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ABSTRACT OF THE DISSERTATION

Differentials of Measure-Preserving

Flows on Path Space
by
Carolyn M. Cross
Doctor of Philosophy in Mathematics
University of California, San Diego, 1996

Professor Bruce K. Driver, Chair

Let W = {w : [0,1] — R™|w is continuous}, equipped with Wiener mea-
sure. The classical Cameron-Martin theorem states that the mapping (w — w+h)
of W to itself (for h € W) preserves the measure up to a density if and only if
he H={hecW|h0)=0, []|h(s)]?ds < co}.

Bruce Driver has proved an analogous result for the space W,(M) of
continuous paths on a compact manifold M with a fixed base point 0 € M. Let
Cl' = {h € CY([0,1],T,M)|h(0) = 0}, the space of once-continuously differen-
tiable paths in T,M, starting at the origin. Driver constructed a “natural” vec-
tor field X" corresponding to each h € C!, and showed that the induced flow
t — ol(t,w) starting at a “generic” path w € W, (M) exists, and that the map
ol(t,-) : W,(M) — W,(M) preserves Wiener measure up to a density.

In my thesis I first generalize Driver’s construction of measure-preserving
flows to a slightly larger class V' of vector fields on W. These are functions Y :

W — W of the form

V(@)(s) = [ C@(@do(d) + [ Rw)(s)ds
where, roughly speaking, C' takes values in the skew-symmetric matrices and R(w)

is bounded by a “nice” function of w.
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I then show that members of V' generate flows which are “smooth” in
their starting path, i.e., differentiable via any vector field in V.

The proof uses a modified Picard iterates method to solve a differential
equation including a term with an unbounded linear operator.

The second half of my thesis is devoted to the “geometric” result that
Driver’s flows are differentiable in their starting paths. This result is proved for
both the “transferred” flow in W and the original flow in W,(M).

The W case is proved by showing that the class V" above contains Driver’s
“transferred” vector fields on W, i.e., Y" € V for all h € C'. Thus the result
in Part I implies that the “transferred” flow w"(t,w) generated by Y on W is
“differentiable” in its starting path w via any of the vector fields Y*, for k € C'.
I then use certain smoothness properties of the stochastic development map to

transfer this result to W,(M).
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Chapter 1

Introduction

Let W be an n-dimensional, C'* manifold and assume X is a complete
smooth vector field on W. Define the flow of X starting at w € W as the solution to
the differential equation: &(t,w) = X (o(t,w)) with o(0,w) = w. Then by classical
theorems ([34] Section 4.1, Theorem 1, p. 80), o(¢,-) : W — W is a C* function
for all £ € R. That is, the flow of a vector field on a finite-dimensional manifold
depends smoothly on its starting point.

The purpose of this thesis is to prove a similar result for a class of flows
on the infinite-dimensional manifold of paths on a compact Riemannian manifold.

Measure-Preserving Flows on Wiener Space

Let W(R") = {w : [0,1] — R"|w is continuous}, equipped with Wiener
measure g. The classical Cameron-Martin theorem states that the mapping (w —
w~+ h) of W to itself (for h € W(R")) preserves the measure up to a density if
and only if A is in the Cameron-Martin Hilbert space H of absolutely continuous
functions with one derivative in L2,

In [8], Bruce Driver proved an analogous result for the path space of
a compact manifold M with a fixed base point o € M. This result states that
the flows generated by certain natural vector fields on the path space W, (M) =
{w € C([0,1], M)|w(0) = o} preserve Wiener measure, v, up to a density. Re-
cently, generalizations of this work have been obtained by Hsu [21], Norris [39],



and Enchev-Stroock [15].

In Driver’s setting, each vector field is uniquely determined by a path
h € C' = C'([0,1],R") according to the following construction. Since R" is
isomorphic to T,M, the tangent space to M at o, we may view h as a path in
T,M. Now construct a vector field along a “generic” path w in M by “parallel
translating” the vector h(s) along w from w(0) = o to w(s). By doing this for a
“generic” path w in M, we create a vector field X® on the path space W,(M) itself.

Note that ordinary parallel translation requires the path w to be differ-
entiable, but the set of such paths has v-measure zero in W,(M). Instead, we use
stochastic parallel translation, which is constructed using the Ito stochastic calcu-
lus, and therefore is defined only up to v-equivalence. In this context the notion
of smoothness must involve stochastic calculus. For example, stochastic parallel
translation is not in general even continuous in the sup-norm topology.

For each h € C!, the flow " : R — Maps(W, (M), W,(M)) associated to
the vector field X is the unique solution to the equation 5h(t,w) = Xh(5"(t,w))
with 6"(0,w) = w in the space of paths {o : R — Maps(W,(M) — W,(M))}.

Driver showed that the flow t — &"(t,w) of the vector field X" starting
at a “generic” path w € W,(M) exists, and the map 5"(¢,-) : W,(M) — W,(M)
preserves Wiener measure up to a density.

In this paper we will show that this flow is “differentiable” in its start-
ing path w. This is analogous to the classical result that solutions to ordinary
differential equations vary smoothly in their initial conditions.

In proving his result on W,(M), Driver uses the stochastic development
map of Eells and Elworthy [12], and P. Malliavin to transfer the problem to one
on W(R™). The inverse of the stochastic development map may be viewed as
transferring a path (thought of as wet ink) on M to one on R™ by “rolling” the
manifold on R"™ along the path, without slipping or twisting the manifold.

This development map can roughly be considered as a diffeomorphism

betweem W (R™) and W, (M), thus the “natural” vector fields X” on W, (M) may



be transferred to vector fields Y* on W(R™). Driver proved the existence of a
measure-preserving flow on W (R") corresponding to these vector fields Y”. He
then used the development map to transfer the flows on W(R") to flows on W, (M).

In more detail, the vector field X* on W,(M) pulls back under the devel-

opment map to a vector field Y on W(R™) of the form

Vi (w)(s) = /0 T OMw)(5)dw(s) + /0 " RMw)(s)ds
where the process s — (C"(w)(s), R"(w)(s)) is p-a.s. End(R") x R"-valued, con-
tinuous and adapted, with formulas for C* and R" determined by geometric prop-
erties of M. Here End(R") denotes the n x n real matrices. (We will usually write
this using the shorthand notation Y"(w) = [ C™(w)dw + [ R"(w)ds.)
Driver proved the existence of the flow ¢t — @w"(¢,w) of the vector field

Y starting at a “generic” path w € W(R™), i.e., w"(t,w) solves
ol (t,w)(s)

ot
with @"(0,w)(s) = w(s). Moreover, it was shown that the map @w"(¢,-) : W(R") —

= V(" (t,w))(s) (1.0.1)

W (R™) preserves Wiener measure up to a density.

Many others have worked in the area of nonlinear transformations on
Wiener space. In particular, A. B. Cruzeiro’s results [7] could be used to prove
the existence and measure-preserving properties of transformations induced by
the vector fields above with C" = 0. (See also G. Peters’ results [40].) Other
contributors include L. Gross [19], R. Ramer [42], S. Kusuoka [29], I. Shigekawa
[47] [48], and M.-P. and P. Malliavin [36].
Smoothness of Flows on Classical Wiener Space

The purpose of the first part of this thesis is to obtain smoothness results
in the W(R") setting (Chapters 3, 4 and 5). In Chapter 3 we will generalize
Driver’s construction of measure-preserving flows to a larger class V of vector
fields on W(R") which are independent of the geometry of M. These are functions
Y : W(R") — W(R") of the form

V(w) = / O(w)dw + / R(w)ds



where C takes values in the skew-symmetric matrices and R(w) is bounded by a
“nice” function of w. We will also require certain smoothness conditions on the
kernels C' and R.

As in (1.0.1), the flow @ : R — Maps(W(R"), W(R™)) associated to the
vector field Y is, roughly speaking, the unique solution to the equation zb(t, w) =
Y ((t,w)) with @(0,w) = w in the space of paths {w : R — Maps(W (R") —
W(R"))}-

In the main theorem of Chapter 3 (Theorem 3.2.8), we will show that the
flow t — w(t,w) of such a vector field Y € V exists starting at a “generic” path
w € W(R"), and the map w(¢, ) : W(R") — W(R") preserves Wiener measure up
to a density. (We will sometimes use the term “quasi-invariance” for this measure
preservation property.)

We will first obtain “flows” on a space of “Brownian semimartingales”
rather than W (R™) itself (Section 3.1). By doing this we avoid a certain tech-
nical problem in Wiener space of interdependence between existence and quasi-
invariance of the flow. Then in section 3.2 this result is used to prove the existence
of measure-preserving flows in the path space of R".

Let 1y (t,w) be the flow corresponding to the vector field Y; € V. In
Chapters 4 and 5 we will show that for each fixed ¢ the map w — W (¢,w) is

“differentiable” via any vector field Y, € V (Theorem 5.4.2), that is,

Fain] (£, ) = lim 2026 ) = da(t, )

e—0 €

(1.0.2)

where the limit is taken in L? for all p € [2,00). This is analogous to the classical
result that solutions to ordinary differential equations vary smoothly in their initial
conditions.

As in the proof of existence of the flows, to avoid technical difficulties we
will prove a “smoothness” result first in the space of Brownian semimartingales,
denoted by B*R" (Theorem 4.1.3).

Let V be the “semimartingale version” of the vector field space V. V is

to be thought of as a space of vector fields on B*R". Fix Y; € V, for + = 1,2 and



let w; be the corresponding flow on B*R".

In Chapters 4 and 5 we prove that Ysw; exists, where Yw, is defined as
in (1.0.2) without the tildes. This is accomplished in two steps.

In Chapter 4, the equation which must be satisfied by Yowq, if it exists,
is obtained by formally differentiating (via Y5) the flow equation which defines w;.
Then the existence of a unique solution Z to this equation is proved.

In Chapter 5 we prove that Yow; exists and is equal to the solution Z
found in Chapter 4, by showing that the discrepancy between Z and a difference
quotient approximating the derivative Y,w; approaches zero in an LP-type norm
for all p € [2,00). In section 5.4 this result is used to prove the differentiability of
the flow on W(R") (see Theorem 5.4.2).

Differentials of Flows on Path Space of a Compact Manifold

The second part of this thesis is devoted to the manifold version of Theo-
rem 5.4.2: that Driver’s flows are differentiable in their starting paths. This result
is proved for both the “transferred” flow in W (R") and the original flow in W,(M).

The W(R™) case is proved by showing that the class V' above contains
Driver’s “transferred” vector fields on W(R"), i.e., Y* € V for all h € C*'. Thus
Theorem 5.4.2 implies that the “transferred” flow w”(t,w) generated by Y* on
W(R") is “differentiable” in its starting path w via any of the vector fields Yk,
for k € C' (Theorem 7.1.3). Then we use smoothness properties of the stochastic
development map to extend this differentiability result to Driver’s flows on W, (M)
(Theorem 7.4.3).



Chapter 2

Norms, Differentiation and

Integration for Semimartingales

2.1 Definitions and Notation

This section introduces the norms and related spaces of semimartingales
in which we will work throughout this paper. We also define various notions of
differentiation and integration for these spaces.

Suggested references for this section include [1, 2, 13, 14, 22, 35, 38, 41,
43, 44, 45, 46]. Especially see Protter [41] for stochastic integration theory, and

Emery [14] for stochastic calculus on manifolds.

Notation 2.1.1 Throughout this paper we will use an underlying filtered prob-
ability space (U, {Fs}, F, P), satisfying the usual hypothesis, i.e. the o-algebra
F on Q is complete with respect to the probability measure P, the filtration {F}
15 right continuous, and Fy contains all P-null sets. We assume that this space

supports an R™-valued Brownian motion b. Two examples follow.
1. If Q =W(R") with P being Wiener measure, define

(a) bs:Q— R" by bs(w) = w(s).



(b) F as the completion with respect to P of the o-algebra generated by the
maps {b(r) : 0 <r < 1}.

(¢c) Fs as the o-algebra generated by the maps {b(r) : 0 < r < s} and all
the P-null sets of F.
2. If Q=W,(M), with v being Wiener measure, define
(a) F as the completion with respect to v of the o-algebra generated by the
maps o,(r)(w) = w(r) for 0 <r <1 and w € W,(M),

(b) Fs as the o-algebra generated by the maps {o,(r) : 0 < r < s} and all
the v-null sets of F.

(c) b=I"'oH(o,).

Standing Conventions. In this paper a process on (€, {F;}, F, P) means
an {F;}-adapted process, and a semimartingale means a continuous semimartin-

gale.

Definition 2.1.2 An R"-valued process w is o Brownian semimartingale if

w is a continuous {F,}-adapted process such that

w(s) = w(0) +/OSO(7')db(T) +/Osoz(7)d7 (2.1.1)

for some continuous adapted End(R"™) x R™-valued process (O, «). (Here End(R™)
denotes the space of n x n real matrices.)

We will usually write (2.1.1) as
w = w(0) +/Odb+/ads.

Notation 2.1.3 The following norms will be used in this paper:

1. Let O(n) and so(n) denote the set of n x n real-valued, orthogonal, skew-

symmetric matrices, respectively.



2. For annxm matriz A, define |A| = tr(A*A)Y? (the Hilbert-Schmidt norm,).
3. For a € R, define |a| to be the Euclidean length of a.

4. IfV is a normed space, and f(s) is a continuous adapted V-valued stochastic

process, define || - ||sp(s) for p € [2,00] by
[fllses) = [ sup [f(r)]v [|locp)
0<r<s
and set || flse = || flls0(1)-

5. If w = [Odb+ [ads is a V-valued Brownian semimartingale, then for
p E [2,00], let

|wllgrsy = |O|lse(sy + [l sres)

and set |(w||pr = ||w||eq)-

Notation 2.1.4 For p € [2, 00| we have the following normed spaces.

Denote by SPV (or just S?) the space of continuous adapted V -valued
processes f(s) such that || f|ls» < co. Let S™7 = Myepz,00)57.

Denote by BPV, or just B?, the space of V -valued Brownian semimartin-
gales (w) such that w(0) =0 and ||w||p» < 00, and let B®~ = Npep2,00)B".

Note that if V is a finite-dimensional vector space then SPV and BPV are
Banach spaces for all p € [2,00). (Lemma 4.2, p. 304 in [8]).

In particular, we will often use the spaces BPR™, BPEnd(R"™) and
BPso(n). We will denote by BPO(n) C BPEnd(R") the subset of processes taking

values in O(n).

Definition 2.1.5 Let V be a finite-dimensional vector space. Let J = [—k, k] C
R be a compact interval and let p € [2,00]. A function G : J — SPV is called
SP-differentiable at ¢ € J if lime_y ||2[G(t + €) — G(t)] — G'(t)||sev = O for some
G'(t) € SPV.

Similarly, define a BP-differentiable function by replacing SP with B? in

the above definition.



Definition 2.1.6 Let V be a finite-dimensional vector space, and let S®~V =
Npefz,00) STV as above.

i) We say that a map t — f(t) € S®°V is S -continuous if ¢t — f(t) is SP-
continuous for all p € [2,00).

i) Similarly, if || f(t) — f(7)||ls» < Kpl|t — 7|, with K, a function of p for all
p € [2,00), we say f is S -Lipschitz.

iii) Finally, f is S°°~ -differentiable if t — f(t) is SP-differentiable for all p €
2, 00).

Similarly we define the analogous B~ terms.

Definition 2.1.7 An admissible curve is a B> -differentiable curve v : J —
B>*R" such that limsup, o ||7(t)||s= < Ky < oo, and the map t — ¥(t) is
B>~ -Lipschitz.

Notation 2.1.8 Throughout this paper the brackets (-) will be used to indicate

linear arguments of a function.

Definition 2.1.9 A function F' : B® — S®7V s called S®~-differentiable at
w € B> if there exists a linear mapping F'(w) : B* — S*V and if for all admissible
curves v with v(0) = w, F(y(t)) is S~ -differentiable at t = 0, with 4|oF(v(t)) =
F'(w){§(0)). We will often use the notation v, F = F'(w)(v), where v = %(0).
Similarly, a function F': B*R"™ — B*~V is B>~ -differentiable at w €
B> if the above holds with S®°~ and S? replaced by B™®~ and B?, respectively.

Notation 2.1.10 Suppose f(t,w)(s) is a process. We distinguish two types of
integrals of f(t) :

1. The pointwise integral defined by

<p.w. / ’ f(t)dt) @)= [ " F(tw) (s)dt
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2. The SP-integral satisfying

lim =0
|w|—0

s [ "yt — > Ft) (tisr — 1)

r={a=to<t; < <tn=b}

Sp

where || = max; |[t; 11 — t;|. We will usually write SP [ simply as [ .

Lemma 2.1.11 Suppose that g : J — BPR™ such that (r,s) — g(r,w)(s) is
jointly continuous for all w € Qo where Qg C Q with P(y) = 1. Then for 7 < t,

lp-w. 7 g(r)drllse < [} [lg(r)llsedr for all p € 2, 00).

Proof. Fix p € [2,00) and let f(r,w) = suppcs< |g(r,w)(s)]- The map r —
f(r,w) is measurable since by continuity of g we may take the supremum over a
countable dense subset of [0,1].

Claim:

" t
Hp.w./T F(r)dr| ey S/T 1Lf () |zo(pydr

Proof of claim: Let G > 0, G € LY (P), where %4—; = 1, and let F(w) =
[F flr,w)dr, ie., ' = paw. [* f(r)dr. Then

I1FG L p)

—/ [/ T, W dr] G(w)P(dw)
—/ d?"/ (dw) f(r,w)G(w) by Tonelli

< / dr| f(r)||cep) |Gl Lo () By Holder’s inequality
Thus we have

|Fllzrpy = sup{l|FGllLyp)l|Gll py = 1}

t
[ 1 @lleoeydr

IN

which proves the claim.
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Finally, we have

t t
Ipw. [ g@)drllse = sup |paw. [ g, (s)drllzocr)
T 0<s<1 T
t
< pw [ sup lg(r,)(s)ldrl o
T 0<s<1
t
= lpaw. [ £r)drlen
t
< [ IOl
t
= [ o) llsrdr

Q.E.D.

Lemma 2.1.12 LetV be a finite-dimensional vector space, and suppose f : RT —
S~V is S~ -continuous. Then for allt € RT and p,q € [2,00), S? [{ f(r)dT =
S0 ft f(r)dr.

Proof. Since f is S -continuous, for each p € [2,00) the Riemann sums in

Notation 2.1.10 converge, so the SP integral exists. Fix p,q € [2,00) with p < g¢.

Let7rz{0zt0<t1<~~~<tn:t} and |7T|:maxz-|tz-+1—ti|.Then

t n—1
I B RIOTEDWIBICIERS )
) t n—1
< lim 5" /0 OUEDIOITNELD §

= 0 by definition of the S%integral.

Q.E.D.

Notation 2.1.13 Let f : Rt — S be S® -continuous, and t € R*. Let
S~ [{ f(7)dr denote the common integral SP [J f(7)dT for p € [2,00) given by
Lemma 2.1.12.
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Lemma 2.1.14 Fundamental Theorem of Calculus for SP-integrals.

Let J C R be a compact interval, and f : J — S®7V be S~ -continuous, where V
is a finite-dimensional vector space. Then for allp € [2,00), the map t — [} f(7)dT
is S -differentiable, and f(t) = %fgf(T)dT forallt € J.

Proof. Let ¢ > 0 (the case for ¢ < 0 is similar) and fix p € [2,00). We have

[T s [ s} - 1)

€

Sp

1 t+e¢
_ Z/t F(r)dr — f(2) .
t+e¢
= iﬂ+nﬂﬂ—fwmmf
< sup |[f(r) = f()|lse
t<r<t+e

This converges to 0 as ¢ — 0 by the SP-continuity of f. Q.E.D.



Chapter 3

Driver’s Measure-Preserving

Flows on Path Spaces

3.1 Flows in a Space of Semimartingales

In [8], Driver proved the existence of quasi-invariant flows on the path
space of a compact Riemannian manifold M. He did this by first transferring the
vector fields generating his flows to Wiener space via the stochastic development
map of Eells and Ellworthy, and proving that these transferred vector fields gen-
erate measure-preserving flows.

Driver’s proof on Wiener space will be presented in this chapter, but we
will obtain a more general statement of his result by eliminating dependence on
the geometry of the manifold M.

We will first obtain “flows” on a space of “Brownian semimartingales” in
order to avoid a problem in Wiener space of interdependence between existence
and quasi-invariance of the flow. In section 3.2 we will use this result to prove the
existence of measure-preserving flows on path space itself.

The following notation and assumptions will be used throughout this
paper.

Notation 3.1.1 Let (C, R) : B°R" — S* End(R") x S®R" with the following

13



14

properties. Let p,py,pa € [2,00) be such that p% + p% = %.

1. There exists (A, T) : B®R" — S*7so(n) x S*End(R") with C(w) =
A(w) +T(w) and ||T(w)||s= < To < 00 for all w € B¥R™.

2. A, T and R are S* -differentiable (see Definition 2.1.9), and for all
w,w,v € B*R",
[owAllsr < Klv]|pr

(3.1.1)
[vwA = vgAlls» < K|lw — @||ges|[v]| 52,

where K = K (n, p, K, K3). These conditions also hold with A replaced both
by T and by R.

3. There exist constants ¢; and cy such that

|R(w)||se < c1||O||ze + o for all w = /Odb+ /ads € B*R".

4. [IC(0)]] s < o0.

Define
X(w) = /C(w)dw + /R(w)ds for w € B*R"
Let w, = [ O,db + [ ands € B*R™.
We explicitly state the following conditions, which are implied by 2. above,

since they will often be used in this form.

[C(w) = Clw)llsr < Kllw— ] s
[R(w) — R(w)[[sr < Kllw — @[ g

(3.1.2)

for all w0 € B¥R" and p € [2,00), where K = K(n,p, Ky, K3). These condi-
tions also hold with C replaced both by A and by T.

In theorem 3.1.5 below, we will prove existence and uniqueness (in a

certain space) of a solution w to the equation

w(t) = X (w(t)) (3.1.3)
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with w(0) = w, € B*R". Equivalently, we will find a solution (O, «) to the pair
of equations

o) = Clwt)o()
and a(t) = C(w(t))a(t) + R(w(t))

(3.1.4)

with O(0) = O, € S*End(R") and a(0) = a, € S™R".
Each of these solutions w and (O, ) will exist in two senses: as solutions

4

in a space of semimartingales, and in the “pointwise” sense defined below.

Definition 3.1.2 (/8] Def. 6.3, p. 327). A 1-parameter family of End(R") x
R"-valued adapted processes (O(t),«(t)) solves (3.1.4) pointwise if the following

conditions hold:
1. P-a.s. the function (t,s) — (O(t)(s), a(t)(s)) is C10.

2. There exist versions A(t), T(t) and R(t) of A(w(t)), T(w(t)), and R(w(t))
respectively, such that P-a.s. the map (t,s) — (A(t)(s), T(t)(s), R(t)(s)) is
CH0 where w(t) = [Ot)db+ [ a(t)ds.

3. There is a fized set Qo C Q of full measure such that (O(t)(s), a(t)(s))
satisfies (3.1.4) pointwise on Qo with C(w(t)) replaced by C(t) = A(t) +T(t)
and R(w(t)) replaced by R(t).

Definition 3.1.3 A I-parameter family of R"-valued adapted processes w(t) =
JO)db + [a(t)ds solves (3.1.8) pointwise if (O(t), a(t)) solves (3.1.4) in the

pointuise sense defined above.

The following lemma gives a sufficient condition on w(¢) so that C1°

versions of A(w(t)), T(w(t)), and R(w(t)) exist, as required in Definition 3.1.2.

Lemma 3.1.4 Let w : J — B*R" be an admissible curve. Then there exist
versions A(t), T(t) and R(t) of A(w(t)), T(w(t)), and R(w(t)) respectively, such
that P-a.s. the map (t,s) = (A(t)(s), T(t)(s), R(t)(s)) is C1O.
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Proof. Let t1,t, € J, and w; = w(t;), w; = % Lw(t) for i = 1,2, Then for

all p € [2,00), L]i=y, A(w(t)) = A'(w;)(w;) where the derivative is taken in the

SP-topology. We have

A (wi) () — A (w2) ()| s»

< A (wr){un) — A'(ws) (1) |0
+[| A" (ws) (i — t2) 52

< Kl|wy — wa||per ||t || e
FK iy — i e by (3.1.1)

< K|t — to).

Using the same argument with A replaced by T" and by R, the map
t — (A(w(t)), T (w(t)), R(w(t))) is S°°~-Lipschitz. The result follows by Lemma
8.1.4 of the appendix. Q.E.D.

Theorem 3.1.5 Let (C,R) : B*R"™ — S*° End(R") x S*R", X : B*R" —
R”™-valued processes and w, € B®R"™ be given as in Notation 3.1.1. Then X :
B*R" — B*~R" and the following results hold:

(i) There exists a unique B®~ -differentiable solution to equation (3.1.3):

with w(0) = w, € B®R" in the space of paths
{w: R — B®R"| sup ||w(t)||p= < 0o VI > 0}.
[t|<T

This solution w is in fact admissible, so w(t) = Lw(t) is B>~ -Lipschitz. Fur-
thermore, there is a version of w which solves (3.1.3) pointwise, in the sense of

Definition 3.1.5.
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(ii) Fquivalently, there exists a unique S~ -differentiable solution (O, )

to the pair of equations (3.1.4):

O(t) = Clw(®)O()
a(t) = Clw(t)alt) + R(w(1))

with O(0) = O, € S*End(R") and a(0) = o, € S®R", where w(t) = [ O(t)db +
[ «(t)ds, in the space of paths

{(O,a) : R — S™End(R") x S®R"| sup[||O(t)||s= + ||a(t)||s=] < 0o VI > 0}.
[t|<T

The solution (O, «) is S™~-differentiable, with (O,d) S~ _Lipschitz.
Also, there is a version of (O,«) which solves (3.1.4) pointwise, in the sense of
Definition 3.1.2.

(iii) Moreover, if we write the solution to (3.1.3) as w(t,w,), a function
of its starting point, then w(t,-) : B*R" — B®R" is a flow on B®R" in the

sense that w(t, w(r,w,)) and w(t + 7,w,) are indistinguishable.

Proof. First note that for w = [ Odb + [ ads € B®R",

[X ()]s = [[C(w)Ollsr + [[Cw)a + R(w)]|s»
< [Cw)l[s[llOllse + lledlls=] + | R(w) [ s» by Lemma 8.1.5.

Since this expression is finite, we have X : B°*R" — B*~R".
The theorem will be proved with R replaced by a compact interval J =
[—k, k]. This result can then be extended by existence and uniqueness to all of R.
The equivalence between solutions of (3.1.3) and (3.1.4) follows from sub-

stituting the formula w(t) = [ O(t)db + [ a(t)ds into (3.1.3):
/O(t)db+/d(t)ds - /C(w(t))[O(t)db+a(t)ds] +/R(w)ds
= [ cwoma + [1Caw®)aw) + R(w)ds

Thus w(t) satisfies (3.1.3) in the BP-norm if and only if its kernels (O(t), a(t))
satisfy (3.1.4) in the SP-norm.
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Uniqueness. Let S denote the set of functions w : J — B*R" with the

following properties:
1. w(t) is B> -differentiable, with w(¢) B>~ -Lipschitz,

2. w(0) = w,, and there exists a constant C, = Cy(cy, Co, Teo, ||wo|| =) such
that ||w(t)||ge < C, for all ¢ € J, Recall that ¢;, ¢, and T, are defined in
Notation 3.1.1.

3. |O)]|s= < ||Oo|s~e™™, where w(t) = [O(t)db+ [ a(t)ds.

Notice that any solution w(t) = [O(t)db + [«a(t)ds to (3.1.3) in the
SP-topologies will automatically be in S. Indeed, by an argument similar to [§]
Prop. 6.3, p. 331, w(t) is B® -differentiable, with %w(t) being B> -Lipschitz,
and there is a version of w(¢) which satisfies (3.1.3) in the pointwise sense of
Definition 3.1.3. Thus by Cor. 3.1.8 below, we also have [|O(t)]|s= < [|O,]|s=e’>
and ||w(t)||pe < C, for all t € J. Therefore w € S.

Define L(w)(t) = w(t) = [O(t)db + [ a(t)ds for all w € S, where O and

@ are the unique pointwise solutions to the ordinary differential equations:

O(t) = Clw(t)O(t) with O(0) = O,

. (3.1.5)
and &(t) = C(w(t))a(t) + R(w(t)) with a(0) = ay,

given by fixing versions C(t) and R(t) of C(w(t)) and R(w(t)) which are P-a.s.
C'%in (t,5s), via Lemma 3.1.4. Here we have solved the equations for each fixed
w € Q and s € [0,1]. Thus the map (¢, s) — (O(t, s),a(t, s)) is also C*° P-a.s.
By Lemma 3.1.7 below, [|O(t)||s= < ||Ool|s=e™ and |[w(t)|| g~ < C, for
all ¢ € J. Also, by an argument similar to Cor. 6.2, p. 330 [8], w(t) is B> -
differentiable, with £@(t) being B>~-Lipschitz. Hence L preserves S.
Claim: If w : J — B®R" is a solution to (3.1.3) with w(0) = w,, then

w is a fixed point for L in the sense that

PU{L(w)(t) = w(t) for all t € J}) = 1.
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(We will use this property of L in the uniqueness argument below.)

Proof of claim. By an argument similar to the proof of Proposition 6.3
p. 331 in [8], if O(t) and «f(t) are S? solutions to (3.1.4) then we may choose
versions which are solutions in the pointwise sense. Thus solving (3.1.5) with
w(t) = [Ot)db+ [ «a(t)ds yields (O(t), a(t)) = (O(t), a(t)) P-a.s.

Indeed, if C(t) is the version of C(w(t)) chosen in solving (3.1.5), and
C(t) = A(t) + T(t) as in Definition 3.1.2, then C(t) = C(¢) for all s € [0,1] on
a set 0y C Q of full measure since both are P-a.s. jointly continuous versions of

C(w(t)). Thus if Qo C ©Q as in Def. 3.1.2, then
O(t)(w, s) = O(t)(w, s)

for all w € Qo N Qy (a set of full measure) and s € [0,1].
Claim: There is a constant K = K(p,C,, ||C(0)|| s, |[R(0)||s=) such
that
[1L(w)(t) = L(w)(7)l[p» < K[t — 7| (3.1.6)

forall t,7 € Jand w € S.
Proof of Claim. First note that by the “Lipschitz” conditions (3.1.2) on C, for any
w € B*®R" with ||w||g~ < C, there exists a constant K = K(p, C,, [|C(0)]|s)

(which will vary from place to place) such that

IC(@)]ls» < [C(w) = C0)][s» + [|C(0)]]sv
< IG[[w][se + IC0) s (3.1.7)
< K

Let C(t) be a version of C(w(t)) which is P-a.s. C** in (¢, s) via Lemma
3.1.4, and let 0 < 7 < t. Then P-a.s.

0() -0 < pa. [ 1C@NIOWdr

t
< Cop.w./ |C(r)|dr.
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It follows that

_ _ t
10(t) = O(7)[[s» < CoHp-w-/T |C(r)|dr|se
t
< co/ |C ()|l s»dr by Lemma 2.1.11
< Kl|t—r|.

Similarly, using the “Lipschitz” conditions on C' and R (3.1.2) there exists K =
K(p, Co, ||C(0)|ls, [|R(0)|| s ) such that

la(t) — a(r)[ls» < K[t — 7],
Claim: There is a constant K, independent of w; and wy in S such that

[ L(w1) () — L{ws)(#)]|» < K| /Ot [wi () — wa(7)|| Brdr] (3.1.8)

for all t € J.

Proof of Claim.
Let w; = L(w;) and write @;(t) = [ O;(t)db + [ &;(t)ds for i = 1,2. Assume ¢ > 0.
(The case for ¢ < 0 is similar.) By [8] Lemma 6.1(ii) there exists a constant

K = K,(w,, Ts) such that P-a.s.
01(t)(s) = Oa(t)(s)] < K/Ot\C(wl(T))(S) — C(wy(7))(s)|dr.

Thus by the “Lipschitz” conditions on C' (3.1.2), there exists K = K,(w,, Tro, €1, C2)
such that

101(t)(5) — Oa(t)(5)]]sv
< K/O |C (wy (7)) — C(ws(7))||svd7 by Lemma 2.1.11

< K/Ot lw: (T) — wo(7)|| Brdr.

Similarly, using the “Lipschitz” bounds on C' and R (3.1.2), there exists K =
K, (w,, T, €1, ¢2) such that

[a1(2)(s) — a(t) ()l s» < K/Ot [wi () = wa(7)|| Brdr.
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This proves the claim.
Let L™ denote “L composed with itself n times”. Tterating (3.1.8), we

obtain
"

1L (w1} (2) = L& (wa) ()] 50 < 20, K™

(3.1.9)

since supye ||wi(t) — wa(t)|| e < 2C,.

This gives uniqueness: if w; and wy are both solutions to (3.1.3) then for
all n, L™ (w;) = w;, so (3.1.9) shows ||w;(t) — wa(t)||pr < 2C, KL, which tends
to zero as n — 0.

Note that (iii) follows from the uniqueness of the pointwise solution.

Existence.

Let wq : J — B®R" be defined by wq(t) = w, for all ¢ € J, and define
w, = L™ (wy) for all n. Then by (3.1.9),

w1 () = wa()lle = IL™ (w1)(£) = L™ (wo) (t) | 5o

tn
< 20,K"—
n!

Since Y00, 2C, KL, < oo, this shows that {w,} is BP-Cauchy uniformly in ¢, so
w(t) = BP-1im,,_, w,(t) exists uniformly in ¢, and is BP-continuous.
For each t € J, w,(t)(s) — w(t)(s) uniformly in s P-a.s., by the following
argument.
o0

E(Y_ sup |wp1(t)(s) — wa(t)(s)])

n=00<s<1

= S B(sup e (1)(s) — wa(H)(s))

n=0 OSSSI

< DI sup Jwnir (8)(s) — wa(t)(s)ll] o)
n—0 0<s<1
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Let Q = {w € Q| X020 SuPgcsct |wny1(t)(s) — wa(t)(s)] < oo}, then P() =1
and wy(t)(s) — w(t)(s) uniformly in s on Qy. Thus for each ¢t € J, the map
s — w(t)(s) is P-a.s. continuous.

Since ||wy,(t)||p= < C, for all n, we have ||w(t)||p=~ < C, for all t € J.
Also, since w,, is B~ -Lipschitz with Lipschitz constant independent of n, w is
B>~-Lipschitz as well. By Kolmogorov’s Lemma (Lemma 8.1.3), there exists a
version of w such that the function (s,t) — w(t)(s) is jointly continuous P-a.s.

Existence of a Solution in B*>~.
Now we will show that w is B>~ -differentiable, and satisfies (3.1.3).

Fix p € [2,00). Write the above iterates as w,(t) = [ O, (t)db+ [ a,(t)ds.
By (3.1.6) and the “Lipschitz” property of C' (3.1.2) the function
T — C(wp(7))Opy1(7) is S~ -Lipschitz, and hence S®°~-integrable.

Claim:
Onni(t) =0, = [ " Clwn (7)) Opar (7)dr P-as. (3.1.10)

Proof of claim. Let C),(t) be a P-a.s. C"0 version of C'(w,(t)) for all n. Then by

applying the Fundamental Theorem of Calculus pointwise,
t
Onir(t) — Oy = pow. / Co(7)On1 (7)dr P-as.
0

We need to show that this pointwise integral is indistinguishable from the S°°~-
integral in (3.1.10).

To do this, fix p € [2,0¢) and let ¢(t) = [y C(w,(7))Opyi(7)dr (Where
the integral is taken in the SP-topology). Then ¢(t) = %¢(t) is S*°~-Lipschitz, so
by Lemma 8.1.4 there exists a version ¢(t) of ¢(¢) such that P-a.s. the function
(t,s) = G(t)(s) is C1°. Thus P-a.s. (t) = Lq(t) exists and

§(1)=C(wn (1)) 011 (1)=Co (1) Opa (1)
where = denotes equality up to P-equivalence. This implies

[ om0t = )
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= 4(0) +paw [ i(r)dr
= puw. Oté(T)dT

= paw. [ Cp(1)Opi1(7)dr
0
= On—l—l(t) - Oo

which proves the claim.
Now the right-hand side of (3.1.10) converges to [, C'(w(7))O(7)dr in the
SP-norm since
|10 (r)0n1(r) ~ Clar)OW el
< [ IC)0n(7) — C (O sni
< [ ICtun(m) — OO (7) ks
+ [ 1@l 10, (7) ~ O(7)

t
< K/ 1w i1 (7) — w(r)|| grdr by (3.1.7) and (3.1.2)
0

g dT by Lemma 8.1.5

and ||wp1(7) — w(7)|| g — 0 uniformly in 7 as n — oo. Here we are using
L=14 1 and K = K(p,C,,[|[C(0)]|s).
Since the left-hand side of (3.1.10) converges to O(t) — O, in the SP-norm,

we have

o(t) = 0, + /Ot Clw(r)O(7)dr-

So by the Fundamental Theorem of Calculus for SP-integrals (Lemma 2.1.14 in the
Appendix), O(t) is SP-differentiable and O(t) = C(w(t))O(t). A similar argument
shows that « is SP-differentiable and satisfies (3.1.4).

Using an argument similar to [8] Proposition 6.3, p. 331, we have (1)
w:J — B®R" is B> -differentiable, with w being B*®~-Lipschitz, and (2) there
exists a version of w which satisfies (3.1.3) in the pointwise sense of Definition

3.1.3. Q.E.D.
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Lemma 3.1.6 Suppose that (T, d) is a separable metric space and {R(t) }ier is a

R"-valued P-a.s. continuous process. Set R* = sup,cp |R(t)|. Then
teT
Proof. First notice that |R(t)| < R* so that ||R(t)|| 1 (p) < ||R*||1oo(p) and hence
s |0 p) < 1l (3.L12)

For the opposite inequality, let D C T be a countable dense subset of 7. With-
out loss of generality we may assume that sup,cp [|R()||zpy < 00. Let A =
sup;er || R(t)|| 2o (py, 50 A > |[R(t)||(p) for each ¢ € 1. Hence for each t € T,
P(|R(t)| < A) = 1. Therefore

P(|R(t)] < X for all t € D) = P(Myep{|R#)| < A}) = 1.
Now using the continuity of R(t), it follows that

{|R(t)] < Aforallt e D} ={|R(t)| < Aforallt € T}.
Combining the two equations above shows that

P(R*<A) =P(R(t)| < Aforall t € T) =1,

that is
IR |2y < sup [|R(E) | . (3.1.13)
teT
Clearly Egs. (3.1.12) and (3.1.13) imply the lemma. Q.E.D.

Lemma 3.1.7 Let the function (C,R) : B*R" — S*"End(R") x S*"R" and
the constants ¢y, ¢co, and T, be as given in Notation 3.1.1. Let w: J — B*R" be
B>~ -differentiable, with w(t) = Sw(t) B>~ -Lipschitz. Suppose that |O(t)||se <
|0(0)||se™> for all t € J, where w(t) = [O(t)db + [ a(t)ds. Set w(0) = w, =

[0ydb + [ ayds € BR™.
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Let O and & be the unique pointwise solutions to the ordinary differential
equations (3.1.5):
O(t) = C(w(t))O(t) with O(0) = O,
and a(t) = C(w(t))a(t) + R(w(t)) with &(0) = a,
given by fixing versions (via Lemma 3.1.4) of C(w(t)) and R(w(t)) which are P-
a.s. CY0in (t,s). (Here we have solved the ordinary differential equations for each
sample point w € Q and each s € [0,1].)

Then ||O(t)]|s < ||Oo||se™ for all t € J, and there exists a constant
C, = Cylcr, 2, Too, ||wo| B) such that ||O(t)]|s= + ||a(t)|ls= < C, for all t € J.

Proof. We will follow the proof of [8] Corollary 6.1, p. 327. By [8] Lemma 6.1,
p. 325 we have for P-a.e. w and all s € [0,1] and t € J,

OB w)(s)] < sup |O(t)(w)(s)]

teJ

< 0(0)(w)(s)|e™.

It follows that
1O()||s < ||O(0)]| g™ for all t € .J. (3.1.14)

Also, by [8] Lemma 6.1, p. 325:

sup [a(t)(w)(s)] < [|8(0)(w)(s)| + sup [R(t)(w)(s)[Je".

ted ted
Thus
sup [|a(t)[[se < || sup a(?)|[ s~
teJ ted
< a)ls~ + lIsup | RO)ls=e"
< [||a(0)]|s~ + esssup sup sup ]R(t)(w)(s)]]eT‘x’
we s€(0,1] ted
< [||@(0)]|s~ + sup esssup \R(t)(w)(s)\]eTw
s€f0,1] WwEN
teJ
< [||@(0)]|s= + supesssup sup ]R(t)(w)(s)]]eT‘”

teJ we s€(0,1]
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IN

lla(0)ls= + 1 Sup IO®)][5 + cale’™
S

< l|evol|see + €1 sup ||OO||250062T00 + 02]eT°o
teg

where we have used Lemma 3.1.6 in the fourth and fifth lines on the P-a.s. con-
tinuous functions (t,s) — R(t)(s) and s — R(t)(s) for fixed t € J.

Combining these results, we have
sup [|O(t)[|s= + sup [|a(t)[|s~ < C,
teJ teJ

where

C, = [||w,|| = + 1 su? ||OO||250062T00 + cole™.
te

Q.E.D.

Corollary 3.1.8 Let the function (C,R) : B®*R" — S*"End(R") x S®~R"
and the constants ci, co, and Ty, be as given in Notation 3.1.1. Let O and « be
solutions to (3.1.4) in the pointwise sense of Definition 3.1.2.

Then ||O(t)||seo < [|Opl|sec€™™ for all t € J, and there exists a constant
Co = Coler, 2, Too, ||wo|| B=) such that ||O(t)||se + ||(t)]|see < C, for all t € J.

Proof. The proof is essentially the same as for Lemma 3.1.7 above. The differ-
ence is that in the last line of the estimate on sup,; ||@(t)|/ s~ we should now use

(3.1.14). QED.

3.2 Driver’s Flows in Wiener Space

Here we will see that the “flows” on semimartingales from Section 3.1
induce flows in path space which preserve Wiener measure. The additional as-
sumption required on the vector fields in Theorem 3.1.5 to obtain these flows in
W(R™) is that the function T take values in S®so(n), not S®End(R"). This

condition corresponds to the “Torsion Skew-Symmetry” assumption of Driver. We
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will outline Driver’s proof, generalizing his result to our “nongeometric” case (in

which the vector fields do not depend on the manifold M).

Notation 3.2.1 Given a finite-dimensional vector space V,

1. Let Hy(V) = o{& : 0 < r < s} where & : W(V) = V is the coordinate
function defined by &, (w) = w(r) for allw € W(V).

2. Let H? be the completion of Hi(V') with respect to some measure Q. (The
extension of Q to H? will still be called Q).

3. Denote by {H9} the completion of the filtration {H,(V)} with respect to Q.
So HE = o(H (V) UN(Q)) where N(Q) = {N € HP, Q(N) = 0}, the set of
Q-null sets.

4' Let 7__[$Q+ = ﬂe>0 ﬁ?—l—e'

With this definition, {7—2&}820 s a right-continuous, complete filtration
with respect to Q on W(V), thus (W (V),{HZ.}, HL, Q) is a probability space sat-
isfying the usual hypothesis (Notation 2.1.1).

Let i1 denote standard Wiener measure on W(R™), and equip the probabil-
ity space (W (R™), {HE.}, 1) with reference Brownian motion b defined by by(w) =
w(s) for allw e W(R"™) and s € [0, 1].

Notation 3.2.2 Let T : B*R"™ — S®7so(n) in Theorem 3.1.5, and let w : R —
B®R™ be the solution to (3.1.8) with w(0) = b (see Notation 3.2.1). Here the
underlying probability space is (W (R™), {H .}, {b(s)}, 1)

Define (O, a) by w(t) = [ O(t)db+[ a(t)ds. Since C(w(t)) is pi-a.s. so(n)-
valued, O(t) is p-a.s. O(n)-valued by Lemma 8.1.1.

We may choose a version such that the function
(t,s) = (@0(t)(s),0(t)(s), a(t)(s)) is p-a.s. C** by Lemma 8.1.4, since Lw(t) is
B>~ -Lipschitz ([8] Proposition 6.3).
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For each t € R, define w(t) : W(R") — W(R"), O(t) : W(R") —

W(O(n)) and a(t) : W(R") — W(R"), by w(t) = w(t), O(t) = O(t) and a(t) =
a(t).

Remark 3.2.3 Notice that w(t) solves (3.1.3) with

w(0) = id € Maps(W(R™), W(R")). Equivalently, (O(t),a(t)) solve (3.1.4) with
0(0) = id € O(n) and &(0) =0 € R".

Theorem 3.2.4 Let w, = [O,db + [a,ds € B*R" with O, an O(n)-valued
process and ||a,||s< < 0o. Assume T : B°R" — S*7so(n) in Theorem 5.1.5, and

let w: R — B®R" be the solution to (3.1.3) with w(0) = w,. Then for eacht € R,

1. w(t) = [O(t)db+ [«(t)ds where O(t) is an O(n)-valued process and there

exists a constant Cy = Cy(cy, Ca, ||ao||s=) such that [|a(t)]| s~ < C, < 00,

2. the law of w(t) is equivalent to p, Wiener measure on W(R™), and

(w(t

3. if p s the Radon-Nikodym derivative p = ddij*P), then p" 1is p-integrable

for all T € R.

Proof. We will restrict ¢ to a compact interval .J which for definiteness will be
taken as [—1,1]. Write w(t) = [O(t)db+ [ a(t)ds, then O and « satisfy equations
(3.1.4):

and &(t) = C(w(t))a(t) + R(w(t))

with O(0) = O, and «(0) = «,. Since A(w(t)) and T'(w(t)) are so(n)-valued
processes, s0 is C'(w(t)) = A(w(t)) + T'(w(t)).

Recall that (O(t), a(t)) is a solution to (3.1.4) in the pointwise sense of
Definition 3.1.2, so O(t) is O(n)-valued P-a.s. since for fixed s and w, O(t)(w)(s) =

C(t)(w)(s)O(t)(w)(s) is a finite-dimensional linear ordinary differential equation,

with C'(t)(w)(s) € so(n). (C(?) is the version of C'(w(t)) given in Definition 3.1.2).
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Also, by Lemma 3.1.7 we may choose a version of a(t) such that |a(t)|e =
Supg< <1 a(t)(s)| < C, < oo (independent of ¢ € J). Thus P(fy |a(s)[?ds < C2) =
1, so we may apply Girsanov’s Theorem (Lemma 8.1.2) to conclude that the law
of w(t) is equivalent to u for all ¢t € J.

The fact that p" is p-integrable for all r € R follows from [8] Corollary
8.1, p. 349. Q.E.D.

Theorem 3.2.5 Let (2, {F,}, P) be a filtered probability space satisfying the usual
hypothesis, equipped with an R™-valued Brownian motion b(s).

Let w(t) : W(R™) — W(R™) be as defined in Notation 3.2.2. Let w, =
JO,db + [ apds € BPR™ with O, an O(n)-valued process and ||a,||se < 00, as in
Theorem 3.2.4. Let w : R — B™R™ be the solution to (3.1.8) with w(0) = w, as
given by Theorem 3.1.5, where T : B*R" — S® so(n).

Then for each t € R, w(t) is P-indistinguishable from w(t) o w,.

Proof. By Theorem 3.2.4(i), we have the hypotheses of Girsanov’s Theorem
satsified by @(t) on (W (R™), {HY, }, {b(s)}, 1), and by w(t) on (Q, {F,}, {b(s)}, P),
since the sup-norm bound implies an L? bound on &(t) and «a(t) respectively.
Thus we have both w(t),p ~ b,y = p and w(t).P ~ b,P = u, where ~ means
equivalence.

Since w, : 2 — W(R™) is an adapted process, we have for all s € [0, 1],
wo(s) is Fy/B(R™)-measurable, i.e., w,(s) € Fs/B(R"), where B(R™) denotes the

Borel sets on R". But w,(s) = b, o w,, thus

w,(s) € Fs/B(R")
& byow, € F,/BR")

& w, € Fs/Hs since {Br}ogrgs generate H,.

Claim: w, is F,/H" -measurable for all s € [0, 1].
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First note that if N € N (u) then u(N) = 0, and hence P o w;(N) =
0 since wo, P ~ p. Thus w;'(N) € F, for all » > 0 since F, contains all P-null
sets.

Thus for each € > 0, w, € Fyi /N (1), and since w, € Fyy/Hsic we have
w, is Feyo/o(Hsye UN(1))-measurable. Let B € HY, = Neago(Hsre UN(p)).
Then w,;'(B) € Fs.. for all € > 0, hence w;'(B) € Neso Fsre = Fs by right
continuity. This proves the claim.

Thus since w(t) : W(R") — W(R") is HY, /HY -measurable, the process
w(t) o w, is F,/HY, -measurable for all s € [0,1]. By [8] Proposition 8.2, p. 352,

w(t) o w, is P-indistinguishable from

/O(t) o wedw, + /&(t) o wyds
- /O(t) 0wy - Oydb + /[O(t) 0wy - g + G(t) 0 w,]ds

Set O(t) = O(t) o w, - O, and «(t) = O(t) o w, - o, + &(t) 0w,

Claim: O(t) and «(t) are S™ -continuously differentiable and solve
(3.1.4) with O(0) = O, and «(0) = .

With this claim we have

w(t) = /O(t)db+/a(t)dsiw(t) 0 W,

by the uniqueness assertion in Theorem 3.1.5, thus proving the theorem.

To prove the claim we will need the following lemma:

Lemma 3.2.6 Keeping the same notation as in Theorem 3.2.5, let Z : W(R") —
W(RN) be a HY/H, (RN )-measurable process. Then for each p € [2,00) and each
r € (2,00) there is a constant C = C(r,p) independent of Z such that

12 0 wol|sppy < Cl|Z

ST ()

Proof. Let p = d(u#jp), then

1Z owsllsppy = || Z]|sp(w,.P)
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= 12l

= 1@ syl
1

= 127 p?[|Lo(uy

< HpHLT’(u)HZ

ST(w)

where ; = . — 1. Set C' = ||p%||LT:(M) which is finite by [8] Corollary 8.1, p. 349.
Q.E.D. (Lemma)

Now since the functions t — O(t) and t — &(t) are S~ (j)-continuously
differentiable, it is clear from the above lemma that ¢ — O(t) o w, and t —
a(t) o w, are S~ (P)-continuously differentiable with derivatives O(t) o w, and
&(t) o w, respectively. This implies that t — O(t) and t — a(t) are also S®~ (P)-

continuously differentiable with

Ot) = O@t)ow,- 0, and

a(t) = Ot) 0w, - ap+alt) ow,.

(3.2.1)
and a(ty = Clw(t))a(t) + R(w(t))
with O(0) = O, and «(0) = a, where w(t) = [ O(t)db+ [ a(t)ds.

First note that since O(0) = id € O(n) and &(0) = 0 € R” (see Remark
3.2.3) we have O(0) = O, and a(0) = a.

Let C' and R be continuous versions of C(b) and R(b) respectively, so
we may view C' : W(R") — W(so(n)) and R : W(R") — W(R"). These are
functions which “implement” C' : B*R"™ — S*7so(n) and R : B*R" — S*R"
in the following sense. Let Z = [Odb+ [ ads € B*R"™ with O being O(n)-valued
and ||a]|s= < 0o C o Z and R o Z are indistinguishable from C(Z) and R(Z) by
Girsanov’s Theorem (Lemma 8.1.2) and [8] Proposition 8.2, p. 352.
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We can now easily verify (3.2.1). By definition we have O(t) = [Co
@(t)]O(t) and hence

Ot) = O(t)ow,- O,

Similarly, by definition, &(t) = C o w(t)a(t) + R o w(t) and thus

a(t) = O(t) 0w, - ap+ &(t) o w,

= Cow(t)ow, Ot) 0w, - oy + a(t) o w,

,

w(t) a(t)

This proves the claim and the theorem. Q.E.D.

Remark 3.2.7 Notice that the notion of a solution to (3.1.3) (with derivative
taken in B~ ) is independent of the particular choice of a reference Brownian
motion. This follows from the fact that the SP-norm of a process is invariant
under multiplication by an O(n)-valued process (Lemma 4.2.83). Any R"™-valued
Brownian motion (B) on (W (R™),{H".}, n) must be of the form B = [Odb,
where O is a predictable O(n)-valued process. (See [41] Theorem 42, p. 155.)

Theorem 3.2.8 (/8] Theorem 8.4). Suppose w, O, and & are as in Notation
3.2.2. Then w is a flow on W(R™) which leaves Wiener measure i quasi-invariant.

More explicitly,

1. forallt,7 € R, w(t+ 1) = w(t) o w(r) p-a.s., and

2. d(wc(lz)*“) = Z(t) where
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2(t) = exp{— /Old(—t)  O(=t)db — ;/01 (1) (s)2ds}.

Proof.

1.

By Theorem 3.2.4, we may take (O, @) such that O(¢) is an O(n)-valued
process and [|a(t)||s~ < C, < oo. Thus fixing 7 € R and setting w, =
w(r) (= w(r)) and (Q, {F}, P) = W(R"),{H" }, 1) in Theorem 3.2.5 we
have w(t) = @(t) o w(7) solves (3.1.3) with w(0) = @w(7). But the function
t — w(t + 7) also solves (3.1.3) with the same initial condition. Thus by
uniqueness of solutions (Theorem 3.1.5), we have w(t + 7) = w(t) o w(7)

[-a.S.

Note that ||a(t)||s~ < C, implies P(fy |a(t)(s)?ds < C?) = 1. By Gir-
sanov’s Theorem (Lemma 8.1.2), with P = p, b = b, and w = w(t), (and
hence Z; = Z(—t)), we have

p1 = bupy = w(t).[Z(—t) - p], thus

for all bounded measurable functions f : W/(R™) — R. Letting f — fow(—t)
we find

which implies d(wgg*“) = Z(t).

Q.E.D.



Chapter 4

Existence and Uniqueness for the

“Formal” Equation

4.1 Derivation of the Formal Equation for the

Differential of the Flow

In this chapter and the next we will prove the existence of differentials of
Driver’s flows on semimartingales (Section 3.1). This “machine” will then be used
in Section 5.4 to obtain differentials of the quasi-invariant flows in the path space
W(R™) (from Section 3.2).

The following notation will be used throughout this chapter and the next.
These are the same as in 3.1.5 except that now C will take values in S®~so(n), not
S°°~End(R™). This assumption facilitates many of the calculations in this section
and the next, but the results in these sections hold in the more general case as

well.

Notation 4.1.1 [In this chapter we return to the abstract underlying filtered prob-
ability space (2, {F;}, F, P), satisfying the usual conditions, with reference Brow-
nian motion b.

Fiz C : B*R" — S*7so(n), R : B°R" —» S*R", X : B*R" —

34
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B*R", w: R — B¥R" O : R — S*0(n) and o : R — S®R" satisfying
the following conditions as in Theorem 3.1.5. (Let p,p1,ps € [2,00) be such that
111

p1 ' p2 p

1. C and R are S™~-differentiable (see Definition 2.1.9), and for all w, @ €
B>*R" and v € B* R",

Uy C' < Klv and
louCllss < Kl )
[0C = vaCllsy < Kllw —@[pri[[v]| 5>
stmalarly
Uy l? < Klv and
louRllss < K ellan 1)
lvwR —vaRlsr < Kl|lw— 1w l|v]

where K = K(n,p1, p2, Ky, Kg).
2. There exist constants ¢; and cy such that

1R ()]s < €1]|O]|2 + ¢ for all w = /Odb+ /ads € B*R".

teo

|C(0)|s= < oo
4. X : B*R" — B*~"R" is defined by

X(w) = /C(w)dw +/R(w)ds for w € B*R".

5. w:R — B®R" is the B>~ -differentiable solution to the equation (3.1.3):

given by Theorem 3.1.5 with w(0) = w, = [O,db + [ a,ds in the space of
paths
{w: R — B®R"| sup ||w(t)||p= < 0o VI > 0}.
[t|<T
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6. (0,a): R — SYEnd(R") x S®R" is defined by w(t) = [O(t)db+ [ a(t)ds
That is, (O,«) is the unique S~ -differentiable solution to the equations

(8.1.4):
Ot) = Cluw(t))O()
and a(t) = Clwt))alt) + R(w(t))
with O(0) = O, and a(0) = v, in the space of paths

{(O,a) : R — SEnd(R")xS*R"| sup[||O(t)|| s +||c(t) || 5] < 00 YT > 0}.

[t|<T
Notation 4.1.2 For the following we write the solution to the equation w(t) =

X(w(t)) as a function of its starting point, so w(t,w,) denotes the solution to

equation (3.1.3):
w(t, w,) = X (w(t,w,)) with w(0,w,) = w, € B°R".

We also extend this notation to O and «, so that O(t,w,) and a(t,w,)
are defined by
w(t,w,) = / O(t, w,)db + / a(t, wy)ds.

The following theorem gives the main smoothness result in the semi-

martingale setting.

Theorem 4.1.3 i) The functions O(t,-) : B°R" — S*End(R") and «(t,") :
B*R" — S®R" are S~ -differentiable at w,. (See Definition 2.1.9.)
In particular, let v : J — B®R" be an admissible curve (Def. 2.1.7) with

Yo = W,, and let Y = %|0’y€. Then

[V, O)(t) = lim, o Qe _Oltawe) s
and [V, a](t) = lim, o 20e)=albue) 4

exist where the limits are taken in the SPEnd(R™)-
Y, O1(2) Z(1)
Y, 0] (2) Zy(1)

Z(t) = C(w(t)) Z(t) + A(Z(t)) + K(t) with Z(0) =0 (4.1.4)

and SPR™-topologies for p €

[2,00). Furthermore, Z(t) = satisfies the equation
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where Ay and K(t) are defined below.

ii) The function w(t,-) : BR" — B*R" is B®~-differentiable at w,
(see Definition 2.1.9.)

In particular, let vy : J — B®R" and Y be as in i), then

Vi w](t) = Tim 220 = W wo)

e—0 €
exists where the limit is taken in the BPR"-topologies for p € [2,00). Furthermore,

(Yo, w](t) = Z(t) where
Z(t) = /0 " Zus()db(s) + /0 " Zos(t)d5 + /0 T 05()dY (5). (4.1.5)

D,
Notation 4.1.4 For D =

D,

] an {Fs}t-adapted End(R"™) x R"-valued con-

tinuous process, define

A(D) = C'(w(t)){f Didb + [ Dyds)O(2)
| C'(w(1)){J Dydb + [ Dyds)at)
_ 0
+ J
| R(w(t))(J Didb + [ Dyds)
C'(w(®){f O(t)dY)O(t)

and K(t) =

C'w){S OM)dY)a(l) + B (w(t)){S O1)dY)

In this chapter we prove there exists a unique solution to the “formal”
equation (4.1.4). This equation must be satisfied by the differential (if it exists) of
the flow, since (4.1.4) may be obtained by formally “differentiating” (3.1.4) via Y-

We will now demonstrate this procedure.
Remark 4.1.5 By formally differentiating (3.1.4) via Y, we obtain (4.1.4). That

is, if Z1 = “Y,,, 07 and Zy = “Y,,, & then Z = satisfies Equation (4.1.4):

Z

Z(t) = C(w(t) Z(t) + A(Z(t)) + K(t) with Z(0) = 0.
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Equivalently,
Zl(t) = C(w(t))Z1(t) + C’(w(t))(Z(t))O(t) with Z;(0) = 0 and (4.1.6)

Zy(t) = C(w (1) Zo(t) + C'(w(){Z(1))a(t) + R (w(t))(Z(1)) with Z5(0) = 0
(4.1.7)
where Z(t) is defined by (4.1.5).
We first “differentiate” the equation O(t) = C'(w(t))O(t) by Y :

i[m] — C(w)YO + [YC(w)]O
= C(w)YO + C'(w){Yw)O

— Cw)YO + C'(w)(/ YOdb + /OdY + /Yads)O.

For Zy = “Ya” we start with the equation & = C(w)a + R(w) and use
the same procedure to obtain

jt(Yoz) _ Cw)Ya+ [YC(w)a+Y[Rw)
= Cw)Ya+ C'(w){Ywya + R (w){Yw)
= Cw)Ya+ C'(w)(/ YOdb+/OdY + /Yads)a

+R (w)([ YOdb+ [0ay + [Yads).

Outline of Proof. To prove existence and uniqueness of solutions to
equation (4.1.4), we will give proofs for three intermediate equations, each (essen-
tially) adding in one more term in the formal equation.

The first equation ((4.2.8) below)
T(t) = C(w(t))T'(t) with T'(0) = I

is necessary in order to handle the unbounded operator C'(w(t)). This result is give
in Proposition 4.2.7.

Secondly, in Proposition 4.3.4 we have a solution to the equation (4.3.10):

QO =T+ [ L(Q)()dr
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where L£,(D) = T(t)"'A,(T(t)D) and I is the identity map on S*~(End(R") x
R").
Thirdly, we show in  Lemma 4.4.3 that V(¢) =
[ QMHQ(r) YT (r) 'K (r)dr solves (4.4.13);

V(t) = L(V (1)) + T(£)""K(t) with V(0) = 0.

Finally, we have (Theorem 4.4.4) that Z(t) = T(t)V () solves equation
(4.1.4):
Z(t) = C(w(t)Z(t) + A(Z(t)) + K (t) with Z(0) = 0.

4.2 Step 1: The “T-equation” - with an Un-
bounded Skew-Symmetric Operator

In this section we isolate the term involving the skew-symmetric function

C. We will first obtain the O(n)-valued pointwise solution for the equation (4.2.8)
T(t) = C(w(t))T'(t) with T(0) = 1.

Then we will show that this solution also satisfies the above equation with the

derivative taken in the SP-norm, for all p € [2,00).

Remark 4.2.1 The results in this section could be proved by a general argument
similar to the proof of Theorem 3.1.5, but in the current case the flow w(t) is already
known to exist, and C(w) is so(n)-valued for allw € B*R™. These conditions make

it possible to give a shorter proof of a different style.

Notation 4.2.2 Let £ = End(R™) x R"™ with norm defined by |(B,b)| = |B|+b|.
Define multiplication by A € End(R") : A(B,b) = (AB, Ab) for all (B,b) € £.
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Lemma 4.2.3 Let p € [2,00), then for D = (Dy,Dy) € SPE and G an O(n)-
valued continuous adapted process, ||D||sre = ||GD||sre. This result also holds for

D € SPEnd(R"™) and D € SPR".

Proof. For fixed w € Q and s € [0, 1] we have

|D;i(s)(w)] = |G(s)D;(s)(w)| fori=1,2 (since G(s) € O(n) pointwise).
Thus [|Dlls» = [[supg<s<i [D(s)|llo(p)
= | SUPp<s<1 |G(3)D(3)|||LP(P) Q.E.D.
= ||GD||s».

Notation 4.2.4 Let C(t) be a version of C(w(t)) such that the mapping (t,s) —
C(t,w)(s) is jointly continuous for all w € Qo where Qy C Q with P(Qy) = 1.
Such a version ezists by Kolmogorov’s Lemma (Lemma 8.1.3) since C'ow is S~ -

Lipschitz (3.1.2).

Lemma 4.2.5 Let C : R — S® so(n) and Qy C Q be defined as in Notation

4.2.4. Then there exists a unique pointwise solution to

T(t,w)(s) = C(t,w)(s)T(t,w)(s) with T(0,w)(s) =T (4.2.8)
for all w € Q. Moreover, the process s — Ty(t) is O(n)-valued for all t € J.

Proof. For fixed s € [0,1] and w, (4.2.8) is a linear ordinary differential equation
in finite dimensions, so it has a unique solution. By Lemma 8.1.1, s — T(¢) is an

O(n)-valued process. Q.E.D.

Lemma 4.2.6 Let T'(t) be the pointwise solution to (4.2.8) given in Lemma 4.2.5.
Then || T(7) =T (t)||s» < K[t—7]| for all 7,t € J and p € [2,00). In addition, T(t)!
is SP-Lipschitz in t. Here we are taking SP = SPEnd(R").
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Proof. Fix p € [2,00), and let K = K(p,C,, ||C(0)||s~) be a constant which

varies from line to line (here and throughout this paper),

IT(7) =TOls» =

Also,

" d

Ipw. [* (T

Hp.w./t C ()T (r)dr|s»

K/T |C(r)T(r)||s»r by Lemma 2.1.11
t

K/T |C(r)||sedr by Lemma 4.2.3
t

K| —t| by (3.1.7)

— |rtn)me) - e

Sp
= ||[T(r) = T(t)||lgp by Lemma 4.2.3

< Kir—t|.

Q.E.D.

Proposition 4.2.7 Let T(t) be the pointwise solution to (4.2.8) given in Lemma

4.2.5. Then T(t) satisfies (4.2.8) with the derivative taken in the SP-topologies for

all p € [2,00).

Proof. Fix p € [2,00) and let p; and py be such that p% + 1% = }g. Then

Tl 7(0+ ) = 7)) = COT()ls

=Tl cpaw. [ CEOTr — COTOs:

(by definition of the pointwise solution)

dr

=Tl [ COTE) - COTE s

- t+e
< limeﬁoeflf/ |C(T)T' (1) — C(t)T'(t)||spd7| by Lemma 2.1.11
¢

Now

IC(N)T(7) =COT)ls» < NO@)T(7) =T (t)]l|se

HIC ) = COIT@)ls
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Applying Holder’s inequality to the first term we have

ICIT (1) =T @]l

IA

ICO) s IT() = T ()| 52

IA

K||C(7)||srs|T — t| by Lemma 4.2.6

IA

K|t —t| by (3.1.7)
For the second term we have

[C(r) = CWOIT@)]ls» = [C(T) = C(#)]ls» (by Lemma 4.2.3)

IA

Kllw(r) — w(t)|[s» (by (3.1.2))

IA

K |1 — t| since w is BP-Lipschitz
Using these estimates we have

Tim 1 — tte dr
limeo[ [Tt +6) = T()) = COTlsr < Klimeo [ 7=t

€
= 0

Q.E.D.

4.3 Step 2: The “@-equation”

In this section the method of Piccard iterates will be used to prove there
exists a unique curve @ : J — Maps(S®~E, 5% &) which is strongly differentiable
in the following sense: for all D € S* &, Q(t)(D) = 2[Q(t)(D)] exists in S,

and which satisfies
Q(t)(D) = L(Q(#)(D)) with Q(0)(D) = D (4.3.9)

for all D € S®°~& where L£,(D) = T(t)"'A,(T(t)D), T(t) is the solution to (4.2.8),
and I is the identity map on S~ &. In addition, for each p € [2,00) there exists
a unique extension Q(t) of Q(t) such that Q(¢) : SPE — SPE.
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Remark 4.3.1 In the proof below (Lemma 4.3.3) we will show that the map
t — L; is continuous when L, is viewed as an operator from SP to S9, where ¢ > p.
If we had the stronger condition that t — L, € End(S?) were continuous, we could
easily conclude that there is a unique solution to (4.8.9). The fact that we do not
have this condition necessitates a more delicate proof. In particular, our conditions
on Ly arise from the fact that p1 > p in (4.1.1). This is dictated by the application

of this result in geometrical settings.

Lemma 4.3.2 Let A; be defined as in Notation 4.1.4. For all p,q € [2,00) with
qg>pandt,T€J,

i) Ay 2 SPE — SPE and ||Ay||sre—sre < K for some K > 0 independent of t.

i) For all D € S*~& we have

[41(D) = Ar(D)|lsre < K|t = 7[[|D]|sae-

Proof of i). Let D = (Dy,Dy) € SPE and define the Brownian semimartingale
Mg = [§ D1(5)db(s) + [ Do(5)ds. Then

Mg = |[Dillse +[| D2l s
< K||Dl[sre.
Here we are using the fact that
sup |Di|+ sup |Ds| <2 sup {|D;] + |D2|}.
0<r<s 0<r<s 0<r<s

Now

[ A:(D)|sve
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< K| M| prre

< KHDHSpg.

where the third inequality follows from (4.1.1) and (4.1.2). Proof of ii). Let D
and M be as in the proof of i). Then

[A(D) = A-(D)[sre < [|[C"(w()){(M)O(t) = C"(w(7))(M)O(7) | 5v
HIC (w(®)(M)alt) = C"(w(r))(M)a(T)|se
HIE (w(®)(M) = R (w(r))(M)]|s»

Let p, = ¢ and let p; be such that p% + p% = ]13, Then

1€ (w()(M)O(t) = C(w(T))(M)O(7)]|s

< Kl|w(t) — w(r)||ge || M| gr2 by (4.1.1)

< K|t — /| D]l srae.

The second and third terms are similar, using sup,c; ||a(t)||s= < oo (Notation

4.1.1). Q.E.D.

Lemma 4.3.3 Let T(t) be the solution to (4.2.8). Forp € [2,00) and D € SP =
SPE define Ly by L,(D) = T(t) Y A(T(t)D). Then

i) £; € End(S?), the space of bounded linear functions from SP to SP, and
I1L¢||sp—sp < Kp, a constant independent of t.

i) If t = D(t) is S~ -continuous (Lipschitz) then so is t — Li(D(t)).

iii) The map t — L, € Hom(SP, S9) is Lipschitz for ¢ > p.
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Proof of i). Clearly £, is linear. Given D € SP we have

I£:(D)lls» = IT(t) AT () D)l

<

<

|A«(T(t)D)||sr by Lemma 4.2.3

K||T(t)D||s» by Lemma 4.3.2

K||D||s» by Lemma 4.2.3

Thus £, : S” — SP, with ||£q||somsr = suppg E4Ds? < K. Proof of ii). Let

1Dl sp

p € [2,00), and let p; and p, be such that p% + L1 =1 We have

1£:(D(t)) = L(D(7)) s

<

IA

IN

IA

1T~ AT O{D() — D(1)}ls»

HIT) AL () = T(T)}D(7)]|se

T @) (A — AT (1) D(7)]|sv

HI[T@®) ™" = T(r) 1AL (1) D(7)][| s

|AJT (t){D(t) — D(7)}]||s» by Lemma 4.2.3

+[ AT () = T (1)} D(7)]l| s

+[[(Ae = A)[T (7)) D(7)][[ s

HIT@®) ™" = T(r) ™ o2 | AT (7) D(7)] || 572
by Lemma 8.1.5

K||T(){D(t) — D()}||s» by Lemma 4.3.2

+K|{T () = T(m)}D(7)lse

+K|t — 7||T(r)D(7)||s by Lemma 4.3.2

+K|t — 7||T(7)D(7)||sm by Lemma 4.2.6

K|[D(t) — D(7)||s» by Lemma 4.2.3

+K|t — 7|||D(7)||s» by Lemma 4.2.6

+K[t = 7[[|D(7)]] 571

This expression tends to 0 as 7 — ¢, since 7 — ||D(7)]||s» and 7 —||D(7)||sp: are

both continuous and therefore bounded for 7 near ¢.
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iii) This is proved by taking p; = ¢ and D(t) = D € S? in the estimate above.
Q.E.D.

Proposition 4.3.4 Let £, € End(S?) for all p € [2,00) be defined as in Lemma
4.8.3.  For all p € [2,00) there exists a wunique solution @ : J —
Maps(S*>©~E,5%°~E) to the integral equation

QOO =T+ [ £(Q)()dr (1310

where I s the identity map on S®~E.
That is, for each D € S*~E, @) solves

QUI(D) =D+ [ £.(Q(r)(D))dr

where the integral is an S~ E-integral (see Notation 2.1.13).
Also, for each p € [2,00), t,7 € J and D € S®~E we have

L [[QE)(D)|s» < Kol Dl|s»
2. QWD) = Q(r)(D)l[s» < Kp||Dl[so[t — 7|

3. There exists a unique extension Q(t) of Q(t) such that Q(t) : SPE — SPE.

Proof. Existence. For all D € S & define Qu(t)(D) = D € S*€,

and recursively define
t
Quir()(D) = D + / LA(Qm(7)(D))dr for m =0,1,2, ... (4.3.11)
0

where the integral is taken in S*°~&.

Note that by induction on m, the map t — Q,,(¢)(D) is S®~ -continuous
for each D € S*°&. Indeed, if ¢ — Q,(t)(D) is S -continuous then by
Lemma 4.3.3, the map 7 — L.(Q,,(7)(D)) is also, so the S~ -integral exists by
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Lemma 2.1.12. By the Fundamental Theorem of Calculus for SP- integrals (Lemma
2.1.14), the map t — [ L, (Qum(7)(D))dr is S®~-differentiable, and therefore S>~-
continuous.

We have for each D € SP,

Qs )(D) = QuO(D)llss < [ 1£:Qu)(D) = £4(Qu (7} (D)llsvds
= [ IEAQuID) = @ 1 () (D) svdr

K [ 1Qn(7)(D) = QuAr)(D)llswds
by Lemma 4.3.3.

IN

[terating, we have

|Qui1 (£)(D) = Qu(t)(D)l|s»
< K™ 5 J @17 (D) = Qo(in) (D)o - - - dry
K™ ST 7 Q) (D) s + [ Qo(mn) (D) | sv)dr -+ - dry
< K™ J5 3t --foT”‘l ID||se[2 + tK]drp - - - dry
= K™Z||D|/s»[2 + tK].

The estimate in the third step comes from the following:

1Q1(7m) (D)[sr + [[Qu(7) (D) |5 = HD+/ D)dr||s» + [|D]|s»
< 2|Dlls» +7m sup L (D)]sr

< 2||D]|s» + TmKHDHSP (by Lemma 4.3.3)

< |ID|lse (2 + tK).

Thus
1@mt1 (1) (D) — Qu(t)(D)]lsr < (24 tK)K *IIDHSP (4.3.12)

Summing, we have

> 10 (D) = Qu)(D)sr < 3 K™ R+ 11D

= [2+tK]etK||DHsp.
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So {Q,(t) (D)}, is SP-Cauchy uniformly in ¢, thus Q(¢)(D) = lim,, 0 Qn(t)(D)
exists where the limit is taken in the SP-topology, uniformly in ¢. Also t — Q(¢)(D)
is SP-continuous (as a uniform limit of continuous functions).

Now let p, ¢ € [2,00) with ¢ < p, and let Q(¢)(D) = lim,,_ @ (¢)(D) in

SP as above, then

lim ||Qun(1)(D) = @n(t)(D)]|se

m,n—0o0

lim ||Qun(1)(D) = @n(t)(D)]|s»

m,n— 00

= 0

A

So {Qn(t)(D)}52, is also S%-Cauchy uniformly in ¢, so Q,(t)(D) —n_ee Q(t)(D)
in S¢ uniformly in ¢, and ¢t — Q(¢)(D) is S?-continuous. Since this holds for all
P, q € [2,00) with ¢ < p, we have t — Q(¢)(D) is S® -continuous.

Now by (4.3.12) we have for all p € [2, 00),

Q) (D)l s»
< 1Qo(D)llsr + Y- 1Qu4a (D)D) — Qr(t)(D)]] v
k=0
< (24 tK)e™ +1]||D)| s
Also, since L>(P) is dense in LP(P), S is dense in SP, and hence S~ D S% is
also dense in SP. Thus the linear operator ¢} : S~ — SP has a unique extension

to a linear operator Q : S? — SP.

Now we show that Q(¢) satisfies (4.3.10). We have for all D € S®~¢&,

QD) = lim Qu.(1)(D)
- 11m[D+/£ (Qn_i1(7)(D))dr]

= D +/ hm Qn-1(7)(D))]dr (by uniform convergence)
= D—|—/ D))]dr.

Finally, we have for all D € §°~&,



49

t
16 QE)(D))svdr
K,||D||s#|t — 7| by Prop. 4.3.3.

Q) (D) = Q(7)(D)]]s»

IA

IA

Uniqueness. Suppose Q(t) and S(t) are both solutions to (4.3.10). Fix D € §%°° &
and p € [2,00). Let f(t) = ||Q()(D) — S(¢)(D)||s» for all ¢ € J. Then

£ = || [1£1QE)(D) - £IS(r) (D) ydrlls
= || [ £1Q()(D) ~ S(r)(D)drl|s» (since £, s lincar)

< [ULAQE)D) - SEIDNsoldr

< K [ ||Q(r)(D)— S(1)(D)||spdr (by Lemma 4.3.3)

By Gronwall’s inequality (Lemma 8.1.7) with e = 0 we have f = 0. Since p € [2, 00)
is arbitrary we have Q(t)(D) = S(¢)(D) in S? for all ¢t € J and p € [2,00), thus
Qt)(D) = S(t)(D) in S~ for all ¢t € J. Q.E.D.

Lemma 4.3.5 Let Q(t) : S®~E — S®~E be the solution to the integral equa-
tion (4.3.10) as given by Proposition 4.3.4. i) For all D € S®*&, Q(t)(D) =

LIQ(t)(D)] ewists in S™ and Q(t) satisfies (4.3.9):

Qt)(D) = L(Q(t)(D)) with Q(0)(D) = D.
ii) If the map t — D(t) € S™°°E is S E-differentiable, then so is the map
t — Q(t)D(t), and

d

SIRODO] = LQ1DWM) + Q1) D).

Proof. i) By Proposition 4.3.4, for all D € S* & the map t — Q(¢)(D) is
S°~-continuous, thus by Lemma 4.3.3 the map ¢t — L£,(Q(¢)(D)) is also. Hence
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by the Fundamental Theorem of Calculus for SP-integrals (Lemma 2.1.14), ¢ —
J3 L(Q(1)(D))dr is S>®~-differentiable, and

S+ [eeemwyar] = o).

Thus for all D € S~ &, Q(t)(D) = 2[Q(t)(D)] exists in $*~ and

Q)(D) = L(Q(t)(D)) with Q(0)(D) = D.

ii) Lett e J and p € [2,00). We have

Q(t +€)D(¢ +:) —QUDW 1 o)D) + QW DO)]llse
[Q(t +¢) — Q(t)]D(2)
D(t +€e) — D(t)

me—>0 ||

— Ly(Q() D))l s»

S me—)()||
im0l Q)] — D(®)]lls»

+1imH01||[Q(t +6) = QUID{ +¢) = D)]][sv-

The first term tends to zero by part i), and the second and third by the bound-
edness and Lipschitz properties of ) (see Prop. 4.3.4 and the SP-continuity of the
map t — D(t). Q.E.D.

4.4 Step 3: Existence and Uniqueness for the
Formal Equation

In this section we use the solutions 7'(¢) to (4.2.8) and Q(¢) to (4.3.10),

and Gronwall’s inequality to obtain a unique solution to the equation (4.4.13)
V(t) = L,(V(t) +T(t) 'K (t) with V(0) = 0.

Then by variation of parameters, we show existence of a unique solution to the

formal equation

Z(t) = A(Z(t)) + Cw(t) Z(t) + K (t) with Z(0) = 0.
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Lemma 4.4.1 Let K(t) be defined as in Notation 4.1.4. Then for all p € [2,00),
and T < 00, supy< ;o7 || K ()] sre < 00.
Proof. Fix p € [2,00) and let p; and p, be such that p% + p% = %. Let r; and 7o

be such that - + L = L.
r1 T2 p1

IK®llsee < IC"(w(®)( [ OB)aY)O ||SpEnd(Rn>

O (w /o HdY)a(t)||srre
4R (w /o HAY) | svre

< ¢ (w /o )Y | gy B ey by Temma 4.2.3
+]C" (w /o (DAY o1 Enclgaen |00 llsw2 e and Holder
IR (w(®){ [ Ot )| srm

< K| /0 ()dY || grre by (4.1.1) and (4.1.2)

< K|O(t) snEnd(Rn)HY| pr2r» by [8] Lemma 4.1(v), p. 302

The last term is finite since [|O(t)||sm1 < ||w(t)]|p < oo and ||Y]|grere < 00 (see

Notation 4.1.1). Q.E.D.

Lemma 4.4.2 Define K(t) as in Notation 4.1.4 For all p € [2,00), the map
t — K(t) is SP-Lipschitz.
Proof. Fix p € [2,00) and let p; and p, be such that - —i— p% = %. Let M(t) =

JO(t)dY. Then
K(t) = Cw(®)(M(1)0()
+C'(w() (M (t))a(t) + R (w(t)) (M (1))
We have for all q,q1, ¢ € [2,00) Wlth —l— = %,

1MW) = M(7)llse = |l [[00) = O()]ay s
|O(t) — O(7)]|sa1 ||Y || ge> by [8] Lemma 4.1, p. 302

IN

< K|t — 7| since w is B®-Lipschitz and [|Y|| g2 < 0c.
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Thus M (t) is S~ -Lipschitz. Also

sup | M(1) |0 = sup]| [ O@)aY]]s
teJ teJ

< sup [[O@)|[sn [[Y]| ez
teJ

which is finite since sup,c; [|O(t)||sar < sup,ey ||w(t)]|pe < 00. So M(t) is S -
bounded for t € J.

Now

1€ (w() (M (1)) = C"(w(T))(M(7))|s»
< [ (w(®)) = € (w(r)) (M () l|s
HC (w(r)) (M (t) = M(7))|s»
< Kljw(t) — w(r)|[ s [[ M (2)]| e by (4.1.1)
HK|[M(E) = M(7)||»

< K|t —Tl|.

Thus the map ¢t — C'(w(t))(M(t)) is S*°-Lipschitz. A similar result holds for C
replaced by R, using the Lipschitz assumption on R’ (4.1.2).

Finally, since O(t) and «(t) are also S°°~-Lipschitz, the result follows
from [8] Lemma 4.6(ii). Q.E.D.

Lemma 4.4.3 Let T(t) be the solution to (4.2.8). For p € [2,00) the following

equation has a unique solution:
V(t) = LV (1) + T(t) 'K (t) with V(0) =0 (4.4.13)
where the derivative is taken in the SP-topology.

Proof. Existence. Let Q(t) : S°°& — S~ & be the solution to (4.3.9) as
given in Lemma 4.3.5. In the following we will write Q(¢)(D) as Q(¢)D for D €
S°°~& since Q(t) is linear. Notice that by linearity and since t — Q(¢)D is S~ -

continuous for all D € S*~&, Q(¢) ! exists for ¢ near 0.
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Now r — T(r)~! and r — K(r) are S® -continuous, by Lemmas 4.2.6
and 4.4.2, so by [8] Lemma 4.6, p. 314 we also have S®~-continuity of the map
r— QM)Q(r) 'T(r) 'K (r). Thus V(t) = [T Q®)Q(r) 'T(r) K (r)dr is S -
differentiable by the Fundamental Theorem of Calculus for SP-integrals (Lemma

2.1.14) and we have by [8] Lemma 4.6(iii), p. 314,

V) = [ Q0QE)TTE) KR+ ROQE) T K],
- / £4(Q "T(r) K (r)dr + T(t) K (1)
- /Q T(r) 'K (r)dr] + T(t) 'K (t)

= LV(O]+T() " K(t).
Uniqueness. Fix p € [2,00). Let V(£) and W(t) be two solutions to (4.4.13).
Integrating (4.4.13) in SP we have V (t) = [¢[L,(V(r))+T(r) LK (r)]dr. Let f(t) =
[V (t) = W(#)||ss- Then
f@) = V)= W@l
= [ T6 V)~ £V E)ars
< K/ [V (r) — W(r)|[srdr by Lemma 4.3.3

= K/Ofrdr

So by Gronwall’s inequality (Lemma 8.1.7) with ¢ = 0 we have f = 0. Q.E.D.

Theorem 4.4.4 Let T(t) be the solution to the equation T'(t) = C(w(t))T(t) with
T(0) = I as in Proposition 4.2.7. Let V (t) be the solution to V(t) = L(V (1)) +
T(t) 'K (t) with V(0) =0 as in Lemma 4.4.3.

Then Z(t) = T(t)V (t) solves the following equation (4.1.4) in S~ :

Z(t) = A(Z(1) + Clw(t) Z(t) + K () with Z(0) = 0.
Proof. By S* -differentiation of Z(t) (via [8] Lemma 4.6, p. 314) we have

Z(t) = T@WV(E)+TH)V(t)



= Clw)THV () +THT() AT @V () + K(t)]
= Clw(®))Z(1) + A(Z(1)) + K(1).

Also Z(0) = T(0)V(0) = 0.
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Q.E.D.



Chapter 5

Existence and Uniqueness for

Differentials of the Flow

5.1 Equation for the Difference Quotient

In this section we derive the equation satisfied by the the difference be-
tween the solution Z(t) = (Z:(t), Z2(t)) to the formal equation (4.1.4) and a differ-
ence quotient which will converge to (YO, Y«) in the SP-norms for all p € [2,00).

To facilitate the proof, we multiply this difference on the left by O(¢) !
which is O(n)-valued, thus the value of the SP-norm is unchanged. The benefit
is that the equation satisfied by this “modified difference” is free of unbounded
terms; see Lemma 5.1.3.

In this chapter we will use the underlying filtered probability space
(Q,{Fs}, F, P), satisfying the usual conditions, with reference Brownian motion
b.

Recall that we have fixed the functions C' : B*R"™ — S*7so(n), R :
B*R" — S*°R" as in Notation 4.1.1, and have defined X : B*R" — B~ R" by

X(w) = /C(w)dw +/R(w)ds for w € B*R".

25
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and w : R — B®R" as the S -differentiable solution to
w(t) = X(w(t)) with w(0) = w,,

We have also defined O : R — S*O(n) and a : R =S®°R" by w(t) = [O(t)db +
[ a(t)ds, and have seen in Theorem 3.1.5 that O(t) and «(t) satisfy the following
equations:
O(t) = C(w(t))O(t) with O(0) = O,
and &(t) = C(w(t))a(t) + R(w(t)) with a(0) = a,.
Notation 5.1.1 Let 7. = [ Q.db+ [ B.ds be an admissible curve with vy = w,,

and let w(t) € B®R™ be the solution to the equation

d i .
%we(t) = e (t) = X(we(t)) with we(0) = ..

given by Theorem 3.1.5. (That is, w.(t) = ¥ (7,).) Note that w.(t)| _, = w(t).
Define O, and a, by

wt)(s) = [ 00F () + [ at)(E)ds.
Lemma 5.1.2 O, and o, satisfy
O.(t) = C(we(t))O.(t) with O.(0) = I
and 6 (t) = Clwe(t) () + R(we(t)) with a,(0) = 0.
Proof. We have
wit) = (0B + [loc®)]ds

= [10.0)(Qudd + Guds] + [fo(r))ds

= [10.0Qddb+ [lact) + Ou(t)3)ds
Let O(t) = O (t)Q. and é(t) = ae(t) + O(t)fBe. Then by Theorem 3.1.5 we have

Ot) = OMQ,*

= C(u(t)01)Q;"
= C(w(1))O(1)
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and

Q.E.D.

In the following lemma we will supress the ¢ parameter from the notation.

Lemma 5.1.3 Let Z, and Zy be the solutions to the “formal” equations (4.1.6)
and (4.1.7) as given in Theorem 4.4.4, with Z given by (4.1.5).
Let € > 0 and define

1
B, = Z(0*106) -1 -0z,
1
E, = —(0'a)—-0"'a)- 012,
€
and £ = 1(w6 —w)—Z.
€

Then E, and Ey satisfy the following equations where the deriwatives are taken in

the SP-norm for all p € [2,00) :

Be o= 070w ~ C)(0.~ O)] + 0 M [L(Clu) — Clw)) — C'(w)(Z)]0,
B = 07[H(C0m) — Cw))(ac— a)] + 07 [H(C(w) — C(w) — C'(w)(Da
YO (R(w) ~ R(w)) ~ R(w)(2)].

Proof. Recall that Z; and Z, solve

Zy = C(w)Z + C"(w){Z)O with Z,(0) =0

and Z, = C(w)Zy+ C'(w){2)a+ R'(w){Z) with Z,(0) =0
where 7 = /0 Z, ydb(3) + /0 Zy 55 + /0 O5dY ().

Since O(t) is orthogonal and C(w(t)) is skew symmetric, we have 4(O(t)™!) =

(HO®)" = 0" C(w(t))" = —0(t) "' C(w(t)).

dt
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By S°°~-differentiation F; solves:

B = Y00,+00]-072

—O07C(w) Zy + C"(w){Z)O]
1

= 07(CWwO, ~ Cw)0,) ~ C'(w)(2)0)]
= 0 [ (Clw) ~ Cw))(0. ~ O)
FOT (O ~ Cw)) — C'w)(2)]O.

Notice that the unbounded terms —O'C(w)Z; and —O~1Z in the first line can-

cel. A similar calculation gives the FEy equation. Q.E.D.

5.2 Estimates

Lemma 5.2.1 Let wc(t) = [Oc(t)dv. + [ ads € B*R" be given as in Notation
5.1.1, and let Ey and FEy be as defined in Lemma 5.1.3. For all p € [2,00) and
t € J we have:

(3) e(t) — w(t) s i5 O(e) (recall that w (1) = w(t)) ;

(ii) [[0:(t) — O)]|s» is O(e)

(iii) [loc(t) — a(t)l[s» is Oe)

(iv) [[0@®) 1 £[Clwe(t)) — C(w(@®)][O(t) — O®)]l|s» is O(e) for all ¢ € J;

(V) [0(t) HH[C(we(t)) — Clw®)]ee(t) — at)]l|se s O(e) for all t € J;

(Vi) IEO )5 < [E1(O)]ls + 1 B2(B) |50 + Ofe);

(vii) ||0(L‘)1[1(C(we(t)) = Cw(t))) = C'(wONZMONOW)||s»

< Kp[[[Ev(@®)][se + (| E2(t)[|s2 + O(e)];

(viii) ||0(t)‘1[1(0(w5(t)) — C(w(t))) = C"(w®H)NZ®)a(t)||s

< KB ()50 + | E20)]| s + O]
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(ix) HO(t)l[i(R(we(t)) — R(w(t))) = R'(w(®){Z(£))]|ls»

< K[l Ev (@) lse + [[Ea(1)[|s» + O(€)].

Proof. Fix p € [2,00). (i) We have

wit)—w(t) = [Oddv+ [altids— [0 [a(t)ds
- /Othb+6ds+/ tds—/O db—/a(t)ds
_ /[ (H)Q db+/at (t)8.]ds

Let Fy(t) = O(t) 10()Q. — I and Fy(t) = O(t) tae(t) — alt) + O(t)3], then
(dropping the ¢ parameter) we have

Il = [[07T0JQuls
— ||07T0,||s» by Lemma 4.2.3
_ ||o"?10 + 010, ||s»
= || =07 C(w)O + O7'C(we) Ol sv
= [JO7HC(we) = C(w))O]|s»
= ||C(w,) — C(w)||s» by Lemma 4.2.3

< K, |lwe — wl|pr by (3.1.2).

Also, ||Fy]ls» < ||6'r1046 + 07 a, — O-la — O~ se
+O7TO B 5v
= || -0 'C(w)a. + O C(w)ae + R(w,)]
+07'C(w)a — 07 [C(w)a + R(w)]|s
+85= 1070 sv

< O HC(we) — C(w))aells» + |0 (R(we) — R(w))||s»
| Bels= 01O 0
< |Cwe) — C(w)|sollel| s

+||R(w.) — R(w)||sr by Lemma 4.2.3
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+|Bell s> |lwe — wl|» by the proof for F} above
< Kpllwe — w||ge + O(e).
The last step follows from the Lipschitz assumptions on C' and R (3.1.2), and since

|la|lsee < 00 and sup,e; || (t)||se is bounded (Theorem 3.1.5).

Using these estimates we have by Lemma 4.2.3:

I @) lse < 1F1Ose + Jo [£1() | sedr

< 0.1Qc = Illse + Ky Jy we(7) — w(r)|| sodr

and similarly

1£5(2)]] 5v

IN

e (0) — (0) + Bel|sr + I /Ot |we(T) — w(r)|| grdr

t
= N8 = aullsr + K, | [we(r) = w(@)|prdr.

Using these two estimates we have

|we —wlpr = 0Qc = Ollsy + |lae — v+ Ocfel|sv
= [[OF|ls» + ||OF||s»
= |[Fillse + [[F2|s0
< e = wollss + Ky [ ) = w(r)llsds
Finally, we have |7, — w,||z» < Kpe since ¢ — 7, is B® -Lipschitz. So
by Gronwall’s inequality (8.1.7) |Jwe(t) — w(t)||p» is O(e) for all ¢ € J. Also note

that ||we(t) — w(t)|| gr
= || Fi||sr + || F2]|s#, s0 || Fi||sr and [|F3||se are also O(e).

(ii) Define Dy (t) = O.(t) — O(1).

[Dillse < |0 = OcQel|s» + |OQc — Ols»
= |l — Qcl|s» + || Fi||s» by Lemma 4.2.3

IA

O(€) + [|we — w||»

< O(e) by (i).
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where the third line follows by the continuity of ¢ — (). and the definition of the
BP-norm.

(iii) Define Do (t) = i (t) — a(t). Then

|1Dsllsr < |lae — a+ OBl sr + [|OcBe|sv
= ||Fy|lsr + || Bel|s» by Lemma 4.2.3
< 0(e)

by (i) and the SP-continuity of the map ¢ — f..
(iv) Fix p € [2,00) and let p; and py be such that p% + p% = %. Then
.1
107 [Z(C(we) = C(w)(Oc = O)]l|s»
1
= [[2(Cwe) = C(w))(Oc = O)|s»
1
< —|C(we) — C(w)]|se1||Oc — Ol|sp= (by Hélder’s inequality)
€
K. .
< Tprg — w||pr1 ||Oc — O|sr> (by [8] Prop 6.2 (vii))
But ||we — w||ge: and ||O, — Ol|sr> are both O(e) by (i) and (ii), so the last line
above is O(e).

(v) The proof is similar to that for (iv), using (iii) above.

(vi) Recall that we = [ Ocd7y + [ a.ds We have

= %"%_7
€
_ /[OE_O—Zl]db
€
 [1E2 - Zilds

n / O.dA, — / 0dy
where A, = 1=—=2. So

1Bl < || [OFdb+ [ OFsds||s

[ 0d(a, =)0 + | [[0.— OlaY .
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1 1 _ 1
Letp—1+p—2_p.Then

[ /Oed(AE Vs < [|Olsn || Ac — V][ by [8] Lemma 4.1(v)

Ye — Y0
€

< Kl = Yllpr

= 0(¢)
by the definition of the B® -derivative (see Notation 4.1.1). Also,

I /[O€ —0ldY||pr < ||Oc — Ol|so||Y || Br2by [8] Lemma 4.1(v)
= O(e) by (ii).

So [|Ellze < [OE|s» + [OBs[lse + O(e)

= Eallsr + | E2llse + O(e).
(vii) By the definition of the SP-derivative (Definition 2.1.5) we have

Cw) — Cw) = C'(w){w, —w) + & (we, w)
and R(w.) — R(w) = R'(w){w.— w)+ E(w,, w)

where ||&;(w,, w)]|sris O(||we. — wl%,) for i = 1,2. Thus

IO [H(C (we) = C(w)) = C"(w){Z2)]O]|s»
= [[1(C(we) = C(w)) = C'(w)(Z)]|s»
= [IC" (w)( 2 = Z) + L& (we, w)|sv
<|IC(w)(E)Ise + HIEx(we, w)|ss
< KL||E||g» + O(e) by (4.1.1) and (i) above
< Kp[[1Ev [ se + [ Eallse + O(e)] by (vi).

(viii) Similar to the proof of (vii), using Lemma 8.1.5 and the fact that
sup,e, la(®)lls= < oc.

(ix) Similar to the proof of (vii), using (4.1.2) the bound on R'. Q.E.D.
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5.3 Existence of the Differential

We now prove one of the main results of this paper, Theorem 4.1.3:
[YOI(t,b) and [Yea(t,b) exist in S~ and satisfy the formal equation (4.1.4), and
[Yw](t,b) is given by (4.1.5).

Proof. Fix p € [2,00) and let E(t) = [E;(t)db+ [ Ey(t)ds. We will
use the modified Gronwall’s inequality (Lemma 8.1.8) on ||E(t)||gr = || E1(t)]|sr +
[ E2(8)]|s0- We have [|E(0)][ > = [[E1(0)[[sr + [| E2(0)]|s» = 0.

[(C(w) = C)(O. - O)lls

s < 07
HIO (O — Cw) — )25,
< K,||E(t)|lg» +O(e) by Lemma 5.2.1 (iv) and (vii), and
allsr = 07 (Cluw) — Clw)) o~ )]s
HIO (O — Cw) — Cw)(Dal]s:
HIO (R (w) — R(w)) ~ R(w)(Z)]s

< K,||E(t)||g» + O(€) by Lemma 5.2.1 (v), (viii) and (ix).

Thus [|E(t)|| g = [|E1(t)||se + || B2(t)|se < K||E(t)]| e +O(e), so by Lemma 8.1.8
,NE@) s = ||E1(t)|lse + || E2(t)||s» is O(e) for all t € J. Thus
0 = LB
= 1m0 110, - 0) - Zls
~ i 2(0, - 0) - Zil
and similarly, lim. || (o — @) — Zs||s» = 0. Thus the SP-derivatives defined in

(4.1.3) exist, with YO = Z,, and Yo = Z,. Finally, by (vi) the BP-derivative Yw
exists and is given by Z. Q.E.D.
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5.4 Differentials of the Flows in Wiener Space

In this section we will use our semimartingale “machine” Theorem 4.1.3

to get differentials of the quasi-invariant flows on W (R") obtained in Section 3.2.

Notation 5.4.1

(i) Let T : B*R™ — S* so(n) in Theorem 3.1.5, and take the under-
lying probability space to be (W (R™), {H!, }, {b(s)}, 1) (see Notation 3.2.1). We
will write the solution to equation (3.1.8) as a function of its starting point as in

Notation 4.1.2, so w(t,w,) denotes the solution to equation:
w(t, w,) = X (w(t,w,)) with w(0,w,) = w, € B°R".
Also define O(t, w,) and a(t,w,) by

w(t, w,) = / O(t, wy)db + / at, w,)ds.

(i) Let w(t) : W(R") — W(R"), be the solution to (3.1.3) with w(0) = id €
Maps(W(R"™), W(R")) and let O(t) : W(R") — W(O(n)) and a(t) : W(R") —
W (R™), solve (3.1.4) with O(0) = I € O(n) and &(0) = 0 € R" as given in
Notation 8.2.2. That is, w(t), O(t) and &(t) are jointly continuous versions of
w(t,b), O(t,b) and a(t,b), respectively.

Theorem 5.4.2 Let ¥ : J — Maps(W(R"),W(R")) be an admissible curve
(Def. 2.1.7) such that 7. has law equivalent to p for all € € J with 7 = b, and let
= %\0’% Forallt e J,

YOI(t) = lim,_,, 20G)=0M0)
[ ’ J(2) o TS (5.41)
and [Y.a](t) = limg M
exist where the limits are taken in the SP-topologies for p € [2,00).

FEquivalently,

e—0 €
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exists where the limit is taken in the BP-topologies for p € [2,00).
Note that we do not define these derivatives for each w € W(R") since

the limits exist only P-a.s.

Proof. Let t € J. We know [Y;0](t) = lim._ M exists in S~ by
Theorem 4.1.3 (here we are viewing ¥ € B®~R"). Since b : W(R") — W(R") is
the identity map, and 4, has law equivalent to y, we have (supressing the parameter
t) O(3)=0(bo 30)=0 o ..

Thus O(t) o 5. — O(t) is a version of O(t,%) — O(t,b), so [YOI(t) :
W(O(n)) — W(O(n)) as defined above exists and is a version of [Y;O](t). Simi-
larly, [Y&](t) and [Y@](t) exist and are versions of [Y;a](t) and [Yjw](t) respec-

tively. Q.E.D.



Chapter 6

Geometric Definitions

6.1 Geometric Definitions

Notation 6.1.1 Throughout this paper (M,V,qg) will be a smooth compact n-
dimensional Riemannian manifold with metric g and g-compatible covariant
derivative V. We will also assume that the torsion tensor of V satisfies the
skew symmetry property g{T{(X,Y),Y) = 0 for oll X, Y € T'(T'M) (see Defini-
tion 6.1.11), i.e. that V is Torsion Skew Symmetric (TSS).

Notation 6.1.2 Given a manifold M and a fixed point o € M, let
(i) W) = C(0,1], M),

(1)) Wo(M) ={w e W (M) :w0) =0 M},

(111) W3°(M) denote the set of smooth paths in Wo(M).

Definition 6.1.3 Denote the orthonormal frame bundle of M by = :O(M) — M,
or just O(M). Recall that if v, € O(M) then v: R™ — T,,M is a linear isometry.

Throughout this paper we will refer to a fized frame u, € O(M) with Tu, = o.

Definition 6.1.4 Given a vector bundle 7 : E — M and 0 € W*(M), denote
the set of smooth sections of E along o by I'°(E).
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Definition 6.1.5 Given o € W°(M) and a smooth vector field along o, Z €
T(TM), let Y2 € T(TM) denote the covariant derivative of Z along o.

Definition 6.1.6 Let E = Hom(R",T M), the vector bundle over M with fiber
E,, = Hom(R", T, M) for all m € M. For u € I?(O(M)), define 3% € T (E) by
Yu($)(C) = () (u(s)€) for all ¢ € R™. (Note that u(s)¢ € TyyM for all s € [0,1],
i.e., u(-)¢ € T (TM).)

Notation 6.1.7 Let w = w¥ be the connection 1-form on O(M) with values in

so(n) defined by w(u'(s)) = u(s) ' ¥%(s) for any smooth path u in O(M).
Definition 6.1.8

1. A pathu € W*(O(M)) is said to be horizontal if ¥(s) = 0 or equivalently
if w(u'(s)) =0 for all s € [0,1]. Denote by HW°(O(M)) the set of smooth
horizontal paths in O(M) based at u,.

2. Given a curve o € W(M), define the horizontal lift of o, H(o), to be
the unique curve v € HW(O(M)) with o u(s) = o(s) for all s € [0, 1].
The function H : W*(M) — HW:*(O(M)) defined above will be called the

horizontal lift map.

Definition 6.1.9 Denote the standard horizontal vector fields by
B{a)(-) € T(TO(M)) for all a € R", where B{a)(u) € T,0(M) is the unique
vector such that m,B{a)(u) = ua and w(B{a)(u)) = 0.

Definition 6.1.10 Denote by 0 the canonical (R™-valued) 1-form on O(M), de-
fined by 6(&) = u='m,& for all £ € T,O(M) and u € O(M).

Definition 6.1.11 Let X,Y, 7 € T'(TM). Define
(i) the curvature tensor of V by R(X,Y)Z =VxVyZ —VyVxZ — VixyZ,
(ii) the torsion tensor of V by T(X,Y) = VxY — Vy X — [X,Y].
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Definition 6.1.12 For all a,b € R"™ and uw € O(M) let
1. Qu(a,b) = u ' R{ua, ub)u € so(n),
2. 0y{a,b) = u T {ua,ub) € R".

For a proof that Q,{(a,b) € so(n), see [23] Section III Theorem 2.4 and Section
IIL.5. Notice that if V is Torsion Skew Symmetric, i.e. g(T(X,Y),Y) =0 for all
X,Y e I(TM), then we also have ©,(a,-) € so(n) for all a € R"

6.2 Stochastic Geometric Definitions

Recall that throughout this paper we are using an underlying filtered
probability space (Q, {Fs}, F, P), satisfying the usual hypothesis (Notation 2.1.1).

Definition 6.2.1 Define an M-valued semimartingale to be a continuous M -
valued {F}-adapted stochastic process Z, with the property that for all f €
C>®(M), f(Z) is a real-valued (2, {F,}, F, P) semimartingale.

Notation 6.2.2 Suppose Q is an imbedded submanifold of RY and that ¢y € Q
is a fized base point. (If Q = R"™, M, or O(M), take gy = 0, 0, or u,, respectively.)
Let B>®(Q) denote the space of Q-valued Brownian semimartingales starting at qq

which are in also B°RY, as defined in Notation 2.1.4.

Definition 6.2.3 Given semimartingales X and Y, let [ XY denote the process
(s = [y XOY') where the integral is the Fisk-Stratonovich stochastic integral. In
terms of Ito integrals, [ XY = [ XdY +3[X, Y], where s — [X, Y] is the mutual
variation process of X and'Y. We will write dXdY for the differential of [X,Y].

Definition 6.2.4 Let @ : T*M — M be the dual of the tangent bundle on M.
Suppose that o(s) is a T*M-valued semimartingale and 7 is the M-valued semi-

martingale defined by Z(s) = w(a(s)). The Stratonovich integral [ «a(0Z) is defined
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to be the real-valued semimartingale Y [ fi(5)6(g'(Z(s))), where { f;} is a finite col-
lection of real-valued semimartingales, and {g'} is a finite subset of C°°(M) such
that a(s) = Y fi(s)dg'|z(s). See [8], Remark 3.2, p. 290 for a proof that such a
decomposition exists, and that the integral is well defined. References for stochastic

integration include [14], [22], and [25].

Definition 6.2.5 Note that if 8 is a smooth I1-form on M and Z is an M-
valued semimartingale, then a(s) = Bz is o T*M-valued semimartingale with
Z(s) = 7(a(s)). In this case the Stratonovich integral [ {07Z) is defined as the
process [ a{07).

Definition 6.2.6 Suppose that Q is a manifold and F : R" — T'(TQ) is a linear
map defined by (a — F{(a)(-)). Given an R™-valued semimartingale (w), a Q-
valued semimartingale (q) is said to satisfy the Stratonovich stochastic differential
equation

5q = F(5w)(q) (6.2.1)
if and only if for all f € C(Q), d(f(q)) = df (F(6w)(q)). That is,

Flate)) = Fa0) = 3 [ (Pled(a(r) ou'(e)
where {e;Y, is the standard basis for R™.

See Theorem 3.1 in [8], p. 292 for a proof that (6.2.1) has a unique solution if F
has compact support.

Recall that w = wV is the connection 1-form on O(M) with values in

so(n) (Notation 6.1.7).

Definition 6.2.7 An O(M)-valued semimartingale u is said to be w-horizontal

(or just horizontal ) if [w(du) = 0.

Definition 6.2.8 Given an M -valued semimartingale o, a horizontal lift of o is

an O(M)-valued semimartingale u satisfying (i) mou = o, and (ii) u is horizontal.
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See Theorem 3.2 in [8], p. 294 for a proof that a unique horizontal lift exists when

u(0) = u, € O(M) is fixed.
Notation 6.2.9 Denote by

1. SM the space of based M -valued semimartingales starting at o € M,

2. HSO(M) the horizontal O(M)-valued semimartingales starting at u, €
O(M).

3. SR" the space of R™-valued semimartingales starting at 0 € R™.

Notation 6.2.10 Define the maps

1. Stochastic Horizontal Lift H : SM — HSO(M) such that H(o) is the
horizontal lift of o € SM to O(M) starting at u,,

2. mn:HSO(M) — SM by m(u) = 7o u,

3. Stochastic Development (Eells and Elworthy [12]) I : SR" — HSO(M) such
that for all w € SR", I(w) = u where u is the solution to the Stratonovich
differential equation du = B(dw)(u) with u(0) = u,,

4. IV HSO(M) — SR™ by I (u) = [ 6(du).

Theorem 6.2.11

The functions H and m are inverses of each other as are I and I ™!,
For a proof, see for example [8] Theorem 3.3 p. 297.

Definition 6.2.12 Let Q) be a manifold. A Q-valued semimartingale (Z) is said

to be a Brownian semimartingale iff foZ is an R-valued Brownian semimartingale

for all f € C®(Q).

Definition 6.2.13 Given a smooth function f : O(M) — V, where V is a vec-
tor space, define the horizontal derivative of f, f7 : O(M) — End(R",V) by
fH(u){a) = df (B{a)(u)) for allu € O(M) and a € R".
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Notation 6.2.14 We will use the horizontal derivatives of two functions, u —

Qu(-, -y and u — Oy(-,-), given in definition 6.1.12. For f(u) = Q,(-,-) we denote

the horizontal derivative fH(u){a) by Q2 {a,-,-), and define ©H{(a,-,-) similarly.
Also, for A, B € End(R") and a € R"™, define

Q,(4,a,B) =Y Q(Ae;, a, Be;)

i=1

and ©,(A,a, B) =Y 0 (Ae;, a, Be;).

1=1

6.3 Existence of a Measure-Preserving Flow on
Wo(M)

Let (M, V, g) be as in Notation 6.1.1 (Recall that the torsion tensor of V
satisfies the skew symmetry property ¢(T(X,Y),Y) =0 for all X, Y € T'(TM).)

Theorem 6.3.1 (Driver [8] Theorem 8.5, p. 361) Fix h € C' = {h €
C*([0,1],R") : h(0) = 0}. Let H be a fived version of the horizonotal lift map H
(see Notation 6.2.10). Define the vector field X" on W,(M) by X"(5) = H(5)h.

Then there exists a unique solution to the equation

5" = Xh(5") with 5"(0) = id (6.3.2)

in the space of paths {6 : R — Maps(W,(M) — W,(M))}. Furthermore, ¢ is a

flow on W,(M), and 6(t).v is equivalent to v = Wiener measure on W,(M).

We will also use the “semimartingale version” of this theorem, which is stated

below.

Theorem 6.3.2 (Driver [8] Cor. 6.3, p. 336) Suppose M is an imbedded sub-
manifold of RN for some N. Define the vector field X" on B*M by X" (o) =
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H(o)h. Let 0, € B¥*M with 0,(0) = 0 € M. Then there exists a unique solution
to the equation

&' = X"(o") with ¢"(0) = o, (6.3.3)

in the space of paths {0 : R — B*M}.

Note that for 0 € B M, H(o) is well-defined (see Definition 6.2.7).

Notation 6.3.3 For w = [Odb + [ads € B®R"™, and u = I(w) define C" :

B®R"™ — so(n)-valued processes, and R" : B*R" — R"-valued processes by
C(w) = [ Quih, ow) +O4(h, )

1 _
and R"(w) = 5{R@'cum, 0,0) 4+ 0,(0,h,0)} + 1

where €, and O, are given in Definition 6.1.12, ©, is given in Notation 6.2.1/,

and
n

Ricy(h,0,0) = > Q,(h,O¢;)Oe;.

=1

Note: We have C" : B®*R™ — S®~so(n) by the proof of [8] Cor. 6.2, p.
830, and R" : B*R"™ — S®R" by the proof of [8] Cor. 6.1, p. 328.
Define Y" : B*R™ — B*~R" by

Yh(w) = /Ch(w)dw + /Rh(w)ds for w € B*R".

Theorem 6.3.4 (Driver [8] Thm 5.1, p. 820 and Thm. 6.1, p. 332) Let o" :
R — B®M be as defined in 6.5.2. Let w"(t) = I ' o H(c"(t)) € B®R™ for all
teR.

Then w" is the unique solution to the equation
u')h(t) = Yh(wh(t)) with wh(O) =b (6.3.4)

in the space of paths {w : R — B*R"}.
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Theorem 6.3.5 (Driver [8] Prop. 6.1, p. 323) Let O" and o" be defined by
wh(t) = [O"t)db + [a(t)ds. Then O" : R — O(n)-valued processes, and o’ :
R —R"-valued processes, and these satisfy the following equations:

OM(t) =CM(w"(1))O"(t) with O"(0) = I and

al(t) = CM(wh(t))a(t) + R (wh(t)) with o(0) = 0.



Chapter 7

Existence and Uniqueness of the

Derivative of the Geometric Flow

7.1 Pulled-Back Flow Equation to W(R") via the
It6 Map
The following will be fixed throughout the rest of this paper.

Notation 7.1.1 Fiz h,k € C', and let C = C" : B*R™ — S®~so(n), R = R" :
B*R" — S*R", and Y* : B°R"™ — B* R" be as given in Notation 6.5.5. Let
wh wh i R — B®R" O" : R — S*0(n) and o : R — S®R" be defined as in
Theorems 6.53.4 and 6.3.5.

Let Cp = Cyo(|W |0, |[w(0)|| =) € (0,00) such that sup,e; ||w" ()] e < C,.
FEzistence of such a C, is given in [8], Cor. 6.1, p. 327.

Notation 7.1.2 We write the solution to the flow equation w"(t) = Y (w"(t)) as

a function of its starting point, so w"(t,w,) denotes the solution to the equation

w(t,w,) = Y"(w"(t,w,)) with w"(0,w,) = w, € B*R™. (7.1.1)
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Thus the solution to (6.3.4) is given by w"(t,b). Existence of a unique solution to
(7.1.1) is given by Driver [8], Theorem 6.1, p. 332. We also extend this notation
to O" and o, so that O"(t,w,) and &"(t,w,) are defined by:

w" (¢, w,) = /Oh(t,wo)dwo + /ah(t, wWe)ds.

The following is one of the main results in this paper for the geometric

case.

Theorem 7.1.3 i) The functions O"(t,-) : B°R" — S*End(R") and o"(t,") :
B>*R" — S®R" are S® -differentiable at w,. Let v be and admissible curve with
Yo = W, and let Y = %\0%. (In particular, we could take . = w*(e,w,) and

Y = Y*(w,).) Then

- h _Nh we
[V, OM(t, w,) = lim, Oh (t,7e) 6o (tawo) 1o
b (t7e)) —al (two) L

and [V, o"](t,w,) = lim.

exist where the limits are taken in the SPEnd(R"™)- and SPR™-topologies for p €

Y, OM(2) Z\(t) 4 .
[2,00). Furthermore, Z(t) = = satisfies the equation:
Yo, (t) Zy(1)
Z(t) = C(w" () Z(t) + A(Z(t)) + K(t) with Z(0) =0 (7.1.3)

where Ay and K(t) are defined in Notation 7.1.4 below.
ii) The function wh(t,:) : B*R" — B*R" is B> -differentiable at w,. (See
Definition 2.1.9.) That is, for any admissible curve v with vy = w, and Y = i]ofyg,

Pt — wh(t,w,
[wa’wh](t:wo)Elimw (775) w ( ,UJ)

e—0 €

exists where the limit is taken in the BPR"-topologies for p € [2,00). Furthermore,

(Yo, w"](t, we) = Z(t) where

Z(t) = /0 " Z15(0)db(3) + /0 " o 4(t)d5 + /0 COMDYdY (5). (7.1.4)
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Notation 7.1.4 Let O = O" a =", w=w", C =C" R=R" and let v be a
fizxed admissible curve with v = w, and let Y = i]o%.

Define

A(Q)

C'(w(){f Qudb+ | Qads)O(?) ]
| C'(w(t) ([ Qudb + [ Qads)a(t)

0
+ ;
| R(w(®){ Qidb + [ Qads) ]

C'(w(t)([ O()dY)O(t)

and K(t) = {
Cw(t)(J OB)dY )a(l) + Ri(w(t))(J O(1)dY)

where () = { @ is an {Fs}-adapted End(R") x R"-valued continuous

2

process.

The definition of A; involves derivatives of C' and R, so we will prove

their existence first.

7.2 Properties of the Pulled-Back Kernels

In this section we show that C' and R are differentiable (Theorems 7.2.3

and 7.2.5), and satisfy the appropriate Lipschitz properties (Theorem 7.2.19).

Notation 7.2.1 For w = [Odb+ [ads € B®R", let u = I(w) then C(w) =
A(w) + T(w) where A(w) = [Qu{h,0w) and T(w) = O,(h,-), (see Definition
6.1.12). Notice that uw — Q,(-,-) and v — ©,(-,-) are smooth fuctions.

Remark 7.2.2 By the Whitney imbedding theorem (see Ref. [Au] of [49]) we may
view O(M) as a compact imbedded submanifold of RY for some N < oo, and thus
we may extend smooth functions on O(M), in particular, the maps u — Qu(-, )
and u — ©,(-,-), to smooth functions with compact support in RY. This will allow

us to apply several nonintrinsic results from [8].
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Theorem 7.2.3 The map C : B*R" — S®7so(n) (Notation 7.1.1) is S -
differentiable (see Def. 2.1.9).
Furthermore, if v is an admissible curve with w = v, v = i]ofyg and

u = I(w), then
v,C = i{/f{(u)(vw[ﬁwi + / fi(w)ov'} + ¢ (u) (v, d) (7.2.5)

where f;(0) = Qz(h, e;) and g(i) = Oz(h,-) for it € O(M) and i = 1,...,n. (See
Definition 6.1.12).

This theorem will be proved by Theorems 7.2.4 and 7.2.19 below.

Theorem 7.2.4 The map t — C(y(t)) is S -differentiable (Def. 2.1.5) for any
admissible curve . Furthermore, if w =g, v = |y and u = I{w), then (7.2.5)

holds.

Proof. Fix v, w, v and u as above. Let u. = I(7.) for each e. We have
A = [ Quths o7
= Y [ Qulh e
i=1
= > [ Guosmi(e)
i—1

where G;(¢) = Q. (h, ¢;), and H;(e) = ~'. Note that G;(¢) and H;(¢) are Brownian
semimartingales for each €, and € — v, is B®~-differentiable, with ¢ — 4. being
B>~ -Lipschitz. By [8] Corollary 4.2, p. 313, € — u, is B -differentiable, and
€ — U, is B® -Lipschitz. Therefore G; is B* -differentiable and the map ¢ —

Gi(€) is B~ -Lipschitz by [8] Lemma 4.8, p. 317, and Remark 7.2.2. Moreover,

Gi(e) = dfi<ue> = fz(u6)<ue>
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where f;(@) = Qz(h,e;) for & € O(M). Using this we have by [8] Lemma 4.7,
p. 316, that the B -derivative of e — A(7,) exists, the map ¢ — £[A(7.)] is

B~ -Lipschitz, and

LIAM]
=Y {[ Gile)6H(e) + [ Gi(e)dHi(e)}
= S A fi(ue)(e)oyt + [ filue)oi}.

Similarly, since @ — g(@) = O4(h,-) is a smooth function, and € — u,
is B>~ -differentiable, and ¢ — 4, is B® -Lipschitz, we have by [8] Lemma 4.8
and Remark 7.2.2 above, that € — T (v.) = g(u.) is B> -differentiable for all
p € [2,00), with

d

ST = o (i)

and € — L[T (v,)] B>~ -Lipschitz.
Thus € = L[A(7.) + T(v)] = L[C(7e)] = C'(ve) (%) is B -Lipschitz,
with formula at € = 0 given by (7.2.5). Q.E.D.

Theorem 7.2.5 The map R : B*R" — S®R" (Notation 7.1.1) is
S~ -differentiable (see Def. 2.1.9). Furthermore, if v. = [Q.db+ [ Pds is an

admissible curve with w = [ Odb+ [ ads = v, v = % 7. and u = I(w), then
vwR = L[Rid,(v,],h,0,0) + Ric,(h,Qo,0) + Ric,(h,0, Q)]
+ 3" [0 (W) (v 1) (Oe;, Oe;) + §(u)(Qoei, Oe;)
+3(u)(Oe;, Qoes)].
FEquivalently,
WR = 4o R(v)

= Tl (u){vul, Oc;, Oc;) + f(u){Qoe:i)Oe;
+f (u)(Oe;) Que; (7.2.6)
+7 (1) (0o I)(Oe;, Oe;) + §(u)(Qoes, Oe;)
+4(u){(Oe;, Qoe;)]
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where f(@) = Qg(h,-), §(@) = OU (- h,-). for all i € O(M). (See Notation 6.2.14).

Also, f/(u){(€,a,b) = E(u — f(u){a)b) and §'(u)(€, a,b) = E(u — §(u){a, b)) for all
£ e T,O(M)= RN and a,b € R™.

This theorem will be proved by Theorems 7.2.6 and 7.2.19 below.

Theorem 7.2.6 The map t — R(~(t)) is S~ -differentiable (Def. 2.1.5) for any
admissible curve .

Furthermore, if vo = [Q.db + [ B.ds is an admissible curve with w =
JOdb+ [ ads =7, v="%|v and u = I(w), then (7.2.6) holds.

Proof. Let u, = I(7.) for each e. We have

R(ve) = {chug<h Qe Q) + 04, (Qe, h, Qo) } + 1

where Ric,(h,0,0) = ZQu (h,Oe;)Oe;,
=1
0.{(0,h,0) = Z (Oe;, h, Oe;),

=1

and ©! is the horizontal derivative of ©, as defined in Notation 6.2.14.
Let F : R — Hom(R® End(R")) by F(e) = Q. (h,-). Now & — Qu(h,-) = f(@)
is a smooth function with compact support in RY, and by [8] Corollary 4.2, p.
313, € = u, is B> -differentiable with ¢ — u, being B>~ -Lipschitz. Thus by [§]
Lemma 4.8, p. 317, and Remark 7.2.2, F(¢) is B~ -differentiable, and hence is
S°°~End(R")-differentiable, with F'(€) = f'(u¢)(t.) being $°°~-Lipschitz.

Now by the definition of the BP-norm, ¢ — ~, being B*~-differentiable
with € — 7. being B*°~-Lipschitz implies ¢ — Q). is S® -differentiable ¢ — Q.
being S°°~-Lipschitz. Thus by repeated applications of [8] Lemma 4.6 (Product
Rule), p. 314, ¢ = F(e){Q.e;)Qce; = Qy (h, Q.;)Q.e; is S -differentiable, with
€ — L[F(€){(Qce;)Qee;] being S -Lipschitz.
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Also LIF()(Qeer)] = F(e)(Qees) + F(€)(Qees) and
LIFOQed@e] = [F(OQue) + (O Qe Qe
+F(6) <Qeei>Qe€i
= [ Qe + FluiQeed)Qee
+f(us)<Qeei>Qe€i

Define G(¢) = ©[ (-, h,-). Using [8] Corollary 4.2 and Lemma 4.8 as above, (with
g(i) = O¥ (- h,) and G(e) replacing f(@) and F(e) respectively), ¢ — G(u) is
S~ _differentiable, with derivative given by G(e) = §(uc) (i), and € — G(e) being
S~ -Lipschitz.

Also as above € — @), is S -differentiable, so by repeated applications
of [8] Lemma 4.6, p. 314, ¢ — G(e)(Qces, Qee;) = OF(Qcei, h, Qee;) is S -
differentiable, with

LG Qe Quen)] = CUENQeer, Ques) + G Qeens Ques)

de
+G(e)(Qeei, Qeei).
- gl(ue)<ue> <Qe€i> Qeei> + g(“e)(@eeb Qeei>
+§(U€) <Qe€i7 Qe€i>

and € — L[G(e)(Q.e;, Qce;)] is S~ -Lipschitz.
Thus € = L[R(v.)] = R'(v¢){e) is S°° -Lipschitz, with formula at ¢ =0
given by (7.2.6). Q.E.D.

Remark 7.2.7 Let w be a Brownian semimartingale and u = I(w) (Notation
6.2.10), that is, u solves du = B{dw)(u), so by the definition of the Stratonovich
stochastic differential equation (Def. 6.2.6) we have d[f(u)] = df (B{dw)(u)) =
SH(u){dw) for all f € C*(O(M)).

Theorem 7.2.8 The map (w,v) — v, salisfies the following conditions for all

P, P1, D2 € [2,00) with p% + p% = % and for all w,w,v € B®R":
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i) lvelllgr < Kl[v[[p»
11) HUU,] — U@IHSp S KHU} — ZI)”BPl HUHsz

where K = K(n,p1, pa, Ky, Kg).

Proof of i). Let v be an admissible curve with w = 7y and v = %|o7.. (For
example, we could take v, = w + ev for all ¢.)

Let u. = I(7.) for each e. For all € € (=4, d) we have
Ks = K5(n,p,sub.e(_s4) |7ell =) such that

Ue — U Ye — Y0

€

|l gr < K| ||g» by [8] Cor. 4.1, p. 306.

Since 1y and 4y both exist, by taking the limit as ¢ — 0 we have ||d||pr <
Ks||[%0|| - Now let K = limsup;_,, Kj.

Proof of ii). Let v : J — B*R" and ¥ : J — B*R" be admissible
curves (Def. 2.1.7) with 4, =v, and 7, =vg. (For example, we could take v, =
w + ev and §, = W + ev for all ¢.)

Let u = I(w), & = I(w), u. = I(7.) and @, = I(7,.) for each € € .J.

Let & = 119 = v, ] and € = 1y = vgl. By [8], Corollary 4.2, p. 313, € and
€ respectively solve the stochastic differential equations:

d¢ = Z(u)dv + Z'(u)(€)ow

and d€ = Z(a)dv + Z'(a)(€)ow,

with 5(3)|s:0 = é(s)|s:0 =0

where Z : O(M) — Hom(R"™, RY) is defined by Z(u) = B(-)(u) for all u € O(M),
so Z is a smooth function (see Lemma 8.1.9 in the appendix). Here we have
identified T,O(M) with RY for each @ € O(M). Thus by Remark 7.2.2 we may
view Z as a smooth function with compact support on R*.

Using the Ito6 differential the equation for £ becomes
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de = Z(u)dv+ ;Z’(u)(Z(u)dw)dv + 2(w)(€)duw

+;Z”(u)(§, Z(u)dw)duw.

= Z(u)dv + ;Vl(u) O ® Alds + Z'(u){&)dw
+;V2(u)(§>[0 ® Olds
where w = [Odb + [ads, v = [Adb + [ads, Vi(u)]O @ A] =
' Z'(u)(Z(u)Oe;) Ae; and Vo(u)(€)[O @ O] = X7 Z"(u)(€, Z(u)Oe;)Oe;. Here
{ez} ', is the standard basis on R". So the maps v — Vi(u) and v — V,(u) may

also be viewed as smooth functions with compact support on R .

Thus we have
=&y < KN [1200) ~ Z(@)]dv]
+K||/Z’ u dw—/Z’ &)dw||%,
—I—K||/V1(u) O®Ads—/V1 i O®A]ds||gp

+KH/V2(u)( [O®Ods—/V2 [0 ® O)ds|[%,

We will consider each of these four terms separately.

Term 1.

||/ Wdv[Goy < Kol o [12(w) = Z(@) |5 () by Lemma 8.1.6

VAN

Kpllw — @[y (5 V]2 () by [8] Cor. 4.1, p. 306.

Term II.

||/Z’(u) dw—/Z £)diw||%,

< K| [ Z()e) - ’(ﬂ)<€>dw||f§p<s)
+i]l [ Z'<a><£>d[w — @)%
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< Klfloll [ 1Z€) ~ 7/ @)@y by 8] Lemma 4110
+K||Z’(1])<§>Hspz yllw = @[5, ) by Lemma 8.1.6
SKKMZW—Z@WWMUW
K [N1Z/ @€ = Ol
+K||é||gp> Jllw — @50, ) since [Z'] is uniformly bounded
< K| Z'(u) = Z (@)l 501 () 1€l 50 () by Lemma 8.1.6
+K/ 1€ — €%, »dr since |Z'| is uniformly bounded
+K|Jw — @, ||v||Bp> (s) by Theorem 7.2.8 (i)
< I l|w — @l g () 10l )
+K /05 1€ — 5”5@(r)dr
The last inequality follows by the Lipschitz property of Z’, [8] Cor. 4.1 p. 306,
and Theorem 7.2.8 (i).
Term I11I.

Again using Theorem 7.2.8 (i) and the Lipschitz properties of u — V;(u)

we have

| [Viwlo ® Alds — [ V(@[O0 ® Alds|[l,
< K [T 10V = @) ® Al
K [CIVI@(0 = 0) @ Al dr
< KIVA() = Vo @) 10 10
FKVi(@[(0 = 0) @ Al

< Kllw = @[ (5)[0]2 )

Term IV.

Similar reasoning shows:
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K [ Va(u)(€)[0 @ 0lds — [Va(@) (@0 @ Oldsi[%,

< K[[Va(u) = Va0 & Ol
+K/Wwam@—ém9®0mn
+K@)E1(©0 - 0) & Ol
+K|V(@)E)I0 ® (0 - 0%,

< K[Vau) = Vo @)oo €]
K [Tl = &l
K NEl 1O = Ol

< K = @ 10l +K4u@f%mw

Thus, combining the four terms above gives

1€ = Ellsws) < Kllw = @lgos 0[50 5 + K/O 1€ = Ell5o

Now Gronwall’s inequality (Lemma 8.1.7) gives the result. Q.E.D.

Definition 7.2.9 Giwen a map f : B*R" x B*R" — S*7V, we say that f
satisfies the BPT-condition (or is BPY) if for all p € [2,00), w,w,v € B*R" we

have

1f(w,v) = f(@,0)l[spv < Kljw = @] prgen[0][ promr

and [|f(w, v)[lsev < KlJv]| g

where K = K(n,p1, p2, Ky, Kg) and py,ps € [2,00) are such that pil + p% = %.

Lemma 7.2.10 Suppose F': B°R"™ — S*Hom(RY, V) satisfies

|F(w) — F(@)gotom.yy < Kllw — @l re

for all p € [2,00),
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and G : B®R" x B*R" — S®~RY is BT, i.e., there exists K =

K(n7p17p27 Ku;, Kw) such that

|G (w,v) = G(W,v)||spry < K|lw — @ orre ||[v]| Brorr

for all p,py,py € [2,00) with pil + piz 0

and ||G(w,

Vllsery < Kol grre

1
p

Then H : B*R" x B®*R" — S*°°V defined by H(w,v) = F(w)G(w,v) is also

Lo
BPT e,

[H(w,v) = H(@,v)||srv < Kllw — @[ prige[v]| progr

fOT’ all P, P1, P2

and [|H(w, v)||srv < Kllv]lprrn

€ [2,00) such that pil + p% = . Here K =

K(n7p17p27KU)7 Kﬁ), ||F||S(XJ)

Proof. We have

||H(w,v) — H(w

Also

)llse <
<
<
<

1 (w, v 50

IE(w) = F ()]G (w, v)]|se

HIF(@)[G(w,v) = G, v)][[s»

[1F(w) = F(@)[[s01 [|G(w, v)]| 52

+||F(0)]|s= ||G(w,v) — G(w, v)||s» by Lemma 8.1.6
K[|F(w) = F(w)||sr: [[v]| 52

+K[|G(w,v) = G(w, 0)||s»

Kljw = || o [|v]| g2

< sup [E(w)]ls< |G (w, )]s
eooRn

w

KHUHBP

N

Q.E.D.
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Definition 7.2.11 A function F : B*R"™ — B>~V is called BP-Lipschitz if
|1F'(w) = F(0)|» < KlJw — |50
for all w,w € B®R"™, where p € [2,00) and K = K(n,p, ||w||g=, ||©]| ).

Lemma 7.2.12 Suppose F : B°R" — B*Hom(R", V) is also S®-bounded and
is BP-Lipschitz for all p € [2,00).
Then H : B*R" x B*R" — S*°V defined by H(w,v) = [ F(w)dv is

Lo
BPT e,

||H(w= U) - H(UNJ, U)HSPV

IN

KJw — @ gnge |0l sree

and |[|H(w,v)||sry < K||v||srre

where K = K(n,py, pa2, Ky, Kg).
Proof. Since F(w) and v are Brownian semimartingales we may write
v = [Adv+ [ads
and F(w) — /B(w)db + /B(w)ds
Then d[F(w)]dw = Y | B(w)e; Ae;ds, and

[B(w) = B(w)lsp < [|F(w) = F(@)][ 50

We have
/ Fw)do = / F(w)var; / d[F (w)]dv
= /F(w)dv + ;ZZ:;/B(w)eiAeids.
Thus

|H(w.v) = H@ o)l < || [ Flw)dv ~ [ P@)dolls

+; ;:; I /[B(w) — B(w)]e; Ae;ds|| g».
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Now

| [ Py~ [ Faydolls = | [1F(w) = F)do]l

[ F7(w) — F()][s21[[v]| pr> by Lemma 8.1.6

IN

N

Kllw = [ e [|v]| g

Also
[ /1B(w) — B(w)]ei Aeids|| g»
= [[[B(w) — B(w)e]Aes|sv
< |[B(w) — B(w)]e;||sp1 || Ae;|gp2 by Lemma 8.1.5
< Kl — ol s

Finally we have

|, v)ls = |l [ Fw)ovls
| F'(w)]|se||v]|g» by Lemma 8.1.6

A

N

Kllv][s»-

Q.E.D.

Notation 7.2.13 Let w,v € B®R", u = I(w) as given in Notation 6.2.10, and
& =wyl. Then by [8], Corollary 4.2, p. 313, we may write

du = Z(u)dw with u(0) = u,

and d¢ = Z(u)dv + Z'(u){€)6w with £(s)]s=0 = 0

where Z : O(M) — Hom(R"™, RY) is defined by Z(u) = B{-)(a) for all u € O(M),
so Z may be viewed as a smooth function with compact support in RN (see Lemma
8.1.9 in the appendiz). Here we have identified T,O(M) with RN for each u €
O(M).

Lemma 7.2.14 Let F: RY — V be a smooth function with compact support and
suppose I : B*R"™ — B*~"RN is BP-Lipschilz for all p € [2,00). Then Fol :
B*R" — B>V is also BP-Lipschitz for all p € [2,00).
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Proof. Letp € [2,00), w = [ Odb+ [ ads € B*R", @ = [ Odb+ [ éds € B*R",
u=1(w) and @ = I(w).
By Notation 7.2.13, u solves

du = Z(u)dw

where Z : O(M) — Hom(R",R") is a smooth function with compact support in

RY.
Thus, using It6’s formula we have:
1
d[F(u)] = F'(u){du)+ §F”(u)<du, du)
= G(u)dw + H(u){O,O)ds
where

Gu)dw = F'(u){Z(u)dw)

> 2006 Z(0)0).

H@(0.0) = 3

In the following K will be a constant (which will vary from line to line), depending

on p, ||w||p, ||| g=, and the Lipschitz constants of F, F', and F".

IF@) = F@lw < Kl [[G@) - G(@)ldw]p
+K]|| [ Ga)dw - @] s
+K]| [[H(w) = H@]O, 0)ds]|p»
+K| [ H@)(0 - 0,0)ds| s
+K| [ H(@)(0,0 - O)ds| s

< K[G) - GG@)lsoljw]] s
FEIG ()l — ][50
+K|H (w) — H(@)s»

F2K|[H(@)s= | [0 = Olds]|
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IA

KHU} — ZI)]HBp + KHO — OHSP

AN

Kljw — ]l s

Q.E.D.

Theorem 7.2.15 The function C' : BR"™ x B*R" — §°~V defined in Equa-
tion (7.2.5) satisfies the BT condition (Definition 7.2.9), that is, for all w,w,v €
B>*R" we have

[0uClls> < Klv][se

and ||UwO—quC||Sp < KHw_wHBPlHUHBPZ

where p, p1, P2 € [2,00) such that p% + p% = ;; and K = K (n, p1, po, Ku, Kg).

Proof. Let v:J — B*R" and 7 : J — B*R" be admissible curves (Def. 2.1.7)

with 49 =v,, and % =vg. (For example, we could take . = w+ev and 4. = w+ev

for all €.) Let w = I(w), @ = I(w), and u. = I(~,) and @, = I(7,) for each € € R.
By Theorem 7.2.3 we have

0,C = 2{ [ £ wansw + [ 6} + g w)w)
= F(w)v+ G(w)v + H(w)v

where f;(2) = Qgz(h,e;) € so(n) and ¢g(u) = Oz(h,-) € so(n) for i = 1,...,n, and
u € O(M). (Recall we are assuming that V is Torsion Skew Symmetric.)

By Remark 7.2.2 we may view O(M) as a compact submanifold of RY for
some NN, and thus extend {f;}7_, and ¢ to smooth functions with compact support
on RV,

The proof will consist of obtaining bounds for each of the terms F, G,

and H of the form:

[F(w)vllsy < Kl[vllse

and [|[F(w)v — F(w)v||lsy < Kllw — | ge:||v]] e



The F Term.
Write & = f!. We have:

/ O (u) vy Dw = / (1) (v, T) dw + ; / d[® (1) (v,

— / O (u) (v Iy duw
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I)]dw

—l—;/@'(u)(Z(u)dw,Uw])dw

+; / (1) (d[vy T])duw

We will consider each of these three terms separately.

I) By [8] Cor. 4.1, p. 306, the map w — u = I(w) is BP-Lipschitz, so

w — ®(u) is BP-Lipschitz by Lemma 7.2.14. Also, since u is O(n)-valued, and & :

R" — Hom(R",so(n)) is bounded (as a smooth function with compact support

in RY), ®(u) is S™°-bounded by a constant independent of u. Also, Theorem 7.2.8

implies that the map (w,v) — v, satisfies the BPT-condition.

7.2.10 the function (w,v) — ®(u){v,I) is BPT.

Now

< [[@(u){vwl) = S(u){val)|s|[w] s

+[@(w){vad) || se: |lw — @]| 5

Thus by Lemma

< K||w — @||ge1 ||v]| gr» by Theorem 7.2.8

Also,

| [ @()wlduwlss < 1|@w)vpDllsslw]p= by Lemma 8.1.6

IN

Kol s»-

II) Write w = [ Odb + [ ads and @ = [ Odb + [ éds.
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Let {e;}", be the standard basis on R”. Then

/<I> w)dw, vy, 1 Z/q) u)Oe;, v, 1)Oe;ds.

Write G(u)(O, v, I,0) =37 | ' (u)(Z(u)Oe;, v, I)Oe;. Then

H/CD w)dw, v Iy dw —/cp Z(@)di, va ) did| 5o
= ||/G u){O, v,1,0) ds—/G )0, vaI,0)ds||s»
< K| / 1O, v I, 0)ds|s»

VK| /G )0 — O, vI,0)ds]|ss
4K /G(a)(é, vl — val,0)ds]|s
+K|| /G(a)@, val, 0 — O)ds||s»
< K||G(u) — G(@)[|sp1 [|vw I || sr2
LK(|G@)ls= 10 — Ollsn v |5
+K||G ()]s [|vw] — val][se

< K||w — 0||ge1 ||v|| gr» by Theorem 7.2.8.
Also,

||/<1> w)dw, v l)dw|ss = ||/G(u)<o,vw1,0>ds||sp
S K||le||gp

< Kljvllse

IIT) Let £ = v, I. Then £ solves the stochastic differential equation:

d¢ = Z(u)dv+ Z'(u){€)ow
with 5(5)’3:0 =0

where Z : O(M) — Hom(R",R") is a smooth function with compact support in

RY (see Notation 7.2.13).



Thus

/ & (u)(dlv 1)) dw = / ®(u)(
- /CDU w)dv + Z' (u)(€)dw)dw

— /G u)(A, O) ds+/H u)(§,0,0)ds

where now

i@(u)(Z(u)AeQOei
and H(u)(&,0,0) = i@(u)(Z’(u)(f)OeQOei.

=1

G(u){4,0)

Now

I [ @(u)dw,ddw ~ [ o(@)dvsl)dils:
< K| [ G){a,0)ds ~ [ G(a)(a, O)ds|ls»

+K||/H VoI, 0 O)ds—/H(ﬂ)(vﬂ,(),@)dsﬂsp

< K||/ 1(A, OYds||s»

+K||/G(u A, O — O)ds]|sr

< K||w — @||pe: ||v]| g»» by Theorem 7.2.8.

Also,
| [ @), duls
< KH/G ) (A, O)ds]|sr
4K / H(u){voI,0,0)ds| s
< K[|G(w)]| s | Al 50 + K[| H (w)]| 500 [0 ] ]| 50

< K||v||g» by Theorem 7.2.8.
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The G Term.

The map w — f;(u) is BP-Lipschitz (by Lemma 7.2.14), and is S°°-
bounded since u is O(n)-valued, and f; is a smooth function having compact sup-
port in RY. Thus the map (w,v) — [ f;(u)év" is BP" by Lemma 7.2.12.

The H Term.

The map w — ¢'(u) is also BP-Lipschitz (by Lemma 7.2.14), and S*-
bounded. Also, Theorem 7.2.8 implies that the map (w,v) — w,I satisfies the
BPt-condition. Thus the map (w,v) — ¢'(u)(vy,I) is BPT by Lemma 7.2.10.
Q.E.D.

Theorem 7.2.16 The function R’ : B*R" x B®*R" — S™~V satisfies the BPT
condition (Definition 7.2.9), that is, for all w,w,v € B*R",

[vwRlls» < Kllv]|g

and ||UwR—quR||Sp < K||w—zI)||Bp1||v||sz

where p, p1, P2 € [2,00) such that p% + 1% = % and K = K (n, p1, p2, Ky, Kg).

Proof. We will write w = [Odb+ [ads and @ = [Odb+ [ &ds. Let v : J —

B*R"™ and 4 : J — B®R" be admissible curves (Def. 2.1.7) with §9 =v,, and

Yo =vg. Let u = I(w), @& = I(@), and u, = I(7.) and @, = I (%) for each e € R.
By Theorem 7.2.5 we have

vwR =7, [f'(w) (v, Oe;, Oe;) + Fu)(Ae;)O¢;
+f(u){Oe;) Ae;
+§' (u) (v, Oe;, O€;) + G(u){Ae;, Oe;)
+§(U) <O€Z, A€Z>]
where () = Qu(h,-) and §(a@) = OF(-, h,-). for all z € O(M) (Notation 6.2.14),

and f'(u)(€,a,b) = &(u — f(u){a)b) and §'(u)(€,a,b) = E(u — §(u){a, b)) for all
e T,0(M)= RN and a,b € R".
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By Remark 7.2.2 we may view O(M) as a compact submanifold of RY
for some N, and thus extend f and ¢ to smooth functions with compact support
on RV,

Our goal is to show that the map (w,v) — v, R satisfies the BP*-condition
in Definition 7.2.9. This is obtained by repeated application of Lemma 7.2.10 using
the following facts:

(i) The functions f, f’, §, and §' are all smooth with compact support
in RY, thus the maps w — f(u), etc. are all bounded and are BP-Lipschitz by
Lemma 7.2.14 and [8] Cor. 4.1, p. 306.

(ii) The map (w,v) — v, I is BP* (by Theorem 7.2.8).

(iti) The map w — O satisfies |0 — O||s» < ||w — | g» and [|O]|g <
|wl] g Q.E.D.

The following lemma and theorem show that for all w € B®R" we may
extend the map C' : B*R" — End(B*) to a map C' : B*R" — End(B?) such
that C'(w) : B — BP, and the properties in Theorem 7.2.15 still hold.

In the following we are using the fact that B> is dense in BP for each

p € [2,00).

Lemma 7.2.17 For each p € [2,00) and w € B®R™ there exists a unique linear
operator C(w) : BP — SP defined by C)(w)(v) = SP-limy, ;0 C'(w)(v,) where
v € B? and {v,} C B> is any sequence such that v, — v in BP. Moreover,

Ch(w) = Cy(w)|pr. The result also holds with C" replaced by R'.

Proof. Let p € [2,00), w € B*R", v € B? and {v,} C B* such that v, — v in
BP. We have

1" (w) (vm) = C'(w)(a)llsr = NC"(w){vm = va)llse
< K,||vm — vn||g» by Theorem 7.2.15

— 0 as m,n — oo.
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Thus we may define C}(w)(v) as the limit of the SP-Cauchy sequence {C"(w)(v,)}-

The linearity of the map v — Cj(w)(v) follows from the linearity of C"(w)(:).

Now let {7,} C B> be another sequence with o, — v in BP. Then

1C" (w)(vy) — C"(w)(T)||s» < Kp||vm — | me by Theorem 7.2.15
< Kylllve — vllpe + [[v = Onll 5]

— 0 since v,, — v and v,, — v in B?

Thus the limit C}(w)(v) € S? defined above is unique.

Finally, we have
1, (w){v) = C"(w)(va) |2
< NG (w){w) = C'(w){vn)]|se

—0asn— o0

But v € B? C B? so this defines C}(w)(v), that is, C)(w)(v) = Cy(w)(v) P-a.s.
The proof for R’ is similar. Q.E.D.

Notation 7.2.18 We will still denote the extensions (to B?) by C'(w) and R'(w),

for all w € B*R"™.

The following theorem completes the proofs that C' and R are S~ -

differentiable (Theorems 7.2.3 and 7.2.5.)

Theorem 7.2.19 Fiz w,w € B®*R" and v € B*~R" Then

vuCllsr < Kl|v||gr and
[0uC = vaCllr < Klfw =]l [v]|
similarly
vwRllsr < Kl||v||gr and
lowRlls < Klells 728

[owl = vallllsr < Kljw = w[lge|v]| g

Land K = K(n,p1, p2, Ky, Kg).

where p, p1, P2 € [2,00) such that p% + pi? =1
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Proof. Fix p,pi,ps € [2,00) such that p% + p% = %. Let {v,} C B* such
that v, — v in B?? (so v, — v in B as well). By Theorem 7.2.15, [|C"(w){v,,)||sr <
K,||vn||ge for all n, so by taking the limit as n — oo we have ||C'(w)(v)|lsr <
.

Similarly, C'(w)(v,) —C"(@){v,) = C'(w)(v) —C'(w){v) in SP as n — oo,
so the conditions ||C'(w)(v,) — C"(W0){v,)||sp < K||w — || o1 ||vy||gr2 for all n im-
ply ||C"(w)(v) — C"(@)(v)||sr < K||w — @||pe1||v] gr2. The proof for R is similar.
Q.E.D.

7.3 Existence of the Derivative of the Flow on
W(R")

We now prove Theorem 7.1.3: [V, O"](t,w,) and [Y,,a"](t, w,) exist in
5%~ and satisfies (7.1.3), and [Y,,, w"](t, w,) exists in B®~ and satisfies (7.1.4).
Proof of Theorem 7.1.3. The proof will consist of showing that The-
orem 4.1.3 is applicable. For this it is necessary to verify that C* and R" satisfy
the conditions of C' and R in Notation 4.1.1. By Theorem 7.2.19, condition 1 is
satisfied. In [8], conditions 2 and 3 are verified in the proofs of Corollaries 6.1 and
6.2, respectively. By the definitions of w”, O" and o, conditions 4, 5, and 6 are
satisfied (taking X = Y"). Note that C" and R" satisfy the hypotheses of Theorem
3.1.5.
Q.E.D.

Now we have the analog of Theorem 7.1.3 for flows on the space of paths
W(R"™). We will take the underlying probability space Q = W (R") with reference
Brownian motion b defined by b,(w) = w(s) for all w € W(R").

Notation 7.3.1 Let h € C*, and let Y" : W(R"™) — W(R") be a continuous
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version of Y*(b). Let w"(t) = [ O"(t)db+ [ &"(t)ds be the solution to the equation
zbh(t) = Yh(w"(t)) with @"(0) = id : W(R") — W (R"). (See Notation 3.2.2 and

Remark 3.2.3).

Theorem 7.3.2 Let h,k € C'. For allt € J,

i)

D}k@h](t) = lim., O" () (w* (e)(-) =O" (£)(-)
k _&h

(
=, SR ‘ , (7.3.1)
and [kah](t) = lim.,,2 )@ (6)£')) &)

exist where the limits are taken in the SP-topologies for p € [2,00).

ii)

V(1) = tim 2O E0) — ()

e—0 €
exists where the limit is taken in the BP-topologies for p € [2,00).
Note that we do not define these derivatives for each w € W(R") since

the limits exist only P-a.s.

Proof. In the proof of Theorem 7.1.3 above we have verified the conditions in No-
tation 4.1.1. Also, for all € € J, @*(¢), P is equivalent to standard Wiener measure

pon W(R™), so this result follows directly from Theorem 5.4.2. Q.E.D.

7.4 Existence of the Derivative of the Flow on
Wo(M)

Notation 7.4.1 Given h € C*', let X" be the vector field on B¥M defined in
Theorem 6.3.2. We will write the solution to the flow equation ¢"(t) = X" (c"(t))
on B®M as a function of its starting point, as we did for the flow on B®R"

(Notation 7.1.2). We write o"(t, 04) for the solution to the equation
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o (t,00) = X"(o"(t,00)) with (0, 00) = 09 € B¥M. (7.4.1)

The existence of a unique solution to (7.4.1) is given by [8] Corollary 6.3, p. 336.

Theorem 7.4.2 Suppose M C RY is an imbedded submanifold. Let h,k € C",
and define o, o and X* as in Notation 7.4.1. Let o, € B®M such that o, P is

equivalent to v. Then for allt € J,

[Xkoh|(t,0,) = lim, o Tl (€000 (Lo) (7.4.2)

€

exists where the limit is taken in the BPRN -topology for all p € [2, 00).

Proof. Fix ¢t € J. By [8] Theorems 5.1 and 3.3, we have a 1-1 correspondence
between flows on B®M defined by (7.4.1) and those on B®R" defined by (7.1.1),
given by o = mol(w"). In the expanded notation 7.4.1, o"(t,0q) = woI(w")(t, wy)
means that o satisfies (7.4.1) with starting point o9 = 7 o I (wy).

So we have o"(t,0%(¢,0,)) = 7 o I[w"(t,wk(e,b))] since o*(e,0,) = o
I(wk(e,b)). Let v, = w(t,w*(e,b)). Now the map € — ~, is B® -differentiable
by Theorem 7.1.3, and we have by [8] Cor. 4.2, p. 313, that ¢ — I(v.) is also
B>~ -differentiable. (Note that the B>~ -Lipschitz requirement on the derivative
€ — %’ye in [8] Cor. 4.2, p. 313 is used only to obtain a Lipschitz bound for
e £1(7))

Finally, since 7 is smooth we have by the Chain Rule ([8] Lemma 4.6, p.
314) that [X*0"](t,0,) = &L|o[m o I(.)] exists. Q.E.D.

Theorem 7.4.3 Fizh,k € C'. Let H be a fized version of the horizonotal lift map
H (see Notation 6.2.10). Define the vector field X" on Wo(M) by X"(5) = H(5)h.
Let 6" : R — Maps(W,(M) — W,(M)) be the solution to equation (6.3.2):

&' = Xh(5M) with 57(0) = id
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given by Theorem 6.3.1 ([8] Theorem 8.5, p. 361). Similarly define X* and &*.
Then for all t € J,

[Xk5(1)(-) = lim,_ Z-ETEOOI="O0) (7.4.3)

€

exists where the limit is taken in the BPRN -topology for all p € [2, 00).

Proof. Let o be the solution to (7.4.1) with underlying probability space
ymg p y Sp
(Wo(M),{H. },v) and o, = 7, where G,(s) : W,(M) — M is defined by
To(s)(w) = w(s) for 0 < s <1 and w € W,(M) (see Notation 3.2.1).
We know that for all ¢ € J, [X5oh](,0,) = lim,_,o 2 (be (0e)—0" (t.00)

€

exists in B>~ by Theorem 7.4.2. Since o*(¢,5,) has law equivalent to v, we have
(supressing the parameters ¢ and €) (o o 0%)(5,)=0"(5,) 0 o*(5,)=5" o &*.
Thus 6"(t)(6%(¢)) — 6"(¢) is a version of o"(t,0*(5,)) — o"(t,5,), so

[X*G"](t) as defined above exists and is a version of [X*a"](,5,). Q.E.D.



Chapter 8

Appendix

8.1 Classical Theorems of Girsanov, Kolmogorov
and Gronwall

Lemma 8.1.1 Let J = [—k,5] C R and C : J — so(n). Then there exists a

unique solution to

T(t) = C(t)T(t) with T(0) =T (8.1.1)

Moreover, T'(t) € O(n) for all t € R.

Proof. Since (8.1.1) is a linear ordinary differential equation in finite dimensions,

it has a unique solution. To show that T(¢) € O(n) note that

L) = Lrero + et

= T)*C()*T(t) + T(t) CU)T (1)

= 0 (since C(t) is so(n)-valued).

Since T'(0)*T(0) = I, this shows that T'(¢)*T'(t) = I for all ¢ € J. Q.E.D.

The following is a corollary of Girsanov’s theorem using Novikov’s crite-

rion. For a proof see [8] Lemma 8.2, p. 347.
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Lemma 8.1.2 (Girsanov’s Theorem) Let w = [ Odb+ [ ads € B¥R" such that
(0, @) is a predictable O(n) x R"-valued process, and P(fy |a(s)]?ds < K) =1 for

some constant K < oco. Then
1. p=0,P and w,P are equivalent.

2. Let Zy = exp{— [Ja-Odb— % S Jo la?ds} and define Q = Zy - P, that is, Q
15 the probability measure on €2 such that dQ = Zy. Then w,Q = p.

Lemma 8.1.3 Kolmogorov’s Lemma (See [{1] Theorem 53, p. 171, and Corol-
lary, p. 173.)

Let p € [1,00) and V be a finite-dimensional vector space. Suppose f :
J — SPV is SP-Lipschitz. Then there is a version of f such that P-a.s. the
function (t — f(t)): J - W(V) = C([0,1],V) is continuous. In particular, there
is a version of f such that the function ((t,s) — f(t)(s) : J x [0,1] = V is P-a.s.

continuous.

Lemma 8.1.4 (Driver [8] Lemma 4.5, p. 306) Let p > 1 and suppose q : J —
SPR" is an SP-differentiable function and the derivative ¢ is SP-Lipschitz. Then
there is a version of q such that P-a.s. the function (t,s) — q(t)(s) is C10.

Lemma 8.1.5 Let p,pi,ps € [2,00] and be such that + = . Suppose V s

a finite-dimensional vector space. Let X and Y be continuous adapted Processes

such that XY € SPV. Then || XY ||sr < [|X||se1 ||V || 502 -
Proof. For ps = co we have

XYl = £ [ sup [X(w, )Y (w.r)[[Pdw}>

Q 0<r<s
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< {[ [sup |X(w,7)| sup |V(w,r)[Pdw}
0<r<s

Q 0<r<s

< {[[sup |X(w,r)| sup ess sup,cq|Y (0, 7)[]Pdw}?
Q 0<r<s 0<r<s

= {[ [sup |X(w,7)[Pdw}? sup ess sup,cq|Y (o,7)]
Q 0<r<s 0<r<s

= [[Xllse[[Y]l5e
The proof for p; = oo is similar. For py, ps € (p,00) we have

[XY[sp =[] sup [X ()Y (r)[[[zop)
0<r<1

VAN

| sup [X(r)| sup [Y(r)|[[Lr(p)

0<r<1 0<r<1

< || sup (Xl epll sup [Y(r)]llompy by Holder
0<r<1 0<r<1

[ X[ o0 [[Y [ 52

Q.E.D.

Lemma 8.1.6 Let p,p1,p2 € [2,00] be such that pil + p% = 119. Suppose V' and W
are finite-dimensional vector spaces w = [ Odb + [ ads is an V-valued Brownian
semimartingale, and Z is a Hom(V, W)-valued continuous adapted process. Then

| [ Zdw||g» < || Z]| g1 ||w]| r2 .
Proof. We have
H/Zdwllgp = ||/ZOdb+/ZadsHBp
= [ Z0|ls» + | Ze|sv
< |1 Z||s»1 |O]|sp2 + || Z]] 71 ||ct]| sp> by Lemma 8.1.5
= [ Zllsei[Jw][Br--

Q.E.D.

Lemma 8.1.7 Gronwall’s Lemma. Suppose f : R™ — R and ¢, K > 0 are
constants such that f(t) < e+ K [} f(T)dr for all t € R*. Then f(t) < e’ for
allt € R.
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Proof. Let F(t) = K [ f(r)dr, then F(t) = K f(t) < K[e + F(t)] by hypothesis.
Thus we have

d. g _ Kty
ZleTEW) = B ~ KF(1)]

< Kee Kt

Integrating and solving for F(t), we have F(t) < ee" — ¢, thus f(t) = F(t) + € <
ee’t. Q.E.D.

The following lemma is a consequence of [8] Lemma 7.4, p. 339.

Lemma 8.1.8 Modified Gronwall’s Lemma Let g : J — 5% be S -

differentiable. Suppose there exist constants K,e > 0 such that

19()][s» < Kllg(®)lls» + O(e)

for allt € J, and ||g(0)||se is O(€). Then ||g(¢)||s» is O(€) for allt € J. This result
also holds with S®~ and SP replaced by B>*~ and BP.

Lemma 8.1.9 For all a € R", the map B{a)(-) : O(M) — TO(M) is smooth.

Proof. Let V be a given covariant derivative on 7M. For u € O(M) we have
Bla)(u) = [m|yy] tua where Hy = HYO(M) C TO(M) is a horizontal tangent
space, also called a connection on O(M). The covariant derivative V determines
Hy since Hy O(M) = {&(0)|a(0) = u and ¥£(0) = 0}.

To investigate the smoothness of the map [m,|3y] ' we will represent
in local coordinates.

First we represent V (locally) as a covariant derivative V on the trivial
vector bundle M x R"™.

We have TM=M x R" as an isomorphism of vector bundles by the map
¢ : M x R* — TM defined by ¢(m,a) = U(m)a where U(p) € O,(M) for all

p € M (ie. U is a fixed moving frame).
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Identify ['(M x R") with C*°(M,R™). Then for all S € I'(M x R") we
may write

VoS = dS{v) + I'(v)S (8.1.2)

where 'V is a smooth so(n)-valued 1-form on M defined by I'V(v) = U1V, U.

Now we also have O(M)=M x so(n) via the map ¥ : M xso(n) — O(M)
defined by ¥(m, g) = U(m)g.

So we may represent HY O(M) locally as
HS, (M x so(m)) = {03(0), 5(0))m(0) = m. 4(0) = g, SH(0) = 0}, where u =
U(m)g.

Now we have via (8.1.2) a representation of the local covariant derivative
along a smooth curve o(t) in M : %S(t) = S(t) + IV{(6())S(t) where S(t) €
Loy (M x so(n)).

Since g(t) € Ly (M X s0(n)) we have Y2(0) = §(0) 4+ IV (112(0))g(0), so
setting v = m(0), we have Hgn,g)(M x so(n)) = {(v, (=T (v)g),)|lv € T,uM} C
T M x Tyso(n).

Also, the map m, : ’H(Vnw)

s T = (0, (T (0)g),)
Finally, in the local representation we have for each a € R", B{a)(-) :

M x so(n) — My, ) defined by B(a)((m, g)) = (U(m)ga, (~T7(U(m)ga),) which

— T, M is just a projection, so we have

is clearly smooth in (m, g). Q.E.D.
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