ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE

VIKRAM SRIMURTHY'

ABSTRACT. Let K be a simply-connected compact Lie Group equipped with
an Adg-invariant inner product on the Lie Algebra &, of K. Given this data,
there is a well known left invariant ” H1-Riemannian structure” on L (K) (the
infinite dimensional group of continuous based loops in K), as well as a heat
kernel v (ko, -) associated with the Laplace-Beltrami operator on L (K). Here
T >0, ko € L(K), and vt (ko,-) is a certain probability measure on L (K).
In this paper we show that v (e,-) is equivalent to Pinned Wiener Measure
on K on &, =0 (x; : t € [0,50]) (the o-algebra generated by truncated loops
up to “time” sg)
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1. INTRODUCTION

In this paper we consider the equivalence of two measures on the Loop space
of a compact Lie group. This so-called “Loop group” is the space of continuous
paths in the Lie group based at the identity equipped with a certain well-known
left-invariant “H!-Riemannian structure”. The study of Loop groups is motivated
primarily by physics and the theory of group Representations. They have been
studied extensively in both the mathematics and the physics literature. See for
example [25], [17], [23],(3], [13], [14], [1], [20], [16], [11] and the references therein.

Heat Kernel and pinned Wiener measure are two natural measures that have been
advocated as the “right” measure on Loop groups. Pinned Wiener measure on a
Loop group is the law of a group-valued Brownian motion that has been conditioned
on loops. This measure has been extensively studied in [15], [21], [2], [22]. Heat
Kernel measure has been studied in [12], [10] as another natural measure on Loop
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Space. In [12], Driver and Lohrenz showed that there exists a certain process that
deserves to be called “Brownian motion” on the path space of a Loop group. The
Heat Kernel measures on the Loop Space are the time ¢, ¢ > 0 distributions of this
Brownian motion. Thus it is a natural question to consider the equivalence of these
two measures.

A further motivation comes from logarithmic Sobolev inequalities and the pa-
pers of Getzler [14], Gross [15], Driver [10], Hsu, Aida, and Elworthy. The classical
Sobolev inequalities are a fundamental tool in analyzing finite-dimensional mani-
folds. For infinite-dimensional manifolds logarithmic Sobolev inequalities, because
of their dimension-independent character, are seen to be the proper analogues of
classical Sobolev inequalities. Logarithmic Sobolev inequalities have been studied
extensively over infinite-dimensional linear spaces as well as finite-dimensional man-
ifolds (see [7], [8] for surveys and [18]). If a logarithmic Sobolev inequality does
hold for pinned Wiener measure, (i, then the Dirichlet form p, (Vf, Vf) associ-
ated with pinned Wiener measure will have a spectral gap (the so-called “Mass Gap
inequality”).

In [14], Getzler showed that the Bakry and Emery criteria (see [4] and [5])
for proving a logarithmic Sobolev inequality does not hold in general for loop
groups when the “underlying measure” is pinned Wiener measure. In [15], us-
ing pinned Wiener measure, Gross showed that a logarithmic Sobolev inequality
on Loop space does hold, but with an added potential term (a so-called “defective”
logarithmic Sobolev inequality). Using Heat Kernel measure instead, Driver and
Lohrenz proved in [12] that a logarithmic Sobolev inequality does hold on Loop
groups, without Gross’ potential. If Heat Kernel and pinned Wiener measures were
equivalent with Radon-Nikodym derivatives bounded above and below then the
Holley-Stroock Lemma (see [18])would tell us that pinned Wiener measure admits
a classical (i.e. “non-defective”) logarithmic Sobolev inequality. Even if the equiv-
alence were not so nice, it might still be possible to use the Driver-Lohrenz result of
[12] to eliminate the Gross’ potential term and thereby prove a logarithmic Sobolev
inequality for pinned Wiener measure.

In Section 5 we show that pinned Wiener measure is equivalent to Heat Kernel
measure on §s, the o-algebra of functions depending on the loop up to time s < 1.
We view the Loop-Space-valued Brownian motion, developed by Driver and Lohrenz
in [12], as a group-valued two-parameter process. Viewing one of the parameters
fixed, the resulting process has the same distribution as Heat Kernel measure. In
Section 4, using extensively the two-parameter calculus developed by Norris in [24],
we show that in the other parameter this process is a Brownian semimartingale on
the path space of the Lie group. The fact that we can pull back this process to
a Lie algebra valued Brownian Semimartingale together with Girsanov’s Theorem,
and the fact that Wiener measure and pinned Wiener measure are equivalent on
$s; gives us our result that on §s Heat Kernel measure and pinned Wiener measure
are equivalent. In our proof, the analysis is done in a bigger space (the Wiener
space of the compact Lie group) which is why we require s to be strictly less than
one.

Heat Kernel measure is a time t distribution of a process on the path space
of a Loop group which is started from the identity loop (i.e. the constant loop).
This describes a homotopy between the endpoint of this process and the identity
loop. As a consequence, Heat Kernel measure concentrates all its mass on null-
homotopic loops. On the other hand pinned Wiener measure is quasi-invariant
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under translations by finite-energy loops. Thus Pinned Wiener measure must assign
non-zero mass to all homotopy classes. Therefore if the Lie group is not simply
connected, pinned Wiener measure is not equivalent to Heat Kernel measure. Thus
our result showing absolute continuity on §, for s < 1 is in a sense the best result
that can be obtained in the non-simply-connected case.

2. STATEMENT OF RESULTS

2.1. Loop group Geometry. Let K be a connected compact Lie group, & = T, K
be the Lie algebra of K, and (-,-)4 be an Adg-invariant inner product on K. For

£ € R let [€|g = /(§E8a Let {; and p, be left and right translations on K
respectively. (i.e. f, and p, are maps taking K to K so that {, (z) = gx while

py (x) = zg). Let
L(K)={oeC([0,1] - K)|o(0)=0(1) =e}
denote the based loop group on K consisting of continuous paths o : [0,1] — K
such that o (0) = 0 (1) = e, where e € K, is the identity element.
Definition 2.1 (Tangent Space of L (K)). We will need the following definitions:-
e Given a function A : [0,1] — & such that i (0) =0, define (h,h),; = oo if h is

not absolutely continuous and set (h, h), = fol |W (s)| ds otherwise.
o Define

H(R)={h:[0,1] — &]h(0) =0 and (h,h) < co}.
Then H (R) is a Hilbert space under (-,-) .
o Define
Hy(R)={he H(R)|h(1) =0}.
Then (Ho (R), (-,-)y) is also a Hilbert space.
In order to define the tangent space T'L (K) of L (K) let 8 denote the Maurer-

Cartan form. That is 8 () = ({g-1), & for all { € T K, and k € K. Let 6 (X) (s) =
0(X (s)) and p: TK — K be the canonical projection. We now define

TL(K)={X:[0,1] - TK|0(X) € Hy and po X € L (K)}.

By abuse of notation, use the same p to denote the canonical projection from
TL(K) — L(K). As usual, define the tangent space at k € L(K) by Tx L (K) =
p~1{k}. Using left translations, we extend the inner product (-, -) m, on Ho to a
Riemannian metric on T'L (K'). Explicitly set

(X, X) ey = (6(X) ,0(X)) g0y Where X € TL(K).

In this way, L (K) is to be thought of as an infinite-dimensional Riemannian man-
ifold. Viewing the Lie algebra (R, 0) as a commutative Lie group with Lie algebra
R, we obtain definitions for

L(®) = {7 € C(0.1] - &) |0 (0) = o (1) = 0}
as the “Lie group” with Lie algebra Hy (&) thought of as a commutative Lie algebra.

Definition 2.2 (The Laplacian A L(x) and A L(ﬁ)). Take an orthonormal basis of
Hg (R). Then define an operator Ar gy on functions f on L (K) by setting

Apuof =) 0hf, where (Onf) (v) = 0-f (yexpeh) |.=o.
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Define the Laplacian Ap(g) on functions f on L () in the same way above by
setting

Apwyf =) 0nf, where (9nf) (7) = 0-f (v + €h) |-=o.

Remark 2.3 (Motivation for defintion 2.2). In analogy with finite-dimensional Rie-
mannian geometry, given a function f on L (K), we should expect the Laplacian
Apr)f to be div(Vf) where the divergence div = trV, with V being the Levi-
Civita covariant derivative. So given an orthonormal basis {h} of Hy (R), and
letting O, in T'L (K), be the left-invariant vector field associated to h, we should
expect

“Af = div(Vf) Zah Vo, (Vf) Zahf (Vo,0n) - V£

However, the sum Y, 92f — (Vg,0) - Vf is not well-defined independent of or-
thonormal basis. As Driver and Lohrenz showed in [12] >, 92f — (V,0s) - Vf
is defined independent of good orthonormal bases. Here an orthonormal basis {h}
is good if the Lie bracket [h(s),h/ (s)] = 0 s-a.s. In that case >, 92 — (Vs,0n)
reduces to > 0? (which is independent of any orthonormal basis).

2.2. Measures on the Loop group.

2.2.1. Pinned Wiener measure. Let the Wiener space W, (K) denote the space of
all continuous paths in K starting at the identity. Explicitly

W (K)={ceC(0,1] = K)|o(0) =e}.

Definition 2.4 (Heat Kernel measure on K). Let t > 0. The Heat Kernels PX
on K are the unique functions so that for any smooth f on K, the function u on
[0,00) x K defined by setting w (¢, ) fK y) PK (x y) dy is a solution to the
Heat equation with initial condition f. EXphCltly

1
atu = §AKU

u(t,z) — f(x) ast—0.
It is well known that z — P/ are smooth function on K and that PX (z) =
P (x71).

Definition 2.5 (Wiener Measure on W, (K)). Wiener Measure, p,, on W, (K) with
parameter t, is the unique measure so that for any bounded cylinder function f of
the form f () = F (zs,, -+ ,xs,) we have

n

plfl= [ Pl o) [IPE ) (074 da

i=1
where xp = e and sg = 0. [The measure y; will also be denoted by p in the sequel.]
Definition 2.6 (Brownian motion on K). We will state two equivalent definitions.
A process s — (3 (s) is a Brownian motion on K starting at e with parameter ¢ iff:-

1. B is a W, (K)-valued random variable distributed according to Wiener mea-
sure fi,.
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2. the process s — [ (s) is a diffusion starting at e with generator %A x- This
means that the process s — ((s) is a martingale so that §(0) = e a.s. and

t
Ay (60 8) = (# 0 B(s)) duB + 5 (Dxcd) o 5 (s) ds
for any smooth ¢ on K. Here A is the Laplacian on K with respect to the
metric (-, -) .- on K while ds3 denotes the Ito differential of 3 in the s variable.

The first definition is easier in simpler cases like R? or compact Lie groups. The
second definition is easier to extend to the infinite-dimensional cases and manifolds.
See Definition 2.11.

Definition 2.7 (Pinned Wiener Measure). Pinned Wiener Measure, p ;, on L (K)
with parameter ¢ is the unique measure on L (K) so that for any bounded cylinder
functions f of the form f (z) = F (xs,,--- ,xs,) where F € C*° (K), then

—1 n

Pl s (507) 11 pic -
(21) MO,t [f] = / . F (.Tl, o ,QTn) W Hpt(si—si—l) (xiflxi) dxi,
i=1

where zg = e and so = 0.[We will use the notation p, to denote g ;.|
Definition 2.8 (Brownian bridge on K). s — x(s) is a Brownian bridge on K

with parameter ¢ if x is an L (K)-valued random variable distributed according to
pinned Wiener measure f ;.

2.2.2. Heat Kernel measure.

Definition 2.9 (Brownian Bridge Sheet on &). A Gaussian process {x (¢)}c(o 1

is a Brownian bridge Sheet on R if for (¢, s) in [0,1]%, x (,s) is a R-valued mean-
zero Gaussian process with covariance given by

E(A;x(t,8)) s (B,x(7,0))q = (A, B)g (t A7) Go (s,0),
where x (t,8) = x (t) (s) € R; A,B € &; t,7,s,0 €[0,1]; and Gy (s,0) = sA o — so.
Remark 2.10. It turns out that if x is a Brownian bridge sheet on R then x,, has a
version which is continuous in both its parameters, ¢ — X, is a Brownian motion on

£ with parameter Gy (s, s) and s — x,, is a Brownian bridge on & with parameter
t. We will always choose such a jointly-continuous version of y.

Definition 2.11 (Brownian motion on L (K)). A process t — X (t,-) is an L (K)-
valued Brownian motion if and only if for any smooth cylinder function f : L (K) —
R, there is a real-valued martingale M; so that

Q1S (20 ))] = ded -+ 5 (Bagae ) (S,)) .

See Theorem 2.14 for the existence of this Brownian motion. So ¢t — X (¢,-) is a
diffusion on L (K) with generator A [ (x). [Define a Brownian motion on L (R) by
thinking of & as a Lie group and applying the above definition]

We will need the the following Theorem:

Theorem 2.12 (Malliavin). Let (QO,EO, {595}(t 5)€[0,1]2 ,PO) be a filtered com-
plete probability space where

T =0 (X :T €01, ucl0,s]),
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30 = v(tys)e[oyl]zsgs, and x is a R-valued Brownian bridge sheet in the sense of
Definition 2.9. Let 0y denote Stratonowicz differentiation in the t variable. Then
given ko € L(K) there is a jointly continuous solution X (t,s) to the stochastic
differential equation

(22) 8t2 (t, 8) = Z (EE(t,s)*A) atXA (t, 8)
ACONB(R)
with ¥ (0,8) = ko(s),Vs€[0,1],

where the A run through an orthonormal basis of & and x* (t,s) = (x (t,8), A)4.
Henceforth we write Eq. (2.2) more concisely as

(2.3) X (t,s) = (Kg(t,s))* Ox (t,s) with X(0,8) = ko (s),Vs € [0,1].
[see Malliavin [23]; see also Theorem 3.8 of [10] and Bazendale [6]]

Remark 2.13 (Explicit Matrix Representation of Eq. [2.3). ] Let M,,, (R) be all mx
m matrices on R and GL,, (R) be all invertible matrices in M,,, (R). We will work
with an explicit matrix representation of our Lie group K. K will be thought of as
a subgroup of GL,, (R) C M,, (R) for some m. Such a representation exists as a
consequence of the Peter-Weyl Theorem. Hence Eq. (2.3) can be rewritten as

(2.4) X (t,s) = X(t,s)0x(t,s)
with 2(0,-) = ko,Vs€[0,1],

where we have used matrix multiplication to define X (¢, s) 0y x (¢, s). Explicitly if
we let B;; denote the 7, j entry of the matrix B we have

0 (S (t,9); = > (S (t,9), 0 (x (2,9))y; -
k
Theorem 2.14 (Brownian motion on L (K)). Let 3 (¢, s) be the process from The-
orem 2.12 and Remark 2.153. Theorem 2.12 tells us that s — X (t,s) is a Loop a.s.
Let 3y denote this loop s — X (t,s). Thent — X is a Brownian motion on L (K)
in the sense of Definition 2.11.

Proof. See Theorem 3.10 of Driver [10].

Now that we know that Brownian motion on L (K) exists, we can define Heat
Kernel measure on L (K).

Definition 2.15 (Heat Kernel measure on L (K)). Let kg € L (K) be a loop and
let t > 0. Let X (¢,-) be an L (K)-valued Brownian motion so that £ (0,-) = ko in
L(K) a.s. Then, as in the finite-dimensional manifold case, Heat Kernel measure
v¢ (ko, dk) is defined to be the law of X (¢, -). Explicitly

/ fk)ve (ko,dk) =EfoX(t,-).

L(K)

Remark 2.16 (Heat Kernel measure is a Heat Kernel). Driver and Lohrenz showed
for any ¢ > 0, for all bounded cylinder functions f on L (K); the function u on

(0,00) x L(K) defined by

w(t ko) = /L PRICEACR)
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is the unique solution to the heat equation
1
ou (t,-) /ot = §AL(K)U (t,-) with ltiﬁ)lu (t,k) = f (ko).

Here Ap(xy denotes the operator from Definition 2.2. See Theorem 1.1 of [12]. See
also Definitions 3.10 and 4.17 in [12]. In [12], results on Heat kernel measures are
obtained for groups of compact type, and not merely compact Lie groups.

2.3. The stochastic framework. We shall use the results of Section 2.2.2 to
obtain our probability space.

Definition 2.17 (Ambient probability space). (Q,S, {gts}(t,s)e[o,l]z ,P) is going
to be our biparametrically-filtered probability space where

e O =C([0,1] - L(K)) equipped with §, the completion of the Borel o-algebra
under P.

e Let X be the process from Theorem 2.12 so that ¥ = e, where e denotes the
identity loop.

e P is defined to be Wiener Measure on C ([0, 1] — L (K)). Explicitly, P = Law

>,

9::C([0,1] - L(K)) —» L(K) by x — z(¢t) for any = € C ([0,1] — L (K))

By Theorem 2.14 we see that dLaw g; = dvy (e, -).

gts (2) = [& (1)) (5) n K.

Too is a o-algebra containing all the null sets of §.

o Fis =0(gro: T €10,t] and o € [0, s]) V Foo-

Theorem 2.18 (Semimartingale properties of g.5). The process g of Definition 2.17
has the following properties:-

1. The processt — g5 is a semimartingale.

2. Let X3, = f(f 9720.9rs. Thent — X, is a Brownian bridge sheet on & with
respect to the measure P. Furthermore, X can be taken to be continuous in
both its parameters.

Proof. t — Y;s a Brownian motion on K = t — g;; a Brownian motion on K.
In particular, ¢ is a semimartingale and X;s = fot 9740:grs is well-defined. By
Proposition 8.3 of [9] we know that X, 0% = [3 $719, %, = x;,. Thus X is a

Brownian bridge sheet with respect to the measure P. R

Remark 2.19. We shall never again refer to x, > or the underlying abstract prob-
ability space. Also we will always use the version of X that is continuous in both
parameters t and s.

We are now in a position to state the main result of this paper.

Theorem 2.20 (Semimartingale properties of g;.). Let g be an L (K)-valued Brow-
nian motion as in Defintion 2.17. Then:-

1. s — g5 s a K-valued §;5-semimartingale.

2.
s s d t
/ 8ogtogt_01 = VVtS _/ i / AdgTodTXTO'7
0 o 1=0Jo

where s — Wy is a Brownian motion on R with parameter t.
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Proof. Theorem 2.20 is a special case of Theorem 4.1 proved in Section 4. §

Theorem 2.21. Let z < 1 and let &, = o (x4 : s € [0,2]) where x5 : L(K) — K
is the evaluation map at time s. Then pinned Wiener measure, (g, is absolutely
continuous with respect to Heat Kernel measure, vy (e,-), on the o-algebra &.,.

Proof. This Theorem is proved as Theorem 5.1 in Section 5

3. MOTIVATION FOR THEOREM 2.20

Definition 3.1 (Brownian Sheet on ). A Gaussian process {3 (t)},¢(o ) is @ &~

valued Brownian sheet if for (¢, s) in [0, 1]2, B (¢, s) is a K-valued mean-zero Gaussian
process with covariance given by

E(A,B(t8)a (B,06(1,0))qg = (A, B)g ¢ A7) G (s,0),

where 3 (t,5) = 3(t) (s) € &R; A,B € &; t,7,5,0 € [0,1]; and G (s,0) = min (s,0).

Remark 3.2. (Theorem 2.20 is reasonable)g satisfies
(3.1) Ogts = GrsOr X1s With gos = e,

where X is the Brownian bridge sheet from Theorem 2.18. By Theorem 3.7, there
is a Brownian sheet b on R so that

(3.2) Xy = bys — /0 ) wada.

If we replace X by b in Eq. (3.1), then Lemma 3.3 shows that s — g;s would
be a K-valued Brownian motion with variance ¢ and hence fo O0s9ts g{sl would be
a R-valued Brownian motion with variance ¢t. In reality, because X;. contains an
extra finite-variation term, it turns out that the law of fo Ds91s972" is equivalent
(but not equal) to the law of a Brownian motion on 8.

Lemma 3.3 (Semimartingale properties of h:.). Let b be a R-valued Brownian Sheet
(see Definition 8.1)Let hys be the solution to

(33) 8thts = htsatbts with hOS = €.

Then the process s — hys is a K-valued Brownian motion with parameter t. Fur-
thermore one can choose a version of h which is jointly continuous in both parame-
ters s and t. In future, h will be taken to be this jointly continuous solution. Note:-
Eq. [3.3] is to be interpreted like Eq. [2.2].
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Proof. Let s; =i/n. Then {0 = s¢ < s1 < --- < s, = 1} is a partition of [0,T]. For
convenience, let A\;b (t) = bys, — bys,_,. We compute
Or (hes, i)

= hys, Otbys, h;ifl — hys, Otbes, ht—sil

= hys, 0.0 () hih |

= (ht h;,;l) Adp,, 80D (D)

_ 1 _
_ (htsi htsifl) Adn,,_ di5ib (8) + 5o (htsihtsiil) Ady,,  dNb (1)
1
+ EAdh‘Si—L [dtbtsi,l s thzb (t)]

1
_ (ht h;;fl) Adn,,, Db () + 5d; (htsihfl ) Ady,,  dDb(D)

tsi—1

t
= (heohiil,) 0 / Adn,., Ab(dr),
0

where we have used that fact that by, | € F1s, , and that A;b(-) is independent
of §1s, ,. Thus

o, (htsih;i,l) - (htsih;SLl) 9, / t Ady,,,  d; b (7) with hog, byl | =e.
0

It suffices to show that { Jo Adh,,.  diNib (t)} . ) is a &"-valued Brownian
= i€{l,---,n

motion with parameter 1/n, since this will imply that ¢t — {hts,.hfl S

i tsi,l

i
}ie{l,--- ,n}
a K™-valued Brownian motion with the same parameter. But this is true by Levy’s
criterion and the following computation of quadratic variations.

Let J; denote the joint quadratic variation

t
/ Adn,,  deAb(T) Ady,,  dr (7).
0 it
Then
@i = Ad, | (b (0) Adn,, | (di255b (D)

= > (Adn,,, A% Ady,,_ B) dilsib™ (£) du 507 (1)
A,B

A
= 6—;; g (Adhts,i,1A> - dt

= =LY A%t
" 2
We still have to show that h;s has a jointly continuous version. That is by
Kolmogorov’s continuity criterion we must show that
m+f
2

Pld(hus, hro)’] < C [(t - 7‘)2 + (s — 0)2} ,
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where d (z,y) denotes the distance between points x and y in K. The proof is
essentially the same as that done in Theorem 3.8 of Driver [10] with the modification
that G (s,0) is used in place of Gy (s,0). in particular, see Eq. [3.12] of [10]. I

3.1. Semimartingale Properties of X;;. Let X;; be as in Theorem 2.18. Then
X is a Brownian bridge sheet on K. Brownian Sheets are easier to work with
than Brownian bridge Sheets (they are martingales in both their parameters for
instance). The goal of this section is to write X;. as a linear functional of b;. ,a
Brownian sheet.

_ Tomotivate this decomposition we recall the decomposition of a Brownian bridge

X (below in Remark 3.4) in terms of a Brownian motion and a finite-variation part.

The Brownian bridge X. is supposed to play the role of X;. but with one fewer
parameter.

Remark 3.4 (Doob’s h transform). Let X be a Brownian bridge from 0 to 0 on R.
Then there is a Brownian motion b which can be written as a linear function of X

(ie. bs = X, f/ (V In P}{o) ()?o)d(f = )?S +/ 1XU do.)
0 0

-0

Definition 3.5. Define continuous K-valued linear maps on paths,
Ts,Ss : C([0,1] — R) — &,

by setting

1—0c

o) = v - [ Sy<o>%do if s € [0,1).

Ss(z) = z(s)+ /OS (135(_(;()7) doif s €10,1).

Remark 3.6. Notice that in Remark 3.4 we wrote the underlying Brownian motion
b oas S ()?) (). Similarly we shall prove the process b;. = S (X;.) is a Brownian
Sheet and that X;. can be written as T (b.).

Theorem 3.7 (Decomposition of the Brownian bridge sheet). Let X be the Brow-
nian bridge sheet from Theorem 2.18. Define b by setting

S X,od
bis = Ss(Xy.) :th+/ to @0
0 1_(7

for any t,s € [0,1].
Then b is a Brownian sheet on & and X;s can be recovered from b as:

(3.4) Xis =Ts(br.) = bis — /0 S btUHdg-

We shall defer the proof of Theorem 3.7 until after Lemma 3.8 below.

Lemma 3.8 (Properties of the transformations S and T). There exist unitary maps
T : HR) — Ho(R) and S : Hy(R) — H(R) so that T (y)(s) = Ts(y) and
S (z) (s) = Ss (z) for any s € 0,1). Furthermore S =T"1.
Proof. Define a subset of H (&) by setting

U={y:y € CX((0,1) — R)}.
C((0,1) — R) is dense in L? ([0, 1] — K) and therefore, by the isometry between
L? and H (R),U is dense in H (R).



ON THE EQUIVALENCE OF MEASURES ON LOOP SPACE 11

Define z (s) =T (y) for y € U. Then

o) = | U029 oo,

1—0

and

1—0

(3.5) 2 (s) =y (s) — /OS y'(o) do.

Since 3’ is zero near 1, s — y/(s)/ (1 — s) is bounded on [0, 1] and 2’ is constant
near s = 1. The boundedness of y'(s)/ (1 — s) implies that z (s) — 0 as s — 1. So
we can define amap T : U — Hy (R) .

We claim that T is a norm-preserving and so can be extended to a map from
H (R) onto a closed subspace of Hy (R). Integrating by parts,

/lds U f’f"idgrg/ol Y (s)./os ?{E"idods
1_0()7d0] —2/01 f/fl ./Osgdads

[
[ £l s [ 2] [ [ 2]
0

)

and so expanding with Eq. [3.5] we see that

[ @fas= [ 1o as

If x L ImT, then for any y € H (R)

<:>/ x’(S).y/(s)dsz/O (x(l)—x(a)).y/(a)dﬂ

<:>/ { 1_2}-y/(5)d5—0.

Since 3’ can be any arbitrary element of L? ([0, 1] — &), we must have

2 (s) = Ex_(z) < x(s) =x(e) 1:;

Letting ¢ — 0 and using z(0) = 0, we see that x is identically 0. Thus T is
surjective and so provides an isometry between H (K) and Hy (R).
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Now we find the inverse of T. Let z in H (8), y = T (x) in Hy (R) and z, = S (y)
so that z; = S5 o T (). Since z (0) = zp =0 and

R
RN e
- -T2
= o' (s),

we conclude that Sy o T (z) = x (s) for any z in H (R).
Define S : Hy (R) — H (8) so that S (y) (s) = Ss (y) for any s < 1and S (y) (1) =
lims—1 S (y) (s). Then by definition, S is the inverse of T'. 1

Proof. of Theorem 3.7:
First we show that

E(bs,A) g (bro,B) g = (t ANT)G (5,0) (B, A) 4
Recall bl = (bys, A) ¢ and X2 = (Xys, A) 4. Let

zaw=ﬁﬁwawmw,

where

1
dyas (u) = [6 (u—8)+ 1,9 T du

is a positive measure on [0, 1]. Here ¢ denotes the Dirac delta measure. Then

1
d
Iy (z) :x(s)Jr/ () —— = 8, (z).
0 ]. —Uu
Define b;s = S5 (X:.) as in Definition 3.5. So
(3.6) EvAvEB = FE / dyas (u) dyor, (V) XA XE,

By Tonelli’s Theorem and Holder’s inequality, we have

E/duas ) dvto (v) | X7 X5,

< /duozS ) dya ( \/E Xtu T,,)

= /duozS (u) dyay (V) \/tTGo (u, 1) Go (v,v) < oo.

Thus applying Fubini to Eq. [3.6] we see that

EbivB = / duas (u) dyao (V) EXPA X B

tsVTo

(3.7) (tAT) (A, B), / dyars (1) / dyaro (1) Go (u, ).
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Since Gy (u,v) is the reproducing kernel for Hy (&), we have for any orthonormal
basis h of Hg (R),

v) =Y h(u)h(v)

Returning to Eq. [3.7] we get

E(bis, A) ¢ (bro, B)y = (tAT) Z/ u) dyes ( /h(u)dvag(y)

= AT) (A, RZSS
= (MT) <A,B>g25(h) (S)S(h) (0).

By Lemma 3.8, S (h) runs through an orthonormal basis of H (R). This, together
with the fact that G (s, o) is the reproducing kernel for H (R) yields,

> S (h)(s)S () (0) =G (s,0) =s Ao
Thus
E (bis, A) g (bro, B) g = (t AT) (A, B) s (s o).

Thus b is a K-valued Brownian sheet.

It remains to show that T (b;.) = Xs. Let © € L(R). Then for any € > 0, can
choose a é so that supyg sjup1—s,17 |%| < e. There is an 7 on C*° ((6,1 — 6) — K) so
that ||§ - (51-5) Hoo < e. Define T by setting

S ~ ~
T(s) = 5% (6) Lo, + 7 (s) T(1=6) s,

Then

Iz — 2| < (2 sup :1:|+6) Ve < 3e.
[0,5)U[1—5,1]
Furthermore, T € Hy (R).

Sonow take x € Hy (R) so that ||z — Xy.[| <e. Then Ty (b.) = Ts (by. — S (x))+
x (s).

ITy(be. — S (2))] < sup [br. — S ()] (1+/OS (1-5) da) .

0,3 (1-0)?
Xio —x(c
sup [b. — S (z)] <  sup | Xy —x(u)+ o — 2 (0) do
[0,s] wel0,s] o (I—-o)
<

$ do
sup | X — 2 (u <1+/ 7>
u€l0,s] ‘ ! ( )| 0 (1 - U)

Thus as e — 0 we have Ts (b;.) = Xys and we are done. I
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4. SEMI-MARTINGALE PROPERTIES OF g7

Let X be the Brownian bridge sheet from subsection 3.1. In this section we shall
show that X is a semimartingale in the sense of Norris (see [24]) and then proceed to
find fo O0s9rs g;sl using his powerful two-parameter calculus methods. Throughout
this section we shall use the term “semimartingale” to mean “semimartingale in
the sense of Norris”. We shall also stick to Norris’ notation as far as possible in
this section.

Theorem 4.1 (semimartingale properties of gr.). Let g be our L (K)-valued Brow-
nian motion. Then:-

1. g is a semimartingale.
2. There is a R-valued Brownian sheet b with the same law as b so that

SG gt =bp Ad, diX:s.
/OangTg /1_0/ gro AtAt

We defer the proof of this Theorem to the end of the section.

Theorem 4.2 (X is a semimartingale). On the domain® = {(t, s) € [0,00) x [0,1)},
X is a uniform semimartingale satisfying the equation

1
(41) (9t(95X = 8t(95b - 1— SatX(?S with XOS = Xt() =0.

Proof. First we show X is a uniform (s,t)-semimartingale in the sense of Norris.
By Theorem 3.7 we have
5 (1-9)
Xis = bys — bio —=do.
t t /0 t 1-_0)2 o
Since b is clearly a semimartingale, it will suffice to show that the expression
)
s = bio ——=dc
o= || byt

is an (s,t)-semimartingale. Differentiating, we see that

(4.2) Cys = /0 do [Obj’a) - /OU btuﬁdu} .

By Ito
1 7 1 7 1
b oo — b uid dub U )
" 0) A ta—w2“+A 1)
and so
Ots = / dO’/ dubtu

— / / |:/ / ml[o’u] (’LL/) 1[71’0] (7”) d'r’du’b’ru’:| d’r’/du.
-1Jo
We still need to check Eq. (2.15) of Norris; that for any p € [1,00), the expression
t s t s
LA
is finite. A direct computation establishes that this is so for any (¢,s) € ©. Thus
X is a uniform (s,t)-semimartingale. By Norris (see Pg 282 of [ ]) we know

1 — ’LL/) 1[0,u] (ul) 1[ 1 0] d?"du ] dr'du
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that a uniform (s,t)-semimartingale which is constant on both the ¢ and s axes
is both a uniform ¢-semimartingale as well as a uniform s-semimartingale. Since
Xos = X0 = 0, we conclude that X is a uniform semimartingale.

Now that we have shown X is a semimartingale, we can verify by direct compu-
tation that X satisfies Eq. [4.1].

8t(95X - 8t(93b + 1 i SatXaS

= (9tX85 — (9t85C'tS.

JFrom Eq. [4.2] we see that

8t<95X — 8t<95b + 1 i S(%Xas

0, X0s 8 1-—s 0s
= 11— — |:8tbt5 —/0' atbto- (lf(f)QdO- 1— s
=0.

Hence we are done. |

Lemma 4.3 (g is a semimartingale). Let g be our L (K)-valued Brownian motion
from Definition 2.17. Then on ®, g is a semimartingale satisfying

D0t = Y006 — 0,095 with go, = g0 = .

Proof. Define 1 to be the solution of

1
1—s

(43) Dsﬁth = ’1/1(97585[) - (9{(/1(98,

where D denotes covariant differentiation with respect to the 1~eft connection on
K. Apply Theorem 3.2.6 of [24] to the R x K-valued process 9,, = (s,¢,,). To
facilitate this define coordinate projections 7y : (s,z) — s and w3 : (s,x) — =.
Then we have

1

1—s (9{(/1(98,

D00 — (o, 2 (Zb) 6t83b> -

where D denotes covariant differentiation with respect to the left connection on
R x K. In Norris notation, we would have

Dyt = a (8,:95b) + By <atias> ,
with
a(w) = (0,72 (z)w) Yw € K,

and

5o1<w>—(Ti(x)>wVw€Tm(RxK).

Thus 9 is a semimartingale, and hence so is .
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Define
o= [ witow,
0

- 1 -
= /lbtsldﬂ/’ts*?/ (¢tsldt¢ts) (¢tsldt¢ts)
0 0
= I—-J
The first term I is a semimartingale by Theorem 2.3.1 of [24], while the second

term J is a semimartingale by Theorem 2.3.2 of [24]. Thus yx is a semimartingale.
We will now show that x satisfies Eq. [4.1]. Computing directly, we see that

1

— S8

87585}( + 1 (9tx85

=0, (¢10) + v B

1
= 7 D0 + v Bds.

Applying Eq. [4.3], we see that

1
1—s
Thus x = X and ¢ = ¢g. Thus ¢ is a semimartingale satisfying the equation

(9t(93x + (9tx(95 = (9t88b.

Dsﬁtg = g@tasb - 1—:98tg88.
|

We are now able to return to the proof of Theorem 4.1.

Proof of Theorem 4.1. We have already shown that g is a semimartingale. Let D
and D denote covariant differentiation with respect to the left and right connections
on K respectively. Thus

Didsg = (8:((3s9)97")) g
= 0,059 — (0s9) 97" (Brg9)
= g0. (9 "0ug)
= D,0yg

= gatasb_ !

1—s

atgas.

Now define a process b by setting
8,05b = Ady (8;05b) with bos = byo = 0.
Ady is previsible and preserves the inner product on & and so by Theorem 2.4.1 of

[24], we see that b is a Brownian sheet on & (i.e. b and b have the same distribution).
Therefore,

ds
1-5’

(9 ((2:9)97")) 9 = Didog = (9:0.) g — Drg
which implies that

01 ((9:9) 97") = (2:0.8) — Ady (8.X) ds

1—s
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/0(359)9_1:5—/0/0Adg (9,X) 1d_58.

Now using the fact that d;g = gd; X + %gthth, we see that
Ady0, X = Adgdi X

1 _ 1 _ _
+§ (degdi X)g~" — 29 (deX) 97" (deg) 975"
—  Adyd,X.

Thus we have shown that

/0((95g)g71:57/01d_88/014dg (dy X) .

5. HKM |~ PWM |6,

Let ©Q, P, and g; be as in Definition 2.17 and let &_ be as in Theorem 2.21.
Then t — g; is an L (K)-valued Brownian motion and thus Law g¢; equals Heat
Kernel measure vy (e, -). From Section 4 we know that fos Oy Jto g{gl is a Brownian
semimartingale. In this Section we will show that fos Os Jto gt_(,1 has a law equivalent
to that of a Brownian motion. We will then know that Pinned Wiener measure
is equivalent to Heat Kernel measure on &, for any z < 1, by the equivalence of
Wiener measure and Pinned Wiener measure.

This means that

Theorem 5.1. v (e, ) [Heat Kernel measure on L (K)] is equivalent to py[Pinned
Wiener Measure on L (K)] as measures on (L (K) ,®,) where 8, =0 (x; : t € [0, 2]),
for any z < 1.

We supply the proof of this result after the statement of Lemma 5.4.

Definition 5.2. Let By, be defined to solve the Fisk-Stratonowicz equation Js Bys =
Osbis Bys with Byy = e where b is the Brownian sheet from Theorem 3.7.

Theorem 5.3. Let t — g be our L(K)-valued Brownian motion from Defini-
tion 2.17 and let s — Bys be the K-valued Brownian motion of Definition 5.2.
Then gp. and Byp. have equivalent laws as measures on C ([0,s] — K) for any

s < AETL
We prove this result in section 5.1.

Lemma 5.4. If k1 «~ kg then kK1 ® v «~ kg ® v, where Ki,k,V are probability
measures.

We prove this Lemma after the proof of Theorem 5.1 below.

Lemma 5.5. Let 0 < t1 < --- < tg. Then B{:l_Bti. are independent K-valued
Brownian motions with parameters t; — t;_1.

The proof of this Lemma is supplied after the proof of Lemma 5.4

Proof of Theorem 5.1. Let g be Pinned Wiener measure on L (K) and let u be
Wiener measure on C ([0, 1] — K) as in Definitions 2.5 and 2.7. Then y = Law [By.]
since Bj. is a standard K-valued Brownian motion by Definition 5.2. A key fact
that we shall exploit in this proof is p is equivalent to p on &, for any z < 1.
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Fix z < 1.Now
. V/1+4T -1

lim ————— =

T—0 2T

so there exists an IV € N large so that
V1+4/N -1
<.
2/N

Let T = 1/N. We know that t — ¢;. is an L (K)-valued Brownian motion and
so has independent increments. Suppose we can show for to > t; that B{liBtzs is
independent of §¢,1. Then letting A’ = {(ky, -+ ,kp) : k1---ky € A} we have

vi(e,A) = P{g. €A}
= P {9(1/N)~ (g(_ll/N).g(Q/N)'> (g(_l\}—l/N)'gl') < A}
= (@, Law,, ) (4),

1

while
w(A) = P{B;. €A}
= P{Bu/zv)- (BG}N).B@/N») (B(_Nl_l/N).BL) S A}
= (90X, Lawg,. ) (4).
Now by Theorem 5.3 gy. has a law equivalent to that of By., on the restricted o-

algebra & . Invoking Lemma 5.4 repeatedly, we see that @2, Law,, ~ @ Lawg,.,
on the restricted o-algebra &.. Thus if A is &.-measurable, A’ € 8V and

V1 (6, A) = (®£\;1Lang-) (A/) =0
> p(A) = (9, Lawg,. ) (4') =0.
Hence we are done if we show that B;iBtQS is independent of §;,1.

By Lemma 5.5, if 7 < t; < t5 then B;,. and Bt_l,lBtQ. are independent Brownian
motions and so B, _1Bt2. is independent of o (By; : t < t; and s < 1) . However since
bis = fos Bisu B!, we see that

F1 = o{bs:t<t;and s <1)
C 0(Bs:t<t;ands<1).

Therefore B, _lBtz_ is independent of §;,; and we are finished. |

Proof of Lemma 5.4. Tt will suffice to show that if k1 < ko then k1 &V K Ko®v. For
rectangles, it is clear that (k1 ® v) (14 (2) 15 (v)) = (k2 @ v) (14 (z) f (z) 15 (v)).
This extends to linear combinations of rectangles by linearity and all bounded mea-
surable functions by dominated convergence. Thus d(k; ® v) /d (ke @ V) (z,y) =
dk1/d (k2) (z). Thus k1 v < ke @ v. 1

Proof of Lemma 5.5. ;(From Definition 5.2 we see that

i 15

(5.1) 0. (B! .Bus) = [AdBtl O (btos — bro_ys) | Bt s Bus-
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Let b; = [; Ady-1 s (byys — by, ,s) - Then
Ty _1s

(=
N
| ‘

~ : 1 :
| / Ady s dy (b= b, ,) / Ay [dy (s — bro_,s) duby,_]
0 0

ti—18 tj—1s

/. AdBfl ds (btis - bti,ls) .
0 tij_158

Thus since the Adjoint action is norm preserving, we have that EZ is a Brownian
motion on K. Computing quadratic variations, we see that

dsbs (s) @ dyb; (s)
= Adp lsds (btos — by 1) ® Adp d, (beys — be, 1)

18

= E (AdBl A®Adg— A> dg (bés — b,‘é 18) ds (b,‘;‘_S — bf_ 18)
ti—1s - ‘ -
A

tj_1s

(Sij (Z A®2) (ti - tifl) ds.
A

5.1. Proof of Theorem 5.3.

Theorem 5.6. Let Yr, be defined to be fos agngg;; as in Theorem 4.1. Then
Law Yrp. <~ Law by. as measures on C ([0, 8] — K) for any s < %.

The proof of Theorem 5.6 is given in section 5.1.1

Proof of Theorem 5.5. Fix s. Pick T so that s < %.

Let z, be the evaluation map at o on C ([0,s] — K). Define the probability
spaces QO (resp. Q) as the set C'([0,s] — R) as equipped with Law (br. |jo,s))
(resp. Law (YT. l[o,s])) and filtration generated by z. Let 1’ and 1Y be the
solutions to the stochastic differential equation

*) on = ndzx with ng =1

in the probability spaces (2® and Q¥ respectively. Then Proposition 8.3 of [9] implies
that T]b (bT l[O,s]) = BT. J/[O,s] and T]Y (YT »L[O,s]) = 4gT. J/[O,s]- Theorem 5.6 irnplies
that br. |jo,s) and Y7. |[o s have equivalent laws and hence n = n® =nY a.s. Thus
if

El4 (97 ljo,s) =0
<= Elaon(Yr. ljgs) =0
<= Elaon(br. lps) =0
> El4(Br ljos) = 0.

Hence by the Radon-Nikodym Theorem Law gr. is equivalent to Law Brp. as mea-
sures on C ([0,s] — K). 11
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5.1.1. Proof of Theorem 5.6.

Remark 5.7. Let my : C'([0,1] = L) — C([0,s] = L);ms (z.)(r) = z (r) for any
r < s. We make no distinction between a measure v1 on (C ([0, s] — L), 0 (z, : r < s))
and a measure vy on (C ([0,1] — L), 0 (z, : < s)) solong as v1 (F o my) = vy (F') for
any F : C ([0,s] — L) — R. where L stands for either K or &.

Remark 5.8 (Theorem 5.6 is not obvious). Since for s < 1, Law Xp «~ Law by,

(as measures on C' ([0, s] — K)), one might suspect Law X «~ Law b (as measures
on C'([0,1] x [0, s] — R)) which should then indicate that

Law (Yr.) = Law/ Adg,, dids Xio
Ry,

“- Law/ Adg,, didybie = Law (br.) .
Ryp.

Unfortunately in the t-variable, X 5 and b s are Brownian motions with param-
eters s — s2 and s respectively. Thus LawX L Lawb since

Px (ZAM(&)Z — s — 52) =1,

while

B, (Z|Aiw(s)|2 = 5) =1.

Hence these two measures live on different sets.

Theorem 5.9 (Girsanov, see [19]). Let (2,5, {5.}, P) be a filtered probability space.
Let 3. be a d-dimensional Brownian motion and let Z. be an R*-valued adapted pro-

cess so that E exp % fOS |ZS\2 ds is finite and fOS (Z;')2 ds < 0o almost surely for any
i€ {l,---,d}. Define

Z.Zexp{/O.Zs~dsﬁs /|st]

Define a new measure 133 on Fs by setting P( ElAZS Then 133 18 a probabil-
ity equivalent to P and the process {Yy;,§;0 < s < S} is a d-dimensional Brownian

motion on (9,35,13) where Y. = 3. + fo Zds.

We will use the following two Lemmas which are proven in section 5.1.2.

Lemma 5.10. Let X~ be the R-valued Brownian bridge sheet of Theorem 2.18.
Then the expression X = f(f Adgw dy Xy has the same law as Xy .

Lemma 5.11. Let X be the R-valued Brownian bridge sheet of Theorem 2.18.

Then
1 S
Pexp | = / do
2 0

Proof of Theorem 5.6. Define

V1+4T -1
2T '

910 7 < 00,if s <

2
/T g BXio
0 e «

-1 T
ZT (O') = m/o Adgta thtO'-
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By definition of Y7. in Theorem 4.1

YT- EET. +/ dO'ZT (O’) .
0
By Lemma 5.11,

V1+4T -1

s
Eexp/ | Zp ((r)\Qﬁ do < oo whenever S <
0 ) 2T

Thus the measure

dPg = exp dP

S — 1 S 9
/ ZT (S) . dsts - = / |ZT (8)‘ ds
0 2 0

is a probability on Frs and the process {Yrs,§75;0 < s < S}isa ﬁs—BI‘OWHi&H
motion on K. Thus for any set A C (C'[0, S] — R)

Elgobp. =0 < EljqoYp. =0 < El oYy =0,

since the measures ]33 and P are equivalent on §rg. [Note:- it is essential that
A only depend on the path to time S or else 14 o Yp. will cease to be Frg-
measurable.] 1

5.1.2. Proofs of Lemmas 5.10 and 5.11.

Proof of Lemma 5.10. )?w is a §io martingale. To show X and )?_S have the
same law it will suffice to show X., is a R-valued Brownian motion with parameter
o — o2, To this end, let {A} run through an orthonormal basis of & Then

i Xo 0 diXey = Ady diXie 0 Ady, diXeo
= (0—0%)dt) bapAd, Aw Ad, B
A,B

= (O’ — 02) dt Z (Adgm A) @2
= (O’ — (72) dtZA®2.

Thus we are done. I

do

Proof of Lemma 5.11. By using Jensen’s inequality on the probability 1jg 5 we

have
1 S
exp |5 /0 do

gwl*()’

2
/T g GXeo
0

R
2

S de T i X1o
= exp —Uf/ Adyg,, L
0 S 2 0 170' a
R
® 5 thto
< — Ad
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Thus

2
s T
J = Pexp 1 do Ad diXio
2 Jo 0 991 o .
R

s d T
S / —0 P exXp | — il 2 / Adgta thta
0o S 2(1—=0)" |Jo

R

Now by Lemma 5.10, X = fo Adg, d¢ X, is a Brownian motion on & with pa-

2
rameter Go (0,0). Thus in the expectation, we can replace ‘ fOT Adg, di Xis| by
f

TGy (o,0)|N \2@, where NN is a standard normal R-valued random variable. So we

get
S do sTo 9
< —P — |N|% .
J—A s @mQOfﬁﬂ E
So we see that
T
J < oo = i<oofor(r€[0,s}

10.

(1-0)

g

!

1
1,g<ﬁf0r06[0’8]

s <i
1—s sT
Ts>+s—-1<0

ehiii@:i)

I 11
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