ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE

VIKRAM K. SRIMURTHY

ABSTRACT. Let K be a simply-connected compact Lie Group equipped with
an Adg-invariant inner product on the Lie Algebra 8, of K. Given this data,
there is a well known left invariant ” f!-Riemannian structure” on L (K) (the
infinite dimensional group of continuous based loops in K), as well as a heat
kernel vy (ko, -) associated with the Laplace-Beltrami operator on L (K). Here
T >0, ko € L(K), and vt (ko,) is a certain probability measure on L (K).
In this paper we show that v (e,-) is equivalent to Pinned Wiener Measure
on K on &, =0 (zt : t € [0,50]) (the o-algebra generated by truncated loops
up to “time” sg)
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1. INTRODUCTION

In this paper we consider the equivalence of two measures on the Loop space
of a compact Lie group. This so-called “Loop group” is the space of continuous
paths in the Lie group based at the identity equipped with a certain well-known
left-invariant “H!-Riemannian structure”. The study of Loop groups is motivated
primarily by physics and the theory of group Representations. They have been
studied extensively in both the mathematics and the physics literature. See for
example [29], [19], [27],[3], [15], [16], [1], [24], [18], [12] and the references therein.

Heat Kernel and pinned Wiener measure are two natural measures that have been
advocated as the “right” measure on the Loop groups. Pinned Wiener measure on a
Loop group is the law of a group-valued Brownian motion that has been conditioned
on loops. This measure has been extensively studied in [17], [25], [2], [26]. Heat
Kernel measure has been studied in [13], [11] as another natural measure on Loop
Space. In [13], Driver and Lohrenz showed that there exists a certain process that
deserves to be called “Brownian motion” on the path space of a Loop group. The
Heat Kernel measures on the Loop Space are the time ¢, ¢ > 0 distributions of this
Brownian motion. Thus it is a natural question to consider the equivalence of these
two measures.

A further motivation comes from logarithmic Sobolev inequalities and the pa-
pers of Getzler [16], Gross [17], Driver [11], Hsu, Aida, and Elworthy. The classical
Sobolev inequalities are a fundamental tool in analyzing finite-dimensional mani-
folds. For infinite-dimensional manifolds logarithmic Sobolev inequalities, because
of their dimension-independent character, are seen to be the proper analogues of
classical Sobolev inequalities. Logarithmic Sobolev inequalities have been studied
extensively over infinite-dimensional linear spaces as well as finite-dimensional man-
ifolds (see [8], [9] for surveys and [20]). If a logarithmic Sobolev inequality does
hold for pinned Wiener measure, p,, then the Dirichlet form pu, (Vf, Vf) associ-
ated with pinned Wiener measure will have a spectral gap (the so-called “Mass Gap
inequality”).

In [16], Getzler showed that the Bakry and Emery criteria (see [4] and [5])
for proving a logarithmic Sobolev inequality does not hold in general for loop
groups when the “underlying measure” is pinned Wiener measure. In [17], us-
ing pinned Wiener measure, Gross showed that a logarithmic Sobolev inequality
on Loop space does hold, but with an added potential term (a so-called “defective”
logarithmic Sobolev inequality). Using Heat Kernel measure instead, Driver and
Lohrenz proved in [13] that a logarithmic Sobolev inequality does hold on Loop
groups, without Gross’ potential. If Heat Kernel and pinned Wiener measures were
equivalent with Radon-Nikodym derivatives bounded above and below then the
Holley-Stroock Lemma (see [20])would tell us that pinned Wiener measure admits
a classical (i.e. “non-defective”) logarithmic Sobolev inequality. Even if the equiv-
alence were not so nice, it might still be possible to use the Driver-Lohrenz result of
[13] to eliminate the Gross’ potential term and thereby prove a logarithmic Sobolev
inequality for pinned Wiener measure.

In Section 5, using a result of Malliavin and Airault (see [26] and Theorem 4.1)
as well as a maximal-inequality argument, we show that Heat Kernel measure is
absolutely continuous with respect to pinned Wiener measure. Further, the relevant
Radon-Nikodym derivative is bounded. We also provide a simpler and more direct
proof of the result of the Malliavin-Airault Theorem in Section 4.
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In Section 7 we show that pinned Wiener measure is absolutely continuous (and
thus equivalent) with respect to Heat Kernel measure on §, (§s denotes the o-
algebra of functions depending on the loop up to time s < 1). We view the Loop-
Space-valued Brownian motion, developed by Driver and Lohrenz in [13], as a
group-valued two-parameter process. Viewing one of the parameters fixed, the
resulting process has the same distribution as Heat Kernel measure. In Section 6
we show that, in the other parameter, this process is a Brownian semimartingale
on the path space of the Lie group. To do this, we use extensively the theory
of two-parameter semimartingales developed by Cairoli, Walsh, Wang, and Zakai
(see [7], [31]). The fact that we can pull back this process to a Lie algebra valued
Brownian Semimartingale, Girsanov’s Theorem, and the fact that Wiener measure
and pinned Wiener measure are equivalent on §,; gives us our result that on §,
Heat Kernel measure and pinned Wiener measure are equivalent. In our proof, the
analysis is done in a bigger space (the Wiener space of the compact Lie group)
which is why we require s to be strictly less than one.

Heat Kernel measure is a time ¢ distribution of a process on the path space
of a Loop group which is started from the identity loop (i.e. the constant loop).
This describes a homotopy between the endpoint of this process and the identity
loop. As a consequence, Heat Kernel measure concentrates all its mass on null-
homotopic loops. On the other hand pinned Wiener measure is quasi-invariant
under translations by finite-energy loops. Thus Pinned Wiener measure must assign
non-zero mass to all homotopy classes. Therefore if the Lie group is not simply
connected, pinned Wiener measure is not equivalent to Heat Kernel measure. Thus
our result showing absolute continuity on §5 for s < 1 is in a sense the best result
that can be obtained in the non-simply-connected case.

In our last section, Section 9, we conjecture that pinned Wiener measure is
absolutely continuous with respect to a weighted sum of Heat Kernel measures on
the various homotopy classes. These Heat Kernel measures are obtained by starting
the Driver-Lohrenz Loop-group-valued Brownian motion at the energy-minimizing
geodesics in each homotopy class. This results in a measure that assigns non-zero
mass to each homotopy class. The conjecture rests on a very informal computation
done by Driver and the fact that the conjecture is true in the case that the compact
Lie group is the circle S*.

2. STATEMENT OF RESULTS

2.1. Loop group Geometry. Let K be a connected compact Lie group, & = T. K
be the Lie algebra of K, and (-,-); be an Adg-invariant inner product on K. For

£ € R let [€lg = /(&g Let £, and p, be left and right translations on K
respectively. (i.e. £, and p, are maps taking K to K so that £, (z) = gz while

p, (x) = xg). Let
L(K)={o€e(C(0,1]] > K)|oc(0)=0(1) =€}
denote the based loop group on K consisting of continuous paths o : [0,1] = K
such that o (0) = o (1) = e, where e € K, is the identity element.
Definition 2.1 (Tangent Space of L (K)). We will need the following definitions:-
e Given a function h : [0,1] = & such that i (0) =0, define (h, h); = oo if h is
not absolutely continuous and set (h, h); = fol W (s)|” ds otherwise.
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o Define
H(R®) ={h:[0,1] > 8|h(0) =0 and (h,h) < co}.
Then H (R) is a Hilbert space under (-, -) .
o Define
Hy(R) ={he H(R)|h(1)=0}.
Then (Ho (R), (-, ")) is also a Hilbert space.

In order to define the tangent space T'L (K) of L (K) let # denote the Maurer-
Cartan form. That is 0 (§) = (f4-1), & for all £ € TR K, and k € K and where ¢,
denotes left multiplication by g € K. Let 6 (X)(s) = 0(X (s)) and p: TK — K
be the canonical projection. We now define

TL(K)={X:[0,1] - TK|#(X) € Hyandpo X € L(K)}.

By abuse of notation, use the same p to denote the canonical projection from
TL(K) — L(K). As usual, define the tangent space at k € L (K) by Ty L (K) =
p~'{k}. Using left translations, we extend the inner product (-,-)g, on Hp to a
Riemannian metric on T'L (K). Explicitly set

(X, X)) = (0(X),0(X)) g5y where X € TL (K).

In this way, L (K) is to be thought of as an infinite-dimensional Riemannian mani-
fold. Viewing the Lie algebra (£,0) as a Lie group in its own right with Lie algebra
R, we obtain definitions for

L(R) ={oeC(0,1] = R8)|o(0) =0(1) =0}
as the “Lie group” with Lie algebra Hy (R) thought of as a commutative Lie algebra.
Definition 2.2 (Good Orthonormal basis of Hp). An orthonormal basis {7y}, cx
of Hy (R) is a good orthonormal basis if the Lie Bracket [, (s) , 7}, (s)] is identically
zero for all values of s and k.

Example 2.3. We will provide a couple of examples for illustration:-
1. Take {ht} to be an orthonormal basis of Hy (R) and let {A} run through an
orthonormal basis of & Then 74 ;, = hiA is a good orthonormal basis.
2. Let {Nak},en 4 Pe loops in Hy (8) where

sin 2wkt

( )
n . (T
A.Zh 7Ik:\/§

Na2k—1(T) (cos2mkT — 1)

A
k2
and A runs through an orthonormal basis of .

Definition 2.4 (The Laplacian Ap k) and Ay g)). Take a good orthonormal ba-
sis of Hg (R). Then define an operator A k) on functions f on L (K) by setting

Ay f =Y 0rf,

where

(Onf) (v) = 0-f (yexpeh) |.=o-



ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE 5

Define the Laplacian Ap(g) on functions f on L (£) in the same way above by
setting

Apsf =001,

where

(Onf) (v) = 0 f (v + £h) |e=o-

Definition 2.5 (Cylinder functions). Let (R,e) denote either the Lie group (K, e)
or the Lie algebra (&,0). Let L (R) denote either L (R) or W, (R).

1. Then f: L(R) — R is a cylinder function iff f (¢) = F (oy,,--- ,04,) where

{0<ti <--<tp <1}. F€C(R™).

2. f is a smooth cylinder function iff F' € C* (R"). F € C (R").

3. f is a bounded cylinder function iff F € Cj (R"™). Here Cj (R") are the
bounded continuous functions on R™.
Let FC (E (R)) denote the space of all cylindrical functions.

Let FC° (E (R)) denote the space of all smooth cylindrical functions.

Let FCg° (E (R)) denote the space of all bounded cylindrical functions.

A cylinder function is §p-measurable if and only if f(¢) = F (o4, -+ ,0¢,)
where {t;} C P where P is some partition of [0, 1].

NS oo

2.2. Measures on the Loop group.

2.2.1. Pinned Wiener measure. Let the Wiener space W, (K) denote the space of
all continuous paths in K starting at the identity. Explicitly

W, (K)={o € C([0,1] = K) |0 (0) = e} .

Definition 2.6 (Heat Kernel measure on K). Let t > 0. The Heat Kernels PX
on K are the unique functions so that for any smooth f on K, the function u on
[0,00) x K defined by setting u (t,2) = [, f (y) PX (y ') dy is a solution to the
Heat equation with initial condition f. Explicitly

1
ou = §AKU,

u(t,z) — f(x) ast—0.
It is well known that z — P are smooth function on K and that PX (z) =
PK (z71).

Definition 2.7 (Wiener Measure on W, (K)). Wiener Measure, u,, on W, (K) with
parameter ¢, is the unique measure so that for any bounded cylinder function f of

the form f (z) = F (z4,, - , s, ) we have
My [f] = K F (ml) U )xn) H Ptl((sz-—sl-_1) (1‘;_111‘1) dxi’
i=1

where 2o = e and s = 0. [The measure p, will also be denoted by p in the sequel.]

Definition 2.8 (Brownian motion on K). We will state three equivalent defini-
tions. A process s — (3 (s) is a Brownian motion on K starting at e with parameter
t iff:-
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1. B is a W, (K)-valued random variable distributed according to Wiener mea-
sure fi,.

2. the process s — (3 (s) is a diffusion starting at e with generator £Ag. This
means that the process s — § (s) is a martingale so that 8 (0) = e a.s. and

(600) (ds) = ¢' 0 () 5 (ds) + 5 (Arcd) o 3 (s) ds

for any smooth ¢ on K. Here Ak is the Laplacian on K with respect to the
metric (-, ), on K.
The first definition is easier in simpler cases like R? or compact Lie groups. The

second definition is easier to extend to the infinite-dimensional cases and manifolds.
See Definitions 2.14 and 3.6.

Definition 2.9 (Pinned Wiener Measure). Pinned Wiener Measure, y ;, on L (K)
with parameter ¢ is the unique measure on L (K) so that for any bounded cylinder
functions f of the form f (z) = F (x4, -+ , s, ) where F' € C* (K), then

PE _ (zn,e) &
@1 (= [ Pl o) e L Pilimay @i das

i=1
where o = e and so = 0.[We will use the notation 1, to denote jg ;]

Remark 2.10 (Pinned Wiener measure is really pinned!). Pinned Wiener measure
is really Wiener measure pinned at e. At least on cylinder functions,

fo,t [f] Z/f(ﬂf) de (x (1)) 1y (dﬂf)//5e (z (1)) p (dz) .

As Malliavin showed, another way of looking at this measure is
d (my) (fm))

2.2 o (f) = < = e),

(2.2 o) = () @

where my @ x. = x1; p, is Wiener measure on K with parameter ¢; and (fy,) is that
measure on W, (K) so that (fu,) (dz) = f (z) p, (dz). For cylinder functions, it is
trivial to check Eq. [2.2] by writing down finite-dimensional distributions.

Definition 2.11 (Brownian bridge on K). s — x (s) is a Brownian bridge from on
K with parameter ¢ if x is an L (K)-valued random variable distributed according
to pinned Wiener measure fi ;.

2.2.2. Heat Kernel measure.

Definition 2.12 (Brownian Bridge Sheet on £). A Gaussian process {x (¢)},c[ 1

is a Brownian bridge Sheet on £ if for (t,s) in [0, 1]%, x (¢, 5) is a &-valued mean-zero
Gaussian process with covariance given by

E<A5X(tas)>f{<Ba><(Tao-)>ﬁ = <A7B>f{ (t/\T)GO (870)7
where x (t,s) = x (t) (s) € & A,B € &, t,7,s,0 € [0,1]; and Gy (s,0) = sAo — so.

Remark 2.13. It turns out that if 8 is a Brownian bridge sheet on & then 3,
is continuous in both its parameters, ¢ — f3,, is a Brownian motion on & with
parameter Gy (s, s) and s = (3, is a Brownian bridge on & with parameter s.
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Definition 2.14 (Brownian motion on L (K)). A processt — X (t,-) is an L (K)-
valued Brownian motion if and only if for any smooth cylinder function f : L (K) —
R, there is a real-valued martingale M; so that

£ (S (dt,) =AM+ L (Drr f) (S (1) .

See Theorem 2.19 for the existence of this Brownian motion. So t — X (¢,-) is a
diffusion on L (K) with generator $ Ay k). [Define a Brownian motion on L (8) by
thinking of & as a Lie group and applying the above definition]

Lemma 2.15 (A k) on cylinder functions, see [13]). Let Go be as in Definition
2.12. Let P be the partition {0 < s1 < --- < s, < 1}. Let mp be the map taking a
loop o in L (K) to (04, -+ ,0s,) € K™. For F'€ C*> (K™), define

, d
(A F) (gla :gn) = dt|t:0F( » §i €XP tA7 )
Define an elliptic operator Ap on C*° (K™) by setting
A]p = Z GO (Si, Sj) A(z)A(])
i, A

Then letting A run through an orthonormal basis of R, for any smooth cylinder
function F : K™ — R we have

AL(K) (Fomp) = (APF) o TTp.

[This Lemma can also be used on the Lie algebra & by viewing K itself as a Lie
group, i.e. take K = R and gexpA =g+ A. ]

Proof. As in Example 2.3, take {h;} to be an orthonormal basis of Hy (R) and
let {A} run through an orthonormal basis of & Then 1,4, = hyA is a good
orthonormal basis of Hy (&). Then we have

d
(6nA,kF°7TP) (v) = %FOWP (VQXP”?A,k) do

= D s) (A9F) ome (7).

Thus
ApgyFomp = > 0y, ,0,, Fomp
keN,A
= D D m ()0, (AU)F) o (7)
i=1 kEN,A
= 22 [an ()15 (3) | (AVADF) o7z (7).
A ij=1 LkeN

It remains only to show that D, n g (si) 1y (s5) = Go (si,5;). Let h € Ho (R).
Suppose we can show that

(2.3) (Go(s,7), h) oy = P (s).-
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A priori we suspect that such elements Gy (s, -) exist because the evaluation map
h — hs is a bounded linear functional on the Hilbert Space Hy (R). Then we will
be done since we shall have

an G Z(GU(Siv')vnk> (Go (s5,) i)

keN keN
= <G0 (5i> ) >G0 (Sj) )>
= GO (Si, Sj) .

We shall proceed to check Eq. [2.3].
1
(Go (s")’h>Ho(R) = / O (s Nt — st) h (t)dt
0

= /0(1[0,51 (t) —s) K (t)dt
= h(s)—(1—s)h(0)—sh(1)

0 since h is a loop based at 0.

Hence we are done. i

Lemma 2.16 (Brownian Motion on L (R) exists). If x, = x(¢,*) is a Brownian
Sheet then for any smooth cylindrical function f, there is a real-valued martingale
M; so that

df (x;) = dM; + (AL(ﬁ)f) (xy) dt.

Here Apg) is the Laplace-Beltrami operator defined in Definition 2.4. So every
Brownian bridge Sheet on R is an L (R)-valued Brownian motion.

Proof. Let Gy be as in Definition 2.12. Let x7. denote as usual (X¢s)A) g for any
A € & Then the joint quadratic variation x4,,x5, = (A, B); Go (s,0)dt. Let f
be a smooth cylinder function implies (see Definition 2.5), f (o) = F (0s,,- "+ ,0s,)
where F € C°° (R") and P ={0 < s1 < --- < s, < 1}. Let x; denote (X5, » X¢s, ) -
Let (ADF) (g1, ,gn) denote 0-F (-+- ,g; + €A, +) Je—o. Let Ap on & by

Ap = Z Gy (s4,55) AD AW

i,5,A
Thus by Ito’s Lemma we have
df (x,) = dF (x)
= > (A(i)F) (XE) Xis:
i,A

3 3 (ADAOF) () o,

i,5,A

) 1 WG
= dMartingale + B %Go (si,55) (A(])A( )F) (X]f) dt

= dMartingale + = (ApF)( )dt.
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By Lemma 2.15 (view £ as a Lie algebra in its own right with Lie algebra & while
applying this Lemma) this last expression is just

= dMartingale + % (AL(K)f) (X¢) dt.

We will need the the following Theorem:

Theorem 2.17 (Malliavin). Let (QO,SO, {S’?s}(t $)e0,1]? ,PO) be a filtered com-
plete probability space where

Ste =0 (Xpu 1T E€[0,8], u € [0,5]),

and F° =V 5e0128ts- Let ko € L(K) and let x be a 8-valued Brownian bridge
sheet in the sense of Definition 2.12. Recall {, : K — K takes x — gx. Then there
is a jointly continuous solution X (t,s) to the stochastic differential equation

(24) B(Ot,s) = > (lops«A) X" (0t,s) with $(0,5) = ko (s), Vs €[0,1],
A€ONB(R)

where the A run through an orthonormal basis of & and where for each fized

5 € [0,1],% (6t,s) and x* (6t,s) denote the Fisk-Stratonowicz differentials of the

processes t — X (t,s) and t — (x (t,s),A) s respectively. Henceforth we write Eq.

(2.4) more concisely as

(2.5) % (0t,s) = (Ly,s)), x (6t,5) with £(0,s) = ko (s),Vs € [0,1].
[see Malliavin [27]; see also Theorem 3.8 of [11]]

Remark 2.18 (Explicit Matrix Representation of Eq. [2.5). | Let M,, (R) be all m x
m matrices on R and GL,, (R) be all invertible matrices in M,, (R). We will work
with an explicit matrix representation of our Lie group K. K will be thought of as
a subgroup of GL,, (R) C M,, (R) for some m. Such a representation exists as a
consequence of the Peter-Weyl Theorem. Hence Eq. (2.5) can be rewritten as

(2.6) Y (0t,5) = X (¢,5) x (0t,5) with X (0,-) = ko, Vs € [0,1],

where we have used matrix multiplication to define X (¢, s) x (8¢, s). Explicitly if we
let B;; denote the 4, j entry of the matrix B we have

8 (B (¢, 3))” = Z (2 (t, 3))119 de (x (t, S))k] .

k

Theorem 2.19 (Brownian motion on L (K)). Let X (¢, s) be the process from The-
orem 2.17 and Remark 2.18. Theorem 2.17 tells us that s — X (t,s) is a Loop a.s.
Let ¥ denote this loop s — X (t,s). Then t — X is a Brownian motion on L (K)
in the sense of Definition 2.14.

Proof. See Theorem 3.10 of Driver [11].

Now that we know that Brownian motion on L (K) exists, we can define Heat
Kernel measure on L (K).

Definition 2.20 (Heat Kernel measure on L (K)). Let ko € L (K) be a loop and
let ¢ > 0. Let X (¢,-) be an L (K)-valued Brownian motion so that X (0,:) = kg in
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L (K) a.s. Then, as in the finite-dimensional manifold case, Heat Kernel measure
vt (ko,dk) is defined to be the law of X (¢, ). Explicitly

/ f(k‘) V¢ (k‘o,dk‘) :EfOE(t,)
L(K)

The next Theorem shows that Heat Kernel measures behave as expected, in
that they may be used to solve the Heat Equation on L (K). See Remark 3.12 for
motivation of Theorem 2.21.

Theorem 2.21 (Driver&Lohrenz). For each t > 0, for all bounded cylinder func-
tions f on L (K), the function u on (0,00) x L (K) given by

u(t)kO) = / f(k) Vi (k07dk)7
L(K)
is the unique solution to the heat equation
1 s
Ou (t,) /ot = EAL(K)u (t,-) with ltlﬁ)lu (t,k) = f (ko) -

Here Ap (k) denotes the operator from Definition 2.4. See Theorem 1.1 of [13].
See also Definitions 3.10 and 4.17 in [13]. [Note:- In [13], results on Heat kernel
measures are obtained for groups of compact type, and not merely compact Lie
groups. |

2.3. The stochastic framework. We shall use the results of Section 2.2.2 to
obtain our probability space.

Definition 2.22 (Ambient probability space). (Qg {8t} 1y tos® ,P) is going
to be our biparametrically-filtered probability space where

e O = C([0,1] = L(K)) equipped with §, the completion of the Borel o-
algebra.

e Let X be the process from Theorem 2.17 so that ¥y = e, where e denotes the
identity loop.

e P is defined to be Wiener Measure on C ([0,1] — L (K)). Explicitly, P = Law

3.

9+ : C([0,1] = L(K)) = L(K) by z = x (t) for any z € C ([0,1] = L (K))

By Theorem 2.19 we see that dLaw ¢; = dv (e, -).

ges (2) = [2 (D] (5) in K.

Soo is a o-algebra containing all the null sets of §.

¢ §ts =0(gro : 7 €[0,t] and o € [0, s]) V Foo-

Definition 2.23. Let {&,} be a filtration. Then U. is a K-valued &.-semimartingale
iff for any smooth f : K — R the processt — f (U;) is an R-valued &.-semimartingale.

Definition 2.24 (see Protter [30]). Let {&,} be a filtration. An R-valued process
U. is called an R-valued &.-semimartingale if:-

1. the paths U. are continuous a.s.

2. U. is adapted with respect to the filtration &. (i.e. U; € &; for all ¢ € [0,T])

3. Given any sequence of simple adapted processes {H} then fOT HUz | 0in
probability whenever H | 0 uniformly on compacts in probability. Here H is
a simple adapted process if H is an R-valued &;-adapted process of the form
H(t,w) = > 1o H; (W) L(zy,1,,,) with the T; being a sequence of stopping



ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE 11

times with 0 < Ty < -+ < T,, < T. The integral fOT H,;Uyg; is defined to be
the sum Y H; (UTi+1 - UTi) for any simple adapted process H.

Theorem 2.25 (Semimartingale properties of g.;). The process g of Definition 2.22
has the following properties:-
1. The process t — g:s s a semimartingale.
2. Let Xy = fot 9-tgsrs. Then t — X,. is a Brownian bridge sheet on & with
respect to the measure P. Furthermore, X can be taken to be continuous in
both its parameters.

Remark 2.26. After the proof of Theorem 2.25 we shall never again refer to x, X
or the underlying abstract probability space. Also we will always use the version
of X that is continuous in both parameters ¢ and s.

Proof. of Theorem 2.25

First we check that ¢t — ¢;5 is an §.s-semimartingale. For convenience we use
the “good integrator” definition of a semimartingale (see Definition 2.23). Pick
f e C®(K). It will suffice to check that f (g.s) is a semimartingale. Let {H} be
a sequence of §.s-adapted processes which converge to zero uniformly on compacts

in probability. Then we have
ZHZ (gTi+1S - ngs) > 8>

T
P(/o Higass >5> = p(io
ZHi (Z (W) (B71415 — Z11s)

ol )
(o)

This last term goes to zero since t — Y4, is an §.s-semimartingale. Thus g is a
semimartingale.

Now we want to show that X.;, = fo gt_slgats has the same law as x.,. Let F;;
denote the m x m matrix with k,l-entries §;10;. We can write

X = Z/O (ggl)ik Ot (gts)kj E;;

.5,k

]2;/0 [2 (965 ) i1 Eij

n

T
/ Ht [e] Z.S (W) Zdts
0

0t (gts)kj ,

and

X.s = Z/O (Z51) 14 0t (Zts)yj Eig

.5,k

= ]2];/0 l; (251 i Bis

51 (Sts)y; -

Thus we can write

X—s = Z /0 fk (gts) 6thk (gts) )
k
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and

X.s = Z /0- fr (Ets) Othy (Ets) ;
k

where fr and hj are matrix-valued and R-valued functions on K respectively. In
particular, by the definition of the Fisk-Stratonowicz integral, X is the limit (in
probability with respect to measure P) of the sequence

1
XTs = Z/O 5 [fk (gti—ls) + fi (gtis)] [hk (gtis) — hy (gti—1s)] )
kP
and xr, is the limit (in probability with respect to the measure P) of the sequence
1
X]g;s = Z/ 5 [fk (Eti71s) + fk (Etis)] [hk (Etis) - hk (Eti—ls)] .
kp 70

Now

P{w:|x7s— Xrs0X| >¢}) = P({w:|X]gLS—XTSoE|>8})
= P{w:|X}, 08— Xr;03| >¢})
= P(|Xp, — X5 > ) = 0.

Thus x;, = Xis 0 ¥ almost surely w. By continuity of xy and X in both their
parameters, we have Y = X o Yand therefore t — X;. is a Brownian bridge sheet
on R with respect to P.

We have only to assert that a biparametrically continuous version of X can be
chosen. By Theorem 8.2 it suffices to check that

m+p
2

P(IXy = Xeol5] <Ot = + (s =0)?]

for some positive g, C', 8 and m = dim K. Let t > 7.
th - X‘ra’ - (th - X‘rs) + (XTs - X'ro’) .

As in the proof of Lemma 8.3, if a martingale M has independent increments, then
its quadratic variation [ dMydM; is given by [ d; EM?. The process t = X5 — X4
is a Brownian motion on £ with parameter Gq (s, s) and so has quadratic variation
(t — 1) Go (s,s). The process T — XA — XA is also a martingale with independent
increments and so has quadratic variation

/ (XA, — XA =7(Go (5.5) + Go (0,0) — 260 (s,0)].

Thus by Burkholder’s inequality we see that

P|Xes— Xrof© < Cm Y P|X[4 - XA :
A

< Cem Y _|(t—7)Go(s,9)”
A
< Com|t=7)"?.
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where the constant C. ,, depends only on € and m. Again by Burkholder, we have
the estimate

E|X;s = Xrof” < Cu Y PIXA-XA[
A
< Commt/? |Gy (5,8) + Go (0,0) — 2Gy (s,0) [
< Com|ls=ol*+1s—of].
< Comls—of"*.

Thus
P([Xes = Xro 3] < Copm [Is = o + [t = 7]
Picking ¢ > m + 3, we are done. i

We are now in a position to state the main results of this paper.

Theorem 2.27. Let K be a compact Lie group. Then Heat Kernel measure,
vy (e,-), is absolutely continuous with respect to pinned Wiener measure, p,. Fur-
thermore, the Radon-Nikodym derivative dvy (e,-) /dp, is bounded.

Proof. This Theorem is proved as Theorem 5.1 in Section 5. I

Theorem 2.28. Let so < 1 and let 5, = o (m : t € [0, 50]) where 7 : L(K) - K
is the evaluation map at time t. Then pinned Wiener measure, p,, is absolutely
continuous with respect to Heat Kernel measure, vy (e,-), on the o-algebra G, .

Proof. This Theorem is proved as Theorem 7.1 in Section 7 I

3. WARM-UP SECTION:

3.1. Path group cases for a Lie group: Let the Wiener space on K, the space
of all continuous paths in K starting at the identity, be given by

W, (K)={o € C([0,1] = K)o (0) = ¢} .

The goal of this section is to assert that Heat Kernel measure on W, (K') and Wiener
measure on W, (K) are the same.

Definition 3.1 (Riemannian Structure on W, (K)). Define H = H (R) to be the
Sobolev space of functions with one L2-derivative as in Definition 2.1. We will think
of H as the Lie algebra of W, (K). In order to define the tangent space TW, (K)
of W, (K) let € denote the Maurer-Cartan form. That is 6 (§) = (1), ¢ for all
¢ € TyK, and k € K and where ¢, denotes left multiplication by g € K. Let
0(X)(s) =0(X (s)) and p: TK — K be the canonical projection. We now define

TW, (K) = {X :[0,1] » TK|0 (X) € H and po X € W, (K)}.

By abuse of notation, use the same p to denote the canonical projection from
TW.(K) — W, (K). As usual, define the tangent space at k € W, (K) by
TWe (K) = p~*{k}. Using left translations, we extend the inner product (-,-)
on H to a Riemannian metric on TW, (K)). Explicitly set

(X, X)) = (8(X),8(X)); where X € TW, (K).
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In this way, W, (K) is to be thought of as an infinite-dimensional Riemannian
manifold. Viewing the Lie algebra (8&,0) as a commutative Lie group in its own
right with Lie algebra K, we obtain definitions for

Wo (R) ={o € C([0,1] = R) |0 (0) =0}
as the “Lie group” with Lie algebra H () thought of as a commutative Lie algebra.

Definition 3.2 (Good Orthonormal basis of H). {n;},cy, is @ good orthonormal
basis of H if {n;},cy, is an orthonormal basis of H so that the Lie Bracket
[, (s) ,m}, (s)] is identically zero for all values of s and k.

Example 3.3 (Good bases exist). Take {h;} to be an orthonormal basis of H (R)
and let {A} run through an orthonormal basis of & Then 7, , = hrA is a good
orthonormal basis of H.

Definition 3.4 (The Laplacian Ay, (k)). Take a good orthonormal basis S of
H (8). Define an operator A on functions on W, (K) by taking

Af=D 0k,
hesS

where

(Onf) (v) = 0-f (yexpeh) |-=o.

Define a Laplacian, denoted by Ay, (g), on functions on Wy (K) in the same way
as above by taking

Awys)f =Y 0if,
hesS

where

(Onf) (v) = 0 f (v + £h) |e=o-

It is well known that the operators A and Ay, (z) defined above are independent
of the choice of good orthonormal basis (see [13]).

Definition 3.5 (Brownian Sheet on R). A Gaussian process {8 (¢)},cp0 ) 18 @ &

valued Brownian sheet if for (¢, s) in [0, 1]%, 8 (t, s) is a R-valued mean-zero Gaussian
process with covariance given by

E<A;6(t75)>ﬁ<B;ﬁ(T)U)>R:<A7B>ﬁ(t/\T)G(570)a
where 3 (t,s) =8 (t)(s) € R; A,B € &; t,7,s,0 € [0,1]; and G (s,0) = min (s,0).

Definition 3.6 (Brownian motion on W, (K)). The processt — X (¢,-) isa W, (K)-
valued Brownian motion if and only if for any smooth cylinder function f : W, (K) —
R, there is a real-valued martingale M; so that

(3.1 f(Z(dt,")) =dM; + % (Aw. k) f) (S (¢,-)) dt.

We can define a Brownian motion on Wy (&) by thinking of & as a commutative
Lie group, and using Ay, (g) instead of Ay, (k) in Eq. [3.1].
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Lemma 3.7 ( Effect of the Laplacian Ay, (k) on cylinder functions, see [13]). Let

G be as in Definition3.5. Let P be the partition {0 < s; < --- < s, < 1}. Define
mp:0 — (05, - ,0s,) € K" For F € C*® (K"), define

, d
(A F) (917 )gn) - dt|t=0F( ) §i €XP tA: ) .
Define an elliptic operator Lp on C*° (K™) by setting

i,j,A

Then letting A run through an orthonormal basis of R, for any smooth cylinder
function F : K™ — R we have

AWC(K) (Fomp) = (L]pF) o TTp.

This Lemma can also be used on the Lie algebra K by viewing R itself as a commu-
tative Lie group.

Proof. Use the same proof as that of Lemma 2.15 by replacing Hp (R), Hy (R),
Go (s,0) by H(R), H(R), G (s,0). 1

Lemma 3.8 (Brownian Motion on Wy (R) exists). Every Brownian Sheet on 8 is
a Wy (R)-valued Brownian motion. More precisely, if 8, = 3 (t,-) is a Brownian
Sheet then for any smooth cylindrical function f, there is a real-valued martingale
M; so that

& (5) = M, + 5 (Do ) (8y) it

Here Ay, () is the Laplace-Beltrami operator defined in Definition 3.4, where (£, 0)
i1s viewed as a Lie group.

Proof. Use the proof of Lemma 2.16 with 3,G in place of x, Go. 1

Lemma 3.9 (Semimartingale properties of h;.). Let b be a R-valued Brownian Sheet
(see Definition 3.5)Let hys be the solution to

(3.2) hsts = hesbses with hos = e.

Then the process s — hys is a K-valued Brownian motion with parameter t. Fur-
thermore one can choose a version of h which is jointly continuous in both parame-
ters s and t. In future, h will be taken to be this jointly continuous solution. Note:-
Eq. [3.2] is to be interpreted like Eq. [2.4].
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Proof. Let s; =i/n. Then {0 =s¢ < 51 < --- < s, = 1} is a partition of [0,T]. For
convenience, let A;b (t) = bys; — bis,_,. We compute
0 (usihist )
= hus;bots: gy, — Tusibotsi_i gy
= hys, Db (Ot )htsl{1
= (htsi hfsll-,l) Adp,,, , Db (61)

_ (htsl b, ) Adn,, Db (dt) + %dt (heschisl_, ) Adu,,, 2 ()
+ EAdhtsi—l [bdtsi,ly Alb (dt)]

Ab (dt)

-1

_ (htsi hil )Adht _Ab(d) + ldt (htsiht—s}_l) Ady,,,

= (hesihizl_, ) o / Ady.,. Db (dr),

where we have used that fact that by, , € F1s,_, and that A;b(-) is independent
of §1s;, ,- Thus

5, (htsl e ) hes b7 5t / Ady,., A (dr) with hos, by, =e.

It suffices to show that {fo Adp,,,_ Nib (dt)} . , is a A"-valued Brownian
= ie{l,-,n
motion with parameter 1/n, since this will imply that ¢t — {htsl ht_sl 1} . , is
ie{l,,n
a K"-valued Brownian motion with the same parameter. But this is true by Levy’s
criterion and the following computation of quadratic variations.

Let J; denote the joint quadratic variation

t
/ Ady..  Ab(dr) Ady.., | Db (dr).
0
Then
dJy = Adp,,  Ab(dt) AdhtsjilAjb(dt)
= Z (Adhtsl__lA ® Adp,,,_, B) Db (dE) A bP (dt)
A,B
®2
= (SZ]AlSdt Z (Adhtsi_l A)
A
5ij ®2
= U EA: (Adh,.,_,A) " at
dij
= 4 A®2qt.
; EA: dt
Thus, in particular, Law (hTsl h;;o, - hrs, h;;n_l) is Heat Kernel Measure on

K™ at time T'/n. But this implies that s — hr. is a K-valued Brownian motion
with parameter T'.
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We have only to show that h;s satisfies the hypothesis of Theorem 8.2. That is
we must show that

m+p
2

Pld (hiss hro)) < C [t = 7)° + (s = 0)’]

The proof is essentially the same as that done in Theorem 3.8 of Driver [11] with
the modification that G (s.o) is used in place of Gg (s,0). in particular, see Eq.
[3.12] of [11]. B

Theorem 3.10 (Brownian motion exists on W, (K)). Let h be the jointly contin-
uous solution of Eq. [3.2]. Let hy denote the element s — hys in W, (K). Let k be
an element of W, (K). Thent — khy is a W, (K)-valued Brownian motion starting
from the path k.

Proof. Let
f(g) = F(USU"' 7gsn))

be a smooth cylindrical function where P is the partition {0 < s1 < --- < s, < 1}.
Let A, 7p and Lp = Y G (s4,5;) AW AU be as in Lemma 3.7. Let h¥ (t) =
(mp o hy) and let k¥ = mpok. Let £;> denote left translation by the element k¥ € K™
and let £ be left translation by the path k& € W, (K). Simplifying, we get

df (khe) = d(f o ) (he) = d(F omp 0 ) (he) = d (F 0 44e) (b (1)) .
By Eq. [3.2] the K"-valued process h* satisfies
R¥ (8t) = B () b¥ (5t) with h¥ (0) = e,
where e denotes the identity element in K™. Then by Ito’s Lemma, we have
df (khe) = > (A<i>F o zk) (RF () b2 (5t, 5,)
Ayi
3 (A(i)F) o by (BE (1)) b™ (dt, ;)

Ai

(3.3) +% S d; [(A“)F) o by (HP (t))] b4 (dt, ;).
A,

The quadratic variation
dy (AU)F) o by (HP (1)) b2 (dt, 5;)

-y (Bw‘)A(i)F) o Ly (WP (£)) bB (dt, 5;) b (dt, s)
B,j
= (A(f')A(i)F) o b (W (1)) G (s, ;) dt.

Here we have used the fact (see Lemma 8.3) that the quadratic variation
b7 (dt,s;) b™ (dt, s;) = (A, B) 4 G (i, s;) dt.
Returning to Eq. [3.3] yields

df (khy) = dmartingale + % 3 G (sivsy) (A<i>A<f'>F) (KPR (1)) dt.
Ai,g
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Invoking Lemma 3.7 yields
1
df (kht) = dmartingale + 3 (Aw. (k) f) (khy) dt
for any smooth cylinder function f. Thus ¢ — h(t,-) is a Brownian motion on
L(K). 1

Definition 3.11 (Heat Kernel measure on W, (K)). Let k be an element of W, (K).
Let t — ht be a W, (K)-valued Brownian motion so that hy = k a.s. Then, as in
the finite-dimensional manifold case, Heat Kernel measure VJVY (%) (k,dy) is defined
to be the law of h (T, ).

Remark 3.12 (Heat Kernel measures solve the Heat Equation). Let P be the par-
tition {0 < s; <--- < s, <1}. Let A® 7p and Lp be as in Lemma 3.7. Let
f = F omp be a smooth cylinder function for some F' € C* (K"™). Let

ut k) = [ £ (k)
Let h be a W, (K)-valued Brownian motion starting from k¥ € W, (K). Then
VZVQ(K) (k,dv) is the law of h. Let G~! be the n x n matrix that is inverse
to (G (s, s;)). Endow K™ with the metric (A®, BU)) = (A,B)RG,;; so that
the Laplacian on K" (viewed as a Riemannian manifold) is the operator Lp =
>4 G (si,85) ADAG) | Now t — hP (t) = mp o hy satisfies the martingale charac-
terization of a Brownian motion on K™ with this metric since by Lemma 3.7
1
F ok (dt) = F o mp o hgy = dmartingale + 3 (LpF) o AT (t) dt.
Thus
t
(3.4) u(t,k) =Efoh; =FEFoh (t) = <exp <§LP> F) omp (k).
By Lemma 3.7
(LEF) omp = Aw, (k) (Lp ' Fomp) = Ay () (F o p) .

So in particular,

(oo (412) ) o

I

=[]
|H~ [\3|H~
3| S

~

<

3

o

3

=

I
)
o]
T
|
>
5
3
~——
=
(o]
5
=z

Returning to Eq. [3.4] yields

wlt, k) = (exp (gﬂw) f) (k).

Corollary 3.13. Heat Kernel measure VJVYC(K) (e,dvy) and Wiener measure with
parameter t are the same measure.

Proof. By Definition 3.11, Heat Kernel measure is the law of h;.. By Lemma 3.9
s = hgs is a Brownian motion on K with parameter ¢. Thus heat kernel measure
and Wiener measure are the same. [
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3.2. Semimartingale Properties of X;;: Let X;; be as in Theorem 2.25. Then
X is a Brownian bridge sheet on K. Brownian Sheets are easier to work with
than Brownian bridge Sheets (they are martingales in both their parameters for
instance). The goal of this section is to write X;. as a linear functional of b;. ,a
Brownian sheet. To motivate this decomposition we first introduce Proposition
3.14. The Brownian bridge X. is supposed to play the role of X;. but with one
fewer parameter.

Proposition 3.14. Let X be the canonical process on C ([0,1] = R). That is X,
sends a path 7y to its evaluation 7y (s) at time s. Let the

be Heat Kernels on R. Define a new process b by setting

s . . s Af?
by = Xy — / Vin PR _(X,)do = X, +/ 7 _do.
0 0

Then b is a standard R-valued Brownian motion.

Notation 3.15. Let pp be Wiener Measure on C ([0,1] = R). Let u® = Law X
be pinned Wiener measure on R (Y is the measure p, in Definition 2.9 if K is
taken to be R). Let §; be the o-algebra generated by the X; with ¢ € [0, s]. Let
Zs = d(u]§ Jfgs) /d(,U'R J/Ss)

Proof. Now Zs; = P} ()Z's) /PE(0). By definition, X. is a Brownian motion with

respect to the measure pg. Hence by The Meyer-Girsanov Theorem , which we
state as Theorem 3.16 below for convenience,

NoF / dX,dZ,
0 ZS

is a local martingale. This expression has the same quadratic variation as X. (since
the measures up and p§ are equivalent on §, when s < 1). Thus this expression
N. is a Brownian motion by Levy’s criterion. Computing directly, we see that

d)?sts = dAN’sds exp [log PES ()?S) —log PF (0)]

exp [log PR, ()?) — log PR (0)] (Vlog PR,) ()?) dX,dX,
= 7 (VlogP{R_s) ()N(S) ds
Thus N. = X. — fo (Vieg PE.,) ()?s) ds = b. and we are done. I

Theorem 3.16 (Meyer-Girsanov, see [30]). Let P and Q) be equivalent measures
and let Z, = E[dQ/dP|3,]. Let X be a semimartingale under P with decomposition
M + A (where M is a local martingale and A has finite variation). Then X s also
a semimartingale under Q) with decomposition N + C' where

N % / dX,dZ,
0 ZS

is a Q-local martingale and C' = X-Nisa finite variation process.
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Definition 3.17. Define the following linear maps:-
1. Define continuous £-valued linear maps on paths,

TtaSt : C([O, 1] — .ﬁ) — .ﬁ,
by setting

Tt (W)

0 —/0 w(T)((lidT ifte0,1).

1—7)2
Selw) = wlt) + /0 (;"(_T)T)

2. Let U; and Us be the subsets of C ([0, 1] — K) on which the limits lim;_,; T} (w)

drift € [0,1).

and lim;_,1 S¢(w) exist respectively. Then define maps Ty and S from C ([0, 1] — &)

to R by setting
T, = 1y () }gq Ti(w).

51 = 11,{2 (w) }E}l} St (w)

Remark 3.18. Notice that in Proposition 3.14 we wrote the underlying Brownian
motion b. as S ()Z') (). Similarly we shall prove the process b;. = S (X.) is a
Brownian Sheet and that X;. can be written as T' (b;.).

Theorem 3.19 (Decomposition of the Brownian bridge sheet). Let X be the Brow-
nian bridge sheet from Theorem 2.25. Define b by setting

% Xiod
bis = Ss(Xe.) = Xy +/ lt—; for any t,s € [0,1].
o _
Then b is a Brownian sheet on & and X5 can be recovered from b as:
8 1-s5
(35) th = Ts(bt) = bts — / bw(i)zda.
0 (1-0)
We shall defer the proof of Theorem 3.19 until after the Lemma 3.21 below.

Remark 3.20. For another explicit computational proof of this Theorem, see The-
orem 8.5 in the Appendix 8.

Lemma 3.21 (Properties of the transformations S and T'). Define a map T from
H (8) to Hy (R) by setting T (w) (t) = Ty (w). Define a map S from Hy (R) to H (R)
by setting S (w) (t) = S¢ (w). Then.-

1. S is well-defined and is a unitary isomorphism from Hy (8) to H (R).

2. T is well-defined and is the inverse of S.

Proof. Let w € H (R). By an integration-by-parts we can express T more concisely
as

T(w)(t) = w(t)—/o w(T)%dT
- w(t)—(l—t)/TTO o)
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Thus we have the inequality

@0 < 1= [ W@l
< |wlpg (1) /0(1?:)2

= |w|H(f{) t(1—1t)
— 0Oast—1.

Thus T} is continuous on H (K), and ImT' C L (R).
Let 4o denote the subspace of functions of the form o = [ x (t)dt where z is

in the continuous maps from [0,1] to K so that its average, fol x (t)dt, is 0. By
the Stone-Weierstrass Theorem, C ([0,1] — &) is dense in L* ([0,1] = &, d)) and
in particular continuous functions with zero average are dense in the space of L?
functions with zero average. Thus by the isometry provided by the map x — [ zdt
from L2 ([0,1] = &,d)\) to H (8) we see that iy is dense in Hy (R) in the Hp (R)
norm topology.

We claim S is a norm-preserving map from o to H (R). Let o = [jz (t)dt in
$y. Computing, we see that

1S(0) 315,

Il
‘:\H

= o lhy ) — 2(o(1),z (1),
)

= |a|ilo(ﬁ) since o (1

By the Bounded Limit Theorem, we can extend S to a map S on all of Hy (8) by
defining
S (w) = lim S (w,) for any w, € Yo, w, — w in Hy (K).
n— 00
Although S and S agree on y they could be different maps on Hy (8). We will
check that this is not the case. Notice that the evaluation map sending w in H ()
to w (t) in A is a bounded linear map. Also if s < 1, the map S| (g) is a continuous

map from H (8) to & in the H (R)-norm. Therefore, if w, in g converges to w in
the H (R)-norm, we have for all s < 1,

S (w)(s) = lim S(wy)(s) = lim Ss(wy) =8 (w)(s).

n—o0 n—o0

Thus S = S which is a norm-preserving map from Hy (f) into H (R).
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Let z in Ho (R). Let y = S(z) in H(R) and z = T (y) in L(R) so that z =
T oS (z). As before, x (0) = 2z (0) = 0. Letting ¢t < 1 and computing, we have

2 = g [ LO0
o 1-—7
o, z(t) e (r)dr 3 Pa(r)dr
= x(t)-i—l_t /0 1_- /0(1_7_)2
o, z(t) b dx (1) e (r)dr
= x(t)-i—l_t /01_7_ /0 )7

So T o S is the identity on Hp (R) and so T is a surjective norm-preserving from
Im S to Hy (R).

Let  in H (R), y = T (x) in L (R) and z = S; (y) so that z; = S; o T (x). Since
z(0) =29 =0 and

i = Vot
- ro- [ 52

So S; o T (x) = x (t) for any z in H (R).
Now we show that 7" maps a dense subspace i of H (&) into Hy (R). If z € i,
then

SoT (x)(t) =SioT (x) =x(t).

In particular, z belongs to Im.S. Thus Im S contains a dense set 41 and so is all of
H (R). So S will be a unitary isomorphism between Hy (8) and H (R), T will be
its inverse, and we shall be done.

Let 4 denote the subspace of functions of the form ¢ = [z (t) dt where x is
in C([0,1] — 8). By the Stone-Weierstrass Theorem, C ([0,1] — K) is dense in
L*([0,1] = &,d\). Thus by the isometry provided by the map z — [ dt from
L2 ([0,1] = &,d)\) to H (&) we see that 4 is dense in H (8) in the H (&) norm
topology. Then

T (U)I (t) =o' (t) - /0 o'(7) dr =z (t) — /0 2(7) dr.

1—71
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/ 1T (o) () dt
0

1 t 2
:/ x(t)_/ 2 gl ay
1 2
<2sup|:r(t)|/ 1+ dr| dt
[0,1] 0 -

1
= 2||a:||oo/0 1+ |log (1 —¢t)* dt

1
:2||m||oo/ 1+ [log ¢[2 dt.
0

Letting t = —u?/2 we have

IT ()72, )<28up|a |/ < >exp(u2/2)du<oo.

[0,1]
|

Proof. of Theorem 3.19:
First we show that

E (bts, A) g (bros B)g = (t AT)G (s,0) (B, A) ¢
Recall bf} = (bts, A) z and Xfs = (Xy5, A) 5. Let
1
I (z) = / o, (du) 7 (1)
0
where

1
a(du) = {& (u) + 1[0,s]m:| du

is a positive measure on [0, 1]. Then

1
d
I, (z) :x(s)—l—/ 2 (1) —— = 8, (z).
0 1—u
Define b;s = Ss (X;.) as in Definition 3.17. So
(3.6) EbAbE = B / s (du) g (dv) XAXE

By Tonelli’s Theorem and Hélder’s inequality, we have
/ a, (du) a, (dv) \/ E(XA) E(XB)?

= /as (du) ay (dv) \/tTGy (u,u) G (v, v) < co.

IN

E / a, (du) oy (dv) | X[ XE

Thus applying Fubini to Eq. [3.6] we see that

tsVto

EbAbE = /as (du) a, (dv) EXAXE

(3.7)

(tAT)(A,B)g / a (du) / a, (dv) Gy (u,v).
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Let h run through an orthonormal basis of Hy (8). Then
Go (u,v) = (Go(u,-),Go (v, '))Ho(ﬁ)
= Y (Go(u,),B) g, (Go () )y )
= Z h(u)h (v

Returning to Eq. [3.7] we get
E (bts, Ay (bro, B)y = (tAT)(A,B) Z/ ) s (du) /h(l/)aa (dv)

(EAT)(A,B)g > Sy (h) Sy (h).

Let U = {x|jp,1) : € C* (R) }. The map S : Ho (R) — H (R) is a unitary isomor-
phism by the previous Lemma 3.21 and so the S (h) run through an orthonormal
basis of H (R). Exploiting this fact,

E (brs, A) & (b, B)
= (tAT)(A,B) > S(h)(s)S (h) (o)
= (EAT)(A,B) g > (G (5,7), 8 (h) gy (G (0,2), S (B)) sy
)

=(AAT)(AB) (G (s,)),G (0, ) (s
= (tAT) (A, B)G (s,0).

(3.8)

Thus b is a R-valued Brownian sheet.

It remains to show that T' (b;.) (s) = X¢s. Define H® (&) which is to be thought of
as “H (8) |jo,1—<)” as follows:- Given a function A : [0, 1 — €] — R such that h (0) =0
define (h, h)y. ) = oo if h is not absolutely continuous and set (h,h)p. 4 =

fol_g |h (s)|” ds otherwise. Define
H® (]) = {h:[O,l—s] — /1 (0) =0 and (h, 1) g g < oo}
He¢ is dense in W, where
W5 (R) ={o € C([0,1—¢] = K)o (0) =0}

is equipped with the sup-norm topology. Define bounded linear transformations 7
and S° on W§ (8) by requiring

T (2)(t)

x(t) —/0 x(T) ((11__:))_2 dr;
z(7)

Sé(z)(t) = :U(t)—l-/o (l—T)dT'

Now for any h € H (R) or Hy(R), hlpi1-) € H°(R). Also h € H(R) im-
plies that (T (h))ljo1—c] = T° (hljo,1—c]). Furthermore h € Hy (R) implies that
(S (h)) lj0,1—e] = S° (hljo,1—e])- For any = € H* there is some h € Hy (f) so that
h|jo,1—¢] = z. Using this fact and the fact that 7" = S~ from Lemma 3.21, we see
that for any z € H® (R)

TE o Sg (.’L') = TE o (S (h) |[0,17€]) = h|[0’1,€] =T.
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By continuity, we have T¢ 0 S® (z) = z for any € W§. Thus for any s < 1 —¢, we
have

T (bt) (S) =T° (bt.|[0’175]) (S) =T°%05° (Xt-|[[),175]) (S) = th.
Thus

Xis = T(bt) (S) = bys — /OS btg%da’

which is exactly Eq. [3.5]. 1
3.3. Abelian Loop group Examples.

3.3.1. The Simply-Connected Lie group (Rd,+).'

Lemma 3.22. On the Loop space of R?, Heat Kernel measure and pinned Wiener
measure are the same.

Proof. Our Lie group here is K = (R?, +) with Lie algebra £ = R?. Our probability
space is (C'([0,1] = K), Law ¥) as in Definition 2.22. Eq. (2.6) becomes

X (0t,5) = x (6t,s) with X (0,s) =0,Vs € [0,1].

In other words, ¥ = x. This implies that Heat Kernel measure on L (]Rd) equals
Law x (t,-). But x (t,-) is a standard Brownian bridge from 0 to 0. Pinned Wiener
measure is the law of this Brownian bridge. Hence in R?, Heat Kernel Measure and
Pinned Wiener Measure are the same measure. [

3.3.2. The Lie group S' with fundamental group Z: Realize the Lie group S' as
{(cos 270, sin 270) : 6§ € [0, 1]}, its imbedding in R?. Specify the left-invariant metric
by setting |0p| = 1. Let Heat Kernel measure 1/%1 (z,-) be the family of measures in
Definition 2.20. Let pinned Wiener measure ung be the measure on the loop space
L (S") as in Definition 2.9. Let Wiener measure x5 on W, (S') be as in Definition
2.7. Let

Wo (R) ={C([0,1] = R) : 0 (0) =0}

be the Wiener space on R. Let m : L (S') — R be as usual the evaluation map.
By abuse of notation, let 7 : W, (S') = R be also be the evaluation map.

We show, in the K = S case, that Heat Kernel Measure is equivalent to Pinned
Wiener Measure restricted to the null-homotopic loops. Thus Heat Kernel Measure
is absolutely continuous with Pinned Wiener Measure. However, as mentioned
in the Introduction, the two measures are not equivalent since S' is not simply
connected.

We shall need to explicitly compute the Heat Kernel Measure on S' and this is
provided for the reader’s convenience in the following Lemma:

Lemma 3.23 (Heat Kernel measure on S'). Let ¢ be the local chart from R to S*
taking z — (cos 2wz, sin2wx). Then Heat Kernel Measure on S' has the following
representation:

(3.9) P () =Y Pz +a).

aEZ
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Proof. Since the right hand side of Eq. [3.9] is periodic there exist a unique map
P (t,0) from [0,00) x ST — R so that P (¢, (2)) = Y ez P (z + ).

9. P (t,9 () = 0o P (t,)] (¢ (7)) -
Thus

(at - %ag) P(6,0) lomviey = <at - %aﬁ) Pt (2))
3 (at - %ag) PR (z+a) = 0.

aEZ
For any F € C* (S'), define a map u (¢,6) from [0, 00) x S* — R by

u(t,0) = /S F(0) P (t,07'0") vol (d6') .

Take the support of F' to be less than the entire circle. The appropriate local chart
here is 9 restricted to some open interval (a,b) with |b —a| < 1. Let 6 = ¢ (y) for
some y € (a,b). Use this local chart and the fact that |0,|q. = 1, to get

u(t,y(y) = (b)F(i/J(f))P(t,w(w—y))dﬂf
F (¢ (2)) P (v —y + o) do

aEZ (a,b)

/ F () (2)) PR (z — y) da
(a,b)+a

- [ FO@ P -y
R

So u (t,9 (y)) = F (¢ (y)) as t — 0. Thus in this above sense, P (t,0~'0') — §y as
t — 0. Therefore P (t,0) must be the Heat Kernel on S*. I

Remark 3.24. Recall from Definition 2.22 the following:-

1. Q=C([0,1] = L(S")).

2. Let X be the process from Theorem 2.17 so that ¥y = e, where e denotes the
identity loop.

3. P is defined to be Wiener Measure on C ([0, 1]—=L (Sl)). Explicitly, P =
Law X.

4. gis (x) =2 (t) (s), where z € Q, z (t) € L (K), and z (t) (s) € K.

5. By Theorem 2.19 we see that Law g;. = v¢ (e, ), the Heat Kernel measure on
L (S*) introduced in Definition 2.20.

6. $ts =0 (9r0 : T€[0,¢] and o € [0, s]) .

7. 8 = V(t7s)e[071]28ts-

Definition 3.25 (S'-specific definitions). We will need the following:-
1. Ly (S') = {o € L(S'): o is homotopic to e}; the null-homotopic loops in
S! based at e.
2. Abusing notation. let ¢ also denote the map from Wy (R) to Wy (S*) taking
the R-valued path o to the S'-valued path (cos27o, sin 270).
3. 1 has a unique inverse ¢~ ' : W, (S') — Wy (R) which is the unique lift of o
starting from 0 in R.
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Let yi% be Wiener measure on Wy (R) with parameter T'. Explicitly, use Defini-
tion 2.7 with K = R and P, (:L"ly) replaced by the Heat Kernel

1 y—a:2
PR (y—x) = exp( 2t)'

V2mt

Definition 3.26 (Wiener Measure conditioned on the integers). Let ,u]%T be the
unique measure on W (R) such that on simple functions f of the form

f(l‘) :F(mtn"' 7mtn)’
where F' € Cp° (R") and {0 =tp < t; <--- <t, <1}, we have;

17 1]
= % / F (21, 2n) C%P%l_sn) (@n + a)ilj[lP%?Ais (Aix) dz;
= Fr gy L F ) PR (wn»iljlp&it (Air)
310 = gy [ #) F@ PR (@),

We have yet to show the existence of such a measure. See remark 3.27 to see
why ,u]%T deserves to be called “Wiener Measure conditioned on the integers with
parameter T7.

Remark 3.27 (Motivation for Definition 3.26). Our goal is to make explicit the heuris-
tic definition

pz.rlf] = wr f (2) |z (1) € Z).

Take the function Y, P= (m1 + @) which concentrates on paths which are near
7 at time t = 1.We would like

iz [f] = lim [f %PF (71 + )

/1t

Y PE(mi+a)

aEZ

to hold. Let F' € C};° (R™) and
f(x)=F (x4, - ,x,) where {0 =tg < --- <tp41 =1},

Then letting A;t =t; —t;_1 and A;x = x; — x;_1, and using the fact that PX (-)
goes to the delta function at 0 as ¢ — 0; we should have

V’]%Z [f]
= lim fRnJrl F(xy, ) EQGZ P;R (Tn+1 + ) H?=+11 P$Ait (Aiz) dw;
€10 fR Y ez PR (z + «) P$ (z) dx
- Jon F (@1, 1 20) Yoz P%l_tn) (Zn + @) [Ty Pra,e (D) da;
Yacz Pr (a) ’

where we have replaced z,41 + @ by xp4+1 using the change-of-variables formula.
Thus for simple functions, we should have

WE o [f] = m / @) PR, (o, + ) i (da).
ac

aEZ
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Now use Lemma 3.23 to see that )., Pf (a) = Pf:l (e).

Theorem 3.28 (Heat Kernel and pinned Wiener measures on St). Let ¢ be as in
Definition 8.25. Let o, (s) = (ns), the minimum energy loop in the nt" homotopy

class of S'. Let V%l (on,-) be as usual the Law of oy, (+) gr.. Define a probability
measure

~ st
vr = E Ca,TVT (Ua:'):
aEZ
where

1 1 _ 1 _
Carr = PEO)exp (—570?) P (07 = PR @) P (07"

Then Pinned Wiener Measure ,ugle = vp. Exploiting the fact that the measures

V%l (0a,-) live only on the at® homotopy classes, we see that Heat Kernel Measure

Vﬁ:l (e,-) is equivalent to Pinned Wiener Measure restricted to the null-homotopic

loops Lg. Furthermore, the Radon-Nikodym derivative

Sl
dNO,T ‘LLO = Cor
1 - )
dV% (67 )
1s a constant.

The proof of this Theorem will be deferred until we have some preliminary results.

Lemma 3.29 (The measure ,ulquZexists). Wiener Measure conditioned on the inte-
gers, ,u]%T, exists. Furthermore Pinned Wiener Measure on S' pulls back to Wiener

Measure conditioned on the integers. Explicitly, w*_l,ung = ,u]%T.

Proof. 1 from Definition 3.25 is a continuous bijection between the Wiener spaces
1

W (R) and W (S"). Let us compute t, ' 115 ;- for simple functions. By Ito’s Lemma

it is easily seen that 1) takes R-valued Brownian motions with parameter T to S!-

valued Brownian motions with the same parameter. So let ¢ — b; be an R-valued

Brownian motion with parameter t. Then ¢t — 1 (b;) is an S'-valued Brownian

motion. Thus
[ 1w = [ £ou k@)

Let F € C™ (S* x --- x S') and let
fy)=F (ysy, - ,ys,) where {0 =89 < ---<sp <1},
for any path y € W, (Sl). Then

VSTl = wyr[fov™]

/ fou s S")((is")uff (dy)

- 5 / £ ) Pis—any (6 (o)) i ().

This is precisely Eq. [3.10]. Thus the measure V‘%T and ,ug,lT is pulled back to it
under the map . 1
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Lemma 3.30. Let A;u denote u; — u;_1. Then the functions

n
Ti (@1, @n) = PRy (wn — ) [ Pras (D),

i=1

and

—a? n
Jo (z1,-++ ,2,) = exp <W> P%l_sn) (x, — asy) H P, (Diw — al\is)

i=1
are the same. (i.e. Jp = Jo).
Proof. We shall use the fact that
1 2
PR (z) = exp .

V2rt 2t

Letting Ap415 denote 1 — s, we have

n
Ja(x1, ) = €xp (—a2/2T) P:E(lfsn) (xn, — asy) H P:;@Ais (A — al\;s) .
i=1

Let
n+1
I[=-2T (10g Jo+ ) log \/27rTAis> .
i=1
Then
2 n 2
n n Az - Az
I:a2+(x cus)+ (Aiz — al\;s)
1-— Sn P AZS
2 2.2 n 2
5 T —20TpS, +a’s; Nz 9
= — 2al\; N
o + 1—s, +;[Ais alAix + « s]
22 — 20,5, + a?s2 N
= o2+ 1f; "—ann+a23n+;—éis
22 + a?s? Sn ) NN
= ﬁ—Qamn<l_n+l>+a (1+Sn)+;m

2
il
AiS

_ 22 + a?s2 — 20w, +a? (1 — s2) +2”:A
I_Sn i=1

(2n — )’ N SN
1-s, , N;s
i=1

n+1
= 2T <log Ji+ Z log \/27TTAis> .
i=1

Hence we are done. J

Proof. of Theorem 3.28
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Let the map @ be as in Definition 3.25. It will suffice to show w*_l,ung is

equivalent to ), 'Tr. If this is the case then for any measurable A C L (S*) we
have

A is a vp-null set
<~ Ut (e,legZJog[fl) =0
= T (e 1) =0
= sy (1y-1(4)) =0

& Aisa ugﬁlT—null set.

Thus we would be done by the Radon-Nikodym Theorem. The rest of the proof is
. —1 st 1~ . .
devoted to computing ¢, ug 7 and ¢, vr and showing they are equivalent .

First we compute ¢, 'v$ (h,-) where h is any loop in L (S'). Let ¢t — X;. is an
L (R)-valued Brownian motion. Let g satisfy the stochastic differential equation

gots = [(Lg,.), O] - Xots With gos = 1,
as in Theorem 2.25. Here, since § — (cos 278, sin 276) is our local chart,
(09 F) (cos 2m0, sin 2w0) = 9y F (cos 276, sin 27H) .
Then l/f1 (e,-) = Law h.g;. and thus
b () = Lawy ™ (hgr.).
We claim gr. = ¢ (X7.) and hence
G (h) = Law [07" () () + X7].

To verify the claim that g;. = ¥ (X;.), it will suffice to check that for any F' €
C> (S',R) we have

6tF (1/) (th)) = (60F) (1/1 (th)) Xﬁts-

But by Ito’s Lemma 6¢F (¢ (Xy5)) = (F o)) (Xos) Xots = (00F) (¢ (Xts)) Xots
we are done. Thus

Vg (he) = Law [ (B) () + X1.] -

Since for fixed ¢, s = X;s is a Brownian bridge in R from 0 to 0 with parameter ¢,
we have

(0208 @) £ = [ £ 07 () i ().

Now we compute w:lug’lT explicitly. By Lemma 3.29 this is just N%T or Wiener
Measure conditioned on the integers (see Definition 3.26 and remark 3.27).
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Let f(z.) = F (zs,, - ,%s,) where F € C® (R") and 0 = 59 < --- < s, < L.
Then we have

(1/)21/15’}) [£]

ZHH%,T[f]
E/ F(CE1, i ,«Tn) ZPT («Tn +a) ﬁPTA (Azﬂf) dx;
e PP (e) = (1sn) i=1 ’
Pio_, ) (an+a)
_ /RHF(l“h i P;é)l (3;) o qPﬁ@AS(A,x)da:
a€Z =
Also
(V7o) [£]
_ZC ( ot Sl Ua;')) [f]
Q€L
_ZC /f x+PT (Ua))lioT(dw)
Q€L
[ o
A

Using Lemma 3.30 this last expression is just

Pipis (zn — ) H?—l PE-s (Aiz)

= F xla ,.’I}n) = 1 ~ - dx
2 ). (O
PR (zp+a)]], PR, (D
_ Z F .’L'l, ,.’L'n) 1—sn ( ?S}_[zfl Als( )dCE
a€EZ Pl (6)
= (w:lmf )f-
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4. THE AIRAULT-MALLIAVIN THEOREM

In the next section we shall use the Airault-Malliavin Theorem (Theorem 4.1).
For the reader’s convenience, we give a direct (and to our mind simpler) proof of
this Theorem.

Let y, denote Wiener Measure on W (K) with parameter ¢ and let 11y , be Pinned
Wiener Measure as in Definition 2.9.

Theorem 4.1 (Airault & Malliavin, [26]). Recall from Definitions 2.9 and 2.7 that
;. denotes Wiener measure on K with variance t and p, , denotes pinned Wiener
measure. Let A k) be the operator from Definition 2.4 and let V; : L(K) — R
denote the function

1 > Idim&
V) =g | [ 107 68| - | +alog P @)
0 R
where the expression
1 1—e
[ v e =tm [ )y 65) in L g,
0 e—0 0

See Lemma 4.8 and Remark 4.9 Gross [17] for the existence of such a limit. Then
for any smooth cylindrical function f : L (K) — R (see Definition 2.5)

1
(4.1) Ottro g [f] = to s |:§AL(K) + th} .

We defer the proof of Theorem 4.1 until we have developed sufficient machinery.
We shall be using some results of Gross. Accordingly we will need to define a few
terms so that we can state some results from [17], [19].

Definition 4.2 (Notations from [17], [19]). The following definitions hold for Lem-
mas 4.4, 4.3 and 4.5:-

1. (ﬁ, ]3) be an abstract probability space and let ¢ > 0.

2. Let E denote the expectation with respect to the measure P.

3. Let s —» G5 be an arbitrary K-valued Brownian motion with parameter ¢
starting from e (i.e. Law G = p,).

4. Define a R-valued Brownian motion 3 by setting Ea = foa G (8s)G(s)™".

5. An element k in C ([0,1] — K) is a finite energy path if

1
k' (s) exists ds-a.s. and EUE ] ds < oco.
R
0

6. For any finite-energy path k define a p,-a.s. random variable Jr on W, (K)
by setting

~ _ 1 1 _1,2 1 ! —171 7
Jkog—exp<—ﬂ/0 |k k|ﬁds—z/0 <k k,555>ﬁ>-

Lemma 4.3 (Albeverio&Hoegh-Krohn, [3]). Let t = 1. Let k be a finite-energy
path on K. Then for any bounded measurable f : W, (K) — R we have

Blf (@) =E[f (k) (T o9)].
This result goes through without trouble for any t > 0 (see Remark 4.6).
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Lemma 4.4 (Gross:[19], Corollary 3.7). Lett = 1. Then for any finite-energy path

k
0. (Jopen06) o= [ +(0').55.).

and the limit exists in LP (ﬁ) for any p < co. Let Fh denote the p,-a.s. random

variable so that }h oG = 0. (jexpgh o g) |e=0- This result goes through without
trouble for any t > 0 (see Remark 4.6).

Lemma 4.5 (Gross:[17], Lemma 4.8 and Remark 4.9). Let t = 1. Then for any
p < oo; B, converges in L (/‘t,O) as a1 1. Let 3, denote this limit in L> (/‘t,O)'
[By Remark 4.6, this result goes through without trouble for any t > 0.

Remark 4.6 (Lemmas 4.4, 4.3 and 4.5 go though for any ¢ > 0). Take ¢t # 1. De-

fine a new Ad-invariant metric (,,v> =1 (,)z0n K Let {A} be a (-, -)-orthonormal

—_~—

basis for 8. Then 1 = <fT, /T> = %<ﬁ, Z>ﬁ So {fT/\/f} is a (-, -) g-orthonormal

basis for & Thus AK, the Laplacian on K= (K, (-, -))is given by

Ak :Za}:tzc‘)gg/ﬁ) =tAk.
A A

So let G be a standard Brownian motion on K. So let ji, be Wiener Measure on K

with parameter 1 (i.e. i; = Law G). Then by the martingale characterization of a
standard Brownian motion we have

df (53) = dMartingale + %t (Akf) (.st) ds.

In other words on K = (K, (-, ")), G is a Brownian motion with parameter ¢. Thus
py = py and fiy o = py 9. So applying Lemmas 4.5, 4.4 and 4.3 to K we see that
they extend to all ¢ > 0.

Remark 4.7 (Our special case). For our purposes the space Qis W, (K), the mea-
sure P is Wiener measure i, and the Brownian motion Gy is the map 7;!. Here
s : We (K) — K is the map sending a path v € W, (K) to an element v, € K.
We let G; be 7, " rather than 7, because we shall need d (Ry), p1,/dp, explicitly
to compute derivatives whereas the theorems of Gross we cite use d(¢,), ju,/dpu,.

Recall that (£,7) (s) = g (s) v (s), and (Ry7) (s) = v(s) g (s).

For the rest of this section, 6,13, and G, are to be interpreted as W, (K), u,,
and 7, ! respectively. For notational convenience, let = be the identity map from
W, (K) to itself and let 7~! denote the map from W, (K) to itself taking a path ~y
to the path s — v L.

Lemma 4.8 (The L? (u;)-adjoint 8*). For any finite-energy path h € H (&) we
have the L? (u,)-adjoint

B = — + /01 % <h’ ()7 (s)™" 7(53)> .
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A more explicit statement is as follows:- Let f, g be elements of L~ (u,), where
L2 (1) = Np<oo L (1) -
Let Ry : W, (K) = W, (K) denote right multiplication by g (i.e. Ry (7y)(s) =
v(s)g(s)). Let L™~ (u,) denote Np<ooLP (1;). Let Dy, be the following domain:-
1
Dy = {u € L () : liﬂ)l - [0 Rexpen — u| ezists in LP () ,Vp < oo} .

Let Opu denote lim, % [0 Rexper — u] for any u € Dy. Define a py-a.s. random
variable j, by setting

= [ L6 60).

t
Then
e (90 f] = —pe [£Ong] + pe [fgin] -

We will give a proof below. This result can also be obtained by using the left
connection on K in Theorem 1.3 of Driver [10].

Proof. of Lemma 4.8

Let 7 : K — K given by Z (k) = k~! for any x € K. Abuse notation so that is g
and v are paths in W, (K) then £, (y) and R, () denote the paths s — g (s) vy (s)
and s — v (s) g (s) in W, (K) respectively.

(4.2) wel9onfl = glsifgé (f © Rexpen — f)

= leiJ,O %(:ut [gfoRexpeh] — My [gf])

Apply Lemma 4.3 together with Remark 4.4 as well as the comments after Remark
4.7 to the finite-energy path k. = expeh and the bounded measurable function
f=foTIol,-1. We obtain

E[for | =E[f(br ) Jior!].
Upon simplification, we obtain
ElfoRyon]|=E [(fow) (jko7r_1)} .
Here, as in Definition 4.2,

~ _ 1t 2 1, _
JkEOﬂ' 1 = exp <—2—/ |k8 1ké|ﬁd8——/ <k5 1ké,7‘rs 171'63);{) .
t Jo t Jo
For any finite energy path k define a y,-a.s. random variable J;, by requiring that
Jiom = J,or~!. Then we see that with respect to the measure 1; we have that
1t 1402 1! 1 -1
Jke (’y):exp _ﬂ |kg k5|ﬁds_¥ <k5 ke:’)/s 763>ﬁ 5
0 0

and

(4.3) e [f o Ri] = py [f Jk.] -
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Replacing f by gf o Rexpen and using Eq. [4.3] yields
e [9f © Rexpen] = 1 [(g ° nglf) o Rke]
= i [(90 Rect) f0.] -

Now we returning to Eq. [4.2] to get

pelgdn] = 1 =yl f © Respond = 11 [97)

1
tim |1 [ (o0 i) T = o] e
;{g/fs goRk£1 Jr. — g| du,
Now by assumption g € Dy, and so 8EgORk;1 — Opg in LP (p,) ,¥p < 0o as e — 0.

By Lemma 4.4, Remark 4.6 we know that 0, (fki o 71'_1) — (jh o 71'_1) ase — 0in

LP (1) ,Vp < 0o. Notice that j,om = jom ! p-a.s.. Thus 8. (Jy, om) = (jn o)
in L? (u,),¥p < oo. Since Law m = p,, we have 0:J,, — jp in LP (u,),Vp < 00
as e = 0. Let o(c) denote a family of functions so that 1o(¢) — 0 as e — 0 in
LP (p;),¥p < 0o. Then

goR,-1 =g—ebhg+ol(e),
and
Jk. =1+ejnto(e).
Therefore
1 . .
B [(g ° ngl) Jr. — g] f=—fong + fgjn —ejnfong + R(e),

where the remainder R is given by
1 )
R(e) = go(s) (1+g—elnhg+o(e) +ejn) f.

Now jp, f,Ong are functions in L*>~ (u,). By using Hoélder’s inequality repeatedly
if necessary one can see that j, fOrg and (1 + g —e0rg + 0 () + €jp,) [ are also in
L>~ (u,). Hence p, [ejnfOng] — 0 and

[/R(E)dut}2 < {@]Q,ut[(l+g—63hg+0(5)+5jh)f]2

— Oase—0.

Therefore

lgifg/f% Kgongl) Jr. —g] dpy — py [~ fOng + fgin]

and so we are done. |

Corollary 4.9 (The L? (u,)-Adjoint (8,%)*) Let g, f be smooth cylinder functions
(see Definition 2.5). Let h € H (R) be a finite energy path. Then

1
1[99 1 = 1| FO39) — 24 [in fOng) + e[ f i) — n |h|§{(ﬁ) me[gf]
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Proof. By Lemma 4.8, we have

190 f1 = —1,[0090n f] + 114[97nOn f]

Applying Lemma 4.8 to I;, we see that

(4.5) I = ,[f05 9] — 1 [n fOng]-

To apply Lemma 4.8 to I5, it will be necessary to show that gjj is in the domain
of the operator Op; i.e. we must show [(gjn) © Rexper — ¢Jjn] has a limit in LP (p,)
for any p < oo. Since g is a smooth cylinder function, we already know that
19 0 Rexpen — g] converges to 0xg in LP (u,). Thus, as in the proof of Lemma 4.8,
if we can show that % [jn © Rexpeh — jn] converges to some Opjp, in LP (i) for any
p < oo then we will have

1

(46) g [(g]h) o Rexp eh — g]h] — [gah]h + ]hahg]

ase — 0in L? (u,) for any p < oo.
From Lemma 4.8 recall that, for any finite-energy path h in H (R), the random
variable 7, is given by

1 1 -1
= [ (1 © 6 6) weas
0
Let v, denote the pz-a.s. random variable 7 (s). Thus j, o Rexpen is given by
jh o Rexp eh (7)
1
= [ (W) pexpen ()7 8. (v, expeh 5))
0
1
= [0 ) e (—eh(5) 7 s, exph 5)
0
+

(

/0 % (W (s) exp (—eh (s)) exp’ [eh ()] B () ds)

| = | =

Therefore
1. . ! 1 ! -1
E [Jh © Rexpeh — Jh] = o E <h (s) aAdeXp —chs ('Ys ’Y&s)>
_ — (K -
/0 te < (8)575 765)

b [0 6 exp (ehoexs eh () 5 .

By the Ad-invariance of the metric, we see that

1

1. . ! _
[]h o Rexpsh - ]h] = /0 E <Adexpshs h' (3) —h' (3) ' Vs 1763>

9

#3006 exp (e ey e (o) 61 o
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However h was chosen to be good in the sense of Definition 2.2. So the matrix & (s)
commutes with A’ (s) and thus Adexpen b’ (s) — b’ (s) is 0. Observing this yields

1., ) L1
2 ljn © Rexpen — jn] = / L (5), exp (~ehy) exp! (cha) B (s)) ds.
0

which is independent of the path « (and thus a constant random variable). Hence
the above expression converges in L (u,) for all p < oo to the expression

/0 % (W' (s),exp (0) exp’ (0) B’ (s)) ds = % |l -

Thus Onjn = + |h’|il(ﬁ). Returning to Eq. [4.6] we see that Oy, (jng) exists and
equals [gOnjn + jnOng]. Thus
Iy = —p[jn fOng] — % |h|§{(ﬁ) 1[9 1+ 1 f933)-
Now returning to Eqs. [4.4] and [4.5] we see that
wlgdif] = L+D
= lf0%0) — 2 in ong) — Il el ) + ol Foit).
|

Definition 4.10 (Orthogonal Decomposition of H (R) and Hy (R)). We will need
the following notions:-

1. Recall from Definition 2.1 that
H(R)={h:[0,1] = 8h(0) =0 and (h,h) < oco}.

For any unit vector A € & and « in (0,1) let A be the unit vector in H (&)
defined by setting

(@.7) A(s) = %A (sAa).

Write H (8) as UL @ U2 @ U2 where the U are defined by setting

Ul = {he H®|h=0on [a,1]};
U2 = {he H(R) |h=0on [0,a]};
U = span<Z:A€R>.

Let S? be a good orthonormal basis of U¢. Then S = U;S* forms a good or-
thonormal basis of H (R). Let Ay: be defined as ), - ¢: 0 where the operator

(Onf) (7) = 2L f (yexpeh) [The map h — O, is just the usual identification of
elements of H (R) with left-invariant vector fields on W, (K)]. Then we can
see that

(4.8) Aw, k) = Dur + Dyz + Ays.
2. Recall from Definition 2.1 that
Hy(R)={he€ H(R)|h(1)=0}.
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Decompose Hy (&) as W2 @ W2 @ W2. W)l = U} which is defined as before.
W2 is defined to be U2 N Hy (R). W3 is defined to be the span of the vectors
(L4 : A € R) where the unit vector £4 is given by setting

1—« Q
(4.9) la(s) = Asl[g’a”/ - +A(1l—5s) Lo, T

Let S§ be a good orthonormal basis of Wi. Then Sy = U;S} forms a
good orthonormal basis of Hp (&). Let Aw: be defined as ), ¢ si 92 where
the operator (O,f) (v) = < f (yexpeh) [The map h — 0, is just the usual
identification of elements of Hy (R) with left-invariant vector fields on L (K)].
Then we see that

Proof. of Theorem 4.1:
Fix a < 1. Let f(¢) = F (0s,,-+* ,05,) so thatos, < a. Let S =S'US?US3
be the orthonormal basis of Definition 4.10. Then
fPtI((lfa) 0 My
PtK (e)

o [f] = iiinlatllt

. 1 K
= lim g {WAWQ(K) (fPt(l—a) OWa)]

PtK oT
. (1—a) @
+ lim g fatiptK © ]
(4.11) = I+J
Let us work on the second term first.
. 1
J = ClyL}IIll Wﬂt [f@tPtI((l_a) o ’/Ta] — ,LL07t [fc’)t IOg PtK (6)]

(4.12) = J1— oy [fat log P (e)] )
where

J—1'#[fapK o]

o= am PE (e) M tLt(1-a) © Ta
. l—« e
(4.13) = lim 3PF (o)™ [fAKPt(l—a) ° M] :
Define
Co (xn+1)
n
= / F(xy, ) Ptl((afsn) (27 Tns1) H PR (v @) X (d;) .

* i=1

Then
. K T K
ilgll Hy I:fAKPt(lfa) ° ﬂ'a] = ilgll « Ca () AKpt(lﬂx) (2) A (d)

= lim [ AgC, (2) Ptl((lfa) (z) A (dz)

a—1 K
= AKC’l (6)

< 0.
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From Eq. [4.13] we have
Ji = 0.
Combining this fact with Eq. [4.12] gives
(4.14) J = —pg, [fO:log PK (e)] -
1

We proceed to work on the first term I of Eq. [4.11].
_ 1 -1 K
I = 01(1_>ml 2P (e) " ny [AW (K) (fP t(1—a) © ﬂ'a)]

1
= lim Spo, [Aw. K)f] + lim Pt (e) " [fAWE(K)PtI(i—a) 0Ty

+ lim PX (&) > [ah JORPY oy 0]
hesS

(415) = L + 1+ Is.
From Eq. [4.8]

1
Il = ClyL}Hll §:U’O,t I:(AU; + AUC% + AU}’;) f] .

Since f does not depend on the path on or after time o, Ay f = 0 and this last
expression is

o1 .1
lim S prg [Avs f] + lim SHo.t [Dus f]-

Applying Eq. [4.10] and observing that Ayyz f = 0 reduces this last to

1

.1 1
(4.16) 5L = 5ot [Ap) f] + Clvlgll FHo.t [Aus f] - ilgll 5ot [Awsf].

Now letting A run through an orthonormal basis of &, we see from Definition 4.10
that

Awsf=Y 0,1
A
Since f does not depend on the path from time a onwards, we can see that from
Eqgs. [4.7] and [4.9] that
6@Af =+v1- Oéagf and Awgf = (1 - a) AUgf
Thus Eq. [4.16] becomes

1
I - 5o, Ao f] = ilgll 2N0t [Ays f]
- 1 1 2 ¢
I,
Define 8, = [;" v (s) " 7 (Js), p-a.s. Invoking Corollary 4.9 we obtain
ut[PtI((l—a) ° Waagf] = [f62 t(1-a) © Ta] — 2Nt[jgfa;{PtI((1—a) o o

+:u’t[fpt(17a) ° 77&]%] — :U’t[PtI((lfa) omaf].

t ‘A‘H(ﬁ)
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~ 2
Observing that A (s) = a='/? (s Aa) A, we see that ‘A‘H(ﬁ) =1,and j;(y) =
L1a=1/2(4,3,). Thus

1 1 dim K
L= Spo [Drgef] = Lot i ooy [F |Bal 5] = =5 o [f]
2 =1 2t 2t
= lim tPK Zut A, Bo) FOAP _a) 0 Tal.
Invoking Lemma 4.8 on I3 and recognizing that 8hP —a) 0 Ta = 0 for any h €
S U S? yields
I = lim P ()7 Y [8hf6hP o) ona]
heS
= - hm aPk Z“t [ (AKPtI((l_a)) owa]
hes
T tPK Z“t o) JOAP) ) 0 Tal
1
= _2I2+0141—>H11W2A:ut[<A,ﬁ >f6AP O1)0’/’1'0[].

Thus,
dim K

. 1 2
- —:U’t,e[f] + 01(1_>H11 mp’t,e[f |ﬂa|ﬁ]‘

1
I= St [Ap) f] T

The expression
-~ [e]3
-1
ﬂa:ﬂaoﬂ':ﬂa:/ Ty Ths-
0

Combining Lemma 4.5 with Remarks 4.6 and 4.7 we have §,, converges in L? (1, )
as a T 1. Thus B, converges in L2 (Nt,o) as a 171 to a limit 3, and so

1 dim & 1 )
I= 5”071; [AL(K)f] - Q—t'ut’e[f] + Q_tgp‘t,e[f |ﬁ1|ﬁ]

and so returning to Eqgs. [4.11] and [4.12] yields

d
6Wo,t [f] = %V’O,t [AL(K)f] - 1r2nﬁ'ut Lf1+ 212.% oLf |ﬁl|ﬁ] Ho ¢ [fat logP (e )] .

5. ABSOLUTE CONTINUITY OF HEAT KERNEL WITH RESPECT TO PINNED
WIENER MEASURE

Let v be a generic loop in L (K). Recall from Definitions 2.9 and 2.7 that yu, (dvy)
denotes Wiener measure on K with variance ¢ and pg , (d7y) denotes pinned Wiener
measure. Recall from Definition 2.20 that v; (e, d7y) denotes Heat Kernel measure
on L (K). The goal of this section is to demonstrate the absolute continuity of Heat
Kernel measure v; (e,dy) with respect to pinned Wiener measure j ; (d7).

Theorem 5.1. Heat Kernel measure vy (e,-) on L(K) is absolutely continuous
with respect to pinned Wiener measure fig , (dy) and the Radon-Nikodym deriva-
tive dvy (e, ) /dpg 4 s bounded.



ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE 41

We defer the proof until some basic machinery is established.

Definition 5.2 (Basic Machinery). Let P be the partition {0 < s; < --- < s, < 1}.
Then:-

1. ¢° = (G (si,sj))f1 as n x n matrices where Gy (s,0) = s A 0 — so was
introduced in Definition 2.12.
2. Let A (z1,--- ,z,) be the vector field on K" so that
. d
('A(l)f) (1‘17 e 7"I:n) = %f(m17 e 7xlexptA7 e 71.”) ‘Lt:[) -
3. (-, )p is the left invariant metric on K™ such that <A(i),B(j) >]P, = 04BYij.
. Let K* be K™ equipped with (-, ).
5. Let Ap be the Laplacian on KT. Thus

Ap = Z Go (8i,55) Oar0ac) -

o~

A,iyj
6. Let w5 : L (K) — K denote the map 75 : & — x5.
7. Let mp: L(K) — K¥ by mp = (7s,,+++ ,7s,)-
)

8. pf =d(mp), vi (e,-) /d\. Explicitly if |P| = n and A denotes standard Haar-
measure on K, then p; : K™ — R is the function so that for any F € C* (K™)
we have

oT v (e = z)pp (2) A®" (d) .
(5.1) /mF o (1) v (e, ) / F (2) 7 () \*" (de)

zeK™”

9. ¢f = d(mp), po,/d). Explicitly if |P| = n and X denotes standard Haar-
measure on K, then ¢ : K™ — R is the function so that for any F € C* (K™)

we have
62 [ Fem@mn= [ @) @) @),
10. 3° = o (mp) .

11. Z7 = (pi/q;) o = d (vel3e) /d (1o 4|57) . Explicitly for any F € C* (K™),
combining Eqgs. [5.1] and [5.2] we have

[Fominiedn=[ Fi,—]f (@) = [ Fome () 2 () o ).

The proof of Theorem 5.1 rests on Theorem 4.1, a result of Airault and Malliavin.
We shall also make use of Lemma 2.15.

Lemma 5.3 (Asymptotic properties of heat Kernels on K). Heat Kernel measure
on K has the following properties:-

1. e2PK (¢) - (2m) " ase — 0.
2. Let BX (e,e) denote the ball of radius € near e. Then
sup PI((Psn) (u) < oo.

>
£€(0,1),u€BX (e,e)°

Proof. A generalization of this result is proved in Berline, Getzler, & Vergne, [6],
Theorem 2.30. See also [28]. 1
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Lemma 5.4 (yy. — e as € — 0). Let f : K™ — R be continuous. Abusing nota-
tion, let e denote the element (e,--- ,e) of K™. Then

lim (7). po.. [f]= £ (€).

Proof. Let ms be the evaluation map as in Definition 5.2. Let A;s be s; — s;—1 as
usual. Then

. I M ... P
lim (p), o [f] = ;g%/ f@y,--mn) g (2) dA
. (1 n) I I
- SII—IR)/ f 1‘1, ) n) 8 : €AS l 11‘)d1‘;

Let BX (e,r) be the open ball of all points distant less than r from e in the metric
(-,") ¢ on K. Then our previous expression becomes

= lmp‘e |:fomp (]‘BK (e,e) 071'5") (PEI((I—S,,) oﬂ'sn):|

e—=0

;
lim e | gy (rcear ome) (Pics o7

= L+ D.

By Lemma 5.3, we see that the expression

[y, o) K
T@lBK(e,S)C (mn) Ps(l—sn) (xn)

is bounded and so I> vanishes by Dominated Convergence. Thus
lim (), i, [f]

fom
=iy [ 5 (e 072) (P o7

5 [f (1’1, T ,$n,1,€)]
+ Ehj)% (W]ENO,E) [(f (xlv v ,.’I}n) - f (wla e 7mn—176)) 1BK(e,s) (.Tn)]
=J + Js.

= lim (7p), 110

)

Now the expression

sup |f (561, T 756”) - f (561, T axn—176)| 1BK(e,s) (CEn)

is bounded above by

(5.3) sup  |f(x1, - ,xn) = f(z1,-++ ,2p_1,€)|.
zn, EBE (e,)
We claim that if z,, is distance d from e in K then there is a constant C*, depending
only on the partition, so that the points (x,---,z,) and (x1,---,z,_1,€) are
distance dC” apart in K¥. If we can verify this, then Eq.[5.3] is bounded above by
sup |f (y) = f (@)].

{z,ylyeBF(z,e/C")}
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By the uniform continuity of the continuous function f on the compact topological
space K* we see that this last expression tends to 0 as € — 0. Thus J, can be
made arbitrarily small. This, in turn, implies that

gg% (FP)* Ho,e [f] = gll}}) (ﬂ-P)* Ho,e [f (:I’.17 Ty Tn—1, 6)] .
Now replace P by Py = {0 < 51+ < $p—1 < 1} and f by
fl (mla' te ,1'n71) = f (1’1,‘ T 7mn71)e) .
f1 is still smooth on K”' and the above reasoning applies inductively. Therefore
gig%)(ﬂp)*ﬂo,g [f] = f(@,--- 76)7

and we are done once we verify the claim.
To do this, let = (s) = (c1,-++ , a1, Zn (5)) be a differentiable path in KT (with
the ¢; being held constant) then we have

' (s) =) (a), (5), A)g AW
A
for any s. This implies that

1
|1 @ ds
0

2

[ 3 o), 340 )L
0 4

P

(Go (1,57)) /0 |2, (s)|% ds

1
= (c¥)’ / !, ()% ds.
0
Thus if z,, is distance d from e in K then the points (z1,--- ,x,) and (1, -+ ,Z,—1,€)

are distance dC¥ apart in K. I

Lemma 5.5. Let C; = log [t¥/?PJX ()] —loglim._,o /2 PX (e). C; is well-defined
by Lemma 5.5. Then p;/q; < exp C;.

Proof. Given bounded smooth f, h > 0, on K" define
H(t,z) = /h (zy) pr (y) dy

F(tz) = / f (zy) & (v) dy.

Let v € L(K) and let ¢ — g; be our standard Brownian motion on L (K) (see
Definition 2.22). Let £, : k — xk denote left translation by  on K. Now ¢t — vg;
is a Brownian motion on L (K) starting at -y in the sense of Definition 2.14. Heat
Kernel measure, v (7, -) is the law of vyg;.

vi(y,homp) = Ehomp(ygt)
Eh (mp () me (9t))
= FEholy,)omp(gt)

= v (e, holy.(yo ’/T]p)

- /h(vrp(v)y)p]f(y)dy
= H(t,mp(7)).
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Letting © = 7p (y), we see from the Heat Equation, Theorem 2.21, and Lemma
2.15 that

1 1
O H (t,x) = §AL(K)H (t,mp (7)) = §APH (t,z)
(5.4) H(t,z) — homp(y) ast — 0.

We shall now obtain a similar equation for F (¢,z). Let ¢ = q; exp C;. Then
for some smooth ¢ on K", we have

/ o) (0F) W) dy = Orexp(Ch) o, b o]

= exp(Cy) atlio,t [¢ o ﬂ'lP’]
dim &
2t

i [6 0wl exp (C) { T logpk <e>} .

Applying Airault-Malliavin (Theorem 4.1) to the first term yields

2

/ ' (ds) 2 ()"

1
= exp(C) Ho¢ lQ_tQ po WP]

f
exp (Cy)

M

to.¢ [Apx)d o mp] -

1 112 1 _ . ,
Define , } o mp = Ho,¢ (‘fo VasVs 1‘ﬁ Wp) where ‘fg VasVs 1‘ﬁ is Gross’ L? (No,t)'

limit of |an 7d37;1|ﬁ as a — 1. Then using Lemma 2.15 our last expression
becomes

P
= exp(Ct) (Tp), Mo |:é_tt2¢ + 5AP¢]

P
exp (@) [ | =526 ) + 5 (800) )] ) o

i
RAY 1
/ t2t(2 Lo ) dy + 5 (L20) W) T () dy.
Using the smoothness of ¢;, perform an integration by parts on the second term to
get

P

_ /’;t(f)¢(y)§f(y)dy+%(maf) () & (v) dy

/ { z fﬁ’)af W) + 5 () )] 6 () dy.

Therefore we have the dy-a.s. equality

P
(55 (0) ) = D5 ) +

DN | =
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Let s — 3, be a standard Brownian motion on K with parameter ¢. Then for
any continuous ¢ on K™ we have

/ bW E W dy = expCom, [domel

PtK o

(1—55) Sn

pomp——0p
PtK (e)

Bl 1))

exp Cpy

(8, - Bs.) Zt(l=sn) \"sn/

= expCiE PX (e)

. -1 . . . .
Notice that s — 3 is also a standard Brownian motion on K. This means that
our previous expression becomes

PK (ﬂfl)
exp O |6 (31 gty Tas Ba ) |
exp Lt ¢( S1 ﬂsn ) PtK (e)
Now using the fact that PX (z) = PX (z7!) on K yields
Pl s (Bs,)
= CE —1 -1 t(lis") Sn
exp Ly QS ( S1 ﬁsn ) PtK (e)

= expC, / ¢ (Ve valt) o (dY)

/¢> (v (v)dy
= /¢>(y) i (y "

Thus for any continuous ¢ on K™ we have

(5.6) [owdwa=[ow

Using this yields

F(ta) = / f (@) & () dy

I
~
—~

8
<
~

—
~—
<

_133) dy.

Applying Eq. [5.5] to compute the derivative 0, F (t,z) yields

Il
—
[y
~~
P
o)

oF (to) = [ 1w)ad (v o) dy
= /f i o) (y’lw)dy+%/f(y)(Ap§{f’) (y~'z)dy
I(2)+ 5 / £ ) (858) (u ') .
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By the left-invariance of the Laplacian, Ap this last expression is

= )+ [ 1@ (8ol 0ty () dy
= 160+ F [T )

= 160+ [ 1@ o).

Using Eq. [5.6] a second time yields

A
= 1o+ 5 [T W
= I(t,z)+ %F(t,m).
Therefore
Ap
OF (t,x) =1(t,z)+ TF(t,x).

As t gets small, we have
. o P
lim F(t,2) = tlgré/f(wy) G (y) dy

= 1}im exp C’t/f(wy) a; (y)dy
—0

= lim (7p), Ho,e [f 0 ]

= f(z) by Lemma 5.4.
Thus we have

Ap
OF (to) = I(t,z)+—F ()

(5.7) F(t,x) — f(x) ast—D0.

We are now ready to apply the Duhammel’s principle. For any n > 0, pick
f(x) =n+h(z) >0. Since f > 0 as., [ > 0, since , } o7p is the conditional

2
expectation of the positive function ‘fol YasVs 1| - Let
]

U(t,z)=(F-H)(t,x).
Using the fact that f (z) =n + h(z) implies that
69 U ta) =nesp o+ [ hay) (& = 57) () dy.
By Egs. [5.4] and [5.7] we see that
(5.9) QU (t,) = %APU (t2) + 1 ().

Formally guessing a solution by Duhammel’s principle let us define

— t —
U (t,x) = exp <t 5 5Ap> U(e,x) +/ exp (%Ap) I(r,z)dr.
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Then U (e,2) = U (g, z) and

1 t—
EA]pexp ( 5

t —
+/ %exp <t QTA];»)I(T,m)dT

1 ~

U (t,z)

EAP> Ule,z) + 1 (t,z)

Therefore U = U and so
t—e ! t—T
(5.10) U (t,x) = exp 5 Ap | U (e,z)+ [ exp 5 Ap | I(1,z)dr.

Let typ be “the first time that U goes below zero”. Explicitly

(5.11) to = inf {t > 0|inf U (t,2) < o}.
x

If we can show that to > 0 then we can take € in Eq.[5.10] equal to #y/2. Then since
U (g,-) and I are non-negative we must have U (t,2) > 0 for any ¢ and =. Then we
can let n — 0 in Eq. [5.8] to obtain

/h(wy) (@ —pt) (y)dy > 0.

Then G — p; will be non-negative almost surely and so p; < ¢ exp C; and we shall
be done.

Thus the problem reduces to showing tg > 0. Suppose tog = 0. There exist times
Ti, Ti > 0, 7; } 0 as i = oo so that inf, U (r;,z) < —1/i. By the compactness of
K™, for each 7; there must exist an z; so that

U(Tiawi) =infU (Ti,flf) (Ti,.’L') < _l/l
T

Thus by compactness, there exist a convergent subsequence of the z; So without
losing generality, suppose z; = o in K™. Then (1;,2;) = (0,2) in [0,00) x K"
so that U (74, 2;) = (f — h) (xeo) =1 > 0. But U (74, x;) < 0 for all i which implies
that (f — h) () < 0 giving us our contradiction. Thus to > 0 and we are done. I

We are now able to return to the proof of Theorem 5.1.

Proof. of Theorem 5.1

Let {IP,,} be a refining sequence of partitions of (0, 1) (i.e. one is not allowed to
include the endpoints 0, 1 in the partition) such that |P,| — 0. Since P, a refining
sequence, Z; ™ is a non-negative discrete "= martingale, where " = o (7p, ).

To make this clear, let n > m and f € §*=. Then can find smooth functions
Fy : KP» 5 Rand Fy : K¥» — R so that f = Fy op,, = F» o p,. Now

po Zi " f = (75, o) Fovy " [ai ™ = (7, ve) Fy = po 1 Z, ™ f,

which shows that ZF " is a discrete = martingale.
Suppose we can show

< 00.

5.12 sup
( ) n Lz(ﬂo,t)

P,
%
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Then we have {Zip "} is uniformly integrable since

1 2
. Pny : P,
lim s%p Ho ¢ [Zt I{Zt’">M} < lim — s%p Ho ¢ (Zt ) =0.

~ M—oo

The fact that {Zf "} a uniformly-integrable discrete L'-martingale implies the
following (see Durrett [14]):-

1. Z{™ converges in L!.

2. If Z; = lim, 00 Z; " then pg, (Z:|3°") = 2,

But now pg , [Z4f o wp,] = vifomp, for any n € N. Hence Z; must be dv;/dpyg ,
on the desired o-algebra (z; :v. = v, : t € [0,1]).

So the problem reduces to proving Eq. (5.12).

To this end, pick an arbitrary partition P = {0 < 51 < --- < s, < 1} and let f
be smooth on K¥.We want to compute

||Z]tp||i,2(u0‘t) =m0, (0 /45)”

But by Lemma 5.5, p} /q; < exp C; where C; is finite and defined by Lemma 5.5.
We have a stronger condition than Eq. (5.12). Hence we are done. Moreover
Z; < expCy. 1

6. SEMI-MARTINGALE PROPERTIES OF gr.

Let Q@ = C(]0,1] = L(K)) be our probability space, let P be the law of a
Brownian motion on L (K), and let g; : 2 — L (K) be the evaluation map at ¢ as
in Definition 2.22. Then ¢t — g; is an L (K')-valued Brownian motion and thus Law
g+ equals Heat Kernel measure v, (e, -).

Remark 6.1 (g¢. is a semimartingale). In Section 5 we showed that Heat kernel
measure vy (e,-) is absolutely continuous with respect to pinned Wiener measure
Mo Let v, 1 L(K) — K be the evaluation map at time s. Then equipping L (K)
with pinned Wiener measure p,, we see that s — v, is a Brownian bridge and
thus a semimartingale. Since v; (e,") < pg; and s — 7, is a pg ,-semimartingale,
we know (see Theorem 2, page 45 of [30]) that s — 7, is a v (e, -)-semimartingale.
Now the random variables (v, v¢ (e,-)) and (g, P) share the same law. Therefore,
by Definition 2.24 we see that s — g5 is an §;.-semimartingale.

In this section we provide an explicit decomposition for the §;s-semimartingale
s — gis and compute its pullback fOS gtg(,gg,l . We do this by approximating g;.
by the piecewise C' functions g; (described in Definition 6.9). Then we compute
the approximate pullback fo (asgf;) (gf’s)f1 ds (which is a semimartingale since it
is piecewise C'). Then as a result of Propositions 6.13, 6.19, 6.20, and 6.21 we
show that these approximations converge to a process Y;s. In Theorem 6.11 we
then show that g satisfies g;. = 1+ [) Yiss9ts-

We care about the pullback Y;. because we will show in Section 7 that it has a
law to equivalent to that of a Brownian motion on a restricted o-algebra. This will
then imply that Pinned Wiener measure is absolutely continuous with Heat Kernel
measure on o (y,|s € [0,1 — ¢)) for any € > 0 (Recall 7, is evaluation at time s).

6.1. Preliminaries.
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6.1.1. Two parameter processes. We will need to introduce two-parameter stochas-
tic integration in order to state our main result, Theorem 6.11.

Remark 6.2 (The Brownian sheet b generates the filtration). From Definition 2.22
we see that Fis = 0 (gro|T7 < tor o < s)V Foo. From Theorem 2.25 we see that

g satisfies gsts = gtsX(Sts with gos = € and X; = /gétsg;sl-

Therefore g5 is in the o-algebra generated by the random variables
(Xro: (1,0) €]0,t] x [0, s]),

and Xy, is in the o-algebra generated by the variables
(gro : (1,0) €10,t] x [0, s]).

Again by Theorem 3.19, b;s is in the o-algebra generated by the
(Xro: (1,0) €]0,t] x [0, s]),

while X;, is in the o-algebra generated by
(bro : (1,0) €[0,t] x [0, s]).

Therefore §ts = 0 (bro|7 <t or o < s) V §oo. This observation is important to use
the results of Cairoli and Walsh in [7].

Definition 6.3 (Cairoli & Walsh [7]). We will use the following notions from Cairoli
& Walsh:-

1. Let (2, {F+s}) be our probability space from Definition 2.22.

2. 31, = 3n VS1s. This is the o-algebra generated by (br,|7 < t or o < s) V Foo
from Remark 6.2.

3. Let b be the Brownian sheet from Theorem 3.19 and let b = (b, A); for any
Aer

4. For t181 t1 < to and 81 < S92, let (t181,t282] denote the rectangle (tl,tQ] X

(81, 82].

R:s = (0,t] x (0,s] = (00, ts].

6. Let £ be the set of all R-valued processes ¢ : [0,1] x [0, 1] x Q, so that ¢,, (-) =
b (t,s,-) is §is-measurable and the expectation E fol fol b7, (g) dsdt < oco.

7. For any ¢ € E; define ¢ ((tlsl,thz]) = ¢t232 - ¢t231 - ¢t132 + ¢t131'

8. A two-parameter process M € L such that M vanishes on the axes (i.e.
Mot = Mgy = 0 P-a.s..) is a strong martingale if E (M (t151,t282) |&'%131) =0
for any (tlSl,tQSQ] C Ri1.

9. Fort; <t and s < sy, let ¢ € L be characteristicif ¢ (2,5) = f (W) L(t,5,,t550]
with f € §} ;..

10. Let ¢ € L be simple if it is a linear combination of characteristic functions.
11. For characteristic processes ¢, (9) = f (9) L(¢,s,,t25.], define the integral

/ bhastrs = £ (9)b (251, t25])

We can do this because (t151,t252] N Ry is a rectangle of the form (7o, ts].
12. Extend the definition of [ b[‘?tda to simple functions by linearity.

ot

We shall need the following results of Cairoli & Walsh which we state without
proof. They are to be found in [7].



50 VIKRAM K. SRIMURTHY

Theorem 6.4 (Cairoli & Walsh [7]). 1. For any simple ¢ € L,

B \ [t | ][ 1 / e (g dids|

2
Al -
2. [b44s provides an isometry between L and L*(Q) and we can extend the
definition offbg‘tds to all of L via this isometry.
3. For any ¢ € L, the process

Mis = / b?‘rdagbra = /bg‘rdaqsra]'Rts (7_70)
Ris

is a strong martingale.
4. For any strong martingale M and for any p > 1, we have

2
=F

2p
Esupsup |M;,|" < <L> supsup E | M., |".
p—

T7<t c<s 1 7<t oc<s
6.1.2. The Norm H?(s).

Definition 6.5 (The Hilbert-Schmidt norm ||-|| ;g on M, (R)). Let M, (R) and
GL,, (R) be as in Remark 2.18. The Hilbert-Schmidt norm ||-||,;4 of a matrix
k € M, (R) with ¢, j-entries k;; is given by

1/2
m m
Ikl s = Z Z k?j
i=1 j=1
[Note:- By the equivalence of norms on a linear space in finite dimensions, [|-||;¢-

convergence on £ is the same as (-, -) ;-convergence on £.]

The next couple of definitions have been adapted for our purposes from Chap.
IV of Protter, [30].

Definition 6.6 (Very Special Semimartingales). A semimartingale in the sense of
Definition 2.24 is very special if it can be written as M + [v(o)do where M is a
mean-zero martingale and v is an adapted process. [Such a decomposition is always
unique see Theorem 18, Chap III of [30]]. An R?-valued semimartingale is very
special if its individual coordinates are very special. In particular, viewing M,, (R)
as R™*™ we have a definition for very special M, (R)-valued semimartingales.

Definition 6.7 (The norm #? (s) on M,, (R)-semimartingales). Let M,, (R) de-
note m x m matrices as in Definition 6.5. By Remark 2.18 K C GL,, (R) C M,, (R).
Let R be a very special M,, (R)-semimartingale which is Doob-decomposable as
M+ [v(o)do.

£l
1Rl = ||Ms||Lz+H [ o)y do

L2

(BIMIs) " + (E ( / W@llas da)2> ;

Theorem 6.8 (Closure of very special semimartingales under |[|-||;,2(,)). Let H2(s)
be the space of all very special M, (R)-semimartingales R so that || R||;2 () < 0o.

Then H?(s) is a Banach space.
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Proof. Clearly (7—[2( ), ||.||H2(s)) is a normed vector space. It will suffice to check

completeness. Let R, = M, + [ v, (u)du be Cauchy Then M, is Cauchy in L?
and so converges to some martingale M J vn (u) du is also Cauchy in ||- ll32(5)- To
show it converges, it will suffice to show a subsequence converges and so without
losing generality we assume that

0 > zn:\/E</Os||’/n+1(u)_Vn(U)HHSdU’>2

>5[ TS s (0) = va (@)l 15 d

Thus on a set A C ) of measure 1, we see that the expression

/OS Z lVnt1(u) — vp(u)| g du < co.

Thus on A, 3, [Vn+1(u) — vp(u)||gg < o0 a.s.-du. Thus on A there exists some
random variable v (u) so that, v, (u) = v (u) a.s.-du. v, is adapted so v is adapted
as well. hence we are done. J

6.1.3. The approximation scheme.

Definition 6.9. We will proceed to define some basic terms we will need to state
the main Theorem of this section. Let g be the L (K)-valued Brownian motion
from Definition 2.22. Let X be the &-valued Brownian bridge sheet given by the
Fisk-Stratonowicz integral X;s = fot 97Lgsrs in Theorem 2.25. Then:-

1. P a partition {0 =9 < ... < t, =T}.

P _t._
XP(t,8) = Xy s + Xppap - LVt € (tio1, ).

3. AjX(s) = Xyys — Xi,_ys and A;XA(s) = (A; X (s), A); for any A € &
4. ¢°(t,s) be defined to be the solution of
atg]p(tv s) = gP(tv S)atXP(tv s) and g]P’(O’ s) =1
Observe that for any ¢ € (¢;_1, ¢;] the this equation reduces to
At
M (R) be the set of all m x m matrices (see Remark 2.18).
6. Define G : GL,, (R) — GL,, (R) by setting G (A) = A~!. Recall from Re-

mark 2.18 that GL,, (R) denotes invertible m x m matrices.
7. F: My, (R) - M, (R) be the exponential map

F:A—Y A"/nl.

8tgp(t, s) = gp(t, s)

ot

Notice that for any A € &, we have exp A = F (A) where exp : £ — K is the
intrinsic exponential map on K.

Y=g (tuS) F (D1 X(s)) - F (AiX(5))

9. BY(T,s) = [; g°(T,6s)g" (T, 5)~"

oo
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Lemma 6.10. Recall that K C GLy, (R) as in Remark 2.18. Let F and G be
transformations of GL,, (R) as in Definition 6.9. Then the following relations hold
where A € U and B,C € R:-

1.
(6.1) F'(A)B = /1 F[(1 —7)A]BF [rA]dr
2. ’
F"(A)B® C
/dT/ 1I-uw)F[(1-=7)(1—-u)A]
x CF [1(1 —u)A] BF [uA] du
/ dT/ uF [(1 — u)A]
(6.2) x BF [(1 — 1)uA] CF [ruA] du.
3.
(6.3) G'(A)B=—-A"'BA™ "
4.
(6.4) G"(A) B C =A"'BA'CA ' + A7'CcA'BA™L.
5.
(6.5) sup ||[F'(A)B||gg < Const ||Bl| g -
AER
6.
©6) s [F()B @ o < Const | Bullzs -1 Bulls -

Proof. See Lemma 8.8 in the appendix. I
6.2. The Main Theorem .
Theorem 6.11 (Semimartingale properties of gr.). Let g be a L (K)-valued Brow-

nian motion. Then:-

1. s = grs is a K-valued §rs-semimartingale.[Note:-In Remark 6.1 we have
already reached the conclusion that gr. was a semimartingale. We provide
another independent proof since this fact is an easy consequence of our com-
putation.]

S
/ ITs09Te = / Ady,, batdo —
0 Rrs

where the expression fRT Adyg,, batas is defined as in Theorem 6.4.

S

Jto

0

The proof of this Theorem will be given after the proof of Theorem 6.17.
Remark 6.12. (Theorem 6.11 is reasonable)g satisfies
(6.7) 9sts = grs Xots With gos =e,
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where X ; is the Brownian bridge sheet from Theorem 2.25. By Theorem 3.19,
there is a Brownian sheet b on 8 so that

T, (-s)
(68) th = bts /0 bta' (1 — U)Qda.
If we replace X by b in Eq. (6.7), then Lemma 3.9 shows that s — grs; would
be a K-valued Brownian motion with variance T and hence [; grssg7, would be
a R-valued Brownian motion with variance 7. In reality, because X;. contains an
extra finite-variation term, it turns out that the law of Y7. is equivalent (but not
equal) to the law of a Brownian motion on 8.

Define

(69) YTs = Adgta bdtda' _/
Rrs 0

/ Adg,, Xato.

In the proof of Theorem 6.11 we will show that grss = Yrssgrs with Y7o = 0.
Before we do that we shall need to state a few results.

1—-0

Proposition 6.13 (Semimartingale decomposition of B ). As in Definition 6.9
let P be a partition of [0.T] and let

Bis) = B (1) = [ BT, 35)gB(T, )
0
Define

(6.10) ME(s)

1l
S~
[NNgE
2

"(AiX)dAD(0)) y; " (o),

(6.11) Vi (T, s)

1
HM\
o
F&
>
Jad

(6.12) Ve (T, s)

Z (Ata Yi1 (F”(AlX)A®2) yl—l

-3 G
Then )
(6.13) B%(s) :M?i(s)Jr/ V?(T,a)da+/ vs(T,0)do.

This Proposition is proved in subsection 6.4.

Remark 6.14 (Idea of the proof of Theorem 6.11). Given Theorem 6.13 we can in-
dicate the idea of the proof of Theorem 6.11. Roughly speaking we have the fol-
lowing approximations

A " 2 ! )7
( Qt) (F A; X) ZA@)) ZZ yi—1 (F'(AiX)A) y;y)

i=1 A

vy(T,s) =

NERNSE

(F/(A)A% - (F(A:) ) 577,

-
Il

IR
M:

I
A
Z : Dy (F"(0)4%2 = (F'(0)4)" + O(A: X)) 5y = 0.
1 A

-
I
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Also one expects

as [P| — 0.
Lemma 6.15. Let z < 1. Let o € [—1,1]. Then there exists a sequence of parti-
tions {Pz} of [0,T], depending only on T and z with the following properties:-

1. P40 asr — oo
2.

npz

sup sup Z |IF (aA; X (o)) — 1”?15 < o0 P-a.s.
{Pz} o€l0,2] ;=

3. Asr — oo,

—0Vpel,oo),T < oco.

Lr

sup ngi(t, $) = Gts
te[0,T] HS

This result is proved in subsection 6.5.

Theorem 6.16. Let B?; be the approzimation to fo ngsg;sl as in Definition 6.9.

Let M;Pi:‘ be the martingale part ofBgfz‘ as in Proposition 6.13. Let Mrp. = fRT- Adyg, batas
be the martingale part of Yr. as in the proof of Theorem 6.11. Then as r — oo the
eTpression

P> ’ )
/ ricM a'gT:;' - / MraeM7asgrs in H? (2).
0

Theorem 6.17. Let t — g;. be the canonical L (K)-valued Browman motion from
Definition 2.22. Let YT be as in the proof of Theorem 6.11. Let B " be the approz-
imation to fo gT(;ngs as in Definition 6.9. Then as r — 0o, we have

/ Bri, 97 —>/ Yrasgre in H? (2).

Proof of Theorem 6.11. Since 0 — g7, is bounded and continuous, the integral

' 1
/ Yrac 910 + Y7o YTd0 9T0
0

2
is well-defined. We have only to show that for any z < 1,

2 s 1 .
952 =1+ / Yrasc9rs + §YTdaYTdagTa in H*(z) as r — 0.
0
If this is done, Lemma 6.15 will imply that

S
1
grs = 1+ / Yrac9rs + §YTdaYTdagTa-
0
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This will mean that gr. is a semimartingale and that

1
Yrssgrs = YTdngs+§YTdngds

1
Yrasgrs + §YTdsYTdngs
= 9Tés-

This will prove the Theorem completely.
So will suffice to prove, for any z < 1,

S
Pz 1 .
grs = 1+ / Yrac9rs + §YTdaYTdagTa in #*(z) as r — oo.

Doob decompose Y7, as M —|— fo VP T o)do. From Definition 6.9, notice that

gT 5s solves

Pz

gTJs = BTJngs with gTO =1
Now let M?f‘ be the martingale part of MTT and let J denote

P> ’ 1
g7 — (1 + / Yrisc9rs + _YTdaYTdO'gT(r)
0 2 o

We see that
Pz 1
J = H / TdagTa YTdfnga) + 3 (BTdaBTdagTa YTdUYTdagTa)
H2(2)
PZ ]P’Z ]_ Pz Pz Pz
- ‘ / (BTdUgTJ YTd"gTU) ) (MTQUMTQUQT’(} - YTdaYTdagTa) ‘
’ #(2)

By Theorem 6.16,

Z Z P,. : i
/ MTdaMTQU 974 —>/0 MrioMrasgre in H? (2) .

By Theorem 6.17,

/ BTdagTa _>/ Yraegre in H (2).
0
Hence we are done. |

Remark 6.18. By Eq. (3.5),

l—s
th—bts / bta 1

Computing informally with Ito’s Lemma and using Eq (6.9),

l—s
th—bts / bta 1

- s)
Xats = bars — bitg —=do.
dt dt /0 dt =0 o
b ds
Xatas = baras — —22 / bdta- — dads

b _ thsds
dtds (1 — S) .
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s do T
Ady,, Xatde = / Adyg,, batas — / — / Adg,, Xato-
Rrs 0 ( ) 0

Rrs l1—-0

Ad!]w Xatdo = Yrs.
Rrs

Thus we see that in spirit, Yrs equals fRT Adg, Xatdo-

In future, define Adg, Xatae = Ys.
Rrs

6.3. Proof of Theorems 6.16 and 6.17. We will need the following three Propo-
sitions (in addition to Proposition 6.13) in the proof of Theorems 6.16 and 6.17.
Proposition 6.19. Let z < 1 and let {PZ} be the sequence of partitions from
2 2 2 =\ —1
Lemma 6.15 and let M?" (1) be the martingale part of Bﬂ;’_‘ = Os g%‘sa (gﬂ;a) .

P> .
Then Mz (s) converges in L? as r — oo to fRTs Adgy_ biras. Furthermore the
process s —» fRT Ady. bards is o Brownian motion on & with variance T.

Proposition 6.20. Let z < 1. Let {PZ} be the sequence of partitions in Lemma

6.15. Let V]S’Z‘(T, -) be as in Proposition 6.13. Let convergence in H? (z) be defined
as in Definition 6.7. Then

/ " (T, o)do = 0 as |PZ| |0 in H2(2).
0

Proposition 6.21. Let 2 < 1 and let convergence in H?(z) be as in Definition
6.7. Vllp”(T, -) be as in Proposition 6.13. Then as r — oo we have.

[ [

Proof of Theorem 6.16. By Eq (6.10)

/ Ady,, Xito in H*(z).

M?ii(s)z/ Zyz 1 (0) (F' (A X)dAb(0)) 57! (0)

which implies

MTdsMTﬁs
= Z yi1 (s) (F'(A:X)Aib(ds)) y; " (s) i1 (5) (F'(A;X)Az0(ds)) y; (s)
,j=1
=ZZy —1 (8) (F'(AiX)A) (97 yim1) (5) (F'(AiX) A) g7 (s) Astds.
A i=1
By Definition 6.9, y; = y;—1 F (A; X (s)), so we have y; 'y, = F (=A;X(s)). Thus
(6.14) Mg My, =3 3" Ady,, [(F'(A;X)A) F (= 0:X)]” Astds.
Also, by Theorem 6.19, e
(6.15) MrasMras = Tds ) | A* = dszzf dy,_, A%) Ajt.
A A i=1
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Then using Equations (6.14) and (6.15) we have
 Mon ghr — Mrg, M
|| Tda Ti097y — Mo MTdogre|l3e2(2)

p:
fo ( Tdo ng - MTdUMTda) 91y
s
+ Jo MrasMras (QTZ} - gTJ)

H3(z)
. o
< H/ MTd(,MTZ}J MTdaMTda) 975
0 H2(z)
/ MrioMras (g% - gTJ)
0 H2(z)
=J; + J5.
Using the definition of ||-[|;,,, (see Definition 6.7):
. .- 2
J3 = / Mr4o M4 (gT} - gTJ)
0 H2(2)
. 2
- Tdo (Z A2> (g];z - gTJ)
0 A H2(2)
2
P
HS
p* ?
< ce( | Td H R :
S (/0 O (|97 — 9T HS)

which vanishes by dominated convergence and Lemma 6.15.
Again using Definition 6.7:

2

z

2 P
Ji H/ Tda Tda MTdGMTdU)gTa

H2(2)

nm~ 2

da S5 AitAd,,, ( (F'(A;X)A) F (=2 X)] — A2) g

A =1 H2(z)
CE (/ do

By Lemma 6.10, F'(A; X)Ais bounded in [|-]| ;¢. Thus [|(F'(A;X)A) F (=20 X)|| g
and ||A|| ;5 are bounded. Observing this and decomposing
[(F'(AiX)A)F (—L X)) — A2
= (F'(AX)A) F (=AX) [(F'(AiX)A) F (=A,X) — 4]
FI(F(AX)A) F (—AX) — A] A,

npz 2

do |33 AtAd,,_ ( F’(AiX)A)F(—AiX)]Q—ﬁ) 97

A =1

E

2

[(F'(A;X)A) F (—0, X)) — A2HH5>

IN

A i=1



58 VIKRAM K. SRIMURTHY

we have

2

J} <CE / do > At ||(F'(A:X)A) exp (—A:X) — Al g
0 i,A

The integrand in this last expression is bounded and hence J? vanishes by the
dominated convergence Theorem. i

Proof of Theorem 6.17. Doob decompose Y7. as the sum of its martingale part
Mr. and its bounded variation part [, v (o) ds. Then, from Theorem 6.11 we have

MT. = fRT- Adgisbdtds and v (O‘) = —ﬁ fOT Adngdta-

By the definition of ||-[|;2,, (see Definition 6.7) and the expression for B% in
Eq. 6.13

: PZ PZ
I [ Biugi ~ Yrasgralbacs
0

: PZ PZ

< H / (BTEU - YTda) 97y
0 H2(z
7 (age p:
- (MTda - MTd‘T) gTa'

0

z z

/ do (I/]fr (T,o) + Vlgf‘ (T,o) — I/TJ) g];g
0

: + ‘ /0. Yras (g?f} - gTJ)

H2(2)

L2

"

H2(2)

z p= ’ p*
+ / M4, (gT; - gTa) + ‘ / v(T,o0) (gT;; - gTJ) do
0 L2 0 H2(2)
Y Ay
crops = |
I = E H/ (MTZJ - MTda) [
0 HS

2

S
Z/ <M$30 —MTdmA> AQ];Q
A 70 . HS
dimﬁz E H/ Ag];i <M%U - Mra,, A>
A 0 "
. | 4 P2
= dlmRZE/ HAgTjT
" 0
s P> 2
C’EA:E/O <MT90 - MTdU,A>R

2
—0asr— oo,
£

= FE

2

IN

HS

2 P? 2
M5 — Mg A>
HS< Tdo 7 a

IN

= CE||M7;, - Mra,
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by Theorem 6.19 and the equivalence of norms on finite-dimensional spaces.

z

/ do (I/]fi (T,o) + l/lg>i (T,o) — I/TJ) g];g
0

- = ’

/ EHT,0) - (T, o) / AT, o)
0 H2(z) 0

— 0 as 7 — oo by Theorems 6.20 and 6.21.

122:‘

H2(2)

2
da)
HS

2

AT 0) = v(T,0) + 57 (T,0)|| o

2

C

IN

+c|

H2(2)

2
zng‘

z
/ MTdo’ (gﬂ;z - gTO')
0 L2
. 2
P2 A
/ Z (AgTa - AgTa) Mz,
0 a HS

> 2
= dimﬁZE H/ (Ag% - AgTU) Mz,
a1 0 HS

= FE

2
MA MA
HS Tdo*"*Tdo

= dimﬁZE/ HAg]I;:;_AgTU
A 0

2
Tdo
HS

- dimﬁZE/ |75 — Agro
A 0

— 0 by Dominated Convergence.

z 2
E T, H P ol
A ZCaTI Ve

z z ]P?Z
E [ W@o)lysdo [ |6, - oo
0 0

\/E (/OZ||V(T,U)||§,Sda>2\/E (/0 Hsdo>2
\/E / ZH,,(T,U)”;SWE ([ o5~ ore] o)

We will be done by dominated convergence if we can only show that

i
Il

IN

do
HS

IN

Pz
9176 — 970

IN

E/ ||v(T, U)||A;{S do < 0.
0

But v(T,0) = —ﬁ)N(TU where X., = fo Ady,  Xgyo- Thus

sup F H)Z'T(,

4
(1-2)" p.e] HS

N 4
E/O 1W(T, o) e do <

3(To - 0?)°,
(o s (o =)

<
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since )Z'.(, is a Brownian motion with parameter (a — 02) by Lemma 7.10. Hence
we are done. JJ

6.4. Propositions 6.13, 6.19, 6.20, 6.21.

6.4.1. Proof of Proposition 6.13.

yn(s) = F(A1X(s))-- F (A X (s))

Syn (s) Zyz 1(8) (OF (AiX () i ' (5)yn (5)

Syn () yn' (5) = Zyz 1(5) (6F (8:X (s))) ;' (s)

- ZAdyi_l (OF (AiX)) F (-0 X))

i=1

- iAdyi_l ((dF (0 X)) F (=0 X))

i=1

%i (dF (2 X) dF (=2 X))

+§ ; (dAdy, ) (dF (5 X) F (—2:X))

= I+J+K
Letting A run through an orthonormal basis of K we can write dF (A; X (s)) as
(6.16) dF (LX) Z dAb* (s) (F' (A X (s)) A) + finite variation terms.

From Lemma 8.3 we can see that

(6.17) dLib™ (5) dOHE (s) = 6i5 (A, B) « (Agt) ds.
From Eq. [6.16] and Eq. [6.17] above, we can conclude that
K=0
and that
1 n
J =

: Z Ady,_, (dF (8:X)d (F(2:X)7))

yic1 (dF (D X)) F (AX)7H(dF (AiX)) F (AX) ™yt

Yi—1

I

|
N | =
Mz -

1

-
Il

™ (yi 1 (dF (0 X)) y7)?

I

|
N | =
(\E

1

-
Il

I
l\.')l»—l
ngh

s
Il
-

Z yz 1 )A) y{1)2(Ait) ds
A
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By Ito’s Lemma, I can be computed as

I= iyi_l (F’(AiX) (dA; X) + %F”(AiX) (dA; X)® ) 1

Thus

Yn (

5 Z > (w1 (F' (LX) A) i) (Ait) ds

=1 A
Using this result , Ito’s Lemma, and Eq. (3.5),

np

Br(ds) = > w1 (F/(AX)dAX)y;"
i=1
1 -
+5 D (At yiy (F"(AX)A®?) yds
i=1 A
%ZZAJ (yi 1 (F'(AX)A)y; 1) ds
i=1 A

Il
N
<
/1
B
B
><
/\

2 it (5 )= [ Ao >)d>>y

yz ! ( T(AX)A®?) y !
+— (A;t) - ds
2 ;XA: L (FIAX)A) )
Therefore,
dBh(s) = Zyl L (F'(AiX)Ab(ds)) y;

y;lds

—Zyi—l {F,(AiX) (Aib(s) ~ /0 Aib(o) dgﬂ

(1-0)?

— i—1 (F"(AX)A®2) y;

1 Z (At) it ( (, JA) 31’1 ds

3 P — (g1 (F'(AiX)A) y; )
dMPE(s) + 73 (T, s)ds + v5(T, s)ds;

where we have defined

np

T(T,s) ==Y yin {F'(AiX) (Aib(s) - /OS (Aib(gé dU)} yi!

p (1—s) 1-0) L

So to be done, we only need to show that v (T, s) = D]f(T s)
By Eq. (3.5) of Theorem 3.19

Xis _ bys _/s bisdo
1-s 1-s J, (1—0)%

v Eyz (P (@80 + 5P/ (AX) (480 )
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So simplifying, we see that

FHTL0) = 3 i [FAX)AX ()] 7

1—s54
i=1

But again we must make the observation that F|g is the Lie group exponential
map. Therefore we have t — F (tA) satisfies F' (tA) A = F (tA) A. Therefore we
see that

I/l(TS Zy, 1[F(A;X)A; X (s )]y;1

Now from Definition 6.9 observe that y; (s) = y;—1 (s) F' (A;X (s)). Thusy; 'y;—1 =
F(=A:X (s)).

Thus we are done since

T = I_SZAdyM (AX)AX ()F (~AX ()]
= _ﬁ Z Adyz—lAlX(S)
= Vi(T,s).

|
6.4.2. Proof of Proposition 6.19.

Lemma 6.22. Recall that Mgf‘(s) is the martingale part of Bgf‘(s). Then

nm‘i
z

Mgir(s) “approzimates” / Zyi*l (dA:b) y; .

Specifically, for any s € [0, 2],

Let J = HME:(S) —/ > yia (dAb)y; !
0 =1

Using Eq.(6.10) yields and Lemma 8.7,

nm‘i

—/ > w1 (dAb) ;!
0 =1

— 0 asr — oo.

L2

Proof.

L2

pZ
r

1 (dAD) y /Zyzl (A X)dAD) y;
0

2

J2

HS

/ S Sy (4= FAX)A) g A

i=1 A

HS
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Applying Lemma 8.7 to this last term shows that

7= EZAit/O i1 (A= F/(A:X)A) ;| do

CY A, t/ doE||A - F'(A:X) Al .
i, A
Appealing to Eq. (6.1), the expression
2

|4 - F'(A XAl = H/O {A—F((1-7)AX)AF (rA;X)} dr

HS
is bounded because e*2iX is group valued (and hence bounded). Thus J? — 0 as

r — 0o by Dominated Convergence. I

Lemma 6.23. The expression

5 Pz npz
/ Zyi,l (dA;b) y;l “approximates” / Z _,dA; b
0 =1

Specifically, for any s € [0, z] we have as 7 — o0

[ S @sny - [ ()| o,
0 =1 0 =1 2
Proof. Using Lemma 6.15,and Dominated Convergence,
n[pi s n[pi 2
ILm / Z (Adyi_ldAib) —/ Zyi_1 (dA;b) yi !
r—oo | /o = (e 12

= lim E / ZZAd (A — AF (=A; X)) dA; b4
7—>00 =1 A HS
_TILH;OEZAt/ |Ady,_, (A — AF (-A; X)) ;5 do

_gggocE/ S At 1= F (=2l do
. 2
=CE i rlgrolozi:AitHl—F(—AiX)HHSda:O.

The expression ), At |1 — F (—AiX)HiIS is bounded since F' (—A;X) is K-valued
and ), A;jt = 1. So by Dominated convergence, this last term becomes

3
) 2
=CE ; rlirgozi:Ait||1 — F(-AiX)||gg do

Now
. 2
rlgrolo E Ait][1 = F (=AiX)|ys

< TILII;O Pz st:pz I1—-F (_AiX)H?{S‘
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By Lemma 6.15 this last expression goes to 0 in the limit as » — co. |

Lemma 6.24. Let P be a partition of [0,T], g5, the approzimation to gi,, and
yi (o) = QEJ as in Definition 6.9. Then for any s € [0, 2],

/ Z (Adyi,l(a)dAib (0’)) = Adg? dedo’-
0 =1 Rrs i
where [T] = t;—1V7 € (ti—1,t;].

Proof. It will suffice to show

/ Adyi,l(a)Aib (da) :/ Adg? dedo’-
0 (ti_lo,tis] tim1e

Letting Q. be a refining sequence of partitions of [0, s], we have, by Theorem 6.4

/. - Adgyi_labd"—d” ZTILHOIO Z Adgl”;_lsj_lb(ti_lsj_lvtisj];
(¢i—=10,t;8] 5;€Qy

where the limit is taken in L?. However,
rhﬁr{olo Z Adgi:;,lsj,l b (tiflsjflytisj']
5;€Qr

= [ Adyg  (bao — bi_iao)

0 i—19

0
As usual, we use the fact that ¢” is bounded and the metric is Ad-invariant. So

dominated convergence goes through and L? convergence is justified. i

Lemma 6.25. Let g% be the approximation to g., from Definition 6.9. Then for
any s € [0, 2],

Ad Pz bd-rdg — Adgmbd.,—dg m L2 as r — 00.
g
Rt [rle Rrs

Proof. Let

2
J = ‘ Adgﬂ“i bd.,—dg — Adgﬂ,bd-rdg
Rrs [rle Rrs L2

By Theorem 6.4,

2

J=F

> / (Ad A—Adg”A> b4 4o
A JRrs

Iirle

HS
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2
Ad vz A— Ad,, A) dedJ>
917l Pq

- cyyr| dT/d“<(AdEUA Ads A>>

v < esye(f,
= C’ZE/ dT/ do

2
<Ad s A- AdgmA>
pq

P: 2
Iir)e ~ Yro HS

C’EA:E/O dT/O da‘

["']ff

HS
-1

+ H (gﬁfjg) — (9r0) 2

-1

HS

— 0 as 7 — oo by Dominated Convergence and Lemma 6.15.

Proof of Proposition 6.19. For the purposes of this proof, define the symbol ‘-’ to
mean “has the same limit in L? as [PZ| — 0”). Defining [7] = t;—1 V7 € (t;—1,ti],

for any s € [0, 2],

Mz (s)

/ZyH (dADb) y; "

0 ;=1

/ S (Ady, ,dAD)
0 =1

npz

/Zyl 1 (dAd)y

3

Ad ¢z bgrqe by Lemma 6.24;
Ris Iirle

~! by Lemma 6.22;

L dA; b by Lemma 6.23;

Ad vz bardo Ady., bgris by Lemma 6.25.
Rrs Iirle Rt
Putting all this together yields
p=
My (s) < Ady, ,birdo-
Rrs

We have still to show that f Ry Ady., bgris is a R-valued Brownian motion with
parameter T'. Let J denote the process

npz

/Z dy;_ dAD) .

By Lemmas 6.24 and 6.25

Js Adgy_ bards-
Rrs

Thus, since L? limits of Brownian motions are Brownian motions, it suffices to show
the process s — Js is a Brownian motion.

The rest of the proof is devoted to showing that s — J; is a Brownian motion.
with parameter T'. We shall use the notation [N], to denote the quadratic variation
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of a martingale N. If N is an R?-valued martingale then
N =Y [N@),N(j)} e ®e;,
i,j
where e; is a basis for R? and [N(), N()] are the joint quadratic variations of the

R-valued martingales N9 and NW. Let E,, be the matrix with ij-entry &;,0;,-
Letting {A} run through an orthonormal basis of K, we have

lzz / dy; , A) dA;bA

=1 A

S

[ZZZ(/ i1 A) quibA>E

pg i=1 A

8§

_ZZZZ pq ® Epgr) Ait/o (Ady,_, A), (Ady,_, A), , do

i=1 A pqg pq

—ZZM/ dy,_, A) © (Ady,_, A) do

i=1 A

:Z;Ait/os <2A:A®A> do

()

Thus by Levy’s Theorem s — J is a Brownian motion with parameter ¢. i
6.4.3. Proof of Proposition 6.20.

Lemma 6.26. The expression EP (Ait)yio1 (F" (0 X) A®?) yi" is approzimately
the same as the expression Y p. (Ait) Ady, (F" (LX) A®2. Specifically, P-a.s. as
T — 00,

T = ) (Ait) [yica (F" (AX) A®?) y7h = Ady,_, F" (A X) A®?] - 0.
Pz HS

Proof. Recall y; = y;—1 F (A;X) as in Definition 6.9. Using the boundedness of the
Adjoint operator (i.e. the fact that sup,cx |Ady| < 00) gives us

o= | @) [Ady (B (80X) A7) (i =)
v HS
< CZ (L) |1F (—2:X) = 1| g
< CZM ZIIF —AX) ~ 1
< C|]P’Z|sup2||F (—AX) — 1)

]P?z
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By Lemma 6.15,

supZHF -0 X) —1||Hs<oo P-as.

Hence we are done. i

Lemma 6.27. The expression Y p. (Ait) {yi—1 (F' (LX) A) y;l}2 is approzimately
the same as the expression Y p. (Ait) Ady,_, (F' (A X) A)?. Specifically almost
surely as r — oo, we have, P-a.s., that

= |3 @) [{wia (F'(8:X) Ay} - Ady,, (F/(0X) 4| =0,
Pr HS
Proof.

Jr
= Z (Dit) Ady,_, {(F' (8:X) A)y7 iy (F (85X) A) g7 i1 = (F (85X) 4)° )

_Z (Ait) Ady,_, (F' (A X) A)

x Ady, [y iy (F' (82X) A) gy 'yios — (F/ (8iX) 4)]
= 3" (D) Ady,_, (F'(8:X) 4)

x Ady,_, {y; " yio1 (F (8:X) A) y;  yic — y; 'y (F/ (0X) A)}
+ Z (Alt) Adyi—l (FI (AzX) A)
PZ

x Ady,_, {y; yir (F' (8iX) A) = (F' (AiX) A)}
=Y (Dit) Ady,, {(F'(8:X) )y yioa (F (DiX) A) (y7 'yi1 — 1)}

Pz

g

+ 3 (Ait) Ady,_, {(F' (8X) A) (7 i — 1) (F' (A X) A)}

Pz

r

Bringing the Hilbert-Schmidt norm within the sum, exploiting the boundedness of
the Adjoint operator, and using Eq. (6.6) of Lemma 6.10; we see that the norm of
this last expression is bounded above by

C’onstz (Ait) Jy; tyicr = 1| g
P;

1/2
< Const (Z (Qit)* D [lvi tyis = 1||Zs) :
Pz Pz

Now from Definition 6.9 we see that y; 'y;_1 = F (=A;X). Now invoking Lemma
6.15 we see that this last expression vanishes in the limit. i
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Lemma 6.28. As usual, let F' be the exponential map as in Definition 6.9. Then
as r — oo we have, P-a.s., that

3 (Adt) HF (A:X) A®2 — (F' (A, X) A)2HHS - 0.
P:

Proof. Let I,.,J. be defined as follows:

L= 3 (0at) [P (AX) A% = A|| s
P;

Jr = Z (Ait) HA2 — (F(AiX) A)QHHS'
PZ

r

It will suffice to show that the random variables I,. and J, vanish almost surely as
r — oo. To do this, first notice that F’ (0) A = A and that F" (0) A®% = 42,
The expression

L= > (M) [|[F" (A X) A% — F (0) A?|| 6
Pz

= Y (A H /0 P (eAX) A® A ® AX) de

Pz HS
1
< > (A / |F" (e0iX)A®@ A® DX g de.
Pz 0
< €Y (Ait)[|AiX]l g, by Lemma 6.10.
Pz

However, the expression

(6.18) CY (A AX|gs < C

P

> (A

Pz

r

2
sup Y |8 X [57g
.
P;

Invoking Eq. [6.24] in the proof of Lemma 6.15, we see that the right hand side
of Eq. [6.18] goes to zero as r — oo. Thus I, — 0, P-a.s., as r — 0.
Turning now to .J,, we see that

ho= Y| @x) - F 047
P
1

= Z(Ait)Q/ IF' (€A X) All s |F" (€A X) A® N X || 1y6
Pz 0

< CY (Ait)]|AiX]l;g by Lemma 6.10.

Pz
Therefore,

Jr < CY (Ait) |AiX |7 = 0 by Eqs. [6.18] and [6.24].
Pz
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Proof of Proposition 6.20. Let y; () denote gz;‘ as in Definition 6.9. Let F be the
exponential map acting on m x m matrices as in Definition 6.9. Let A run through
an orthonormal basis of K. Let

2

J,,E‘

/ VH;f‘(T, o)do

0

H2(2)
Then using Holder’s inequality and the fact that s < 1 yields
(6.19)

Iy
2

< E/OZ do | S A4it [yi,l (F" (5:X) A%2) g7 — (yios (F' (D:X) A) yi_l)Z]
Pz,A

HS
Notice that by invoking Eq. (6.6) of Lemma 6.10 as well as the boundedness of
K, we see that the Hilbert-Schmidt norm in Eq. (6.19) is bounded. Thus we can

invoke dominated convergence and so it suffices to show for fixed A that as r — oo,
we have, P-a.s., that the expression

> (i) [ (F" (2:X) A7) 7 = (uia (' (8:X) A) w7 )7] = 0.
P;

For simplicity, we shall use “~~” to mean “has the same limit in 8. Explicitly
{f]pi} “ {g]pi} iff ||f]pi —gpz||yg — U, P-ass., as r = 0o. So the problem reduces

to showing
Z (Ast) yi—a (F" (AiX) A®2) yi_l - Z (Ait) (yi,1 (F' (A X) A) yi_l)2 .
Pz o

By Lemma 6.26 we have

> (Ait)yioy (F" (AX)A®?) gyt ) (At) Ady,  F" (A X) A®2.

Pz Pz

r

By Lemma 6.27 we have

S (Ait) (yict (F'(8:X) A) y7)* o~ 37 (Ait) Ady,_, (F' (8:X) A)°.

Pz Pz

Thus the problem reduces to showing
D (At) Ady, " (AiX) A2 37 (At) Ady, , (F' (A8 X) A)”.
Pz Pz

Invoking the boundedness of the Adjoint operator on (K, ||-||;g), and letting J
denote the expression

D (Ait) Ady,  F"(AX) AR =3 (Agt) Ady, , (F' (X)) A)°||

Pz Pz HS
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we have

-
AN

S0 (2 | Ady, [P (80X) 4% - (7 (2:) 4)°]

3 (2 HF (AX) A®2 — (F' (A X) A)? H
P:

HS

IN

HS '
However by Lemma 6.28 as r — oo we have, P-a.s., that

3 (At) HF (A:X) A2 — (F' (A;X) A)QHHS - 0.
P;

Hence we are done. J

6.4.4. Proof of Proposition 6.21.

. Let s € [0, 2] and let y; (-) denote gfj‘ as in Definition 6.9. Let F be the matrix-
exponential map as in Definition 6.9. Let A run through an orthonormal basis of
R.

By Eq. (6.11)

p? 1
V17‘(T, S) = —E Z Adylil(s)AlX(S)

i=1

By the definition of #2 (z), it will suffice to show that the expression

. 2
/ do ]
0 HS

vanishes in the limit. Thus we have:
Hs]

/' do
o l—0
T ez
/ Ady,, Xare — Y _ Ady,_,AiX (0)
0 i=1

/0'(15700)2/0@0}5

Thus since z < 1, the problem reduces to showing

- 1 T
J.=E v, (T, o) + T /0 Ady,, X 4o

2

Jy E

T ez
/ Adyg,, Xare — Y Ady, A X (0)
0

i=1

2

HS

nmi

T
/ Adyg,, Xare — Y Ady, A X (0)
0

i=1

E

HS

vanishes. Defining

nii
PZ _ } : P7
Yt = gti_10'1(ti—17ti]’
i=1

we have only to show that the expression
2

T
Kr =F / Adngdw — Adﬁy;fﬁde
0 to

HS
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vanishes in the limit. By Lemma 8.3 deX(ﬁa = 0B (a — 02) dt. Evaluate our
last expression yields

2
K, = Z B Z / ! (AdgwA—Adan)quﬁJ]
= ZZE/ Ady,, A~ AdmzA)pq(o—UZ)dt

t
Py A 7

= EA: (0 — 0?) E/OT |Ady,, 4~ aa szHHS

2

T
< exie [ oho
< CEA:(U U)/O FE ||g: Yto s

Thus by Domlnated convergence and the continuity of inverses, it will suffice to
show ng vw - — 0 P-a.s. Define [t] = t;—1 for any ¢t € [t;—1,t;). Then

p\ 17
Gie — (%J) dt.

HS

+E|

’Yta = g[t]a’

Pz Pz
Hgta - g[t]a’ HS < ||gta - g[t]a”HS + Hg[t]a - g[t]a’ HS

By Lemma 6.15,

sup ngi(t,o) — G|, 0, P-a.s.

t€[0,T)

Thus, for each w, pick a partition PZ so that Hg - g P < ¢ for all m > n. Pick

z

m > n so that ||gt(, — Efa "s — 0 almost

< . Then we see that Hgta -9

9|l
surely and so we are done. [

6.5. Good partitions(proof of Lemma 6.15).
Theorem 6.29. For anyr € N, let t; = é—f, and let
ﬁr5{0:t0<"'<t2r:T}

be a partition of [0,T]. Lett — gi be an L (K)- valued Brownian motion and let

gts be the approzimation from Definition 6.9. Then g*~(-,s) converges to g.; in LP
for any p € [1,00) as r — oo. Specifically, we have

5
sup Hg "(t,s) — gt
t€[0,7] s

= 0Vpe[l,00),T < 0.
r

This result is a direct consequence of Theorem 7.2 in [21]. See also Wong and
Zakai [31].

Proof of Theorem 6.29. View GL,, (R) as R™ . Then the path t - Xy is an
element of the Wiener space

Wo (RmQ) = {0 eC ([0,1] o ]RmQ) o (0) = 0}.
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Let 6, = T'/r. Then XE; is an approximation to the Wiener process t — Xy in
the sense of Definition 7.1 of Ikeda and Watanabe [21]. Now apply Theorem 7.2 of
[21] to show that as r — oo,

—0in L?(Q).

sup Hgts — Gts
t€[0,7T] HS

Both processes glz", and g;5 are K valued and hence bounded in the Hilbert Schmidt
norm. Conclude that

— 0in LP ().

B,
sup Hgts — Gts
t€[0,T] HS

Lemma 6.30. Let {P.} be a sequence of partitions of the interval [0,T] so that
|P.| = 0 as r = oco. Then there exists a subsequence of partitions {P..} so that

sup sup ZA s)Ab4(0)| < 00, P-a.s.
{P1}1>5>0>0 |

Proof of Lemma 6.15. Let {E~Dr} be the sequence of partitions chosen in Theorem

6.29. We will show that there exists a subsequence {PZ} of partitions of the {E~Dr}
depending only on T and z, with |PZ| L 0 as » — oo and

nz

sup sup Z ||F (aA; X (o)) — 1||i15 < 00 P-as.
{P5} oo,

Since {PZ} is a subsequence of the {ﬁr} from Theorem 6.29, we will still have

= 0Vpe[l,o0),T < oo,

Lr

p=
sup Hg "(t,s) — gt
t€l0,7) “llirs
as r — oo and so we shall be done.

Let ﬁr be a refining sequence of partitions, so that Nr 0 asr — oo.

1
IF (@A X (s)) = 1lzs < Z—,IIaAX Mirs

IN

laA; X (s ||HSZ ali X (s)|lhs

IN

A X (s ||HSZ j lladiX(s )

By the equivalence of norms in finite dimensmns there is some finite constant so
that for any A € &, we have ||A||;¢ < C||A||z. Thus

(6.20) I1F (2AiX(s)) = 1| gs < lladiX(s)]|gg exp {C |a] |A; X (s)[|5} -
But picking a particular orthonormal basis {A} of K, we have

IAX ;=S (AiXA(s)’

A
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By Eq. [3.5] we see that

Iax@r = ¥ [ante - [ 2wt |
£ XA: | /0 (1-0) }
< E —AibA(s) + ) A (o) LS)zdg
- | | /0 | |(1—0‘) }
<

- 2
)

sup  |b2) (1 +/ —do ,
| (T,0)ERTS, | | 0o (1—0)?

where we have let Rrs denote the rectangle [0, 7] x [0, s] in R?. Now
) 1
—do=(1- d =s<1
[ im0 [a(755) =e s
and therefore

2
(6.21) AXEIE <4 sup AL
4 (T0)ER1

=[]

By Theorem 6.4 we have

(6.22) E sup |bfg|2 <2'supE |bfg|2 <2 < o0
Ri Ri
Therefore by Eq. [6.21]

exp[C |a] [|AX (5)]]] < exp = 0.

c Z sup |b;40 2
4 Bia
By Eq. [6.22],
C < 00, P-a.s.

Thus returning to Eq. [6.20], we have P-a.s..,

D OIIF (@AiX(s)) = Ugs < NadiX (s)|fs exp Clal[|A:X (s)l] g
i=1

< O lladiX(s)lhs
i=1
(6.23) < C*Zi 1A, XA(s)|”
A =1

C is independent of the partition sequence {ﬁr} as well as the partition points
{t;}. Thus it will suffice to show that we can find a subsequence of partitions {IP*}
so that

n[pi

(6.24) sup sup Z Z |AiXA(s)|2 < 0.

r [0,1—¢] A i—1
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Let {PL} be the subsequence of {ﬁr} from Lemma 6.30. By Ito’s Lemma,

(6.25) Z |AiXA(s)|2 =sT + Z / 20; X4 (o)A XA (do).
i=1 i=1 0

By Theorem 3.19

A XA (o) = A (o /AbA _”))du
and so
Aib? (o) 7 A (u) du
A XA = A;b? - / -~ do.
(do) b (do) 1=0) do + . (w2 do
Therefore
/ A XA (o)A XA (do)
0 =1
s XA (o)A, bA( )
A XA (0)Aib? (do) / d do
/ Z 0 ; (1 - O'
A
//ZAX o)A;b (u)duda
(1—u)
(6.26) =0 - L+ 1.

Z A; XA VA b4 (do) is an §1s-martingale.

By Doob’s LP-inequality, we have

E

9 i 2
sup 11] < [ / ZA XA (0)AbA (da)]
s€[0,1]

pl
I8

= 2 At /Go UU
zl
— 0Oasr — oo.

Thus we can find a subsequence {]ID%} of {]P’}} so that sup,ejoq7[/1| = 0 P-a.s. as
r — oo and so that

sup sup |[1]| < co P-a.s.
T s€[0,1]
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Applying Theorem 3.19 to I yields

sup sup |Io]

r s€[0,1—¢]
A XA(0)A; bA( )
=sup sup / do
r  s€[0,1—¢] Z ]- - U

P2 1—e¢
< sup sup ZA b (0) Ab? (o) / (dia
0

rs€f0,1] |21 1-0)?
"2 1—¢
dodu
AibA () A ( / / _ dodu
—l—sgpszl[tpl] Z ’ ’ (1—-0)(1—u)?

This expression is finite by Lemma 6.30. A last invocation of Theorem 3.19 and
Lemma 6.30 gives

sup sup |I]
T s€[0,1—¢]

A A
=sup sup //ZAX I_Aub () du do

r s€[0,1—¢]

np2

1—¢
dud
<sup sup ZA bA AbA / / L

r s€[0,1]|; (1 —u)?
np2

+sup sup Z A (u) Ab? (v)

ros€l0,1-¢] [
/1 / / (1 — o)dvdudo
(1—v)2(1 —u)?
Therefore returning to 6.26 we see that

np2

s r

sup sup / ZAiXA(O')AiXA(dO’) < oo P-as.
r s€[0,1—¢]

Thus by Eq. [6.25] we see that

n2

sup sup Z|AXA )| < oo P-a.s.

T s€[0,1—¢] ;7
Taking P? = P2 we see that Eq. [6.24] is satisfied and so we are done. I

Proof of Lemma 6.30. By Ito’s Lemma,

ne,. ne,.

(6.27) > AibA(s)] = sT + / ZQA b4 (0)Aib? (do).

i=1
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Therefore,
supZ|Ab —1+sup / ZQA b (o) AbA (do)| .
0.1 = [0,1]

Since the process

s — / > 2804 (o) Asb? (do)
((—

is an §1s-martingale, by Doob’s LP-inequality we have

2

E sup / ZA b (o) Ab? (do)
s€[0,1]
1 ne, 2
§4E/ ZA b4 (0) AsbA (do)

< Z/O E (AdY)’ (0)Astdo
=1
ne, 1 1

_ Z/ (Ast)? odo < < |B,| = 0.
i=1 70 2

Therefore there exists a subsequence of partitions {]P’},} so that the expression

sup /ZAI)A o)Ab*(do)| = 0, P-a.s. as r — oo,
s€[0,1]

Returning to Eq.[6.27]we see that

np 1

(6.28) sup sup Z |A b (s | 00, P-a.s.
r s€f0,1]
If s > o then

s — Z [AibA(s) - AibA(O')] A;b* (o) is an F1,-martingale,

and so by Doob’s inequality, we have

E sup Z [AibA(s) - AibA(O')] A2 (o)
s€l0,1] |21

<2E Z [A:bA(1) — Ap?(0)] Asb? (o)

i=1
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By incremental independence of the Brownian sheet, this previous expression is just

np 1

- EZE (A2 (1) — AdA(0)]° E (A:d*) (o)

i=1

= EZAt (1-o0)o
— Oasr—>oo.

Thus there is a subsequence {]P’?,} so that
nw,z
(6.29) sup supz [A; b4 (s) — AibA(O')] A (o) < o P-ass.

r s>¢7i 1

If 1 > s > o, we can always replace a given sequence {P}of partitions by a subse-
quence {P?} so that

np2
sup sup ZAibA(S)AibA(U)
r 1>s>02>0 i—1
nW‘% nmz
<sup sup Z [AibA(s)—AibA(a)] Ab* ()| +sup sup Z (A; b ( )
ro1>s>0 |2 r o€[0,1] ;5

< 0o P-ass. by Egs. [6.29] and [6.28].

Letting {P'} denote this subsequence {P?}, we are done. i

7. HKM |z~ PWM |5,

Theorem 7.1. v, (e,-)[Heat Kernel measure on L (K)] is equivalent to py[Pinned
Wiener Measure on L (K)] as measures on (L (K),®,) where &, = o (z; : t € [0, 2]),
for any z < 1.

We supply the proof of this result at the end of this section.

Definition 7.2. Let B;; be defined to solve the Fisk-Stratonowicz equation Byss =
btssBts with Byg = e where b is the Brownian sheet from Theorem 3.19. By the
following Remark, we see that ¢t — By, is a Brownian motion on K with parameter
s.

Remark 7.3 (t — By, is a Brownian motion on K). Let hys solve hyss = bysshs with
hio = e. Let hts = hg and bts = by Then s — hys is the same > process as s — hst
and S0 hss = h(sst Similarly, biys = bgst Thus ﬁst solves hast = bésthst with
TLOt = e. To put it another way, ﬁts solves Egts = ggtsﬁts with 7L03 = e. Then
h = h~! solves hsts = —htsggts with hgs = e. By Lemma 3.9 if 8 is a R-valued
Brownian sheet and h:s solves hsrs = hesB5:, With hos = e then the process s — g
is a K-valued Brownian motion with parameter ¢. Taking 8 = —5 we see that
5 hts is a K-valued Brownian motion with parameter ¢. Thus s — hy, is also a
K-valued Brownian motion with parameter ¢t and so s — hg is a Brownian motion
on K with parameter ¢t. Switching ¢ and s yields ¢t — A, is a Brownian motion on
K with parameter s.
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Remark 7.4. Let 7y : C([0,1] » L) — C([0,s] = L) ;7 (x.)(r) = z (r) for any
r < s. We make no distinction between a measure v1 on (C ([0,s] = L) ,0 (2, : r < s))
and a measure vo on (C ([0,1] = L) ,0 (z, : r < s)) solongas vy (F oms) = vo (F) for
any F': C([0,s] = L) - R. where L stands for either K or f.

Lemma 7.5. If k1 «~ k2 then k1 @ v v~ Ky ® v, where K1,k,v are probability
Measures.

Proof. Will suffice to show that if k1 < ks then K ®v K ka®v. For rectangles, it is
clear that (k1 ® v) (14 (2) 1 (y)) = (ke @ v) (14 (z) f (z) 15 (y)). This extends to
linear combinations of rectangles by linearity and all bounded measurable functions
by dominated convergence. Thus d (k1 ®@ v) /d (ke @ V) (z,y) = dki/d(ks) ().
Thus kK1 Qv K ke @ v. 11

Theorem 7.6. Let t — g;. be our L (K)-valued Brownian motion from Defini-
tion 2.22 and let s — Bys be the K-valued Brownian motion of Definition 7.2.

Then gr. and Br. have equivalent laws as measures on C (]0,s] = K) for any
s < YITAT-1
2T -

We prove this result after the proof of Theorem 7.7.

Theorem 7.7. Law Yr. «~ Law br. as measures on C ([0,s] = R) for any s <

7”24;[’71. Here the random variable

“d T
Yr. = Adgwbdtdg —/ 7 / Adngdtg
Rr. o 1=0Jo

15 as in Theorem 6.11.
The proof of Theorem 7.7 is given after that of Lemma 7.11.

Remark 7.8. Since for s < 1, Law X1 «~ Law br. (as measures on C ([0, s] = R)),
one might suspect Law X « Law b (as measures on C ([0, 1] x [0,s] — K)) which
should then indicate that

Law Yr. = Law Ady,, Xatio ~ Law Adg, batsc = Law (br.).
Rr. Rr.

Unfortunately in the ¢-variable, X 5 and b 4 are Brownian motions with param-
eters s — s% and s respectively.
Thus LawX 1 Lawb since

Py (Z |Aiw(s)]” — s — s2> =1,

while

P, (Z |A;w(s)]? = s> =1.

Hence these two measures live on different sets.

The proof of Theorem 7.7 relies heavily on Girsanov’s Theorem which we state
here for convenience.
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Theorem 7.9 (Girsanov, see [22]). Let (2, §,{3.}, P) be a filtered probability space.
Let 3. be a d-dimensional Brownian motion and let Z. be an R -valued adapted pro-

cess so that E exp % fOS |Zs|2 ds is finite and fOS (Z;')2 ds < oo almost surely for any
i€ {l,---,d}. Define

. L
7. = exp U Zs-dﬂs——/ |ZS|2ds].
0 2 0

Define a new measure ﬁg on §s by setting P (A) = El4Zs. Then PN’S is a probabil-
ity equivalent to P and the process {Y;,§+;0 < s < S} is a d-dimensional Brownian

motion on (Q,&S,f’) where Y. = . + [ Zsds.

Lemma 7.10. The expression )Z't(, = fOt Adgw Xgus has the same law as Xi,.

Proof. )?w is a §to martingale. To show X.; and )?.S have the same law it will
suffice to show X, is a f-valued Brownian motion with parameter o — 2. To this
end, let {A} run through an orthonormal basis of & Then

tha b2 tho’ = Adgia Xite ® Adgm Xato
= (0-0°)dty dapAd, A® Ad, B
A,B
= (0-0%)dt)_ (Ad,, 4)%?
A
= (0 — 02) dtZA®2.
A

Thus we are done. |

Lemma 7.11. Let X be the KR-valued Brownian bridge sheet of Theorem 2.25.
Then

1 [° T Xuto VI+4T -1
Eexp | = / do Ady, a < 00,if s < +
2 /o o 1 2T
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Proof.
1 s T tha
Eexp 5/0 do | Adgw1 .
Xuo [ ]
dto
:EZ /d(f/ Adgwm J
P>0 R
Xuo |
< '2p / do / Adgwljw by Hoélder’s Inequality
P>0
1 tho’
—— - E Ad
5 p=o P 2/ U / L=
L o [ " Xuo |
:_Zf—/ doE ate
SPZOp.P 0 0 1—0
1 [* 1 Xrol3 "
:_/ daZ—,E<S| T|R2>
s Jo P50 P 2(1-o0)
1/ Xrol:
:—/ dO'E XPp S| r |ﬁ2
s Jo 2(1-o0)
= — o Xp| —— = Xp im &
s Jo 7 Jaaims 2(1— o)’ 2T (1-0) ) [22T0 (1 - 0)] "3
l/sd/ exp o (1 STU> &
= — a X —_ - im 8
s Jo "7 Jrdims 2To (1 - 0) (1=0)) ] 2aTo (1 - o)) %"
1 s _ dim &
:—/ do 2nTo (1 - 0)] :
s Jo
<00 — 1—7STU > 0,Yo € [0, s].
(1-0)
T
-7 > 0 for o € [0, 5]
(1—-o0)
o 1
= 1_U<Eforae[0,s]
< i <i
1—-s T
= Ts’+s5-1<0
V1+4T -1
— se o, )
2T
|

We are now able to prove Theorem 7.7.
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Proof. Define
ﬂTs

Adyg, batis;
Rrs
-1 T
ZT (U) = m /; Adgta tha'-

By definition of Y. in Theorem 6.11

YT. = ﬁT, +/O-dO'ZT (0’)

By Lemma 7.11,

VvV14+4T -1

s
Eexp/ | ZT (0’)|; do < oo whenever S < 5T
0

Thus the measure

1

S S
dPs = exp / ZT(s)-dﬂTs—i/ \Zr ()2 ds| dP
0 0

is a probability on Frs and the process {Y7q,Frs;0 < s < S}isa Pg-Brownian
motion on R Thus for any set A C (C'[0,S] — R)

ElgofBp. =0 < ElgoYp. =0 < El oYy =0,

since the measures ﬁs and P are equivalent on §Frs. [Note:- it is essential that
A only depend on the path to time S or else 14 o Y. will cease to be §rs-
measurable.] I

We now return to the proof of Theorem 7.6.

Proof. Fix s. Pick T so that s < Y=L,

Define a map , from C ([0, 2] = 8) to C ([0,2] = K) so that , (xz.) = y., where
Yss = TssYs with yg = e, the integration being done with respect to the Wiener
Measure on C ([0, z] — K) with parameter T

If we can show that , : by. — Br., and , : Yp. — gr. we shall be done. This is
so because by Theorem 7.7 Law Y7. is equivalent to Law br.. Thus

Eljogr. =0
= E].Fl—l(A)OYT. =0
= E].Fl—l(A)obT.:O
< FEljoBp =0.

Hence by the Radon-Nikodym Theorem Law gr. is equivalent to Law Br-..

To show , : br. — Bp., and , : Yp. — gr., we shall invoke Lemma 8.1. Let
Qo be C([0,1] = K) where K is identified with RI™ % Let (Q,F,{Sr.},P) be
our standard probability space as in Definition 2.22. The stochastic differential
equation we will use in Lemma 8.1 will be

Tds .
Yds = TssYs = TdsYs + T (zA: A2> Ys with Yo = L.

Here the {A} run through an orthonormal basis of the Lie algebra K. Clearly the
boundedness conditions of the Lemma are satisfied. Also both Law br. and Law Y.
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are absolutely continuous with respect to ' = Law bz.. Thus either br. or Yr. can
be taken to be the X in the Lemma. Thus we see that , (br.) (0s) = brss, (br.) (ds)
and , (Y7.) (ds) = Yrss, (Y7.) (0s). By Definition 7.2 Byss = byss Brs with By = 1.
Hence , (br.) = Br.. By Theorem 6.11, gi55 = Yissgrs Wwith g0 = 1. Hence
, (Y7.) = g7. and so we are done. 1

We now return to the proof of Theorem 7.1.

Proof. Let pg be Pinned Wiener measure on L (K) and let p be Wiener measure
on C ([0,1] = K) as in Definitions 2.7 and 2.9. Then p = Law [B;.] since By. is a
standard K-valued Brownian motion by Definition 7.2. A key fact that we shall
exploit in this proof is y, is equivalent to p on &, for any z < 1.

Fix z < 1.Now limp_,q 7”?7,7’_1 = 1 so there exists an NV € N large so that
2 < YL Let T=1/N. Let F: C([0,1]  K) = R so that F € &.. Then
vi(e,A) = P{g. € A}

P {g(l/N)~ (g(_ll/N).g(2/N)-) (9(_1\},1/1\1).91-) € A}
(X Lawg, ) (ki - ky € A),

where A" = {(ky,--- ,kn) 1 k1---kn € A}. Now by Theorem 7.6, since the con-

dition z < 7”'54;‘_1 obtains, gr. has a law equivalent to that of Bp., on the re-
stricted o-algebra &,. Invoking Lemma 7.5 repeatedly, we see that @~ | Law,, -
®N | Lawp,., on the restricted o-algebra .. Thus if A is ®,-measurable, v; (e, A) =
0 holds if and only if (®, Lawp,.) (ki -+ kn € A) = 0 holds. Since ¢t — By, is a
K-valued Brownian motion (see Remark 7.3), it exhibits incremental independence.
Thus (Lawg,.) (A) = 0 if and only if (®X, Lawp,.) (k, ---ky € A) = 0. Thus we
have vy (e,-) } 6. «~ ] &, «~ py | 6. and so we are done. I

8. APPENDIX

8.1. General Technical results.

Lemma 8.1 (General Technical Lemma). Let X be an (2, §¢, P) continuous semi-
martingale taking values in R¢. Qy = C ([0, 1] — ]Rd) is to be thought of as the
measure space (Qo, Ht, p') where Law X. Ly, and H; = o (X, :r <t). Let z,w
denote members of the probability spaces Qo and Q respectively. Let a be an R?-
valued Qo-random variable that solves the following stochastic differential equation

(8.1) a(dt,z)= Zc(t,a (t),x)r (dt,z) +c° (t,a(t),z) dt with a; (0,2) = K;

J
where ¢ € Cp (]Rx]Rd x Qo —)]Rd®]Rd*), e ¢ (]Rx]Rd XQO—HRd). Then
A(t,w) = a(t,X. (w)) solves the Stochastic differential equation.

(8.2) A(dt,w) = C (t, A(t,w) ,w) R(dt,w) + C° (t, A (t,w) ,w) dt

with A; (0,w) = K;; such that C (t,&,w) = ¢(t,&, X. (w)), R(t,w) =r(t,X. (w)),
CO(t,&w) = (4,6 X. (w)), and £ € R”.
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Proof. For convenience, let ¢ = Law X., For explicitness we will not suppress
dependence on the probability space as is done traditionally.

a; (T,z) = / ZCU t,x,a (b)) r; (dt, o) + ¢ (t,2,a(t))dt.
This means that the expression
Z Z Cij (t]}cb—lv T,a (tllz—l)) (ri (t]}:) 1‘) -7 (t]}cb—ly 1‘))
ko J
converges in L? (i) as |P| — 0 to the expression
i (T,z) — K; — / (t,z,a(t))dt.

Since L2-convergence implies convergence in measure, we see that the expression
P P P P
Z Zcij (tk_l,a:, a (tk—l)) (ri (tk,:v) - T (tk_l,:n))
kg
converges in the measure u' as |P| — 0 to
i(T,z) — K; — / (t,z,a(t))dt.
Since p < p', the following statement holds. For any & > 0, there exists a d (¢) so

that if u' (A) < §(¢) then pu(A) < e.(if this were not so can have ' (A) = 0 and
i (A) > e for some ¢). Hence
< 5) =0.

<5>—>0.

i
|1P1|I—I>10u

>k 2 Cij (ters @ a (t— 1))( (tr- @) =i (-1, 7))
—(ai(T,m) Ki— [T ltma())dt)

This in turn implies that as [P| — 0,

g

However since, essentially by assumption, the expression

Ek] ij (tk 17‘*’ a (tk 1,X(-,w))) (Ri (tHEaW) - Ry (t“Z_pw))
+K; +f0 (t, X (w),a(t, X (w)))dt —a; (T, X (-,w))

Ki"‘/OTO? (t)X('vw)va(t)X('vw)))dt

+Zcij (t],z_l,w,a (t],z_l,X (,w))) (Ri (t],z,w) — R; (t],z_l,w))
kj
has an L2-limit, it must be equal to a; (T, X (-,w)). Hence 4; (T,w) = a; (T, X (-,w))
satisfies Eq. (8.2) as desired. 1

Theorem 8.2 (Kolmogorov’s extension Theorem). Let (E, d) be a complete metric
space and let U, be an E-valued process for all dyadic rationals © in R™. Suppose
that for all z, y we d(U,,Uy) is a random variable and that there exist strictly
positive constants €, ¢, 3 so that

P (U, Uy)T] < Clle —y||"*”.
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Then P-a.s. the function x — U, can be extended uniquely to a continuous function
from R™ to E.

Proof. See Theorem 53 of Chapter IV of Protter [30]. I
8.2. Brownian Sheets and bridges.

Lemma 8.3 (Quadratic Variations). We compute some quadratic variations we
shall later find useful. Let A, B be two perpendicular unit vectors. As in Defi-
nitions 3.5 and 2.12, let G (s,0) denote s A o, and let Go (s,0) denote s Ao — so.
Then letting bis denote (bis, A) ¢ and X} denote (Xys, A) 5 we have:-

1.

birsbie = (A, B)gG(s,0)dt
bALE, = (4, B).G (t,7)ds
2.
X3, XE, = (A, B) Gy (s,0)dt.
3.
EXAbE = (A, B); (1 —o0)log <#> dt.
1—-sAo
Proof.

Let &; = o {b,5|s € [0,1], r € [0,¢]}.
Then Remark 6.2 implies that
&, =0 {X,s|s €[0,1], r €[0,t]}.

Thus by computing correlations, one sees that the increments X¢s — X, bts — by
are independent of & if £ > 7. We want to show if two mean-zero & .-martingales
M, N, have independent increments then

MiNy — EM;N; is a martingale.
Then we shall be able to conclude that

biibh, = diEbbE = (A,B) G (s,0)dt
btdsb‘rds = d Ebts <A > (t7 T) ds
X Xity = thX{in (A,B)g Go (s,0)dt
Xi,bh, = diEX{by.

Let t > s. Then
E (MiN; — EMiN¢|®;) = E(M;N{|&;)— EM;N;
= E(M;— M) (Ny — Ng) + NsE (M — M)
+MsNg + MyE (Ny — Ng) — EM; Ny
= MNy;+ E(M; — M,) (N¢ — Ng) — EM; N,
= MNs; — EMN;.
Thus the joint quadratic variation

Mdtth = thMtNt-
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It remains only to find Xﬁabd%s by computing EXAbB But this is just

EXAXB
EXAXE + / —toT tugy,
0

(8.3) EX2vB —

(A, B) 4t [Go o)+ [ Mdu} .

o l—u
/SGg(u,a)du _ /su/\adu_/S ue_ .
o l-w o l—u o 1—u
/OSMIﬁudu_p/s lg du_/oslu_audu
(1—0—)/03 l_udu+/ ”1__1;”
s 1
ol (e)

du+o(s—sNho)

= (1-0)log———— — .
(1= ) log 7——— = Go (5,0)
Returning to Eq.[8.3] yields
1
EXAbE = (A, B).t(1 - 0)log ——.
(4, B)g t (1 - 0)log T——

Lemma 8.4. by, is a R-valued Browniap Sheet starting at 0 such that
Ebi bl = 8;;(t ANT)(s A o) where bi, = (b5, A;) g where A; runs through an

orthoizsor?;ml basis of R.
Proof.
Ebi b = E[X] + /OS (lX_i ) du][X{, + /00 (IX_L;) du]
= EX| X! +EX}| 00 (1X_] )d“] +BX] [/Os %du]
s i 7 Xi,

= I+J+K+ L

I=6;;(tAT)(s Ao —s0).

Now by Tonelli we have ,

7 X? 7 S du
E ™ _ldu = FIX; X | —
/ “u—w‘“ [, Bl G2

[ XL L
0

N

/0 [tr(s — s%)(u — u?)]2 =) < 00.
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Therefore by Fubini,

o . X]
— E Xl TU
1= B ] S
/06 EAT)(s Au— su) du
= i T _
o (1—u)

S R

- 5ij(t/\r)[(1—s)/os J(ﬁ—l)du+s(a—s/\a)]

= 0;;(tAT[(1—s)log( )—(L=s)sANo+s(oc—sAo)]

1-sAo
= —0;;(tAT)(1—5)log(l—sAo)+sAo—sa].

Similarly,

K=-0;;(tANT)[(1-0)log(l —sAo)+sAo—so]

By Tonelli,

dudv)]

et [ e =) ,>
//E‘ e |
< ] 7= (E ) ey

T// (uv)dudy < 0.
o Jo

dudy

Il
o+
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Therefore by Fubini,

X;
L dud
/ = ) udv|
Xi,
= / / X dudv
(1-w)(1l-v)

= / / 0ijtAT)UuAY —uV) ————— dudy
- i(tAT) 1-uw(l-v)
= 0;(tAT) / dudy—2 +/ dudy —2

{s>u>v>0}u{o>v} 1-v {o>v>u>0}U{s>u} 1-u

she v(s—v) v(ioc—v)
= (Sij(t/\T)/O dV( 11— + 11—, >

sAo 1
- 6ij(t/\r)/ dV(
0

L

—1)(s+0—2v)
= 0i(tAT) :/Os J%du— ((s+a)(s/\a)—(s/\a)2)]

s :/OW <w+2) dv — ((s+0)(s/\a)—(s/\0)2)]

1—v

= d;(tAT) / H%fdu—k((s/\a)2+2(s/\a)—(s+a)(s/\a))]
Lo -

= 6,(tAT)[(sA0) +2(sA0) = (s+0)(sA0) = (s+0—2)log(1—5A0)].
So putting it all together, we have

I+J+K+L
=06;j(tAT)[(sAN0) +s0+(sAo)—(s+0)(sAa)]
=0;,;(tAT)(0Ns).

Therefore,

Ebi b = (5ij(t/\7')(8/\0).

ts’Tto
b a linear transformation of a Gaussian process and is hence Gaussian. Hence the

above assertion is enough to show b is a K-valued Brownian Sheet. I

Theorem 8.5. There exists a Brownian sheet bys such that Xs can be expressed
as:

S, (1-s)
4 Xio=bis— | buy do,
®4) e /0 Ta=or”

where b is a R-valued 2-parameter Brownian Sheet.

Proof. Define bys = S(X:.)(s). Then by Lemma 8.4, by, is a R-valued Brownian
Sheet. Now by Lemma 8.6, Eq. (8.4) holds. I

Lemma 8.6. T : b;. — X;.
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Proof.
T(be)(s) = bts—/osbt(r%dff
) ‘X o [ " X g (-s)
= [th+/0 (]_—U)d ] / [Xto' o ]_—U)d ](1_0)2d
= X+ /th (I—s // o ddl—U)
X 1 Xta'
= X+ /Xt(, — —/0 (l_u)dqu( )/o(m)(l—a)dg
B (S—O’) 1 1—s
= th—l-/o Xw[(l—a)Q - 1=0) + (l_g)z]da
= Xis.
|

Lemma 8.7 (Evaluation of L?-norms). Let M,, (R) be as in Remark 2.18. Let
{fi,a ()} be a collection of continuous adapted My, (R)-valued processes. (i.e.
fia(0) € §tivo). Let AibA (o) = bA(ti,0)—bA(ti—1,0) and recall that b* = (b, A) 4
where b is the Brownian sheet from Theorem 3.19. Then

2

Z/fl 0)dA b (o) —EZAt/uﬁ )iy do

HS
Proof. Let (A),, denote the p,q entry of the matrix A € M,, (R). Let

2

J= EZ/fZ (o)dA b (o)

HS
Then

p,q

J = ZE(Z/ (fi dAibA(a))

Y-S / (foa(0)),, (fi ar(0)),, dABA(0)dALbA (o)

P,q i,A,i A’

= ZEZ/ At (fi,4(0)pg)° d
= EZAt/ 1fioa(0) g do

|
8.3. Proof of Lemma 8.8.

Lemma 8.8. Recall that K C GL,, (R) as in Remark 2.18. Let F and G be the
exponential and inverse map respectively on matrices as in Definition 6.9. Then
the following relations hold where A € U and B,C € R:-
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1
(8.5) F'(A)B = / F[(1—7)A] BF [rA]dr
0

F"(A)B®C /dT/ 1—u)F[(1-=7)(1—u)A]
xCF [1(1 — u)A] BF [uA] du

(8.6) /dr/ WF[(1 - u)A] B

[(1 —1)uA] CF [ruA]du

3.
(8.7) G'(A)B=—-A"'BA™".

4.
(8.8) G"(A)B® C = A"T'BATICA ' + A71CA™'BA~L

5.
(8.9) sup |[F'(4)Bll s < Const | Bll s

6.
(8.10) s |[F™ @B ®-@B.| < ConstliBill s+ 1Ballys -
Proof.

SF(1(A+5B)) = ddte(AJrsB (A + sB) l(A+sB).

di%p (t (A+ 5B)) |so = Be'A + tA (F' (tA) iB).
S

d[d d
o [d F(t (A+sB))|s:0] =Be!t + A {gF(t (A+5B)) |s=o| -
By Duhammel’s Principle (or method of integrating factors) we get Eq. (8.5)

df ald _ —tAp tA
o {e [dsF(t(A+sB))|so]}—e Be'".

d 1
—F(A+5B) =0 =€ / e A Betdt.

0

d 1
—F(A+5B) =0 =e” / e 4 BetAdt.
0
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F'"(A)BoC = F'(A +tC)Bli=o

predl
- / LRI~ ) (A +10)] BF [u (A +10)]|i—odu
o dt

= /01(1 —u) (F'[(1 —u) A]C) Be*du

1
+/ ue'"WABF' (uA) Cdu,
0

which is Eq. (8.6).
(A+tB)G(A+tB) =
BG(A)+A(G'(A)B) = 0
G'(A)B = —G(A)BG(4A),
which is Eq. (8.7).
G"(A)B®C

—_ d !
= = G'(A+10)Bli=o

= —%G(A +tC)BG(A +tC)|i=0o
= G(A)CG(A)BG(A) + G(A)BG(A)CG(A),
which is Eq. (8.8).
It will not be necessary to prove Eq. (8.9) if we can show Eq. (8.10). Let
B; = Bi/ ||Billgs
F(")(A)Bl ®--® B,
=1Billas - 1Ballgs F™ (A)Br @ - & By,

Now

HF() )B® - ® Bn
HS

AB1

is the supremum of a continuous function over a compact set and is hence finite.
Call this supremum C'. Therefore,

sup [FO)(4)By @9 Ba| < CliBillys - 1Balls

AcRr
which is Eq. (8.10). I

8.4. Gaussian Measures. For further information on this topic see Kuo [[23]].

Definition 8.9 (Gaussian Measure). 2 is a separable Banach Space with |-|. g
a (mean-zero, non-degenerate) Gaussian measure on ) iff

0= [ n(dn)expis (@) = exp | ~50(6,9)]

and g : 2* x 2* — R an inner product on Q*. Q* denotes the dual to §2; i.e. the
set of all bounded linear maps from €2 to R. 7 denotes the Fourier transform of the
measure L.
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Remark 8.10. An alternate (and equivalent definition) of a Gaussian measure p on
a Banach space (2 is a measure so that any ¢ € Q* (an R-valued random variable)
is a mean-zero normal random variable. One can see that if u satisfies Definition
8.9 then it satisfies the alternate Definition in Remark 8.10. This is because for any
Y e,

2
Lawy (A) = Lawy expide = pexp il (z) = exp —%q (Y, ),

which means that ¢ has a normal distribution with mean 0 and variance ¢ (¢, ).
(Although this second definition appears weaker, it is possible to prove Definition
8.9 from it.)

We shall repeatedly use the following well-known Theorem due to Fernique:

Theorem 8.11 (Fernique). Let p be a Gaussian measure on a Banach Space Q.
Then there exists an € > 0 so that

1 [exps |:v|?2] < 0.
: 2
(Note:- this also means that p|z|;, < 00)
Lemma 8.12 (Bochner Integrals). Define
S={f:Q— Q| Ran f is a finite set}.

Let L* (1, Q) denote {f : @ = Q| [|f ()|q p (dx) < oo}. Then there exists a linear
functional T : L' (u, Q) — Q with the following properties:-

1.
=Y au(f{x}) iff€S.
rEQ
2.
I(f)lg < / Flo i (d2) = 1fls
3.

/1/1 w(dx) for any ¢ € Q.

Henceforth we shall write [ f (z) p(dz) in place of the less intuitive I (f).

Proof. First we show that S is dense in L' (i, ). We shall use the separability of
2 to do this. Let {x,} be a countable dense subset of 2. Cover 2 with measurable
sets B; as follows By = B(e,x1), -+ ,Bp = B(g,zp) — UM B(e,z;), --. Given
fe Lt (/L,Q), let ¢, = Zz milffl(Bi)- Then

17 = 6udantdn) < 3 [ 1f = aila y-simon (d) < eu ().

Since the ¢. were all in S, S is dense in L' (1, Q).
Define I (f) =Y ,coan (f{z}) on S. Hence property 1. is already satisfied.
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Notice that I is a linear functional on S. Secondly, if ¢ € Q*, on S

G = Y Y@ p(f " {z})

z€EQ

[ 1) S 0@ 1100 )

z€EQ

/1/1 (Zmlf ) )du

z€Q

/zbof(y)u(dy)-

(Nlg < Z |z|g 1 (fil {a:}) = HfHLl(u,Q) :

zeQ

Extend our definition of I to L' (u,Q) by defining I (f) = lim,, 00 I (f,,) whenever
fo— fin L' (u, Q) with {f,} € S.
Property 1 holds by definition. The linearity of I holds despite the extension.
Property 2 holds as well since

L (Nl = Wim I (fn)lg =Um | (fa)lg <Um || fallzig0) = 1Fll2gue) -

If ¥ € Q* we have f, — f in L' (i, Q). This means I (f,) — I (f) in Q. Thus
Jo fudp =1 oI(fn)— I(f)in Q.However,

Also

‘/z/] Yy — /w T /w ¥ (fu)lg dis
S [l I1f = Fllpr e
— 0.

Thence we have [t o fdu = I (f) and Property 3 holds. I

Theorem 8.13 (Cameron-Martin space). We construct H, the Cameron-Martin
space associated with the Gaussian measure p:-

O C LP (u) for all p.
There is a linear map J Q" = Q so that ¢ (JY) = (4, 8) 12, -

=[o(= p(dx) .
o (@) /q (6, 0) < oo}is a subspace of (.
|h|g < const|h|y for any h € H.
Let K be the closure of Q* in L? (u). Then there exists an extension of the
map J from K — H so that J : f — [«f (z)u(dz). Furthermore, J is an
isometry onto H and H is dense in . In particular, H is a Hilbert space
under the isometry from K.
7. Letting h run through an orthonormal basis of H,

/¢(m>w<x>u<dm> =S v ) h)

Proof. Proceeding in order, we prove:-

H = {ZE S Q: Sup¢€Q*

.@P‘P.W.‘\’t—‘
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1. If ¢ € Q* then
[16@lntdz) <16 [ laltu o) <

by Theorem 8.11 (Fernique).
2. Define J (¢) = [2¢ (z) p (dz) for any ¢ € Q*. If ¢p € Q*, then by property 3
of Lemma 8.12

— [0 @) 6@ ) = (6,0),-

3. By Definition 8.9, we have
1) = lexpitd (a) = exp—* | 30(6.9)].

If we can show [8;0,7i (t¢)] li—o= —pu¢ (z)> we would have
né (2)* = q(4,9)
by taking two derivatives on the right hand side. Then
1 1
lo) = n(6+9)" = 1n(@—v)* =a(6,9),

and we would be done. So the problem reduces to computing 9:9; 1 (t¢).
We shall show

Q0N (t0) = p [~ (¢)” expite (2)]

by Dominated Convergence and Theorem 8.11 as follows:

O (t¢) = limu(expi(t+5)¢($)—eXpit¢)(g:)>

el0 €
= lslw (%) expito (x) .

Now |exp it (z)] < 1 so to apply dominated convergence, it will suffice to
dominate % by an L' (du) function.

‘w‘ _ §Z|is¢(m)|n/n!ﬁ|¢ I led @)™/ (n+1)!

£ n>1 n>0
|¢ ()] expe |¢
By Theorem 8.11 (Fernique), we have

116 @) expe |Blg. I2lg < \/ulol lel2/nexp (2 [@lg. ) 2l < .
Thus by dominated convergence, the limit goes through and we have
O (t9) = p (i¢p () exp it (x)) .

Similarly to take the second derivative, we have to again verify that the limit
can be passed through the integral in Eq.(8.11) below.

expicd (z) — 1}) |

€

IN

o 1Zlg -

Q*

810 00 @) =tinu (16 @ expito o) |
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Now using Fernique yet again, i¢ (z) [%] is bounded by the L' (du)
function |¢ (z)|” expe |¢|q« |z]g- Thus by dominated convergence, we have
KON (t0) = p [~ (2)” expiité ()]

Hence we have shown part 3.

.If h,k € H, then

|6 (ah + k)| M, _le(k)]
Va(,9) Vi, é)  Va($,9)

which implies that H is a subspace of ().

< |af

. By Fernique’s Theorem (Theorem 8.11) [ pu (dz) |3, < [ pu(dzx)expe |zl <

00. As a consequence,

(b)) = / 1 (d) 6 (2)?

< 6. / 1 (de) |l
= C?|gla. -

Therefore

| ()]
e 1Bl
¢ ()]

C lhly .

|h|Q =

IN

. Clearly, Q* C H. Let {¢,,} be Cauchy in L? (du). Then

< (wlel3) 1 (W ) = 0 25 nm go o oo.
Thus by completeness of Q, {J,,} converges in 2. Thus we extend the map

_ 72
J to the space K = o () by continuity.
Let € ImJ. Then there is some sequence {.J,} so that ¢, € Q* | 9,
converges in L2 (du) to some ¢ € K. But then

s 6@ a0 = s tim (wlovl ul?))
sup< [¢Y] /\/7>

= u[v?].
Thus ImJ C H, and J : K — Im H is an isometry.

Im J dense in Q. If not there’s a non-trivial ¢ € Q* so that ¢ (Im J) = 0.
This means that p (1/12) = 0 which is a contradiction. Thus Im J and hence
also H are dense in ().

Let h € H. Let h(¢) = & (h) for any ¢ € Q*. Note that ‘B (¢)‘ -

|¢ (M) < 18l12(gy |Plgr- Thus h € K*. Thus there exists an f € K so that
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¢ (h) = plof] for any ¢ € Q*. But now ¢(Jf) = p[é(z) f (z)] = ¢ (h).
Thus h = Jf = H C ImJ. Thus J is a unitary map from K to H and in
particular, H is a Hilbert space that’s dense in 2.

7. Let h run through an orthonormal basis of H. Then

/ b@)% @) p(dz) = (o Jy)y

> (To by (hy Ty) g
> ¢ (h)w(h).

Example 8.14 (Computing Cameron-Martin Spaces). Let {2 be the Banach space
L(R) ={zeC(0,1] = 8) |z (0) ==z (1) =0}

equipped with the uniform norm. g = LawX;..(X;. is a Brownian bridge from 0 to
0 with parameter t). Let Hp: denote the Cameron-Martin space associated to the
measure . Then Hy, is the space Hp (£) equipped with the inner product

1 ! ! !
1 /0 (K ()1 ()« du.

k) Oy, = 5
Recall from Definition 2.1 that
Ho (R) = {z € Q: z has one L?([0,1],d\) -derivative} .

Proof. X;. is a Brownian bridge with parameter t. So p = LawXy. is already a
Gaussian measure. Furthermore,

1) @ (), 4), (0 0), B
=F (thy A)ﬁ (XT0'7 B>ﬁ
= (AaB>ﬁtG0 (870) -
Define an element v 4 ; of Q" by setting ¢4 ¢ (v) = (z (s), 4) 5. Then

q (dJA,s:/‘/}B,a) = E <thaA>R <XT07B>R = <A7B>RtG0 (570) .

Let J be the standard inclusion of ©* into Hy: as in Theorem 8.13. Then from
abstract nonsense (i.e. Theorem 8.13)

<(JwA,s) (U) 7B>ﬁ = 1/]B,0' (J¢A,s)
q (I/JB,W'QZ}A,S)
= (AtGy (s,0),B)4.

Therefore Ji 4 o = AtGo (s,-). Let w € Hoy. w L Jipy, = (w(s),4); = 0.
Therefore,

A = span <J’¢1A7s :s€(0,1), A € R) is dense in Ho,.
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Thus it will suffice for us to specify the norm of Hy; on A.

+/ {(Tm) ). (704, () du
= % /01 <diutG0 (u,0) B, diutGo (u, s) A>Rdu

1

t<B7A>ﬁ/O (Ltugoy =) (Lugsy — ) du
t(B,A)z[sNo —so—0s+ s0]
t(B,A) s Gy (s,0)

q (1/1A,s:¢B,a) :

Thus the inner product + fol (k' (u),I' (u)) g du works on A and Hp is the closure
of A under this norm.
Define

H = {z € Q: has one L* ([0, 1], d\) -derivative} .

We want to show H = Hy,.
Let y € C*°[0,1] so that y (0) = y (1) = 0. Define ¢, € Q* as follows:

(szy(s),A)R = ¢9(J¢Avs):_¥/0 (" (u),t(sAu—su)A ) du

R AR,
= —/ (S/\’U/—S'U/)du<y7‘4>.lﬁ
0

= /0 (l{ugs} - 5) <y7 A >fﬁ (U) du
= (y(s),A)g-

Thus J¢, =y which implies that smooth loops are in Im .J and hence in Ho ;.
Let = € H. Then let Y, be smooth so that y, — 2’ in L?. Then

1
Yn = Yn _/ Yn (u) du
0
also converges to 2’ in L2, since
1 1
/ yn(u)du—>/ z' (u)du = 0.
0 0

But thEn Jo Un converge to x in the norm %fol (K" (u),1" (u)) 4 du. Thus H C Hy,.
Since {-I is complete, with respect to the inner product 1 fol (k' (u),1" (u)) 4 du, we
have H = H,; and we are done. 1
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9. CONJECTURES ON (GAUSSIAN MEASURE EQUIVALENCE

Let g be the C ([0,1] — L (K))-valued random variable so that g (¢) is the loop
g+ of Definition 2.22. Let P, be the law of og a measure on C ([0,1] = L (K)).
Then for any probability u on L (K) we define a measure P, on C ([0,1] — L (K))
by

Pulf] = / 1(do) Py [f].

Conjecture 1. Let the energy, E, of an absolutely continuous loop be given by

2

1
B () = [ i (05) 0 )7

.

Let o7y, be an Energy-minimizing loop in the homotopy class [go]. Recall the
Mo -a.s. function V; of Theorem 4.1;

1
T2

2 .
Vi (z) - (dlmﬁ + 0 log P& (e)> .
£

/ e (ds)z(s)”! =

Then if f: L(K) — R is “nice” it is reasonable to expect

T E (o
por 11 =3 [ £ () exo [1310 | Vit~ %l Vot (d2).
[90] ¢

where the [go] run through all the homotopy classes of K.

Proof. Let po; = [ M;Dx where Dz is “Lebesgue measure” on L (K). Let g. be
an L (K)-valued Brownian motion. Then

/f (8t./\/lt) D.’L’
:8t/fMtDCE
= /Mt <%AL(K)f+th> Dz

1

Thus M, “satisfies”

1
oM = <§AL(K) + W) M.
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Working in this vein we have

o [ Mo e [ Ve (90) ar|

= - <<%AL(K) + VTt) MTt) (g¢) exp </Ot V- (g-) dT) dt

¢
+ dtVr—¢ (9¢) M1t (9¢) exp (/ Vr—- (9-) dT) dt
0

1 t
+ §AL(K)MT7t (gt) exp (/ Vr - (gr) dT> dt
0

+ dmartingale

= dmartingale.

Therefore, Let o[y, denote the energy-minimizing path in the homotopy class of

~ 2
[go]- Let E (z) denote the energy fol ‘a: (ds)z (s) ‘ﬁ of a path in L (K) (defined

only for absolutely continuous paths with one L?-derivative). Then we have

EMr (g0)

T
=F 11_1’)% ME (gT) exp/ VTf'r (g'r) dr

—E (o
- /exp gz’;‘[gO]) 60[90] (mT) €xp

T
/ Vr_: (z;) dT] Vg, (dx)

/6"[91 (zr) exp lhm/ V- (z7) (250])

lim TVT - (z )dT—iE (U[go])] v (dz)

Vgo (dl‘)

%0 2¢e

Here we have used the fact that backwards Brownian motion has the same law as

a forwards Brownian motion. o[, has to be homotopic to go because g. explicitly
describes such a homotopy.
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Now letting [go] run through the homotopy classes, we have
,Uo,Tf
= [ £(o0) M () Dgo

T E g
= Z/f (gO) 690 (xT) exp |f!1_1>%/ Vi (l.t) dt — %&[“%])] Voigo) (dl‘) Dgo
[ g

90l

T E g
= Z/f(wT)eXP Lllg%)/ Vi () dt — %}50])] Vorgy (d2)
[ £

o]

which is the desired result. B

Example 9.1 (The S! case). Define a measure 7 by setting

- 1
= Z C’mTV%: (0a,*)

a€EZL
where
_ PF(0) 1,
Cor = Pjs,l © exp 57¢ |-

Proof. Let 0, = (cos2mas,sin2mas) be the energy-minimizing geodesic in the a®

homotopy class for any « € Z. Then for any loop  homotopic to o, we have

1
E(04) = / la)® ds = o?.
0

and
1]/t ? 1
. —1 . K
Vil@) = o5 /0 z (ds) z (s) ﬁ—(Zdlmﬁwﬂogm (e))
a? 1
= — — (= +08logpl :
o~ (3 + o080 )
This implies
) T E (o
iy [ Ve - ELG00
T 2 2
. o 1 K o
_511_% i 2_t2_<2_t+at10gpt (e)>dt_2_5
) a? a? T 1 st a?
_511362_5_%_/5 <2—t+6tlogPt (e)>dt_2_5

_ i = (L 8, log PS' dt
= E% 2T —/6 ﬂ + t 108 t (6)
2

T
— i & st
_51136 5T /8 ((% log V't P; (e)) dt

2
= % —log VTP () +log vVEPS' (e).
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By Lemma 5.3,
li d/2PK = (2 —d/2
lim 2 PX (¢) = (2m) /2,
and so

; ’ E (U[Qo]) —a’ St
811_r>r(1) i Vi (x¢) dr — 5 = 9T —logVTPy (e) —log V2.

Thus we are done since

10.

11.

12.

13.

14.

15.

16.
17.

porf = Z/f T) exp hm/ Vi (@) dt - gT[?]) Yoty (47)

[90]
= Z/f (x1)exp [_;_T —log \/TPTS1 (e) —log V2r | v, (dx)

2

= Y [ 1o <] @),
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