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ABSTRACT OF THE DISSERTATION
Di�erentials of Measure-PreservingFlows on Path Space

by
Carolyn M. Cross

Doctor of Philosophy in Mathematics
University of California, San Diego, 1996

Professor Bruce K. Driver, Chair
Let W = f! : [0; 1] ! Rnj! is continuousg; equipped with Wiener mea-sure. The classical Cameron-Martin theorem states that the mapping (! ! !+h)of W to itself (for h 2 W ) preserves the measure up to a density if and only ifh 2 H = fh 2 W jh(0) = 0; R 10 jh0(s)j2ds <1g.Bruce Driver has proved an analogous result for the space Wo(M) ofcontinuous paths on a compact manifold M with a �xed base point o 2 M: LetC1 � fh 2 C1([0; 1]; ToM)jh(0) = 0g; the space of once-continuously di�eren-tiable paths in ToM , starting at the origin. Driver constructed a \natural" vec-tor �eld Xh corresponding to each h 2 C1, and showed that the induced owt ! �h(t; !) starting at a \generic" path ! 2 Wo(M) exists, and that the map�h(t; �) : Wo(M)! Wo(M) preserves Wiener measure up to a density.In my thesis I �rst generalize Driver's construction of measure-preservingows to a slightly larger class V of vector �elds on W: These are functions Y :W ! W of the form

Y (!)(s) = Z s
0 C(!)(�s)d!(�s) + Z s

0 R(!)(�s)d�s
where, roughly speaking, C takes values in the skew-symmetric matrices and R(!)is bounded by a \nice" function of !:

viii



I then show that members of V generate ows which are \smooth" intheir starting path, i.e., di�erentiable via any vector �eld in V:The proof uses a modi�ed Picard iterates method to solve a di�erentialequation including a term with an unbounded linear operator.The second half of my thesis is devoted to the \geometric" result thatDriver's ows are di�erentiable in their starting paths. This result is proved forboth the \transferred" ow in W and the original ow in Wo(M):TheW case is proved by showing that the class V above contains Driver's\transferred" vector �elds on W; i.e., Y h 2 V for all h 2 C1: Thus the resultin Part I implies that the \transferred" ow wh(t; !) generated by Y h on W is\di�erentiable" in its starting path ! via any of the vector �elds Y k; for k 2 C1:I then use certain smoothness properties of the stochastic development map totransfer this result to Wo(M):
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Chapter 1

Introduction

Let W be an n-dimensional, C1 manifold and assume X is a completesmooth vector �eld onW: De�ne the ow of X starting at w 2 W as the solution tothe di�erential equation: _�(t; w) = X(�(t; w)) with �(0; w) = w: Then by classicaltheorems ([34] Section 4.1, Theorem 1, p. 80), �(t; �) : W ! W is a C1 functionfor all t 2 R: That is, the ow of a vector �eld on a �nite-dimensional manifolddepends smoothly on its starting point.The purpose of this thesis is to prove a similar result for a class of owson the in�nite-dimensional manifold of paths on a compact Riemannian manifold.Measure-Preserving Flows on Wiener SpaceLet W (Rn) = f! : [0; 1] ! Rnj! is continuousg; equipped with Wienermeasure �. The classical Cameron-Martin theorem states that the mapping (! !! + h) of W to itself (for h 2 W (Rn)) preserves the measure up to a density ifand only if h is in the Cameron-Martin Hilbert space H of absolutely continuousfunctions with one derivative in L2:In [8], Bruce Driver proved an analogous result for the path space ofa compact manifold M with a �xed base point o 2 M . This result states thatthe ows generated by certain natural vector �elds on the path space Wo(M) �f! 2 C([0; 1];M)j!(0) = og preserve Wiener measure, �; up to a density. Re-cently, generalizations of this work have been obtained by Hsu [21], Norris [39],
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2
and Enchev-Stroock [15].In Driver's setting, each vector �eld is uniquely determined by a pathh 2 C1 � C1([0; 1];Rn) according to the following construction. Since Rn isisomorphic to ToM , the tangent space to M at o; we may view h as a path inToM . Now construct a vector �eld along a \generic" path ! in M by \paralleltranslating" the vector h(s) along ! from !(0) = o to !(s): By doing this for a\generic" path ! inM , we create a vector �eld ~Xh on the path spaceWo(M) itself.Note that ordinary parallel translation requires the path ! to be di�er-entiable, but the set of such paths has �-measure zero in Wo(M): Instead, we usestochastic parallel translation, which is constructed using the Ito stochastic calcu-lus, and therefore is de�ned only up to �-equivalence. In this context the notionof smoothness must involve stochastic calculus. For example, stochastic paralleltranslation is not in general even continuous in the sup-norm topology.For each h 2 C1; the ow ~�h : R!Maps(Wo(M);Wo(M)) associated tothe vector �eld ~Xh is the unique solution to the equation _~�h(t; !) = ~Xh(~�h(t; !))with ~�h(0; !) = ! in the space of paths f� : R!Maps(Wo(M)! Wo(M))g:Driver showed that the ow t ! ~�h(t; !) of the vector �eld ~Xh startingat a \generic" path ! 2 Wo(M) exists, and the map ~�h(t; �) : Wo(M) ! Wo(M)preserves Wiener measure up to a density.In this paper we will show that this ow is \di�erentiable" in its start-ing path !: This is analogous to the classical result that solutions to ordinarydi�erential equations vary smoothly in their initial conditions.In proving his result on Wo(M); Driver uses the stochastic developmentmap of Eells and Elworthy [12], and P. Malliavin to transfer the problem to oneon W (Rn). The inverse of the stochastic development map may be viewed astransferring a path (thought of as wet ink) on M to one on Rn by \rolling" themanifold on Rn along the path, without slipping or twisting the manifold.This development map can roughly be considered as a di�eomorphismbetweem W (Rn) and Wo(M); thus the \natural" vector �elds ~Xh on Wo(M) may



3
be transferred to vector �elds ~Y h on W (Rn). Driver proved the existence of ameasure-preserving ow on W (Rn) corresponding to these vector �elds ~Y h. Hethen used the development map to transfer the ows onW (Rn) to ows onWo(M):In more detail, the vector �eld ~Xh on Wo(M) pulls back under the devel-opment map to a vector �eld ~Y h on W (Rn) of the form

~Y h(!)(s) = Z s
0 Ch(!)(�s)d!(�s) + Z s

0 Rh(!)(�s)d�s
where the process s ! (Ch(!)(s); Rh(!)(s)) is �-a.s. End(Rn)�Rn-valued, con-tinuous and adapted, with formulas for Ch and Rh determined by geometric prop-erties of M: Here End(Rn) denotes the n�n real matrices. (We will usually writethis using the shorthand notation ~Y h(!) = R Ch(!)d! + R Rh(!)ds:)Driver proved the existence of the ow t ! ~wh(t; !) of the vector �eld~Y h; starting at a \generic" path ! 2 W (Rn); i.e., ~wh(t; !) solves@ ~wh(t; !)(s)@t = ~Y h( ~wh(t; !))(s) (1.0.1)
with ~wh(0; !)(s) = !(s): Moreover, it was shown that the map ~wh(t; �) : W (Rn)!W (Rn) preserves Wiener measure up to a density.Many others have worked in the area of nonlinear transformations onWiener space. In particular, A. B. Cruzeiro's results [7] could be used to provethe existence and measure-preserving properties of transformations induced bythe vector �elds above with Ch � 0: (See also G. Peters' results [40].) Othercontributors include L. Gross [19], R. Ramer [42], S. Kusuoka [29], I. Shigekawa[47] [48], and M.-P. and P. Malliavin [36].Smoothness of Flows on Classical Wiener SpaceThe purpose of the �rst part of this thesis is to obtain smoothness resultsin the W (Rn) setting (Chapters 3, 4 and 5). In Chapter 3 we will generalizeDriver's construction of measure-preserving ows to a larger class ~V of vector�elds onW (Rn) which are independent of the geometry ofM . These are functions~Y : W (Rn)! W (Rn) of the form

~Y (!) = Z C(!)d! + Z R(!)ds



4
where C takes values in the skew-symmetric matrices and R(!) is bounded by a\nice" function of !: We will also require certain smoothness conditions on thekernels C and R:As in (1.0.1), the ow ~w : R!Maps(W (Rn);W (Rn)) associated to thevector �eld ~Y is, roughly speaking, the unique solution to the equation _~w(t; !) =~Y ( ~w(t; !)) with ~w(0; !) = ! in the space of paths fw : R ! Maps(W (Rn) !W (Rn))g:In the main theorem of Chapter 3 (Theorem 3.2.8), we will show that theow t ! ~w(t; !) of such a vector �eld ~Y 2 ~V exists starting at a \generic" path! 2 W (Rn), and the map ~w(t; �) : W (Rn)! W (Rn) preserves Wiener measure upto a density. (We will sometimes use the term \quasi-invariance" for this measurepreservation property.)We will �rst obtain \ows" on a space of \Brownian semimartingales"rather than W (Rn) itself (Section 3.1). By doing this we avoid a certain tech-nical problem in Wiener space of interdependence between existence and quasi-invariance of the ow. Then in section 3.2 this result is used to prove the existenceof measure-preserving ows in the path space of Rn:Let ~w1(t; !) be the ow corresponding to the vector �eld ~Y1 2 ~V . InChapters 4 and 5 we will show that for each �xed t the map ! ! ~w1(t; !) is\di�erentiable" via any vector �eld ~Y2 2 ~V (Theorem 5.4.2), that is,

[ ~Y2 ~w1](t; �) � lim�!0
~w1(t; ~w2(�; �))� ~w1(t; �)� (1.0.2)

where the limit is taken in Lp for all p 2 [2;1). This is analogous to the classicalresult that solutions to ordinary di�erential equations vary smoothly in their initialconditions.As in the proof of existence of the ows, to avoid technical di�culties wewill prove a \smoothness" result �rst in the space of Brownian semimartingales,denoted by B1Rn (Theorem 4.1.3).Let V be the \semimartingale version" of the vector �eld space ~V : V isto be thought of as a space of vector �elds on B1Rn: Fix Yi 2 V; for i = 1; 2 and
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let wi be the corresponding ow on B1Rn.In Chapters 4 and 5 we prove that Y2w1 exists, where Y2w1 is de�ned asin (1.0.2) without the tildes. This is accomplished in two steps.In Chapter 4, the equation which must be satis�ed by Y2w1; if it exists,is obtained by formally di�erentiating (via Y2) the ow equation which de�nes w1.Then the existence of a unique solution Z to this equation is proved.In Chapter 5 we prove that Y2w1 exists and is equal to the solution Zfound in Chapter 4, by showing that the discrepancy between Z and a di�erencequotient approximating the derivative Y2w1 approaches zero in an Lp-type normfor all p 2 [2;1): In section 5.4 this result is used to prove the di�erentiability ofthe ow on W (Rn) (see Theorem 5.4.2).Di�erentials of Flows on Path Space of a Compact ManifoldThe second part of this thesis is devoted to the manifold version of Theo-rem 5.4.2: that Driver's ows are di�erentiable in their starting paths. This resultis proved for both the \transferred" ow inW (Rn) and the original ow inWo(M):The W (Rn) case is proved by showing that the class V above containsDriver's \transferred" vector �elds on W (Rn); i.e., ~Y h 2 V for all h 2 C1: ThusTheorem 5.4.2 implies that the \transferred" ow wh(t; !) generated by ~Y h onW (Rn) is \di�erentiable" in its starting path ! via any of the vector �elds ~Y k;for k 2 C1 (Theorem 7.1.3). Then we use smoothness properties of the stochasticdevelopment map to extend this di�erentiability result to Driver's ows onWo(M)(Theorem 7.4.3).



Chapter 2

Norms, Di�erentiation and

Integration for Semimartingales

2.1 De�nitions and Notation

This section introduces the norms and related spaces of semimartingalesin which we will work throughout this paper. We also de�ne various notions ofdi�erentiation and integration for these spaces.Suggested references for this section include [1, 2, 13, 14, 22, 35, 38, 41,43, 44, 45, 46]. Especially see Protter [41] for stochastic integration theory, andEmery [14] for stochastic calculus on manifolds.
Notation 2.1.1 Throughout this paper we will use an underlying �ltered prob-ability space (
; fFsg;F ; P ); satisfying the usual hypothesis, i.e. the �-algebraF on 
 is complete with respect to the probability measure P , the �ltration fFsgis right continuous, and F0 contains all P -null sets. We assume that this spacesupports an Rn-valued Brownian motion b. Two examples follow.

1. If 
 = W (Rn) with P being Wiener measure, de�ne
(a) bs : 
! Rn by bs(!) = !(s):

6



7
(b) F as the completion with respect to P of the �-algebra generated by themaps fb(r) : 0 � r � 1g:
(c) Fs as the �-algebra generated by the maps fb(r) : 0 � r � sg and allthe P -null sets of F :

2. If 
 = Wo(M); with � being Wiener measure, de�ne
(a) F as the completion with respect to � of the �-algebra generated by themaps �o(r)(!) � !(r) for 0 � r � 1 and ! 2 Wo(M);
(b) Fs as the �-algebra generated by the maps f�o(r) : 0 � r � sg and allthe �-null sets of F :
(c) b � I�1 �H(�o):

Standing Conventions. In this paper a process on (
; fFsg;F ; P ) meansan fFsg-adapted process, and a semimartingale means a continuous semimartin-gale.
De�nition 2.1.2 An Rn-valued process w is a Brownian semimartingale ifw is a continuous fFsg-adapted process such that

w(s) = w(0) + Z s
0 O(�)db(�) + Z s

0 �(�)d� (2.1.1)
for some continuous adapted End(Rn)�Rn-valued process (O;�): (Here End(Rn)denotes the space of n� n real matrices.)We will usually write (2.1.1) as

w = w(0) + Z Odb+ Z �ds:
Notation 2.1.3 The following norms will be used in this paper:

1. Let O(n) and so(n) denote the set of n � n real-valued, orthogonal, skew-symmetric matrices, respectively.
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2. For an n�m matrix A; de�ne jAj � tr(A�A)1=2 (the Hilbert-Schmidt norm).
3. For a 2 Rn; de�ne jaj to be the Euclidean length of a.
4. If V is a normed space, and f(s) is a continuous adapted V -valued stochasticprocess, de�ne k � kSp(s) for p 2 [2;1] by

kfkSp(s) � k sup0�r�s jf(r)jV kLp(P )

and set kfkSp � kfkSp(1):
5. If w = R Odb + R �ds is a V -valued Brownian semimartingale, then forp 2 [2;1]; let

kwkBp(s) � kOkSp(s) + k�kSp(s)and set kwkBp � kwkBp(1):
Notation 2.1.4 For p 2 [2;1] we have the following normed spaces.Denote by SpV (or just Sp) the space of continuous adapted V -valuedprocesses f(s) such that kfkSp <1: Let S1� � \p2[2;1)Sp:Denote by BpV; or just Bp; the space of V -valued Brownian semimartin-gales (w) such that w(0) = 0 and kwkBp <1; and let B1� � \p2[2;1)Bp:Note that if V is a �nite-dimensional vector space then SpV and BpV areBanach spaces for all p 2 [2;1): (Lemma 4.2, p. 304 in [8]).In particular, we will often use the spaces BpRn; BpEnd(Rn) andBpso(n). We will denote by BpO(n) � BpEnd(Rn) the subset of processes takingvalues in O(n).
De�nition 2.1.5 Let V be a �nite-dimensional vector space. Let J = [��; �] �R be a compact interval and let p 2 [2;1]: A function G : J ! SpV is calledSp-di�erentiable at t 2 J if lim�!0 k1� [G(t + �) � G(t)] � G0(t)kSpV = 0 for someG0(t) 2 SpV:Similarly, de�ne a Bp-di�erentiable function by replacing Sp with Bp inthe above de�nition.
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De�nition 2.1.6 Let V be a �nite-dimensional vector space, and let S1�V �Tp2[2;1) SpV as above.i) We say that a map t ! f(t) 2 S1�V is S1�-continuous if t ! f(t) is Sp-continuous for all p 2 [2;1):ii) Similarly, if kf(t) � f(�)kSp � Kpjt � � j, with Kp a function of p for allp 2 [2;1); we say f is S1�-Lipschitz.iii) Finally, f is S1�-di�erentiable if t ! f(t) is Sp-di�erentiable for all p 2[2;1): Similarly we de�ne the analogous B1� terms.
De�nition 2.1.7 An admissible curve is a B1�-di�erentiable curve  : J !B1Rn such that lim supt!0 k(t)kB1 � �K(0) < 1; and the map t ! _(t) isB1�-Lipschitz.
Notation 2.1.8 Throughout this paper the brackets h�i will be used to indicatelinear arguments of a function.
De�nition 2.1.9 A function F : B1 ! S1�V is called S1�-di�erentiable atw 2 B1 if there exists a linear mapping F 0(w) : B2 ! S2V and if for all admissiblecurves  with (0) = w, F ((t)) is S1�-di�erentiable at t = 0, with ddt j0F ((t)) =F 0(w)h _(0)i. We will often use the notation vwF � F 0(w)hvi, where v = _(0).Similarly, a function F : B1Rn ! B1�V is B1�-di�erentiable at w 2B1 if the above holds with S1� and S2 replaced by B1� and B2, respectively.
Notation 2.1.10 Suppose f(t; !)(s) is a process. We distinguish two types ofintegrals of f(t) :

1. The pointwise integral de�ned by p:w: Z ba f(t)dt! (!)(s) � Z ba f(t; !)(s)dt
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2. The Sp-integral satisfying

limj�j!0

Sp Z ba f(t)dt� X�=fa=t0<t1<���<tn=bg f(ti)(ti+1 � ti)Sp = 0
where j�j = maxi jti+1 � tij: We will usually write Sp R simply as R :

Lemma 2.1.11 Suppose that g : J ! BpRn such that (r; s) ! g(r; !)(s) isjointly continuous for all ! 2 
0 where 
0 � 
 with P (
0) = 1: Then for � < t;kp:w: R t� g(r)drkSp � R t� kg(r)kSpdr for all p 2 [2;1):
Proof. Fix p 2 [2;1) and let f(r; !) � sup0�s�1 jg(r; !)(s)j: The map r !f(r; !) is measurable since by continuity of g we may take the supremum over acountable dense subset of [0,1].Claim:

kp:w: Z t� f(r)drkLp(P ) � Z t� kf(r)kLp(P )dr:
Proof of claim: Let G � 0; G 2 Lp0(P ); where 1p + 1p0 = 1; and let F (!) �R t� f(r; !)dr; i.e., F = p:w: R t� f(r)dr: Then

kFGkL1(P )= Z


�Z t� f(r; !)dr�G(!)P (d!)

= Z t� dr Z
 P (d!)f(r; !)G(!) by Tonelli
� Z t� drkf(r)kLp(P )kGkLp0 (P ) by H�older's inequality

Thus we have
kFkLp(P ) = supfkFGkL1(P )kGkLp0 (P ) = 1g

� Z t� kf(r)kLp(P )dr:
which proves the claim.
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Finally, we have

kp:w: Z t� g(r)drkSp = k sup0�s�1 jp:w: Z t� g(r; �)(s)drjkLp(P )

� kp:w: Z t� sup0�s�1 jg(r; �)(s)jdrkLp(P )

= kp:w: Z t� f(r)drkLp(P )
� Z t� kf(r)kLp(P )dr
= Z t� kg(r)kSpdr:

Q.E.D.
Lemma 2.1.12 Let V be a �nite-dimensional vector space, and suppose f : R+ !S1�V is S1�-continuous. Then for all t 2 R+ and p; q 2 [2;1), Sp R t0 f(�)d� =Sq R t0 f(�)d�:
Proof. Since f is S1�-continuous, for each p 2 [2;1) the Riemann sums inNotation 2.1.10 converge, so the Sp integral exists. Fix p; q 2 [2;1) with p < q:Let � = f0 = t0 < t1 < � � � < tn = tg and j�j = maxi jti+1 � tij: Then

limj�j!0
Sq Z t

0 f(�)d� � n�1Xi=0
f(ti)(ti+1 � ti)Sp� limj�j!0

Sq Z t
0 f(�)d� � n�1Xi=0

f(ti)(ti+1 � ti)Sq= 0 by de�nition of the Sq-integral:
Q.E.D.

Notation 2.1.13 Let f : R+ ! S1� be S1�-continuous, and t 2 R+. LetS1� R t0 f(�)d� denote the common integral Sp R t0 f(�)d� for p 2 [2;1) given byLemma 2.1.12.
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Lemma 2.1.14 Fundamental Theorem of Calculus for Sp-integrals.Let J � R be a compact interval, and f : J ! S1�V be S1�-continuous, where Vis a �nite-dimensional vector space. Then for all p 2 [2;1); the map t! R t0 f(�)d�is S1�-di�erentiable, and f(t) = ddt R t0 f(�)d� for all t 2 J:
Proof. Let � > 0 (the case for � < 0 is similar) and �x p 2 [2;1): We have1� �Z t+�

0 f(�)d� � Z t
0 f(�)d��� f(t)Sp= 1� Z t+�t f(�)d� � f(t)Sp� 1� Z t+�t kf(�)� f(t)kSpd�� supt���t+� kf(�)� f(t)kSp

This converges to 0 as �! 0 by the Sp-continuity of f: Q.E.D.



Chapter 3

Driver's Measure-Preserving

Flows on Path Spaces

3.1 Flows in a Space of Semimartingales

In [8], Driver proved the existence of quasi-invariant ows on the pathspace of a compact Riemannian manifold M: He did this by �rst transferring thevector �elds generating his ows to Wiener space via the stochastic developmentmap of Eells and Ellworthy, and proving that these transferred vector �elds gen-erate measure-preserving ows.Driver's proof on Wiener space will be presented in this chapter, but wewill obtain a more general statement of his result by eliminating dependence onthe geometry of the manifold M:We will �rst obtain \ows" on a space of \Brownian semimartingales" inorder to avoid a problem in Wiener space of interdependence between existenceand quasi-invariance of the ow. In section 3.2 we will use this result to prove theexistence of measure-preserving ows on path space itself.The following notation and assumptions will be used throughout thispaper.
Notation 3.1.1 Let (C;R) : B1Rn ! S1�End(Rn)�S1Rn with the following

13
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properties. Let p; p1; p2 2 [2;1) be such that 1p1 + 1p2 = 1p :

1. There exists (A; T ) : B1Rn ! S1�so(n) � S1End(Rn) with C(w) =A(w) + T (w) and kT (w)kS1 � T1 <1 for all w 2 B1Rn:
2. A; T and R are S1�-di�erentiable (see De�nition 2.1.9), and for allw; ~w; v 2 B1Rn;

kvwAkSp � KkvkBpkvwA� v ~wAkSp � Kkw � ~wkBp1kvkBp2 ; (3.1.1)
where K = K(n; p; �Kw; �K ~w): These conditions also hold with A replaced bothby T and by R:

3. There exist constants c1 and c2 such that
kR(w)kS1 � c1kOk2S1 + c2 for all w = Z Odb+ Z �ds 2 B1Rn:

4. kC(0)kS1 <1.
De�ne X(w) � Z C(w)dw + Z R(w)ds for w 2 B1Rn
Let wo = R Oodb+ R �ods 2 B1Rn:We explicitly state the following conditions, which are implied by 2. above,since they will often be used in this form.

kC(w)� C( ~w)kSp � Kkw � ~wkBpkR(w)�R( ~w)kSp � Kkw � ~wkBp
(3.1.2)

for all w; ~w 2 B1Rn and p 2 [2;1); where K = K(n; p; �Kw; �K ~w): These condi-tions also hold with C replaced both by A and by T:
In theorem 3.1.5 below, we will prove existence and uniqueness (in acertain space) of a solution w to the equation

_w(t) = X(w(t)) (3.1.3)
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with w(0) = wo 2 B1Rn. Equivalently, we will �nd a solution (O;�) to the pairof equations

_O(t) = C(w(t))O(t)and _�(t) = C(w(t))�(t) +R(w(t)) (3.1.4)
with O(0) = Oo 2 S1End(Rn) and �(0) = �o 2 S1Rn:Each of these solutions w and (O;�) will exist in two senses: as solutionsin a space of semimartingales, and in the \pointwise" sense de�ned below.
De�nition 3.1.2 ([8] Def. 6.3, p. 327). A 1-parameter family of End(Rn) �Rn-valued adapted processes (O(t); �(t)) solves (3.1.4) pointwise if the followingconditions hold:

1. P -a.s. the function (t; s)! (O(t)(s); �(t)(s)) is C1;0:
2. There exist versions A(t); T (t) and R(t) of A(w(t)); T (w(t)); and R(w(t))respectively, such that P -a.s. the map (t; s) ! (A(t)(s); T (t)(s); R(t)(s)) isC1;0; where w(t) = R O(t)db+ R �(t)ds:
3. There is a �xed set 
0 � 
 of full measure such that (O(t)(s); �(t)(s))satis�es (3.1.4) pointwise on 
0 with C(w(t)) replaced by C(t) � A(t)+T (t)and R(w(t)) replaced by R(t):

De�nition 3.1.3 A 1-parameter family of Rn-valued adapted processes w(t) =R O(t)db + R �(t)ds solves (3.1.3) pointwise if (O(t); �(t)) solves (3.1.4) in thepointwise sense de�ned above.
The following lemma gives a su�cient condition on w(t) so that C1;0

versions of A(w(t)); T (w(t)); and R(w(t)) exist, as required in De�nition 3.1.2.
Lemma 3.1.4 Let w : J ! B1Rn be an admissible curve. Then there existversions A(t); T (t) and R(t) of A(w(t)); T (w(t)); and R(w(t)) respectively, suchthat P -a.s. the map (t; s)! (A(t)(s); T (t)(s); R(t)(s)) is C1;0:
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Proof. Let t1; t2 2 J; and wi � w(ti); _wi � ddt jtiw(t) for i = 1; 2: Then forall p 2 [2;1); ddt jt=tiA(w(t)) = A0(wi)h _wii where the derivative is taken in theSp-topology. We have

kA0(w1)h _w1i � A0(w2)h _w2ikSp� kA0(w1)h _w1i � A0(w2)h _w1ikSp+kA0(w2)h _w1 � _w2ikSp� Kkw1 � w2kBp1k _w1kBp2

+Kk _w1 � _w2kBp by (3.1.1)
� Kjt1 � t2j:

Using the same argument with A replaced by T and by R; the mapt ! (A(w(t)); T (w(t)); R(w(t))) is S1�-Lipschitz. The result follows by Lemma8.1.4 of the appendix. Q.E.D.
Theorem 3.1.5 Let (C;R) : B1Rn ! S1�End(Rn) � S1Rn; X : B1Rn !Rn-valued processes and wo 2 B1Rn be given as in Notation 3.1.1. Then X :B1Rn ! B1�Rn and the following results hold:(i) There exists a unique B1�-di�erentiable solution to equation (3.1.3):

_w(t) = X(w(t))
with w(0) = wo 2 B1Rn in the space of paths

fw : R! B1Rnj supjtj<T kw(t)kB1 <1 8T > 0g:
This solution w is in fact admissible, so _w(t) = ddtw(t) is B1�-Lipschitz. Fur-thermore, there is a version of w which solves (3.1.3) pointwise, in the sense ofDe�nition 3.1.3.
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(ii) Equivalently, there exists a unique S1�-di�erentiable solution (O;�)to the pair of equations (3.1.4):

_O(t) = C(w(t)) _O(t)
�(t) = C(w(t))�(t) +R(w(t))

with O(0) = Oo 2 S1End(Rn) and �(0) = �o 2 S1Rn; where w(t) = R O(t)db +R �(t)ds; in the space of paths
f(O;�) : R! S1End(Rn)� S1Rnj supjtj<T [kO(t)kS1 + k�(t)kS1 ] <1 8T > 0g:

The solution (O;�) is S1�-di�erentiable, with ( _O; _�) S1�-Lipschitz.Also, there is a version of (O;�) which solves (3.1.4) pointwise, in the sense ofDe�nition 3.1.2.(iii) Moreover, if we write the solution to (3.1.3) as w(t; wo); a functionof its starting point, then w(t; �) : B1Rn ! B1Rn is a ow on B1Rn in thesense that w(t; w(�; wo)) and w(t+ �; wo) are indistinguishable.
Proof. First note that for w = R Odb+ R �ds 2 B1Rn;

kX(w)kBp = kC(w)OkSp + kC(w)� +R(w)kSp� kC(w)kSp [kOkS1 + k�kS1 ] + kR(w)kSp by Lemma 8.1.5.
Since this expression is �nite, we have X : B1Rn ! B1�Rn.The theorem will be proved with R replaced by a compact interval J =[��; �]: This result can then be extended by existence and uniqueness to all of R:The equivalence between solutions of (3.1.3) and (3.1.4) follows from sub-stituting the formula w(t) = R O(t)db+ R �(t)ds into (3.1.3):Z _O(t)db+ Z _�(t)ds = Z C(w(t))[O(t)db+ �(t)ds] + Z R(w)ds

= Z C(w(t))O(t)db+ Z [C(w(t))�(t) +R(w)]ds
Thus w(t) satis�es (3.1.3) in the Bp-norm if and only if its kernels (O(t); �(t))satisfy (3.1.4) in the Sp-norm.
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Uniqueness. Let S denote the set of functions w : J ! B1Rn with thefollowing properties:

1. w(t) is B1�-di�erentiable, with _w(t) B1�-Lipschitz,
2. w(0) = wo, and there exists a constant Co = Co(c1; c2; T1; kwokB1) suchthat kw(t)kB1 � Co for all t 2 J , Recall that c1; c2 and T1 are de�ned inNotation 3.1.1.
3. kO(t)kS1 � kOokS1eT1 ; where w(t) = R O(t)db+ R �(t)ds:

Notice that any solution w(t) = R O(t)db + R �(t)ds to (3.1.3) in theSp-topologies will automatically be in S: Indeed, by an argument similar to [8]Prop. 6.3, p. 331, w(t) is B1�-di�erentiable, with ddtw(t) being B1�-Lipschitz,and there is a version of w(t) which satis�es (3.1.3) in the pointwise sense ofDe�nition 3.1.3. Thus by Cor. 3.1.8 below, we also have kO(t)kS1 � kOokS1eT1and kw(t)kB1 � Co for all t 2 J: Therefore w 2 S:De�ne L(w)(t) � �w(t) = R �O(t)db+ R ��(t)ds for all w 2 S; where �O and�� are the unique pointwise solutions to the ordinary di�erential equations:
_�O(t) = C(w(t)) �O(t) with �O(0) = Ooand _��(t) = C(w(t))��(t) +R(w(t)) with ��(0) = �o (3.1.5)

given by �xing versions C(t) and R(t) of C(w(t)) and R(w(t)) which are P -a.s.C1;0 in (t; s), via Lemma 3.1.4. Here we have solved the equations for each �xed! 2 
 and s 2 [0; 1]: Thus the map (t; s)! ( �O(t; s); ��(t; s)) is also C1;0 P -a.s.By Lemma 3.1.7 below, k �O(t)kS1 � kOokS1eT1 and k �w(t)kB1 � Co forall t 2 J: Also, by an argument similar to Cor. 6.2, p. 330 [8], �w(t) is B1�-di�erentiable, with ddt �w(t) being B1�-Lipschitz. Hence L preserves S:Claim: If w : J ! B1Rn is a solution to (3.1.3) with w(0) = wo; thenw is a �xed point for L in the sense that
P (fL(w)(t) = w(t) for all t 2 Jg) = 1:
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(We will use this property of L in the uniqueness argument below.)

Proof of claim. By an argument similar to the proof of Proposition 6.3p. 331 in [8], if O(t) and �(t) are Sp solutions to (3.1.4) then we may chooseversions which are solutions in the pointwise sense. Thus solving (3.1.5) withw(t) = R O(t)db+ R �(t)ds yields ( �O(t); ��(t)) = (O(t); �(t)) P -a.s.Indeed, if �C(t) is the version of C(w(t)) chosen in solving (3.1.5), andC(t) = A(t) + T (t) as in De�nition 3.1.2, then �C(t) = C(t) for all s 2 [0; 1] ona set 
1 � 
 of full measure since both are P -a.s. jointly continuous versions ofC(w(t)): Thus if 
0 � 
 as in Def. 3.1.2, then
�O(t)(!; s) = O(t)(!; s)

for all ! 2 
0 \ 
1 (a set of full measure) and s 2 [0; 1].Claim: There is a constant K = K(p; Co; kC(0)kS1 ; kR(0)kS1) suchthat kL(w)(t)� L(w)(�)kBp � Kjt� � j (3.1.6)
for all t; � 2 J and w 2 S:Proof of Claim. First note that by the \Lipschitz" conditions (3.1.2) on C, for any~w 2 B1Rn with k ~wkB1 � Co there exists a constant K = K(p; Co; kC(0)kS1)(which will vary from place to place) such that

kC( ~w)kSp � kC( ~w)� C(0)kSp + kC(0)kSp� Kpk ~wkBp + kC(0)kSp� K (3.1.7)
Let C(t) be a version of C(w(t)) which is P -a.s. C1;0 in (t; s) via Lemma3.1.4, and let 0 < � < t: Then P -a.s.

j �O(t)� �O(�)j � p:w: Z t� jC(r)jj �O(r)jdr� Cop:w: Z t� jC(r)jdr:
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It follows that

k �O(t)� �O(�)kSp � Cokp:w: Z t� jC(r)jdrkSp� Co Z t� kC(r)kSpdr by Lemma 2.1.11
� Kjt� � j:

Similarly, using the \Lipschitz" conditions on C and R (3.1.2) there exists K =K(p; Co; kC(0)kS1 ; kR(0)kS1) such that
k��(t)� ��(�)kSp � Kjt� � j:

Claim: There is a constant Kp independent of w1 and w2 in S such that
kL(w1)(t)� L(w2)(t)kBp � Kpj Z t

0 kw1(�)� w2(�)kBpd� j (3.1.8)
for all t 2 J:Proof of Claim.Let �wi = L(wi) and write �wi(t) = R �Oi(t)db+ R ��i(t)ds for i = 1; 2: Assume t > 0:(The case for t < 0 is similar.) By [8] Lemma 6.1(ii) there exists a constantK = Kp(wo; T1) such that P -a.s.

j �O1(t)(s)� �O2(t)(s)j � K Z t
0 jC(w1(�))(s)� C(w2(�))(s)jd�:

Thus by the \Lipschitz" conditions on C (3.1.2), there existsK = Kp(wo; T1; c1; c2)such that
k �O1(t)(s)� �O2(t)(s)kSp� K Z t

0 kC(w1(�))� C(w2(�))kSpd� by Lemma 2.1.11
� K Z t

0 kw1(�)� w2(�)kBpd�:
Similarly, using the \Lipschitz" bounds on C and R (3.1.2), there exists K =Kp(wo; T1; c1; c2) such that

k��1(t)(s)� ��2(t)(s)kSp � K Z t
0 kw1(�)� w2(�)kBpd�:



21
This proves the claim.Let L(n) denote \L composed with itself n times". Iterating (3.1.8), weobtain kL(n)(w1)(t)� L(n)(w2)(t)kBp � 2CoKn jtjnn! (3.1.9)
since supt2J kw1(t)� w2(t)kBp � 2Co:This gives uniqueness: if w1 and w2 are both solutions to (3.1.3) then forall n; L(n)(wi) = wi; so (3.1.9) shows kw1(t) � w2(t)kBp � 2CoKn tnn! , which tendsto zero as n!1:Note that (iii) follows from the uniqueness of the pointwise solution.Existence.Let w0 : J ! B1Rn be de�ned by w0(t) = wo for all t 2 J; and de�newn = L(n)(w0) for all n: Then by (3.1.9),

kwn+1(t)� wn(t)kBp = kL(n)(w1)(t)� L(n)(w0)(t)kBp

� 2CoKn tnn!
Since P1n=0 2CoKn tnn! < 1, this shows that fwng is Bp-Cauchy uniformly in t; sow(t) � Bp- limn!1wn(t) exists uniformly in t; and is Bp-continuous.For each t 2 J , wn(t)(s)! w(t)(s) uniformly in s P -a.s., by the followingargument.

E( 1Xn=0
sup0�s�1 jwn+1(t)(s)� wn(t)(s)j)

= 1Xn=0
E( sup0�s�1 jwn+1(t)(s)� wn(t)(s)j)

� 1Xn=0
k sup0�s�1 jwn+1(t)(s)� wn(t)(s)jkLp(P)

= 1Xn=0
kwn+1(t)� wn(t)kSp

� 1Xn=0
kwn+1(t)� wn(t)kBp <1:
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Let 
0 = f! 2 
jP1n=0 sup0�s�1 jwn+1(t)(s) � wn(t)(s)j < 1g; then P (
0) = 1and wn(t)(s) ! w(t)(s) uniformly in s on 
0: Thus for each t 2 J , the maps! w(t)(s) is P -a.s. continuous.Since kwn(t)kB1 � Co for all n; we have kw(t)kB1 � Co for all t 2 J:Also, since wn is B1�-Lipschitz with Lipschitz constant independent of n; w isB1�-Lipschitz as well. By Kolmogorov's Lemma (Lemma 8.1.3), there exists aversion of w such that the function (s; t)! w(t)(s) is jointly continuous P -a.s.Existence of a Solution in B1�:Now we will show that w is B1�-di�erentiable, and satis�es (3.1.3).Fix p 2 [2;1): Write the above iterates as wn(t) = R On(t)db+ R �n(t)ds.By (3.1.6) and the \Lipschitz" property of C (3.1.2) the function� ! C(wn(�))On+1(�) is S1�-Lipschitz, and hence S1�-integrable.Claim:

On+1(t)�Oo = Z t
0 C(wn(�))On+1(�)d� P -a.s. (3.1.10)

Proof of claim. Let Cn(t) be a P -a.s. C1;0 version of C(wn(t)) for all n: Then byapplying the Fundamental Theorem of Calculus pointwise,
On+1(t)�Oo = p:w: Z t

0 Cn(�)On+1(�)d� P -a.s.
We need to show that this pointwise integral is indistinguishable from the S1�-integral in (3.1.10).To do this, �x p 2 [2;1) and let q(t) = R t0 C(wn(�))On+1(�)d� (wherethe integral is taken in the Sp-topology). Then _q(t) = ddtq(t) is S1�-Lipschitz, soby Lemma 8.1.4 there exists a version ~q(t) of q(t) such that P -a.s. the function(t; s)! ~q(t)(s) is C1;0: Thus P -a.s. _~q(t) � ddt ~q(t) exists and

_~q(t) _=C(wn(t))On+1(t) _=Cn(t)On+1(t)
where _= denotes equality up to P -equivalence. This impliesZ t

0 C(wn(�))On+1(�)d� _= ~q(t)
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_= ~q(0) + p:w: Z t

0
_~q(�)d�

_= p:w: Z t
0
_~q(�)d�

_= p:w: Z t
0 Cn(�)On+1(�)d�_= On+1(t)�Oo

which proves the claim.Now the right-hand side of (3.1.10) converges to R t0 C(w(�))O(�)d� in theSp-norm since
k Z t

0 [C(wn(�))On+1(�)� C(w(�))O(�)]d�kSp
� Z t

0 kC(wn(�))On+1(�)� C(w(�))O(�)kSpd�
� Z t

0 kC(wn(�))� C(w(�))kSpkOn+1(�)kS1d�
+ Z t

0 kC(w(�))kSrkOn+1(�)�O(�)kSr0d� by Lemma 8.1.5
� K Z t

0 kwn+1(�)� w(�)kBr0d� by (3.1.7) and (3.1.2)
and kwn+1(�) � w(�)kBr0 ! 0 uniformly in � as n ! 1. Here we are using
1p = 1r + 1r0 and K = K(p; Co;kC(0)kS1):Since the left-hand side of (3.1.10) converges to O(t)�Oo in the Sp-norm,we have O(t) = Oo + Z t

0 C(w(�))O(�)d�:
So by the Fundamental Theorem of Calculus for Sp-integrals (Lemma 2.1.14 in theAppendix), O(t) is Sp-di�erentiable and _O(t) = C(w(t))O(t): A similar argumentshows that � is Sp-di�erentiable and satis�es (3.1.4).Using an argument similar to [8] Proposition 6.3, p. 331, we have (1)w : J ! B1Rn is B1�-di�erentiable, with _w being B1�-Lipschitz, and (2) thereexists a version of w which satis�es (3.1.3) in the pointwise sense of De�nition3.1.3. Q.E.D.
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Lemma 3.1.6 Suppose that (T; d) is a separable metric space and fR(t)gt2T is aRn-valued P -a.s. continuous process. Set R� � supt2T jR(t)j. Then

kR�kL1(P ) = supt2T kR(t)kL1(P ): (3.1.11)
Proof. First notice that jR(t)j � R� so that kR(t)kL1(P ) � kR�kL1(P ) and hence

supt2T kR(t)kL1(P ) � kR�kL1(P ): (3.1.12)
For the opposite inequality, let D � T be a countable dense subset of T: With-out loss of generality we may assume that supt2T kR(t)kL1(P ) < 1: Let � =supt2T kR(t)kL1(P ); so � � kR(t)kL1(P ) for each t 2 T: Hence for each t 2 T;P (jR(t)j � �) = 1: Therefore

P (jR(t)j � � for all t 2 D) = P (\t2DfjR(t)j � �g) = 1:
Now using the continuity of R(t); it follows that

fjR(t)j � � for all t 2 Dg = fjR(t)j � � for all t 2 Tg:
Combining the two equations above shows that

P (R� � �) = P (jR(t)j � � for all t 2 T ) = 1;
that is kR�kL1(P ) � supt2T kR(t)kL1(P ): (3.1.13)

Clearly Eqs. (3.1.12) and (3.1.13) imply the lemma. Q.E.D.
Lemma 3.1.7 Let the function (C;R) : B1Rn ! S1�End(Rn) � S1�Rn andthe constants c1; c2; and T1 be as given in Notation 3.1.1. Let w : J ! B1Rn beB1�-di�erentiable, with _w(t) = ddtw(t) B1�-Lipschitz. Suppose that kO(t)kS1 �kO(0)kS1eT1 for all t 2 J; where w(t) = R O(t)db + R �(t)ds: Set w(0) = wo =ROodb+ R �ods 2 B1Rn:
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Let �O and �� be the unique pointwise solutions to the ordinary di�erentialequations (3.1.5): _�O(t) = C(w(t)) �O(t) with �O(0) = Oo

and _��(t) = C(w(t))��(t) +R(w(t)) with ��(0) = �o
given by �xing versions (via Lemma 3.1.4) of C(w(t)) and R(w(t)) which are P -a.s. C1;0 in (t; s). (Here we have solved the ordinary di�erential equations for eachsample point ! 2 
 and each s 2 [0; 1]:)Then k �O(t)kS1 � kOokS1eT1 for all t 2 J , and there exists a constantCo = Co(c1; c2; T1; kwokB1) such that k �O(t)kS1 + k��(t)kS1 � Co for all t 2 J .
Proof. We will follow the proof of [8] Corollary 6.1, p. 327. By [8] Lemma 6.1,p. 325 we have for P -a.e. ! and all s 2 [0; 1] and t 2 J ,

j �O(t)(!)(s)j � supt2J j �O(t)(!)(s)j� j �O(0)(!)(s)jeT1 :
It follows that k �O(t)kS1 � k �O(0)kS1eT1 for all t 2 J: (3.1.14)

Also, by [8] Lemma 6.1, p. 325:
supt2J j��(t)(!)(s)j � [j��(0)(!)(s)j+ supt2J jR(t)(!)(s)j]eT1 :

Thus
supt2J k��(t)kS1 � k supt2J ��(t)kS1� [k��(0)kS1 + k supt2J jR(t)jkS1 ]eT1� [k��(0)kS1 + ess sup!2
 sups2[0;1] supt2J jR(t)(!)(s)j]eT1� [k��(0)kS1 + sup

s2[0;1]t2J ess sup!2
 jR(t)(!)(s)j]eT1
� [k��(0)kS1 + supt2J ess sup!2
 sups2[0;1] jR(t)(!)(s)j]eT1
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� [k��(0)kS1 + c1 supt2J kO(t)k2S1 + c2]eT1� [k�okS1 + c1 supt2J kOok2S1e2T1 + c2]eT1

where we have used Lemma 3.1.6 in the fourth and �fth lines on the P -a.s. con-tinuous functions (t; s)! R(t)(s) and s! R(t)(s) for �xed t 2 J .Combining these results, we have
supt2J k �O(t)kS1 + supt2J k��(t)kS1 � Co

where Co = [kwokB1 + c1 supt2J kOok2S1e2T1 + c2]eT1 :
Q.E.D.

Corollary 3.1.8 Let the function (C;R) : B1Rn ! S1�End(Rn) � S1�Rn
and the constants c1; c2; and T1 be as given in Notation 3.1.1. Let O and � besolutions to (3.1.4) in the pointwise sense of De�nition 3.1.2.Then kO(t)kS1 � kOokS1eT1 for all t 2 J , and there exists a constantCo = Co(c1; c2; T1; kwokB1) such that kO(t)kS1 + k�(t)kS1 � Co for all t 2 J .
Proof. The proof is essentially the same as for Lemma 3.1.7 above. The di�er-ence is that in the last line of the estimate on supt2J k��(t)kS1 we should now use(3.1.14). Q.E.D.

3.2 Driver's Flows in Wiener Space

Here we will see that the \ows" on semimartingales from Section 3.1induce ows in path space which preserve Wiener measure. The additional as-sumption required on the vector �elds in Theorem 3.1.5 to obtain these ows inW (Rn) is that the function T take values in S1�so(n); not S1End(Rn): Thiscondition corresponds to the \Torsion Skew-Symmetry" assumption of Driver. We
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will outline Driver's proof, generalizing his result to our \nongeometric" case (inwhich the vector �elds do not depend on the manifold M).
Notation 3.2.1 Given a �nite-dimensional vector space V;

1. Let Hs(V ) = �f�r : 0 � r � sg where �r : W (V ) ! V is the coordinatefunction de�ned by �r(!) = !(r) for all ! 2 W (V ).
2. Let �HQ be the completion of H1(V ) with respect to some measure Q: (Theextension of Q to �HQ will still be called Q).
3. Denote by f �HQs g the completion of the �ltration fHs(V )g with respect to Q:So �HQs = �(Hs(V )[N (Q)) where N (Q) � fN 2 �HQ; Q(N) = 0g; the set ofQ-null sets.
4. Let �HQs+ � T�>0 �HQs+�:

With this de�nition, f �HQs+gs�0 is a right-continuous, complete �ltrationwith respect to Q on W (V ); thus (W (V ); f �HQs+g; �HQ1 ; Q) is a probability space sat-isfying the usual hypothesis (Notation 2.1.1).Let � denote standard Wiener measure onW (Rn); and equip the probabil-ity space (W (Rn); f �H�s+g; �) with reference Brownian motion �b de�ned by �bs(!) =!(s) for all ! 2 W (Rn) and s 2 [0; 1]:
Notation 3.2.2 Let T : B1Rn ! S1�so(n) in Theorem 3.1.5, and let �w : R!B1Rn be the solution to (3.1.3) with �w(0) = �b (see Notation 3.2.1). Here theunderlying probability space is (W (Rn); f �H�s+g; f�b(s)g; �):De�ne ( �O; ��) by �w(t) = R �O(t)d�b+R ��(t)ds: Since C( �w(t)) is �-a.s. so(n)-valued, �O(t) is �-a.s. O(n)-valued by Lemma 8.1.1.We may choose a version such that the function(t; s) ! ( �w(t)(s); �O(t)(s); ��(t)(s)) is �-a.s. C1;0 by Lemma 8.1.4, since ddt �w(t) isB1�-Lipschitz ([8] Proposition 6.3).
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For each t 2 R; de�ne ~w(t) : W (Rn) ! W (Rn); ~O(t) : W (Rn) !W (O(n)) and ~�(t) : W (Rn) ! W (Rn); by ~w(t) = �w(t); ~O(t) = �O(t) and ~�(t) =��(t):

Remark 3.2.3 Notice that ~w(t) solves (3.1.3) with~w(0) � id 2 Maps(W (Rn);W (Rn)): Equivalently, ( ~O(t); ~�(t)) solve (3.1.4) with~O(0) � id 2 O(n) and ~�(0) � 0 2 Rn:
Theorem 3.2.4 Let wo = R Oodb + R �ods 2 B1Rn with Oo an O(n)-valuedprocess and k�okS1 <1: Assume T : B1Rn ! S1�so(n) in Theorem 3.1.5, andlet w : R! B1Rn be the solution to (3.1.3) with w(0) = wo: Then for each t 2 R;

1. w(t) = R O(t)db + R �(t)ds where O(t) is an O(n)-valued process and thereexists a constant Co = Co(c1; c2; k�okS1) such that k�(t)kS1 � Co <1;
2. the law of w(t) is equivalent to �; Wiener measure on W (Rn); and
3. if � is the Radon-Nikodym derivative � � d(w(t)�P )d� ; then �r is �-integrablefor all r 2 R:

Proof. We will restrict t to a compact interval J which for de�niteness will betaken as [�1; 1]: Write w(t) = R O(t)db+ R �(t)ds; then O and � satisfy equations(3.1.4): _O(t) = C(w(t))O(t)
and _�(t) = C(w(t))�(t) +R(w(t))

with O(0) = Oo and �(0) = �o: Since A(w(t)) and T (w(t)) are so(n)-valuedprocesses, so is C(w(t)) = A(w(t)) + T (w(t)):Recall that (O(t); �(t)) is a solution to (3.1.4) in the pointwise sense ofDe�nition 3.1.2, so O(t) is O(n)-valued P -a.s. since for �xed s and !; _O(t)(!)(s) =C(t)(!)(s)O(t)(!)(s) is a �nite-dimensional linear ordinary di�erential equation,with C(t)(!)(s) 2 so(n): (C(t) is the version of C(w(t)) given in De�nition 3.1.2).
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Also, by Lemma 3.1.7 we may choose a version of �(t) such that j�(t)j1 =sup0�s�1 j�(t)(s)j � Co <1 (independent of t 2 J). Thus P (R 10 j�(s)j2ds � C2o ) =1; so we may apply Girsanov's Theorem (Lemma 8.1.2) to conclude that the lawof w(t) is equivalent to � for all t 2 J .The fact that �r is �-integrable for all r 2 R follows from [8] Corollary8.1, p. 349. Q.E.D.

Theorem 3.2.5 Let (
; fFsg; P ) be a �ltered probability space satisfying the usualhypothesis, equipped with an Rn-valued Brownian motion b(s):Let ~w(t) : W (Rn) ! W (Rn) be as de�ned in Notation 3.2.2. Let wo =R Oodb+ R �ods 2 B1Rn with Oo an O(n)-valued process and k�okS1 <1; as inTheorem 3.2.4. Let w : R ! B1Rn be the solution to (3.1.3) with w(0) = wo asgiven by Theorem 3.1.5, where T : B1Rn ! S1�so(n).Then for each t 2 R; w(t) is P -indistinguishable from ~w(t) � wo:
Proof. By Theorem 3.2.4(i), we have the hypotheses of Girsanov's Theoremsatsi�ed by ~w(t) on (W (Rn); f �H�s+g; f�b(s)g; �); and by w(t) on (
; fFsg; fb(s)g; P );since the sup-norm bound implies an L2 bound on ~�(t) and �(t) respectively.Thus we have both ~w(t)�� � �b�� = � and w(t)�P � b�P = �; where � meansequivalence.Since wo : 
 ! W (Rn) is an adapted process, we have for all s 2 [0; 1];w0(s) is Fs=B(Rn)-measurable, i.e., wo(s) 2 Fs=B(Rn), where B(Rn) denotes theBorel sets on Rn: But wo(s) = �bs � wo; thus

wo(s) 2 Fs=B(Rn)
, �bs � wo 2 Fs=B(Rn)
, wo 2 Fs=Hs since f�brg0�r�s generate Hs:

Claim: wo is Fs= �H�s+-measurable for all s 2 [0; 1]:
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First note that if N 2 N (�) then �(N) = 0; and hence P � w�1o (N) =0 since wo�P � �: Thus w�1o (N) 2 Fr for all r � 0 since Fr contains all P -nullsets. Thus for each � > 0, wo 2 Fs+�=N (�); and since wo 2 Fs+�=Hs+� we havewo is Fs+�=�(Hs+� [ N (�))-measurable. Let B 2 �H�s+ = T�>0 �(Hs+� [ N (�)):Then w�1o (B) 2 Fs+� for all � > 0; hence w�1o (B) 2 T�>0Fs+� = Fs by rightcontinuity. This proves the claim.Thus since ~w(t) : W (Rn)! W (Rn) is �H�s+= �H�s+-measurable, the process~w(t) � wo is Fs= �H�s+-measurable for all s 2 [0; 1]: By [8] Proposition 8.2, p. 352,~w(t) � wo is P -indistinguishable fromZ ~O(t) � wodwo + Z ~�(t) � wods

= Z ~O(t) � wo � Oodb+ Z [ ~O(t) � wo � �o + ~�(t) � wo]ds
Set O(t) = ~O(t) � wo � Oo and �(t) = ~O(t) � wo � �o + ~�(t) � woClaim: O(t) and �(t) are S1�-continuously di�erentiable and solve(3.1.4) with O(0) = Oo and �(0) = �o:With this claim we have

w(t) = Z O(t)db+ Z �(t)ds _= ~w(t) � wo
by the uniqueness assertion in Theorem 3.1.5, thus proving the theorem.To prove the claim we will need the following lemma:
Lemma 3.2.6 Keeping the same notation as in Theorem 3.2.5, let Z : W (Rn)!W (RN) be a �H�1=H1(RN)-measurable process. Then for each p 2 [2;1) and eachr 2 (2;1) there is a constant C = C(r; p) independent of Z such that

kZ � wokSp(P ) � CkZkSr(�)
Proof. Let � � d(wo�P )d� , then

kZ � wokSp(P ) = kZkSp(wo�P )
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= kZkSp(��)= [Z (Z�� 1p )pd�] 1p
= kZ�� 1pkLp(�)� k�kLr0 (�)kZkSr(�)

where 1r0 = 1p � 1r : Set C � k� 1pkLr0 (�) which is �nite by [8] Corollary 8.1, p. 349.Q.E.D. (Lemma)
Now since the functions t! ~O(t) and t! ~�(t) are S1�(�)-continuouslydi�erentiable, it is clear from the above lemma that t ! ~O(t) � wo and t !~�(t) � wo are S1�(P )-continuously di�erentiable with derivatives _~O(t) � wo and_~�(t) � wo respectively. This implies that t! O(t) and t! �(t) are also S1�(P )-continuously di�erentiable with

_O(t) = _~O(t) � wo � Oo and_�(t) = _~O(t) � wo � �o + _~�(t) � wo:
To �nish the proof we will show that O(t) and �(t) solve (3.1.4), that is,

_O(t) = C(ŵ(t))O(t)and _�(t) = C(ŵ(t))�(t) +R(ŵ(t)) (3.2.1)
with O(0) = Oo and �(0) = �o where ŵ(t) � R O(t)db+ R �(t)ds:First note that since ~O(0) = id 2 O(n) and ~�(0) � 0 2 Rn (see Remark3.2.3) we have O(0) = Oo and �(0) = �o:Let �C and �R be continuous versions of C(b) and R(b) respectively, sowe may view �C : W (Rn) ! W (so(n)) and �R : W (Rn) ! W (Rn): These arefunctions which \implement" C : B1Rn ! S1�so(n) and R : B1Rn ! S1Rn
in the following sense. Let Z = R Odb+ R �ds 2 B1Rn with O being O(n)-valuedand k�kS1 < 1 �C � Z and �R � Z are indistinguishable from C(Z) and R(Z) byGirsanov's Theorem (Lemma 8.1.2) and [8] Proposition 8.2, p. 352.
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We can now easily verify (3.2.1). By de�nition we have _~O(t) = [ �C �~w(t)] ~O(t) and hence

_O(t) = _~O(t) � wo � Oo= �C � ~w(t) � wo| {z }ŵ(t) � ~O(t) � wo � Oo| {z }O(t)= C(ŵ(t))O(t):
Similarly, by de�nition, _~�(t) = �C � ~w(t)~�(t) + �R � ~w(t) and thus

_�(t) = _~O(t) � wo � �o + _~�(t) � wo= �C � ~w(t) � wo| {z }ŵ(t) � ~O(t) � wo � �o + ~�(t) � wo| {z }�(t)+ �R � ~w(t) � wo| {z }ŵ(t)= C(ŵ(t))�(t) +R(ŵ(t))
This proves the claim and the theorem. Q.E.D.
Remark 3.2.7 Notice that the notion of a solution to (3.1.3) (with derivativetaken in B1�) is independent of the particular choice of a reference Brownianmotion. This follows from the fact that the Sp-norm of a process is invariantunder multiplication by an O(n)-valued process (Lemma 4.2.3). Any Rn-valuedBrownian motion (B) on (W (Rn); f �H�s+g; �) must be of the form B = R Od�b;where O is a predictable O(n)-valued process. (See [41] Theorem 42, p. 155.)
Theorem 3.2.8 ([8] Theorem 8.4). Suppose ~w; ~O; and ~� are as in Notation3.2.2. Then ~w is a ow on W (Rn) which leaves Wiener measure � quasi-invariant.More explicitly,

1. for all t; � 2 R; ~w(t+ �) = ~w(t) � ~w(�) �-a.s., and
2. d( ~w(t)��)d� = Z(t) where
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Z(t) = expf� Z 1
0 ~�(�t) � ~O(�t)d�b� 12 Z 1

0 j~�(�t)(s)j2dsg:
Proof.
1. By Theorem 3.2.4, we may take ( �O; ��) such that �O(t) is an O(n)-valuedprocess and k��(t)kS1 � Co < 1: Thus �xing � 2 R and setting wo =~w(�) (= �w(�)) and (
; fFsg; P ) = (W (Rn); f �H�s+g; �) in Theorem 3.2.5 wehave w(t) � ~w(t) � ~w(�) solves (3.1.3) with w(0) = ~w(�): But the functiont ! ~w(t + �) also solves (3.1.3) with the same initial condition. Thus byuniqueness of solutions (Theorem 3.1.5), we have ~w(t + �) = ~w(t) � ~w(�)�-a.s.
2. Note that k��(t)kS1 � Co implies P (R 10 j��(t)(s)j2ds � C2o ) = 1. By Gir-sanov's Theorem (Lemma 8.1.2), with P = �; b = �b; and w = ~w(t); (andhence Z1 = Z(�t)), we have

� = �b�� = ~w(t)�[Z(�t) � �], thus
�(f) = �(f � �b) = �(Z(�t)f � ~w(t))

for all bounded measurable functions f : W (Rn)! R: Letting f ! f� ~w(�t)we �nd
�(f � ~w(�t)) = �(Z(�t)f � ~w(�t) � ~w(t)) = �(Z(�t)f) (3.2.2)

since by part (i), f � ~w(�t) � ~w(t) = f �-a.s. Replacing t by �t in (3.2.2),
�(f � ~w(t)) = �(Z(t)f)

which implies d( ~w(t)��)d� = Z(t):
Q.E.D.



Chapter 4

Existence and Uniqueness for the

\Formal" Equation

4.1 Derivation of the Formal Equation for the

Di�erential of the Flow

In this chapter and the next we will prove the existence of di�erentials ofDriver's ows on semimartingales (Section 3.1). This \machine" will then be usedin Section 5.4 to obtain di�erentials of the quasi-invariant ows in the path spaceW (Rn) (from Section 3.2).The following notation will be used throughout this chapter and the next.These are the same as in 3.1.5 except that now C will take values in S1�so(n); notS1�End(Rn): This assumption facilitates many of the calculations in this sectionand the next, but the results in these sections hold in the more general case aswell.
Notation 4.1.1 In this chapter we return to the abstract underlying �ltered prob-ability space (
; fFsg;F ; P ); satisfying the usual conditions, with reference Brow-nian motion b.Fix C : B1Rn ! S1�so(n); R : B1Rn ! S1Rn; X : B1Rn !

34
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B1�Rn; w : R ! B1Rn O : R ! S1O(n) and � : R ! S1Rn satisfyingthe following conditions as in Theorem 3.1.5. (Let p; p1; p2 2 [2;1) be such that
1p1 + 1p2 = 1p :)
1. C and R are S1�-di�erentiable (see De�nition 2.1.9), and for all w; ~w 2B1Rn and v 2 B1�Rn;

kvwCkSp � KkvkBp andkvwC � v ~wCkSp � Kkw � ~wkBp1kvkBp2
(4.1.1)

similarly kvwRkSp � KkvkBp andkvwR� v ~wRkSp � Kkw � ~wkBp1kvkBp2
(4.1.2)

where K = K(n; p1; p2; �Kw; �K ~w):
2. There exist constants c1 and c2 such that

kR(w)kS1 � c1kOk2S1 + c2 for all w = Z Odb+ Z �ds 2 B1Rn:
3. kC(0)kS1 <1.
4. X : B1Rn ! B1�Rn is de�ned by

X(w) � Z C(w)dw + Z R(w)ds for w 2 B1Rn:
5. w : R! B1Rn is the B1�-di�erentiable solution to the equation (3.1.3):

_w(t) = X(w(t))
given by Theorem 3.1.5 with w(0) = wo = R Oodb + R �ods in the space ofpaths fw : R! B1Rnj supjtj<T kw(t)kB1 <1 8T > 0g:
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6. (O;�) : R! S1End(Rn)�S1Rn is de�ned by w(t) = R O(t)db+R �(t)ds:That is, (O;�) is the unique S1�-di�erentiable solution to the equations(3.1.4):

_O(t) = C(w(t))O(t)
and _�(t) = C(w(t))�(t) +R(w(t))

with O(0) = Oo and �(0) = �o; in the space of paths
f(O;�) : R! S1End(Rn)�S1Rnj supjtj<T [kO(t)kS1+k�(t)kS1 ] <1 8T > 0g:

Notation 4.1.2 For the following we write the solution to the equation _w(t) =X(w(t)) as a function of its starting point, so w(t; wo) denotes the solution toequation (3.1.3):
_w(t; wo) = X(w(t; wo)) with w(0; wo) = wo 2 B1Rn:

We also extend this notation to O and �; so that O(t; wo) and �(t; wo)are de�ned by w(t; wo) = Z O(t; wo)db+ Z �(t; wo)ds:
The following theorem gives the main smoothness result in the semi-martingale setting.

Theorem 4.1.3 i) The functions O(t; �) : B1Rn ! S1End(Rn) and �(t; �) :B1Rn ! S1Rn are S1�-di�erentiable at wo. (See De�nition 2.1.9.)In particular, let  : J ! B1Rn be an admissible curve (Def. 2.1.7) with0 = wo, and let Y = ddt j0�: Then
[YwoO](t) � lim�!0 O(t;�)�O(t;wo)�and [Ywo�](t) � lim�!0 �(t;�)��(t;wo)� (4.1.3)

exist where the limits are taken in the SpEnd(Rn)- and SpRn-topologies for p 2
[2;1): Furthermore, Z(t) �

264 [YwoO](t)[Ywo�](t)
375 �

264 Z1(t)Z2(t)
375 satis�es the equation

_Z(t) = C(w(t))Z(t) + At(Z(t)) +K(t) with Z(0) = 0 (4.1.4)
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where At and K(t) are de�ned below.ii) The function w(t; �) : B1Rn ! B1Rn is B1�-di�erentiable at wo(see De�nition 2.1.9.)In particular, let  : J ! B1Rn and Y be as in i), then

[Ywow](t) � lim�!0
w(t; �)� w(t; wo)�exists where the limit is taken in the BpRn-topologies for p 2 [2;1): Furthermore,[Ywow](t) = ~Z(t) where

~Z(t) � Z s
0 Z1;�s(t)db(�s) + Z s

0 Z2;�s(t)d�s+ Z s
0 O�s(t)dY (�s): (4.1.5)

Notation 4.1.4 For D =
264 D1D2

375 an fFsg-adapted End(Rn) � Rn-valued con-
tinuous process, de�ne

At(D) �
264 C 0(w(t))hR D1db+ R D2dsiO(t)C 0(w(t))hR D1db+ R D2dsi�(t)

375
+

264 0R0(w(t))hR D1db+ R D2dsi
375 ;

and K(t) �
264 C 0(w(t))hR O(t)dY iO(t)C 0(w(t))hR O(t)dY i�(t) +R0(w(t))hR O(t)dY i

375 :
In this chapter we prove there exists a unique solution to the \formal"equation (4.1.4). This equation must be satis�ed by the di�erential (if it exists) ofthe ow, since (4.1.4) may be obtained by formally \di�erentiating" (3.1.4) via Y:We will now demonstrate this procedure.

Remark 4.1.5 By formally di�erentiating (3.1.4) via Y; we obtain (4.1.4). That
is, if Z1 = \YwoO" and Z2 = \Ywo�" then Z �

264 Z1Z2

375 satis�es Equation (4.1.4):
_Z(t) = C(w(t))Z(t) + At(Z(t)) +K(t) with Z(0) = 0:
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Equivalently,

_Z1(t) = C(w(t))Z1(t) + C 0(w(t))h ~Z(t)iO(t) with Z1(0) = 0 and (4.1.6)
_Z2(t) = C(w(t))Z2(t) + C 0(w(t))h ~Z(t)i�(t) +R0(w(t))h ~Z(t)i with Z2(0) = 0(4.1.7)where ~Z(t) is de�ned by (4.1.5).We �rst \di�erentiate" the equation _O(t) = C(w(t))O(t) by Y :ddt [Y O] = C(w)Y O + [Y C(w)]O

= C(w)Y O + C 0(w)hY wiO
= C(w)Y O + C 0(w)hZ Y Odb+ Z OdY + Z Y �dsiO:

For Z2 � \Y �" we start with the equation _� = C(w)� + R(w) and usethe same procedure to obtainddt(Y �) = C(w)Y �+ [Y C(w)]� + Y [R(w)]
= C(w)Y �+ C 0(w)hY wi� +R0(w)hY wi
= C(w)Y �+ C 0(w)hZ Y Odb+ Z OdY + Z Y �dsi�

+R0(w)hZ Y Odb+ Z OdY + Z Y �dsi:
Outline of Proof. To prove existence and uniqueness of solutions toequation (4.1.4), we will give proofs for three intermediate equations, each (essen-tially) adding in one more term in the formal equation.The �rst equation ((4.2.8) below)

_T (t) = C(w(t))T (t) with T (0) = I
is necessary in order to handle the unbounded operator C(w(t)): This result is givein Proposition 4.2.7.Secondly, in Proposition 4.3.4 we have a solution to the equation (4.3.10):

Q(t)(�) = I + Z t
0 L� (Q(�)(�))d�
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where Lt(D) � T (t)�1At(T (t)D) and I is the identity map on S1�(End(Rn) �Rn): Thirdly, we show in Lemma 4.4.3 that V (t) �R t0 Q(t)Q(r)�1T (r)�1K(r)dr solves (4.4.13):

_V (t) = Lt(V (t)) + T (t)�1K(t) with V (0) = 0:
Finally, we have (Theorem 4.4.4) that Z(t) � T (t)V (t) solves equation(4.1.4): _Z(t) = C(w(t))Z(t) + At(Z(t)) +K(t) with Z(0) = 0:

4.2 Step 1: The \T -equation" - with an Un-

bounded Skew-Symmetric Operator

In this section we isolate the term involving the skew-symmetric functionC: We will �rst obtain the O(n)-valued pointwise solution for the equation (4.2.8)
_T (t) = C(w(t))T (t) with T (0) = I:

Then we will show that this solution also satis�es the above equation with thederivative taken in the Sp-norm, for all p 2 [2;1):
Remark 4.2.1 The results in this section could be proved by a general argumentsimilar to the proof of Theorem 3.1.5, but in the current case the ow w(t) is alreadyknown to exist, and C(w) is so(n)-valued for all w 2 B1Rn: These conditions makeit possible to give a shorter proof of a di�erent style.

Notation 4.2.2 Let E � End(Rn)�Rn with norm de�ned by j(B; b)j = jBj+ jbj:De�ne multiplication by A 2 End(Rn) : A(B; b) � (AB;Ab) for all (B; b) 2 E :



40
Lemma 4.2.3 Let p 2 [2;1), then for D = (D1; D2) 2 SpE and G an O(n)-valued continuous adapted process, kDkSpE = kGDkSpE : This result also holds forD 2 SpEnd(Rn) and D 2 SpRn:
Proof. For �xed ! 2 
 and s 2 [0; 1] we have

jDi(s)(!)j = jG(s)Di(s)(!)j for i = 1; 2 (since G(s) 2 O(n) pointwise).
Thus kDkSp = k sup0�s�1 jD(s)jkLp(P )= k sup0�s�1 jG(s)D(s)jkLp(P )= kGDkSp :

Q.E.D.

Notation 4.2.4 Let C(t) be a version of C(w(t)) such that the mapping (t; s)!C(t; !)(s) is jointly continuous for all ! 2 
0 where 
0 � 
 with P (
0) = 1.Such a version exists by Kolmogorov's Lemma (Lemma 8.1.3) since C �w is S1�-Lipschitz (3.1.2).
Lemma 4.2.5 Let C : R ! S1�so(n) and 
0 � 
 be de�ned as in Notation4.2.4. Then there exists a unique pointwise solution to

_T (t; !)(s) = C(t; !)(s)T (t; !)(s) with T (0; !)(s) = I (4.2.8)
for all ! 2 
0. Moreover, the process s! Ts(t) is O(n)-valued for all t 2 J:
Proof. For �xed s 2 [0; 1] and !; (4.2.8) is a linear ordinary di�erential equationin �nite dimensions, so it has a unique solution. By Lemma 8.1.1, s! Ts(t) is anO(n)-valued process. Q.E.D.
Lemma 4.2.6 Let T (t) be the pointwise solution to (4.2.8) given in Lemma 4.2.5.Then kT (�)�T (t)kSp � Kjt�� j for all �; t 2 J and p 2 [2;1): In addition, T (t)�1
is Sp-Lipschitz in t: Here we are taking Sp = SpEnd(Rn):
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Proof. Fix p 2 [2;1), and let K = K(p; Co; kC(0)kS1) be a constant whichvaries from line to line (here and throughout this paper),

kT (�)� T (t)kSp = kp:w: Z �t ddr [T (r)]drkSp= kp:w: Z �t C(r)T (r)drkSp
� K Z �t kC(r)T (r)kSpdr by Lemma 2.1.11
= K Z �t kC(r)kSpdr by Lemma 4.2.3
� Kj� � tj by (3.1.7)

Also, T (t)�1 � T (�)�1Sp = T (�)�1[T (�)� T (t)]T (t)�1Sp= kT (�)� T (t)kSp by Lemma 4.2.3
� Kj� � tj:

Q.E.D.
Proposition 4.2.7 Let T (t) be the pointwise solution to (4.2.8) given in Lemma4.2.5. Then T (t) satis�es (4.2.8) with the derivative taken in the Sp-topologies forall p 2 [2;1):
Proof. Fix p 2 [2;1) and let p1 and p2 be such that 1p1 + 1p2 = 1p : Then

lim�!0k1� [T (t+ �)� T (t)]� C(t)T (t)kSp
= lim�!0k1� p:w: Z t+�t C(�)T (�)d� � C(t)T (t)kSp(by de�nition of the pointwise solution)
= lim�!0kp:w: Z t+�t [C(�)T (�)� C(t)T (t)]d�� kSp� lim�!0��1j Z t+�t kC(�)T (�)� C(t)T (t)kSpd� j by Lemma 2.1.11

Now
kC(�)T (�)� C(t)T (t)kSp � kC(�)[T (�)� T (t)]kSp+k[C(�)� C(t)]T (t)kSp
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Applying H�older's inequality to the �rst term we have

kC(�)[T (�)� T (t)]kSp � kC(�)kSp1kT (�)� T (t)kSp2� KkC(�)kSp1 j� � tj by Lemma 4.2.6
� Kj� � tj by (3.1.7)

For the second term we have
k[C(�)� C(t)]T (t)kSp = kC(�)� C(t)kSp (by Lemma 4.2.3)

� Kkw(�)� w(t)kBp (by (3.1.2))
� Kj� � tj since w is Bp-Lipschitz

Using these estimates we have
lim�!0k1� [T (t+ �)� T (t)]� C(t)T (t)kSp � Klim�!0

Z t+�t j� � tjd��= 0:
Q.E.D.

4.3 Step 2: The \Q-equation"

In this section the method of Piccard iterates will be used to prove thereexists a unique curve Q : J !Maps(S1�E ; S1�E) which is strongly di�erentiablein the following sense: for all D 2 S1�E , _Q(t)(D) � ddt [Q(t)(D)] exists in S1�;and which satis�es
_Q(t)(D) = Lt(Q(t)(D)) with Q(0)(D) = D (4.3.9)

for all D 2 S1�E where Lt(D) � T (t)�1At(T (t)D), T (t) is the solution to (4.2.8),and I is the identity map on S1�E . In addition, for each p 2 [2;1) there existsa unique extension �Q(t) of Q(t) such that �Q(t) : SpE ! SpE .
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Remark 4.3.1 In the proof below (Lemma 4.3.3) we will show that the mapt! Lt is continuous when Lt is viewed as an operator from Sp to Sq; where q > p:If we had the stronger condition that t! Lt 2 End(Sp) were continuous, we couldeasily conclude that there is a unique solution to (4.3.9). The fact that we do nothave this condition necessitates a more delicate proof. In particular, our conditionson Lt arise from the fact that p1 > p in (4.1.1). This is dictated by the applicationof this result in geometrical settings.
Lemma 4.3.2 Let At be de�ned as in Notation 4.1.4. For all p; q 2 [2;1) withq > p and t; � 2 J;i) At : SpE ! SpE and kAtkSpE!SpE � K for some K > 0 independent of t:ii) For all D 2 S1�E we have

kAt(D)� A� (D)kSpE � Kpjt� � jkDkSqE :
Proof of i). Let D = (D1; D2) 2 SpE and de�ne the Brownian semimartingaleMs � R s0 D1(�s)db(�s) + R s0 D2(�s)d�s: Then

kMkBp = kD1kSp + kD2kSp� KkDkSpE :
Here we are using the fact that

sup0�r�s jD1j+ sup0�r�s jD2j � 2 sup0�r�sfjD1j+ jD2jg:
Now

kAt(D)kSpE � kC 0(w(t))hMiO(t)kSpEnd(Rn)+kC 0(w(t))hMi�(t)kSpRn

+kR0(w(t))hMikSpRn

� kC 0(w(t))hMikSpRn

+kC 0(w(t))hMikSpRnk�(t)kS1Rn

+kR0(w(t))hMikSpRn
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� KkMkBpRn

� KkDkSpE :
where the third inequality follows from (4.1.1) and (4.1.2). Proof of ii). Let Dand M be as in the proof of i). Then

kAt(D)� A� (D)kSpE � kC 0(w(t))hMiO(t)� C 0(w(�))hMiO(�)kSp+kC 0(w(t))hMi�(t)� C 0(w(�))hMi�(�)kSp+kR0(w(t))hMi �R0(w(�))hMikSp
Let p2 = q and let p1 be such that 1p1 + 1p2 = 1p : Then

kC 0(w(t))hMiO(t)� C 0(w(�))hMiO(�)kSp� k[C 0(w(t))hMi � C 0(w(�))hMi]O(t)kSp+kC 0(w(�))hMi[O(t)�O(�)]kSp� kC 0(w(t))hMi � C 0(w(�))hMikSp by Lemma 4.2.3
+kC 0(w(�))hMikSp2kO(t)�O(�)kSp1 by Lemma 8.1.5
� Kkw(t)� w(�)kBp1kMkBp2 by (4.1.1)
� Kjt� � jkDkSp2E :

The second and third terms are similar, using supt2J k�(t)kS1 < 1 (Notation4.1.1). Q.E.D.
Lemma 4.3.3 Let T (t) be the solution to (4.2.8). For p 2 [2;1) and D 2 Sp �SpE de�ne Lt by Lt(D) � T (t)�1At(T (t)D): Theni) Lt 2 End(Sp); the space of bounded linear functions from Sp to Sp; andkLtkSp!Sp � Kp, a constant independent of t:ii) If t!D(t) is S1�-continuous (Lipschitz) then so is t! Lt(D(t)):iii) The map t! Lt 2 Hom(Sp; Sq) is Lipschitz for q > p:
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Proof of i). Clearly Lt is linear. Given D 2 Sp we have

kLt(D)kSp = kT (t)�1At(T (t)D)kSp= kAt(T (t)D)kSp by Lemma 4.2.3
� KkT (t)DkSp by Lemma 4.3.2
� KkDkSp by Lemma 4.2.3

Thus Lt : Sp ! Sp, with kLtkSp!Sp = supD 6=0 kLt(D)kSpkDkSp � K: Proof of ii). Letp 2 [2;1); and let p1 and p2 be such that 1p1 + 1p2 = 1p : We have
kLt(D(t))� L� (D(�))kSp � kT (t)�1At[T (t)fD(t)�D(�)g]kSp+kT (t)�1At[fT (t)� T (�)gD(�)]kSp+kT (t)�1(At � A� )[T (�)D(�)]kSp+k[T (t)�1 � T (�)�1]A� [T (�)D(�)]kSp� kAt[T (t)fD(t)�D(�)g]kSp by Lemma 4.2.3

+kAt[fT (t)� T (�)gD(�)]kSp+k(At � A� )[T (�)D(�)]kSp+kT (t)�1 � T (�)�1kSp2kA� [T (�)D(�)]kSp1by Lemma 8.1.5
� KkT (t)fD(t)�D(�)gkSp by Lemma 4.3.2

+KkfT (t)� T (�)gD(�)kSp+Kjt� � jkT (�)D(�)kSp1 by Lemma 4.3.2
+Kjt� � jkT (�)D(�)kSp1 by Lemma 4.2.6

� KkD(t)�D(�)kSp by Lemma 4.2.3
+Kjt� � jkD(�)kSp by Lemma 4.2.6
+Kjt� � jkD(�)kSp1

This expression tends to 0 as � ! t; since � ! kD(�)kSp and � !kD(�)kSp1 areboth continuous and therefore bounded for � near t:
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iii) This is proved by taking p1 = q and D(t) � D 2 Sq in the estimate above.Q.E.D.
Proposition 4.3.4 Let Lt 2 End(Sp) for all p 2 [2;1) be de�ned as in Lemma4.3.3. For all p 2 [2;1) there exists a unique solution Q : J !Maps(S1�E ; S1�E) to the integral equation

Q(t)(�) = I + Z t
0 L� (Q(�)(�))d� (4.3.10)

where I is the identity map on S1�E :That is, for each D 2 S1�E ; Q solves
Q(t)(D) = D + Z t

0 L� (Q(�)(D))d�
where the integral is an S1�E-integral (see Notation 2.1.13).Also, for each p 2 [2;1); t; � 2 J and D 2 S1�E we have

1. kQ(t)(D)kSp � KpkDkSp
2. kQ(t)(D)�Q(�)(D)kSp � KpkDkSp jt� � j
3. There exists a unique extension �Q(t) of Q(t) such that �Q(t) : SpE ! SpE.

Proof. Existence. For all D 2 S1�E de�ne Q0(t)(D) = D 2 S1�E ;and recursively de�ne
Qm+1(t)(D) � D + Z t

0 L� (Qm(�)(D))d� for m = 0; 1; 2; ::: (4.3.11)
where the integral is taken in S1�E :Note that by induction on m; the map t! Qm(t)(D) is S1�-continuousfor each D 2 S1�E . Indeed, if t ! Qm(t)(D) is S1�-continuous then byLemma 4.3.3, the map � ! L� (Qm(�)(D)) is also, so the S1�-integral exists by
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Lemma 2.1.12. By the Fundamental Theorem of Calculus for Sp- integrals (Lemma2.1.14), the map t! R t0 L� (Qm(�)(D))d� is S1�-di�erentiable, and therefore S1�-continuous.We have for each D 2 Sp;
kQm+1(t)(D)�Qm(t)(D)kSp � Z t

0 kL� (Qm(�)(D))� L� (Qm�1(�)(D))kSpd�
= Z t

0 kL� [Qm(�)(D)�Qm�1(�)(D)]kSpd�
� K Z t

0 kQm(�)(D)�Qm�1(�)(D)kSpd�by Lemma 4.3.3:
Iterating, we have

kQm+1(t)(D)�Qm(t)(D)kSp� Km R t0 R �10 � � � R �m�10 kQ1(�m)(D)�Q0(�m)(D)kSpd�m � � � d�1� Km R t0 R �10 � � � R �m�10 [kQ1(�m)(D)kSp + kQ0(�m)(D)kSp ]d�m � � � d�1� Km R t0 R �10 � � � R �m�10 kDkSp [2 + tK]d�m � � � d�1= Km tmm!kDkSp [2 + tK]:
The estimate in the third step comes from the following:
kQ1(�m)(D)kSp + kQ0(�m)(D)kSp = kD + Z �m

0 L� (D)d�kSp + kDkSp� 2kDkSp + �m sup0����m kL� (D)kSp� 2kDkSp + �mKkDkSp (by Lemma 4.3.3)
� kDkSp(2 + tK):

Thus kQm+1(t)(D)�Qm(t)(D)kSp � (2 + tK)Km tmm!kDkSp (4.3.12)
Summing, we have

1Xm=0
kQm+1(t)(D)�Qm(t)(D)kSp � 1Xm=0

Km tmm! [2 + tK]kDkSp
= [2 + tK]etKkDkSp :
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So fQn(t)(D)g1n=0 is Sp-Cauchy uniformly in t, thus Q(t)(D) � limn!1Qn(t)(D)exists where the limit is taken in the Sp-topology, uniformly in t: Also t! Q(t)(D)is Sp-continuous (as a uniform limit of continuous functions).Now let p; q 2 [2;1) with q < p, and let Q(t)(D) � limn!1Qn(t)(D) inSp as above, then

limm;n!1 kQm(t)(D)�Qn(t)(D)kSq� limm;n!1 kQm(t)(D)�Qn(t)(D)kSp= 0
So fQn(t)(D)g1n=0 is also Sq-Cauchy uniformly in t, so Qn(t)(D) !n!1 Q(t)(D)in Sq uniformly in t, and t ! Q(t)(D) is Sq-continuous. Since this holds for allp; q 2 [2;1) with q < p; we have t! Q(t)(D) is S1�-continuous.Now by (4.3.12) we have for all p 2 [2;1);

kQ(t)(D)kSp� kQo(D)kSp + 1Xk=0
kQk+1(t)(D)�Qk(t)(D)kSp

� [(2 + tK)etK + 1]kDkSp :
Also, since L1(P ) is dense in Lp(P ), S1 is dense in Sp; and hence S1� � S1 isalso dense in Sp: Thus the linear operator Q : S1� ! Sp has a unique extensionto a linear operator �Q : Sp ! Sp:Now we show that Q(t) satis�es (4.3.10). We have for all D 2 S1�E ;

Q(t)(D) = limn!1Qn(t)(D)
= limn!1[D + Z t

0 L� (Qn�1(�)(D))d� ]
= D + Z t

0 [L� ( limn!1Qn�1(�)(D))]d� (by uniform convergence)
= D + Z t

0 [L� (Q(�)(D))]d�:
Finally, we have for all D 2 S1�E ;
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kQ(t)(D)�Q(�)(D)kSp � Z t� kLr(Q(r)(D))kSpdr� KpkDkSp jt� � j by Prop. 4.3.3.
Uniqueness. SupposeQ(t) and S(t) are both solutions to (4.3.10). FixD 2 S1�Eand p 2 [2;1): Let f(t) � kQ(t)(D)� S(t)(D)kSp for all t 2 J: Then

f(t) = k Z t
0 fL� [Q(�)(D)]� Lt[S(�)(D)]gd�kSp

= k Z t
0 L� [Q(�)(D)� S(�)(D)]d�kSp (since L� is linear)

� Z t
0 [kL� [Q(�)(D)� S(�)(D)]kSp ]d�

� K Z t
0 kQ(�)(D)� S(�)(D)kSpd� (by Lemma 4.3.3)

= K Z t
0 f(�)d�:

By Gronwall's inequality (Lemma 8.1.7) with � = 0 we have f � 0: Since p 2 [2;1)is arbitrary we have Q(t)(D) = S(t)(D) in Sp for all t 2 J and p 2 [2;1); thusQ(t)(D) = S(t)(D) in S1� for all t 2 J . Q.E.D.
Lemma 4.3.5 Let Q(t) : S1�E ! S1�E be the solution to the integral equa-tion (4.3.10) as given by Proposition 4.3.4. i) For all D 2 S1�E, _Q(t)(D) �ddt [Q(t)(D)] exists in S1� and Q(t) satis�es (4.3.9):

_Q(t)(D) = Lt(Q(t)(D)) with Q(0)(D) = D:
ii) If the map t ! D(t) 2 S1�E is S1�E-di�erentiable, then so is the mapt! Q(t)D(t); and

ddt [Q(t)D(t)] = Lt(Q(t)D(t)) +Q(t) _D(t):
Proof. i) By Proposition 4.3.4, for all D 2 S1�E the map t ! Q(t)(D) isS1�-continuous, thus by Lemma 4.3.3 the map t ! Lt(Q(t)(D)) is also. Hence
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by the Fundamental Theorem of Calculus for Sp-integrals (Lemma 2.1.14), t !R t0 L� (Q(�)(D))d� is S1�-di�erentiable, and

ddt �D + Z t
0 L� (Q(�)(D))d�� = Lt(Q(t)(D)):

Thus for all D 2 S1�E , _Q(t)(D) � ddt [Q(t)(D)] exists in S1� and
_Q(t)(D) = Lt(Q(t)(D)) with Q(0)(D) = D:

ii) Let t 2 J and p 2 [2;1). We have
lim�!0kQ(t+ �)D(t+ �)�Q(t)D(t)� � [Lt(Q(t)D(t)) +Q(t) _D(t)]kSp

� lim�!0k [Q(t+ �)�Q(t)]D(t)� � Lt(Q(t)D(t))kSp
+lim�!0kQ(t)[D(t+ �)�D(t)� � _D(t)]kSp
+lim�!01�k[Q(t+ �)�Q(t)][D(t+ �)�D(t)]kSp :

The �rst term tends to zero by part i), and the second and third by the bound-edness and Lipschitz properties of Q (see Prop. 4.3.4 and the Sp-continuity of themap t! D(t): Q.E.D.

4.4 Step 3: Existence and Uniqueness for the

Formal Equation

In this section we use the solutions T (t) to (4.2.8) and Q(t) to (4.3.10),and Gronwall's inequality to obtain a unique solution to the equation (4.4.13)
_V (t) = Lt(V (t)) + T (t)�1K(t) with V (0) = 0:

Then by variation of parameters, we show existence of a unique solution to theformal equation
_Z(t) = At(Z(t)) + C(w(t))Z(t) +K(t) with Z(0) = 0:
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Lemma 4.4.1 Let K(t) be de�ned as in Notation 4.1.4. Then for all p 2 [2;1);and T <1; sup0�t<T kK(t)kSpE <1:
Proof. Fix p 2 [2;1) and let p1 and p2 be such that 1p1 + 1p2 = 1p : Let r1 and r2be such that 1r1 + 1r2 = 1p1 :
kK(t)kSpE � kC 0(w(t))hZ O(t)dY iO(t)kSpEnd(Rn)+kC 0(w(t))hZ O(t)dY i�(t)kSpRn

+kR0(w(t))hZ O(t)dY ikSpRn

� kC 0(w(t))hZ O(t)dY ikSpEnd(Rn) by Lemma 4.2.3
+kC 0(w(t))hZ O(t)dY ikSp1End(Rn)k�(t)kSp2Rn and H�older
+kR0(w(t))hZ O(t)dY ikSpRn

� Kk Z O(t)dY kBp1Rn by (4.1.1) and (4.1.2)
� KkO(t)kSr1End(Rn)kY kBr2Rn by [8] Lemma 4.1(v), p. 302

The last term is �nite since kO(t)kSr1 � kw(t)kBr1 < 1 and kY kBr2Rn < 1 (seeNotation 4.1.1). Q.E.D.
Lemma 4.4.2 De�ne K(t) as in Notation 4.1.4 For all p 2 [2;1); the mapt! K(t) is Sp-Lipschitz.
Proof. Fix p 2 [2;1) and let p1 and p2 be such that 1p1 + 1p2 = 1p : Let M(t) �R O(t)dY: Then

K(t) = C 0(w(t))hM(t)iO(t)
+C 0(w(t))hM(t)i�(t) +R0(w(t))hM(t)i

We have for all q; q1; q2 2 [2;1) with 1q1 + 1q2 = 1q ;kM(t)�M(�)kSq = k Z [O(t)�O(�)]dY kSq� kO(t)�O(�)kSq1kY kBq2 by [8] Lemma 4.1, p. 302
� Kjt� � j since w is Bq1-Lipschitz and kY kBq2 <1:
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Thus M(t) is S1�-Lipschitz. Also

supt2J kM(t)kSq = supt2J k
Z O(t)dY kSq� supt2J kO(t)kSq1kY kBq2

which is �nite since supt2J kO(t)kSq1 � supt2J kw(t)kB1 < 1: So M(t) is S1�-bounded for t 2 J .Now
kC 0(w(t))hM(t)i � C 0(w(�))hM(�)ikSp� k[C 0(w(t))� C 0(w(�))]hM(t)ikSp+kC 0(w(�))hM(t)�M(�)ikSp� Kkw(t)� w(�)kBp1kM(t)kBp2 by (4.1.1)

+KkM(t)�M(�)kBp

� Kjt� � j:
Thus the map t! C 0(w(t))hM(t)i is S1�-Lipschitz. A similar result holds for Creplaced by R; using the Lipschitz assumption on R0 (4.1.2).Finally, since O(t) and �(t) are also S1�-Lipschitz, the result followsfrom [8] Lemma 4.6(ii). Q.E.D.
Lemma 4.4.3 Let T (t) be the solution to (4.2.8). For p 2 [2;1) the followingequation has a unique solution:

_V (t) = Lt(V (t)) + T (t)�1K(t) with V (0) = 0 (4.4.13)
where the derivative is taken in the Sp-topology.
Proof. Existence. Let Q(t) : S1�E ! S1�E be the solution to (4.3.9) asgiven in Lemma 4.3.5. In the following we will write Q(t)(D) as Q(t)D for D 2S1�E since Q(t) is linear. Notice that by linearity and since t ! Q(t)D is S1�-continuous for all D 2 S1�E ; Q(t)�1 exists for t near 0.
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Now r ! T (r)�1 and r ! K(r) are S1�-continuous, by Lemmas 4.2.6and 4.4.2, so by [8] Lemma 4.6, p. 314 we also have S1�-continuity of the mapr ! Q(t)Q(r)�1T (r)�1K(r): Thus V (t) � R t0 Q(t)Q(r)�1T (r)�1K(r)dr is S1�-di�erentiable by the Fundamental Theorem of Calculus for Sp-integrals (Lemma2.1.14) and we have by [8] Lemma 4.6(iii), p. 314,

_V (t) � Z t
0

_Q(t)Q(r)�1T (r)�1K(r)dr + [Q(t)Q(r)�1T (r)�1K(r)]jr=t
= Z t

0 Lt(Q(t))Q(r)�1T (r)�1K(r)dr + T (t)�1K(t)
= Lt[Z t

0 Q(t)Q(r)�1T (r)�1K(r)dr] + T (t)�1K(t)
= Lt[V (t)] + T (t)�1K(t):

Uniqueness. Fix p 2 [2;1): Let V (t) and W (t) be two solutions to (4.4.13).Integrating (4.4.13) in Sp we have V (t) = R t0 [Lr(V (r))+T (r)�1K(r)]dr: Let f(t) �kV (t)�W (t)kSp : Then
f(t) = kV (t)�W (t)kSp= k Z t

0 [Lr(V (r))� Lr(W (r))]drkSp
� K Z t

0 kV (r)�W (r)kSpdr by Lemma 4.3.3
= K Z t

0 f(r)dr:
So by Gronwall's inequality (Lemma 8.1.7) with � = 0 we have f � 0: Q.E.D.
Theorem 4.4.4 Let T (t) be the solution to the equation _T (t) = C(w(t))T (t) withT (0) = I as in Proposition 4.2.7. Let V (t) be the solution to _V (t) = Lt(V (t)) +T (t)�1K(t) with V (0) = 0 as in Lemma 4.4.3.Then Z(t) � T (t)V (t) solves the following equation (4.1.4) in S1�:

_Z(t) = At(Z(t)) + C(w(t))Z(t) +K(t) with Z(0) = 0:
Proof. By S1�-di�erentiation of Z(t) (via [8] Lemma 4.6, p. 314) we have

_Z(t) = _T (t)V (t) + T (t) _V (t)
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= C(w(t))T (t)V (t) + T (t)T (t)�1[At(T (t)V (t)) +K(t)]
= C(w(t))Z(t) + At(Z(t)) +K(t):

Also Z(0) = T (0)V (0) = 0: Q.E.D.



Chapter 5

Existence and Uniqueness for

Di�erentials of the Flow

5.1 Equation for the Di�erence Quotient

In this section we derive the equation satis�ed by the the di�erence be-tween the solution Z(t) = (Z1(t); Z2(t)) to the formal equation (4.1.4) and a di�er-ence quotient which will converge to (Y O; Y �) in the Sp-norms for all p 2 [2;1):To facilitate the proof, we multiply this di�erence on the left by O(t)�1
which is O(n)-valued, thus the value of the Sp-norm is unchanged. The bene�tis that the equation satis�ed by this \modi�ed di�erence" is free of unboundedterms; see Lemma 5.1.3.In this chapter we will use the underlying �ltered probability space(
; fFsg;F ; P ); satisfying the usual conditions, with reference Brownian motionb. Recall that we have �xed the functions C : B1Rn ! S1�so(n); R :B1Rn ! S1Rn as in Notation 4.1.1, and have de�ned X : B1Rn ! B1�Rn by

X(w) � Z C(w)dw + Z R(w)ds for w 2 B1Rn:
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and w : R! B1Rn as the S1�-di�erentiable solution to

_w(t) = X(w(t)) with w(0) = wo;
We have also de�ned O : R! S1O(n) and � : R!S1Rn by w(t) = R O(t)db +R �(t)ds; and have seen in Theorem 3.1.5 that O(t) and �(t) satisfy the followingequations: _O(t) = C(w(t))O(t) with O(0) = Oo

and _�(t) = C(w(t))�(t) +R(w(t)) with �(0) = �o:
Notation 5.1.1 Let � = R Q�db + R ��ds be an admissible curve with 0 = wo,and let w�(t) 2 B1Rn be the solution to the equationddtw�(t) � _w�(t) = X(w�(t)) with w�(0) = �:
given by Theorem 3.1.5. (That is, w�(t) = etX(�):) Note that w�(t)j�=0 = w(t):De�ne O� and �� by

w�(t)(s) = Z s
0 O�(t)(�s)d�(�s) + Z s

0 ��(t)(�s)d�s:
Lemma 5.1.2 O� and �� satisfy

_O�(t) = C(w�(t))O�(t) with O�(0) = I
and _��(t) = C(w�(t))��(t) +R(w�(t)) with ��(0) = 0:

Proof. We have
w�(t) = Z [O�(t)]d� + Z [��(t)]ds

= Z [O�(t)][Q�db+ ��ds] + Z [��(t)]ds
= Z [O�(t)Q�]db+ Z [��(t) +O�(t)��]ds

Let ~O(t) � O�(t)Q� and ~�(t) � ��(t) +O�(t)��: Then by Theorem 3.1.5 we have
_O�(t) = _~O(t)Q�1�= C(w�(t)) ~O(t)Q�1�= C(w�(t))O�(t)
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and

_��(t) = _~�(t)� _O�(t)��= C(w�(t))~�(t) +R(w�(t))� C(w�(t))O�(t)��= C(w�(t))��(t) +R(w�(t))
Q.E.D.In the following lemma we will supress the t parameter from the notation.

Lemma 5.1.3 Let Z1 and Z2 be the solutions to the \formal" equations (4.1.6)and (4.1.7) as given in Theorem 4.4.4, with ~Z given by (4.1.5).Let � > 0 and de�ne
E1 � 1� (O�1O�)� I)�O�1Z1;
E2 � 1� (O�1��)�O�1�)�O�1Z2;

and ~E � 1� (w� � w)� ~Z:
Then E1 and E2 satisfy the following equations where the derivatives are taken inthe Sp-norm for all p 2 [2;1) :
_E1 = O�1[1� (C(w�)� C(w))(O� �O)] +O�1[1� (C(w�)� C(w))� C 0(w)h ~Zi]O;
_E2 = O�1[1� (C(w�)� C(w))(�� � �)] +O�1[1� (C(w�)� C(w))� C 0(w)h ~Zi]�

+O�1[1� (R(w�)�R(w))�R0(w)h ~Zi]:
Proof. Recall that Z1 and Z2 solve

_Z1 = C(w)Z1 + C 0(w)h ~ZiO with Z1(0) = 0
and _Z2 = C(w)Z2 + C 0(w)h ~Zi� +R0(w)h ~Zi with Z2(0) = 0

where ~Z � Z s
0 Z1;�sdb(�s) + Z s

0 Z2;�sd�s+ Z s
0 O�sdY (�s):

Since O(t) is orthogonal and C(w(t)) is skew symmetric, we have ddt(O(t)�1) =( ddtO(t))tr = O(t)trC(w(t))tr = �O(t)�1C(w(t)):
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By S1�-di�erentiation E1 solves:

_E1 = 1� [ _dO�1O� +O�1 _O�]� _dO�1Z1�O�1[C(w)Z1 + C 0(w)h ~ZiO]
= O�1[1� (C(w�)O� � C(w)O�)� C 0(w)h ~ZiO]
= O�1[1� (C(w�)� C(w))(O� �O)]

+O�1[1� (C(w�)� C(w))� C 0(w)h ~Zi]O:
Notice that the unbounded terms �O�1C(w)Z1 and � _dO�1Z1 in the �rst line can-cel. A similar calculation gives the E2 equation. Q.E.D.

5.2 Estimates

Lemma 5.2.1 Let w�(t) = R O�(t)d� + R ��ds 2 B1Rn be given as in Notation5.1.1, and let E1 and E2 be as de�ned in Lemma 5.1.3. For all p 2 [2;1) andt 2 J we have:(i) kw�(t)� w(t)kBp is O(�) (recall that w�(t)j�=0 = w(t)) ;(ii) kO�(t)�O(t)kSp is O(�)(iii) k��(t)� �(t)kSp is O(�)(iv) kO(t)�1 1� [C(w�(t))� C(w(t))][O�(t)�O(t)]kSp is O(�) for all t 2 J ;(v) kO(t)�1 1� [C(w�(t))� C(w(t))][��(t)� �(t)]kSp is O(�) for all t 2 J ;(vi) k ~E(t)kBp � kE1(t)kSp + kE2(t)kSp +O(�);
(vii) kO(t)�1[1� (C(w�(t))� C(w(t)))� C 0(w(t))h ~Z(t)i]O(t)kSp� Kp[kE1(t)kSp + kE2(t)kSp +O(�)];
(viii) kO(t)�1[1� (C(w�(t))� C(w(t)))� C 0(w(t))h ~Z(t)i]�(t)kSp� Kp[kE1(t)kSp + kE2(t)kSp +O(�)];
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(ix) kO(t)�1[1� (R(w�(t))�R(w(t)))�R0(w(t))h ~Z(t)i]kSp� Kp[kE1(t)kSp + kE2(t)kSp +O(�)]:
Proof. Fix p 2 [2;1): (i) We have

w�(t)� w(t) = Z O�(t)d� + Z ��(t)ds� Z O(t)db� Z �(t)ds
= Z O�(t)[Q�db+ ��ds] + Z ��(t)ds� Z O(t)db� Z �(t)ds
= Z [O�(t)Q� �O(t)]db+ Z [��(t)� �(t) +O�(t)��]ds

Let F1(t) � O(t)�1O�(t)Q� � I and F2(t) � O(t)�1[��(t) � �(t) + O�(t)��]; then(dropping the t parameter) we have
k _F1kSp = k[ _dO�1O�]Q�kSp= k _dO�1O�kSp by Lemma 4.2.3

= k _dO�1O� +O�1 _O�kSp= k �O�1C(w)O� +O�1C(w�)O�kSp= kO�1(C(w�)� C(w))O�kSp= kC(w�)� C(w)kSp by Lemma 4.2.3
� Kpkw� � wkBp by (3.1.2).

Also, k _F2kSp � k _dO�1�� +O�1 _�� � _dO�1��O�1 _�kSp+k _dO�1O���kSp= k �O�1C(w)�� +O�1[C(w�)�� +R(w�)]+O�1C(w)��O�1[C(w)� +R(w)]kSp+k��kS1k _dO�1O�kSp� kO�1(C(w�)� C(w))��kSp + kO�1(R(w�)�R(w))kSp+k��kS1k _dO�1O�kSp� kC(w�)� C(w)kSpk��kS1+kR(w�)�R(w)kSp by Lemma 4.2.3
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+k��kS1kw� � wkBp by the proof for _F1 above� Kpkw� � wkBp +O(�):

The last step follows from the Lipschitz assumptions on C and R (3.1.2), and sincekakS1 <1 and supt2J k��(t)kS1 is bounded (Theorem 3.1.5).Using these estimates we have by Lemma 4.2.3:
kF1(t)kSp � kF1(0)kSp + R t0 k _F1(�)kSpd�� kO�1o Q� � IkSp +Kp R t0 kw�(�)� w(�)kBpd�

and similarly
kF2(t)kSp � k��(0)� �(0) + ��kSp +Kp Z t

0 kw�(�)� w(�)kBpd�
= k�� � �okSp +Kp Z t

0 kw�(�)� w(�)kBpd�:
Using these two estimates we have
kw� � wkBp = kO�Q� �OkSp + k�� � � +O���kSp= kOF1kSp + kOF2kSp= kF1kSp + kF2kSp� k� � wokBp +Kp Z t

0 kw�(�)� w(�)kBpd�
Finally, we have k� � wokBp � Kp� since � ! � is B1�-Lipschitz. Soby Gronwall's inequality (8.1.7) kw�(t) � w(t)kBp is O(�) for all t 2 J: Also notethat kw�(t)� w(t)kBp= kF1kSp + kF2kSp ; so kF1kSp and kF2kSp are also O(�):
(ii) De�ne D1(t) � O�(t)�O(t).

kD1kSp � kO� �O�Q�kSp + kO�Q� �OkSp= kI �Q�kSp + kF1kSp by Lemma 4.2.3
� O(�) + kw� � wkBp

� O(�) by (i).
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where the third line follows by the continuity of � ! Q� and the de�nition of theBp-norm.(iii) De�ne D2(t) � ��(t)� �(t). Then

kD2kSp � k�� � � +O���kSp + kO���kSp= kF2kSp + k��kSp by Lemma 4.2.3
� O(�)

by (i) and the Sp-continuity of the map �! ��.(iv) Fix p 2 [2;1) and let p1 and p2 be such that 1p1 + 1p2 = 1p . Then
kO�1[1� (C(w�)� C(w))(O� �O)]kSp

= k1� (C(w�)� C(w))(O� �O)kSp
� 1�kC(w�)� C(w)kSp1kO� �OkSp2 (by H�older's inequality)
� Kp� kw� � wkBp1kO� �OkSp2 (by [8] Prop 6.2 (vii))

But kw� � wkBp1 and kO� � OkSp2 are both O(�) by (i) and (ii), so the last lineabove is O(�):(v) The proof is similar to that for (iv), using (iii) above.(vi) Recall that w� = R O�d� + R ��ds We have
~E � w� � w� � ~Z

= Z [O� �O� � Z1]db
+ Z [�� � �� � Z2]ds
+ Z O�d�� � Z OdY

where �� = ��wo� : So
k ~EkBp � k Z OE1db+ Z OE2dskBp

+k Z O�d(�� � Y )kBp + k Z [O� �O]dY kBp :
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Let 1p1 + 1p2 = 1p : Then

k Z O�d(�� � Y )kBp � kO�kSp1k�� � Y kBp2 by [8] Lemma 4.1(v)
� Kp1k� � 0� � Y kBp2

= O(�)
by the de�nition of the B1�-derivative (see Notation 4.1.1). Also,

k Z [O� �O]dY kBp � kO� �OkSp1kY kBp2by [8] Lemma 4.1(v)
= O(�) by (ii).

So k ~EkBp � kOE1kSp + kOE2kSp +O(�)
= kE1kSp + kE2kSp +O(�):

(vii) By the de�nition of the Sp-derivative (De�nition 2.1.5) we have
C(w�)� C(w) = C 0(w)hw� � wi+ E1(w�; w)and R(w�)�R(w) = R0(w)hw� � wi+ E2(w�; w)

where kEi(w�; w)kSp is O(kw� � wk2Sp) for i = 1; 2: Thus
kO�1[1� (C(w�)� C(w))� C 0(w)h ~Zi]OkSp= k1� (C(w�)� C(w))� C 0(w)h ~ZikSp= kC 0(w)hw��w� � ~Zi+ 1�E1(w�; w)kSp� kC 0(w)h ~EikSp + 1�kE1(w�; w)kSp� Kpk ~EkBp +O(�) by (4.1.1) and (i) above� Kp[kE1kSp + kE2kSp +O(�)] by (vi).

(viii) Similar to the proof of (vii), using Lemma 8.1.5 and the fact thatsupt2J k�(t)kS1 <1.(ix) Similar to the proof of (vii), using (4.1.2) the bound on R0: Q.E.D.
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5.3 Existence of the Di�erential

We now prove one of the main results of this paper, Theorem 4.1.3:[Y O](t; b) and [Y �](t; b) exist in S1� and satisfy the formal equation (4.1.4), and[Y w](t; b) is given by (4.1.5).Proof. Fix p 2 [2;1) and let E(t) � R E1(t)db + R E2(t)ds: We willuse the modi�ed Gronwall's inequality (Lemma 8.1.8) on kE(t)kBp � kE1(t)kSp +kE2(t)kSp : We have kE(0)kBp � kE1(0)kSp + kE2(0)kSp = 0:
k _E1kSp � kO�1[1� (C(w�)� C(w))(O� �O)]kSp

+kO�1[1� (C(w�)� C(w))� C 0(w)h ~Zi]OkSp� KpkE(t)kBp +O(�) by Lemma 5.2.1 (iv) and (vii), and
k _E2kSp = kO�1[1� (C(w�)� C(w))(�� � �)]kSp

+kO�1[1� (C(w�)� C(w))� C 0(w)h ~Zi]�kSp
+kO�1[1� (R(w�)�R(w))�R0(w)h ~Zi]kSp� KpkE(t)kBp +O(�) by Lemma 5.2.1 (v), (viii) and (ix).

Thus k _E(t)kBp � k _E1(t)kSp+k _E2(t)kSp � KpkE(t)kBp+O(�), so by Lemma 8.1.8, kE(t)kBp = kE1(t)kSp + kE2(t)kSp is O(�) for all t 2 J: Thus
0 = lim�!0 kE1kSp

= lim�!0 kO�1[1� (O� �O)� Z1]kSp
= lim�!0 k1� (O� �O)� Z1kSp

and similarly, lim�!0 k1� (�� � �) � Z2kSp = 0: Thus the Sp-derivatives de�ned in(4.1.3) exist, with Y O = Z1; and Y � = Z2. Finally, by (vi) the Bp-derivative Y wexists and is given by ~Z: Q.E.D.
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5.4 Di�erentials of the Flows in Wiener Space

In this section we will use our semimartingale \machine" Theorem 4.1.3to get di�erentials of the quasi-invariant ows on W (Rn) obtained in Section 3.2.
Notation 5.4.1(i) Let T : B1Rn ! S1�so(n) in Theorem 3.1.5, and take the under-lying probability space to be (W (Rn); f �H�s+g; f�b(s)g; �) (see Notation 3.2.1). Wewill write the solution to equation (3.1.3) as a function of its starting point as inNotation 4.1.2, so w(t; wo) denotes the solution to equation:

_w(t; wo) = X(w(t; wo)) with w(0; wo) = wo 2 B1Rn:
Also de�ne O(t; wo) and �(t; wo) by

w(t; wo) = Z O(t; wo)db+ Z �(t; wo)ds:
(ii) Let ~w(t) : W (Rn) ! W (Rn); be the solution to (3.1.3) with ~w(0) � id 2Maps(W (Rn);W (Rn)) and let ~O(t) : W (Rn) ! W (O(n)) and ~�(t) : W (Rn) !W (Rn); solve (3.1.4) with ~O(0) � I 2 O(n) and ~�(0) � 0 2 Rn as given inNotation 3.2.2. That is, ~w(t); ~O(t) and ~�(t) are jointly continuous versions ofw(t;�b); O(t;�b) and �(t;�b), respectively.
Theorem 5.4.2 Let ~ : J ! Maps(W (Rn);W (Rn)) be an admissible curve(Def. 2.1.7) such that ~� has law equivalent to � for all � 2 J with ~0 = �b, and let~Y = dd� j0~�: For all t 2 J ,

[ ~Y� ~O](t) � lim�!0 ~O(t)(~�(�))� ~O(t)(�)�and [ ~Y�~�](t) � lim�!0 ~�(t)(~�(�))�~�(t)(�)� (5.4.1)
exist where the limits are taken in the Sp-topologies for p 2 [2;1):Equivalently,

[ ~Y� ~w](t) � lim�!0
~w(t)(~�(�))� ~w(t)(�)�
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exists where the limit is taken in the Bp-topologies for p 2 [2;1):Note that we do not de�ne these derivatives for each ! 2 W (Rn) sincethe limits exist only P -a.s.
Proof. Let t 2 J . We know [ ~Y�bO](t) � lim�!0 O(t;~�)�O(t;�b)� exists in S1� byTheorem 4.1.3 (here we are viewing ~Y 2 B1�Rn). Since �b : W (Rn)! W (Rn) isthe identity map, and ~� has law equivalent to �; we have (supressing the parametert) O(~�) _=O(�b � ~�) _= ~O � ~�.Thus ~O(t) � ~� � ~O(t) is a version of O(t; ~�) � O(t;�b); so [ ~Y ~O](t) :W (O(n)) ! W (O(n)) as de�ned above exists and is a version of [ ~Y�bO](t): Simi-larly, [ ~Y ~�](t) and [ ~Y ~w](t) exist and are versions of [ ~Y�b�](t) and [ ~Y�bw](t) respec-tively. Q.E.D.



Chapter 6

Geometric De�nitions

6.1 Geometric De�nitions

Notation 6.1.1 Throughout this paper (M;r; g) will be a smooth compact n-dimensional Riemannian manifold with metric g and g-compatible covariantderivative r. We will also assume that the torsion tensor of r satis�es theskew symmetry property ghT hX; Y i; Y i � 0 for all X; Y 2 �(TM) (see De�ni-tion 6.1.11), i.e. that r is Torsion Skew Symmetric (TSS).

Notation 6.1.2 Given a manifold M and a �xed point o 2M; let(i) W (M) � C([0; 1];M);(ii) Wo(M) � f! 2 W (M) : !(0) = o 2Mg;(iii) W1o (M) denote the set of smooth paths in Wo(M):
De�nition 6.1.3 Denote the orthonormal frame bundle of M by � :O(M)!M;or just O(M): Recall that if vm 2 O(M) then v : Rn ! TmM is a linear isometry.Throughout this paper we will refer to a �xed frame uo 2 O(M) with �uo = o:
De�nition 6.1.4 Given a vector bundle � : E ! M and � 2 W1o (M), denotethe set of smooth sections of E along � by �1� (E):
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De�nition 6.1.5 Given � 2 W1o (M) and a smooth vector �eld along �, Z 2�1� (TM); let rZds 2 �1� (TM) denote the covariant derivative of Z along �:
De�nition 6.1.6 Let E = Hom(Rn; TM); the vector bundle over M with �berEm = Hom(Rn; TmM) for all m 2M: For u 2 �1� (O(M)); de�ne ruds 2 �1� (E) by
ruds (s)(�) = (rds)(u(s)�) for all � 2 Rn: (Note that u(s)� 2 T�(s)M for all s 2 [0; 1],i.e., u(�)� 2 ��(TM):)
Notation 6.1.7 Let ! � !r be the connection 1-form on O(M) with values inso(n) de�ned by !hu0(s)i = u(s)�1ruds (s) for any smooth path u in O(M):
De�nition 6.1.8

1. A path u 2 W1(O(M)) is said to be horizontal if ruds (s) = 0 or equivalentlyif !hu0(s)i = 0 for all s 2 [0; 1]: Denote by HW1uo (O(M)) the set of smoothhorizontal paths in O(M) based at uo:
2. Given a curve � 2 W1o (M); de�ne the horizontal lift of �; H(�); to bethe unique curve u 2 HW1uo (O(M)) with � � u(s) = �(s) for all s 2 [0; 1]:The function H : W1o (M) ! HW1uo (O(M)) de�ned above will be called thehorizontal lift map.

De�nition 6.1.9 Denote the standard horizontal vector �elds byBhai(�) 2 �(TO(M)) for all a 2 Rn; where Bhai(u) 2 TuO(M) is the uniquevector such that ��Bhai(u) = ua and !hBhai(u)i = 0:
De�nition 6.1.10 Denote by � the canonical (Rn-valued) 1-form on O(M); de-�ned by �h�i = u�1��� for all � 2 TuO(M) and u 2 O(M):
De�nition 6.1.11 Let X; Y; Z 2 �(TM): De�ne(i) the curvature tensor of r by RhX; Y iZ = rXrYZ �rYrXZ �r[X;Y ]Z;(ii) the torsion tensor of r by T hX; Y i = rXY �rYX � [X; Y ]:
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De�nition 6.1.12 For all a; b 2 Rn and u 2 O(M) let

1. 
uha; bi � u�1Rhua; ubiu 2 so(n);
2. �uha; bi � u�1T hua; ubi 2 Rn:

For a proof that 
uha; bi 2 so(n); see [23] Section III Theorem 2.4 and SectionIII.5. Notice that if r is Torsion Skew Symmetric, i.e. ghT hX; Y i; Y i � 0 for allX; Y 2 �(TM), then we also have �uha; �i 2 so(n) for all a 2 Rn
6.2 Stochastic Geometric De�nitions

Recall that throughout this paper we are using an underlying �lteredprobability space (
; fFsg;F ; P ); satisfying the usual hypothesis (Notation 2.1.1).
De�nition 6.2.1 De�ne an M-valued semimartingale to be a continuous M-valued fFsg-adapted stochastic process Z; with the property that for all f 2C1(M), f(Z) is a real-valued (
; fFsg;F ; P ) semimartingale.
Notation 6.2.2 Suppose Q is an imbedded submanifold of RN and that q0 2 Qis a �xed base point. (If Q = Rn;M; or O(M); take q0 = 0; o; or uo; respectively.)Let B1Q denote the space of Q-valued Brownian semimartingales starting at q0which are in also B1RN ; as de�ned in Notation 2.1.4.
De�nition 6.2.3 Given semimartingales X and Y , let R X�Y denote the process(s ! R s0 X�Y ) where the integral is the Fisk-Stratonovich stochastic integral. Interms of Itô integrals, R X�Y = R XdY + 12 [X; Y ]; where s! [X; Y ]s is the mutualvariation process of X and Y: We will write dXdY for the di�erential of [X; Y ]:

De�nition 6.2.4 Let �� : T �M ! M be the dual of the tangent bundle on M:Suppose that �(s) is a T �M-valued semimartingale and Z is the M-valued semi-martingale de�ned by Z(s) � ��(�(s)): The Stratonovich integral R �h�Zi is de�ned
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to be the real-valued semimartingale PR fi(s)�(gi(Z(s))); where ffig is a �nite col-lection of real-valued semimartingales, and fgig is a �nite subset of C1(M) suchthat �(s) = P fi(s)dgijZ(s): See [8], Remark 3.2, p. 290 for a proof that such adecomposition exists, and that the integral is well de�ned. References for stochasticintegration include [14], [22], and [25].
De�nition 6.2.5 Note that if � is a smooth 1-form on M and Z is an M-valued semimartingale, then �(s) � �jZ(s) is a T �M-valued semimartingale withZ(s) � ��(�(s)): In this case the Stratonovich integral R �h�Zi is de�ned as theprocess R �h�Zi:
De�nition 6.2.6 Suppose that Q is a manifold and F : Rn ! �(TQ) is a linearmap de�ned by (a ! F hai(�)). Given an Rn-valued semimartingale (w); a Q-valued semimartingale (q) is said to satisfy the Stratonovich stochastic di�erentialequation �q = F h�wi(q) (6.2.1)
if and only if for all f 2 C1(Q), d(f(q)) = dfhF h�wi(q)i: That is,

f(q(s))� f(q(0)) = nXi=1
Z s
0 (F heii(q(�))f)�wi(�)

where feigni=1 is the standard basis for Rn:
See Theorem 3.1 in [8], p. 292 for a proof that (6.2.1) has a unique solution if Fhas compact support.Recall that ! � !r is the connection 1-form on O(M) with values inso(n) (Notation 6.1.7).
De�nition 6.2.7 An O(M)-valued semimartingale u is said to be !-horizontal(or just horizontal) if R!h�ui � 0:
De�nition 6.2.8 Given an M-valued semimartingale �; a horizontal lift of � isan O(M)-valued semimartingale u satisfying (i) � �u = �; and (ii) u is horizontal.
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See Theorem 3.2 in [8], p. 294 for a proof that a unique horizontal lift exists whenu(0) = uo 2 O(M) is �xed.
Notation 6.2.9 Denote by

1. SM the space of based M-valued semimartingales starting at o 2M;
2. HSO(M) the horizontal O(M)-valued semimartingales starting at uo 2O(M):
3. SRn the space of Rn-valued semimartingales starting at 0 2 Rn:

Notation 6.2.10 De�ne the maps
1. Stochastic Horizontal Lift H : SM ! HSO(M) such that H(�) is thehorizontal lift of � 2 SM to O(M) starting at uo;
2. � : HSO(M)! SM by �(u) = � � u;
3. Stochastic Development (Eells and Elworthy [12]) I : SRn ! HSO(M) suchthat for all w 2 SRn; I(w) � u where u is the solution to the Stratonovichdi�erential equation �u = Bh�wi(u) with u(0) = uo;
4. I�1 : HSO(M)! SRn by I�1(u) = R �h�ui:

Theorem 6.2.11The functions H and � are inverses of each other as are I and I�1:
For a proof, see for example [8] Theorem 3.3 p. 297.
De�nition 6.2.12 Let Q be a manifold. A Q-valued semimartingale (Z) is saidto be a Brownian semimartingale i� f �Z is an R-valued Brownian semimartingalefor all f 2 C1(Q):
De�nition 6.2.13 Given a smooth function f : O(M) ! V; where V is a vec-tor space, de�ne the horizontal derivative of f; fH : O(M) ! End(Rn; V ) byfH(u)hai = dfhBhai(u)i for all u 2 O(M) and a 2 Rn:
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Notation 6.2.14 We will use the horizontal derivatives of two functions, u !
uh�; �i and u! �uh�; �i; given in de�nition 6.1.12. For f(u) � 
uh�; �i we denotethe horizontal derivative fH(u)hai by 
Hu ha; �; �i; and de�ne �Hu ha; �; �i similarly.Also, for A;B 2 End(Rn) and a 2 Rn; de�ne

�
uhA; a;Bi � nXi=1

Hu hAei; a; Beii

and ��uhA; a;Bi � nXi=1
�Hu hAei; a; Beii:

6.3 Existence of a Measure-Preserving Flow on

Wo(M)

Let (M;r; g) be as in Notation 6.1.1 (Recall that the torsion tensor of rsatis�es the skew symmetry property ghT hX; Y i; Y i � 0 for all X; Y 2 �(TM):)
Theorem 6.3.1 (Driver [8] Theorem 8.5, p. 361) Fix h 2 C1 � fh 2C1([0; 1];Rn) : h(0) = 0g: Let �H be a �xed version of the horizonotal lift map H(see Notation 6.2.10). De�ne the vector �eld ~Xh on Wo(M) by ~Xh(~�) � �H(~�)h:Then there exists a unique solution to the equation

_~�h = ~Xh(~�h) with ~�h(0) = id (6.3.2)
in the space of paths f~� : R ! Maps(Wo(M) ! Wo(M))g: Furthermore, ~� is aow on Wo(M); and ~�(t)�� is equivalent to � � Wiener measure on Wo(M):
We will also use the \semimartingale version" of this theorem, which is statedbelow.
Theorem 6.3.2 (Driver [8] Cor. 6.3, p. 336) Suppose M is an imbedded sub-manifold of RN for some N: De�ne the vector �eld Xh on B1M by Xh(�) �
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H(�)h: Let �o 2 B1M with �o(0) � o 2 M: Then there exists a unique solutionto the equation _�h = Xh(�h) with �h(0) = �o (6.3.3)
in the space of paths f� : R! B1Mg:
Note that for � 2 B1M; H(�) is well-de�ned (see De�nition 6.2.7).
Notation 6.3.3 For w = R Odb + R �ds 2 B1Rn; and u � I(w) de�ne Ch :B1Rn ! so(n)-valued processes, and Rh : B1Rn ! Rn-valued processes by

Ch(w) = Z 
uhh; �wi+�uhh; �i
and Rh(w) � 12fRicuhh;O;Oi+ ��uhO; h;Oig+ h0

where 
u and �u are given in De�nition 6.1.12, ��u is given in Notation 6.2.14,and Ricuhh;O;Oi � nXi=1

uhh;OeiiOei:

Note: We have Ch : B1Rn ! S1�so(n) by the proof of [8] Cor. 6.2, p.330, and Rh : B1Rn ! S1Rn by the proof of [8] Cor. 6.1, p. 328.De�ne Y h : B1Rn ! B1�Rn by
Y h(w) � Z Ch(w)dw + Z Rh(w)ds for w 2 B1Rn:

Theorem 6.3.4 (Driver [8] Thm 5.1, p. 320 and Thm. 6.1, p. 332) Let �h :R ! B1M be as de�ned in 6.3.2. Let wh(t) � I�1 � H(�h(t)) 2 B1Rn for allt 2 R:Then wh is the unique solution to the equation
_wh(t) = Y h(wh(t)) with wh(0) = b (6.3.4)

in the space of paths fw : R! B1Rng:
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Theorem 6.3.5 (Driver [8] Prop. 6.1, p. 323) Let Oh and �h be de�ned bywh(t) = R Oh(t)db + R �h(t)ds: Then Oh : R ! O(n)-valued processes, and �h :R!Rn-valued processes, and these satisfy the following equations:_Oh(t) =Ch(wh(t))Oh(t) with Oh(0) = I and_�h(t) = Ch(wh(t))�h(t) +Rh(wh(t)) with �h(0) = 0:



Chapter 7

Existence and Uniqueness of the

Derivative of the Geometric Flow

7.1 Pulled-Back Flow Equation to W (Rn) via the
Itô Map

The following will be �xed throughout the rest of this paper.
Notation 7.1.1 Fix h; k 2 C1; and let C � Ch : B1Rn ! S1�so(n); R � Rh :B1Rn ! S1Rn, and Y k : B1Rn ! B1�Rn be as given in Notation 6.3.3. Letwk; wh : R ! B1Rn; Oh : R ! S1O(n) and �h : R ! S1Rn be de�ned as inTheorems 6.3.4 and 6.3.5.Let Co = Co(jh0j1; kw(0)kB1) 2 (0;1) such that supt2J kwh(t)kB1 � Co:Existence of such a Co is given in [8], Cor. 6.1, p. 327.

Notation 7.1.2 We write the solution to the ow equation _wh(t) = Y h(wh(t)) asa function of its starting point, so wh(t; wo) denotes the solution to the equation
wh(t; wo) = Y h(wh(t; wo)) with wh(0; wo) = wo 2 B1Rn: (7.1.1)
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Thus the solution to (6.3.4) is given by wh(t; b): Existence of a unique solution to(7.1.1) is given by Driver [8], Theorem 6.1, p. 332. We also extend this notationto Oh and �h; so that Oh(t; wo) and �h(t; wo) are de�ned by:

wh(t; wo) = Z Oh(t; wo)dwo + Z �h(t; wo)ds:
The following is one of the main results in this paper for the geometriccase.

Theorem 7.1.3 i) The functions Oh(t; �) : B1Rn ! S1End(Rn) and �h(t; �) :B1Rn ! S1Rn are S1�-di�erentiable at wo. Let  be and admissible curve with0 = wo; and let Y = dd� j0�. (In particular, we could take � = wk(�; wo) andY = Y k(wo):) Then
[YwoOh](t; wo) � lim�!0 Oh(t;�)�Oh(t;wo)�and [Ywo�h](t; wo) � lim�!0 �h(t;�))��h(t;wo)� (7.1.2)

exist where the limits are taken in the SpEnd(Rn)- and SpRn-topologies for p 2
[2;1): Furthermore, Z(t) �

264 YwoOh(t)Ywo�h(t)
375 �

264 Z1(t)Z2(t)
375 satis�es the equation:

_Z(t) = C(wh(t))Z(t) + At(Z(t)) +K(t) with Z(0) = 0 (7.1.3)
where At and K(t) are de�ned in Notation 7.1.4 below.ii) The function wh(t; �) : B1Rn ! B1Rn is B1�-di�erentiable at wo. (SeeDe�nition 2.1.9.) That is, for any admissible curve  with 0 = wo and Y � dd� j0�,

[Ywowh](t; wo) � lim�!0
wh(t; �)� wh(t; wo)�

exists where the limit is taken in the BpRn-topologies for p 2 [2;1): Furthermore,[Ywowh](t; wo) = ~Z(t) where
~Z(t) � Z s

0 Z1;�s(t)db(�s) + Z s
0 Z2;�s(t)d�s+ Z s

0 Oh�s (t)dY (�s): (7.1.4)
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Notation 7.1.4 Let O = Oh; � = �h; w = wh; C = Ch; R = Rh; and let  be a�xed admissible curve with 0 = wo and let Y � dd� j0�.De�ne

At(Q) �
264 C 0(w(t))hR Q1db+ R Q2dsiO(t)C 0(w(t))hR Q1db+ R Q2dsi�(t)

375
+

264 0R0(w(t))hR Q1db+ R Q2dsi
375 ;

and K(t) �
264 C 0(w(t))hR O(t)dY iO(t)C 0(w(t))hR O(t)dY i�(t) +R0(w(t))hR O(t)dY i

375 ;
where Q =

264 Q1Q2

375 is an fFsg-adapted End(Rn)�Rn-valued continuous
process.

The de�nition of At involves derivatives of C and R; so we will provetheir existence �rst.

7.2 Properties of the Pulled-Back Kernels

In this section we show that C and R are di�erentiable (Theorems 7.2.3and 7.2.5), and satisfy the appropriate Lipschitz properties (Theorem 7.2.19).
Notation 7.2.1 For w = R Odb + R �ds 2 B1Rn; let u � I(w) then C(w) =A(w) + T (w) where A(w) � R 
uhh; �wi and T (w) � �uhh; �i; (see De�nition6.1.12). Notice that u! 
uh�; �i and u! �uh�; �i are smooth fuctions.
Remark 7.2.2 By the Whitney imbedding theorem (see Ref. [Au] of [49]) we mayview O(M) as a compact imbedded submanifold of RN for some N <1; and thuswe may extend smooth functions on O(M), in particular, the maps u ! 
uh�; �iand u! �uh�; �i, to smooth functions with compact support in RN : This will allowus to apply several nonintrinsic results from [8].
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Theorem 7.2.3 The map C : B1Rn ! S1�so(n) (Notation 7.1.1) is S1�-di�erentiable (see Def. 2.1.9).Furthermore, if  is an admissible curve with w = 0, v = dd� j0� andu = I(w), then
vwC = nXi=1

fZ f 0i(u)hvwIi�wi + Z fi(u)�vig+ g0(u)hvwIi (7.2.5)
where fi(~u) � 
~uhh; eii and g(~u) � �~uhh; �i for ~u 2 O(M) and i = 1; :::; n: (SeeDe�nition 6.1.12).

This theorem will be proved by Theorems 7.2.4 and 7.2.19 below.
Theorem 7.2.4 The map t! C((t)) is S1�-di�erentiable (Def. 2.1.5) for anyadmissible curve . Furthermore, if w = 0, v = dd� j0� and u = I(w), then (7.2.5)holds.

Proof. Fix ; w; v and u as above. Let u� = I(�) for each �: We have
A(�) = Z 
u�hh; ��i

= nXi=1
Z 
u�hh; eii�i�

= nXi=1
Z Gi(�)�Hi(�)

where Gi(�) � 
u�hh; eii; and Hi(�) � i�: Note that Gi(�) and Hi(�) are Browniansemimartingales for each �; and � ! � is B1�-di�erentiable, with � ! _� beingB1�-Lipschitz. By [8] Corollary 4.2, p. 313, � ! u� is B1�-di�erentiable, and� ! _u� is B1�-Lipschitz. Therefore Gi is B1�-di�erentiable and the map � !Gi(�) is B1�-Lipschitz by [8] Lemma 4.8, p. 317, and Remark 7.2.2. Moreover,
_Gi(�) = dfih _u�i = fi(u�)h _u�i
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where fi(~u) � 
~uhh; eii for ~u 2 O(M): Using this we have by [8] Lemma 4.7,p. 316, that the B1�-derivative of � ! A(�) exists, the map � ! dd� [A(�)] isB1�-Lipschitz, and

dd� [A(�)]= Pni=1fR _Gi(�)�Hi(�) + R Gi(�)� _Hi(�)g= Pni=1fR f 0i(u�)h _u�i�i� + R fi(u�)� _i�g:
Similarly, since ~u ! g(~u) � �~uhh; �i is a smooth function, and � ! u�is B1�-di�erentiable, and � ! _u� is B1�-Lipschitz, we have by [8] Lemma 4.8and Remark 7.2.2 above, that � ! T (�) = g(u�) is B1�-di�erentiable for allp 2 [2;1); with

dd� [T (�)] = g0(u�)h _u�i
and �! dd� [T (�)] B1�-Lipschitz.Thus � ! dd� [A(�) + T (�)] = dd� [C(�)] = C 0(�)h _�i is B1�-Lipschitz,with formula at � = 0 given by (7.2.5). Q.E.D.
Theorem 7.2.5 The map R : B1Rn ! S1Rn (Notation 7.1.1) isS1�-di�erentiable (see Def. 2.1.9). Furthermore, if � = R Q�db + R ��ds is anadmissible curve with w = R Odb+ R �ds = 0, v = dd� j0� and u = I(w), thenvwR = 12 [Ric0uhvwI; h; O;Oi+Ricuhh; _Q0; Oi+Ricuhh;O; _Q0i]+Pni=1[~g0(u)hvwIihOei; Oeii+ ~g(u)h _Q0ei; Oeii+~g(u)hOei; _Q0eii]:Equivalently,

_0R � dd� j0 R(�)= Pni=1[ ~f 0(u)hvwI; Oei; Oeii+ ~f(u)h _Q0eiiOei+ ~f(u)hOeii _Q0ei+~g0(u)hvwIihOei; Oeii+ ~g(u)h _Q0ei; Oeii+~g(u)hOei; _Q0eii]
(7.2.6)
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where ~f(~u) � 
~uhh; �i, ~g(~u) � �H~u h�; h; �i: for all ~u 2 O(M): (See Notation 6.2.14).Also, ~f 0(u)h�; a; bi � �(u! ~f(u)haib) and ~g0(u)h�; a; bi � �(u! ~g(u)ha; bi) for all� 2 TuO(M) �= RN and a; b 2 Rn:

This theorem will be proved by Theorems 7.2.6 and 7.2.19 below.
Theorem 7.2.6 The map t! R((t)) is S1�-di�erentiable (Def. 2.1.5) for anyadmissible curve :Furthermore, if � = R Q�db + R ��ds is an admissible curve with w =R Odb+ R �ds = 0, v = dd� j0� and u = I(w), then (7.2.6) holds.
Proof. Let u� = I(�) for each �: We have

R(�) � 12fRicu�hh;Q�; Q�i+ ��u�hQ�; h;Q�ig+ h0
where Ricuhh;O;Oi � nXi=1


uhh;OeiiOei;
��uhO; h;Oi � nXi=1

�Hu hOei; h; Oeii;
and �Hu is the horizontal derivative of �u as de�ned in Notation 6.2.14.Let F : R ! Hom(Rn;End(Rn)) by F (�) � 
u�hh; �i: Now ~u ! 
~uhh; �i � ~f(~u)is a smooth function with compact support in RN ; and by [8] Corollary 4.2, p.313, � ! u� is B1�-di�erentiable with � ! _u� being B1�-Lipschitz. Thus by [8]Lemma 4.8, p. 317, and Remark 7.2.2, F (�) is B1�-di�erentiable, and hence isS1�End(Rn)-di�erentiable, with _F (�) = ~f 0(u�)h _u�i being S1�-Lipschitz.Now by the de�nition of the Bp-norm, � ! � being B1�-di�erentiablewith � ! _� being B1�-Lipschitz implies � ! Q� is S1�-di�erentiable � ! _Q�being S1�-Lipschitz. Thus by repeated applications of [8] Lemma 4.6 (ProductRule), p. 314, � ! F (�)hQ�eiiQ�ei = 
u�hh;Q�eiiQ�ei is S1�-di�erentiable, with�! dd� [F (�)hQ�eiiQ�ei] being S1�-Lipschitz.
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Also dd� [F (�)hQ�eii] = _F (�)hQ�eii+ F (�)h _Q�eii anddd� [F (�)hQ�eiiQ�ei] = [ _F (�)hQ�eii+ F (�)h _Q�eii]Q�ei+F (�)hQ�eii _Q�ei= [ ~f 0(u�)h _u�ihQ�eii+ ~f(u�)h _Q�eii]Q�ei+ ~f(u�)hQ�eii _Q�ei
De�ne G(�) � �Hu�h�; h; �i: Using [8] Corollary 4.2 and Lemma 4.8 as above, (with~g(~u) � �H~u h�; h; �i and G(�) replacing ~f(~u) and F (�) respectively), � ! G(u�) isS1�-di�erentiable, with derivative given by _G(�) = ~g0(u�)h _u�i; and �! _G(�) beingS1�-Lipschitz.Also as above � ! Q� is S1�-di�erentiable, so by repeated applicationsof [8] Lemma 4.6, p. 314, � ! G(�)hQ�ei; Q�eii = �Hu�hQ�ei; h;Q�eii is S1�-di�erentiable, withdd� [G(�)hQ�ei; Q�eii] = _G(�)hQ�ei; Q�eii+G(�)h _Q�ei; Q�eii+G(�)hQ�ei; _Q�eii:= ~g0(u�)h _u�ihQ�ei; Q�eii+ ~g(u�)h _Q�ei; Q�eii+~g(u�)hQ�ei; _Q�eii
and �! dd� [G(�)hQ�ei; Q�eii] is S1�-Lipschitz.Thus �! dd� [R(�)] = R0(�)h _�i is S1�-Lipschitz, with formula at � = 0given by (7.2.6). Q.E.D.
Remark 7.2.7 Let w be a Brownian semimartingale and u � I(w) (Notation6.2.10), that is, u solves �u = Bh�wi(u); so by the de�nition of the Stratonovichstochastic di�erential equation (Def. 6.2.6) we have d[f(u)] = dfhBh�wi(u)i �fH(u)h�wi for all f 2 C1(O(M)):
Theorem 7.2.8 The map (w; v) ! vwI satis�es the following conditions for allp; p1; p2 2 [2;1) with 1p1 + 1p2 = 1p and for all w; ~w;v 2 B1Rn:
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i) kvwIkBp � KkvkBpii) kvwI � v ~wIkSp � Kkw � ~wkBp1kvkBp2where K = K(n; p1; p2; �Kw; �K ~w):
Proof of i). Let  be an admissible curve with w = 0 and v = dd� j0�: (Forexample, we could take � = w + �v for all �:)Let u� = I(�) for each �: For all � 2 (��; �) we haveK� = K�(n; p; sup�2(��;�) k�kB1) such that

ku� � u0� kBp � K�k� � 0� kBp by [8] Cor. 4.1, p. 306.
Since _u0 and _0 both exist, by taking the limit as � ! 0 we have k _u0kBp �K�k _0kBp . Now let K = lim sup�!0K�:Proof of ii). Let  : J ! B1Rn and ~ : J ! B1Rn be admissiblecurves (Def. 2.1.7) with _0 =vw and _~0 =v ~w. (For example, we could take � =w + �v and ~� = ~w + �v for all �:)Let u = I(w); ~u = I( ~w); u� = I(�) and ~u� = I(~�) for each � 2 J:Let � � _u0 = vwI and ~� � _~u0 = v ~wI. By [8], Corollary 4.2, p. 313, � and~� respectively solve the stochastic di�erential equations:

d� = Z(u)�v + Z 0(u)h�i�w
and d~� = Z(~u)�v + Z 0(~u)h~�i� ~w;
with �(s)js=0 = ~�(s)js=0 = 0

where Z : O(M)! Hom(Rn;RN) is de�ned by Z(�u) � Bh�i(�u) for all �u 2 O(M);so Z is a smooth function (see Lemma 8.1.9 in the appendix). Here we haveidenti�ed T�uO(M) with RN for each �u 2 O(M): Thus by Remark 7.2.2 we mayview Z as a smooth function with compact support on RN .Using the Itô di�erential the equation for � becomes



82
d� = Z(u)dv + 12Z 0(u)hZ(u)dwidv + Z 0(u)h�idw

+12Z 00(u)h�; Z(u)dwidw:
= Z(u)dv + 12V1(u)[O 
 A]ds+ Z 0(u)h�idw

+12V2(u)h�i[O 
O]ds
where w = R Odb + R �ds; v = R Adb + R ads; V1(u)[O 
 A] �Pni=1 Z 0(u)hZ(u)OeiiAei and V2(u)h�i[O 
O] � Pni=1 Z 00(u)h�; Z(u)OeiiOei. Herefeigni=1 is the standard basis on Rn: So the maps u ! V1(u) and u ! V2(u) mayalso be viewed as smooth functions with compact support on RN .Thus we have

k� � ~�kpSp(s) � Kk Z [Z(u)� Z(~u)]dvkpSp(s)+Kk Z Z 0(u)h�idw � Z Z 0(~u)h~�id ~wkpSp(s)+Kk Z V1(u)[O 
 A]ds� Z V1(~u)[ ~O 
 A]dskpSp(s)+Kk Z V2(u)h�i[O 
O]ds� Z V2(~u)h~�i[ ~O 
 ~O]dskpSp(s)
We will consider each of these four terms separately.Term I.
k Z [Z(u)� Z(~u)]dvkpSp(s) � KkvkpBp2 (s)kZ(u)� Z(~u)kpSp1 (s) by Lemma 8.1.6

� Kpkw � ~wkpBp1 (s)kvkpBp2 (s) by [8] Cor. 4.1, p. 306.
Term II.

k Z Z 0(u)h�idw � Z Z 0(~u)h~�id ~wkpSp(s)� Kk Z Z 0(u)h�i � Z 0(~u)h~�idwkpSp(s)+Kk Z Z 0(~u)h~�id[w � ~w]kpSp(s)
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� KkwkpB1(s)k Z s

0 kZ 0(u)h�i � Z 0(~u)h~�ikpSp(r)dr by [8] Lemma 4.1(iv)
+KkZ 0(~u)h~�ikpSp2 (s)kw � ~wkpBp1 (s) by Lemma 8.1.6

� K Z s
0 k[Z 0(u)� Z 0(~u)]h�ikpSp(r)dr

+K Z s
0 kZ 0(~u)h� � ~�ikpSp(r)dr+Kk~�kpSp2 (s)kkw � ~wkpBp1 (s) since jZ 0j is uniformly bounded

� KkZ 0(u)� Z 0(~u)kpSp1 (s)k�kpBp2 (s) by Lemma 8.1.6
+K Z s

0 k� � ~�kpSp(r)dr since jZ 0j is uniformly bounded
+Kkw � ~wkpBp1 (s)kvkpBp2 (s) by Theorem 7.2.8 (i)

� Kpkw � ~wkpBp1 (s)kvkpBp2 (s)+K Z s
0 k� � ~�kpSp(r)dr

The last inequality follows by the Lipschitz property of Z 0; [8] Cor. 4.1 p. 306,and Theorem 7.2.8 (i).Term III.Again using Theorem 7.2.8 (i) and the Lipschitz properties of u! V1(u)we have
k Z V1(u)[O 
 A]ds� Z V1(~u)[ ~O 
 A]dskpSp(s)� K Z s

0 k(V1(u)� V1(~u))[O 
 A]kpSp(r)dr
+K Z s

0 kV1(~u)[(O � ~O)
 A]kpSp(r)dr� KkV1(u)� V1(~u)kpSp1 (s)kwkpB1kvkpBp2 (s)+KkV1(~u)[(O � ~O)
 A]kpSp(s)� Kkw � ~wkpBp1 (s)kvkpBp2 (s)
Term IV.Similar reasoning shows:
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Kk Z V2(u)h�i[O 
O]ds� Z V2(~u)h~�i[ ~O 
 ~O]dskpSp(s)� Kk[V2(u)� V2(~u)]h�i[O 
O]kpSp(s)+K Z s

0 kV2(~u)h� � ~�i[O 
O]kpSp(r)dr+KkV2(~u)h~�i[(O � ~O)
O]kpSp(s)+KkV2(~u)h~�i[ ~O 
 (O � ~O)]kpSp(s)� KkV2(u)� V2(~u)kpSp1 (s)k�kpSp2 (s)+K Z s
0 k� � ~�kpSp(r)dr+Kk~�kpBp2 (s)kO � ~OkpSp1 (s)� Kkw � ~wkpBp1 (s)kvkpBp2 (s) +K Z s

0 k� � ~�kpSp(r)dr
Thus, combining the four terms above gives
k� � ~�kpSp(s) � Kkw � ~wkpBp1 (s)kvkpBp2 (s) +K Z s

0 k� � ~�kpSp(r)dr:
Now Gronwall's inequality (Lemma 8.1.7) gives the result. Q.E.D.
De�nition 7.2.9 Given a map f : B1Rn � B1Rn ! S1�V; we say that fsatis�es the Bp+-condition (or is Bp+) if for all p 2 [2;1), w; ~w; v 2 B1Rn wehave

kf(w; v)� f( ~w; v)kSpV � Kkw � ~wkBp1RnkvkBp2Rn

and kf(w; v)kSpV � KkvkBpRn

where K = K(n; p1; p2; �Kw; �K ~w) and p1; p2 2 [2;1) are such that 1p1 + 1p2 = 1p :
Lemma 7.2.10 Suppose F : B1Rn ! S1Hom(RN ; V ) satis�es

kF (w)� F ( ~w)kSpHom(RN ;V ) � Kkw � ~wkBpRn

for all p 2 [2;1);
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and G : B1Rn � B1Rn ! S1�RN is Bp+, i.e., there exists K =K(n; p1; p2; �Kw; �K ~w) such that

kG(w; v)�G( ~w; v)kSpRN � Kkw � ~wkBp1RnkvkBp2Rn

and kG(w; v)kSpRN � KkvkBpRn

for all p; p1; p2 2 [2;1) with 1p1 + 1p2 = 1p :Then H : B1Rn � B1Rn ! S1�V de�ned by H(w; v) � F (w)G(w; v) is alsoBp+, i.e.,
kH(w; v)�H( ~w; v)kSpV � Kkw � ~wkBp1RnkvkBp2Rn

and kH(w; v)kSpV � KkvkBpRn

for all p; p1; p2 2 [2;1) such that 1p1 + 1p2 = 1p : Here K =K(n; p1; p2; �Kw; �K ~w; kFkS1):
Proof. We have
kH(w; v)�H( ~w; v)kSp � k[F (w)� F ( ~w)]G(w; v)kSp+kF ( ~w)[G(w; v)�G( ~w; v)]kSp� kF (w)� F ( ~w)kSp1kG(w; v)kSp2+kF ( ~w)kS1kG(w; v)�G( ~w; v)kSp by Lemma 8.1.6

� KkF (w)� F ( ~w)kSp1kvkBp2

+KkG(w; v)�G( ~w; v)kSp� Kkw � ~wkBp1kvkBp2 :
Also

kH(w; v)kSp � supw2B1Rn kF (w)kS1kG(w; v)kSp� KkvkBp :
Q.E.D.
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De�nition 7.2.11 A function F : B1Rn ! B1�V is called Bp-Lipschitz if

kF (w)� F ( ~w)kBp � Kkw � ~wkBp

for all w; ~w 2 B1Rn; where p 2 [2;1) and K = K(n; p; kwkB1 ; k ~wkB1):
Lemma 7.2.12 Suppose F : B1Rn ! B1Hom(Rn; V ) is also S1-bounded andis Bp-Lipschitz for all p 2 [2;1):Then H : B1Rn � B1Rn ! S1�V de�ned by H(w; v) � R F (w)�v isBp+, i.e.,

kH(w; v)�H( ~w; v)kSpV � Kkw � ~wkBp1RnkvkBp2Rn

and kH(w; v)kSpV � KkvkSpRn

where K = K(n; p1; p2; �Kw; �K ~w):
Proof. Since F (w) and v are Brownian semimartingales we may write

v = Z Adb+ Z ads
and F (w) = Z B(w)db+ Z �(w)ds

Then d[F (w)]dw = Pni=1B(w)eiAeids; and
kB(w)�B( ~w)kSp � kF (w)� F ( ~w)kBp

� Kkw � ~wkBp :
We have Z F (w)�v = Z F (w)dv + 12 Z d[F (w)]dv

= Z F (w)dv + 12 nXi=1
Z B(w)eiAeids:

Thus
kH(w; v)�H( ~w; v)kSp � k Z F (w)dv � Z F ( ~w)dvkBp

+12 nXi=1
k Z [B(w)�B( ~w)]eiAeidskBp :
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Now
k Z F (w)dv � Z F ( ~w)dvkBp = k Z [F (w)� F ( ~w)]dvkBp

� kF (w)� F ( ~w)kSp1kvkBp2 by Lemma 8.1.6
� Kkw � ~wkBp1kvkBp2 :

Also
k R [B(w)�B( ~w)]eiAeidskBp= k[B(w)�B( ~w)ei]AeikSp� k[B(w)�B( ~w)]eikSp1kAeikSp2 by Lemma 8.1.5� Kkw � ~wkBp1kvkBp2 :Finally we have
kH(w; v)kSp = k Z F (w)�vkSp� kF (w)kS1kvkBp by Lemma 8.1.6

� KkvkBp :
Q.E.D.

Notation 7.2.13 Let w; v 2 B1Rn; u = I(w) as given in Notation 6.2.10, and� = vwI. Then by [8], Corollary 4.2, p. 313, we may write
du = Z(u)�w with u(0) = uoand d� = Z(u)�v + Z 0(u)h�i�w with �(s)js=0 = 0

where Z : O(M)! Hom(Rn;RN) is de�ned by Z(�u) � Bh�i(�u) for all �u 2 O(M);so Z may be viewed as a smooth function with compact support in RN (see Lemma8.1.9 in the appendix). Here we have identi�ed T�uO(M) with RN for each �u 2O(M):
Lemma 7.2.14 Let F : RN ! V be a smooth function with compact support andsuppose I : B1Rn ! B1�RN is Bp-Lipschitz for all p 2 [2;1): Then F � I :B1Rn ! B1�V is also Bp-Lipschitz for all p 2 [2;1):
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Proof. Let p 2 [2;1), w = R Odb+R �ds 2 B1Rn; ~w = R ~Odb+R ~�ds 2 B1Rn,u = I(w) and ~u = I( ~w):By Notation 7.2.13, u solves

du = Z(u)�w
where Z : O(M) ! Hom(Rn;RN) is a smooth function with compact support inRN . Thus, using Itô's formula we have:

d[F (u)] = F 0(u)hdui+ 12F 00(u)hdu; dui
= G(u)dw +H(u)hO;Oids

where
G(u)dw � F 0(u)hZ(u)dwi

H(u)hO;Oi � 12 nXi=1
F 00(u)hZ(u)Oei; Z(u)Oeii:

In the following K will be a constant (which will vary from line to line), dependingon p; kwkB1 ; k ~wkB1 ; and the Lipschitz constants of F; F 0, and F 00.
kF (u)� F (~u)kBp � Kk Z [G(u)�G(~u)]dwkBp

+Kk Z G(~u)d[w � ~w]kBp

+Kk Z [H(u)�H(~u)]hO;OidskBp

+Kk Z H(~u)h ~O �O;OidskBp

+Kk Z H(~u)h ~O; ~O �OidskBp

� KkG(u)�G(~u)kSpkwkB1+KkG(~u)kS1kw � ~w]kBp

+KkH(u)�H(~u)kSp+2KkH(~u)kS1k Z [ ~O �O]dskBp
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� Kkw � ~w]kBp +KkO � ~OkSp� Kkw � ~w]kBp

Q.E.D.
Theorem 7.2.15 The function C 0 : B1Rn � B1Rn ! S1�V de�ned in Equa-tion (7.2.5) satis�es the Bp+ condition (De�nition 7.2.9), that is, for all w; ~w; v 2B1Rn we have

kvwCkSp � KkvkBp

and kvwC � v ~wCkSp � Kkw � ~wkBp1kvkBp2

where p; p1; p2 2 [2;1) such that 1p1 + 1p2 = 1p and K = K(n; p1; p2; �Kw; �K ~w).
Proof. Let  : J ! B1Rn and ~ : J ! B1Rn be admissible curves (Def. 2.1.7)with _0 =vw and _~0 =v ~w. (For example, we could take � = w+ �v and ~� = ~w+ �vfor all �:) Let u = I(w); ~u = I( ~w); and u� = I(�) and ~u� = I(~�) for each � 2 R:By Theorem 7.2.3 we have

vwC = nXi=1
fZ f 0i(u)hvwIi�wi + Z fi(u)�vig+ g0(u)hvwIi

= F(w)v +G(w)v +H(w)v
where fi(�u) � 
�uhh; eii 2 so(n) and g(�u) � ��uhh; �i 2 so(n) for i = 1; :::; n; and�u 2 O(M): (Recall we are assuming that r is Torsion Skew Symmetric.)By Remark 7.2.2 we may view O(M) as a compact submanifold of RN forsome N; and thus extend ffigni=1 and g to smooth functions with compact supporton RN : The proof will consist of obtaining bounds for each of the terms F, G,and H of the form:

kF(w)vkSp � KkvkBp

and kF(w)v � F( ~w)vkSp � Kkw � ~wkBp1kvkBp2
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The F Term.Write � = f 0i : We have:Z �(u)hvwIi�w = Z �(u)hvwIidw + 12 Z d[�(u)hvwIi]dw

= Z �(u)hvwIidw
+12 Z �0(u)hZ(u)dw; vwIidw
+12 Z �(u)hd[vwI]idw

We will consider each of these three terms separately.I) By [8] Cor. 4.1, p. 306, the map w ! u = I(w) is Bp-Lipschitz, sow ! �(u) is Bp-Lipschitz by Lemma 7.2.14. Also, since u is O(n)-valued, and � :RN ! Hom(RN ; so(n)) is bounded (as a smooth function with compact supportin RN), �(u) is S1-bounded by a constant independent of u: Also, Theorem 7.2.8implies that the map (w; v) ! vwI satis�es the Bp+-condition. Thus by Lemma7.2.10 the function (w; v)! �(u)hvwIi is Bp+.Now
k Z �(u)hvwIidw � Z �(u)hv ~wIid ~wkBp

� k Z [�(u)hvwIi � �(u)hv ~wIi]dwkBp

+k Z �(u)hv ~wIid[w � ~w]kBp

� k�(u)hvwIi � �(u)hv ~wIikSpkwkB1+k�(u)hv ~wIikSp2kw � ~w]kBp1

� Kkw � ~wkBp1kvkBp2 by Theorem 7.2.8
Also,

k Z �(u)hvwIidwkSp � k�(u)hvwIikSpkwkB1 by Lemma 8.1.6
� KkvkBp :

II) Write w = R Odb+ R �ds and ~w = R ~Odb+ R ~�ds.
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Let feigni=1 be the standard basis on Rn: ThenZ �0(u)hZ(u)dw; vwIidw = nXi=1

Z �0(u)hZ(u)Oei; vwIiOeids:
Write G(u)hO; vwI; Oi � Pni=1�0(u)hZ(u)Oei; vwIiOei. Then

k Z �0(u)hZ(u)dw; vwIidw � Z �0(~u)hZ(~u)d ~w; v ~wIid ~wkSp
= k Z G(u)hO; vwI; Oids� Z G(~u)h ~O; v ~wI; ~OidskSp
� Kk Z [G(u)�G(~u)]hO; vwI; OidskSp

+Kk Z G(~u)hO � ~O; vwI; OidskSp
+Kk Z G(~u)h ~O; vwI � v ~wI; OidskSp
+Kk Z G(~u)h ~O; v ~wI; O � ~OidskSp� KkG(u)�G(~u)kSp1kvwIkSp2+KkG(~u)kS1kO � ~OkSp1kvwIkSp2+KkG(~u)kS1kvwI � v ~wIkSp� Kkw � ~wkBp1kvkBp2 by Theorem 7.2.8.

Also,
k Z �0(u)hZ(u)dw; vwIidwkSp = k Z G(u)hO; vwI; OidskSp� KkvwIkSp� KkvkBp

III) Let � � vwI. Then � solves the stochastic di�erential equation:
d� = Z(u)�v + Z 0(u)h�i�w

with �(s)js=0 = 0
where Z : O(M) ! Hom(Rn;RN) is a smooth function with compact support inRN (see Notation 7.2.13).
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ThusZ �(u)hd[vwI]idw = Z �(u)hd�idw

= Z �(u)hZ(u)dv + Z 0(u)h�idwidw
= Z G(u)hA;Oids+ Z H(u)h�; O;Oids

where now
G(u)hA;Oi � nXi=1

�(u)hZ(u)AeiiOei
and H(u)h�; O;Oi � nXi=1

�(u)hZ 0(u)h�iOeiiOei:
Now
k Z �(u)hd[vwI]idw � Z �(~u)hd[v ~wI]id ~wkSp

� Kk Z G(u)hA;Oids� Z G(~u)hA; ~OidskSp
+Kk Z H(u)hvwI; O;Oids� Z H(~u)hv ~wI; ~O; ~OidskSp

� Kk Z [G(u)�G(~u)]hA;OidskSp
+Kk Z G(~u)hA;O � ~OidskSp
+Kk Z [H(u)�H(~u)]hvwI; O;OidskSp
+Kk Z H(~u)hvwI � v ~wI; O;OidskSp
+Kk Z H(~u)hv ~wI; O � ~O; ~OidskSp
+Kk Z H(~u)hv ~wI; ~O;O � ~OidskSp� Kkw � ~wkBp1kvkBp2 by Theorem 7.2.8.

Also,
k Z �(u)hd[vwI]idwkSp

� Kk Z G(u)hA;OidskSp
+Kk Z H(u)hvwI; O;OidskSp� KkG(u)kS1kAkSp +KkH(u)kS1kvwIkSp� KkvkBp by Theorem 7.2.8.
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The G Term.The map w ! fi(u) is Bp-Lipschitz (by Lemma 7.2.14), and is S1-bounded since u is O(n)-valued, and fi is a smooth function having compact sup-port in RN : Thus the map (w; v)! R fi(u)�vi is Bp+ by Lemma 7.2.12.The H Term.The map w ! g0(u) is also Bp-Lipschitz (by Lemma 7.2.14), and S1-bounded. Also, Theorem 7.2.8 implies that the map (w; v) ! vwI satis�es theBp+-condition. Thus the map (w; v) ! g0(u)hvwIi is Bp+ by Lemma 7.2.10.Q.E.D.

Theorem 7.2.16 The function R0 : B1Rn � B1Rn ! S1�V satis�es the Bp+
condition (De�nition 7.2.9), that is, for all w; ~w; v 2 B1Rn,

kvwRkSp � KkvkBp

and kvwR� v ~wRkSp � Kkw � ~wkBp1kvkBp2

where p; p1; p2 2 [2;1) such that 1p1 + 1p2 = 1p and K = K(n; p1; p2; �Kw; �K ~w):
Proof. We will write w = R Odb + R �ds and ~w = R ~Odb + R ~�ds: Let  : J !B1Rn and ~ : J ! B1Rn be admissible curves (Def. 2.1.7) with _0 =vw and_~0 =v ~w. Let u = I(w); ~u = I( ~w); and u� = I(�) and ~u� = I(~�) for each � 2 R:By Theorem 7.2.5 we have

vwR = Pni=1 [ ~f 0(u)hvwI; Oei; Oeii+ ~f(u)hAeiiOei+ ~f(u)hOeiiAei+~g0(u)hvwI; Oei; Oeii+ ~g(u)hAei; Oeii+~g(u)hOei; Aeii]
where ~f(�u) � 
�uhh; �i and ~g(�u) � �H�u h�; h; �i: for all �u 2 O(M) (Notation 6.2.14),and ~f 0(u)h�; a; bi � �(u ! ~f(u)haib) and ~g0(u)h�; a; bi � �(u ! ~g(u)ha; bi) for all� 2 TuO(M) �= RN and a; b 2 Rn:
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By Remark 7.2.2 we may view O(M) as a compact submanifold of RN

for some N; and thus extend ~f and ~g to smooth functions with compact supporton RN : Our goal is to show that the map (w; v)! vwR satis�es the Bp+-conditionin De�nition 7.2.9. This is obtained by repeated application of Lemma 7.2.10 usingthe following facts:(i) The functions ~f; ~f 0; ~g; and ~g0 are all smooth with compact supportin RN ; thus the maps w ! ~f(u); etc. are all bounded and are Bp-Lipschitz byLemma 7.2.14 and [8] Cor. 4.1, p. 306.(ii) The map (w; v)! vwI is Bp+ (by Theorem 7.2.8).(iii) The map w ! O satis�es kO � ~OkSp � kw � ~wkBp and kOkS1 �kwkB1 . Q.E.D.
The following lemma and theorem show that for all w 2 B1Rn we mayextend the map C 0 : B1Rn ! End(B1) to a map ~C 0 : B1Rn ! End(B2) suchthat ~C 0(w) : Bp ! Bp; and the properties in Theorem 7.2.15 still hold.In the following we are using the fact that B1 is dense in Bp for eachp 2 [2;1):

Lemma 7.2.17 For each p 2 [2;1) and w 2 B1Rn there exists a unique linearoperator C 0p(w) : Bp ! Sp de�ned by C 0p(w)hvi � Sp- limn!1C 0(w)hvni wherev 2 Bp and fvng � B1 is any sequence such that vn ! v in Bp: Moreover,C 0p(w) = C 02(w)jBp : The result also holds with C 0 replaced by R0:
Proof. Let p 2 [2;1); w 2 B1Rn; v 2 Bp and fvng � B1 such that vn ! v inBp: We have

kC 0(w)hvmi � C 0(w)hvnikSp = kC 0(w)hvm � vnikSp� Kpkvm � vnkBp by Theorem 7.2.15
! 0 as m;n!1.
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Thus we may de�ne C 0p(w)hvi as the limit of the Sp-Cauchy sequence fC 0(w)hvnig:The linearity of the map v ! C 0p(w)hvi follows from the linearity of C 0(w)h�i:Now let f~vng � B1 be another sequence with ~vn ! v in Bp: Then

kC 0(w)hvni � C 0(w)h~vnikSp � Kpkvn � ~vnkBp by Theorem 7.2.15
� Kp[kvn � vkBp + kv � ~vnkBp ]

! 0 since vn ! v and ~vn ! v in Bp
Thus the limit C 0p(w)hvi 2 Sp de�ned above is unique.Finally, we have

kC 0p(w)hvi � C 0(w)hvnikS2

� kC 0p(w)hvi � C 0(w)hvnikSp! 0 as n!1
But v 2 Bp � B2; so this de�nes C 02(w)hvi, that is, C 0p(w)hvi = C 02(w)hvi P -a.s.The proof for R0 is similar. Q.E.D.
Notation 7.2.18 We will still denote the extensions (to B2) by C 0(w) and R0(w);for all w 2 B1Rn:

The following theorem completes the proofs that C and R are S1�-di�erentiable (Theorems 7.2.3 and 7.2.5.)
Theorem 7.2.19 Fix w; ~w 2 B1Rn and v 2 B1�Rn Then

kvwCkSp � KkvkBp andkvwC � v ~wCkSp � Kkw � ~wkBp1kvkBp2
(7.2.7)

similarly kvwRkSp � KkvkBp andkvwR� v ~wRkSp � Kkw � ~wkBp1kvkBp2
(7.2.8)

where p; p1; p2 2 [2;1) such that 1p1 + 1p2 = 1p and K = K(n; p1; p2; �Kw; �K ~w):
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Proof. Fix p; p1; p2 2 [2;1) such that 1p1 + 1p2 = 1p . Let fvng � B1 suchthat vn ! v in Bp2 (so vn ! v in Bp as well). By Theorem 7.2.15, kC 0(w)hvnikSp �KpkvnkBp for all n; so by taking the limit as n ! 1 we have kC 0(w)hvikSp �KpkvkBp .Similarly, C 0(w)hvni�C 0( ~w)hvni ! C 0(w)hvi�C 0( ~w)hvi in Sp as n!1;so the conditions kC 0(w)hvni �C 0( ~w)hvnikSp � Kkw� ~wkBp1kvnkBp2 for all n im-ply kC 0(w)hvi � C 0( ~w)hvikSp � Kkw � ~wkBp1kvkBp2 : The proof for R0 is similar.Q.E.D.

7.3 Existence of the Derivative of the Flow on

W (Rn)
We now prove Theorem 7.1.3: [YwoOh](t; wo) and [Ywo�h](t; wo) exist inS1� and satis�es (7.1.3), and [Ywowh](t; wo) exists in B1� and satis�es (7.1.4).Proof of Theorem 7.1.3. The proof will consist of showing that The-orem 4.1.3 is applicable. For this it is necessary to verify that Ch and Rh satisfythe conditions of C and R in Notation 4.1.1. By Theorem 7.2.19, condition 1 issatis�ed. In [8], conditions 2 and 3 are veri�ed in the proofs of Corollaries 6.1 and6.2, respectively. By the de�nitions of wh; Oh and �h; conditions 4, 5, and 6 aresatis�ed (taking X = Y h): Note that Ch and Rh satisfy the hypotheses of Theorem3.1.5. Q.E.D.
Now we have the analog of Theorem 7.1.3 for ows on the space of pathsW (Rn). We will take the underlying probability space 
 = W (Rn) with referenceBrownian motion �b de�ned by �bs(!) = !(s) for all ! 2 W (Rn):

Notation 7.3.1 Let h 2 C1, and let ~Y h : W (Rn) ! W (Rn) be a continuous
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version of Y h(�b). Let ~wh(t) = R ~Oh(t)d�b+ R ~�h(t)ds be the solution to the equation_~wh(t) = ~Y h( ~wh(t)) with ~wh(0) = id : W (Rn) ! W (Rn): (See Notation 3.2.2 andRemark 3.2.3).

Theorem 7.3.2 Let h; k 2 C1: For all t 2 J;i) [ ~Y k ~Oh](t) � lim�!0 ~Oh(t)( ~wk(�)(�))� ~Oh(t)(�)�and [ ~Y k ~�h](t) � lim�!0 ~�h(t)( ~wk(�)(�))�~�h(t)(�)� (7.3.1)
exist where the limits are taken in the Sp-topologies for p 2 [2;1):ii) [ ~Y k ~wh](t) � lim�!0

~wh(t)( ~wk(�)(�))� ~wh(t)(�)�exists where the limit is taken in the Bp-topologies for p 2 [2;1):Note that we do not de�ne these derivatives for each ! 2 W (Rn) sincethe limits exist only P -a.s.
Proof. In the proof of Theorem 7.1.3 above we have veri�ed the conditions in No-tation 4.1.1. Also, for all � 2 J , ~wk(�)�P is equivalent to standard Wiener measure� on W (Rn); so this result follows directly from Theorem 5.4.2. Q.E.D.

7.4 Existence of the Derivative of the Flow on

Wo(M)

Notation 7.4.1 Given h 2 C1; let Xh be the vector �eld on B1M de�ned inTheorem 6.3.2. We will write the solution to the ow equation _�h(t) = Xh(�h(t))on B1M as a function of its starting point, as we did for the ow on B1Rn
(Notation 7.1.2). We write �h(t; �0) for the solution to the equation
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�h(t; �0) = Xh(�h(t; �0)) with �h(0; �0) = �0 2 B1M: (7.4.1)

The existence of a unique solution to (7.4.1) is given by [8] Corollary 6.3, p. 336.
Theorem 7.4.2 Suppose M � RN is an imbedded submanifold. Let h; k 2 C1;and de�ne �h; �k and Xk as in Notation 7.4.1. Let �o 2 B1M such that �o�P isequivalent to �: Then for all t 2 J ,

[Xk�h](t; �o) � lim�!0 �h(t;�k(�;�o))��h(t;�o)� (7.4.2)
exists where the limit is taken in the BpRN -topology for all p 2 [2;1):
Proof. Fix t 2 J . By [8] Theorems 5.1 and 3.3, we have a 1-1 correspondencebetween ows on B1M de�ned by (7.4.1) and those on B1Rn de�ned by (7.1.1),given by �h = ��I(wh): In the expanded notation 7.4.1, �h(t; �0) = ��I(wh)(t; w0)means that �h satis�es (7.4.1) with starting point �0 = � � I(w0):So we have �h(t; �k(�; �o)) = � � I[wh(t; wk(�; b))] since �k(�; �o) = � �I(wk(�; b)): Let � � wh(t; wk(�; b)): Now the map � ! � is B1�-di�erentiableby Theorem 7.1.3, and we have by [8] Cor. 4.2, p. 313, that � ! I(�) is alsoB1�-di�erentiable. (Note that the B1�-Lipschitz requirement on the derivative� ! dd�� in [8] Cor. 4.2, p. 313 is used only to obtain a Lipschitz bound for�! dd�I(�):)Finally, since � is smooth we have by the Chain Rule ([8] Lemma 4.6, p.314) that [Xk�h](t; �o) � dd� j0[� � I(�)] exists. Q.E.D.
Theorem 7.4.3 Fix h; k 2 C1: Let �H be a �xed version of the horizonotal lift mapH (see Notation 6.2.10). De�ne the vector �eld ~Xh on Wo(M) by ~Xh(~�) � �H(~�)h:Let ~�h : R!Maps(Wo(M)! Wo(M)) be the solution to equation (6.3.2):

_~�h = ~Xh(~�h) with ~�h(0) = id
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given by Theorem 6.3.1 ([8] Theorem 8.5, p. 361). Similarly de�ne ~Xk and ~�k:Then for all t 2 J ,

[ ~Xk~�h](t)(�) � lim�!0 ~�h(t;~�k(�)(�))�~�h(t)(�)� (7.4.3)
exists where the limit is taken in the BpRN -topology for all p 2 [2;1):
Proof. Let �h be the solution to (7.4.1) with underlying probability space(Wo(M); f �H�s+g; �) and �o = ��o where ��o(s) : Wo(M) ! M is de�ned by��o(s)(!) = !(s) for 0 � s � 1 and ! 2 Wo(M) (see Notation 3.2.1).We know that for all t 2 J , [Xk�h](t; ��o) � lim�!0 �h(t;�k(�;��o))��h(t;��o)�exists in B1� by Theorem 7.4.2. Since �k(�; ��o) has law equivalent to �; we have(supressing the parameters t and �) (�h � �k)(��o) _=�h(��o) � �k(��o) _=~�h � ~�k.Thus ~�h(t)(~�k(�)) � ~�h(t) is a version of �h(t; �k(��o)) � �h(t; ��o); so[ ~Xk~�h](t) as de�ned above exists and is a version of [Xk�h](t; ��o). Q.E.D.



Chapter 8

Appendix

8.1 Classical Theorems of Girsanov, Kolmogorov

and Gronwall

Lemma 8.1.1 Let J = [��; �] � R and C : J ! so(n). Then there exists aunique solution to _T (t) = C(t)T (t) with T (0) = I (8.1.1)
Moreover, T (t) 2 O(n) for all t 2 R:
Proof. Since (8.1.1) is a linear ordinary di�erential equation in �nite dimensions,it has a unique solution. To show that T (t) 2 O(n) note that

ddt [T (t)�T (t)] = ddt [T (t)�]T (t) + T (t)� _T (t)
= T (t)�C(t)�T (t) + T (t)�C(t)T (t)
= 0 (since C(t) is so(n)-valued).

Since T (0)�T (0) = I; this shows that T (t)�T (t) = I for all t 2 J: Q.E.D.
The following is a corollary of Girsanov's theorem using Novikov's crite-rion. For a proof see [8] Lemma 8.2, p. 347.
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Lemma 8.1.2 (Girsanov's Theorem) Let w = R Odb+ R �ds 2 B1Rn such that(O;�) is a predictable O(n)�Rn-valued process, and P (R 10 j�(s)j2ds � K) = 1 forsome constant K <1: Then

1. � � b�P and w�P are equivalent.
2. Let Zs � expf� R s0 � � Odb � 12

R s0 j�j2d�sg and de�ne Q � Z1 � P; that is, Qis the probability measure on 
 such that dQdP = Z1: Then w�Q = �:

Lemma 8.1.3 Kolmogorov's Lemma (See [41] Theorem 53, p. 171, and Corol-lary, p. 173.)Let p 2 [1;1) and V be a �nite-dimensional vector space. Suppose f :J ! SpV is Sp-Lipschitz. Then there is a version of f such that P -a.s. thefunction (t! f(t)) : J ! W (V ) � C([0; 1]; V ) is continuous. In particular, thereis a version of f such that the function ((t; s)! f(t)(s) : J � [0; 1]! V is P -a.s.continuous.

Lemma 8.1.4 (Driver [8] Lemma 4.5, p. 306) Let p > 1 and suppose q : J !SpRn is an Sp-di�erentiable function and the derivative _q is Sp-Lipschitz. Thenthere is a version of q such that P -a.s. the function (t; s)! q(t)(s) is C1;0:

Lemma 8.1.5 Let p; p1; p2 2 [2;1] and be such that 1p1 + 1p2 = 1p : Suppose V isa �nite-dimensional vector space. Let X and Y be continuous adapted processessuch that XY 2 SpV . Then kXY kSp � kXkSp1kY kSp2 .
Proof. For p2 =1 we have

kXY kSp = fZ
[ sup0�r�s jX(!; r)Y (!; r)j]pd!g 1p
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� fZ
[ sup0�r�s jX(!; r)j sup0�r�s jY (!; r)j]pd!g 1p

� fZ
[ sup0�r�s jX(!; r)j sup0�r�s ess sup�2
jY (�; r)j]pd!g 1p

= fZ
[ sup0�r�s jX(!; r)j]pd!g 1p sup0�r�s ess sup�2
jY (�; r)j= kXkSpkY kS1
The proof for p1 =1 is similar. For p1; p2 2 (p;1) we have

kXY kSp = k sup0�r�1 jX(r)Y (r)jkLp(P)� k sup0�r�1 jX(r)j sup0�r�1 jY (r)jkLp(P)� k sup0�r�1 jX(r)jkLp1 (P)k sup0�r�1 jY (r)jkLp2 (P) by H�older
= kXkSp1kY kSp2

Q.E.D.
Lemma 8.1.6 Let p; p1; p2 2 [2;1] be such that 1p1 + 1p2 = 1p : Suppose V and Ware �nite-dimensional vector spaces w � R Odb + R �ds is an V -valued Browniansemimartingale, and Z is a Hom(V;W )-valued continuous adapted process. Thenk R ZdwkBp � kZkSp1kwkBp2 .
Proof. We have

k Z ZdwkBp = k Z ZOdb+ Z Z�dskBp

= kZOkSp + kZ�kSp� kZkSp1kOkSp2 + kZkSp1k�kSp2 by Lemma 8.1.5
= kZkSp1kwkBp2 :

Q.E.D.
Lemma 8.1.7 Gronwall's Lemma. Suppose f : R+ ! R+ and �;K � 0 areconstants such that f(t) � � + K R t0 f(�)d� for all t 2 R+: Then f(t) � �eKt forall t 2 R:
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Proof. Let F (t) � K R t0 f(�)d�; then _F (t) = Kf(t) � K[�+F (t)] by hypothesis.Thus we have ddt [e�KtF (t)] = e�Kt[ _F (t)�KF (t)]

� K�e�Kt:
Integrating and solving for F (t); we have F (t) � �eKt � �; thus f(t) = F (t) + � ��eKt: Q.E.D.

The following lemma is a consequence of [8] Lemma 7.4, p. 339.
Lemma 8.1.8 Modi�ed Gronwall's Lemma Let g : J ! S1� be S1�-di�erentiable. Suppose there exist constants K; � � 0 such that

k _g(t)kSp � Kkg(t)kSp +O(�)
for all t 2 J; and kg(0)kSp is O(�). Then kg(t)kSp is O(�) for all t 2 J: This resultalso holds with S1� and Sp replaced by B1� and Bp:

Lemma 8.1.9 For all a 2 Rn; the map Bhai(�) : O(M)! TO(M) is smooth.
Proof. Let r be a given covariant derivative on TM: For u 2 O(M) we haveBhai(u) = [��jHru ]�1ua where Hru = Hru O(M) � TO(M) is a horizontal tangentspace, also called a connection on O(M): The covariant derivative r determinesHru since Hru O(M) = f _�(0)j�(0) = u and rudt (0) = 0g:To investigate the smoothness of the map [��jHru ]�1 we will represent Hruin local coordinates.First we represent r (locally) as a covariant derivative ~r on the trivialvector bundle M �Rn:We have TM ~=M �Rn as an isomorphism of vector bundles by the map� : M � Rn ! TM de�ned by �(m; a) = U(m)a where U(p) 2 Op(M) for allp 2M (i.e. U is a �xed moving frame).
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Identify �(M �Rn) with C1(M;Rn): Then for all S 2 �(M �Rn) wemay write ~rvS = dShvi+ �uhviS (8.1.2)

where �U is a smooth so(n)-valued 1-form on M de�ned by �Uhvi � U�1rvU:Now we also have O(M) ~=M� so(n) via the map 	 :M� so(n)! O(M)de�ned by 	(m; g) = U(m)g:So we may represent Hru O(M) locally asH ~r(m;g)(M � so(n)) � f( _m(0); _g(0))jm(0) = m; g(0) = g; ~rgdt (0) = 0g; where u =U(m)g: Now we have via (8.1.2) a representation of the local covariant derivativealong a smooth curve �(t) in M : ~rdtS(t) = _S(t) + �Uh _�(t)iS(t) where S(t) 2��(t)(M � so(n)):Since g(t) 2 �m(t)(M � so(n)) we have ~rgdt (0) = _g(0) + �Uh _m(0)ig(0); sosetting v = _m(0); we have H ~r(m;g)(M � so(n)) � f(v; (��Uhvig)g)jv 2 TmMg �TmM � Tgso(n):Also, the map �� : H ~r(m;g) ! TmM is just a projection, so we have[��jH ~r(m;g) ]�1v = (v; (��Uhvig)g):Finally, in the local representation we have for each a 2 Rn; ~Bhai(�) :M � so(n)! H ~r(m;g) de�ned by ~Bhai((m; g)) = (U(m)ga; (��UhU(m)ga)g) whichis clearly smooth in (m; g): Q.E.D.
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