ABSOLUTE CONTINUITY OF HEAT KERNEL MEASURE WITH

PINNED WIENER MEASURE ON LOOP GROUPS
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ABSTRACT. Let ¢t > 0, K be a connected compact Lie group equipped with
an Adg-invariant inner product on the Lie Algebra of K. Associated to this
data are two measures M(t) and Z/(t) on L£(K) — the space of continuous loops
based at e ¢ K. The measure M(t) is pinned Wiener measure with “variance t”
while the measure Z/(t) is a “heat kernel measure” on L£(K). The measure M(t)
is constructed using a K — valued Brownian motion while the measure Z/(t) is
constructed using a £(K) — valued Brownian motion. In this paper we show
that Z/(t) is absolutely continuous with respect to M(t) and the Radon-Nikodym

derivative dv?/du? is bounded.
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1. INTRODUCTION

Let K be a connected compact Lie group, € = T, K be the Lie algebra of K, and
(-,-) = (-,); be an Adk-invariant inner product on £. To simplify notation later we
will assume that K is a matrix group. (Since K is compact, this is no restriction,
see for example Theorem 4.1 on p. 136 in [7].)

Example 1.1. Asan example, let K = SO(3) be the group of 3 x3 real orthogonal
matrices with determinant 1. The Lie algebra of K is £ = s0(3), the set of 3 x 3 real
skew symmetric matrices, and the inner product (A, B)y := —tr(AB) is an example
of an Adx — invariant inner product on €.

FElements A € ¢ will be identified with the unique left invariant vector field on
K agreeing with A at the identity in K, i.e. if f € C®(K) then

d
Af(w) = = lof (ze').
The path and loop groups on K are defined by

(1.1) W(K)={oeC(0,1] - K)|o(0) =€}
and

(1.2) LK)={oeW(K)|o(l)=¢}
respectively.

Notation 1.2, The constant path at e will be denote by e, ie. e(s) = e for
s €[0,1].

Pinned Wiener measure (10) on such a “loop group” (see [21], [23],[3], [17] and
Definition 2.11 below) is the law of a K-valued Brownian motion starting at e € K
and conditioned to end at e € K. Heat kernel measure (1?) on L£(K) (see [18],
[13], and Carson [8, 9] and Definition 2.14 below) is the end point distribution of
a “L(K) — valued Brownian motion.” The main theorem (Theorem 2.16) in this
paper asserts that I/(t) is absolutely continuous with respect to /L(t) and the Radon-
Nikodym derivative di/9 /du? is bounded. The proof of this theorem heavily relies
on a theorem of Airault and Malliavin (Theorem 2.18 below) which shows that z9
solves a heat equation with a potential. A new proof of Theorem 2.18 will be given
in Section 6.

One of our motivations for investigating Theorem 2.16 is L. Gross’ logarithmic
Sobolev inequality on (L£(K), ). To state the inequality, let

Igradf||* = > (9nf)?,
heSy

where Sy is an orthonormal basis for Hy (Hp is the £ — valued Cameron -Martin
space in Definitions 3.1) and 9y, is a left invariant vector field on £(K) defined in
Definition 3.4. Also let us introduce the following notation. If p is a measure on
some measurable space ) and f : ) — R is a measurable function, let

(13) wn = [ fip.

L. Gross proves in [20] that there is a constant C' < co such that

f? 2
1.4 2log ———=dpd < C rad V2L dud
(1) Amf i < Amﬂm 7+ 7} dy
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where V is essentially the same potential that appears in the Airault — Malliavin
Theorem 2.18 below. It is still an open question as to whether the potential term
Vf%in Eq. (1.4) is necessary or not.

On the other hand, it was shown in Driver and Lohrenz [18] that if 10 is replaced
by 1, the potential term V is not needed, i.e. there is a constant C' < oo such that

2
(1.5) / f?log / d? < C/ l|gradf||® du?.
L(K) L(K)

R(f?)

Now Theorem 2.16 below shows that Z; := di¥/du? is bounded. If one could show
that Z; ! were also bounded, then the Holley — Stroock lemma (see [22] and Remark
1.20 in [10]) along with Eq. (1.5) would imply that Eq. (1.4) holds without the
Vf2 term. It is almost certainly seems too much to expect that Z; is bounded from
below in general. (It is not even known if 7Z; > 0, 1 - a.s., when K is non-abelian.)
So the authors do not expect this line of reasoning to work without modification.
Nevertheless, better knowledge of the density Z; may be useful in determining if
potential is needed in Eq. (1.4).

1.1. Conjecture on equivalence. Let us end this introduction with the following
conjecture.

Conjecture. If K is simply connected (so that £(K) has only one connected com-
ponent) then Z; > 0, /L(t) - a.s. That is to say /L(t) is absolutely continuous relative to
I/(t). If K is not simply connected, then we expect that /L(t) is absolutely continuous
relative to a sum of left translates of 1 by finite energy loops from each homotopy
class.

The explicit calculations in Section 7 shows that the conjecture is true for K = R?
and K = S', see Lemma 7.1 and Proposition 7.5. Moreover, the results in Srimurthy
[31] also support the conjecture. Let F, be the o — algebra consisting of the
measurable sets in W(K) depending only on the portion of the paths in W(K)
over the interval [0, o], see Definition 2.5 below. Srimurthy proves that u9 and /9
are equivalent on F, for any a < 1. Of course these 0 — algebras are not able
to detect the homotopy classes in £L(K) and it is certainly not true that p? s
absolutely continuous with respect to I/(t) if K is not simply connected. This is
because pinned Wiener measure /L(t) charges all of the homotopy classes of K while
the heat kernel measure 1/ only charges the trivial homotopy class.

2. NOTATION AND STATEMENTS OF RESULTS
2.1. Brownian Sheets.

Definition 2.1 (& — valued Brownian Sheet). Let {6(t,s)}0<s<1’0<t<oo be a & —
valued Brownian sheet and {X(t,8)}o<s<1 0<1<00 D€ @ € — valued Brownian bridge
sheetl defined on some probability space (€2, G, P). To be more precise, let s Ao =
min(s,o), Go (s,0) = sANo —os, BA(t,s) = (A, B(t,s)) and x*(t,8) = (A, x(t, 8)).
Then we are assuming the 3 and x are centered Gaussian random fields with co-
variance functions

(2.1) E[BA (t, s)ﬁB (r,0)] = (A, BY(t AT)(s N o)
for all s,0,t,7 € [0,00) and A, B € ¢ and
(2.2 B (15X (r,0)] = (A, B)(E AT)Co (5,0)
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for all s,0 € [0,1], ¢,7 € [0,00) and A, B € £. (Here and in the sequel we will use E
to denote the expectation relative to the measure P.)

Tt is well known that 3(, s) and x(Z, ) may be chosen to have continuous sample
paths, see for example the discussion after the proof of Corollary 1.3 in [33]. This
fact may also be proved by abstract Wiener space considerations, see Remark 3.3
n [14]. So in the sequel we will assume that (£,s) — B(¢,s) and (¢,s) — x(¢,s) are
continuous processes.

Definition 2.2. A ¢ — valued process {B;} is said to be a Brownian motion with
variance t if %BS is a standard £ — valued Brownian motion. Alternatively, B may
be described using Lévy’s characterization (see for example Theorem 39 on p.80 in

[27]) of Brownian motion, by requiring {B;s} to be a mean zero martingale with
quadratic co-variations given by dBYdBP = t(C, D)ds for all C, D € .

Remark 2.3. Notice that for fixed s; ¢ — ((¢,s) and ¢ — x({,s) are ¥ — valued
Brownian motions with variance s and Go(s, s) respectively. This follows by the
independent increments of these processes in the ¢ variable, Lemma 8.1 of the
Appendix, and Definition 2.2. Similarly for fixed ¢; s — (s,t) is a ¢ — valued
Brownian motion with variance ¢. The process s — x(Z, s) is a Brownian Bridge for
0 < s < 1 with quadratic co-variation given by x“(¢,ds)x? (t,ds) = t(A, B)ds, see
Remark 2.12 below.

Definition 2.4 (Cylinder Functions), For 0 < s < 1, let 75 : W(K) — K be the
projection map 7s(c) = o(s). More generally if

(2.3) P={0=s0<5 <s3<---<s, <1}

is a partition of [0,1], let s,+1 = 1 by convention and let mp : W(K) — K" be
given by

(2.4) mp(0) = (0(s1),0(82),-..,0(8n))-

A cylinder function f on W(K) or L{K) is a function of the form f = F o7p for
some partition P and some measurable function F' : K™ — R. The function f is
said to be bounded (smooth) provided that F' is bounded (smooth).

Definition 2.5. For s € [0,1], let F; denote the o — algebra on W(K) generated
by the smooth cylinder functions of the form f = F o wp where P runs through
partitions as in Eq. (2.3) with s, < s. We will write F for F7.

The o — algebra, F, is the same as the Borel o — algebra on W(K), where W(K)
is equipped with topology of uniform convergence relative to a metric on K derived
from a Riemannian metric on TK.

Remark 2.6. 1) For notational simplicity when working on £(K), we have defined
7p as in Eq. (2.4) rather than by mp(o) = (0(s1),0(s2),...,0(8n),0(Sp+1)) which
would be more natural on W (K). This results in a slightly smaller class of cylinder
functions, but this is of no significance for our purposes.

The next result is well known, but we include it for the reader’s convenience.

Lemma 2.7. Suppose that Q) is a finite measure on (W(K),F) and 1 < p < oo.
Then the smooth cylinder functions are dense in LF(W(K),F, Q).
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Proof. Let M denote the smooth cylinder functions and H denote those functions
in the LP(W(K), F,Q) — closure of M which are also bounded. Then H is a vector
space containing the constant functions and which clearly satisfies the property; if
{fn}or, is a sequence of functions in H such that 0 < f; < fo < f3 < ..., and
f = limy,_.o frn is bounded, then f € H. Since M is closed under multiplication,
we may apply the monotone class theorem (see Theorem 8 on p. 7 in [27]) to
conclude H contains all bounded F = o(M) — measurable functions. Since (by the
dominated convergence theorem) H is dense in LP(W(K), F, (), we are done.

2.2. K— valued Brownian motion and Wiener measures.

Definition 2.8 (Wiener Measure on W(K)). Fix t > 0, let {gs}se[o 1) denote the
solution to the stochastic differential equation

(2.5) dgs = gsB(t,6s) with go = e € K,

where (3(¢,8s) denotes the Stratonovich differential of the Brownian motion s —
B(t,s). The Wiener measure with variance t on F is y, := Law(g.).

Let ¢y C £ be an orthonormal basis for £, and Ak be the second order elliptic
operator,

(2.6) A=) A%
A€ty

Since K is compact and hence uni-modular, Ag is the Laplace Beltrami operator
for the left invariant Riemannian metric on K determined by {-,-) on ¢ =T, K, see
for example Remark 2.2 in [15]. Using It6’s lemma, one easily shows that {gs }56[0 1]

is a diffusion process on K with generator %tAK. Such a K — valued process will
be called a Brownian motion on K wilh variance {.

Definition 2.9 (Heat Kernel on K). Let pX denote the smooth function of K such
that Law(g1) = pX (z)dx, where dz denotes normalized Haar measure on K.

The function pf( is the convolution kernel for the heat operator e!2x/2. In par-
ticular, (¢,z) — pX(z) is a smooth positive function such that for any f € C(K),
the function u defined by

u(t,z) = /K fw) pf( (x’ly) dy for (t,z) € (0,00) x K

satisfies the heat equation

1
Opu = §AKu with 2ym u(t,z) = f(x)

—0

where 9, = 9/0t.

Remark 2.10. Tt is well known that pf () = p& (:Jc’l) for all z € K, see for
example Item 2 of Proposition 3.1 in [15]. It also well known that pX is a class
function, i.e.

(2.7) K (zy) = p& (yx) for all 2,y € K.

This is a consequence of the fact that Ag is a bi-invariant differential operator
because of the Adg — invariance of {-,-). Thus for all bounded measurable functions
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fon K,
/ fWpf («y)dy = / flxy)pt () dy
K K
= (%20 L) () = (e25/2f) (@) = ('+/2f o R, ) (e)

= /K Flyz)pi (y) dy = /K fWpl (ya™') dy,

where L, and R, denote left and right multiplication by = € K respectively. The
last displayed equation implies Eq. (2.7).

By the Markov property of g and the previous comments, if f is a bounded
cylinder function of the form f (¢) = F' o mp where P is as in Eq. (2.3), then

(2.8) w(f) = / F(zy, - ,2q) priis (z; '2i) dardas ... dan,

i=1
where 2o == e and A;s = s; — 8;_1.
Definition 2.11 (Doob’s Construction of Pinned Wiener Measure). Pinned Wiener

measure, 10, on W (K) with variance ¢, is the unique measure on F such that if f
is a bounded F, measurable function for some o € (0, 1), then

0 — L K T
pe(f) = p{((e)ﬂt(fpt(ka)( o))-

In particular if f is a bounded cylinder function f of the form f (0) = Fomp where
P is as in Eq. (2.3), then

(2.9) W= [ Pt

where © = (21,--- ,%y), dv = dr1dzs...dz, is normalized Haar measure on K™
and
1 n-+1
(2.10) GO el | SRR COED
Pt (6) =1

where by convention zg = Zp4+1 = e.

The existence of the probability measure p? and the fact that u?(L(K)) = 1
is well known. A proof may be found, for example, in Theorem 2.3 in [11]. To
apply this theorem, the reader should take the covariant derivative V appearing in
Theorem 2.3 in [11] to be the unique one for which left invariant vector fields on K
are covariantly constant.

Remark 2.12. In Remark 2.3 it was asserted that the process s — x(%, s) is a Brown-
ian bridge with quadratic co-variation given by x* (¢, ds)x“ (¢, ds) = t(A, C)ds, that
is to say Law(x(t,-)) is pinned Wiener measure on £(¥) with variance ¢. To check
this let py(x) = (27t)~ dimt/2—[2[{/2t he the Buclidean heat kernel on €. Then for
a cylinder function f on L£(£) based on a partition P={0 =8y < §1 < 89 < --- <
$n, < 1}, we must show that

pt(lfa) (Ba)
p:(0) 7

where B; = (1, s) — a £ — valued Brownian motion with variance t.

(2.11) Ef(x(t.-) =E|f(B)
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Proof. To prove Eq. (2.11), let Z; = p¢(0) 'py1—s)(8(¢, s)) for 0 < s < 1, then by
It6’s lemma and the fact that

0 1
%Pt(ks)(x) = —?Aept(ks)(x) and Vlogp;1—s)(z) = —

t(l—s)
we have

1
"1 — s5) <

By Girsanov’s theorem (see for example Theorem 20 on p.109 in [27])

dzZs = —Z B, dB;) with Zy = 1.

51 8 1
2.12 My = B, — —dZ.dB, = B, ——B,d
(212) A 7 '*A T

is a martingale on [0, o] relative to the measure Z,, P. Since M has the same qua-
dratic variation as ((¢,-), by Lévy’s criteria, M is a € — valued Brownian motion
with variance ¢ under the measure Z,, P. Interpreting (2.12) as stochastic differential
equation for B,

1
dB = dM — ——— B,ds with By =0,
(1-s)

we find by variation of parameters that

BS :/ e,f: (lia)da-er :/ 1_«9er
0 o 1—7

This shows that, under Z, P, {B;}y<,<,, is still a Gaussian process. Moreover, for

0<o<s<q,
S1_ .
E[(/ SdME> (/ 0dM£’> Z]
o L—r o 1L—r

= t(1-s)(1—-0){(C,D) /00(1_71@26%

1
t(1—s)(1— 1——J{C,D
(=90 -0) (1- 15 ) (€.D)
= to(l—s)=1Gy(o,s){C, D)
which is the same covariance function as x(Z,-). Therefore {Bs}ogsga under the

measure Z, P has the same law as {x(Z, 5) }¢<,<,, under the measure P. This is the
assertion in FEq. (2.11).

E[BY BY Z.)

2.3. Heat kernel measure on W(K) and L£(K). In this section we are going
to define heat kernel measures on W(K) and £(K) by formally replacing K from
the previous section by W(K) and L(K) respectively. Following Malliavin [24], we
have the following theorem.

Theorem 2.13 (Brownian Motion on W(K) and L(K)). There are jointly conlin-
uous solutions (t,s) and ¥°(t,s) to the stochastic differential equations:

(2.13) Y(6t, s) = L(¢, 8)8(6t, 8) with 2(0,s) =e Vs € [0,00),
and
(2.14) ¥O0(6t,5) = X0(t, s)x(6t,s) with £(0,5) =e Vs € [0,1].

As before B(6t,s) denoles the Stratonovich differentials of the processes t — B(t,s)
and similarly for %(6t, s), 2°(6t, s), and x(6t, s).
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Proof. Such results may be found in Baxendale, [4], Malliavin [24], or in Theorem
3.8 in Driver [13]. The last two references cover the L(K) case, however the proof
of the W(K) case is the same, just replace Go(s, o) by s A o throughout.

Definition 2.14 (Heat Kernel Measures on W(K) and L(K)). The measures vy =
Law(X(t,-) and 1 = Law(X°(t,-)) are called heat kernel measures on W(K) and
L(K) respectively. So v; and 1/? are determined by

(2.15) vi(f) = BF(S(t,)) and 1(f) = BF(S°(t, )
for all bounded F — measurable f. Notice that v?(L(K)) = 1 because X°(¢,0) =
30(¢,1) = e, P — almost surely.

Corollary 3.10 below justifies calling v; and I/(t) heat kernel measures.
2.4. Statement of Results. The following theorem is Lemma 1 in Airault and
Malliavin [1].

Theorem 2.15. Let t > 0, then vy = p, on W(K), i.e. heat kernel measure ot
time t and Wiener measure with variance t are the same on W(K).

This theorem is also proved in Lemma 3.3 of Srimurthy [31]. Since this theorem
is crucial to the rest of the paper, we will give a proof in Section 4 below. The
following theorem is the main result of the paper.

Theorem 2.16. Let t > 0, then 19 < 19, i.e. heat kernel measure at time t is
absolutely continuous relalive lo pinned Wiener measure with variance t. Moreover,
the Radon-Nikodym derivative, dv?/du?, satisfies the bound

d_y(t) < eCt
dyiy
where
(2.16) C, = log |(2mt) = Im EpK ()] .

(Standard heat kernel asymplotics shows that lims_.o Cy = 0, see Lemma 6.1 below.)

The proof of this theorem (given in Section 6) will be a combination of the
maximum principle along with a theorem of Airault and Malliavin [2]. In order
to state the Airault-Malliavin theorem, let us recall that the coordinate process
s : L(K) — K (see Definition 2.4) is a semi-martingale relative to pinned Wiener
measure, (0, see for example Bismut [6] or Theorem 2.3 in [12]. Hence we may
define the ¢ — valued semi-martingale{bs }y,.; by

(2.17) by = / T, L6,
0

Remarks 2.17. 1) Technically speaking the stochastic integral in Eq. (2.17) depends
on the measure 1 and in particular on ¢ > 0. So a more appropriate notation would
be to display this ¢ dependence and write b’ for the p? — a.e. defined stochastic
integral fos 7, 167, Since we will only need the process b, for one fixed value of ¢,
we will stick with the notation in Eq. (2.17).

ii) Gross shows (see Lemma 4.8 and Remark 4.9 in [20]) that b, € LP(L(K), u9)
and that b, — b; in LP(L(K),u?) as s — 1 for all 1 < p < oo.
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Theorem 2.18 (Airault & Malliavin). Let V; : L(K) — R be the “polential,”
1
T 22
where by is defined in Eq. (2.17) and

dC;  dimt
(2.19) CtETttZ m + 8; log ¥ (e).

Then for any smooth cylindrical function f : L(K) — R (see Definition 2.4)

(2.20) Depid (f) = pf [(%AL(K) +Vt> f} ;

(2.18) Vi |b1]7 — ¢

where Ak 8 the generator of the process ¥0(t,-), see Definition 3.6 and Propo-
sition 3.9 below.

We will give a simplified (in our view) proof of this theorem in Section 5. The
proof relies on Theorem 2.15 and integration by parts on (W(K), y;).
3. GENERATORS OF X(t,-) aND 20(¢,-)

Much of the material in this section may be found in [18] and [13]. Nevertheless,
in order to introduce the notation and for the readers convenience we will summarize
some of the results in these papers.

3.1. Cameron-Martin spaces.
Definition 3.1. Given a continuous function A : [0, 1] — € define

(h,h), = fol | (s)|2 ds if h is absolutely continuous
UH oo otherwise.

The Cameron—Martin space of ¢ is
H={heC(0,1] = &]h(0) =0and (h,h) < oo}

which we equip with the inner product

1
(k)= [0 (s) ()

0

The pinned Cameron—Martin space is
Ho={he H(®)|h(1)=0}

which is a closed subspace of H. (The Hilbert spaces H and Hy are to be thought
of as the “Lie algebras” to the groups W (K) and £(K).)

Notation 3.2. Let S C H and Sy C Hg be orthonormal bases for H and Hy
respectively.

Lemma 3.3. Let ¥y C £ be an orthonormal basis for £, G(s,t) = sAt and Go(s,t) =
sAt — st for all s,t € [0,1]. Then

(3.1) D h(s)oh(t) = G(s,1) Y AoActot

hes A€ty

(3.2) > h(s)ohnt) = Go(s;t) > AoActot.

RESo Actg
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Proof. Let A, B € £. Since G(t,-)B and G(s,-)A are in H,
(3.3) (G(t,)B,G(s,-)A) = Z:(G(t7 )B,h)(h,G(s,-)A)

where the sum is absolutely convergent. By the fundamental theorem of calculus,
G satisfies the reproducing property,

1
/ 9sG(t, s)h'(s)ds = h(t) for all h € H.
0
Combined this equation with Eq. (3.3) shows that
G(s,0)(B, A) = (B, h(1)){(h(s), A)
hes
which implies Eq. (3.1) since A and B are arbitrary. FEquation (3.2) is proved

similarly, see Lemma 3.8 in [18] for more details.

3.2. Derivatives and Laplacians on £(K) and W (K).

Definition 3.4 (Left invariant derivatives), Given h € H (or Hp) and f : W(K) —
R (or f: L(K) — R) a smooth cylinder function, define

(Onf) (0) = %|O f(oe'™) for all 0 € W(K) (0 € £(K))
where oe'" € W(K) (oe'h € L(K)) is defined by (oe™) (s) := o(s)e'™®) for s €
0, 1].

Remark 3.5. Suppose that f = Forp whereP = {0 =80 < 81 < $2 <--- < 8, < 1}
is a partition of [0,1] and F : K™ — R is a smooth function. For A € ¢ and
ie{1,2,...,n}, let
. d
A(Z)F(x17x27 s ,.’Iln) = %loF(.’Ill,.’IJg, s 7xi717xietA7xi+17 s ,.’Iln),

so that A() is the action of A on the i variable of F. Then for h € H (or h € Hy),
(34) th Z ( ()F) o TTp.

In particular 9y f is still a smooth cylinder function. Therefore the operator 92 f is
well defined and is given by

(3.5) 92f = Z( YD n(s )U)F)ow.

1,j=1

Definition 3.6. Again suppose that f = F o mp is a smooth cylinder function as
in Definition 2.4. Define the Laplacians on W (K) and L (K)) by

Awyf = Zagfand

hes

Neyf =D RS

RES,

respectively.
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Remark 3.7. Combining Egs. (3.1), (3.2) and (3.5) we find

Dy f = ZZ( )9n(s )“)F)Ow

heSi,j=1

(3.6) = > Zn: G(si, 55) (AU)AU)F) oTp
Actgi,j=1

and

AL(K)JC = Z Z ( (J)h( )(Z)F) oTp

€850 1,5=1

(3.7) = Z Zn: o0(si,85) (A(j)A(i)F) o Tp.
Ackgi,5=1

Notation 3.8, Given, P={0=s9 < 81 < §3 < --- < 8, < 1}, a partition of [0,1]
and F € C°(K"), let

(3.8) LpF = Y G(si,5) AV AVF
A€tgi,j=1

and

(3.9) IRF = > 3 Go(si, 5;) AV ADE.
A€t i j=1

With this notation we may write Egs. (3.6) and (3.7) as

(3.10) Aw(x)(Fomp) = (LpF) omp and Ap gy (F omp) = (LYF) o 7p.

3.3. Heat equations.

Proposition 3.9. The processes (t,-) and X0(t,-) are diffusion processes with
Aw(ky and Apgy as generators. More precisely, if f = F omp is a cylinder
function as above, then

1) M =S - 1@ =5 [ (Awio ) (B
and

F_ 450 L 0
B2 M =S - @) -5 [ (Beaof) (o )dr

are martingales.

Proof. We will only prove Eq. (3.11) since the proof of Eq. (3.12) is completely
analogous. Let Xp(t) := mp(2(¢,-)) € K™ and Bp(t) = (6(¢,81),.-.,0(¢, sn)), then
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f(X(t,-)) = F(Zp(l)) and by Ité’s Lemma we have that
df(%(t,-)) = dF(Xe(t))

— zn: > AV F(Sp(1)5 (6t 54)

i=1 A€ctq

— zn: > ADF(Sp(2)5 (dt, 5)

i=1 Actg

+% Z Z B(j)A(i)F(EP(t))ﬁA(dt,Si)ﬁB(dt,sj)

i,j=1 A ,Bet,

- Zn: > ADF(Ss(t))5" (dt, 5:)

i=1 AGEO

+§ Z 3" G(si,55) AV AD P(up(t))dt

i,j=1 Actq
= 3N ADF(Sp()84 (dt, 5,) +% (Aw)f) (B(t,-))dt.
i=1 Actg

This shows that Mtf is the martingale;

Zn:Z/ AD F(Sp() 84 (dr, 55).

i=1 A€ty
Corollary 3.10. The measures v; and 1/? satisfy the heat equations on W(K) and

L(K) in the following weak sense. If f: W(K) — R is a smooth cylinder function
then

1
(3.13) O (f) = sve(Awa) f)
and
0 L o
(3.14) o) (f) = 50 (Arao f)-
Proof. Taking expectations of Eq. (3.11) shows that

BM{ = BIE(0) 1)~ 5 [ B(Bwoof) (5 )ir

0

= (D=1 =5 [ ve (B ) ar

Differentiating this equation in ¢ proves Eq. (3.13). Eq. (3.14) is proved analo-
gously.

Corollary 3.11 (Heat solution). Suppose thalt w: L{K) — R is a smooth cylinder
function and let

(3.15) H(t,0) = / ey A,
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then
1

3.16 OH(t,0) = =ApH(t,0) and lim H(t,0) = u(o
9 TEE) t—0

Proof. For 0 € L(K), let u, : LK) — R be the cylinder function defined by
Uy () = u(oy™1). Notice that for h € H,

(Oe) (1) = oo (1e™) = (e Py7) = =000 = g ()

and therefore

(Ariyue) (V) = AL (0 = ua(¥)).
Thus by Corollary 3.10,

O H(t,0) = % /L o (Drixyue) (V) (y)

1
= 3 Ay = ug () (7)
L(K)

1
= §AL(K) (U—>/ Uo(’YW”?(’Y))
L(K)

1
= §AL(K)H(1§,U)

Working with the explicitly representation of u as a cylinder function and using Eq.
(3.10), it is easy to justify the interchange of A, k) with the integral in the third
equality. This proves the first assertion in Eq. (3.16). The second follows from the
dominated convergence theorem and the identity,

H(t,o)=E [u(aZO(t, ~)’1)] ,
where ¥0(¢, s) is the process defined in Eq. (2.14) of Theorem 2.13.

4. THE PATH GROUP CASE

In the next subsection we will give a proof of Theorem 2.15. However, before
doing this let us record the following trivial Corollary of Theorem 2.15 and Corollary
3.10 above. This corollary will be key to our proof of the Airault Malliavin theorem
in Section 5.

Corollary 4.1. The Wiener measure i, with variance t satisfies (weakly) the heat
equation on W(K), i.e. if f: W(K) — R is a smooth cylinder function then

1
(4~1) atﬂt(f) = iﬂt(AW(K)f)~
4.1. Proof of Theorem 2.15.

Proof. As mentioned in Section 2, the reader may find this theorem in Lemma 1 of
Airault and Malliavin [1] or Lemma 3.3 of Srimurthy [31]. It would also be possible
to give a proof using two parameter stochastic calculus as developed in Norris [26].
Rather than introduce this machinery, we will give a more pedestrian but perhaps
less illuminating proof. Our proof is similar to that in [31].
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Let ¥ denote the process defined in Theorem 2.13 and P = {0 =59 < 81 < 83 <
-+ < 8, < 1} be a partition of [0,1]. Let

(1.2) Ui(t) == S(t, 8:)5(t, 1) "
and
(43) Bi(t) = /0 AdZ(T,si,l) (6(57’,&) — 6((57’, Sifl))

fori=1,2,...,n. By Eq. (2.13) and Itd’s Lemma,
§:5(t,8) 1 = —B(6t,8)X(t,s) !

and therefore

5Ul(t) = E(t,si) (6(51&,81) — 6((515,81',1)) E(t78i71)71
U’i (t)AdE(t7si71) (6(51;7 Sl) - 6(51;7 87:71))
(4.4) = U;($)6B;(t).
Because, t — B(t,s;,_1) and t — B(t,s;) — B(,s;—1) are independent Brownian
motions on &,

Adz(tvsi—l) (6((%7 Si) — 6((515, 31'71))
= Adss s, o) (8(dt, si) — B(dt, $;-1))

+ %Adz(t,si,l)[ﬁ(dt Sifl), (ﬁ(dt, Si) — 6((115, Sifl))]g

= Adz(tvsi—l) (B(dt, s;) — B(dt, ;1)) -

Therefore the Stratonovich differentials in Eq. (4.3) may be replaced by It6 differ-
entials to learn that B;(¢) is the martingale

Bi(t) = /0 AdZ(T,si,l) (ﬁ(dT, Si) — 6((17’, Sifl)) .

Claim. The processes By, Bs, ... B, are independent £ — valued Brownian motions
with variances A;s :=s; —s;_1 fori =1,2,...,n.

To prove this claim, let C, D € ¢, and let BE (t) = (B;(t),C), BJD(t) = (B;(t), D)
and A;B(t) := B(¢,s;) — B(t,8i—1). Then because {-,-) is Adg — invariant,

dB{ () = (Adsi,s, )dAB(), C) = (dAiB(t), Adgf, ., \O)-

Thus the differential of the quadratic co-variation of B and B JD is given by,

dBE()ABP (1) = (dAB(L), Adg, | ONAA;B(1), Adg/, D)
= Z <A’ Adg(lt,si,l)0> <A7 Adg(lt7sj71)D> dAiﬁA (t) dAjﬁA (t)
A€ty
= by Y (A Adg, ., \ONXA Adg, . \D)Asdt
A€ty
= 51.7 <Ad£(1t 5-71)07 Adi(lt 5_71)D>A,L‘Sdt
(4.5) = 6,;(C,D)A;sdt,

wherein the third equality we have used: i) AiﬁA() = ﬁA(~,Si) — BA(~,SZ-,1) and
AjﬁA(~) = BA(~,sj) — BA(~,sj,1) are independent if ¢ # j and AiﬁA(~) isat-
valued Brownian motion with variance A;s. In the last equality we again have used
the Adg — invariance of {-,-). Eq. (4.5) along with Lévy’s criteria proves the claim.
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Since the U;’s in Eq. (4.2) satisfy Eq. (4.4), the claim implies that Uy (¢),Ua(?), . .., Us(?)
are independent K — valued Brownian motion with variance A;s, Ass, ..., A,s re-
spectively. Suppose that f = F o 7p is a bounded cylinder function on W(K).
Define F': K™ — R so that

F(21,22,%3,...,%,) = Fzy,ver; Y oszy b 2z, )

for all z; € K. Then

FE(E) = F(UL(2), U2(2), - -, Un(?))

and therefore
vi(f) = Bf(X(,) =BEUL(),Uz(t),. .., Un(t))

(4.6) = / Flay, - an) [ pia o (@)das.

Let zg := e. Using the invariance of Haar measure, make the translations
To — .’L’g.’L’Il then

r3 — .%'3.’1}71 then
2

Tn — TpTp_q

in the last integral of Eq. (4.6) to find

v(f) = / Flay,mary e wnay ) [ oA, s@imy ) da

i=n

n
= / F(xy,x2,T3,...,%x) Hpgist(xix:l)dxi

i=n

(47) = / F(x17x27x37"'7xn) Hpgist(x;fllxi)dxi
wherein the last equality we have use the fact that pf( () is a class function, see
Remark 2.10.

Comparing Eq. (4.7) with Eq. (2.8), shows that v(f) = p.(f) for all bounded
cylinder functions f on W(K) which implies that v; = y; by Lemma 2.7.

5. PROOF OF THE AIRAULT-MALLIAVIN THEOREM 2.18

This subsection is devoted to the proof of Theorem 2.18. We will need some,
mostly well known, preliminary results regarding integration by parts on (W (K), pi;).
These results will be gathered in the next subsection.

5.1. Integration by parts and strong differentiability. The key result here
for the remainder of the paper is Corollary 5.6. The reader may skip this subsection
if she/he is willing to accept Corollary 5.6 below.

Definition 5.1. Let L™ (W(K), t;) = Mi<pcocl?(W(K),u,) and h € H. A func-
tion f € L™~ (W(K), ;) is said to be strongly h differentiable provided there is a
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function g € L~ (W(K), p,) such that
floe) — f(o)

€
for all 1 < p < co. We will denote the function g, if it exists, by 94 f.

g=LP(u)- m%

Cylinder functions are strongly h — differentiable for all A € H and 9, f is given
by Eq. (3.4). Another example is given in Lemma 5.5 below.

Definition 5.2. An element k € W(K) is a finite energy path if
1
k' (s) exists ds-a.s. and / |k71(s)k’(s)|? ds < oo.
0

Letting & € W(K) be a finite energy path and b5 being as in Eq. (2.17), then
for u, —a.e. 0 € W(K),

i) = (0(r)k(r) " 6 (0k) ()

/os EHr)o () 8o(r)k(r) + o (r)k'(r) dr]
(5.1) = /OS Ady—1(,ydb,(0) +/OS EY(r)K (r) dr.

Since Adj,-1(,) is orthogonal on £, Lévy’s characterization of Brownian motion shows
that By := fos Adp—1(ydb,. on (W(K), j1;) is still a Brownian motion with variance
t. This observation and the Cameron-Martin theorem is essentially the proof of the
following quasi invariance theorem of Albeverio and Hoegh-Krohn, see [3], [29], and

[28].

Theorem 5.3 (Albeverio & Hoegh-Krohn). Let k be a finite-energy path on K and
f:W(K)— R be a bounded measurable function. Then

(52) /W(K) [(0)dp(0) = /W(K) F(ok)i(0)dp, (o),
where
(5.3) Jjy = exp <_%/0 <k’(s)k*1(s),dbs>—%/0 |k’(s)k1(s)|2ds>.

Proof. Let h(s) := [5 k™' (r)k'(r) dr, By == [, Ady-1(,)db,, and f be a measurable

function on C([0, 1] — ¥) such that f(b (o)) = f(o) for pi, —a.e. 0. Using the Adg
— invariance of the inner product {-,-) on £, we have

/0|k’(r)k’1(r)|2dr:/0 |1 ()& ()| dr

and

/<1€,(7“)]€71(7“),de> /<k,(r)k71(r),Adk(r)dBr>
0 0
= /0<Adk71(r)]€,(7“)]€71(7")7dBT>

= /0 (k™Y (r)k'(r),dB,).
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Combining these equations show that J, may be written as

(5.4) Jp 1= exp (-% /01<h’,dBr> - % /01 I (r)|? dr) .

By Eq. (5.1),
| fena@aue) = [ fo@R) o))
W(K) W(K)
- /W(K) F(B (@) + 1) k(o) (0)
. = f(B.(0))d (o
(5.5) /W(K) F(B (0))duy (o)

wherein the last equality we have used the Cameron-Martin (or Girsanov’s) theo-
rem. Since B and b have the same laws, being € — valued Brownian motions with
variance {,

66 [ JBEMmE = [ Je@ne = [ o)
Combining Egs. (5.4), (5.5) and (5.6) proves the theorem.

Corollary 5.4, Let h € H (8) and suppose that f and g are strongly h — differen-
tiable, then

(5.7) 1e(9Onf) = pe((=Ong + jng) f)
where

(5.8) jn ;:%/0 (B (5) ,db,) .

This corollary has been proved in the more general context of Wiener measure
on a Riemannian manifold in Driver [11].

Proof. Let k = e and replace f by fg in Eq. (5.2) of Theorem 5.3 to find
plfa)= [ faeg(oet) o (o) o).
W(K)
Differentiate this equation in € implies
d
0= pty { Onf - g+ fOng + g lodeen
which proves the corollary provided that
d .o
d—|0J66h = —jp, in LP(p,) for all p € [1,00).
€

We will not carry out the convergence details here which are fairly routine. The
interested reader may refer to Gross [21] or Section 9 in [11]. However, let us check
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“algebraically” that the formula in Eq. (5.8) is correct. Computing %|0Jeeh gives

d d 1, d 1 (', d 2
oo - = = Y _eh(r)y,—eh(r) dbr = Y eh(r)y eh(r) d
g 07er deloeXp( t/o (e e T dbe) =g (G e "
1d 14 1 (', d 2
— ___|0 /<(—€€h(r))67€h(r),dbr>——/ (_eeh(r))eeh(r) dr
t de o dr 2t Jo | dr
1
_ 7/0 (W' (r), dby).
because
d) (A i)y —eh(r) _ b
_ € T € T :h
L lo( e O)e (7)
and
2
@) L eh(r)y en(r) @ enryygentry) @) D chir)y enir)
el " eh(r eh(r 2 " eh(r eh(r 0y — " eh(r eh(r
delo (dre Je (dre e =0 de'o(dre e
d d
= 200 = |o(— eh(r)\ eh(r) —0.
< ’delo(dre Je
Lemma 5.5. For each h € H, the function 35, is strongly h differentiable and
o1t 1t
(5.9) 6hjh:¥/0 <adh(r)h’(r),dbr(0)>+¥/0 |n' () |2dr.
Proof. According to Eq. (5.1),
I d
gn(oe™) = —/ <h’(r)7Ad66h(,«)dbr(0)—|—eEh(’")—eEh(’") dr>
t 0 dr
I I d
= —/ <Adeeh(r)h’(r),dbr(a)>+—/ (1), e €M) —eeh () gy |
t 0 t 0 dr

Therefore, again ignoring convergence questions,

, d, . 1! 1t
3h3h(0)=&|03h(066h)=;/0 <“dh(r)h'(7“)7dbr(0)>+g/0 |0/ (r) [P dr.

Here the convergence questions are even easier since we only have jointly Gauss-
ian random variables to contend with and L? — convergence of Gaussian random
variables implies LP convergence for p < co. The reader may find more details in
Section 4 in Gross [20].

The following Corollary is a key ingredient in our proof of the Airault — Malliavin
Theorem 2.18.

Corollary 5.6. Let f be a smooth cylinder function (see Definition 2.4) and h €
H (%) such that the Lie bracketl [l (s) ,h' (s)] =0 for a.e. s. Then

wi@in) = ([i1-3 [ woral r).

where jp, is as in Fq. (5.8).
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Proof. Two applications of Corollary 5.4 gives
Mt(al%f) = Mt(jhahf) = Mt((‘ahjh +Jg> f)

which combined with Eq. (5.9) of Lemma 5.5 proves the Corollary.
5.2. Proof of Theorem 2.18.

Proof. Let f = F o mp be a cylinder function on £(K) (see Definition 2.4) and
let a € (s,,1). (We will eventually let o — 1.) Recall the definition of pinned
Wiener measure 19 (see Definition 2.11) says that x9(f) = pu,(fn,) where n, =
pf{lia) (74)/pE (e). Therefore, by Corollary 4.1,

Ol (f) = Oepay (1)
= (fom,) + %Mt (Lw ) (fne)
(5.10) = I+ o
Now
I, = w,(fom,)
B0 = g = ol (Akplly ) o ()
By Eq. (2.8),
pFARp () = [ Glamasslfy @i
— /K ArGla, 2)pfly ) (x)de
where

G(Oé,.’IJ) = / F(xh T 7x’ﬂ) pﬁafsn)(x'rzlx) Hpg(Als (xzillxo dz;.

=1

From this expression we see that AgG(a,z) remains bounded as o — 1, so that
letting @ — 1 in Eq. (5.11) gives

(5.12) lim 1, = —12(fo log pX (e)).

We proceed to work on the second term, J,, in Eq. (5.10). Let P, be the
partition of [0, 1],

P,={0=s50<81 <s83< - <8, <a<l},
and set sp,.1 = . Define G§(s,t) = (s At — a st) so that
G(s,t) = s ANt = Gg(s,t) +a st

Let My (z1,22,...,Znt1) = pfglia)(xnﬂ)/pf((e) and by abuse of notation use F
again to denote the function (z1,22,...,2p+1) € K" — F(21,22,...,2,). Then
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by Egs. (3.10) and (3.8) applied to the partition P,

AW(K)(fm)

(5.13)
Now for A € &, let

Then by Eq. (3.5),

(5.14)

DRIVER AND SRIMURTHY

= Lp, (F)omp,
n-+1

= > > G§(si8) AVAD(FR,) 0w,

1,j=1 A€kqo
n-+1

+ 3 o tsis ADAY(FR,) o T,

i,j=1 Acto
= S, +7,.

r%(s) == a Y3(s A a)A

Ta - Z al%i (fnt)

A€ty

For the S, term in Eq. (5.13), notice that by construction G§(s,t) =01if s or ¢ is
in {0, a}. Therefore G§ (s;,s;) =0if i or j =n+1 (ie. s; or s; is ) so that

S

1,7=1 A€ty

(5.15) = f,omp,

ij=1Actg

) ADAG(Fi ) o mp,

. Z > GG (si,55) (ADAVF) o 7p.

Taking the p, expectation of Eq. (5.13) and making use of Eq. (5.14) and (5.15)
shows that J, from Eq. (5.10) satisfies

1

n

Jo = iﬂ(t)
ij=1Acty
SH: (Z 62?‘ (fm))
A€ty

= JWV 4+ I3,

Since G — Gy as a — 1,

lim JV =
a—1

(5.16) =

where we have used Eq.

L[S 3 Gotensy)

1,j=1 A€ty

n+1

S Gosis)

i,j=1 Ackg

1
5#? (AL(K)f> )

(3.10) for the last equality.

>3 Gy (si,8) (AVADF) o mp

(AD AV F) o7

(AD AV F) o7
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m([ﬁi——/ I—ha IQdT} fm)

A€ty
. 1 [td
= St ([t -1 [ gaora) 1),
Ackg

By Corollary 5.6,

272 =

where (by Eq. (5.8))
1

jhizﬁ/oa@‘l,db \/_/ (A, dbs) = \/_ bo).

Using these facts and

/|—ha )2 =+ /|A|2d r = |A[

1 1 1
@ __-,0f_ 1 2_ 1o
Jy = 2/%( 2 |ba tdlmE)

and hence by Remark 2.17,

we see that

(5.17) lim J) = 2@ (%2 |o1]” — % dimf?) .

Assembling Eqgs. (5.16) and (5.17) shows that

(5.18) lim J, = lug (AL(K)f + [i2|b1|2 ! dimf?} f) .
a—1 2 2 t

Combining Egs. (5.10), (5.12) and (5.18) proves the Theorem.

Corollary 5.7. Suppose that v : L(K) — R is a smooth cylinder function and let

(5.19) G(t,0) = L(K)U(Uv’l)du?(v),
then
1 1y 4,0
(5.20) 8, G(t,0) = §AL(K)G(1€,0) —|—/ Vi(y)u(oy™ " )du; (7).
L(K)

Proof. As in the proof of Corollary 3.11, let u, : L(K) — R be the cylinder function
defined by u,(v) = u(oy~1). By the Airault Malliavin Theorem 2.18,

26(0.0) = [ {5 @einyme) )+ Vi) ()] o)

Using the same method of proof used for Corollary 3.11, we see that this equation
is the same as Eq. (5.20).
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6. ABSOLUTE CONTINUITY OF HEAT KERNEL WITH RESPECT TO PINNED
WIENER MEASURE

In this section we will prove the main Theorem 2.16. We will first need a couple
of preliminary results.

Lemma 6.1 (Asymptotic properties of heat Kernels on K). The heat kernel, pX,
on K has the following properties:

L. limg_o(2nt)2 dmEpK (¢) = 1.
2. For every T' < oo, there is a constant Mp < oo such that

pf((x) < Myt~ dim ¢/2—; d*(e,2) forallze K and 0 <t <T

where d(x,y) s the distance associated to the bi-invarianl Riemannian melric
on K which agrees with {-,-)s alt e € K.

Proof. These are standard properties of heat kernels. For item 1., see Theorem 2.30
of [3]. See also [25]. For the second item see, for example, Theorem IX.1.2 in [32].
To apply this theorem, use the fact that K is compact so the modular function is
constant. It is also necessary to note that the time parameter in [32] is twice our
time parameter .

Lemma 6.2 (12 — 6. as t — 0). Let f : L(K) — R be a continuous cylinder func-
tion, then

(6.1) lim 4 (f) = f(e),

t— 0+
where e denotes the identity loop in L(K), see Notation 1.2.

Proof. This result can be proved in a number of ways. For example one could use
the Kolmogorov’s continuity criteria to show that 9 concentrates near the identity
loop as t — 0. See the argument in the proof of Item 1 of Theorem 2.3 in [12].
Rather than carry this out in full detail, we will only prove what we need.

Let P be a partition of [0,1] as in Eq. (2.3), f = Fomp and pf : (0,00) x K™ —
(0,00) be as in Eq. (2.10). By Lemma 6.1, there is a constant M < oo such that

n-+1
pP(t,x) < A3 dime H(tAis)fdimE/2 exp <_

d2(e,xillxi)> for all ¢ € (0, 1],
=1

415Ai8

where z = (21, - ,Zn), Ais = 8; — $i_1, and g = Zp11 = € € K. By the left
invariance of the Riemannian metric on K, d(z,y) = d(e,xz1y), so the previous
inequality may be written as

n+1
(6.2) pr (¢, x) < Mpt~ 2 9™ exp 1 Z M
7 B 4t AiS

1=1

where Mp = MH?:II(Ais)’dimE/Q. Now let 6 > 0 be given, and suppose that

d(e,z;) > & for some i € {1,2,...,n}, then by the triangle inequality and the
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Cauchy-Schwarz inequality,
2

8 < d*em) < Zd(xj,l,xj)
j=1

n-+1 2 n-+1 n-+1 2
d(x;1,2; d“(wi—1, 2
(ZL L) Ajs> <3 Ay T nt)

< <
= VA i=1 im1 Ais
1
_ % d*(z;_1,2;)
. Ais
=1

Combining this estimate with Eq. (6.2) implies
n g 1
(6.3) oF(t,x) < Mpt— 2 4imexp <—— |:Jc|2>

where
|z| .= max{d(e,z;) :i=1,2,...,d}.

Therefore p¥ (¢, -) satisfies:

L. p*@,z) > 0.

2. [en PP (t,2)dx = 1 where dx is Haar measure on K.

3. For any & > 0, p(¢,z) — 0 uniformly in z € K™ with |z| > 6.
It is now routine to show, using these three properties, that

lim F(x)p"(t,x)dx = F(e,e,. .., e)
t—0 Kn

which is equivalent to Eq. (6.1).
6.1. Proof of Theorem 2.16.

Proof. Let u be a smooth non-negative cylinder function on £ (K) and let C; be
as in Eq. (2.16). Notice that %Ct = ¢ (¢t is defined in Eq. (2.19) of the Airault —
Malliavin Theorem 2.18) and because of Lemma 6.1, lim;_,o Cy = 0. Define

Hto) = [ uloy Nand(), and
L(K)
Fo) = ¢ [ u(oy )t (),
L(K)
then by Corollary 3.11
1
(6.4) OH(t,0) = §AL(K)H(1§, o) and 2yr% H(t,0) = ulo)
and by Corollary 5.7
1 _
AF0) = 3Acuol(to) e [ () +aulor i)
LK

1 _
= 3ocunFit.o)+ e [ (I ulor)aud()

1
50 |b1
L(K) 2

Y

1
§AL(K)F(15,U)
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Combining this with Lemma 6.2, shows that

(6.5) O F(t,0) > %AL(K)F(t,U) and }gr(l) F(t,0) = u(o).

The idea now is to use Eqgs. (6.4), (6.5) and the maximum principle to conclude
that

(6.6) F(t,0) > H(t,0) for all 0 < ¢ < oo and 0 € L(K).

We will postpone the full justification of Eq. (6.6) to Lemma 6.3 below.
Writing out Eq. (6.6) when o is the constant loop e, shows that

/L » u(y™ vy (y) < et /L (K)U(v’ ) s (7)

for all non-negative smooth cylinder functions u. Replacing u by the cylinder func-
tion %(y) = u(y~!) then implies that

(67 [ uater = [ u@a o)
L(K) L(K)
for all non-negative smooth cylinder functions .
Since, by Lemma 2.7, bounded smooth cylinder functions are dense in
L2(L(K), Fopif +17),

by passing to the limit, we may conclude that Eq. (6.7) is valid for all bounded
non-negative F — measurable functions u. By taking u to be characteristic functions
and using the Radon-Nikodym theorem, Eq. (6.7) implies that ¥ is absolutely
continuous relative to p?. Letting Z; := di/9 /du® we may conclude from Eq. (6.7)
that

/ u~(Zt—eCt)du?§0
L(K)

for all bounded measurable functions « and hence that Z, — ¢t < 0.
Lemma 6.3. Keeping the same notalion as above, Eq. (6.6) is valid.

Proof. In order to justify the use of the maximum principle to prove Eq. (6.6),
write v = U o 7p, where P is a partition as in Eq. (2.3) and U : K™ — [0,00) is a
smooth function. Then

H(t,o) = u(oy H)d(y) = U(mp(o)mp(y)~1)dv?
(t,0) /m (o7 1)) /m (re(0)me (1) )a2()
(6.8) = Hp(t,mp(0)),

where for x € K™

Hy(t,z) = / V)

(6.9) = /nU(:ry’l)pf(y)dy,

and pf(y)dy = Law(mp(X(t,-)). By the proof of Proposition 3.9, mp(%(t,) is a
diffusion on K™ with elliptic generator L%O defined in Eq. (3.9). Thus p¥(y) is
the smooth heat kernel for the operator e‘#/2. This shows that Hp (t,z) is smooth
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on (0,00) x K™. Using this information, Eq. (6.4) may be recast as the finite
dimensional statement

1
(6.10) Oy Hp(t,x) = 5Lgﬂp(t,gc) and lim (1, ) = U(x).
Similarly
Fito) = [ oy al )= [ Ulmiome) i o)
L(K) L(K)

= Fp(t,ﬁp(a)),

where for x € K™

Fotz) = & / V) )

e / Ulzy")p"(t,y)dy

where p¥ : (0,00) x K™ — (0,00) is the smooth function defined in Eq. (2.10)
of Definition 2.11. This shows that Fp(¢,z) is smooth on (0,00) x K™. Using this
information, Eq. (6.4) may be recast as the finite dimensional statement

1
(6.11) Oy Fi(t, ) > 5Lgﬂp(t,gc) and lim Fy(t,7) = U(2).

Now there is no problem in applying the maximum principle on K, using Fqgs.
(6.10) and (6.11), to conclude that

Fp(t,x) > Hp(t,xz) for all 0 <t < oo and x € K".

This finishes the proof since this last assertion is equivalent (6.6).

7. THE K =R% AND S CASES

In this section, we will work out the explicit relationship between p? and »? in
the case that K is the abelian Lie group R? or S'.

7.1. The K = R? case. Let K be the Lie group R? with group operation being
addition. The Lie algebra of R¢ is £ =R? with the trivial lie bracket, [a,b] = 0 for
all a,b € R%. Although R? is not compact and is not being represented as a matrix
group, the theory above easily extends to this case. There is one notational point
to take care of now. Namely, the matrix expression of the form ¢~ '8¢ must now
be interpreted as L,-1,6g = 6g. We will assume that (a,b) = a- b is the usual dot
product, although any inner product would work.

Lemma 7.1. On the loop space of R, L(RY), the heat kernel measures 19 and the
pinned Wiener measures, 12, are the same.

Proof. The process °(¢,s) in Theorem 2.13 and the process ¢ in Eq. (2.5) of
Definition 2.8 are explicitly given by %°(¢, s) = x(¢,s) and g; = B(t, s) respectively.
Since gs = B(t, $) is a standard Brownian motion with variance ¢, the pinned Wiener
measure ) = Law(g.|g1 = 0) is the law of an R? — valued Brownian bridge with

variance {. But s — x(¢, s) is a Brownian bridge with variance ¢ (see Remark 2.12),
so that 10 = Law(x(t,-)) = Law(X°(t,-)) = 9.
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7.2. The K = S! case. Let K = S' = {2 € C: |2| = 1}. The Lie algebra of K is
£ = ¢R with the trivial Lie bracket. We will identify with ¢ = iR with R, putting in
the i explicitly when needed. Let {a,b) = ab for a,b € R =R =¢t.

Remark 7.2. Let py(z) = p¥(z) = (2mt) /2 exp (—52%) be the heat kernel on R,
and ¢(2) = iptsl (2) denote the heat kernel on S* relative to the un-normalized
Haar measure “df,” i.e. for f: ST — R,

27
fdb = f(e?yas.
st 0

The well know relationship between ¢; and p; is
(7.1) g(e’) = Y pi(6—2mn) for § € R.
To check this, suppose that fo : S' — R is a continuous function. Then

27
flt,z) = fo(ze ") qs(e'*)da
0
solves the heat equation on S* which is equivalent to saying that F(¢,8) := f(t,e%)
solves the heat equation on R. Since F' is a bounded solution to the heat equation
it is given by
27
fo(ze ) qs(e'*)da

A F(t,0)= /00 F(0,0 — a)p;(a)dox

/C: fo (zeiz‘o)pt(oz)doz

oo 27
Z / fo(ze™ @2 (o — 277n) dox
0

oo 27
= Z / fo(ze™ ") p(a — 27n) dax
n=—oc 0

where 2z = €. This equation, holding for all continuous fy : S' — R, proves Eq.
(7.1).
Definition 7.3. For n € Z, let hy(s) := 27ns,

Zn(S) — ei271'ns — eihn(s)

and let 7 be the left translation of ? by 2,, i.e. ¥? is the probability measure on

L(S') such that
[ seaie)= [ o).
L£(S1) L(Sh)

Also let £,(S!) denote those o € £(S') which are homotopic to 2.

Remark 7.4. The loops {Zn}f;,oo are representatives from each of the homotopy

classes of £(S1), i.e. £(S!) is the disjoint union of {En(Sl)}:LO=700. By the con-

struction of 2 in Theorem 2.13, the measure 1 is concentrated on Lo(S;) and

therefore 7 is concentrated on £, (S1), i.e. v7(L£,,(51)) = Smn-
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Proposition 7.5. The relationship between pinned Wiener measure 19 and heat
kernel measure 19 on L(S') is

(o0}

1
0 n
= 2mn)v
e qt(l) n;oopt( ) t
In particular
~1
1 N (arm)?
(7.2) 1l o5y = mpt(o)’/? = (n;we 2 (27) ) V.

Proof. To simplify notation, let B; = 8(t, s). Using It6’s formula, one easily shows
that the process ¥°(¢, ) in Theorem 2.13 and the process ¢ in Eq. (2.5) of Definition
2.8 are given by ¥0(¢,5) = eX(b3) and g, = e¥(t9) = B¢ respectively. Suppose
that f: £(S') — R is a cylinder function as in Definition 2.4. then for « € (s,, 1),

) = B |flg) s ga)}

%(1 a)( ) 1 . o
lf q:(1) ] - qt(l)E [f(e ) Z Pe(1—a)(Ba — 27m)]
1

Il
=

n=—0oo

(o0}

(73) = qt(l)n:ooE[f( )Pi(1— o) (Ba — 2mn)] .

Let h,(s) := 2mns, h2(s) = 2nn(sAa), and F(B) = f(e'), so that F is a
bounded cylinder function W(R). By the Cameron-Martin theorem (making the
translation B. — B. + h%),

E[F(B)pe(1—o)(Ba — 2mn)]

=E [F(B + B )Pe(1— ) (Bo — 2mn(1 — ) exp (-% /Oa 2mn dB; — % /Oa(27m)2ds>}
(7.4)
=E [F(B + hn)Pei— ) (Ba — 2n(1 — @) exp <—2%1Ba — %a(2wn)2>} .

By direct computation,

1 1
oy =91 = ) = s an(e) - exp (G = (1= )

and thus taking r = B, and y = 27n,

2mn 1
Pi(1—a)(Ba — 2mn(1 — a)) - exp <—TBa - ga(27m)2>

1
(7.5) = Pi(1-0a)(Ba) - exp <—§(27Tn)2> .
Combining Egs. (7.4) and (7.5) shows that
E[F(B)pi1-o)(Ba — 2mn)]

= (21t) Y% exp <—2—1t(27rn)2> E [F(B + hy)
= pe(2r)E [F(x(L, ) + )]

P(1-a) (Ba)}
pe(0)
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wherein the second equality we have used Eq. (2.11) of Remark 2.12. Using this
equation, with F(B) = f(e'B), in Eq. (7.3) gives

H(f) 11) S 2y [ )]

= Z pi(2mn)E {f(znei’((t"))]

n=—0oo

n=—0oo

[
=y
—_ =~

8. APPENDIX ((QUADRATIC VARIATIONS)

Lemma 8.1. As above, for A € ¢ let ﬁA(t,s) = (B(t,8),A) and x(t,8) =
{x(t,s), A . Let A,B €t and s,0 € [0,1], then

B4(dt,5)B%(dt,0) = (A,B),G(s,0)dL,

x*dt,s)xP(dt,0) = (A, B),Go(s,0)dt
and for t,7 € [0,00),

B(t,ds) 85 (1,ds) = (A, B, G(t, T)ds.

Proof. Let {®;} be an abstract filtration (satisfying the “usual hypothesis”) and
suppose that M; and N, are two continuous {®;} adapted processes such that

(My — M, Ny — N;) is independent of &; for all £ > s and EM; = EN; = 0 for all
t > 0. Then clearly M and N are {&,} — martingales. We now also assert, that

(8.1) MN; — E[M;N,] is a martingale

Assuming Fq. (8.1) for the moment, we may conclude the differential Mg Ny of
the quadratic co-variation of M and N is given by

(82) Mdtth - th[MtNt]

The lemma then follows from repeated application of Eq. (8.2). For example,
taking M; = 6’4(15,8) and N; = 8% (t,0), we learn that

B (dt, )35 (dt,0) = d:E |34(t,5)85(t,0)| = (A, B), G (s,0) dt.

To prove Eq. (8.1), lett > s, AM = M, — M, AN = N,— N, and E, = E(:|&,).
Then using the martingale properties of M and N and the independent increment
assumption we find

E, [M,N; — M,N,] = E,[(M,+ AM)(N, +AN) — M,N,] = E, [AMAN]
E[(M; — M) (Ne = Ny)| = E[(My — M) (Ne + N;)]
E[M;N;] — E[M,N,].

Rearranging the terms of the result of this computation shows that
ES [MtNt - E[MtNt]] - Mst - E[MSNS]
as desired.
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