
1

2

Z �

0

jZsj2 ds
�
:

De�ne a new measure ePS on FS by setting eP (A) = E1AZS. Then ePS is a probabil-
ity equivalent to P and the process fYt;Ft; 0 � s � Sg is a d-dimensional Brownian

motion on
�

;FS ; eP� where Y� � �� +

R �
0 Zsds.

Lemma 7.10. The expression eXt� �
R t
0 Adgu�Xdu� has the same law as Xt�.

Proof. eXt� is a Ft� martingale. To show X�s and eX�s have the same law it will

su�ce to show eX�� is a K-valued Brownian motion with parameter �� �2. To this
end, let fAg run through an orthonormal basis of K. Then

eXdt� 
 eXdt� = Adg
t�
Xdt� 
Adg

t�
Xdt�

=
�
� � �2

�
dt
X
A;B

�ABAdg
t�
A
Adg

t�
B

=
�
� � �2

�
dt
X
A

�
Adg

t�
A
�
2

=
�
� � �2

�
dt
X
A

A
2:

Thus we are done.

Lemma 7.11. Let X be the K-valued Brownian bridge sheet of Theorem 2.25.
Then

E exp

241
2

Z s

0

d�

�����
Z T

0

Adgt�
Xdt�

1� �

�����
2

K

35 <1; if s <

p
1 + 4T � 1

2T
:



80 VIKRAM K. SRIMURTHY

Proof.

E exp

241
2

Z s

0

d�

�����
Z T

0

Adgt�
Xdt�

1� �

�����
2

K

35
= E

X
P�0

241
2

Z s

0

d�

�����
Z T

0

Adgt�
Xdt�

1� �

�����
2

K

35p

�
X
P�0

sp�1

p!2p
E

Z s

0

d�

�����
Z T

0

Adgt�
Xdt�

1� �

�����
2p

K

by H�older's Inequality

=
1

s

X
P�0

sp

p!2p

Z s

0

d�E

�����
Z T

0

Adgt�
Xdt�

1� �

�����
2p

K

=
1

s

X
P�0

sp

p!2p

Z s

0

d�E

�����
Z T

0

Xdt�

1� �

�����
2p

K

=
1

s

Z s

0

d�
X
P�0

1

p!
E

 
s jXT�j2K
2 (1� �)2

!p

=
1

s

Z s

0

d�E exp

 
s jXT�j2K
2 (1� �)2

!

=
1

s

Z s

0

d�

Z
RdimK

exp

 
s jxj2

2 (1� �)
2

!
exp

 
� jxj2

2T� (1� �)

!
dx

[2�T� (1� �)]
dimK

2

=
1

s

Z s

0

d�

Z
RdimK

exp

"
� jxj2
2T� (1� �)

�
1� sT�

(1� �)

�#
dx

[2�T� (1� �)]
dimK

2

=
1

s

Z s

0

d� [2�T� (1� �)]
� dimK

2

<1 () 1� sT�

(1� �)
> 0;8� 2 [0; s] :

1� sT�

(1� �)
> 0 for � 2 [0; s]

() �

1� �
<

1

sT
for � 2 [0; s]

() s

1� s
<

1

sT

() Ts2 + s� 1 < 0

() s 2
�
0;

p
1 + 4T � 1

2T

�
:

We are now able to prove Theorem 7.7.
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Proof. De�ne

�Ts =

Z
RTs

Adgt� bdtd�;

ZT (�) � �1
(1� �)

Z T

0

Adg
t�
Xdt�:

By de�nition of YT � in Theorem 6.11

YT � � �T � +
Z �

0

d�ZT (�) :

By Lemma 7.11,

E exp

Z S

0

jZT (�)j2K d� <1 whenever S <

p
1 + 4T � 1

2T
:

Thus the measure

d ePS � exp

"Z S

0

ZT (s) � d�Ts �
1

2

Z S

0

jZT (s)j2 ds
#
dP

is a probability on FTS and the process fYTs;FTs; 0 � s � Sg is a ePS-Brownian
motion on K. Thus for any set A � (C [0; S]! K)

E1A � �T � = 0 () eE1A � YT � = 0 () E1A � YT � = 0;

since the measures ePS and P are equivalent on FTS . [Note:- it is essential that
A only depend on the path to time S or else 1A � YT � will cease to be FTS-
measurable.]

We now return to the proof of Theorem 7.6.

Proof. Fix s. Pick T so that s <
p
1+4T�1
2T .

De�ne a map � from C ([0; z]! K) to C ([0; z]! K) so that � (x�) = y�, where
y�s = x�sys with y0 = e, the integration being done with respect to the Wiener
Measure on C ([0; z]! K) with parameter T .

If we can show that � : bT � 7! BT �, and � : YT � 7! gT � we shall be done. This is
so because by Theorem 7.7 Law YT � is equivalent to Law bT �. Thus

E1A � gT � = 0

() E1��1
1 (A) � YT � = 0

() E1��1
1 (A) � bT � = 0

() E1A �BT � = 0:

Hence by the Radon-Nikodym Theorem Law gT � is equivalent to Law BT �.
To show � : bT � 7! BT �, and � : YT � 7! gT �, we shall invoke Lemma 8.1. Let


0 be C ([0; 1]! K) where K is identi�ed with Rdim K. Let (
;F; fFT �g ; P ) be
our standard probability space as in De�nition 2.22. The stochastic di�erential
equation we will use in Lemma 8.1 will be

yds = x�sys = xdsys +
Tds

2

 X
A

A2

!
ys with y0 = 1:

Here the fAg run through an orthonormal basis of the Lie algebra K. Clearly the
boundedness conditions of the Lemma are satis�ed. Also both Law bT � and Law YT �
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are absolutely continuous with respect to �0 = Law bT �. Thus either bT � or YT � can
be taken to be theX� in the Lemma. Thus we see that � (bT �) (�s) = bT�s� (bT �) (�s)
and � (YT �) (�s) = YT�s� (YT �) (�s). By De�nition 7.2 Bt�s � bt�sBts with Bt0 = 1.
Hence � (bT �) = BT �. By Theorem 6.11, gt�s � Yt�sgts with gt0 = 1. Hence
� (YT �) = gT � and so we are done.

We now return to the proof of Theorem 7.1.

Proof. Let �0 be Pinned Wiener measure on L (K) and let � be Wiener measure
on C ([0; 1]! K) as in De�nitions 2.7 and 2.9. Then � = Law [B1�] since B1� is a
standard K-valued Brownian motion by De�nition 7.2. A key fact that we shall
exploit in this proof is �0 is equivalent to � on Gz for any z < 1.

Fix z < 1.Now limT!0

p
1+4T�1
2T = 1 so there exists an N 2 N large so that

z <

p
1+4=N�1
2=N . Let T � 1=N . Let F : C ([0; 1]! K)! R so that F 2 Gz. Then

�1 (e; A) = P fg1� 2 Ag
= P

n
g(1=N)�

�
g�1(1=N)�g(2=N)�

�
� � �
�
g�1(N�1=N)�g1�

�
2 A

o
=

�
Ni=1LawgT �� (k1 � � � kN 2 A) ;
where A0 � f(k1; � � � ; kn) : k1 � � � kN 2 Ag. Now by Theorem 7.6, since the con-

dition z <
p
1+4T�1
2T obtains, gT � has a law equivalent to that of BT �, on the re-

stricted �-algebra Gz . Invoking Lemma 7.5 repeatedly, we see that 
Ni=1LawgT � v

Ni=1LawBT � , on the restricted �-algebraGz. Thus if A isGz-measurable, �1 (e; A) =
0 holds if and only if

�
Ni=1LawBT �� (k1 � � � kN 2 A) = 0 holds. Since t 7! Bts is a
K-valued Brownian motion (see Remark 7.3), it exhibits incremental independence.
Thus (LawB1�) (A) = 0 if and only if

�
Ni=1LawBT �� (k1 � � � kN 2 A) = 0. Thus we
have �1 (e; �) # Gz v � # Gz v �0 # Gz and so we are done.

8. Appendix

8.1. General Technical results.

Lemma 8.1 (General Technical Lemma). Let X be an (
;Ft; P ) continuous semi-
martingale taking values in Rd . 
0 � C

�
[0; 1]! Rd� is to be thought of as the

measure space (
0;Ht; �
0) where Law X� � �0, and Ht � � hXr : r � ti. Let x; !

denote members of the probability spaces 
0 and 
 respectively. Let a be an Rd -
valued 
0-random variable that solves the following stochastic di�erential equation

a (dt; x) =
X
j

c (t; a (t) ; x) r (dt; x) + c0 (t; a (t) ; x) dt with ai (0; x) = Ki;(8.1)

where c 2 Cb
�
R � Rd �
0 ! Rd 
 Rd�

�
; c0 2 Cb

�
R � Rd �
0 ! Rd

�
. Then

A (t; !) � a (t;X� (!)) solves the Stochastic di�erential equation.

A (dt; !) =
X
j

C (t; A (t; !) ; !)R (dt; !) + C0 (t; A (t; !) ; !) dt(8.2)

with Ai (0; !) = Ki; such that C (t; �; !) � c (t; �;X� (!)), R (t; !) � r (t;X� (!)),
C0 (t; �; !) � c0 (t; �;X� (!)), and � 2 Rd .
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Proof. For convenience, let � � Law X�, For explicitness we will not suppress
dependence on the probability space as is done traditionally.

ai (T; x) = Ki +

Z T

0

X
j

cij (t; x; a (t)) ri (dt; x) + c0i (t; x; a (t)) dt:

This means that the expressionX
k

X
j

cij
�
tPk�1; x; a

�
tPk�1

�� �
ri
�
tPk; x

�� ri
�
tPk�1; x

��
converges in L2 (�0) as jPj ! 0 to the expression

ai (T; x)�Ki �
Z T

0

c0i (t; x; a (t)) dt:

Since L2-convergence implies convergence in measure, we see that the expressionX
k

X
j

cij
�
tPk�1; x; a

�
tPk�1

�� �
ri
�
tPk; x

�� ri
�
tPk�1; x

��
converges in the measure �0 as jPj ! 0 to

ai (T; x)�Ki �
Z T

0

c0i (t; x; a (t)) dt:

Since � � �0, the following statement holds. For any " > 0, there exists a � (") so
that if �0 (A) < � (") then � (A) < ".(if this were not so can have �0 (A) = 0 and
� (A) > " for some "). Hence

lim
jPj!0

�

 �����
P
k

P
j cij

�
tPk�1; x; a

�
tPk�1

�� �
ri
�
tPk; x

�� ri
�
tPk�1; x

��
�
�
ai (T; x)�Ki �

R T
0 c0i (t; x; a (t)) dt

� ����� < "

!
= 0:

This in turn implies that as jPj ! 0,

P

 �����
P
kj Cij

�
tPk�1; !; a

�
tPk�1; X (�; !)�� �Ri �tPk; !��Ri

�
tPk�1; !

��
+Ki +

R T
0
c0i (t;X (�; !) ; a (t;X (�; !))) dt� ai (T;X (�; !))

����� < "

!
! 0:

However since, essentially by assumption, the expression

Ki +

Z T

0

C0
i (t;X (�; !) ; a (t;X (�; !))) dt

+
X
kj

Cij
�
tPk�1; !; a

�
tPk�1; X (�; !)�� �Ri �tPk; !��Ri

�
tPk�1; !

��
has an L2-limit, it must be equal to ai (T;X (�; !)). HenceAi (T; !) � ai (T;X (�; !))
satis�es Eq. (8.2) as desired.

Theorem 8.2 (Kolmogorov's extension Theorem). Let (E ; d) be a complete metric
space and let Ux be an E-valued process for all dyadic rationals x in Rn . Suppose
that for all x, y we d (Ux; Uy) is a random variable and that there exist strictly
positive constants ", c, � so that

P [d (Ux; Uy)
"
] � C kx� ykn+� :
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Then P -a.s. the function x! Ux can be extended uniquely to a continuous function
from Rn to E .

Proof. See Theorem 53 of Chapter IV of Protter [30].

8.2. Brownian Sheets and bridges.

Lemma 8.3 (Quadratic Variations). We compute some quadratic variations we
shall later �nd useful. Let A, B be two perpendicular unit vectors. As in De�-
nitions 3.5 and 2.12, let G (s; �) denote s ^ �, and let G0 (s; �) denote s ^ � � s�.
Then letting bAts denote hbts; AiK and XA

ts denote hXts; AiK we have:-

1.

bAdtsb
B
dt� = hA;Bi

K
G (s; �) dt

bAtdsb
B
�ds = hA;Bi

K
G (t; � ) ds

2.

XA
dtsX

B
dt� = hA;Bi

K
G0 (s; �) dt:

3.

EXA
t�b

B
ts = hA;Bi

K
(1� �) log

�
1

1� s ^ �
�
dt:

Proof.

Let Gt � � fbrsjs 2 [0; 1] , r 2 [0; t]g :
Then Remark 6.2 implies that

Gt = � fXrsjs 2 [0; 1] , r 2 [0; t]g :
Thus by computing correlations, one sees that the increments Xts �X�s; bts � b�s
are independent of G� if t > � . We want to show if two mean-zero G� -martingales
M� ; N� have independent increments then

MtNt �EMtNt is a martingale.

Then we shall be able to conclude that

bAdtsb
B
dt� = dtEb

A
tsb

B
t� = hA;Bi

K
G (s; �) dt

bAtdsb
B
�ds = dsEb

A
tsb

B
�s = hA;BiKG (t; �) ds

XA
dtsX

B
dt� = dtEX

A
tsX

B
t� = hA;Bi

K
G0 (s; �) dt

XA
dt�b

B
dts = dtEX

A
tsb

B
t�:

Let t > s. Then

E (MtNt �EMtNtjGs) = E (MtNtjGs)�EMtNt

= E (Mt �Ms) (Nt �Ns) +NsE (Mt �Ms)

+MsNs +MsE (Nt �Ns)�EMtNt

= MsNs +E (Mt �Ms) (Nt �Ns)�EMtNt

= MsNs �EMsNs:

Thus the joint quadratic variation

MdtNdt = dtEMtNt:
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It remains only to �nd XA
dt�b

B
dts by computing EXA

tsb
B
t�. But this is just

EXA
t�b

B
ts = EXA

t�X
B
ts +

Z s

0

EXA
t�X

B
tu

1� u
du(8.3)

= hA;Bi
K
t

�
G0 (s; �) +

Z s

0

G0 (u; �)

1� u
du

�
:

Z s

0

G0 (u; �)

1� u
du =

Z s

0

u ^ �
1� u

du�
Z s

0

u�

1� u
du

=

Z s^�

0

u

1� u
du+

Z s

s^�

�

1� u
du�

Z s

0

u�

1� u
du

= (1� �)

Z s^�

0

u

1� u
du+

Z s

s^�

� � u�

1� u
du

= (1� �)

Z s^�

0

�
1

1� u
� 1

�
du+ � (s� s ^ �)

= (1� �) log
1

1� s ^ � � (1� �) (s ^ �) + � (s� s ^ �)

= (1� �) log
1

1� s ^ � �G0 (s; �) :

Returning to Eq.[8.3] yields

EXA
t�b

B
ts = hA;Bi

K
t (1� �) log

1

1� s ^ � :

Lemma 8.4. bts is a K-valued Brownian Sheet starting at 0 such that
Ebitsb

j
�� = �ij(t ^ � )(s ^ �) where bits � hbts; AiiK where Ai runs through an

orthonormal basis of K:

Proof.

Ebitsb
j
�� = E[X i

ts +

Z s

0

X i
tu

(1� u)
du][Xj

�� +

Z �

0

Xj
�u

(1� u)
du]

= EX i
tsX

j
�� +EX i

ts[

Z �

0

Xj
�u

(1� u)
du] +EXj

�� [

Z s

0

X i
tu

(1� u)
du]

+E[

Z s

0

X i
tu

(1� u)
du][

Z �

0

Xj
�u

(1� u)
du]

= I + J +K + L:

I = �ij(t ^ � )(s ^ � � s�):

Now by Tonelli we have ,

E

Z �

0

����X i
ts

Xj
�u

(1� u)

���� du =

Z �

0

E
��X i

tsX
j
�u

�� du

(1� u)

<

Z �

0

[E
��X i

ts

��2E ��Xj
�u

��2] 12 du

(1� u)

=

Z �

0

[t� (s� s2)(u� u2)]
1
2

du

(1� u)
<1:
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Therefore by Fubini,

J = E

Z �

0

X i
ts

Xj
�u

(1� u)
du

=

Z �

0

�ij(t ^ � )(s ^ u� su)
du

(1� u)

= �ij(t ^ �)[
Z s^�

0

(1� s)
udu

(1� u)
+

Z �

s^�
sdu]

= �ij(t ^ �)[(1� s)

Z s^�

0

(
1

(1� u)
� 1)du+ s(� � s ^ �)]

= �ij(t ^ �)[(1� s) log(
1

1� s ^ � )� (1� s)s ^ � + s(� � s ^ �)]
= ��ij(t ^ � )[(1� s) log(1� s ^ �) + s ^ � � s�]:

Similarly,

K = ��ij(t ^ � )[(1� �) log(1� s ^ �) + s ^ � � s�]

By Tonelli,

E [

Z s

0

Z �

0

���� X i
tu

(1� u)

Xj
��

(1� �)

���� dud�]
=

Z s

0

Z �

0

E

���� X i
tu

(1� u)

Xj
��

(1� �)

���� dud�
<

Z s

0

Z �

0

dud�

(1� u)(1� �)

�
E
�
X i
tu

�2
E
�
Xj
��

�2� 1
2

= t�

Z s

0

Z �

0

(u�)dud� <1:
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Therefore by Fubini,

L = E[

Z s

0

Z �

0

X i
tu

(1� u)

Xj
��

(1� �)
dud�]

=

Z s

0

Z �

0

E
X i
tu

(1� u)

Xj
��

(1� �)
dud�

=

Z s

0

Z �

0

�ij(t ^ �)(u ^ � � u�)
dud�

(1� u)(1� �)

= �ij(t ^ �)
 Z

fs>u>�>0g[f�>�g
dud�

�

1� �
+

Z
f�>�>u>0g[fs>ug

dud�
u

1� u

!

= �ij(t ^ �)
Z s^�

0

d�

�
�(s� �)

1� �
+
�(� � �)

1� �

�
= �ij(t ^ �)

Z s^�

0

d�(
1

1� �
� 1)(s+ � � 2�)

= �ij(t ^ �)
�Z s^�

0

s+ � � 2�

1� �
d� � �(s+ �)(s ^ �)� (s ^ �)2��

= �ij(t ^ �)
�Z s^�

0

�
s+ � � 2

1� �
+ 2

�
d� � �(s+ �)(s ^ �)� (s ^ �)2��

= �ij(t ^ �)
�Z s^�

0

s+ � � 2

1� �
d� +

�
(s ^ �)2 + 2(s ^ �)� (s+ �)(s ^ �)��

= �ij(t ^ �)
�
(s ^ �)2 + 2(s ^ �)� (s+ �)(s ^ �)� (s+ � � 2) log(1� s ^ �)� :

So putting it all together, we have

I+J +K + L

= �ij(t ^ � )
�
(s ^ �)2 + s� + (s ^ �)� (s+ �)(s ^ �)�

= �ij(t ^ � ) (� ^ s) :
Therefore,

Ebitsb
j
�� = �ij(t ^ � )(s ^ �):

b a linear transformation of a Gaussian process and is hence Gaussian. Hence the
above assertion is enough to show b is a K-valued Brownian Sheet.

Theorem 8.5. There exists a Brownian sheet bts such that Xts can be expressed
as:

Xts = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�;(8.4)

where b is a K-valued 2-parameter Brownian Sheet.

Proof. De�ne bts � S(Xt:)(s). Then by Lemma 8.4, bts is a K-valued Brownian
Sheet. Now by Lemma 8.6, Eq. (8.4) holds.

Lemma 8.6. T : bt: ! Xt:
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Proof.

T (bt:)(s) = bts �
Z s

0

bt�
(1� s)

(1� �)2
d�

= [Xts +

Z t

0

Xt�

(1� �)
d�]�

Z s

0

[Xt� +

Z �

0

Xtu

(1� u)
du]

(1� s)

(1� �)2
d�

= Xts +

Z s

0

Xts
(s� �)

(1� �)2
d� � (1� s)

Z s

0

Z �

0

Xtu

(1� u)
dud(

1

1� �
)

= Xts +

Z s

0

Xt�
(s� �)

(1� �)2
d� �

Z s

0

Xtu

(1� u)
du+ (1� s)

Z s

0

(
1

1� �
)
Xt�

(1� �)
d�

= Xts +

Z s

0

Xt� [
(s� �)

(1� �)2
� 1

(1� �)
+

1� s

(1� �)2
]d�

= Xts:

Lemma 8.7 (Evaluation of L2-norms). Let Mm (R) be as in Remark 2.18. Let
ffi;A (�)g be a collection of continuous adapted Mm (R)-valued processes. (i.e.
fi;A (�) 2 Fti�1�). Let �ib

A(�) � bA(ti; �)�bA(ti�1; �) and recall that bA = hb; AiK
where b is the Brownian sheet from Theorem 3.19. Then

E








X
i;A

Z s

0

fi;A(�)d�ib
A(�)








2

HS

= E
X
i;A

�it

Z s

0

kfi;A(�)k2HS d�:

Proof. Let (A)pq denote the p; q entry of the matrix A 2Mm (R). Let

J � E








X
i;A

Z s

0

fi;A(�)d�ib
A(�)








2

HS

:

Then

J =
X
p;q

E

0@X
i;A

Z s

0

(fi;A(�))pq d�ib
A(�)

1A2

=
X
p;q

E
X

i;A;i0;A0

Z s

0

(fi;A(�))pq (fi0;A0(�))pq d�ib
A(�)d�i0b

A0

(�)

=
X
p;q

E
X
i;A

Z s

0

�it (fi;A(�)pq)
2
d�

= E
X
i;A

�it

Z s

0

kfi;A(�)k2HS d�:

8.3. Proof of Lemma 8.8.

Lemma 8.8. Recall that K � GLm (R) as in Remark 2.18. Let F and G be the
exponential and inverse map respectively on matrices as in De�nition 6.9. Then
the following relations hold where A 2 U and B;C 2 K:-
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1.

F 0(A)B =

Z 1

0

F [(1� �)A]BF [�A] d�:(8.5)

2.

F 00(A)B 
 C =

Z 1

0

d�

Z 1

0

(1� u)F [(1� � ) (1� u)A]

�CF [� (1� u)A]BF [uA] du

+

Z 1

0

d�

Z 1

0

uF [(1� u)A]B(8.6)

�F [(1� � )uA]CF [�uA] du:

3.

G0(A)B = �A�1BA�1:(8.7)

4.

G00(A)B 
 C = A�1BA�1CA�1 +A�1CA�1BA�1:(8.8)

5.

sup
A2K

kF 0(A)BkHS � Const kBkHS :(8.9)

6.

sup
A2K




F (n)(A)B1 
 � � � 
Bn





HS

� Const kB1kHS � � � kBnkHS :(8.10)

Proof.

d

dt
F (t (A+ sB)) =

d

dt
et(A+sB) = (A+ sB) et(A+sB):

d

ds

d

dt
F (t (A+ sB)) js=0 = BetA + tA (F 0 (tA) tB) :

d

dt

�
d

ds
F (t (A+ sB)) js=0

�
= BetA +A

�
d

ds
F (t (A+ sB)) js=0

�
:

By Duhammel's Principle (or method of integrating factors) we get Eq. (8.5)

d

dt

�
e�tA

�
d

ds
F (t (A+ sB)) js=0

��
= e�tABetA:

d

ds
F (A+ sB) js=0 = eA

Z 1

0

e�tABetAdt:

d

ds
F (A+ sB) js=0 = eA

Z 1

0

e�tABetAdt:
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F 00 (A)B 
 C =
d

dt
F 0(A+ tC)Bjt=0

=

Z 1

0

d

dt
F [(1� u) (A+ tC)]BF [u (A+ tC)] jt=0du

=

Z 1

0

(1� u) (F 0 [(1� u)A]C)BeuAdu

+

Z 1

0

ue(1�u)ABF 0 (uA)Cdu;

which is Eq. (8.6).

(A+ tB)G (A+ tB) = 1

BG (A) +A (G0(A)B) = 0

G0(A)B = �G(A)BG(A);
which is Eq. (8.7).

G00 (A)B 
 C

=
d

dt
G0(A+ tC)Bjt=0

= � d

dt
G(A+ tC)BG(A+ tC)jt=0

= G(A)CG(A)BG(A) +G(A)BG(A)CG(A);

which is Eq. (8.8).
It will not be necessary to prove Eq. (8.9) if we can show Eq. (8.10). LeteBi � Bi= kBikHS

F (n)(A)B1 
 � � � 
Bn

= kB1kHS � � � kBnkHS F (n)(A) eB1 
 � � � 
 eBn:
Now

sup
A; eB1��� eBn




F (n)(A) eB1 
 � � � 
 eBn



HS

is the supremum of a continuous function over a compact set and is hence �nite.
Call this supremum C. Therefore,

sup
A2K




F (n)(A)B1 
 � � � 
Bn





HS

� C kB1kHS � � � kBnkHS ;

which is Eq. (8.10).

8.4. Gaussian Measures. For further information on this topic see Kuo [[23]].

De�nition 8.9 (Gaussian Measure). 
 is a separable Banach Space with j�j
. �
a (mean-zero, non-degenerate) Gaussian measure on 
 i�

b� (�) � Z � (dx) exp i� (x) = exp

�
�1

2
q (�; �)

�
;

and q : 
� � 
� ! R an inner product on 
�. 
� denotes the dual to 
; i.e. the
set of all bounded linear maps from 
 to R. b� denotes the Fourier transform of the
measure �.
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Remark 8.10. An alternate (and equivalent de�nition) of a Gaussian measure � on
a Banach space 
 is a measure so that any  2 
� (an R-valued random variable)
is a mean-zero normal random variable. One can see that if � satis�es De�nition
8.9 then it satis�es the alternate De�nition in Remark 8.10. This is because for any
 2 
�,

\Law (�) � Law exp i�x = � exp i� (x) = exp��
2

2
q ( ;  ) ;

which means that  has a normal distribution with mean 0 and variance q ( ;  ).
(Although this second de�nition appears weaker, it is possible to prove De�nition
8.9 from it.)

We shall repeatedly use the following well-known Theorem due to Fernique:

Theorem 8.11 (Fernique). Let � be a Gaussian measure on a Banach Space 
.
Then there exists an " > 0 so that

�
h
exp " jxj2


i
<1:

(Note:- this also means that � jxj2
 <1)

Lemma 8.12 (Bochner Integrals). De�ne

S � ff : 
! 
j Ran f is a �nite setg :

Let L1 (�;
) denote
�
f : 
! 
j R jf (x)j
 � (dx) <1	. Then there exists a linear

functional I : L1 (�;
)! 
 with the following properties:-

1.

I (f) =
X
x2


x�
�
f�1 fxg� if f 2 S.

2.

jI (f)j
 �
Z
jf j
 � (dx) = kfkL1(�;
) :

3.

 (I (f)) =

Z
 (f)� (dx) for any  2 
�:

Henceforth we shall write
R
f (x) � (dx) in place of the less intuitive I (f).

Proof. First we show that S is dense in L1 (�;
). We shall use the separability of

 to do this. Let fxng be a countable dense subset of 
. Cover 
 with measurable
sets Bi as follows B1 � B ("; x1) ; � � � ; Bn � B ("; xn) � [ni=1B ("; xi) ; � � � . Given
f 2 L1 (�;
), let �" �

P
i xi1f�1(Bi). ThenZ

jf � �"j
 � (dx) �
X
i

Z
jf � xij
 1f�1(Bi)� (dy) � "� (
) :

Since the �" were all in S, S is dense in L1 (�;
).
De�ne I (f) =

P
x2
 x�

�
f�1 fxg� on S. Hence property 1: is already satis�ed.
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Notice that I is a linear functional on S. Secondly, if  2 
�, on S
 (I (f)) =

X
x2


 (x) �
�
f�1 fxg�

=

Z
� (dy)

X
x2


 (x) 1f�1fxg (y)

=

Z
 

 X
x2


x1f�1fxg

!
d�

=

Z
 � f (y)� (dy) :

Also

jI (f)j
 �
X
x2


jxj
 �
�
f�1 fxg� = kfkL1(�;
) :

Extend our de�nition of I to L1 (�;
) by de�ning I (f) � limn!1 I (fn) whenever
fn ! f in L1 (�;
) with ffng 2 S.

Property 1 holds by de�nition. The linearity of I holds despite the extension.
Property 2 holds as well since

jI (f)j
 = jlim I (fn)j
 = lim jI (fn)j
 < lim kfnkL1(�;
) = kfkL1(�;
) :

If  2 
� we have fn ! f in L1 (�;
). This means I (fn) ! I (f) in 
. ThusR
 � fnd� =  � I (fn)! I (f) in 
.However,����Z  (f) d��

Z
 (fn) d�

����



�
Z
j (f)�  (fn)j
 d�

� j j
� kf � fnkL1(�;
)

! 0:

Thence we have
R
 � fd� = I (f) and Property 3 holds.

Theorem 8.13 (Cameron-Martin space). We construct H, the Cameron-Martin
space associated with the Gaussian measure �:-

1. 
� � Lp (�) for all p:
2. There is a linear map J : 
� ! 
 so that � (J ) = h ; �iL2(�) :

3. q (�;  ) =
R
� (x) (x)� (dx) :

4. H �
n
x 2 
 : sup�2
� j� (x)j2 =q (�; �) <1

o
is a subspace of 
.

5. jhj
 � const jhjH for any h 2 H .
6. Let K be the closure of 
� in L2 (�). Then there exists an extension of the

map J from K ! H so that J : f ! R
xf (x)� (dx). Furthermore, J is an

isometry onto H and H is dense in 
. In particular, H is a Hilbert space
under the isometry from K.

7. Letting h run through an orthonormal basis of H ,Z
� (x) (x) � (dx) =

X
 (h)� (h) :

Proof. Proceeding in order, we prove:-
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1. If � 2 
� thenZ
j� (x)jp
 � (dx) � j�jp
�

Z
jxjp
 � (dx) <1

by Theorem 8.11 (Fernique).
2. De�ne J (�) � R x� (x)� (dx) for any � 2 
�. If  2 
�, then by property 3

of Lemma 8.12

 (J (�)) =

Z
 (x) � (x) � (dx) = h ; �iL2(�) :

3. By De�nition 8.9, we have

b� (t�) = � (exp it� (x)) = exp�t2
�
1

2
q (�; �)

�
:

If we can show [@t@tb� (t�)] #t=0= ��� (x)2 we would have

�� (x)2 = q (�; �)

by taking two derivatives on the right hand side. Then

� [� ] =
1

4
� (�+  )

2 � 1

4
� (��  )

2
= q (�;  ) ;

and we would be done. So the problem reduces to computing @t@tb� (t�).
We shall show

@t@tb� (t�) = �
h
�� (x)2 exp it� (x)

i
by Dominated Convergence and Theorem 8.11 as follows:

@tb� (t�) = lim
"#0

�

�
exp i (t+ ")� (x)� exp it� (x)

"

�
= lim

"#0
�

�
exp i"� (x)� 1

"

�
exp it� (x) :

Now jexp it� (x)j < 1 so to apply dominated convergence, it will su�ce to

dominate exp i"�(x)�1
" by an L1 (d�) function.����exp i"� (x)� 1

"

���� =
1

"

X
n>1

ji"� (x)jn =n! � j� (x)j
X
n>0

j"� (x)jn = (n+ 1)!

� j� (x)j exp " j�j
� jxj
 .
By Theorem 8.11 (Fernique), we have

� j� (x)j exp " j�j
� jxj
 �
q
� j�j2 kxk2


q
� exp (" j�j
�)

2 jxj2
 <1:

Thus by dominated convergence, the limit goes through and we have

@tb� (t�) = � (i� (x) exp it� (x)) :

Similarly to take the second derivative, we have to again verify that the limit
can be passed through the integral in Eq.(8.11) below.

@t@tb� (t�) = lim
"#0

�

�
i� (x) exp it� (x)

�
exp i"� (x)� 1

"

��
:(8.11)
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Now using Fernique yet again, i� (x)
h
exp i"�(x)�1

"

i
is bounded by the L1 (d�)

function j� (x)j2 exp " j�j
� jxj
. Thus by dominated convergence, we have

@t@tb� (t�) = �
h
�� (x)2 exp it� (x)

i
:

Hence we have shown part 3.
4. If h; k 2 H , then

j� (�h+ k)jp
q (�; �)

� j�j j� (h)jp
q (�; �)

+
j� (k)jp
q (�; �)

;

which implies that H is a subspace of 
.

5. By Fernique's Theorem (Theorem 8.11)
R
� (dx) jxj2
 � R

� (dx) exp " jxj2
 <
1. As a consequence,

q (�; �) =

Z
� (dx) � (x)

2

� j�j2
�

Z
� (dx) jxj2


= C2 j�j2
� :

Therefore

jhj
 = sup
�2
�

j� (x)j
j�j
�

� C sup
�2
�

j� (x)j
q (�; �)

� C jhjH :
6. Clearly, 
� � H . Let f ng be Cauchy in L2 (d�). Then

jJ n � J mj � � jxj
 j( n �  m) (x)j
�

�
� jxj2


�
� ( n �  m)

2 ! 0 as n,m go to 1:

Thus by completeness of 
, fJ ng converges in 
. Thus we extend the map

J to the space K � 
�
L2(d�)

by continuity.
Let x 2 Im J . Then there is some sequence fJ ng so that  n 2 
� ,  n

converges in L2 (d�) to some  2 K. But then

sup
�2
�

j� (x)j2 =q (�; �) = sup
�2
�

lim
n!1

�
� [� n] =

q
�
�
�2
��2

= sup
�2
�

�
� [� ] =

q
�
�
�2
��2

= �
�
 2
�
:

Thus Im J � H , and J : K ! ImH is an isometry.
Im J dense in 
. If not there's a non-trivial  2 
� so that  (Im J) = 0.

This means that �
�
 2
�
= 0 which is a contradiction. Thus Im J and hence

also H are dense in 
.

Let h 2 H . Let bh (�) � � (h) for any � 2 
�. Note that
���bh (�)��� =

j� (h)j < j�jL2(d�) jhjH . Thus h 2 K�. Thus there exists an f 2 K so that
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� (h) = � [�f ] for any � 2 
�. But now � (Jf) = � [� (x) f (x)] = � (h).
Thus h = Jf ) H � Im J . Thus J is a unitary map from K to H and in
particular, H is a Hilbert space that's dense in 
.

7. Let h run through an orthonormal basis of H . ThenZ
� (x) (x)� (dx) = hJ�; J iH

=
X

hJ�; hiH hh; J iH
=

X
� (h) (h) :

Example 8.14 (Computing Cameron-Martin Spaces). Let 
 be the Banach space

L (K) � fx 2 C ([0; 1]! K) jx (0) = x (1) = 0g

equipped with the uniform norm. � = LawXt�.(Xt� is a Brownian bridge from 0 to
0 with parameter t). Let H0;t denote the Cameron-Martin space associated to the
measure �. Then H0;t is the space H0 (K) equipped with the inner product

hk (�) ; l (�)iH0;t
=

1

t

Z 1

0

hk0 (u) ; l0 (u)i
K
du:

Recall from De�nition 2.1 that

H0 (K) =
�
x 2 
 : x has one L2 ([0; 1] ; d�) -derivative

	
:

Proof. Xt� is a Brownian bridge with parameter t. So � = LawXt� is already a
Gaussian measure. Furthermore,Z

� (dx) hx (s) ; Ai
K
hx (�) ; Bi

K

= E hXts; AiK hX��; BiK
= hA;Bi

K
tG0 (s; �) :

De�ne an element  A;s of 

� by setting  A;s (x) = hx (s) ; Ai

K
. Then

q
�
 A;s;  B;�

�
= E hXts; AiK hX�� ; BiK = hA;Bi

K
tG0 (s; �) :

Let J be the standard inclusion of 
� into H0;t as in Theorem 8.13. Then from
abstract nonsense (i.e. Theorem 8.13)
�

J A;s
�
(�) ; B

�
K

=  B;�
�
J A;s

�
= q

�
 B;�;  A;s

�
= hAtG0 (s; �) ; BiK :

Therefore J A;s = AtG0 (s; �). Let ! 2 H0;t. ! ? J A;s () h! (s) ; Ai
K
= 0.

Therefore,

� � span


J A;s : s 2 (0; 1) , A 2 K� is dense in H0;t:
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Thus it will su�ce for us to specify the norm of H0;t on �.

1

t

Z 1

0

D�
J B;�

�0
(u) ;

�
J A;s

�0
(u)
E
K
du

=
1

t

Z 1

0

�
d

du
tG0 (u; �)B;

d

du
tG0 (u; s)A

�
K

du

= t hB;Ai
K

Z 1

0

�
1fu��g � �

� �
1fu�sg � s

�
du

= t hB;Ai
K
[s ^ � � s� � �s+ s�]

= t hB;Ai
K
G0 (s; �)

= q
�
 A;s;  B;�

�
:

Thus the inner product 1
t

R 1
0 hk0 (u) ; l0 (u)iK du works on � and H0;t is the closure

of � under this norm.
De�ne eH � �x 2 
 : x has one L2 ([0; 1] ; d�) -derivative

	
:

We want to show eH = H0;t.
Let y 2 C1 [0; 1] so that y (0) = y (1) = 0. De�ne  y 2 
� as follows:

 y : x 7! �1

t

Z 1

0

hy00 (u) ; x (u)i
K
du:

Also 

J y (s) ; A

�
K

=  y
�
J A;s

�
= �1

t

Z 1

0

hy00 (u) ; t (s ^ u� su)A i
K
du

= �
Z 1

0

hy;A i00
K
(u) (s ^ u� su) du

= �
Z 1

0

(s ^ u� su) du hy;A i0
K

=

Z 1

0

�
1fu�sg � s

� hy;A i0
K
(u) du

= hy (s) ; A i
K
:

Thus J y = y which implies that smooth loops are in Im J and hence in H0;t.

Let x 2 eH . Then let yn be smooth so that yn ! x0 in L2. Then

eyn � yn �
Z 1

0

yn (u) du

also converges to x0 in L2; sinceZ 1

0

yn (u) du!
Z 1

0

x0 (u) du = 0:

But then
R �
0
eyn converge to x in the norm 1

t

R 1
0
hk0 (u) ; l0 (u)i

K
du. Thus eH � H0;t.

Since eH is complete, with respect to the inner product 1
t

R 1
0
hk0 (u) ; l0 (u)i

K
du, we

have eH = H0;t and we are done.
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9. Conjectures on Gaussian measure equivalence

Let g be the C ([0; 1]! L (K))-valued random variable so that g (t) is the loop
gt of De�nition 2.22. Let P� be the law of �g a measure on C ([0; 1]! L (K)).
Then for any probability � on L (K) we de�ne a measure P� on C ([0; 1]! L (K))
by

P� [f ] �
Z
� (d�)P� [f ] :

Conjecture 1. Let the energy, eE, of an absolutely continuous loop be given by

eE ��[g0]� � Z 1

0

����[g0] (ds) �[g0] (s)�1���2
K
:

Let �[g0] be an Energy-minimizing loop in the homotopy class [g0]. Recall the
�0;t-a.s. function Vt of Theorem 4.1;

Vt (x) =
1

2t2

����Z 1

0

x (ds) x (s)�1
����2
K

�
�
dimK

2t
+ @t logP

K
t (e)

�
:

Then if f : L (K)! R is \nice" it is reasonable to expect

�0;T [f ] =
X
[g0]

Z
f (xT ) exp

"
lim
"!0

Z T

"

Vt (xt) dt�
eE ��[g0]�

2"

#
��[g0] (dx) :

where the [g0] run through all the homotopy classes of K.

Proof. Let �0;t =
RMtDx where Dx is \Lebesgue measure" on L (K). Let g� be

an L (K)-valued Brownian motion. Then

Z
f (@tMt)Dx

= @t

Z
fMtDx

=

Z
Mt

�
1

2
4L(K)f + Vtf

�
Dx

=

Z
f

�
1

2
4L(K) + Vt

�
MtDx:

Thus Mt \satis�es"

@tMt =

�
1

2
4L(K) + Vt

�
Mt:
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Working in this vein we have

@t

�
MT�t (gt) exp

Z t

0

VT�� (g� ) d�
�

= �
��

1

2
4L(K) + VT�t

�
MT�t

�
(gt) exp

�Z t

0

VT�� (g� ) d�
�
dt

+ dtVT�t (gt)MT�t (gt) exp
�Z t

0

VT�� (g� ) d�
�
dt

+
1

2
4L(K)MT�t (gt) exp

�Z t

0

VT�� (g� ) d�
�
dt

+ dmartingale

= dmartingale:

Therefore, Let �[g0] denote the energy-minimizing path in the homotopy class of

[g0]. Let eE (x) denote the energy
R 1
0

���x (ds) x (s)�1���2
K
of a path in L (K) (de�ned

only for absolutely continuous paths with one L2-derivative). Then we have

EMT (g0)

= E lim
"!0

M" (gT ) exp

Z T

"

VT�� (g� ) d�

=

Z
exp

� eE ��[g0]�
2"

��[g0] (xT ) exp

"Z T

0

VT�� (x� ) d�

#
�g0 (dx)

=

Z
��[g0] (xT ) exp

"
lim
"!0

Z T

"

VT�� (x� ) d� �
eE ��[g0]�

2"

#
�g0 (dx)

=

Z
��[g0] (xT ) �g0 (x0) exp

"
lim
"!0

Z T

"

VT�� (x� ) d� �
eE ��[g0]�

2"

#
� (dx)

=

Z
��[g0] (x0) �g0 (xT ) exp

"
lim
"!0

Z T

"

VT�� (xT�� ) d� �
eE ��[g0]�

2"

#
� (dx)

= ��[g0]

"
�g0 (xT ) exp

"
lim
"!0

Z T

"

Vt (xt) dt�
eE ��[g0]�

2"

##
:

Here we have used the fact that backwards Brownian motion has the same law as
a forwards Brownian motion. �[g0] has to be homotopic to g0 because g� explicitly
describes such a homotopy.
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Now letting [g0] run through the homotopy classes, we have

�0;T f

=

Z
f (g0)MT (g0)Dg0

=
X
[g0]

Z
f (g0) �g0 (xT ) exp

"
lim
"!0

Z T

"

Vt (xt) dt�
eE ��[g0]�

2"

#
��[g0] (dx)Dg0

=
X
[g0]

Z
f (xT ) exp

"
lim
"!0

Z T

"

Vt (xt) dt�
eE ��[g0]�

2"

#
��[g0] (dx) ;

which is the desired result.

Example 9.1 (The S1 case). De�ne a measure e�T by setting

e�T �X
�2Z

C�;T �
S1

T (��; �)

where

C�;T � PRT (0)

PS
1

T (e)
exp

�
� 1

2T
�2
�
:

Proof. Let �� � (cos 2��s; sin 2��s) be the energy-minimizing geodesic in the �th

homotopy class for any � 2 Z. Then for any loop x homotopic to ��, we have

eE (��) =

Z 1

0

j�j2 ds = �2:

and

Vt (x) =
1

2t2

����Z 1

0

x (ds)x (s)
�1
����2
K

�
�
1

2t
dimK+ @t log p

K
t (e)

�
=

�2

2t2
�
�
1

2t
+ @t log p

K
t (e)

�
:

This implies

lim
"!0

Z T

"

Vt (xt) d� �
eE ��[g0]�

2"

= lim
"!0

Z T

"

�2

2t2
�
�
1

2t
+ @t log p

K
t (e)

�
dt� �2

2"

= lim
"!0

�2

2"
� �2

2T
�
Z T

"

�
1

2t
+ @t logP

S1

t (e)

�
dt� �2

2"

= lim
"!0

��2
2T

�
Z T

"

�
1

2t
+ @t logP

S1

t (e)

�
dt

= lim
"!0

��2
2T

�
Z T

"

�
@t log

p
tPS

1

t (e)
�
dt

=
��2
2T

� log
p
TPS

1

T (e) + log
p
"PS

1

" (e) :
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By Lemma 5.3,

lim
"!0

"d=2PK" (e) = (2�)
�d=2

;

and so

lim
"!0

Z T

"

Vt (xt) d� �
eE ��[g0]�

2"
=
��2
2T

� log
p
TPS

1

T (e)� log
p
2�:

Thus we are done since

�0;T f =
X
[g0]

Z
f (xT ) exp

"
lim
"!0

Z T

"

Vt (xt) dt�
eE ��[g0]�
2T"

#
��[g0] (dx)

=
X
�

Z
f (xT ) exp

�
��

2

2T
� log

p
TPS

1

T (e)� log
p
2�

�
��� (dx)

=
X
�

PRT (0)

PS
1

T (e)

Z
f (xT ) exp

�
��

2

2T

�
��� (dx) :
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