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ABSTRACT OF THE DISSERTATION

A Finite Dimensional Approximation to Pinned Wiener Measure on
Symmetric Spaces

by

Zhehua Li

Doctor of Philosophy in Mathematics

University of California, San Diego, 2016

Professor Bruce K. Driver, Chair

Let M be a Riemannian manifold, o ∈M be a fixed base point, Wo (M) be

the space of continuous paths from [0, 1] to M starting at o ∈M, and let νx denote

Wiener measure on Wo (M) conditioned to end at x ∈M. The goal of this thesis is

to give a rigorous interpretation of the informal path integral expression for νx;

dνx (σ) “ = ”δx (σ (1))
1

Z
e−

1
2
E(σ)Dσ , σ ∈ Wo (M) .

In this expression E (σ) is the “energy” of the path σ, δx is the δ – function based

x



at x, Dσ is interpreted as an infinite dimensional volume “measure” and Z is

a certain “normalization” constant. We will interpret the above path integral

expression as a limit of measures, ν1
P,x, indexed by partitions, P of [0, 1]. The

measures ν1
P,x are constructed by restricting the above path integral expression to

the finite dimensional manifolds, HP,x (M) , of piecewise geodesics in Wo (M) which

are allowed to have jumps in their derivatives at the partition points and end at x.

The informal volume measure, Dσ, is then taken to be a certain Riemannian volume

measure on HP,x (M) . When M is a symmetric space of non–compact type, we

show how to naturally interpret the pinning condition, i.e. the δ – function term, in

such a way that ν1
P,x, are in fact well defined finite measures on HP,x (M) . The main

theorem of the this thesis then asserts that ν1
P,x → νx (in a weak sense) as the mesh

size of P tends to zero. Along the way we develop a number of integration–by–parts

arguments for the approximate measures, ν1
P,x, which are analogous to those known

for the measures, νx.

xi



Chapter 1

Overview

Throughout this dissertation, we fix
(
Md, g,∇, o

)
to be a pointed com-

plete Riemannian manifold of dimension d with Riemannian metric g, Levi-Civita

covariant derivative ∇ and base point o ∈M . We further let

Wo (M) := {σ ∈ C ([0, 1] 7→M) | σ (0) = o}

be the Wiener space on M and let ν be the Wiener measure on Wo (M)—i.e.

the law of the M–valued Brownian motion which starts at o ∈M.

Richard Feynman, in his groundbreaking 1942 thesis, offered a path integral

representation of the quantum particle state based on the principle of least action.

In quantum physics, the state of a quantum particle is described by a wave function

φ which satisfies the Schrödinger equation,

i
∂

∂t
φ = Hφ

where H = −1
2
∆g + V is the Schrödinger operator, ∆g is the Laplace-Beltrami

operator on (M, g, o), V : M → R is an external potential and i is the imaginary

unit. For our purpose, a slight modification is considered: after an analytic

1
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continuation (roughly change t → it), one can reproduce Feynman’s expression

for the solution to the heat equation, which is usually considered as Schrödinger

equation’s imaginary–time counterpart,

∂

∂t
φ = −Hφ , φ (x, 0) = f (x) . (1.1)

Let e−tH be the solution operator of heat equation (1.1), meaning e−tHf solves heat

equation (1.1) when such a solution exists. Under modest regularity conditions,

this operator admits an integrable kernel pHt (·, ·). In the physics literature one

frequently finds Feynman type informal identities of the form,

pH1 (o, x) = “
1

Z

∫
Wo(M)

δx (σ (1)) e−
∫ 1
0 [ 1

2
|σ̇(τ)|2+V (σ(τ))]dτDσ” (1.2)

and (
e−Hf

)
(o) = “

1

Z

∫
Wo(M)

f (σ (t)) e−
∫ 1
0 [ 1

2
|σ̇(τ)|2+V (σ(τ))]dτDσ” (1.3)

Variants of these informal path integrals are often used as the basis for “defining” and

making computations in quantum-field theories. From a mathematical perspective,

making sense of such path integrals is thought to be a necessary step to developing

a rigorous definition of interacting quantum field theories, (see for example; Glimm

and Jaffe [18], Barry Simon [33], the Clay Mathematics Institute’s Millennium

problem involving Yang-Mills and Mass Gap). In general, path integrals like those

appearing in (1.2) suffer from at least five distinct flaws;

1. The normalizing constant Z should typically be interpreted as either 0 or ∞

depending on the context.

2. The energy function

E (σ) :=
1

2

∫ 1

0

|σ̇ (τ)|2 dτ

appearing in the exponent in (1.2) requires σ to be appropriately differentiable;
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this is at odds with the fact that sample paths of Wiener measure ν are

almost surely nowhere differentiable.

3. There is no Lebesgue measure Dσ on infinite dimensional path spaces.

4. δx is a distribution so pointwise evaluation does not make sense.

5. It is generally not permissible to multiply a distribution δx with a measure

1
Z

exp
(
−1

2

∫ 1

0
|σ̇ (τ)|2 dτ

)
Dσ.

Various attempts to use path integrals to rigorously construct solutions to the

Schrödinger (heat) equation have been made, out of which we highlight two routes.

One is to approximate the path integral through piecewise “linear” paths or

polygonal paths, which evolves as a finite dimensional approximation scheme that

will be discussed more in Section 1.1. Another route, pioneered by Kac, is the

realization of taking Wiener measure as the framework of integration over path

spaces. Roughly speaking, when V = 0, one should interprets

“
1

Z
e−

1
2

∫ 1
0 |σ̇(τ)|2dτDσ” := dν (σ) (1.4)

and

“

∫
Wo(M)

δx (σ (1))
1

Z
e−

1
2

∫ 1
0 |σ̇(τ)|2dτDσ” := p1 (x, y) (1.5)

where pt (x, y) is the heat kernel on M , (also the fundamental solution to the heat

equation if viewed from partial differential equation point of view). In particular, if

M = R,

pt (x, y) =
1√
2πt

e
−(x−y)2

2t

is the well known density function of a normal random variable with mean 0 and

variance t. In general, if V possesses some integrability or regularity, one can prove

rigorously the following results which are usually categorized as Feynman–Kac–type
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formula

pH (x, y) = p1 (x, y)

∫
Wo(M)

e−
∫ 1
0 V (Σs)dsdνx

and

e−Hf (x) =

∫
M

p1 (x, y) f (y) dy

∫
Wo(M)

e−
∫ 1
0 V (Σs)dsdνx

where Σs : σ 3 Wo (M)→ σ (s) ∈M is the coordinate function. Interested readers

may refer to [31] and references therein for a thorough summary of this field in

Euclidean space with a flavor of rigorous quantum field theory and may refer to [5]

for a survey of results in general Riemannian manifolds.

1.1 Finite Dimensional Approximation Scheme

for Path Integrals

The central idea behind finite dimensional approximation scheme is to define

a path integral as a limit of the same integrands restricted to “natural” approximate

path spaces, for example, piecewise linear paths, broken lines, polygonal paths and

so on. The ill–defined expression under these finite dimensional approximations

usually becomes well–defined or has better interpretations, see ( [17], [24]). Not

suprisingly, thanks to Kac, Wiener measure is found to share a similar finite

dimensional approximation scheme. For example, when M = Rd, it is known

that Wiener measure on W
(
Rd
)

may be approximated by Gaussian measures

on piecewise linear path spaces. More specifically, Eq. (1.4) restricted to a

finite dimensional subspace of piecewise linear paths based on a partition of [0, 1]

has a natural interpretation as Gaussian probability measure resulting from the

canonical isometry between the piecewise linear path space and Rdn, where n is

the number of partition points. By combining Wiener’s theorem on the existence

of Wiener measure with the dominated convergence theorem, one can see that

these Gaussian measures converge weakly to ν as the mesh of partition tends to
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zero, (see for example [15, Proposition 6.17] for details). An analogous theory on

general manifolds was also developed, see for example [32], Atiyah [4], Bismut [6],

Andersson and Driver [3] and references therein. In [3], followed by [30] and [29],

the finite dimensional approximation problem is viewed in its full geometric form

by restricting the expression in Eq. (1.4) to finite dimensional sub-manifolds of

piecewise geodesic paths on M. Unlike the flat case (M = Rd) where the choice

of translation invariant Riemannian metric on path spaces is irrelevant, various

Riemannian metrics on approximate path spaces are explored. Based on these

metrics, different approximate measures are constructed which lead to different

limiting measures on Wo (M). Some limits agree with the results seen elsewhere (for

example, from the Feynman–Kac formula or in physics experiments, see [3], [29])

while others are mathematically intriguing in their own right (see [30]). In this

thesis we adopt a so–called G1
P metric on the piecewise geodesic space. In [3], the

finite dimensional approximation result based on this metric is shown to agree with

the classical result in Euclidean space.

In the remainder of this section, we briefly summarize some results in [3] to

give reader a better understanding of how the finite dimensional approximation

scheme goes as well as establishing some necessary notations used in this thesis.

Definition 1.1 (Cameron-Martin space on (M, o)) Let

H (M) :=

{
σ ∈ C ([0, 1] 7→M) : σ (0) = o , σ is a.c. and

∫ 1

0

|σ′ (s)|2 ds <∞
}

be the Cameron-Martin space on (M, o). (Here a.c. means absolutely continu-

ous.)

Notation 1.2 Denote Γ (TM) to be differentiable sections of TM and Γσ (TM)

to be differentiable sections of TM along σ ∈ H (M).

The space, H (M), is an infinite dimensional Hilbert manifold which is a central
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object in problems related to variation of continuous paths. Roughly speaking, it

specifies the directions to which we are allowed to take directional direvatives for

random variables on (Wo (M) , ν). [26] contains a good exposition of the manifold

of paths. For example, Theorem 1.2.9 in [26] presents its differentiable structure in

terms of atlases. Compared to the local structure of H (M), we are more interested

in its Riemannian structure.

The following metric is a commonly used Riemannian metric on H (M).

Definition 1.3 For any σ ∈ H (M) and X, Y ∈ Γa.c.σ (TM),

G1 (X, Y ) =

∫ 1

0

〈
∇X
ds

(s) ,
∇Y
ds

(s)

〉
g

ds

where Γa.c.σ (TM) is the set of absolutely continuous vector fields along σ with finite

energy, i.e.
∫ 1

0

〈∇X
ds

(s) , ∇X
ds

(s)
〉
g
ds <∞.

Remark 1.4 To see that G1 is a metric on H (M), we identify the tangent space

TσH (M) with Γa.c.1σ (TM). To motivate this identification, consider a differentiable

one-parameter family of curves σt in H (M) such that σ0 = σ. By definition of

tangent vector, d
dt
|0 σt (s) should be viewed as a tangent vector at σ. This is actually

the case, for detailed proof, see Theorem 1.3.1 in [26].

Definition 1.5 (Piecewise geodesic space) Given a partition

P := {0 = s0 < · · · < sn = 1} of [0, 1] ,

define:

HP (M) :=
{
σ ∈ H (M) ∩ C2 ([0, 1] \ P) : ∇σ′ (s) /ds = 0 for s /∈ P

}
. (1.6)

The piecewise geodesic space HP (M) can be viewed as a finite dimensional em-

bedded submanifold of H (M). As for its tangent space, following the argument of
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Theorem 1.3.1 in [26], for any σ ∈ HP (M), the tangent space TσHP (M) may be

identified with vector-fields along σ of the form X (s) ∈ Tσ(s)M where s→ X (s) is

piecewise C1 and satisfies Jacobi equation for s /∈ P , i.e.

∇2X

ds2
(s) = R (σ̇ (s) , X (s)) σ̇ (s) ,

where R is the curvature tensor. (See Theorem 2.41 below for a more detailed

description of THP (M)). After specifying the tangent space of HP (M), we can

define the G1
P metric as follows,

Definition 1.6 For any σ ∈ HP (M) and X, Y ∈ TσHP (M) , let

G1
P 〈X, Y 〉 :=

n∑
j=1

〈
∇X
ds

(sj−1+) ,
∇Y
ds

(sj−1+)

〉
g

∆j (1.7)

where ∆j = sj − sj−1 and ∇Y
ds

(sj−1+) = lims↓sj−1

∇Y
ds

(s).

Endowed with the Riemannian metric G1
P , HP (M) becomes a finite dimen-

sional Riemannian manifold and the left hand side of (1.4) is now well–defined on

HP (M) if Dσ is interpreted as the volume measure induced from this Riemannian

metric. This motivates the following approximate measure definition.

Definition 1.7 (Approximate measure on HP (M)) Let ν1
P be the probability

measure on HP (M) defined by;

dν1
P (σ) =

1

Z1
P
e−

1
2

∫ 1
0 〈σ
′(s),σ′(s)〉dsdvolG1

P
(σ) , (1.8)

where dvolG1
P

is the volume measure on HP (M) induced from the metric G1
P and

Z1
P is the normalization constant.

Further, Andesson and Driver proved that these measures converge weakly to

Wiener measure.
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Theorem 1.8 (Anderson-Driver, Theorem 1.8. [3]) Suppose f : W (M) →

R is bounded and continuous, then

lim
|P|→0

∫
HP (M)

f (σ) dν1
P (σ) =

∫
Wo(M)

f (σ) dν (σ) .

1.2 Main Theorems

In this section we state the main results of this thesis while avoiding many

technical details.

Definition 1.9 (Pinned piecewise geodesic space) For any x ∈M ,

HP,x (M) := {σ ∈ HP (M) : σ (1) = x} .

We prove below in Proposition 3.8 that when M has non–positive sectional curvature,

HP,x (M) is an embedded submanifold of HP (M).

Theorem 1.10 If M is a Hadamard manifold with bounded sectional curvature

and P = {k/n}nk=0 are equally-spaced partitions, then there exists a finite measure

ν1
P,x supported on HP,x (M) , such that for any bounded continuous function f on

HP (M),

lim
m→∞

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) =

∫
HP (M)

f (σ) dν1
P,x (σ) .

where δ
(m)
x is an approximating sequence of δx in C∞0 (M).

Recall that a Hadamard manifold is a simply connected complete Riemannian

manifold with non-positive sectional curvature.

Theorem 1.10 can be viewed as a finite dimensional version of (1.5). A rigor-

ous theory explaning (1.5) is Watanabe’s theory of generalized Wiener functionals.
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In [37], Watanabe considers the following expression

E [δx ◦ E1 · Φ]

where E1 is the end point evaluation map, i.e. for any σ ∈ Wo (M), E1 (σ) =

σ (1) and Φ are some “nice ”Wiener functionals (test functions). As was shown

by Airault–Malliavin [1] and Sugita [36], if M = Rd is a Euclidean space, there

exists a modification of Φ, called quasi–continuous modification (denoted by Φ̃),

such that the following identity holds:

Eνx
[
Φ̃
]

= Eν [δx ◦ E1 · Φ] .

The point of this theorem is that it represents a generalized Wiener functional δx◦E1

as a measure νx supported on a ”hypersurface” Sx :=
{
σ ∈ W

(
Rd
)

: E1 (σ) = x
}

.

Theorem 1.10 represents δx ◦ E1 as a measure ν1
P,x (See Definition 3.10) in the

”hypersurface” HP,x (M), which can be viewed as a finite dimensional analog of

Identity 1.2.

The next theorem asserts, under additional geometric restrictions, that the

measure ν1
P,x we obtained from Theorem 1.10 serves as a good approximation to

pinned Wiener measure νx.

Theorem 1.11 If M is a Hadamard manifold with constant sectional curvature,

then

lim
|P|→0

∫
HP (M)

f (σ) dν1
P,x (σ) =

∫
W (M)

f (σ) dνx (σ)

for f ∈ FC∞1− (see Notation 7.11) and νx is pinned Wiener measure, see Theorem

2.17 below.
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1.3 Structure of the Thesis

For the guidance to the reader, we give a brief summary of the contents of

this thesis.

In Chapter 2 we set up some notation and preliminaries in probability and

geometry. In particular we present the Eells-Elworthy-Malliavin construction of

Brownian motion on manifolds.

In Chapter 3 we define explicitly the pinned approximate meausre ν1
P,x and

study its properties. In Theorem 3.12, we prove that ν1
P,x is a finite measure and

that x→ ν1
P,x (HP,x (M)) is a continuous function on M . This property is the key

ingredient in proving Theorem 1.10, which is given in Chapter 3.

In Chapter 4 we develop the so–called orthogonal lift of a vector field X on

M to a vector field X̃ (·) on Wo (M). We define X̃ (·) first on H (M) by minimizing

a norm of X̃ (·) which is induced from a “damped ”metric related to the Ricci

curvature of M . This lift is then “stochastically ”extended to Wo (M). Some

tools from Malliavin calculus are reviewed as needed in order to define X̃ (·) as an

anticipating differential opearator on Wo (M). We then establish integration–by–

parts formula for X̃ (·).

In Chapter 5 we focus on the finite dimensional manifold HP (M). In

Section 5.1 a parametrization of the tangent space of HP (M) is given. Using this

parametrization and some linear algebra we obtain a formula for the orthogonal lift

X̃P of X ∈ Γ (TM) relative to the norm induced from the G1
P metrc on HP (M).

In Chapter 6, (using the development maps introduced in Chapter 2), we

view X̃P as defined on all of Wo (M) and show that for any bounded cylinder

function f (also introduced in Chapter 2), X̃Pf → X̃f in L∞− (Wo (M)) and more

challengingly, we show X̃ tr,νf − X̃ tr,ν1
P

P f → 0, where X̃ tr,ν is the adjoint of X̃ with

respect to ν and X̃
tr,ν1
P

P is the adjoint of X̃P with respect to ν1
P .

In Chapter 7 We combines all the tools that are developed from previous
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chapters to prove the main Theorem (1.11) of this thesis.



Chapter 2

Background and Notation

For the remainder of the thesis, let u0 : Rd → ToM be a fixed orthonormal

frame at o ∈ M which we add to the standard setup (M, g, o, u0,∇). We will

first introduce the orthonormal frame bundle O (M) which is crucial in the Eells-

Elworthy-Malliavin construction of Brownian motion. A connection is then defined

on O (M). The reader may refer to Appendix A.2 for a more detailed exposition of

principal bundles (O (M) is a special case of a principal bundle) and connections

on them.

Definition 2.1 (Orthonormal Frame Bundle (O (M) , π)) For any x ∈ M ,

denote by O (M)x the space of orthonormal frames on TxM , i.e. the space of

linear isometries from Rd to TxM . Denote O (M) := ∪x∈MO (M)x and let π :

O (M) → M be the (fiber) projection map, i.e. for each u ∈ O (M)x, π (u) = x.

The pair (O (M) , π) is the orthonormal frame bundle over M whose structure group

is the orthogonal group O (d)–the d× d real orthogonal matrices.

Definition 2.2 (Connection on O (M)) A connection on O (M) is uniquely

specified by the so (d)–valued connection form ω∇ on O (M) determined by ∇;

12
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for any u ∈ O (M) and X ∈ TuO (M),

ω∇u (X) := u−1∇u (s)

ds
|s=0

where u (·) is a differentiable curve on O (M) such that u (0) = u and du(s)
ds
|s=0= X.

For any ξ ∈ Rd, ∇u(s)
ds
|s=0 ξ := ∇u(s)ξ

ds
|s=0 is the covariant derivative of u (·) ξ along

π (u (·)) at π (u).

ω∇ determines a decomposition of TO (M). We will call the kernel of ω∇

the horizontal vector space (denoted by HTO (M)) and call the compliment space

the vertical vector space (denoted by V TO (M)).

Definition 2.3 For any a ∈ Rd, define the horizontal lift Ba ∈ Γ (TO (M)) of a

in the following way: for any u ∈ O (M),

• ω∇u (Ba (u)) = 0

• π∗ (Ba (u)) = ua

Remark 2.4 By the rank-nullity theorem, it is easy to see that the above conditions

determine uniquely the horizontal lift.

Recall that we have defined the Cameron-Martin space on M :

H (M) :=

{
σ ∈ C ([0, 1] ,M) : σ (0) = o, σ is a.c. and

∫ 1

0

|σ′ (s)|2g ds <∞
}
(2.1)

Similarly we define H0

(
Rd
)

and Hu0 (O (M)) by changing the state spaces to be

Rd, O (M), reference points to be 0, u0 and using the usual metric for g on the

Euclidean spaces Rd, Rd×d.

Definition 2.5 (Horizontal lift of a path) For any σ ∈ H (M), a curve u :

[0, 1]→ O (M) is said to be a horizontal lift of σ if π ◦u = σ and the tangent vector

to u (s) always belongs to HTu(s)O (M) .
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Theorem 2.6 Given σ ∈ H (M) and u0 ∈ π−1 (σ (0)), there exists a unique

horizontal lift u (s) such that u (0) = u0. We will denote this map by ψ.

Proof. The condition of existence of horizontal lift u of σ is equivalent to:

π (u (s)) = σ (s)

ω∇ (u′ (s)) = 0
for s ∈ [0, 1]

For any s ∈ [0, 1], there exists Uα in the open cover of M and ε > 0 such that σ (τ) ∈

Uα for τ ∈ (s− ε, s+ ε)∩ [0, 1] . Denote by ωα the restriction of the connection one-

form ω on π−1 (Uα) and φα ◦u (τ) = (σ (τ) , g (τ)) ∈ Uα×G, where φα : π−1 (Uα)→

Uα×G is the local trivialization. Then after identifying T (Uα ×G) with TUα×TG,

the condition ω∇ (u′ (τ)) = 0 is equivalent to Aσ(τ)σ
′ (τ) + Cσ(τ)g

′ (τ) = 0, where A

and C are two g−valued one forms on Uα and G. Since σ (τ) is fixed, this gives rise

to a linear system of ODEs of g (τ) , since the initial condition is specified, there is

a unique solution g (τ) and hence the unique u (τ) .

Notation 2.7 A path u ∈ Hu0 (O (M)) is said to be horizontal if the tangent vector

to u (s) always belongs to HTu(s)O (M). We denote the set of horizontal paths by

HHu0 (O (M)).

Fact 2.8 Notice that u (σ, s)u−1
0 is the parallel translation //s (σ) along σ.

Remark 2.9 From Theorem 2.6 we can see that there is a one to one correspon-

dence between HHu0 (O (M)) and Ho (M). More explicitly, ψ is a diffeomorphism

from H (M) to HHu0 (O (M)) whose inverse is π.

Definition 2.10 (Development map) Given w ∈ H0

(
Rd
)
, the solution to the

ordinary differential equation

du (s) =
d∑
i=1

Bei (u (s)) dwi (s) , u (0) = u0
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is defined to be the development of w to Hu0 (O (M)) and we will denote this map

w → u by η, i.e. η (w) = u. η is said to be the development map to Hu0 (O (M)).

Here {ei}di=1 is the standard basis of Rd.

Remark 2.11 From Definition 2.10 and the smooth dependence of driving path in

ODE systems we can see that η is a diffeomorphism from H0

(
Rd
)

to HHu0 (O (M)).

Definition 2.12 (Rolling map) φ = π ◦ η : H0

(
Rd
)
→ H (M) is said to be the

development map to H (M).

Remark 2.13 From Remark 2.9 and 2.11 one can see that φ has a smooth inverse

φ−1, which can be defined explicitly as follows:

Definition 2.14 (Anti-rolling map) Given σ ∈ H (M) with u = ψ (σ) . The

anti-development of σ is a curve w ∈ H0

(
Rd
)

defined by:

wt =

∫ t

0

u−1
s σ′sds

It is not hard to see w = φ−1 (σ).

The following diagram illustrate the one–to–one correspondence between

H (M), H0

(
Rd
)

and Hu0 (O (M)). The Eells-Elworthy-Malliavin construction of

Brownian motion depends in essence on a stochastic version of the maps defined

above. Since the development maps on the smooth category are defined through

ordinary differential equations, a natural way to introduce probability is to replace

ODEs by (Stratonovich) stochastic diffrerential equations.

First we set up some measure theoretic notation and conventions. Suppose

that (Ω, {Gs} ,G, P ) is a filtered measurable space with a finite measure P . For any

G—measurable function f , we use P (f) and EP [f ] (if P is a probability measure)

to denote the integral
∫

Ω
fdP . Given two filtered measurable spaces (Ω, {Gs} ,G, P )

and (Ω′, {G ′s} ,G ′, P ′) and a G/G ′ measurable map f : Ω→ Ω′, the law of f under
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P is the push-forward measure f∗P (·) := P (f−1 (·)). We are mostly interested in

the path spaces Wo (M), W0

(
Rd
)

and Wu0 (O (M)), where the following notation

is being used.

Notation 2.15 If (Y, y) is a pointed manifold, then W (Y ) := C ([0, 1] , Y ) is the

space of all continuous paths in Y equipped with the uniform topology. Wy (Y ) :=

{w ∈ W (Y ) | w (0) = y} refers to the subset of continuous paths that start at y.

Definition 2.16 For any s ∈ [0, 1] let Σs : Wy (Y ) → Y be the coordinate

functions given by Σs (σ) = σ (s).

We will often view Σ as a map from Wy (Y ) to Wy (Y ) in the following way: for any

σ ∈ Wy (Y ) and s ∈ [0, 1], Σ (σ) (s) = Σs (σ). Let Fos be the σ−algebra generated

by {Στ : τ ≤ s}. We use Fo1 as the raw σ−algebra and {Fos }0≤s≤1 as the filtration

on Wy (Y ) . The next theorem defines the Wiener measure ν and pinned Wiener

measure νx on (Wy (Y ) ,Fo1 ) .

Theorem 2.17 There exist two finite measures ν and νx on (Wy (Y ) ,Fo1 ) which

are uniquely determined by their finite dimensional distributions as follows. For

any partition 0 = s0 < s1 < · · · < sn−1 < sn = 1 of [0, 1] and bounded functions

f : Y n → R;

ν (f (Σs1 , . . . ,Σsn)) =

∫
Y n
f (x1, . . . , xn) Πn

i=1p∆si (xi−1, xi) dx1 · · · dxn (2.2)

and

νx (f (Σs1 , . . . ,Σsn)) =

∫
Y n−1

f (x1, . . . , xn) Πn
i=1p∆si (xi−1, xi) dx1 · · · dxn−1 (2.3)

where pt (·, ·) is the heat kernel on Y , ∆i = si − si−1, x0 ≡ y and xn ≡ x in (2.3).
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Fact 2.18 From Theorem 2.17 it is clear that the law of the adapted process

Σ : Wy (Y )→ Wy (Y ) is ν and Σ is said to be the canonical Brownian motion on

Y .

Definition 2.19 (Brownian motion) A stochastic process X : (Ω,Gs, {G} , P )→

(Wy (Y ) , ν) is said to be a standard Brownian motion on Y if the law of X is ν

i.e. X∗P := P ◦X−1 = ν.

Remark 2.20 Using Theorem 2.17, we can construct Wiener measure and pinnned

Wiener measure on W0

(
Rd
)
, Wo (M) and Wu0 (O (M)) respectively. In order to

avoid ambiguity from moving between W0

(
Rd
)

and Wo (M), we fix the symbol µ (µx)

as the Wiener (pinned Wiener) measure on W0

(
Rd
)

and reserve the symbol ν (νx)

as the Wiener (pinned Wiener) measure on Wo (M). Meanwhile we reserve Σ as

the canonical Brownian motion on M .

Definition 2.21 (Y−valued semimartingale) Let Y be a differentiable man-

ifold and (Ω,Gs, {G} , P ) be a filtered probability space. A random map X :

(Ω,Gs, {G} , P ) → Wy (Y ) is called a Y−valued semimartingale if f (X) is a

R−valued semimartingale for all f ∈ C∞ (Y ).

Proposition 2.22 X is a Y−valued semimartingale iff there exist d vector fields

{Vi}di=1 and a Rd−valued driving semimartingale w such that X is the solution to

the stochastic differential equation:

δXt =
d∑
i=1

Vi (Xt) δw
i
t, X (0) = o, 0 ≤ t ≤ 1. (2.4)

where δ is the Stratonovich differential and Eq.(2.4) means for any f ∈ C∞ (M),

f (Xt) = f (o) +

∫ t

0

d∑
i=1

Vif (Xt) δw
i
t , 0 ≤ t ≤ 1. (2.5)
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Proof. Refer to Theorem 1.1 in [25] for a proof using local coordinate charts or a

more direct proof in Theorem 1.2.9 in [22] using Whitney’s imbedding theorem to

imbed M in a Euclidean space.

Notation 2.23 Let S
(
Rd
)
, S (M) and S (HO (M)) be the space of based semi-

martingales on Rd starting at 0, based semimartingales on M starting at o ∈ M

and based semimartingales on the horizontal subbundle HO (M) starting at u0

respectively.

Definition 2.24 (Stochastic development map) For any w ∈ S
(
Rd
)
, the so-

lution to the following SDE

δus =
d∑
i=1

Bei (us) δws , u (0) = u0

is said to be the development of w. This map w ∈ S
(
Rd
)
→ u ∈ S (HO (M)) is

said to be the stochastic development map on S (HO (M)).

Remark 2.25 The stochastic development map defined in 2.24 is actually an

equivalence class of maps with respect to ν. In this thesis we will fix a version and

denote it by η̃.

Lemma 2.26 Given two manifolds M,N and a smooth map f : M → N , if w is

a semimartingale on M , then f (w) is a semimartingale on N .

Remark 2.27 Using Lemma 2.26, we can easily see that for any w ∈ S
(
Rd
)
,

π (η̃ (w)) is a semimartingale on M . We will call φ̃ := π ◦ η̃ the stochastic

development map on S (M).

Theorem 2.28 (Horizontal lift of semimartingale) Given σ̃ ∈ S (M), there

exists a unique (up to ν−equivalence) ũ ∈ S (HO (M)) such that

π (ũs) = σ̃s (2.6)
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After fixing a version, we will call this map S (M) 3 σ̃ 7→ ũ ∈ S (HO (M)) the

(Stochastic) horizontal lift, simply denoted by ψ̃.

Proof. See Theorem 2.3.5 in [22]

Definition 2.29 (Stochastic anti-development map) Given σ̃ ∈ S (M), the

stochastic anti-development of σ is w ∈ S
(
Rd
)

defined by:

δws = ũ−1
s δσ̃s , w0 = 0 (2.7)

Denote this map by Φ̃.

Fact 2.30 We state the following fact that are frequently used in the thesis. The

proof can be found in Appendix A.

• φ is a diffeomorphism from H0

(
Rd
)

to H (M) ,

• φ |HP(Rd) is a diffeomorphism from HP
(
Rd
)

to HP (M) ,

• φ̃−1 (Σ) is a Brownian motion on
(
W0

(
Rd
)
, µ
)
,

• π ◦ η̃ = IW (M)–ν a.s.

• φ̃ ◦ Φ̃ = IW (M)–ν a.s.

Notation 2.31 From now on some notations are fixed for the conveniance of

consistency. For any σ ∈ H (M), u· (σ) ∈ Hu0 (O (M)) is its horizontal lift and

b· (σ) ∈ H0

(
Rd
)

is its anti-rolling. Recall that {Σ} is fixed to be the standard

Brownian motion on (W (M) , ν). We also fix β := Φ̃ (Σ) to be the anti-rolling of Σ,

which is a Brownian motion on W0

(
Rd
)
. ũ· := η̃ (Σ) is the (stochastic) horizontal

lift of Σ.
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Notation 2.32 (Path approximation map) πP : W
(
Rd
)
→ HP

(
Rd
)

is the

path approximation map: i.e. if s ∈ [si−1, si], σ ∈ W
(
Rd
)
,

πP (σ) (s) := σ (si−1) +
∆iσ

∆is
(s− si−1) .

where ∆iσ = σsi − σsi and ∆is = ssi − ssi.

Notation 2.33 βP is the piecewise Brownian Motion on Rd defined explicitly below:

If s ∈ [si−1, si],

βP (s) := β (si−1) +
∆iβ

∆i

(s− si−1)

where ∆iβ = β (si)− β (si−1)and ∆i = si − si−1.

Notation 2.34 (Geometric preliminary)

• For any σ ∈ H (M), define Ru(σ,s) (·, ·) · to be a map from Rd ⊗ Rd to Rd as

follows:

Ru(σ,s) (·, ·) · = u (σ, s)−1R (u (σ, s) ·, u (σ, s) ·)u (σ, s) (2.8)

where R is the curvature tensor of M . Similarly define Rũ(σ,s) (·, ·) · to be a

random map (up to ν-equivalence) from Rd ⊗ Rd to Rd as follows:

Rũ(σ,s) (·, ·) · = ũ (σ, s)−1R (ũ (σ, s) ·, ũ (σ, s) ·) ũ (σ, s) (2.9)

• Ric (·) :=
∑d

i=1R (vi, ·) vi is the Ricci curvature tensor on M. Here {vi}di=1

is an orthonormal basis of proper tangent space. Using u (σ, s) or ũ (σ, s) to

pull back R, we can define Ricu(σ,s) and Ricũ(σ,s) to be maps (Random maps)

from Rd to Rd.

• For any p ∈ M , expp : TpM → M is the Riemannian exponential map, i.e.
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for any ξ ∈ domain of expp,

expp (ξ) = γ

(
|ξ| , ξ
|ξ|

)

where γ (t, v) is the unique geodesic of M with γ (0) = p and γ′ (0) = v

Remark 2.35 The existence of unique local geodesic γ (t, v) is a standard

result in differential geometry, see Proposition 2.17 in [9].

Remark 2.36 Sometimes in the thesis we will suppress σ, sometimes even s in

u (σ, s) when there is no confusion.

Remark 2.37 In this thesis the partition P is always equally spaced, so |P| ≡

∆i ≡ 1
n

for i = 1, ..., n.

We introduce two commonly used test function spaces on Wo (M)

Definition 2.38 f : Wo (M) 7→ R is a smooth restricted cylinder function

if there exists a partition

P := {0 < s1 < · · · < sn ≤ 1}

of [0, 1] and a smooth function F : Mn → R such that:

f = F (Σs1 ,Σs2 , . . . ,Σsn)

Denote this space by RFC∞.

Definition 2.39 f : Wo (M) 7→ R is a smooth cylinder function iff there

exists a partition

P := {0 < s1 < · · · < sn ≤ 1}
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of [0, 1] and a smooth function F : O (M)n → R such that:

f = F (ũs1 , ũs2 , . . . , ũsn)

Denote this space by FC∞.

Definition 2.40 (Jacobi equation) For σ ∈ H (M), Y ∈ Γσ (TM), we say

Y (s) ∈ Tσ(s)M satisfies Jacobi equation if:

∇2

ds2
Y (s) = R(σ′ (s) , Y (s))σ′ (s) .

Further if the horizontal lift u (s) of σ is used, we let y (s) := u−1 (s)Y (s) . It then

follows that y (s) satisfies the pulled back Jacobi equation,

y′′ (s) = Ru(s) (b′ (s) , y (s)) b′ (s) , (2.10)

where b′ (s) = u (s)−1 σ′ (s) . Once we have Jacobi equation, we can describe the

tangent space THP (M) of HP (M):

We formalize the tangent space of HP (M) mentioned in Definition 1.5.

Theorem 2.41 (Tangent space to HP (M)) For all σ ∈ HP (M),

TσHP (M) =
{
u (s) J (s) | J (s) ∈ C

(
[0, 1] ,Rd

)
, J ∈ HP,σ with J (0) = 0

}
.

(2.11)

Here J ∈ HP,σ means

J ′′ (s) = Ru(s) (b′ (si−1+) , J (s)) b′ (si−1+) for s ∈ [si−1, si) i = 1, ..., n.

Proof. See Theorem 1.3.1 in [26].
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Notation 2.42 ({CP,i (σ, s)} ni=1 and {SP,i (σ, s)}ni=1) Let

P := {0 = s0 < s1 < · · · < sn = 1}

be a partition of [0, 1] , Ki := [si−1, si] and ∆i := si − si−1 for 1 ≤ i ≤ n, and say

that f (s) satisfies the i –Jacobi’s equation if

f ′′ (s) = Ru(s)

(
u−1σ′ (si−1+) , f (s)

)
u−1σ′ (si−1+) for s ∈ Ki. (2.12)

where u−1σ′ (s) := u (σ, s)−1 σ′ (s) ∈ Rd and u (s) is the horizontal lift of σ.

We now let CP,i (σ, s) and SP,i (σ, s) ∈ End(Rd) denote the solution to Eq.

(2.12) with initial conditions,

CP,i (si−1) = I, C ′P,i (si−1) = 0, SP,i (si−1) = 0 and S ′P,i (si−1) = I

and we further let

CP,i (σ) := CP,i (σ, si) and SP,i (σ) := SP,i (σ, si) .

Here we view CP,i (s) and SP,i (s) as maps from HP (M) to End(Rd).

Definition 2.43 Define for all i = 1, · · · , n,

fP,i (σ, s) =


0 s ∈ [0, si−1]

SP,i(σ,s)

∆i
s ∈ [si−1, si]

CP,j(σ,s)CP,j−1(σ)·····CP,i+1(σ)SP,i(σ)

∆i
s ∈ [sj−1, sj] for j = i+ 1, · · · , n

with the convention that SP,0 ≡ |P| I and fP,0 ≡ I.

Remark 2.44 The functions {fP,i}ni=0 encode the functions SP,j (s), CP,j (s), for
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example,

SP,j (s) = ∆jfP,j (s)

CP,j (s) = fP,j−1 (s) f−1
P,j−1 (sj)



Chapter 3

Approximate Pinned Measure

ν1P ,x

3.1 Representation of δ – function

Given X a smooth manifold M or Rd or open subset of the first two, we

will denote the distribution on X by D′ (X) and, compactly supported distribution

by E ′ (X). For a matrix A, eig (A) is refered to as the set of eigenvalues of A. For

a fixed point x ∈M , we consider δx on M , for any f ∈ C∞ (M),

δx (f) = f (x) . ((δx ∈ E ′ (M)))

First of all, we give a representation of δx on Rd.

Lemma 3.1 (Representation of δ – function on flat space) There exist func-

tions {gi}di=0 such that

δ0 = g0 +
d∑
j=1

∂gj
∂xj

in E ′
(
Rd
)

(3.1)

25
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i.e. for any f ∈ C∞0
(
Rd
)
,

f (0) =

∫
Rd

(
g0 +

d∑
j=1

∂gj
∂xj

)
fdx =

∫
Rd

(
g0f −

d∑
j=1

∂f

∂xj
gj

)
dx (3.2)

where g0 ∈ C∞0
(
Rd
)
, {gj}dj=1 ⊂ C∞

(
Rd/ {0}

)
with compact support and satisfies

|gj (x)| ≤ c |x|1−d for j = 1, · · · , d. (3.3)

This lemma can be derived from Lemma 10.10 in [34]. Here we provide another

proof using the fundamental solution to the Laplace’s equation.

Proof of Lemma 3.1. Define the Newtonian kernel Γ (x) on Rd (d > 2) :

Γ (x) =
|x|2−d

d (2− d)wd

where wd is the volume of unit ball on Rd. Then it is well-known Γ (x) is the

fundamental solution of Laplace’s equation, i.e. for any y ∈ Rd, denote by ∆ the

Laplacian on Rd:

∆Γ (· − y) = δy (·) in E ′
(
Rd
)
.

where δy is the delta function at y and the equality is interpreted in the distributional

sense. In particular if y = 0, we get:

∆Γ (·) = δ0 (·) .

Denote ∇Γ by Z, then Z ∈ C∞
(
Rd/ {0}

)
and we have:

|Z| =

∣∣∣∣∣x |x|−ddwd

∣∣∣∣∣ ≤ Cd |x|1−d
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where Cd is a constant depending only on d and

∇ · Z = δ0 in E ′
(
Rd
)
.

In order to get compact support, we construct a cutoff function φ ∈ C∞0
(
Rd
)

such

that φ ≡ 1 on B (0, 1) and φ ≡ 0 on Rd/B (0, 2), where B (x, r) is the ball on Rd

centered at x with radius r. Then we have:

∇ · (φZ) = ∇φ · Z + φ∇ · Z in E ′
(
Rd
)
.

Since the support of δ0 is {0}, we get:

δ0 = ∇ · Z = φ∇ · Z = ∇ · (φZ)−∇φ · Z

where −∇φ · Z ∈ C∞0
(
Rd
)

and {φZxi}
d
i=1 ⊂ C∞

(
Rd/ {0}

)
with compact support

and |φZxi | ≤ c |x|1−d for some c > 0.

Based on this representation we can get a representation of δp for any p ∈M.

Before we get to the representation of δp we state a smooth Urysohn lemma.

Lemma 3.2 (Smooth Urysohn Lemma) If M is a smooth manifold, then for

any two disjoint closed sets V1 and V2, there exists a function f ∈ C∞ (M, [0, 1])

such that f−1 ({0}) = V1 and f−1 ({1}) = V2.

Theorem 3.3 (Representation of δ – function on manifold) For any p ∈

M, there exist functions {gj}dj=0 ⊂ C∞ (M/ {p}) ∩ L
d
d−1 (M) with compact sup-

port and smooth vector fields {Xj}dj=1 ⊂ Γ∞ (TM) with compact support such

that

δp = g0 +
d∑
j=1

Xjgj in E ′ (M) . (3.4)

Proof. Pick a chart {U, x} near p ∈M such that x (p) = 0. Since x (U) = Rd, one
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can apply Lemma 3.1 on x (U) ' Rd and get:

δ0 = g̃0 −
d∑
j=1

∂

∂xj
g̃j

where δ0 is the delta mass on x (U) supported at the origin. So for any h ∈ C∞ (U)

h (p) = h ◦ x−1 (0)

=

∫
Rd

(
g̃0 −

d∑
j=1

∂

∂xj
g̃j

)
h ◦ x−1dλ

=

∫
Rd

(
g̃0 +

d∑
j=1

g̃j
∂

∂xj

)
h ◦ x−1dλ

where dλ is the Lebesque measure on Rd. Consider
{

g̃j√
det g
◦ x
}d
j=0

where g =

(gij)1≤i,j≤d is the metric matrix, i.e. gij =
〈

∂
∂xi
, ∂
∂xi

〉
g
. From Lemma 3.1 we know

that
g̃j√
det g
◦ x has compact support in U and therefore K := ∪dj=1supp

(
g̃j√
det g
◦ x
)

is compact in U. Using Lemma 3.2 we can construct a smooth function φ ∈

C∞ (M → [0, 1]) such that φ−1 ({0}) = M/U and φ−1 ({1}) = K. Define

ĝ0 = φ
g̃0√
det g

◦ x

and

ĝj = φ
g̃j√
det g

◦ x, Xj = φ ·
(
x−1
)
∗
∂

∂xj
for j = 1, . . . , d
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Then for any f ∈ C∞ (M) ,

∫
M

(
ĝ0 +

d∑
j=1

ĝjXj

)
fdvol

=

∫
U

(
ĝ0 +

d∑
j=1

ĝjXj

)
fdvol

=

∫
U

g̃0√
det g

◦ x · φfdvol

+
d∑
j=1

∫
U

φ2 g̃j√
det g

◦ x
((
x−1
)
∗
∂φf

∂xj
−
(
x−1
)
∗
∂φ

∂xj
f

)
dvol

Here dvol is the volume measure on M .

Since φ · (x−1)∗
∂φ
∂xj
≡ 0 and φ ≡ 1 on K, we have:

∫
M

(
ĝ0 +

d∑
j=1

ĝjXj

)
fdvol =

∫
U

(
g̃0√
det g

◦ x+
d∑
j=1

g̃j√
det g

◦ x
(
x−1
)
∗
∂

∂xj

)
fdvol

=

∫
Rd

(
g̃0√
det g

+
d∑
j=1

g̃j√
det g

∂

∂xj

)
f ◦ x−1

√
det gdλ

=

∫
Rd

(
g̃0 +

d∑
j=1

g̃j
∂

∂xj

)
f ◦ x−1dλ

= f ◦ x−1 (0)

= f (p)

Therefore, by the Divergence Theorem, formally (in distributional sense) we can

write down δp as

δp = g0 +
d∑
j=1

Xjgj

where

g0 = ĝ0 −
d∑
j=1

ĝj · divXj
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and for j = 1, . . . , n,

gj = −ĝj.

From the construction one can see thatXj ∈ Γ∞ (TM) and {gj}dj=0 ⊂ C∞ (M/ {p})∩

L
d
d−1 (M) with compact support.

Lemma 3.4 C∞0 (M) is dense in Lp (M) for any 1 ≤ p <∞.

Proof. Recall that simple functions on M are finite linear combinations of indicator

functions 1E where vol (E) < ∞. Since simple functions are dense in Lp (M) . It

suffices to show that C∞0 (M) is dense in the space of simple functions with respect

to Lp−norm. Given a simple function 1E,

∫
M

1Edvol = vol (E)

Since the volume measure is regular, there exists a compact set K and open set U

such that

K ⊂ E ⊂ U

and

vol (K) ≥ vol (U)− ε.

Now apply Lemma 3.2 we can find a cutoff function f ∈ C∞0 (M) such that

f−1 ({0}) = M/U and f−1 ({1}) = K. It follows that

‖f − 1E‖pLp(M) =

∫
M

|f − 1E|p dvol ≤ vol (U −K) ≤ ε,

which proves the denseness of C∞0 (M) in the space of simple functions and thus in

Lp (M) .

Remark 3.5 Using Lemma 3.4 and Theorem 3.3, for any gj, j = 1, · · · , d, we can
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find a sequence
{
g

(m)
j

}
m
⊂ C∞0 (M) such that

g
(m)
j → gj in L

d
d−1 (M)

In particular, since gj has compact support, we can make ∪msuppg(m)
j to be compact.

Corollary 3.6 Define

δ(m)
x := g

(m)
0 +

d∑
j=1

Xjg
(m)
j ∈ C∞0 (M) .

Then
{
δ

(m)
x

}
m

is an approximating sequence of delta mass δx, i.e.

δ(m)
x → δx in D′ (M) .

Proof. Using integration by parts, we have for any f ∈ C (M),

∫
M

fδ(m)
x dλ =

∫
M

(
g

(m)
0 +

d∑
j=1

Xjg
(m)
j

)
fdλ (3.5)

=

∫
M

(
g

(m)
0 f +

d∑
j=1

g
(m)
j X∗j f

)
dλ (3.6)

Since K := ∪msuppg(m)
j is compact, f ·1K and X∗j f ·1K ∈ L∞− (M), then 3.6 easily

follows by Holder’s inequality.

3.2 Definition of ν1
P ,x

In this section we will give the explicit definition of ν1
P,x proposed in Theorem

1.10. Recall from Definition 3.14 that

HP,x (M) := {σ ∈ HP (M) | σ (1) = x} .



32

This set can be viewed as the pre-image of x under the end point evaluation map

E1. In general, it is not guaranteed that HP,x (M) is an embedded submanifold

of HP (M), or equivalently, E1 is an submersion. The following is an easy, yet

illuminating, example showing what can go wrong:

Example 3.7 If M = S2 and P := {0, 1} with starting point being the North pole,

then dimHP (M) = 2. Consider

X (σ, s) := (0, π sin sπ, 0) ∈ TσHP (M)

where

σ (s) = (sin sπ, 0, cos sπ) .

An one parameter family realizing X (σ, s) would be

σt (s) = (sin sπ cos tπ, sin sπ sin tπ, cos sπ)

From which one can easily see that:

E1∗σ (X) =
d

dt
|0E1 (σt) =

d

dt
|0σt (1) = X (σ, 1) = 0.

So by Rank-Nullity theorem, E1∗σ is not surjective.

The problem comes from the conjugate points on M . Two points p and q are

conjugate points along a geodesic σ if there exists non-zero Jacobi field (smooth

vector field along σ satisfying Jacobi equation) that vanishes at p and q. This fact

will allow the kernel of E1∗ to be “overly large ”(more accurately dimension exceeds

(n− 1) d), so by Rank-nullity theorem, E1∗ can not be surjective. In this thesis

we consider manifolds with non–positive sectional curvature. These manifolds do

not have conjugate points. From the next proposition we will see that E1 is a

submersion on these manifolds.
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Proposition 3.8 If M is complete with non-positive sectional curvature, then for

any x ∈M , HP,x (M) := E1
−1 ({x}) is an embedded submanifold of HP (M) .

Proof. It suffices to show E1 : HP (M)→M is a submersion. Since M is complete,

for any y ∈ M , there exists a geodesic σ parametrized on [0, 1] and connecting o

and y. So E1 is surjective. To show E1∗ is surjective, we use a class of vector fields{
Xhα,n

}d
α=1

in Definition 3.20. Notice that

E1∗
(
Xhα,n

)
= X

hα,n
1 =

√
nu (1)SP,neα

where u (·) = u (σ, ·) is the horizontal lift of σ ∈ HP (M). From Proposition B.1

we know SP,n is invertible, therefore
{
E1∗

(
Xhα,n

)}d
α=1

spans TE1(σ)M . So E1∗ is

surjective. Since HP,x (M) is an embedded submanifold of HP (M), we can

restrict the Riemannian metric G1
P on THP (M) in Eq. (1.7) to a Riemannian

metric on THP,x (M).

Definition 3.9 Assuming M has non-positive sectional curvature, for any x ∈M,

let G1
P,x be the restriction of G1

P to TσHP,x (M) ⊂ TσHP (M) . Further, let volG1
P,x

be the associated volume measure on HP,x (M) .

Based on the “Lebesgue measure” volG1
P,x

on HP,x (M) , we can construct

the pinned approximate measure ν1
P,x :

Definition 3.10 Let ν1
P,x be the measure on HP,x (M) defined by

dν1
P,x (σ) =

1

JP (σ)

1

Z1
P
e
−E(σ)

2 d volG1
P,x

(σ) (3.7)

where JP (σ) :=
√

det
(
E1∗σE1

tr
∗σ
)

depends on P since the domain of E1 is HPM .
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3.3 Continuous Dependence on the Parameter

x ∈M

Recall that a Hadamard manifold is a simply connected complete manifold

with non–positive sectional curvature. Throughout this section we assume M

is a Hadamard manifold whose sectional curvature is bounded below by −N .

The following theorem illustrates that measures ν1
P,x are finite and “continuously

varying”with respect to x.

Notation 3.11 We will denote by Cb(X) bounded continuous functions on a topo-

logical space X.

Theorem 3.12 For any f ∈ Cb (HP,x (M)) , x ∈M , define:

hP (x) :=

∫
HP,x(M)

f (σ) dν1
P,x (σ) .

Then hP (x) ∈ C (M).

Remark 3.13 Set f ≡ 1, one can see that ν1
P,x (HP,x (M)) < ∞. So Theorem

3.12 implies that ν1
P,x is a finite measure and thus any bounded measurable function

on HP,x (M) is integrable with respect to ν1
P,x.

Before proving this theorem, we need to set up some notations and auxiliary results.

Notation 3.14 We fix n ∈ N and let si := i
n

with τ := 1− 1
n

= sn−1. We further

define K := HP ([0, τ ] ,M) be the space of piecewise geodesic paths, σ : [0, τ ]→M

such that σ (0) = o ∈M.

Lemma 3.15 For x, y ∈M , we can choose an unique element logx (y) ∈ TxM so

that

γy,x (t) := expx

(
(t− τ)

1

n
logx (y)

)
,
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is the unique minimal-lengh-geodesic connecting x to y such that γy,x (τ) = x and

γy,x (1) = y.

Proof. Since M is a Hadamard manifold, by the Theorem of Hadamard (See

Theorem A.2 in Appendix A), expx : TxM → M is a diffeomorphism. Therefore

we can see that logx (y) = exp−1
x (y) is unique and it follows that the geodesic γy,x

is unique.

Definition 3.16 For any given y ∈ M, let ψy : K → HP,y (M) := E−1
1 ({y})

defined as in Proposition 3.8 be defined by

ψy (σ) := γy,σ(τ) ∗ σ

where (
γy,σ(τ) ∗ σ

)
(t) =

 σ (t) if 0 ≤ t ≤ τ

γy,σ(τ) (t) if τ ≤ t ≤ 1
.

Notation 3.17 For any σ ∈ HP,y (M), denote u (σ, τ)−1 logσ(τ) (y) by ξy,σ, then

ξy,σ ∈ ToM . Denote by V (σ, s) := (Cy (σ, s) , Sy (σ, s))t ∈ R2d×d the fundamental

solution to the ODE:

V ′ (σ, s) =

 0 Id×d

Aξy (σ, s) 0

V (σ, s)

where Aξy (σ, s) = Ru(σ,1−s) (ξy,σ, ·) ξy,σ.

The next lemma characterizes the differential of ψy:

Lemma 3.18 Let σ ∈ K, recall from Theorem 2.41 that Xh (σ, ·) = u (σ, ·)h (σ, ·) ∈

TσK iff h (σ, ·) satisfies the piecewise Jacobi equation as in 2.42. Then

ψy∗
(
Xh (σ, ·)

)
= X ĥ (ψy (σ) , ·) := u (ψy (σ) , ·) ĥ (ψy (σ) , ·)
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where

ĥ (ψy (σ) , s) =

h (ψy (σ) , s) s ∈ [0, τ ]

Sy (ψy (σ) , 1− s)Sy
(
ψy (σ) , 1

n

)−1
h (σ, τ) s ∈ [τ, 1]

. (3.8)

Proof. From now on we will suppress the path argument ψy (σ) in ĥ. Suppose

that t→ σt ∈ K is an one-parameter family of curves in K such that σ0 = σ and

d
dt
|0σt = Xh (σ) . Then we have

ψy∗
(
Xh (σ)

)
=

d

dt
|0ψy (σt) =

d

dt
|0γy,σt(τ) ∗ σt.

If s ∈ [0, τ ] , then

d

dt
|0
(
γy,σt(τ) ∗ σt

)
(s) =

d

dt
|0σt (s) = Xh

s (σ) .

While if s ∈ [τ, 1] we have

d

dt
|0
(
γy,σt(τ) ∗ σt

)
(s) =

d

dt
|0γy,σt(τ) (t) =: X ĥ

s (ψy (σ))

We know that X ĥ
s is determined by,

1. ĥ satisfies Jacobi’s equation,

2. ĥ (τ) = h (τ) and ĥ (1) = 0.

Denote ĥ (s) by g (1− s) for s ∈ [τ, 1], the above conditions are equivalent to g

being the solution to the following boundary value problem:
g′′ (s) = Aξy (s) g (s)

g (0) = 0

g
(

1
n

)
= h (τ)

.
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Then we use Sy (·) to express the solution. Here we use a result that for each

s ∈
[
0, 1

n

]
, Sy (s) is invertible. It can be derived from Proposition B.1 applied to

Aξy (s).

g (s) = Sy (s)Sy

(
1

n

)−1

h (τ) for s ∈ [0, τ ]

and thus

ĥ (s) = g (1− s) = Sy (1− s)Sy
(

1

n

)−1

h (τ) for s ∈ [τ, 1] .

Corollary 3.19 For any y ∈M , ψy is a diffeomorphism.

Proof. From Lemma 3.18 it is easy to see that the push forward (ψy)∗ of ψy is one

to one and thus an isomorphism since dim (K) = dim (HP,y (M)) . Therefore the

inverse function theorem implies that ψy is a local diffeomorphism. Furthermore,

M being a Hadamard manifold implies that ψy is bijective, so ψy is actually a

diffeomorphism.

Notation 3.20 We construct an orthonormal basis
{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n

}
of HP (M) as follows:

hα,i ∈ HP,σ and h′α,i(sj+) =
δi−1,jeα√

∆j+1

for j = 0, ..., n− 1 (3.9)

where the definition of HP,σ can be found in Definition 2.11. An orthonormal basis{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n− 1

}
of HP (M) of K can be constructed similarly:

hα,i ∈ HP,σ and h′α,i(sj+) =
δi−1,jeα√

∆j+1

for j = 0, ..., n− 2.

In this chapter we will use the same notation for both these two sets of orthonormal

basis and it shouldn’t cause confusion from the context.
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Remark 3.21 It is not hard to see using Proposition 5.1 that

hα,i (s) =
1√
n
fP,i (s) eα (3.10)

where {fP,i (s)} is given in Definition 2.43.

Definition 3.22 f : M → N is a differentiable map between two Riemannian

manifolds M,N . The Normal Jacobian of f is defined to be
√

det (f∗f tr∗ ).

We will use the orthonormal basis
{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n− 1

}
of K to esti-

mate the Normal Jacobian JP in Lemma 3.23 and the “volume change ”Vx (See

precise definition in Lemma 3.25) brought by the diffeomorphism ψx in Lemma

3.25 and 3.26.

Lemma 3.23 For any σ ∈ HP (M), define JP (σ) :=
√

detE1∗σ (E1∗σ)tr. Then

JP (σ) =

√√√√det

(
1

n

n∑
i=1

fP,i (σ, 1) f trP,i (σ, 1)

)

Proof. Recall that E1 is the end point evalutation map. Notice that

E1∗σX
h (σ) = Xh (σ, 1) . (3.11)

So for any v ∈ TE1(σ)M , here we suppress σ:

〈
(E1∗)

tr v,Xh
〉
G1
P

=
〈
v, E1∗X

h
〉
TE1(σ)M

=
〈
u (1)−1 v, h (1)

〉
Rd ,

from which we get an expansion of (E1∗)
tr v using the orthonormal basis

{
Xhα,i : 1 ≤ α ≤ d, 1 ≤ i ≤ n

}
of THP (M)

(E1∗)
tr v =

∑
i,α

〈
(E1∗)

tr v,Xhα,i
〉
G1
P
Xhα,i =

∑
i,α

〈
u (1)−1 v, hα,i (1)

〉
Rd X

hα,i .
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So choosing an orthonormal basis {u (1) eα}dα=1 of TE1(σ)M and notice that

hγ,i (1) =
1√
n
fP,i (1) eγ,

we can compute:

det
(
E1∗ (E1∗)

tr) = det
{〈

(E1∗)
tr u (1) eα, (E1∗)

tr u (1) eβ
〉
TE1(σ)M

}
α,β

= det

{
n∑
i=1

d∑
γ=1

〈hγ,i (1) , eα〉 〈hγ,i (1) , eβ〉

}
α,β

= det

{
n∑
i=1

d∑
γ=1

1

n

〈
eγ, f

tr
P,i (1) eα

〉 〈
eγ, f

tr
P,i (1) eβ

〉}
α,β

= det

{
n∑
i=1

1

n

〈
f trP,i (1) eα, f

tr
P,i (1) eβ

〉}
α,β

= det

(
1

n

n∑
i=1

fP,i (1) f trP,i (1)

)
.

Using the expression of JP in Lemma 3.23, we can easily derive the following

estimate.

Corollary 3.24

JP (σ) ≥ 1.

Proof. For any v ∈ Cd, using Proposition B.1, we have:〈
1

n

n∑
i=1

fP,i (σ, 1) f trP,i (σ, 1) v, v

〉
=

1

n

n∑
i=1

∥∥f trP,i (σ, 1) v
∥∥2

≥ 1

n

n∑
i=1

‖v‖2

= ‖v‖2 .
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So by Min-max theorem, eig
(

1
n

∑n
i=1 fP,i (σ, 1) f trP,i (σ, 1)

)
⊂ [1,+∞) and therefore:

JP (σ) =

√√√√det

(
1

n

n∑
i=1

fP,i (σ, 1) f trP,i (σ, 1)

)
≥ 1.

Lemma 3.25 For any σ ∈ K, define

Vx (σ) :=
√

det
(
(ψx∗σ)tr ψx∗σ

)
(3.12)

Then

Vx (σ) =
√

det
(
I + Lx (σ)FP (σ)Lx (σ)tr

)
(3.13)

where

Lx (σ) := Cx

(
σ,

1

n

)
Sx

(
σ,

1

n

)−1

and

FP (σ) :=
1

n2

n−2∑
i=0

fP,i (σ, τ) fP,i (σ, τ)tr .

Proof. Using 3.8 and differentiating ĥ with respect to s, we get:

ĥ′ (σ, τ+) = −Cx
(
σ,

1

n

)
Sx

(
σ,

1

n

)−1

h (σ, τ) := −Lx (σ)h (σ, τ) (3.14)

Also notice that from Proposition 5.1,

h (σ, τ) =
1

n

n−1∑
i=0

fP,i+1 (σ, τ)h′ (σ, si+) ,

so we have

ĥ′ (σ, τ+) = −Lx (σ)
1

n

n−1∑
i=0

fP,i+1 (σ, τ)h′ (σ, si+) . (3.15)
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For any α, β ∈ {1, ..., d} and i, j ∈ {1, ..., n− 1}:

〈
ψx∗

(
Xhα,i (σ)

)
, ψx∗

(
Xhβ,j (σ)

)〉
Tψx(σ)HP,x(M)

(3.16)

=
1

n

n−2∑
k=0

〈
h′α,i (sk+) , h′β,j (sk+)

〉
+

1

n

〈
ĥ′α,i (τ+) , ĥ′β,j (τ+)

〉
(3.17)

= δ
(β,j)
(α,i) +

1

n

〈
Lx (σ)

1

n

fP,i (τ) eα√
1
n

, Lx (σ)
1

n

fP,j (τ) eβ√
1
n

〉
(3.18)

= δ
(β,j)
(α,i) +

〈
Lx (σ)

1

n
fP,i (τ) eα, Lx (σ)

1

n
fP,j (τ) eβ

〉
, (3.19)

where δ
(β,j)
(α,i) =

1 α = β, i = j

0 otherwise

.

It follows that the volume change

Vx (σ) =

√
det

(
I
(Rd)

n−1 + T̂x (σ)

)
(3.20)

where

T̂x (σ) ∈ End
((

Rd
)n−1

)
with

(
T̂x (σ)

)
d(i−1)+α,d(j−1)+β

=

〈
Lx (σ)

1

n
fP,i (σ, τ) eα, Lx (σ)

1

n
fP,j (σ, τ) eβ

〉
.

Notice that

I
(Rd)

n−1 + T̂x (σ) = Strσ Sσ

where

Sσ =

 I
(Rd)

n−1

Ax (σ)

 ∈Mnd×(n−1)d
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and

Ax (σ) =

(
1

n
Lx (σ) fP,0 (σ, τ) e1, · · · ,

1

n
Lx (σ) fP,n−2 (σ, τ) ed

)
∈Md×(n−1)d

Apply Lemma D.1 we get:

det

(
I
(Rd)

n−1 + T̂x (σ)

)
= det

(
I(Rd) + Ax (σ)Ax (σ)tr

)
= det

(
I +

1

n2

n−2∑
i=0

d∑
α=1

Lx (σ) fP,i (τ) eαe
tr
α fP,i (τ)tr Lx (σ)tr

)
= det

(
I + Lx (σ)FP (σ)Lx (σ)tr

)
where

FP (σ) :=
1

n2

n−2∑
i=0

fP,i (σ, τ) fP,i (σ, τ)tr .

Lemma 3.26 For any σ ∈ K,

Vx (σ) ≤
d∑

k=0

(
d

k

)
n
k
2 e

Nk
2
d2(σ(τ),x)Πn−2

j=0 e
kNd2(σ(sj),σ(sj+1)) (3.21)

Proof. From Lemma 3.25 and D, one can see, after suppressing σ,

det

(
I
(Rd)

n−1 + T̂x

)
= det

(
I + LxFPL

tr
x

)
= Πd

i=1 (1 + λi,x)

≤
(

1 + max
1≤i≤d

λi,x

)d
where {λi,x} = eig (LxFPL

tr
x ).
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Notice that

max
1≤i≤d

λi,x =
∥∥Lx (σ)FPLx (σ)tr

∥∥ ≤ ‖Lx (σ)‖2 ‖FP‖

≤ 1

n
‖Lx (σ)‖2 sup

0≤i≤n−2
‖fP,i (τ)‖2

Apply Proposition B.3, we get:∥∥∥∥Cx(σ, 1

n

)∥∥∥∥ ≤ e
N
2
d2(σ(τ),x)

where for any x, y ∈M, d (x, y) is the geodesic distance between x and y. and∥∥∥∥S−1
x

(
σ,

1

n

)∥∥∥∥ ≤ n,

so

‖Lx (σ)‖2 ≤ n2eNd
2(σ(τ),x)

and

max
1≤i≤d

λi,x ≤ neNd
2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖2 .

Therefore

Vx (σ) =

(
1 + max

1≤i≤d
λi,x

) d
2

≤
(

1 + neNd
2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖2

) d
2

≤
(

1 + n
1
2 e

N
2
d2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖

)d
=

d∑
k=0

(
d

k

)
n
k
2 e

Nk
2
d2(σ(τ),x) sup

0≤i≤n−2
‖fP,i (σ, τ)‖k . (3.22)
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Apply Proposition B.3 again to fP,i (σ, τ), we get:

‖fP,i (τ)‖ ≤ ‖CP,n−1‖ · · · ‖CP,i+1‖
∥∥∥∥ Si∆i

∥∥∥∥
≤ e

1
2
Nd2(σ(sn−2),σ(sn−1)) · · · · · e

1
2
Nd2(σ(si−1),σ(si))

(
1 +

Nd2 (σ (si−1) , σ (si))

6

)
≤ Πn−2

j=i−1e
1
2
Nd2(σ(sj),σ(sj+1)) · e

Nd2(σ(si−1),σ(si))
6

≤ Πn−2
j=i−1e

Nd2(σ(sj),σ(sj+1))

≤ Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1))

Taking supremum over i, we get:

sup
0≤i≤n−2

‖fP,i (σ, τ)‖ ≤ Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1)). (3.23)

and 3.21 follows.

Definition 3.27 For any X, Y ∈ TK(the tangent bundle of K), define G0
P,τ , G1

P,τ

to be:

G0
P,τ (X, Y ) =

n−1∑
i=1

〈X (si) , Y (si)〉∆i

and

G1
P,τ (X, Y ) =

n−1∑
i=1

〈
∇X
ds

(si−1) ,
∇Y
ds

(si−1)

〉
∆i

Lemma 3.28 G0
P,τ is a metric on K.

Proof. The only non–trivial part is to check G1
P,τ (X,X) = 0 =⇒ X = 0. Since

M has non–positive curvature, there are no conjugate points. For each 0 ≤ i ≤ n−1,

there is a unique Jacobi field X connecting σ (si) and σ (si+1) with specified X (si)

and ∇Y
ds

(si). G
1
P,τ (X,X) = 0 =⇒ ∇Y

ds
(si) = 0 for any 1 ≤ i ≤ n. Notice that

X (0) = 0, so by the uniqueness of Jacobi field, X ≡ 0.

Remark 3.29 Since M has non-positive curvatures, G0
P,τ is indeed a metric on K

since the only one-paramater family of geodesics with fixed end points is a constant
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family consisting of the unique geodesic connecting the starting point and the ending

point.

Definition 3.30 Based on the metric G0
P,τ and G1

P,τ , we define measures ν0
P,τ and

ν1
P,τ on K as follows:

ν0
P,τ :=

n(n−1)d

(2π)(n−1) d
2

e−
1
2
EdvolG0

P,τ

and

ν1
P,τ =

1

(2π)(n−1) d
2

e−
1
2
EdvolG1

P,τ

Lemma 3.31 Let

ρP (σ) = Πn−1
i=1 det

(
SP,i (σ)

n

)
then ν0

P,τ = ρPν
1
P,τ . What’s more:

ρP (σ) ≥ 1.

Proof. The argument to show ρP is the density of ν0
P,τ with respect to ν1

P,τ is

almost exactly the same as Theorem 5.9 in [3] with a slight change of ending point

from 1 to τ . Here we focus on the lower bound estimate of ρP (σ) . Since for any

v ∈ Cd, ∥∥∥∥SP,in v

∥∥∥∥ ≥ ‖v‖ ,
we know from propsition B.1 that for any λ ∈ eig

(
SP,i
n

)
,

|λ| ≥ 1

And from which we know:

ρP (σ) = Πn−1
i=1 det

(
SP,i (σ)

n

)
≥ 1.
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Proof of Theorem 3.12. Since ψx is a diffeomorphism, apply Theorem C.1 and

we have:

hP (x) =

∫
HP,x(M)

1

Z1
P

f

JP
(σ) e−

1
2
E(σ)dvolG1

P,x
(σ) (3.24)

=

∫
K

1

Z1
P

f

JP
◦ ψx (σ) e−

1
2
E◦ψx(σ)Vx (σ) dvolG1

P,τ
(σ) (3.25)

Notice that

1

Z1
P
e−

1
2
E◦ψx(σ) =

1

(2π)
d
2

1

(2π)(n−1) d
2

e−
1
2
E(σ)e−

n
2
d2(σ(τ),x), (3.26)

So

hP (x) =
1

(2π)
d
2

∫
K

f

JP
◦ ψx (σ) e−

n
2
d2(σ(τ),x)Vx (σ) dνG1

P,τ
(σ) (3.27)

Combine (3.22), (3.23) we know that:

e−
n
2
d2(σ(τ),x)Vx (σ) ≤

d∑
k=0

(
d

k

)
n
k
2 e

Nk−n
2

d2(σ(τ),x)Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1)) (3.28)

So

sup
x∈M

e−
n
2
d2(σ(τ),x)Vx (σ) ≤ sup

x∈M
e−

n−Nk
2

d2(σ(τ),x)

d∑
k=0

(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

(3.29)

When n is large enough, n−Nk > 0. Therefore e−
n−Nk

2
d2(σ(τ),x) ≤ 1 and it suffices

to show

Eν
G1
P,τ

[
d∑

k=0

(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

]
<∞. (3.30)
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For each k ≤ d we have:

Eν
G1
P,τ

[(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

]
= CnEµ

[
Πn−2
j=0 e

Nk|∆j+1β|2
]

(3.31)

= CnΠn−2
j=0 e

Nk
n (3.32)

= Cn (3.33)

where Cn is a generic constant.

Since for any σ ∈ K, f
JP
◦ψx (σ) e−

n
2
d2(σ(τ),x)Vx (σ) is continuous with respect

to x ∈M , so by dominated convergence theorem, hP (x) ∈ C (M).

Not only can we show that hP (x) is a continuous function, it is bounded

uniformly in x ∈M and partition P , as is shown in the following proposition.

Proposition 3.32 supP hP (x) <∞.

Proof. Based on Equation 3.27,

hP (x) ≤ Cd

∫
K
e−

n
2
d2(σ(τ),x)Vx (σ) dνG1

P,τ
(σ) (3.34)

Combine 3.22, 3.23 we know that:

e−
n
2
d2(σ(τ),x)Vx (σ) ≤

d∑
k=0

(
d

k

)
n
k
2 e

Nk−n
2

d2(σ(τ),x)Πn−2
j=0 e

Nd2(σ(sj),σ(sj+1)) (3.35)

For each k ≤ d, apply Lemma 3.31, we have:

Eν
G1
P,τ

[
e−

n−Nk
2

d2(σ(τ),x)

(
d

k

)
n
k
2 Πn−2

j=0 e
Nkd2(σ(sj),σ(sj+1))

]
(3.36)

=

(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1))dνG1
P,τ

(σ) (3.37)

=

(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1)) 1

ρP (σ)
dν0
P,τ (σ) (3.38)

≤
(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1))dν0
P,τ (σ) (3.39)
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Now define the projection map πP : K →Mn−1, for any σ ∈ K,

πP (σ) := (σ (s1) , . . . , σ (sn−1)) .

Since M is a Hadamard manifold, πP is a diffeomorphism. From there one can get:

(
d

k

)
n
k
2

∫
K
e−

n−Nk
2

d2(σ(τ),x)Πn−2
j=0 e

Nkd2(σ(sj),σ(sj+1))dν0
P,τ (σ) (3.40)

=

(
d
k

)
n
k+(n−1)d

2

(2π)
(n−1)d

2

∫
Mn−1

e−
n−Nk

2
d2(xn−1,x)Πn−2

j=0 e
− 1

2
(n−2Nk)d2(xj ,xj+1)dx1 · · · dxn−1

(3.41)

Corollary 4.2 in [35] gives a lower bound of heat kernels of manifold M such that

Ric ≥ (1− d)N :

pt (x, y) ≥ (2πt)−
d
2 e−

ρ2

2t

(
sinh
√
Nρ√

Nρ

) 1−d
2

e−Ct

where N is the curvature bound and C is some constant depending only on d and

N and ρ = d (x, y) . Using the fact that:

sinh
√
Nρ√

Nρ
≤ e

Nρ2

2

It follows that

pt (x, y) ≥ (2πt)−
d
2 e−

1
2( 1

t
+
N(d−1)

2 )ρ2

e−Ct

let

t =
1

n−N1

where N1 = 2Nd+ N(d−1)
2

.
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We have, for any j ∈ {0, . . . , n− 1}:

e−
1
2

(n−2Nd)d2(xj ,xj+1) ≤ eCtpt (xj, xj+1) (2πt)
d
2 .

So(
d
k

)
n
k+(n−1)d

2

(2π)
(n−1)d

2

∫
Mn−1

sup
x∈M

e−
n−2Nk

2
d2(xn−1,x)Πn−2

j=0 e
− 1

2
(n−2Nd)d2(xj ,xj+1)dx1 · · · dxn−1

≤
(
d
k

)
n
k+(n−1)d

2

(n−N1)
nd
2

e
C n
n−N1

∫
Mn−1

p 1
n−N1

(xn−1, x) Πn−2
j=0p 1

n−N1

(xj, xj+1) dx1 · · · dxn−1

=

(
d
k

)
e

Cn
n−N1

n
d−k

2

(
1− N1

n

)nd
2

∫
M

p 1
n−N1

(xn−1, x) p n−1
n−N1

(0, xn−1) dxn−1 (3.42)

Since the heat kernel is continuous w.r.t. to time, combine (3.39) ,(3.41) and (3.42),

we get (
d
k

)
e

Cn
n−N1

n
d−k

2

(
1− N1

n

)nd
2

p n
n−N1

(0, x) ≤ C.

and hence

hP (x) ≤ C.

where C is a generic constants depending only on d and N .

Theorem 3.12 shows that the class of approximate pinned measures
{
ν1
P,x
}

are finite measures and using the continuity result for hP (x) , one can see that ν1
P,x

is deserved to be formally expressed as δx (σ (1)) ν1
P and it should be interpreted in

the following sense:

Corollary 3.33 Denote by δx ∈ E ′ (M) the delta mass at x ∈M , for any
{
δ

(m)
x

}
⊂

C∞0 (M) such that

δ(m)
x → δx in E ′ (M)
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i.e. for any h ∈ C∞ (M) , we have:

lim
m→∞

∫
M

h (y) δ(m)
x (y) dy =

∫
M

h (y) δx (y) dy =: h (x)

where dy is the volume measure on M . Then for any f ∈ C∞b (HP (M)),

lim
m→∞

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) =

∫
HP,x(M)

f (σ) dν1
P,x (σ) .

Proof. Apply the co-area formula in Theorem 2.3 in [11], we have:

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) =

∫
M

δ(m)
x (y) dy

∫
HP,y(M)

f (σ) dν1
P,y (σ)

=

∫
M

hP (y) δ(m)
x (y) dy

From Theorem 3.12 we know hP (x) ∈ C (M) , therefore:

lim
m→∞

∫
HP (M)

δ(m)
x (σ (1)) f (σ) dν1

P (σ) = lim
m→∞

∫
M

hP (y) δ(m)
x (y) dy

= hP (x)

=

∫
HP,x(M)

f (σ) dν1
P,x (σ) .



Chapter 4

The Orthogonal Lift X̃ of X on

H (M) and Its Stochastic

Extension

4.1 Damped Metrics and Adjoints

Definition 4.1 (α–inner product) Let α (t) ∈ End
(
Rd
)

be a continuously vary-

ing matrix valued function. For h, k ∈ H0

(
Rd
)

let

〈h, k〉α :=

∫ 1

0

(
d

dt
h (t) + α (t)h (t)

)
·
(
d

dt
k (t) + α (t) k (t)

)
dt.

Remark 4.2 We denote the norm induced by α–inner product by ‖·‖α , different-

ing from the notation ‖·‖H0(Rd) for the norm induced by the H1– inner product:

〈h, l〉H1 =
∫ 1

0
h′ (s) · l′ (s) ds.

For the moment, let E1 : H0

(
Rd
)
→ Rd be the end point evaluation map in the

case where M = Rd. Let E1
∗ : Rd → H0

(
Rd
)

be the adjoint of E1 with respect to

51
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the α–inner product, i.e. for any a ∈ Rd and h ∈ H0

(
Rd
)
,

〈E1h, a〉Rd = 〈h, (E1
∗) a〉α .

The next theorem computes E∗1 which is crucial in constructing the orthogonal lift

in Section 4.2.

Theorem 4.3 Let a ∈ Rd and α (t) is positive semi–definite for any 0 ≤ t ≤ 1,

then E∗1a ∈ H0

(
Rd
)

is given by

(E∗1a) (t) =

(
S (t)

∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)
a. (4.1)

where S (t) ∈ Aut
(
Rd
)

solves

d

dt
S (t) + α (t)S (t) = 0 with S (0) = I

and

v (t) =

(∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)
a.

Proof. Notice that if h (t) = S (t)w (t) with w (·) ∈ H0

(
Rd
)
, then

(
d

dt
+ α (t)

)
h (t) =

(
d

dt
+ α (t)

)
[S (t)w (t)]

=

[(
d

dt
+ α (t)

)
S (t)

]
w (t) + S (t) ẇ (t)

= S (t) ẇ (t) .

And in particular,

〈Sv, Sw〉α =

∫ 1

0

S (t) v̇ (t) · S (t) ẇ (t) dt.



53

Notice that d
dt
〈S (t) a, a〉 = −〈α (t) a, a〉 ≥ 0, so

〈S (t) a, a〉 ≥ 〈S (0) a, a〉 = ‖a‖2

This implies S (t) ∈ Aut
(
Rd
)
. Given a ∈ Rd, let w (t) = E∗1a and define v (t) :=

S (t)−1w (t) so that E∗1a = S (t) v (t) . Then by the definition of the adjoint we find,

∫ 1

0

S (t) v̇ (t) · S (t) ẇ (t) dt = 〈Sv, Sw〉α = 〈E∗1a, Sw〉α = a · E1 (Sw)

= a · S (1)w (1) =

∫ 1

0

S (1)∗ a · ẇ (t) dt

As w ∈ H0

(
Rd
)

is arbitrary we may conclude that

S (t)∗ S (t) v̇ (t) = S (1)∗ a =⇒ v (t) =

∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ads

which proves (4.1).

Theorem 4.4 If a ∈ Rd, then h (·) ∈ H0

(
Rd
)

defined by

h (t) := S (t)

(∫ t

0

[S (s)∗ S (s)]
−1
ds

)(∫ 1

0

[S (s)∗ S (s)]
−1
ds

)−1

S (1)−1 a, (4.2)

is the minimal length element of H0

(
Rd
)

such that E1h = a.

i.e.

‖h‖α = inf
{
‖k‖α | k (·) ∈ H0

(
Rd
)
, E1k = a

}
.

Proof. Since H0

(
Rd
)

= Nul (E1)⊥ ⊕ Nul (E1), we have E1h = a =⇒ E1hk = a

and ‖h‖α ≥ ‖hk‖α where hk is the orthogonal projection of h onto Nul (E1)⊥. So we

are looking for the element, h ∈ H0

(
Rd
)
, such that E1h = a and h ∈ Nul (E1)⊥ =

Ran (E1
∗) . In other words we should have h = E∗1v for some v ∈ Rd. Thus, using
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(4.1), we need to demand that

a = E1E1
∗v = (E1

∗v) (1) =

(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)
v,

i.e.

v =

(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)−1

a.

It then follows that

h (t) = E1
∗
(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)−1

a

=

(
S (t)

∫ t

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)(
S (1)

∫ 1

0

[S (s)∗ S (s)]
−1
S (1)∗ ds

)−1

a

which is equivalent to (4.2).

Alternative proof: Let h := E1
∗a ∈ H0

(
Rd
)

and k ∈ H0

(
Rd
)
, then

a · k (1) = a · E1 (k) = 〈E1
∗a, k〉α = 〈h, k〉α

=

∫ 1

0

(
d

dt
h (t) + α (t)h (t)

)
· z (t) dt (4.3)

where
d

dt
k (t) + α (t) k (t) =: z (t) .

Solving the previous equation for k in terms of z gives,

k (t) = S (t)

∫ t

0

S (s)−1 z (s) ds.
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Using this result with t = 1 back in (4.3) shows

∫ 1

0

(
d

dt
h (t) + α (t)h (t)

)
· z (t) dt = a · S (1)

∫ 1

0

S (s)−1 z (s) ds

=

∫ 1

0

S∗ (s)−1 S (1)∗ a · z (s) ds.

As z (s) is arbitrary in L2
(
[0, 1] ,Rd

)
we may conclude that

d

dt
h (t) + α (t)h (t) = S∗ (t)−1 S (1)∗ a.

Solving this equation for h then shows,

(E1
∗a) (t) = h (t) = S (t)

∫ t

0

S (s)−1 S∗ (s)−1 S (1)∗ ads

=

(
S (t)

[∫ t

0

S (s)−1 S∗ (s)−1 ds

]
S (1)∗

)
a

and so we again recover (4.1).

Remark 4.5 The expression in (4.2) matches the well known result for damped

metrics where α = 1
2

Ricu. Further observe that if α (t) = 0 (i.e. we are in the flat

case) then S (t) = I and the above expression reduces to h (t) = ta as we know to

be the correct result.

Definition 4.6 Let 〈·, ·〉Ricu be the damped metric on TH (M) defined by

〈X, Y 〉Ricu :=

∫ 1

0

〈[
∇
ds

+
1

2
Ric

]
X (s) ,

[
∇
ds

+
1

2
Ric

]
Y (s)

〉
ds (4.4)

for all X, Y ∈ Γσ (TM) = TσH (M) and σ ∈ H (M) .

If X = XJ1 and Y = XJ2 with that J1, J2 ∈ H0

(
Rd
)
, then we have

〈
XJ1 , XJ2

〉
Ricu

=

∫ 1

0

〈[
d

ds
+

1

2
Ricus

]
J1 (s) ,

[
d

ds
+

1

2
Ricus

]
J2 (s)

〉
ds. (4.5)
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4.2 The Orthogonal Lift X̃ on H (M)

In this section we construct the orthogonal lift X̃ ∈ Γ (TH (M)) of X ∈

Γ (TM) which is defined to be the minimal length element in Γ (TH (M)) relative

the damped metric introduced in Definition 4.6.

Definition 4.7 For each σ ∈ H (M), recall that us (σ) is the horizontal lift of σ.

Denote by Ts the solution to the following initial value problem:
d
ds
Ts + 1

2
RicusTs = 0

T0 = I

(4.6)

Lemma 4.8 For all s ∈ [0, 1] , Ts is invertible. Further both sup
0≤s≤1

‖Ts‖ and

sup
0≤s≤1

‖T−1
s ‖ are bounded by e

1
2

(d−1)N , where (d− 1)N is a bound of ‖Ric‖ .

Proof. Let Us solve the ODE,
d
ds
Us = 1

2
Us Ricus

U0 = I.

(4.7)

Then one easily shows that

d

ds
[UsTs] = 0 =⇒ UsTs = U0T0 = I

and this shows that Us is a left inverse to Ts. As we are in finite dimensions it follows

that T−1
s exists and is equal to Us. The stated bounds now follow by Gronwall’s

inequality.

Definition 4.9 Let

Ks := Ts

[∫ s

0

T−1
r

(
T−1
r

)∗
dr

]
T ∗1 . (4.8)
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Remark 4.10 A simple computation shows that Ks satisfies the following initial

value problem: K′s = −1
2

Ricus Ks + (T1T
−1
s )

∗

K0 = 0.

(4.9)

Conversely, from Duhamel’s principle and (4.6) it is easy to deduce the formula in

Definition 4.9.

Lemma 4.11 With Ks as in Definition 4.9, K1 is invertible and
∥∥K−1

1

∥∥ ≤ e(d−1)N ,

provided ‖Ric‖ ≤ (d− 1)N .

Proof. Since

K1 :=

∫ 1

0

(
T1T

−1
r

) (
T1T

−1
r

)∗
dr

is a symmetric positive semi-definite operator such that

〈K1v, v〉 =

∫ 1

0

∥∥(T1T
−1
r

)∗
v
∥∥2
dr ∀v ∈ Cd.

Apply Lemma 4.8 to the expression given;

〈K1v, v〉 ≥
∫ 1

0

e−(d−1)N
∥∥(T−1

r

)∗
v
∥∥2
dr

≥
∫ 1

0

e−2(d−1)N ‖v‖2 dr

= e−2(d−1)N ‖v‖2

From which it follows that eig (K1) ⊂ [e−(d−1)N ,∞).

Definition 4.12 Let X ∈ Γ (TM), define two maps H : H (M) → Rd and J :

[0, 1]×H (M)→ Rd as follows,

H̃ = u−1
1 (σ)X ◦ E1 (σ) (4.10)
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and

J (σ, s) := Js (σ) := Ks (σ) K−1
1 (σ)H (σ) . (4.11)

Theorem 4.13 Given X ∈ Γ (TM) the minimal length lift, X̃, relative to the

damped metric in Definition 4.6 of X to Γ (TH (M)) is given by X̃ = XJ . Further

we know that Js is the solution to the following ODE:

J ′s = −1

2
RicusJs + φs, J0 = 0

where φs = (T1T
−1
s ) ∗K−1

1 H = (T−1
s ) ∗

[∫ 1

0
T−1
r (T−1

r )
∗
dr
]−1

T−1
1 H.

Proof. Apply Theorem 4.4 with αs = 1
2
Ricus .

Following the construction above, one can define an similar object (still

denoted by X̃) on Wo (M). Recall from Notation 2.31 that ũ is the stochastic

horizontal lift of the canonical Brownian motion Σ on M .

Definition 4.14 Define T̃s to be the solution to the following (random) initial

value problem: 
d
ds
T̃s + 1

2
RicũsT̃s = 0

T̃0 = I

(4.12)

Definition 4.15 Define

K̃s := T̃s

[∫ s

0

T̃−1
r

(
T̃−1
r

)
dr

]
T̃ ∗1 . (4.13)

Remark 4.16 Following the same arguments used in Lemma 4.8 and 4.11, one

can see the bounds obtained there still hold for T̃ and K̃.

Definition 4.17 For any X ∈ Γ (TM) define H̃ and J̃(.) on Wo (M),

H̃ = ũ−1
1 X ◦ E1 (4.14)
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and

J̃s := K̃sK̃
−1
1 H̃. (4.15)

Notation 4.18 Given a measurable function h : Wo (M) → H0

(
Rd
)
, let Zh :

Wo (M)→ H0

(
Rd
)

be the solution to the following ODE:

Zh
′ (s) = −1

2
RicũsZh (s) + h′s

Zh (0) = 0.

Definition 4.19 For any X ∈ Γ (TM) , define

X̃s = XZΦ
s := ũsZΦ (s) for 0 ≤ s ≤ 1

where

Φs =

∫ s

0

(
T̃−1
τ

)
∗
[∫ 1

0

(
T̃ ∗r T̃r

)
−1dr

]−1

T̃−1
1 H̃dτ.

4.3 Review of Calculus on Wiener Space

In this section we interpret XZΦ as a first order differential operator on some

geometric Wiener functionals (see Definition 4.36). The main difficulty there is

the non-adaptedness of Φ. To overcome this difficulty, we express XZΦ in terms of

geometric vector field (see Definition 4.27) with non–adapted coefficients. However,

these coefficients are differentiable Wiener functionals in “Malliavin calculus ”sense.

Based on this observation we derive an integration–by–parts formula for XZΦ which

naturally shows XZΦ is a closable first order differential operator on L2 (Wo (M)).

The integration–by–parts formula will also be one of our main tool of dealing with

δ—function pinning in this thesis. We begin with a brief review of the classical

theory of calculus on Wiener space that is needed in our work.

The first order differential geometry on path spaces that we will use can be
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traced back to the famous Cameron-Martin Theorem (see [7]).

Theorem 4.20 (Cameron-Martin) For any h ∈ H0

(
Rd
)
, consider the flow φht

generated by h, i.e. for any w ∈ W0

(
Rd
)
, φht (w) = w + th. Notice that φht is the

flow of the vector field Dh := ∂
∂h
. Then the pull–back measure µh (·) :=

(
φh1
)
∗ µ (·) =

µ (· − h) and Wiener measure µ are mutually absolutely continuous.

The map φht is usually called Cameron-Martin shift and the phenomenon

described in Theorem 4.20 is called quasi-invariance of µ under the Cameron-Martin

shift. The generalization of Cameron-Martin Theorem to path spaces on a manifold

came quite a while later in 1990s. Driver initiated the geometric Cameron-Martin

theory in [12] and [13] where he considered the “vector field ”Xh(or more precisely

an equivalence class of vector fields) on Wo (M) defined as follows,

Xh
s (σ) = ũs (σ)hs

where h ∈ {f ∈ C1 ([0, 1]) : f (0) = 0} ⊂ H0

(
Rd
)
.

Theorem 4.21 Let (M, g, o,∇) be a compact manifold and h be as above, then for

any σ ∈ Wo (M) , there exists a unique flow φht of Xh, i.e. φht : Wo (M) 7→ Wo (M)

satisfying:
d

dt
φht (σ) = Xh

(
φht (σ)

)
with φh0 = I

and νht (·) :=
(
φht
)
∗ ν is equivalent to ν.

The existence of the flow and the quasi-invariance of the Wiener measure

were later extended to all Cameron-Martin vector field Xh, h ∈ H0

(
Rd
)

in [20]

and [16] and then to a geometrically and stochastically complete Riemannian

manifold in [21] and [23]. Owing to the facts that Cameron-Martin vector fields

do not form a Lie Algrbra and more general vector fields naturally appreared in

practice, it is useful to introduce a broader class of so called “adapted vector fields

”, see [14] and [8].
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Definition 4.22 (Vector valued Brownian semimartingales) V is a finite

dimensional vector space. A function f : Wo (M)× [0, 1]→ V is called a Brownian

semimartingale if f has the following representation:

f (s) =

∫ s

0

Qτdβτ +

∫ s

0

rτdτ

where (Qs, rs) is a predictable process with values in Hom
(
Rd, V

)
× V , V is a

vector space. We will call (Qs, rs) the kernels of f .

Definition 4.23 (Hq space) For each q ≥ 1, f : Wo (M) × [0, 1] → V jointly

measurable, we define the root mean square norm in Lq (Wo (M) , ν) to be:

‖f‖Rq(V ) ≡

∥∥∥∥∥
(∫ 1

0

|f (·, s)|2V ds
) 1

2

∥∥∥∥∥
Lq(Wo(M),ν)

Let Hq be the space of all Brownian semimartingales such that

‖f‖Hq :=
∥∥Qf

∥∥
Rq

+
∥∥rf∥∥

Rq
<∞

Definition 4.24 (Bq space) For each q ≥ 1, f : Wo (M) × [0, 1] → V jointly

measurable, we define the supremum norm in Lq (Wo (M) , ν) to be:

‖f‖Sq(V ) ≡ ‖f
∗‖Lq(Wo(M),ν)

where f ∗ is the essential supremum of s→ f (·, s) relative to Lebesque measure on

[0, 1]. Let Bq be the space of all Brownian semimartingales such that

‖f‖Bq :=
∥∥Qf

∥∥
Sq

+
∥∥rf∥∥

Sq
<∞

Definition 4.25 (Adapted vector field) An adapted vector field on W0

(
Rd
)

is an Rd–valued Brownian semimartingale with predictable kernels Q· ∈ so (d)
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and r· ∈ L2 [0, 1] ν − a.s. We denote the space of adapted vector fields by V and

Vq := V ∩ Hq.

Notation 4.26 We will use the following notations in this dissertation:H∞− :=

∩q≥1Hq, B∞− = ∩q≥1Bq and V∞− = V ∩ H∞−.

A class of vector field called geometric vector field can be constructed using adapted

vector fields.

Definition 4.27 (Geometric vector field) For any h ∈ V,

Xh
s := ũshs 0 ≤ s ≤ 1

is said to be a geometric vector field.

Theorem 4.28 (Approximate Flow of Geometric Vector Field) Let Xh be

a geometric vector field as above with h ∈ V ∩ S∞ ∩ B∞, t ∈ R, there exists a

funcion E
(
tXh

)
: Wo (M)→ Wo (M) such that

d

dt
|0 E

(
tXh

)
= Xh in B∞−.

Proof. See Corollary 4.6 in [10].

For a geometric vector field, one can not construct a real flow as is constructed

for Cameron–Martin vector field in Theorem 4.21. However the theorem above

gurantees we can view them as vector fields from the natural definition. In the

next definition we specify a domain of these operators.

Notation 4.29 In this chapter, we fix D (L) to be the domain of an operator L.

Definition 4.30 Given a geometric vector field Xh, let D
(
Xh
)

denote the domain

of Xh given by

D
(
Xh
)

:=

{
f : Wo (M)→ R | Xhf :=

d

dt
|0 f

(
E
(
tXh

))
∈ L∞− (Wo (M))

}
.
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Notation 4.31 Recall from Notation 4.18 that Zh satisfies the following ODE,

Z ′h (s) = −1

2
RicũsZh (s) + h′s with Zh (0) = 0. (4.16)

We will use Zα as the shorthand of Zh where hs =
∫ s

0

(
T̃−1
r

)∗
eαdr, 1 ≤ α ≤ d.

Lemma 4.32 Let XZα be given above, then XZα is a geometric vector field with

Zα ∈ V∞ ∩ B∞.

Proof. Recall that Zα satisfies the following ODE:

Z ′α (s) = −1

2
RicũsZα (s) +

(
T̃−1
s

)∗
eα with Zα (0) = 0. (4.17)

Since
(
T̃−1
s

)∗
eα is adapted, Z ′α is adapted. So Zα is a Brownian semimartingale

with Q ≡ 0 and r = Z ′α. Gronwall inequality implies that Zα is bounded, and the

bound is independent of σ ∈ Wo (M) and s ∈ [0, 1]. Therefore Zα ∈ V∞ ∩ B∞.

The next theorem shows how to differentiate a cylinder function f ∈ FC

along a geometric vector field.

Notation 4.33 Given k : Wo (M) → H0

(
Rd
)
, denote

∫ s
0
Rũr (kr, δβr) by As 〈k〉,

where δ is the stratonovich differential.

Notation 4.34 Suppose F ∈ C (O (M)n) and P = {0 < s1 < · · · < sn ≤ 1} is a

partition of [0, 1], set

F (u) = F (us1 , . . . , usn) ,

then for A : [0, 1]→ so (d) and h : [0, 1]→ Rd, set

F ′ (u) 〈A+ h〉 :=
d

dt
|0 F

(
uetA

)
+
d

dt
|0 F

(
etBh (u)

)
where uetA (s) = use

tAs ∈ O (M) and etBh (u) (s) = etBhs (us) ∈ O (M) .
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Theorem 4.35 For all h ∈ V2,

XZhf := F ′ (ũ) 〈−A 〈Zh〉+ Zh〉 (4.18)

is well defined. That is to say, FC ⊂ D
(
XZh

)
. Moreover, if g ∈ FC∞, then

E
[
XZhf · g

]
= E

[
f ·
(
XZh

)tr,ν
g
]

(4.19)

where
(
XZh

)tr,ν
:= −XZh +

∫ 1

0
〈h′s, dβs〉.

Proof. See Proposition 4.10 in [10] .

The following lemma gives an anticipating expansion of X̃ in terms of

{XZh}h∈H(M).

Definition 4.36 (Orthogonal lift on Wo (M)) For any f ∈ FC∞, define

X̃f :=
d∑

α = 1

〈
C̃H̃, eα

〉
XZαf

where C̃ =

[∫ 1

0

(
T̃ ∗r T̃r

)−1

dr

]−1

T̃−1
1 and by the previous notation (Notation 4.18),

XZα
s = ũsZα (s)

Remark 4.37 To motivate this definition, recall that we have obtained a lift

X̃ = XZΦ := ũsZΦ (s) of X ∈ Γ (TM), where

Φs =

∫ s

0

(
T̃−1
τ

)
∗
[∫ 1

0

(
T̃ ∗r T̃r

)
−1dr

]−1

T̃−1
1 H̃dτ.

It is clear that Φ ∈ H0

(
Rd
)

is not adapted. Therefore we cannot apply the theory

for geometric vector field. Alternatively we can expand Φ in terms of adapted vector
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fields,

Φs =
d∑

α=1

〈
C̃H̃, eα

〉∫ s

0

(
T̃−1
r

)∗
eαdr. (4.20)

By superposition principle,

ZΦ (s) =
d∑

α = 1

〈
C̃H̃, eα

〉
Zα (s)

and further

XZΦ =
d∑

α = 1

〈
C̃H̃, eα

〉
XZα . (4.21)

Remark 4.38 From the construction above, one can see that if X has compact

support (which is case we care about, see the Representation Formula 3.4), then〈
C̃H̃, eα

〉
is bounded and the domain of the operator X̃, denoted by D

(
X̃
)

can be

defined as

D
(
X̃
)

:= ∩dα=1D
(
XZα

)
.

This actually has already implied that X̃ is a closable operator on L2 (Wo (M)) .

However, it is still necessary and intereting to develop an integration–by–parts

formula for this operator X̃.

4.4 Computing X̃ tr,ν

This section is devoted to studying of the existence of X̃ tr,ν (The adjoint

operator of X̃ with respect to ν). The crucial step to show existence is checking

the anticipating coefficients (6.68) are differentiable in the Malliavin sense reviewed

in Section 4.3. What is more, an explicit formula which has clearer structure as

indicated in Corollary C.3 is given under the condition that the covariant derivative

of the curvature tensor is bounded, which includes manifold with non–positive

constant sectional curvature.
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Proposition 4.39 If Ric and ∇Ric are bounded and h ∈ V∞, then for any s ∈

[0, 1], Ricũs ∈ D
(
Xh
)
. What is more, for any q ≥ 1,

sup
s∈[0,1]

∥∥XhRicũs
∥∥
Lq(Wo(M))

<∞.

Proof. Since Ricũs ∈ FC∞, from Theorem 4.35 we know Ricũs ∈ D
(
Xh
)

and

XhRicũs = ∇Xh
s
Ric+ [As 〈h〉 , Ricũs ] .

Since h ∈ V∞, Xh ∈ L∞− (Wo (M)). Then by Burkholder’s inequality, As 〈h〉 ∈

L∞− (Wo (M)), since Ric and ∇Ric are bounded, we have

sup
s∈[0,1]

∥∥XhRicũs
∥∥
Lq(Wo(M))

<∞.

Theorem 4.40 Let T̃s be as defined in Definition 4.14, then

T̃s ∈ D
(
XZα

)
for 1 ≤ α ≤ d.

Proof. For each XZα , recall from Lemma 4.32 that Zα ∈ V∞−, so we can apply

Theorem 4.39 and get
∥∥XZαRicũs

∥∥ ∈ L∞− (Wo (M)). Denote by Gs the solution

to the following ODE

G′s = −1

2
RicũsGs −

1

2

(
XZαRicũs

)
T̃s with G0 = 0 (4.22)

Denote by Gs (t) = T̃s(t)−T̃s
t

where T̃s (t) = T̃s ◦ E
(
tXZα

)
and E

(
tXZα

)
is the

approximate flow of XZα defined in Definition 4.28. It is easy to see that Gs (t)
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satisfies the following ODE:

G′s (t) = −1

2
RicũsGs (t)− 1

2t

(
Ricũs(t) −Ricũs

)
T̃s with G0 (t) = 0 (4.23)

Then let Hs (t) be Hs (t) := Gs (t)−Gs, we know Hs (t) satisfies

H ′s (t) = −1

2
RicũsHs (t)−1

2

(
Ricũs(t) −Ricũs

t
T̃s (t) +

(
XZαRicũs

)
T̃s

)
, H0 (t) = 0.

(4.24)

By definition T̃s ∈ D
(
XZα

)
⇐⇒ Hs (t)→ 0 in L∞− (Wo (M)).

By Gronwall’s inequality, we have

|Hs (t)| ≤
∫ s

0

∣∣∣∣Ricũr(t) −Ricũrt
T̃r (t) +XZαRicũr T̃r

∣∣∣∣ dre d(N−1)
2 (4.25)

Following Theorem 4.4 in [10], we know

Ricũr(t) −Ricũr
t

→ XZαRicũr

and

T̃r (t)→ T̃r → 0

uniformly on r ∈ [0, 1] in L∞− (Wo (M)) as t → 0. So we have Hs (t) → 0 in

L∞− (Wo (M)) as t→ 0.

Corollary 4.41 Recall that we have defined C̃ =

[∫ 1

0

(
T̃ ∗r T̃r

)−1

dr

]−1

T̃−1
1 in Def-

inition 4.36, then

C̃ ∈ D
(
XZα

)
for 1 ≤ α ≤ d.

Proof. By the product rule, for any s ∈ [0, 1],

XZα
(
T̃−1
s

)
= −T̃s

(
XZαT̃s

)
T̃s ∈ L∞− (Wo (M)) ,
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so T̃−1
s ∈ D

(
XZα

)
and thus

∫ 1

0

(
T̃ ∗r T̃r

)−1

dr ∈ D
(
XZα

)
. Then apply the product

rule again we get C̃ ∈ D
(
XZα

)
.

Lemma 4.42 Given X ∈ Γ (TM), recall from Definition 4.36 that X̃ is its orthog-

onal lift on Wo (M), then

X̃tr,ν =− X̃ +
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
+

d∑
α=1

〈
−XZα

(
C̃H̃

)
, eα

〉
.

In other words we are claiming that

E
[
X̃f · g

]
= E

[
f · X̃ tr,νg

]
for all f, g ∈ D

(
X̃
)
.

Proof. Since T̃ is adapted and uniformly bounded,

Z∫ ·
0(T̃

−1
r )

∗
eαdr
∈ V∞− := ∩q≥1Vq.

By Theorem 4.35, for all f, g ∈ FC∞ ⊂ D
(
X̃
)

,

XZαf = F ′ (ũ) 〈− (A 〈Zα〉) + Zα〉

and

E
[
XZαf · g

]
= E

[
f ·
(
−XZα +

∫ 1

0

〈(
T−1
s

)∗
eα, dβs

〉)
g

]
.
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Therefore we formally have

E
[
X̃f · g

]
= E

[
d∑

α = 1

〈
C̃H̃, eα

〉
XZαf · g

]
(4.26)

=
d∑

α=1

E
[
XZαf ·

(
g ·
〈
C̃H̃, eα

〉)]
(4.27)

= I + II + III (4.28)

where

I = E
[
f ·
(
−X̃

)
g
]

II = E

[
f · g ·

d∑
α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉]

III = E

[
f · g ·

d∑
α=1

〈
−XZα

(
C̃H̃

)
, eα

〉]
.

Therefore by the Chain rule, T̃−1
s ∈ D

(
X
Z∫ ·

0[T̃−1
r ]
∗
eαdr

)
and it follows that

F :=

∫ 1

0

(
T̃ ∗r T̃r

)
−1dr ∈ D

(
X
Z∫ ·

0[T̃−1
r ]
∗
eαdr

)
.

or more explicitly,

Ḟ =

∫ 1

0

[( ·
T̃−1
r

)([
T̃−1
r

]∗)
+ T̃−1

r

( ·
T̃−1
r

)∗]
dr

Notice that C̃T̃1 = F−1. Since T̃1 ∈ D
(
XZα

)
, by product rule again it suffices to

show that

F−1 ∈ D
(
X
Z∫ ·

0[T̃−1
r ]
∗
eαdr

)
.
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Apply the Chain rule again, we know

˙F−1 = −F−1 · Ḟ · F−1 (4.29)

So F−1 ∈ D
(
X
Z∫ ·

0[T̃−1
r ]
∗
eαdr

)
.

The following lemma gives a more explicit expression of the last term

d∑
α=1

〈
−X

Z∫ ·
0[T̃−1

r ]
∗
eαdr

(
C̃H̃

)
, eα

〉

under the constant sectional curvature condition.

Lemma 4.43 If further the covariant differential of the curvature tensor is 0, i.e.

∇R ≡ 0, then

−
d∑

α=1

〈
XZα

(
C̃H̃

)
, eα

〉
= divX ◦ E1 −

d∑
α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
. (4.30)

Proof. Since M has constant sectional curvature,

Ricũ (·) :=
∑
i

Rũ (ei, ·) ei =
∑
i

NQei = N (d− 1) I = N ′I.

where N ′ = N (d− 1) .

From there we knowT̃s = e−
1
2
N ′sI is deterministic. Therefore

C̃ =

(∫ 1

0

[
T̃ ∗r T̃r

]−1

dr

)−1

T̃−1
1 is deterministic.

Notice that H̃ = ũ−1
1 X (π ◦ ũ1) ∈ FC∞. So we can apply Theorem 4.35 to H̃,

d∑
α=1

〈
XZα

(
C̃H̃

)
, eα

〉
=

d∑
α=1

〈
C̃XZαH̃, eα

〉
= I + II
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where

I = −
d∑

α=1

〈
C̃ũ−1

1 ∇Zα(1)X, eα

〉
and

II =
d∑

α=1

〈
C̃A1 〈Zα〉 H̃, eα

〉
.

Claim: I = −divX ◦ E1.

Proof of Claim:

I = −
d∑

α=1

〈
ũ1C̃ũ

−1
1 ∇ũ1C̃−1ũ−1

1 ũ1eα
X, ũ1eα

〉
= −

d∑
α=1

〈
A−1∇AfαX, fα

〉
= −

d∑
α=1

〈
∇AfαX,

(
A−1

)∗
fα
〉

where A = ũ1C̃
−1ũ−1

1 ∈ End
(
TE1(σ)M

)
and {fα} = {ũ1eα} is an orthonormal basis

of TE1(σ)M . Since 〈∇·X, ·〉 is bilinear on TE1(σ)M , by the Universal property of

tensor product we know there exists a linear map l : TE1(σ)M ⊗ TE1(σ)M 7→ R such

that 〈
∇AfαX,

(
A−1

)∗
fα
〉

= l
(
Afα ⊗

(
A−1

)∗
fα
)

and therefore:

d∑
α=1

〈
∇AfαX,

(
A−1

)∗
fα
〉

= l

(
d∑

α=1

Afα ⊗
(
A−1

)∗
fα

)
(4.31)

Using the isomorphism between T 1
1 (V ) 7→ End (V ) :(a⊗ b) v = a · 〈b, v〉 one can
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easily see:
d∑

α=1

Afα ⊗
(
A−1

)∗
fα =

d∑
α=1

fα ⊗ fα (4.32)

Combine (4.31) and (4.32) we have

I = −
d∑

α=1

〈∇fαX, fα〉 = −divX ◦ E1

and (4.30).



Chapter 5

The Orthogonal Lift X̃P on

HP (M)

5.1 A Parametrization of TσHP (M)

Recall from Theorem 2.41 that for each σ ∈ HP (M), X (σ, s) ∈ TσHP (M)

iff J (σ, s) := u (σ, s)−1X (σ, s) satisfies

J ′′ (s) = Ru(s) (b′ (si−1+) , J (s)) b′ (si−1+) for s ∈ [si−1, si) i = 1, ..., n.

where b = φ (σ) is the anti–rolling of σ.

From above we observe that J can be parametrized by

{J ′ (si+) = ki}n−1
i=0

where (k0, k1, . . . , kn−1) is an arbitrary element of
(
Rd
)n
. Proposition 5.1 explains

this parametrization.
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Proposition 5.1 Given (k0, k1, . . . , kn−1) ∈
(
Rd
)n
, the associated J (·) is given by

J (s) =
1

n

l−1∑
i=0

fP,i+1 (s) ki for s ∈ [sl−1, sl] , 1 ≤ l ≤ n. (5.1)

Proof. From the definition of fP,i+1 (see Definition 2.43), It is equivalent to show

J (s) = CP,l (s)

[
l−2∑
i=0

CP,l−1 . . . CP,i+2SP,i+1ki

]
+ SP,l (s) kl−1 when s ∈ [sl−1, sl] .

We will show it as follows,

J (s) = CP,1 (s) 0 + SP,1 (s) k0 = SP,1 (s) k0 for s ∈ [s0, s1] and

J (s1) = SP,1k0,

J (s) = CP,2 (s)SP,1k0 + SP,2 (s) k1 for s ∈ [s1, s2] and

J (s2) = CP,2SP,1k0 + SP,2k1

J (s) = CP,3 (s) [CP,2SP,1k0 + SP,2k1] + SP,3 (s) k2

= CP,3 (s)CP,2S1k0 + CP,3 (s)SP,2k1 + SP,3 (s) k2 for s ∈ [s2, s3] and

J (s3) = CP,3CP,2SP,1k0 + CP,3SP,2k1 + SP,3k2.
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Continuing this way inductively we learn for s ∈ [sl−1, sl] that

J (s) = CP,l (s)CP,l−1 . . . CP,2SP,1k0 + CP,l (s)CP,l−1 . . . CP,3S2k1+

+ · · ·+ CP,l (s)SP,l−1kl−2 + SP,l (s) kl−1

=
l−2∑
i=0

CP,l (s)CP,l−1 . . . CP,i+2SP,i+1ki + SP,l (s) kl−1

= CP,l (s)

[
l−2∑
i=0

CP,l−1 . . . CP,i+2SP,i+1ki

]
+ SP,l (s) kl−1

as desired.

Definition 5.2 For each s ∈ [0, 1], define Ls :
(
Rd
)n → Rd as follows: for

s ∈ [sl−1, sl],

Ls (k0, . . . , kn−1) =
1

n

l−1∑
i=0

fP,i+1 (s) ki. (5.2)

What we care most is when s = 1, then

L1 (k0, . . . , kn−1) =
1

n

n−1∑
i=0

fP,i+1 (1) ki (5.3)

We now compute the adjoint of L1.

Lemma 5.3 For any v ∈ Rd,

L∗1v =
1

n

(
f ∗P,1 (1) v, f ∗P,2 (1) v, . . . , f ∗P,n (1) v

)
. (5.4)

Proof.

〈L (1) (k0, . . . , kn−1) , v〉 =
n−1∑
i=0

〈
1

n
fP,i+1 (1) ki, v

〉
=

n−1∑
i=0

〈
ki,

1

n
f ∗P,i+1 (1) v

〉
.

(5.5)
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From which it follows that

L∗1v =
1

n

(
f ∗P,1 (1) v, f ∗P,2 (1) v, . . . , f ∗P,n (1) v

)
. (5.6)

Definition 5.4 We now define

KP (s) v := nL (s) (L (1)∗ v) (5.7)

In particular,

KP (1) v =
1

n

n−1∑
i=0

fP,i+1 (1) f ∗P,i+1 (1) v (5.8)

Recall that given a matrix A, eig (A) denotes the eigenvalues of A.

Lemma 5.5 (Invertibility of KP (1)) If M has non-positive sectional curvature,

then

eig (KP (1)) ⊂ [1,∞) (5.9)

and thus KP (1) is invertible.

Proof. Denote Rus (b′ (si−1+) , ·) b′ (si−1+) by AP,i (s) : HP (M) → End
(
Rd
)
.

Notice that M having non-positive sectional curvature guarantees AP,i (s) is non-

negative. Then apply Proposition B.1 we get, for any i = 1, · · · , n, v ∈ Cd,

‖CP,iv‖ ≥ ‖v‖ and ‖SP,iv‖ ≥
1

n
‖v‖



77

From which it follows that:

‖fP,i (1) v‖ = n ‖CP,nCP,n−1 · · ·CP,i+1SP,iv‖

≥ n · 1

n
‖v‖

= ‖v‖

Notice that from the min-max theorem, ‖CP,iv‖2 ≥ ‖v‖2 ⇐⇒ eig
(
C∗P,iCP,i

)
⊂

[1,∞), and since all the eigenvalues of C∗P,iCP,i are non-zero, we have

eig
(
C∗P,iCP,i

)
= eig

(
CP,iC

∗
P,i
)

Therefore
∥∥C∗P,iv∥∥2 ≥ ‖v‖2 for all v ∈ Cd. Similarly, we can obtain

∥∥S∗P,iv∥∥2 ≥
1
n2 ‖v‖2 .

So for any b ∈ Cd,

〈KP (1) b, b〉 =
1

n

n−1∑
i=0

〈
fP,i+1 (1) f ∗P,i+1 (1) b, b

〉
=

1

n

n−1∑
i=0

∥∥f ∗P,i+1 (1) b
∥∥2

≥ 1

n
· n ‖b‖2

= ‖b‖2

This implies that

eig (KP (1)) ⊂ [1,∞)

In particular, KP (1) is invertible.
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5.2 Existence and Uniqueness of Orthogonal Lift

X̃P

In this section we lift a vector field X ∈ Γ (TM) onto a vector field X̃P ∈

Γ (THP (M)) based on the “least square”spirit.

Theorem 5.6 (Orthogonal lift) For all X ∈ Γ (TM) , we can find an orthogonal

lift X̃P ∈ Γ (THP (M)) in the sense that:

1. For all h ∈ C1 (M),

X̃P (h ◦ E1) (σ) = (Xh) (E1 (σ)) (5.10)

2. For all σ ∈ HP (M) ,

∥∥∥X̃P (σ)
∥∥∥
G1
P

= inf{‖Y (σ)‖ G1
P

: Y ∈ Γ (THP (M)) , Y satisfies (5.10)}.

(5.11)

Since TσHP (M) = Nul
(
E1∗,σ

)
⊕
{

Nul
(
E1∗,σ

)} ⊥. So a general XJ ∈ Γ (THP (M))

has minimal length iff XJ ∈
{

Nul
(
E1∗,σ

)} ⊥. The following lemma characterize{
Nul

(
E1∗,σ

)} ⊥.

Lemma 5.7 Xk ∈
{

Nul
(
E1∗,σ

)}⊥
iff

(k′ (s0+) , ..., k′ (sn−1+)) ∈ (Nul L1)⊥ = Ran (L∗1) .

Proof. Notice that for all XJ , Xk ∈ THP (M),

〈
XJ , Xk

〉
G1
P

= 0 ⇐⇒
n−1∑
i=0

〈J ′ (si+) , k′ (si+)〉∆i+1 = 0

⇐⇒
n−1∑
i=0

〈J ′ (si+) , k′ (si+)〉 = 0.
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and

XJ (σ) ∈ Nul
(
E1∗,σ

)
⇐⇒ E1∗,σ

(
XJ1

)
= u1 (σ) J (σ, 1) = 0 ⇐⇒ J1 (σ) = 0.

(5.12)

Recall that J1 = L1 (J ′ (s0+) , ..., J ′ (sn−1+)), so

J1 = 0 ⇐⇒ (J ′ (s0+) , ..., J ′ (sn−1+)) ∈ Nul (L1)

Notice that

n−1∑
i=0

〈J ′ (si+) , k′ (si+)〉 = 〈(J ′ (s0+) , ..., J ′ (sn−1+)) , (k′ (s0+) , ..., k′ (sn−1+))〉 .

So Xk ∈
{

Nul
(
E1∗,σ

)}⊥
iff

(k′ (s0+) , ..., k′ (sn−1+)) ∈ {Nul (L1)}⊥ = Ran (L∗1) .

Remark 5.8 According to (5.4),

Ran (L∗1) =

{(
1

n
f ∗P,1 (1) v,

1

n
f ∗P,2 (1) v, . . . ,

1

n
f ∗P,n (1) v

)
, ∀ v ∈ Rd

}
,

and for all (J ′ (s0+) , ..., J ′ (sn−1+)) ∈ Nul(L1),

〈(
1

n
f ∗P,1 (1) v,

1

n
f ∗P,2 (1) v, . . . ,

1

n
f ∗P,n (1) v

)
, (J ′ (s0+) , ..., J ′ (sn−1+))

〉
=

1

n

n−1∑
i=0

〈
f ∗P,i+1 (1) v, J ′ (si+)

〉
=

〈
v,

n−1∑
i=0

1

n
f ∗P,i+1 (1) J ′1 (si+)

〉
= 〈v, J1〉

= 0.
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Therefore we know in order to have the minimal length, XJ must have the following

form:

Js = KP (s) v

for some v ∈ Rd to be determined.

Definition 5.9 Define X̃P ∈ Γ (THP (M)) to be X̃P (·) = u·JP (·) where

JP (s) := KP (s) KP (1)−1 u1
−1X ◦ E1.

Proof of Theorem 5.6. Firstly, we show that for all h ∈ C1 (M), σ ∈ HP (M),

X̃P (h ◦ E1) (σ) = (Xh) (E1 (σ)) .

Since X̃P (σ) = d
dt
|0σt for some one parameter family {σt},

X̃P (h ◦ E1) (σ) =
d

dt
|0 (h ◦ E1) (σt) =

d

dt
|0h (σt (1)) =

(
X̃P (σ, 1)h

)
(σ (1))

=
(
u1 (σ) KP (σ, 1) KP (σ, 1)−1 u−1

1 (σ)X (σ (1))h
)

(σ (1)) = (Xh) (E1 (σ)) .

So condition (5.10) holds. The fact that condition (5.11) is valid is easily seen from

Remark 5.8.

The uniqueness of X̃P can always be concluded from the following argument:

From condition (5.10), we need:

X̃P (σ, 1) = X (σ (1)) .

This implies KP (1) v = u−1
1 X ◦ E1. Since KP (1) is invertible, we can just pick v

to be KP (1)−1 u−1
1 X ◦ E1.

We will explore the limit of the orthogonal lift X̃P in Chapter 6.
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5.3 Finite Dimensional Adjoint X̃
tr,ν1P
P

In this section we study X̃
tr,ν1
P

P —the adjoint of X̃P with respect to ν1
P .

Lemma 5.10

X̃
tr,ν1
P

P = −X̃P +M∫ 1
0 〈J ′P (s),b′(s)〉ds −MdivX̃P

(5.13)

where M� is the multiplication operator and divX̃P is the divergence of X̃P with

respect to volG1
P

.

Proof. Therein we identify the measure ν1
P with the associated nd—form. So by

Cartan’s magic formula, for all f ∈ Ω0 (HP (M)) ' C∞ (HP (M)) ,

LX̃P
(
fν1
P
)

= d
(
iX̃P

(
fν1
P
))

+ iX̃P
(
d
(
fν1
P
))
.

Since fν1
P is an nd–form, d (fν1

P) = 0. By Stokes’ theorem,
∫
HPM

d
(
iX̃P (fν1

P)
)

= 0.

Therefore we have: ∫
HP (M)

LX̃P
(
fν1
P
)

= 0

and

∫
HP (M)

(
X̃Pf

)
dν1
P =

∫
HP (M)

LX̃P
(
fν1
P
)
−
∫
HP (M)

fLX̃P
(
ν1
P
)

= −
∫
HP (M)

fLX̃P
(
ν1
P
)
. (5.14)

Recall that ν1
P = 1

Z1
P
e−

1
2
EvolG1

P
, so

LX̃P
(
ν1
P
)

=

[
X̃P

(
1

Z1
P
e−

1
2
E

)]
volG1

P
+
(
divX̃P

)
ν1
P . (5.15)
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In there,

X̃P

(
1

Z1
P
e−

1
2
E

)
= −1

2
X̃P (E)

1

Z1
P
e−

1
2
E

= −
∫ 1

0

〈
σ′ (s+) ,

∇X̃P
ds

(s+)

〉
ds

1

Z1
P
e−

1
2
E

= −
∫ 1

0

〈b′ (s+) , J ′P (s+)〉 ds 1

Z1
P
e−

1
2
E. (5.16)

Combine (5.14), (5.15) and (5.16) we get (5.13).

5.4 Computing divX̃P

Recall from Definition 3.20 that

Xhα,i (σ, s) = u (σ, s)
1√
n
fP,i (s) eα , 1 ≤ α ≤ d , 1 ≤ i ≤ n

is an orthonormal frame on (THP (M) , G1
P). Using this orthonormal frame, one

can get an expression of divX̃P .

Proposition 5.11

divX̃P =
d∑

α=1

n∑
j=1

〈
Xhα,jJ ′P (sj−1+) , eα

〉√
∆j

Proof. By definition

divX̃P =
d∑

α=1

n∑
j=1

G1
P

〈[
Xhα,j , X̃P

]
, Xhα,j

〉
.
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Now fix j and α, notice that X̃P = XJP , apply Theorem 3.5 in [3] to the computation

of the Lie bracket
[
Xhα,j , X̃P

]
, we have:

[
Xhα,j , X̃P

]
= Xf(hα,j ,JP ),

where

fs (hα,j, JP) =
(
Xhα,jJP

)
(s)−

(
XJPhα,j

)
(s) +

qs
(
Xhα,j

)
JP (s)− qs

(
XJP

)
hα,j (s)

and

qs
(
Xf
)

=

∫ s

0

Rur (b′ (r+) , f (r)) dr.

Therefore

G1
P

〈[
Xhα,j , X̃P

]
, Xhα,j

〉
=

n∑
i=1

〈
f ′, h′α,j

〉
si−1+

∆i (5.17)

=
n∑
i=1

〈(
Xhα,jJP

)′ − (XJPhα,j
)′
, h′α,j

〉
si−1+

∆i

+
n∑
i=1

〈(
qs
(
Xhα,j

)
JP (s)

)′ − (qs (XJP
)
hα,j (s)

)′
, h′α,j

〉
si−1+

∆i

Here ′ is the derivative with respect to time s.

Since the manifold is torsion free and h′α,j (si−1+) is independent of σ,

(
XJPhα,j

)′
(si−1+) =

(
XJPh′α,j

)
(si−1+) = 0.

Then we look at

(
qs
(
Xhα,j

)
JP (s)

)′
= q′s

(
Xhα,j

)
JP (s) + qs

(
Xhα,j

)
J ′P (s) .
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Notice that

h′α,j (si−1+) 6= 0 iff i = j

and when i = j,

hα,j (s) = 0 for s ≤ si−1

so both q′si−1

(
Xhα,j

)
= 0 and qsi−1

(
Xhα,j

)
= 0.

From which it follows:

n∑
i=1

〈(
qs
(
Xhα,j

)
JP (s)

)′
, h′α,j

〉
si−1+

∆i = 0 (5.18)

and
n∑
i=1

〈
q′s
(
XJP

)
hα,j (s) , h′α,j

〉
si−1+

∆i = 0 (5.19)

Lastly because qs
(
XJP

)
is skew-symmetric,

n∑
i=1

〈
qs
(
XJP

)
h′α,j, h

′
α,j

〉
si−1+

∆i = 0 (5.20)

Therefore we have

G1
P

〈[
Xhα,j , X̃P

]
, Xhα,j

〉
=

n∑
i=1

〈
Xhα,jJ ′P , h

′
α,j

〉
si−1+

∆i (5.21)

=
〈
Xhα,jJ ′P (sj−1+) , eα

〉√
∆j. (5.22)

Then sum over α and j, we have

divX̃P =
d∑

α=1

n∑
j=1

〈
Xhα,jJ ′P (sj−1+) , eα

〉√
∆j.



Chapter 6

Convergence Result

Notation 6.1 Recall that β := Φ̃ ◦ Σ : Wo (M) 7→ W0

(
Rd
)

is a Brownian motion

on Rd. Here Σ is the canonical Brownian motion on M and Φ̃ is the stochastic

anti-development map. We also define bP := πP ◦ β : Wo (M) 7→ HP
(
Rd
)

to

be the piecewise Brownian motion on Rd and uP := η ◦ bP to be the horizontal

lift of bP . What’s more, notice that φ ◦ bP ∈ HP (M), here φ is the development

map onto H (M), so after identifying CP,i, SP,i and hence fP,i with CP,i ◦ φ ◦ bP ,

SP,i ◦ φ ◦ φ ◦ bP and fP,i ◦ φ ◦ φ ◦ bP , we can view them as matrix valued random

variables on Wo (M). The point here is to make the notations short and it should

not cause confusions after this explanation.

6.1 Wong-Zakai Approximation Scheme

Wong-Zakai approximation scheme are types of theorems that try to ap-

proximate solutions of a stochastic differential equations (SDE) by solutions of

(random) ordinary differential equations driven by smooth approximations of the

semimartingale that drives the SDE. Wong and Zakai [38], [39] first studied this

problem in the case of one dimensional Brownian motion and there are a lot of

generalizations that follow, which are partially listed in here : [2], [19] and so on.
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We record a Wong-Zakai type theorem in the form that fits our need.

Theorem 6.2 (Theorem 4.14 in [3]) Let f : Rd × Rn →End(Rd,Rn) and f0 :

Rd × Rn → Rn be twice differentiable with bounded continuous derivatives. Let

ξ0 ∈ Rn and P be a partition of [0, 1]. Further let β and βP be as in Notation 3.14

and ξP(s) denote the solution to the ordinary differential equation:

ξ′P(s) = f(ξP(s))b′P(s) + f0(ξP(s)), ξP(0) = ξ0 (6.1)

and ξ denote the solution to the Stratonovich stochastic differential equation,

dξ(s) = f(ξ(s))δβ(s) + f0(ξ(s))ds, ξ(0) = ξ0. (6.2)

Then, for any γ ∈ (0, 1
2
), p ∈ [1,∞), there is a constant C(p, γ) < ∞ depending

only on f and M , so that

lim
|P|→0

E
[
sup
s≤1
|ξP(s)− ξ(s)|p

]
≤ C(p, γ)|P|γp. (6.3)

Corollary 6.3 sup0≤s≤1 |uP (s)− ũ (s)| → 0 in L∞− (Wo (M)) .

6.2 Convergence of X̃P to X̃

6.2.1 Some Useful Estimates for {CP,i}ni=1 and {SP,i}ni=1

We apply Proposition B.1 to get the following estimates: Lemma 6.4 to

Lemma 6.7.

Lemma 6.4 For any i ∈ {1, ..., n} and s ∈ [si−1, si], we have

|CP,i (s)| ≤ cosh
(√

N |∆iβ|
)
≤ e

1
2
N |∆iβ|2 .



87

Lemma 6.5 For any i ∈ {1, ..., n} and s ∈ [si−1, si], we have

|SP,i(s)| ≤
√
N |∆iβ|

sinh
(√

N |∆iβ|
)

√
N |∆iβ|

≤ cosh
(√

N |∆iβ|
)√

N |∆iβ| ≤
√
N |∆iβ| e

1
2
N |∆iβ|2 .

Lemma 6.6 For any i ∈ {1, ..., n}, we have

|SP,i −∆iI| ≤
N |∆iβ|2 ∆i

6
e

1
2
N |∆iβ|2

Lemma 6.7 For any i ∈ {1, ..., n}, we have

|CP,i − I| ≤
N |∆iβ|2

2
e

1
2
N |∆iβ|2

Lemma 6.8 For all γ ∈
(
0, 1

2

)
, define Kγ := sup

s,t∈[0,1],s 6=t

{
|βt−βs|
|t−s|γ

}
, then there exists

an εγ > 0 such that E
[
eεK

2
γ

]
<∞.

Proof. See Fernique’s Theorem (Theorem 3.2) in [28].

Remark 6.9 From Lemma 6.8, it is easy to see any polynomial of εKγ has finite

moments of all orders.

6.2.2 Size Estimates of fP,i (s)

Recall from Definition 2.43 that fP,i : Wo (M)×[0, 1]→ End
(
Rd
)

0 ≤ i ≤ n

is given by

fP,i (s) =


0 s ∈ [0, si−1]

SP,i(s)

∆i
s ∈ [si−1, si]

CP,j(s)CP,j−1·····CP,i+1SP,i
∆i

s ∈ [sj−1, sj] for j = i+ 1, · · · , n
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with the convention that SP,0 ≡ |P| I and fP,0 ≡ I.

Using the estimates in Subsection 6.2.1, it is easy to get a control over the

size of fP,i (s) .

Lemma 6.10 For any q ≥ 1, there exists a constant Cq such that

E

[
sup

i∈{0,··· ,n}
sup
s∈P
|fP,i (s)|q

]
≤ Cq

Proof. For all i, j ∈ {0, · · · , n} , we only need to consider the case when j ≥ i,

since if j < i, fP,i (sj) ≡ 0. Since

fP,i (sj) =
CP,jCP,j−1 · · · · · CP,i+1SP,i

∆i

,

so

|fP,i (sj)|q ≤ |CP,j|q |CP,j−1|q · · · · · |CP,i+1|q
∣∣∣∣SP,i∆i

∣∣∣∣q .
Apply Lemma 6.4 and 6.6, we get

|fP,i (sj)|q ≤ e
1
2
qN

∑j
k=i|∆kβ|2

(
e−

N
2
|∆iβ|2 +

N |∆iβ|2

6

)q

(6.4)

≤ e
1
2
qN

∑j
k=i|∆kβ|2

(
1 +

N |∆iβ|2

6

)q

(6.5)

≤ e
1
2
qN

∑j
k=i|∆kβ|2e

Nq|∆iβ|2
6 (6.6)

≤ eqN
∑n
k=1|∆kβ|2 . (6.7)

Since eqN
∑n
k=1|∆kβ|2 is independent of i and j, we have

sup
i∈{1,··· ,n}

sup
s∈P
|fP,i (s)|q ≤ eqN

∑n
k=1|∆kβ|2 . (6.8)
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Therefore

E

[
sup

i∈{0,··· ,n}
sup
s∈P
|fP,i (s)|q

]
≤ E

[
eqN

∑n
k=1|∆kβ|2

]
(6.9)

= Πn
k=1E

[
eqN |∆kβ|2

]
= Πn

k=1e
qN
n = eqN . (6.10)

Notation 6.11 Given n ∈ N and s ∈ [0, 1] , let s = sk−1 when s ∈ [sk−1, sk),

|P| = 1
n

is the mesh size of the partition P and also let

AP,k (s) := RuP (s) (β′P (sk−1+) , ·) β′P (sk−1+) .

Lemma 6.12 If q ≥ 1, γ ∈
(
0, 1

2

)
, then

E

[
sup

i∈{0,··· ,n},s∈[0,1]

|fP,i (s)− fP,i (s)|q
]
≤ Cq,γ |P|2qγ .

Proof. Taylor’s expansion gives

fP,i (s)− fP,i (s) =

∫ s

s

AP,k (r) fP,i (r) (s− r) dr (6.11)

=

∫ s

s

AP,k (r) (fP,i (r)− fP,i (r)) (s− r) dr +

∫ s

s

AP,k (r) fP,i (r) (s− r) dr.

(6.12)

Since |AP,k (s)| ≤ N
∣∣∣∆kβ

∆k

∣∣∣2 , we have

|fP,i (s)− fP,i (s)| ≤
N

∆k

|∆kβ|2
∫ s

s

|fP,i (r)− fP,i (r)| dr+
1

2
N |∆kβ|2 sup

s∈P
|fP,i (s)| .
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By Gronwall’s inequality, we have:

|fP,i (s)− fP,i (s)| ≤
1

2
N |∆kβ|2 sup

s∈P
|fP,i (s)| e

N
∆k
|∆kβ|2(s−s)

≤ 1

2
N |∆kβ|2 sup

s∈P
|fP,i (s)| eN |∆kβ|2

Use estimate (6.8), we have

|fP,i (s)− fP,i (s)|q ≤
N q

2q
|∆kβ|2q eqN |∆kβ|2eqN

∑n
j=1|∆jβ|2 (6.13)

≤ Cq |P|2qγ e2qN
∑n
k=1|∆kβ|2K2q

γ . (6.14)

Notice that e2qN
∑n
k=1|∆kβ|2 has finite moments of all orders based on a computation

exactly the same as (6.10) and so is K2q
γ following Remark 6.8, using the Holder’s

inequality and we get

E

[
sup
s∈[0,1]

|fP,i (s)− fP,i (s)|q
]
≤ Cq,γ |P|2qγ . (6.15)

Theorem 6.13 For all q ≥ 1, γ ∈
(
0, 1

2

)
there exist a constant Cq,γ such that

E

[
sup

i∈{0,··· ,n}
sup
s∈[si,1]

∣∣∣fP,i (s)− T̃sT̃−1
si

∣∣∣q] ≤ Cq,γ |P|γq . (6.16)

In order to prove Theorem 6.13, we need the following results.

Lemma 6.14 For all q ≥ 1, γ ∈
(
0, 1

2

)
there exist a constant Cq,γ such that:

E

[
sup

i∈{0,··· ,n}
sup

s∈P/{s0,··· ,si−1}

∣∣∣∣fP,i (s)− (fP,i (si)− ∫ s

si

RicuP (r)fP,i (r) dr

)∣∣∣∣q
]

(6.17)

≤ Cq,γ |P|γq . (6.18)
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Proof. For all sj ∈ P with j ≥ i+ 1 and for k = i, · · · , j − 1, we have

fP,i (sk+1) = fP,i (sk) +
1

∆2
k+1

∫ sk+1

sk

RuP (r) (∆k+1β, fP,i (r)) ∆k+1β (sk+1 − r) dr

(6.19)

= fP,i (sk) +
1

2
RuP (sk) (∆k+1β, fP,i (sk)) ∆k+1β + ei,k

where

ei,k =
1

∆2
k+1

∫ sk+1

sk

RuP (r) (∆k+1β, fP,i (r)) ∆k+1β (sk+1 − r) dr

− 1

∆2
k+1

∫ sk+1

sk

RuP (sk) (∆k+1β, fP,i (sk)) ∆k+1β (sk+1 − r) dr

Since {fP,i (sj)}jis adapted, by Ito’s lemma, is adapted,

1

2
RuP (sk) (∆k+1β, fP,i (sk)) ∆k+1β =

1

2

∫ sk+1

sk

RuP (sk) (βr − βsk , fP,i (sk)) dβr

+
1

2

∫ sk+1

sk

RuP (sk) (dβr, fP,i (sk)) (βr − βsk)

− 1

2
RicuP (sk)fP,i (sk) ∆k

Summing (6.19) over k from i to j − 1 , we have

fP,i (sj) = fP,i (si)−
1

2

∫ sj

si

RicuP (r)fP,i (r) dr +MP,sj +

j−1∑
k=i

ei,k

where

MP,s :=
1

2

∫ s

si

RuP (r) (βr − βr, fP,i (r)) dβr +
1

2

∫ s

si

RuP (r) (dβr, fP,i (r)) (βr − βr)

is a Rd-valued martingale starting from si. By the Burkholder-Davis-Gundy
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inequality, for q ≥ 1,

E

[
sup
s∈[si,1]

|MP,s|q
]
≤ CqE

[
〈MP〉

q
2
1

]
(6.20)

where 〈MP〉 is the quadratic variation process of MP . An estimate of 〈MP〉 gives

〈MP〉1 ≤ dN2

∫ 1

si

|βr − βr|2 |fP,i (r)|2 dr ≤ dN2

∫ 1

0

|βr − βr|2 |fP,i (r)|2 dr,

and by Jensen’s inequality,

〈MP〉
q
2
1 ≤ d

q
2N q

∫ 1

0

|βr − βr|q |fP,i (r)|q dr.

Since {fP,i (r)}r∈[0,1] is adapted to the filtration generated by β, using the indepen-

dence of |βr − βr|q and fP,i (r) we have:

E
[
〈MP〉

q
2
1

]
≤ d

q
2N q

∫ 1

0

E [|βr − βr|q]E [|fP,i (r)|q] dr

= Cqsup
s∈P

E [|fP,i (s)|q] |P|
q
2 .

By Lemma 6.10, we know

E
[
〈MP〉

q
2
1

]
≤ Cq |P|

q
2 (6.21)

Then to prove Lemma 6.14, it suffices to show:

E

[
sup

i∈{0,··· ,n},j∈{i+1,··· ,n}

∣∣∣∣∣
j−1∑
k=i

ei,k

∣∣∣∣∣
q]
≤ Cq |P|γq (6.22)

Since |ei,k| ≤ I + II, where

I =
1

∆2
k+1

∣∣∣∣∫ sk+1

sk

RuP (r) (∆k+1β, fP,i (r)− fP,i (sk)) ∆k+1β (sk+1 − r) dr
∣∣∣∣
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II =
1

∆2
k+1

∣∣∣∣∫ sk+1

sk

(
RuP (sk) −RuP (r)

)
(∆k+1β, fP,i (sk)) ∆k+1β (sk+1 − r) dr

∣∣∣∣
use (6.14) , we know

I ≤ N

2
sup

i∈{1,··· ,n},r∈[0,1]

|fP,i (r)− fP,i (r)| |∆k+1β|2

≤ CK4
γ |P|

4γ e2N2
∑n
k=1|∆kβ|2

Since ∣∣RuP (sk) −RuP (r)

∣∣ ≤ ∫ sk+1

sk

|β′P (s)| ds = |∆k+1β| ≤ Kγ |P|γ

and use (6.8), we have

II ≤ N

2
sup

i∈{1,··· ,n},r∈P
|fP,i (r)| |∆k+1β|2 sup

r∈[sk,sk+1]

∣∣RuP (sk) −RuP (r)

∣∣
≤ CK3

γ |P|
3γ eN

2
∑n
k=1|∆kβ|2 .

So ∣∣∣∣∣
j−1∑
k=i

ei,k

∣∣∣∣∣ ≤ 1

|P|
(I + II) ≤ C

(
K4
γ |P|

4γ−1 +K3
γ |P|

3γ−1) e2N2
∑n
k=1|∆kβ|2 .

Since if γ approaches 1
2
, 3γ − 1 approaches 1

2
, so use Lemma 6.8 we get

E

[
sup

i∈{0,··· ,n},j∈{i+1,··· ,n}

∣∣∣∣∣
j−1∑
k=i

ei,k

∣∣∣∣∣
q]
≤ Cq |P|γq .

Combine (6.21) and (6.22) we obtain (6.18).

Proof of Theorem 6.13. Define

f̂P,i (s) = fP,i (si)−
1

2

∫ s

si

RicuP (r)fP,i (r) dr. (6.23)
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Then

∣∣∣f̂P,i (sj)− fP,i (sj)∣∣∣ ≤ ∣∣∣∣12
∫ s

si

(
RicuP (r) −RicuP (r)

)
fP,i (r) dr

∣∣∣∣
+

∣∣∣∣12
∫ s

si

RicuP (r) (fP,i (r)− fP,i (r)) dr
∣∣∣∣ .

Since ∣∣RicuP (r) −RicuP (r)

∣∣ ≤ CKγ |P|γ ,

using Lemma 6.10 and (6.8), we know:∣∣∣∣∫ s

si

(
RicuP (r) −RicuP (r)

)
fP,i (r) dr

∣∣∣∣q ≤ CqK
q
γ |P|

γq (6.24)

and

E
[∣∣∣∣∫ s

si

(
RicuP (r) −RicuP (r)

)
fP,i (r) dr

∣∣∣∣q] ≤ Cq |P|γq .

Then consider ∣∣∣∣∫ s

si

RicuP (r) (fP,i (r)− fP,i (r)) dr
∣∣∣∣ ,

apply Lemma 6.12, we can easily see:

E

[
sup

i∈{0,··· ,n}

∣∣∣∣∫ s

si

RicuP (r) (fP,i (r)− fP,i (r)) dr
∣∣∣∣q
]
≤ Cq |P|q (6.25)

Combine (6.24) and (6.25) we get:

E

[
sup

i∈{0,··· ,n},j≥i

∣∣∣f̂P,i (sj)− fP,i (sj)∣∣∣q] ≤ Cq |P|γq (6.26)
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Then define f̃P,i (s) to be the solution to the following ODE:


d
ds
f̃P,i (s) + 1

2
RicuP (s)f̃P,i (s) = 0

f̃P,i (si) = I.

Consider
∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣, since

f̃P,i (s) = I − 1

2

∫ s

si

RicuP (r)f̃P,i (r) dr

so ∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣ ≤ |fP,i (si)− I|+ 1

2

∫ s

si

N
∣∣∣f̃P,i (r)− f̂P,i (r)∣∣∣ dr.

By Gronwall’s inequality, we have:

∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣ ≤ |fP,i (si)− I| e 1
2
N .

Use Lemma 6.6, we have

E

[
sup

i∈{0,··· ,n},s≥si

∣∣∣f̃P,i (s)− f̂P,i (s)∣∣∣q] ≤ Cq |P|q . (6.27)

Lastly, we look at f̃P,i (s)− T̃sT̃−1
si

. Notice that T̃sT̃
−1
si

satisfies the following ODE,


(
T̃sT̃

−1
si

)′
+ 1

2
Ricũs

(
T̃sT̃

−1
si

)
= 0(

T̃siT̃
−1
si

)
= I.

So

f̃P,i (s)− T̃sT̃−1
si

=
1

2

∫ s

si

(
RicuP (r) −Ricũr

) (
f̃P,i (r)− T̃rT̃−1

si

)
dr.
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By Gronwall’s inequality again we have:

∣∣∣f̃P,i (s)− T̃sT̃−1
si

∣∣∣ ≤ CKγ |P|γ e
1
2
N

so

E

[
sup

i∈{0,··· ,n},s≥si

∣∣∣f̃P,i (s)− T̃sT̃−1
si

∣∣∣q] ≤ Cq |P|γq (6.28)

Combine Lemma 6.14 and (6.25), (6.26), (6.27) and (6.28) we prove this theorem.

6.2.3 Convergence of KP (s) to K̃s

Recall from Definition 5.4 that KP (s) satisfies the piecewise Jacobi equation:

K′′P (s) = RuP (s) (β′P (si−1+) ,KP (s)) β′P (si−1+) for s ∈ [si−1, si)

K′P (si−1+) = f ∗P,i (1) and KP (0) = 0

for i = 1, ..., n

(6.29)

Before we state the main theorem in this section , first we need some supplementary

lemmas.

Lemma 6.15 For all q ≥ 1, there exists a constant Cq such that

E
[
sup
r∈P
|KP (r)|q

]
≤ Cq

Proof. For all i ∈ {1, · · · , n} , recall from (5.4) that:

KP (si) =
1

n

i−1∑
j=0

fP,j+1 (s) f ∗P,j+1 (1)
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So for all q ≥ 1, we have:

|KP (si)|q ≤ iq−1 1

nq

i−1∑
j=0

|fP,j+1 (si)|q |fP,j+1 (1)|q

apply (6.8), we have:

|KP (si)|q ≤ e2qN2
∑n
k=1|∆kβ|2 (6.30)

then take expectation and we are done.

Lemma 6.16 For all q ≥ 1, there exists a constant Cq > 0 such that:

E

[
sup

i∈{1,··· ,n},r∈[0,1]

|KP (r)−KP (r)|q
]
≤ Cq |P|2qγ

For s ∈ [si−1, si],

KP (s) = KP (si−1) (6.31)

+ f ∗P,i (1) (s− si−1) +

∫ s

si−1

RuP (s) (β′P (si−1+) ,KP (r)) β′P (si−1+) (s− r) dr.

(6.32)

Therefore

|KP (s)−KP (si−1)| (6.33)

≤ |fP,i (1)| (s− si−1) (6.34)

+

∣∣∣∣∫ s

si−1

RuP (s) (β′P (si−1+) ,KP (r)−KP (si−1) + KP (si−1)) β′P (si−1+) (s− r) dr
∣∣∣∣

≤ |fP,i (1)| (s− si−1) (6.35)

+N
|∆iβ|2

∆2
i

∫ s

si−1

|KP (r)−KP (si−1)| (s− r) dr +
1

2
N |∆iβ|2 |KP (si−1)| := f (s) ,
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where

f ′ (s) = |fP,i (1)|+N
|∆iβ|2

∆2
i

∫ s

si−1

|KP (r)−KP (si−1)| dr

and

f ′′ (s) = N
|∆iβ|2

∆2
i

|KP (s)−KP (si−1)| ≤ N
|∆iβ|2

∆2
i

f (s) .

Then f (s) satisfies the following ODE
f ′′ (s) = N |∆iβ|2

∆2
i
f (s) + δ (s)

f ′ (si−1) = |fP,i (1)|

f (si−1) = 1
2
N |∆iβ|2 |KP (si−1)|

(6.36)

where

δ (s) = f ′′ (s)−N |∆iβ|2

∆2
i

f (s) ≤ 0.

Solving (6.36) , we have:

f (s) = Ci (s)
1

2
N |∆iβ|2 |KP (si−1)|+ Si (s) |fP,i (1)|

+

∫ s

si−1

sinh
(√

N |β′P (si−1+)| (s− r)
)

√
N |β′P (si−1+)|

δ (r) dr

≤ Ci (s)
1

2
N |∆iβ|2 |KP (si−1)|+ Si (s) |fP,i (1)|

where

Ci (s) := cosh
(√

N |β′P (si−1+)| (s− si−1)
)

and

Si (s) :=
sinh

(√
N |β′P (si−1+)| (s− si−1)

)
√
N |β′P (si−1+)|

.
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Using the following estimate

sinh
(√

N |β′P (si−1+)| (s− si−1)
)

√
N |β′P (si−1+)|∆i

≤ cosh
(√

N |β′P (si−1+)| (s− si−1)
) (s− si−1)

∆i

≤ eN |∆iβ|2 , (6.37)

we obtain

f (s) ≤ eN |∆iβ|2
(

1

2
N |∆iβ|2 |KP (si−1)|+ |P| |fP,i (1)|

)
(6.38)

≤ eNK
2
γ |P|

2γ

(
1

2
NK2

γ |P|
2γ sup

i∈{1,··· ,n}
|KP (si−1)|+ |P| sup

i∈{1,··· ,n},s∈[0,1]

|fP,i (s)|

)
.

Then apply (6.8 )and (6.30), we get

f (s) ≤ Uq |P |2γ ,

where

Uq = eNK
2
γ |P|

2γ

(
1

2
NK2

γ + |P|1−2γ

)
eN

2
∑n
k=1|∆kβ|2

is a random variable with finite moments of all orders. Therefore,

E

[
sup

i∈{1,··· ,n},r∈[0,1]

|KP (r)−KP (r)|q
]
≤ Cq |P|2qγ

Remark 6.17 Gronwall’s inequality gives the control of same order.

Lemma 6.18 For all q ≥ 1, γ ∈
(
0, 1

2

)
, there exists a constant Cq,γ such that

E
[
sup
s∈P
|KP (s)−Ks|q

]
≤ Cq,γ |P|q (6.39)
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Proof. Rewrite, for all i ∈ {1, · · · , n}:

KP (si) = fP,i−1 (si) fP,i−1 (1)−1

(
i−1∑
j=0

fP,j+1 (1) f ∗P,j+1 (1)

)
|P| (6.40)

and

Ksi = T̃siT̃
−1
1

∫ si

0

(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗
dr

First define

K̃si := T̃siT̃1T̃
−1
1

∫ si

0

(
T̃1T

−1
r

)(
T̃1T

−1
r

)∗
dr,

we will show, for all q ≥ 1,

sup
s∈P

∣∣∣K̃s −Ks

∣∣∣q ≤ Cq |P|q (6.41)

Recall from (4.7 ) that T̃1T̃
−1
r satisfies the following ODE,

d

dr

(
T̃1T̃

−1
r

)
=

1

2

(
T̃1T̃

−1
r

)
Ricũr .

So by Lemma 4.8, ∣∣∣∣ ddr (T̃1T̃
−1
r

)∣∣∣∣ ≤ N
∣∣∣T̃1T̃

−1
r

∣∣∣ ≤ N

Therefore

∣∣∣(T̃1T̃
−1
r

)(
T̃1T̃

−1
r

)∗
−
(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗∣∣∣ ≤ ∫ r

r

∣∣∣∣ dds [(T̃1T̃
−1
s

)(
T̃1T̃

−1
s

)∗]∣∣∣∣ ds
≤ 2

∫ r

r

∣∣∣∣ dds (T̃1T̃
−1
s

)∣∣∣∣ ∣∣∣(T̃1T̃
−1
s

)∗∣∣∣ ds
≤ C (r − r)

≤ C |P| .
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So

∣∣∣K̃si −Ksi

∣∣∣ ≤ ∣∣∣T̃siT̃−1
1

∣∣∣ ∫ si

0

∣∣∣(T̃1T̃
−1
r

)(
T̃1T̃

−1
r

)∗
−
(
T̃1T̃

−1
r

)(
T̃1T̃

−1
r

)∗∣∣∣ dr
≤ C |P| .

Since the right hand side is independent of i, we proved (6.41). Secondly, define:

K̂si := T̃siT̃
−1
1

(
i−1∑
j=0

fP,j+1 (1) f ∗P,j+1 (1)

)
|P|

and we are about to show, for all q ≥ 1, γ ∈
(
0, 1

2

)
, there exists a constant Cq,γ > 0

such that:

E
[
sup
s∈P

∣∣∣K̂s − K̃s

∣∣∣q] ≤ Cq,γ |P|qγ (6.42)

for all j ∈ {1, · · · , n} ,

∣∣∣fP,j+1 (1) f ∗P,j+1 (1)−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
∣∣∣fP,j+1 (1) f ∗P,j+1 (1)− fP,j+1 (1)

(
T̃1T̃

−1
sj+1

)∗∣∣∣
+
∣∣∣fP,j+1 (1)

(
T̃1T̃

−1
sj+1

)∗
−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
(
|fP,j+1 (1)|+

∣∣∣T̃1T̃
−1
sj+1

∣∣∣) ∣∣∣fP,j+1 (1)− T̃1T̃
−1
sj+1

∣∣∣
by (6.8),

|fP,j+1 (1)| ≤ eN
2
∑n
k=1|∆kβ|2

also
∣∣∣T̃1T̃

−1
sj+1

∣∣∣ ≤ 1, so

∣∣∣fP,j+1 (1) f ∗P,j+1 (1)−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
(
eN

2
∑n
k=1|∆kβ|2 + 1

)
sup

j∈{1,··· ,n}

∣∣∣fP,j+1 (1)− T̃1T̃
−1
sj+1

∣∣∣
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and for all i ∈ {1, · · · , n}

∣∣∣K̂si − K̃si

∣∣∣ ≤ |P| i−1∑
j=0

∣∣∣fP,j+1 (1) f ∗P,j+1 (1)−
(
T̃1T̃

−1
sj+1

)(
T̃1T̃

−1
sj+1

)∗∣∣∣
≤
(
eN

2
∑n
k=1|∆kβ|2 + 1

)q
sup

j∈{1,··· ,n}

∣∣∣fP,j+1 (1)− T̃1T̃
−1
sj+1

∣∣∣q .
Then use Holder’s inequality and Lemma 6.12, we get:

E
[
sup
s∈P

∣∣∣K̂s − K̃s

∣∣∣q] ≤ Cq,γ |P|qγ

Lastly, consider K̂si −KP (si). Use (6.40) we have

∣∣∣K̂si −KP (si)
∣∣∣

≤
∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1

1

∣∣∣ ∣∣∣∣∣
(

i−1∑
j=0

fP,j+1 (1) f ∗P,j+1 (1)

)
|P|

∣∣∣∣∣
≤
∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1

1

∣∣∣ sup
j∈{1,··· ,n}

|fP,j+1 (1)|2

Notice that:

∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1
1

∣∣∣
=
∣∣∣fP,i−1 (si)− T̃siT̃−1

si−1

∣∣∣ ∣∣fP,i−1 (1)−1
∣∣

+
∣∣∣T̃siT̃−1

si−1

∣∣∣ ∣∣∣∣(T̃1T̃
−1
si−1

)−1

− fP,i−1 (1)−1

∣∣∣∣ .
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From Lemma 5.5, we know
∣∣fP,i−1 (1)−1

∣∣ ≤ 1, and∣∣∣∣(T̃1T̃
−1
si−1

)−1

− fP,i−1 (1)−1

∣∣∣∣
≤
∣∣∣∣(T̃1T̃

−1
si−1

)−1
∣∣∣∣ ∣∣∣T̃1T̃

−1
si−1
− fP,i−1 (1)

∣∣∣ ∣∣fP,i−1 (1)−1
∣∣

≤
∣∣∣T̃1T̃

−1
si−1
− fP,i−1 (1)

∣∣∣ .
So ∣∣∣fP,i−1 (si) fP,i−1 (1)−1 − T̃siT̃−1

1

∣∣∣ ≤ 2 sup
1≤i,j≤n

∣∣∣T̃sj T̃−1
si
− fP,i (sj)

∣∣∣ .
Then apply Lemma 6.13 and 6.10 and use Holder’s inequality, we get

E
[
sup
s∈P

∣∣∣K̂s −KP (s)
∣∣∣q] ≤ Cq,γ |P|qγ (6.43)

Combine (6.41),(6.42) and (6.43) we prove Lemma 6.18.

Lemma 6.19 For all q ≥ 1, there exists a constant Cq > 0 such that

sup
s∈[0,1]

|Ks −Ks|q ≤ Cq |P|q

Proof. By the fundamental theorem of calculus, we have:

Ks = −1

2

∫ s

0

RicũrKrdr +

∫ s

0

(
T̃1T̃

−1
r

)∗
dr

use Lemma 4.8 and boundness of Ric, we have

|Ks| ≤ N

∫ s

0

|Kr| dr + C

where C and N are two constants independent of s. Then apply the Gronwall’s

inequality, we get:

|Ks| ≤ CeNs ≤ CeN (6.44)
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so sup
s∈[0,1]

|Ks| is bounded. Then use the fundamental theorem of calculus again from

s to s, we have:

Ks −Ks =− 1

2

∫ s

s

RicũrKrdr +

∫ s

s

(
T̃1T̃

−1
r

)∗
dr

=− 1

2

∫ s

s

Ricũr (Kr −Kr) dr +

∫ s

s

(
T̃1T̃

−1
r

)∗
dr

+
1

2

∫ s

s

RicũrKrdr

so

|Ks −Ks| ≤
N

2

∫ s

s

|Kr −Kr| dr + C |P|

By Gronwall’s inequality, we have

|Ks −Ks| ≤ C |P| e
N
2

Therefore:

sup
s∈[0,1]

|Ks −Ks|q ≤ Cq |P|q

Theorem 6.20 For all q ≥ 1, γ ∈
(
0, 1

2

)
there ∃ constant Cq,γ(independent of i),

such that:

E

[
sup
s∈[0,1]

|Ks −KP (s)|q
]
≤ Cq,γ |P|γq (6.45)

Proof. Notice that for all s ∈ [0, 1], s ∈ [si−1, si] for some i ∈ {1, · · · , n}, so:

|KP (s)−Ks| ≤ |KP (s)−KP (si−1)|

+
∣∣KP (si−1)−Ksi−1

∣∣+
∣∣Ksi−1

−Ks

∣∣
then apply Lemma 6.16, 6.18 and 6.19 we prove Theorem 6.20
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6.2.4 Convergence of JP (s) to J̃s

Recall that

JP (s) := KP (s) KP (1)−1 uP (1)−1X (π ◦ uP (1)) = KP (s) KP (1)−1HP (6.46)

where HP : Wo (M)→ Rd is given by

HP (σ) = uP (σ, 1)−1X (π ◦ uP (σ, 1))

and everything is interpreted following the Notation 3.14.

Proposition 6.21 Let J̃s be as in Definition 4.17, then

sup
s∈[0,1]

∣∣∣JP (s)− J̃s
∣∣∣→ 0 in L∞− (Wo (M)) .

Proof. We have, ∣∣∣JP (s)− J̃s
∣∣∣ ≤ I + II + III,

where

I = |Ks −KP (s)|
∣∣KP (1)−1

∣∣ |HP |
II = |Ks|

∣∣KP (1)−1 −K−1
1

∣∣ |HP |
III = |Ks|

∣∣K−1
1

∣∣ ∣∣∣HP − H̃∣∣∣
For I: Since X has compact support, |HP (σ)| is bounded. From Lemma 5.5,∣∣KP (1)−1

∣∣ ≤ 1. Then combine Theorem 6.20, we have:

E [Iq] ≤ Cq,γ |P|qγ (6.47)
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For II : Notice that

KP (1)−1 −K−1
1 = KP (1)−1 (K1 −KP (1)) K−1

1 ,

so:

II ≤ |Ks|
∣∣KP (1)−1

∣∣ |K1 −KP (1)|
∣∣K−1

1

∣∣ |HP |
≤ C sup

s∈[0,1]

|Ks| |K1 −KP (1)| .

Recall that (6.44) gives the boundness of sup
s∈[0,1]

|Ks| and use Theorem 6.20 again

we have:

E [IIq] ≤ Cq,γ |P|qγ (6.48)

For III: Since σP → σ(Wrong) pointwise and H is bounded, so

III → 0 in Lq (W ) (6.49)

Combine (6.47),(6.48) and (6.49) we prove this proposition.

6.3 Convergence of X̃
tr,ν1P
P to

(
X̃
)tr,ν

Recall

X̃
tr,ν1
P

P = −X̃P +

∫ 1

0

〈J ′P (s+) , dβP,s〉+ divX̃P

and

(
X̃
)tr,ν

= −X̃ +
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
−

d∑
α=1

〈
XZα

(
C̃H̃

)
, eα

〉
.

Notation 6.22 FC∞b := {f ∈ FC∞ : f is bounded }.

Theorem 6.23 For any f ∈ FC∞b , X̃
tr,ν1
P

P fP − X̃ tr,νf → 0 in L∞− (Wo (M)) .
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Proof. Because of Proposition 6.21, JP − ZΦ → 0 uniformly in L∞− (Wo (M)), so

X̃PfP− X̃f → 0 in L∞− (Wo (M)) . So it suffices to prove the following Proposition.

Proposition 6.24 Keeping the notation above,

∫ 1

0

〈J ′P (s+) , dβP,s〉 −
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
→ 0 (6.50)

in L∞− (Wo (M)).

Definition 6.25 f : HP (M) 7→ R is called a smooth cylinder function on HP (M)

if there exists a partition

P := {0 < s1 < · · · < sn ≤ 1}

of [0, 1] and a smooth function F : O (M)n → R such that:

f (σ) = F (us1 (σ) , us2 (σ) , . . . , usn (σ))

Denote this space by FC∞P .

Proposition 6.26 Continuing the notation above,

divX̃P −
d∑

α=1

〈
−XZα

(
C̃H̃

)
, eα

〉
→ 0 in L∞− (Wo (M)) .
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Proof of lemma 6.24.

∫ 1

0

〈J ′P (s+) , dβP,s〉 =
n∑
i=1

〈
JP (si)− JP (si−1)

∆i

,∆iβ

〉
=

n∑
i=1

〈J ′P (si−1) ,∆iβ〉+
n∑
i=1

〈∫ si

si−1

J ′′P (s) (s− si−1) ds,∆iβ

〉
= I + II

where

I =
n∑
i=1

〈J ′P (si−1) ,∆iβ〉

II =
n∑
i=1

〈∫ si

si−1

J ′′P (s) (s− si−1) ds,∆iβ

〉
=

n∑
i=1

〈
1

∆2
i

∫ si

si−1

RuP (∆iβ, JP (s)) ∆iβ (s− si−1) ds,∆iβ

〉
. (6.51)

Since the curvature tensor is anti-symmertric, II = 0.

I =
n∑
i=1

〈
f ∗P,i (1) KP (1)−1HP ,∆iβ

〉
=

n∑
i=1

〈
KP (1)−1HP , fP,i (1) ∆iβ

〉
=

〈
KP (1)−1HP ,

n∑
i=1

fP,i (1) ∆iβ

〉

For all i ≥ 1, s ∈ [si−1, si] , define gi (s) = Si (s)−Ci (s)Si−1 then Taylor’s expansion

of gi at si−1 gives:

gi (s) = −Si−1 + (s− si−1) I +

∫ s

si−1

RuP (r) (β′P (r) , gi (r)) β
′
P (r) (s− r) dr
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so

|gi (s)| ≤ |Si−1 − (s− si−1) I|+N |β′P (si−1)|2
∫ s

si−1

|gi (r)| (s− r) dr.

By Gronwall’s inequality and Lemma 6.6, we have:

|Si − CiSi−1| = |gi (si)| ≤
N

6
K2
γ |P|

2γ+1 e
1
2
N |∆iβ|2

Therefore, by Lemma 6.4,

|fP,i (1)− fP,i−1 (1)| ≤ 1

|P|
|Cn|·· · ··|Ci+1|·|Si − CiSi−1| ≤

N

6
K2
γ |P|

2γ e
∑n
i=1N |∆iβ|2

and∣∣∣∣∣
n∑
i=1

fP,i (1) ∆iβ −
n∑
i=1

fP,i−1 (1) ∆iβ

∣∣∣∣∣
q

≤ |P|1−q
[

n∑
i=1

|fP,i (1)− fP,i−1 (1)|q |∆iβ|q
]

≤ Cq,γK
3q
γ |P|

3qγ−q e
∑n
i=1 qN |∆iβ|2

pick 1
2
> γ > 1

3
, we know:

E

[∣∣∣∣∣
n∑
i=1

fP,i (1) ∆iβ −
n∑
i=1

fP,i−1 (1) ∆iβ

∣∣∣∣∣
q]
→ 0 (6.52)

Notice that fP,i−1 (1) = fP,0 (1) f−1
P,0 (si−1) Si−1

∆i−1
, so

〈
KP (1)−1HP ,

n∑
i=1

Ti−1∆iβ

〉
(6.53)

=

〈
f ∗P,0 (1) KP (1)−1HP ,

n∑
i=1

f−1
P,0 (si−1)

Si−1

∆i−1

∆iβ

〉
(6.54)
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Use Lemma 5.5, we have
∣∣f−1
P,0 (si−1)

∣∣ ≤ 1, then use Lemma 6.6, we get:

∣∣∣∣f−1
P,0 (si−1)

Si−1

∆i−1

− f−1
P,0 (si−1)

∣∣∣∣ |∆iβ| ≤
∣∣∣∣ Si−1

∆i−1

− I
∣∣∣∣ |∆iβ| ≤

NK3
γ |P|

3γ+1

6
e
N
2
|∆i−1β|2

Therefore for all q ≥ 1,∣∣∣∣∣
n∑
i=1

f−1
P,0 (si−1)

Si−1

∆i−1

∆iβ −
n∑
i=1

f−1
P,0 (si−1) ∆iβ

∣∣∣∣∣
q

(6.55)

≤ |P|1−q
n∑
i=1

N qK3q
γ |P|

3qγ+q

6q
e
Nq
2
|∆i−1β|2 (6.56)

≤ Cq |P|3γq+1 K3q
γ e

∑n
i=1

Nq
2
|∆i−1β|2 (6.57)

therefore:

E

[∣∣∣∣∣
n∑
i=1

f−1
P,0 (si−1)

Si−1

∆i−1

∆iβ −
n∑
i=1

f−1
P,0 (si−1) ∆iβ

∣∣∣∣∣
q]
≤ Cq |P|3γq+1 |P|→0−→ 0

Rewrite
n∑
i=1

f−1
P,0 (si−1) ∆iβ as

∫ 1

0

fP (s) dβs,

where fP (s) :=
∑n

i=1 f
−1
P,0 (si−1) 1[si−1,si) (s)

Consider

Mr :=

∫ r

0

fP (s) dβs −
∫ r

0

T̃−1
s dβs

by Burkholder-Davis-Gundy inequality, for all q ≥ 1,

E

[
sup
r∈[0,1]

|Mr|q
]
≤ CqE

[
〈M〉

q
2
1

]
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Since

〈M〉1 ≤
∫ 1

0

∣∣∣fP (s)− T̃−1
s

∣∣∣2 ds ≤ 2

∫ 1

0

∣∣∣fP (s)− T̃−1
s

∣∣∣2 ds+ 2

∫ 1

0

∣∣∣T̃−1
s − T̃−1

s

∣∣∣2 ds,
(6.58)

we have

∫ 1

0

∣∣fP (s)− T−1
s

∣∣2 ds =
n∑
i=1

∣∣∣f−1
P,0 (si−1)− T̃−1

si−1

∣∣∣2 ∆i

≤
n∑
i=1

∣∣f−1
P,0 (si−1)

∣∣2 ∣∣∣fP,0 (si−1)− T̃si−1

∣∣∣2 ∣∣∣T̃−1
si−1

∣∣∣2 ∆i

≤ sup
s∈P

∣∣∣fP,0 (s)− T̃s
∣∣∣2 (6.59)

and

∫ 1

0

∣∣∣T−1
s − T̃−1

s

∣∣∣2 ds =

∫ 1

0

∣∣∣∣∫ s

s

(
T̃−1
r

)′
dr

∣∣∣∣2 ds ≤ ∫ 1

0

N |s− s|2 ds ≤ N |P|2 .

Therefore,

〈M〉
q
2
1 ≤ Cq

(∫ 1

0

∣∣fP (s)− T−1
s

∣∣2 ds) q
2

+ Cq

(∫ 1

0

∣∣∣T−1
s − T̃−1

s

∣∣∣2 ds) q
2

≤ Cq

(
sup
s∈P

∣∣∣fP,0 (s)− T̃s
∣∣∣q + |P|q

)
.

Then use Theorem 6.13 we have

E
[
〈M〉

q
2
1

]
≤ Cq |P|qγ

from which it follows

∫ 1

0

fP (s) dβs →
∫ 1

0

T̃−1
s dβs in Lq (Wo (M)) .
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Then since

KP (1)−1HP → K−1
1 H̃ in Lq (Wo (M))

and

f ∗P,0 (1)→ T ∗1 in Lq (Wo (M)) ,

we have

I →
〈
T ∗1 K−1

1 H̃,

∫ 1

0

T̃−1
s dβs

〉
in Lq (W ) (6.60)

Lastly, notice that:

K1 = T̃1

∫ 1

0

(
T ∗r T̃r

)−1

drT ∗1 .

So

K−1
1 = T−1

1
∗
C̃

and

〈
T ∗1 K−1

1 H̃,

∫ 1

0

T̃−1
s dβs

〉
=

〈
C̃H̃,

∫ 1

0

T̃−1
s dβs

〉
(6.61)

=
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
(6.62)

So combine (6.60) and (6.51) and we get

∫ 1

0

〈J ′P (s+) , dβP,s〉 −
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
→ 0 in L∞− (Wo (M)) .

Before we prove Lemma 6.26 we need some tools to allow us to differentiate with

respect to paths on H1.

Lemma 6.27 Differentiating w.r.t. path:

First we retain a definition from Chapter 0: Fix s ∈ [0, 1], consider an one

parameter family of paths {σt} ⊂ HP (M) and denote by ut (·) : the Horizontal lift

of σt. For simplicity, we will denote ut (1) by ut, σ0 by σ, the derivative with respect
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to t by · and the derivative with respect to s by ′. For any X ∈ Γ (TM), define

fX : O (M) 7→ Rd ' ToM by

fX (u) = u−1 (X ◦ π) (u)

Then:

d

dt
|0fX (ut) =

(
d

dt
|0ut
)
fX = u−1

0 ∇σ̇(1)X (6.63)

−
∫ 1

0

Ru0(r)

(
u0 (r)−1 σ′ (r+) , u0 (r)−1 σ̇ (r)

)
drfX (u0)

(6.64)

Proof. Based on the decomposition of O (M) as in Definition A.12, we have:

u̇0 = Ba (u0) + Ã (u0)

where a = u−1
0

d
dt
|0σt (1) = u−1

0 σ̇ (1) ∈ ToM and Ã (u0) = d
dt
|0u0e

tA for some

A = u−1
0
Out
dt

(0) ∈ so(d) and Ba (u0) = d
dt
|0//t (γ)u0 where γ satisfies γ̇ (0) = u0a

and γ (0) = σ (1). In this example, we can choose γ(·) to be σ· (1). So

Ba (u0) fX =
d

dt
|0u−1

0 //−1
t (γ) (X ◦ π) (//t (γ)u0) = u−1

0 ∇ ˙σ(s)X

and

Ã (u) fX =
d

dt
|0e−tAu−1 (X ◦ π)

(
uetA

)
= −Au−1

0 X (σ (1)) = −Afx (u0)

Following the computation in Theorem 3.3 in [3], we know that

A =

∫ 1

0

Ru0(r)

(
u0 (r)−1 σ′ (r+) , u0 (r)−1 σ̇ (r)

)
dr.
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Proof of Proposition 6.26. Because of Lemma 4.43, it suffices to prove:

divX̃P → divX ◦ E1 (σ)−
d∑

α=1

〈
CA1 〈Zα〉 H̃, eα

〉
.

Recall that

JP (s) = KP (s) KP (1)−1HP

So

J ′P (sj−1+) = K′P (sj−1+) KP (1)−1HP = f ∗P,j (1) KP (1)−1HP

and

Xhα,jJ ′P (sj−1+) = I + II + III

where

I =
(
Xhα,jf ∗P,j (1)

)
KP (1)−1HP (6.65)

II = f ∗P,j (1)
(
Xhα,jKP (1)−1)HP

III = f ∗P,j (1) KP (1)−1 (Xhα,jHP
)

and this proposition is an easy corollary of the following three lemmas.

Lemma 6.28 If M has constant sectional curvature, then

d∑
α=1

n∑
j=1

〈III, eα〉
√

∆j − divX ◦ E1 +
d∑
i=1

〈∫ 1

0

Rũs (δβs, Zei (s)) H̃, C̃∗ei

〉
→ 0

in L∞− (Wo (M)) .

Proof. By Lemma 6.27,

d∑
α=1

n∑
j=1

〈III, eα〉
√

∆j = IV + V
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where

IV =
d∑

α=1

n∑
j=1

〈
f ∗P,j (1) KP (1)−1 u−1∇

u
√

∆jfP,j(1)eα
X, eα

〉√
∆j

and

V = −
d∑

α=1

n∑
j=1

〈
f ∗P,j (1) KP (1)−1

∫ 1

0

RuP (r) (β′P (r+) , hα,j (r)) drHP , eα

〉√
∆j

Let’s compute IV first. View L (·) = u−1∇u·X as a linear functional on Rd,then

IV =
n∑
j=1

d∑
α=1

〈
f ∗P,j (1) KP (1)−1 u−1L (Tjeα) , eα

〉
∆j

=
n∑
j=1

Trace
(
f ∗P,j (1) KP (1)−1 u−1L (Tj)

)
∆j

=
n∑
j=1

Trace
(
∆jfP,j (1) f ∗P,j (1) KP (1)−1 u−1L

)
= Trace

((
n∑
j=1

∆jfP,j (1) f ∗P,j (1)

)
KP (1)−1 u−1L

)

= Trace
(
u−1L

)
= divX ◦ E1.

Then we claim

Claim 6.29

V −
d∑

α=1

〈
CA1 〈Zα〉 H̃, eα

〉
→ 0 in L∞− (Wo (M))
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Proof of claim. Recall that

V = −
d∑

α=1

n∑
j=1

〈
f ∗P,j (1) KP (1)−1

∫ 1

0

RuP (r) (β′P (r+) , hα,j (r)) drHP , eα

〉√
∆j

∫ 1

0

RuP (r)

(
β′P (r+) ,

1√
∆j

hα,j (r)

)
dr =

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr

=

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr + e0

where e0 := e0,1 + e0,2

e0,1 =

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr −
∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr

and

e0,2 =

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr −
∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr

Since M has constant sectional curvature, Ru is independent of u, and therefore

e0,1 = 0

For e0,2, we have the following estimate:

|e0,2|q ≤ N sup
r∈[0,1]

|β′P (r+)|q sup
r∈[0,1],j∈{1,··· ,n}

|fP,j (r)− fP,j (r)|q

use (6.14) we have

|e0,2|q ≤ Cq,γK
q
γ |P|

qγ−1 |P|2qγ eqN
∑n
k=1|∆kβ|2K2q

γ

(
1 +

NKγ |P|γ

6

)q
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And from which it follows:

E [|e0,2|q] ≤ Cq,γ |P|3qγ−1 (6.66)

Picking γ > 1
3
, so 3qγ − 1 > 0 for any q ≥ 1 and E [|e0,2|q]→ 0 as |P| → 0.

So it remains to consider:

∫ 1

0

RuP (r) (β′P (r+) , fP,j (r) eα) dr =
n∑
k=1

RuP (sk−1) (∆kβ, fP,j (sk−1) eα)

=

∫ 1

0

g1 (s) dβs

where

g1 (s) =
n∑
k=1

RuP (sk−1) (·, fP,j (sk−1) eα) 1[sk−1,sk) (s) .

Define

g2 (s) =
n∑
k=1

Rũ(sk−1) (·, fP,j (sk−1) eα) 1[sk−1,sk) (s)

g3 (s) =
n∑

k=j+1

Rũ(sk−1)

(
·, T (sk−1) T̃−1

sj
eα

)
1[sk−1,sk) (s)

g4 (s) = Rũ(s)

(
·, T̃sT̃−1

sj
eα

)
1[sj ,1] (s)

g5 (s) = Rũ(s)

(
·, T̃sT̃−1

sj
eα

)
1[sj ,1] (s) .

Consider

e1 (r) =

∫ r

0

g1 (s) dβs −
∫ r

0

g2 (s) dβs

then

〈e1〉 (r) ≤
∫ r

0

|g1 (s)− g2 (s)|2 ds
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so for all q ≥ 1,

E
[
〈e1〉

q
2 (1)

]
≤ E

[∫ 1

0

|g1 (s)− g2 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣RuP (sk−1) −Ru(sk−1)

∣∣q |fP,j (sk−1)|q ∆k

]

≤ E

[
AqP sup

j∈{1,··· ,n},s∈[0,1]

|fP,j (s)|q
]

where

AP := sup
s∈[0,1]

∣∣RuP (s) −Rũ(s)

∣∣
Using Theorem 6.2 we know

E [AqP ] ≤ Cq,γ |P|qγ ∀γ ∈
(

0,
1

2

)
, q ≥ 1

Then by Holder’s inequality,

E

[
AqP sup

j∈{1,··· ,n},s∈[0,1]

|fP,j (s)|q
]
≤ Cq,γ |P|qγ

then apply Burkholder-Davies-Gundy inequality, we get:

E [|e1 (1)|q] ≤ CqE
[
〈e1〉

q
2 (1)

]
≤ Cq,γ |P|qγ (6.67)

Then consider

e2 (r) =

∫ r

0

g2 (s) dβs −
∫ r

0

g3 (s) dβs

then

〈e2〉 (r) ≤
∫ r

0

|g2 (s)− g3 (s)|2 ds
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so for all q ≥ 1,

E
[
〈e2〉

q
2 (1)

]
≤ E

[∫ 1

0

|g2 (s)− g3 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣Rũ(sk−1)

∣∣q ∣∣∣fP,j (sk−1)− T̃sk−1
T̃−1
sj

∣∣∣q ∆k

]

≤ E
[
Nsup

j,s

∣∣∣fP,j (s)− T̃sT̃−1
sj

∣∣∣q]

By Holder’s inequality and Theorem 6.13,

E
[
Nsup

j,s

∣∣∣fP,j (s)− T̃sT̃−1
sj

∣∣∣q] ≤ Cq,γ |P|qγ

then apply Burkholder-Davies-Gundy inequality, we get:

E [|e2 (1)|q] ≤ CqE
[
〈e2〉

q
2 (1)

]
≤ Cq,γ |P|qγ (6.68)

Then consider

e3 (r) =

∫ r

0

g3 (s) dβs −
∫ r

0

g4 (s) dβs

then

〈e3〉 (r) ≤
∫ r

0

|g3 (s)− g4 (s)|2 ds

so for all q ≥ 1,

E
[
〈e3〉

q
2 (1)

]
≤ E

[∫ 1

0

|g3 (s)− g4 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣Rũ(sk−1)

∣∣q ∫ sk

sk−1

∣∣∣T̃sT̃−1
sj
− T̃sk−1

T̃−1
sj

∣∣∣q ds]
≤ Cq |P|q
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then apply Burkholder-Davies-Gundy inequality, we get:

E [|e3 (1)|q] ≤ CqE
[
〈e3〉

q
2 (1)

]
≤ Cq,γ |P|q

Then consider

g (s) = Rũs

(
·, T̃sT̃−1

sj
eα

)
1[sj ,1] (s)

e4 (r) =

∫ r

0

g4 (s) dβs −
∫ r

0

g5 (s) dβs

then

〈e4〉 (r) ≤
∫ r

0

|g5 (s)− g4 (s)|2 ds

so for all q ≥ 1,

E
[
〈e4〉

q
2 (1)

]
≤ E

[∫ 1

0

|g5 (s)− g4 (s)|q ds
]

≤ E

[
n∑
k=1

∣∣∣T̃sT̃−1
sj

∣∣∣q ∫ sk

sk−1

∣∣∣Rũs −Rũsk−1

∣∣∣q ds]
≤ E

[
Kq
γ

]
|P|qγ

then apply Burkholder-Davies-Gundy inequality, we get:

E [|e4 (1)|q] ≤ CqE
[
〈e4〉

q
2 (1)

]
≤ Cq,γ |P|qγ (6.69)

Combine (6.66), (6.67), (6.68), (6.69), we get:

∣∣∣∣∣V +
d∑

α=1

n∑
j=1

〈(
T̃−1
sj

)∗
T̃ ∗1K

−1
1

∫ 1

sj

Rũr

(
dβr, T̃rT̃

−1
sj
eα

)
H̃, eα

〉
∆j

∣∣∣∣∣→ 0
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in L∞− (Wo (M)). Now change the pair (eα, eα) to
(
T̃sjeα,

(
T̃−1
sj

)∗
eα

)
, we have

d∑
α=1

n∑
j=1

〈(
T̃−1
sj

)∗
T̃ ∗1K

−1
1

∫ 1

sj

Rũr

(
dβr, T̃rT̃

−1
sj
eα

)
H̃, eα

〉
∆j

=
d∑

α=1

n∑
j=1

〈
T̃ ∗1K

−1
1

∫ 1

sj

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

sj

(
T̃−1
sj

)∗
eα

〉
∆j

=
d∑

α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T−1

s

(
T−1
s

)∗
eα

〉
ds.

Then we consider

I =
d∑

α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds

−
d∑

α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds

Notice that

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
−
〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
≤ II + III

where

II =

〈
T̃ ∗1K

−1
1

∫ s

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
and

III = (6.70)〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃,
(
T̃−1
s

(
T̃−1
s

)∗
− T̃−1

s

(
T̃−1
s

)∗)
eα

〉
(6.71)



122

|II|q ≤ Cq

∣∣∣∣∫ s

s

Rũr

(
dβr, T̃reα

)∣∣∣∣q
By Burkholder-Davies-Gundy inequality,

E [|II|q] ≤ Cq |P|
q
2

Also notice that:

E [|III|q] ≤ Cq |P|q E
[∣∣∣∣∫ s

s

Rũr

(
dβr, T̃reα

)∣∣∣∣q] ≤ Cq |P|q

So use Holder’s inequality, we have:

E [|I|q] ≤ Cq

d∑
α=1

n∑
j=1

∫ sj

sj−1

E [|II|q + |III|q]

≤ Cq

d∑
α=1

n∑
j=1

∫ sj

sj−1

(
|P|

q
2 + |P|q

)
= Cq |P|

q
2

from which it follows:

V +
d∑

α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds→ 0

in L∞− (Wo (M)) .

The last step is to show a change of integration order:

d∑
α=1

∫ 1

0

〈
T̃ ∗1K

−1
1

∫ 1

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds (6.72)

=
d∑

α=1

∫ r

0

〈
T̃ ∗1K

−1
1

∫ 1

0

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds
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Then the claim is easily seen following changing the pair (eα, eα) to

(∫ r

0

T̃−1
s

(
T̃−1
s

)∗
dseα,

[(∫ r

0

T̃−1
s

(
T̃−1
s

)∗
ds

)−1
]∗
eα

)

and recognizing

T̃r

∫ r

0

T̃−1
s

(
T̃−1
s

)∗
dseα = Zα (r) .

now we prove (6.72). Define:

f (s) =
d∑

α=1

∫ t

0

〈
T̃ ∗1K

−1
1

∫ t

s

Rũr

(
dβr, T̃reα

)
H̃, T̃−1

s

(
T̃−1
s

)∗
eα

〉
ds

g (s) =
d∑

α=1

∫ r

0

〈
T̃ ∗1K

−1
1

∫ t

0

Rũr

(
dβr, T̃reα

)
H̃,

∫ r

0

T̃−1
s

(
T̃−1
s

)∗
dseα

〉
then

df =
d∑

α=1

〈
T̃ ∗1K

−1
1 Rũt

(
dβt, T̃teα

)
H̃,

∫ t

0

T̃−1
s

(
T̃−1
s

)∗
dseα

〉
and f (0) ≡ 0 notice that

dg =
d∑

α=1

〈
T̃ ∗1K

−1
1 Rũt

(
dβt, T̃teα

)
H̃,

∫ t

0

T̃−1
s

(
T̃−1
s

)∗
dseα

〉
= df

and g (0) = 0. Therefore, (6.72) is obtained by observing that left hand side= f1 =

g1 = right hand side.

Lemma 6.30 If M has constant sectional curvature,
∑d,n

α,j=1,1 〈I, eα〉
√

∆j → 0 as

|P| → 0 in L∞− (Wo (M)) .

Proof. Define g̃j (s) := Xhα,jfP,j (s) and gj (s) := g̃j (s) − g̃j (s). Then we know



124

that gj (s) satisfies the following ODE: for k = j, · · · , n
g′′j (s) = AP,k (s) gj (s) + ˙AP,k (s) (fP,j (s)− fP,j (s)) s ∈ [sk−1, sk]

gj (s) = 0

g′j (s) = 0

where

˙AP,k (s) =
d

dt
|0
(
RuP (t,s) (β′P (t, s) , ·) β′P (t, s)

)
.

For s ∈ [sk−1, sk] , we know:

gj (s) =

∫ s

sk−1

Sk (s− r) ȦkP (r) (fP,j (r)− fP,j (sk−1)) dr

use Lemma 6.6 and 6.14, we have:

|fP,i (s)− fP,i (s)|q ≤
N q

2q
|∆kβ|2q eN |∆kβ|2e

1
2
qN

∑n
k=1|∆kβ|2

(
1 +

NKγ |P|γ

6

)q
≤ Cq |P|2qγ eqN

∑n
k=1|∆kβ|2K2q

γ

(
1 +

NKγ |P|γ

6

)q
and

|Sk (s− r)| ≤ (s− r)
(

1 +
N

6
K2
γ |P|

2γ e
1
2
N

∑n
i=1|∆iβ|2

)
therefore:

|gj (s)|

≤
∫ s

sk−1

|Sk (s− r)|
∣∣∣ȦkP (r)

∣∣∣ |fP,j (r)− fP,j (sk−1)| dr

≤ C sup
k∈{1,...,n},r∈[0,1]

∣∣∣ ˙AP,k (r)
∣∣∣ |P|2γK2

γ

(
1 +

NKγ |P|γ

6

)
eN

∑n
i=1|∆iβ|2

∫ s

sk−1

(s− r) dr

= C sup
k∈{1,...,n},r∈[0,1]

∣∣∣ȦkP (r)
∣∣∣ |P|2γ+2K2

γ

(
1 +

NKγ |P|γ

6

)
eN

∑n
i=1|∆iβ|2
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so

|g̃j (1)| ≤
n∑
k=j

|gj (sk)| (6.73)

≤ C sup
k∈{1,...,n},r∈[0,1]

∣∣∣ȦkP (r)
∣∣∣ |P|2γ+1K2

γ

(
1 +

NKγ |P|γ

6

)
eN

∑n
i=1|∆iβ|2

(6.74)

lastly we analyze sup
k∈{1,...,n},r∈[0,1]

∣∣∣ȦkP (r)
∣∣∣ :

ȦkP (r) =

(
d

dt
|0RuP (t,s)

)
(β′P (s) , ·) β′P (s) +RuP (s)

(
d

dt
|0β′P (t, s) , ·

)
β′P (s)

+RuP (s) (β′P (s) , ·) d
dt
|0β′P (t, s)

since M has the constant sectioanl curvature, then

(
d

dt
|0RuP (t,s)

)
(β′P (s) , ·) β′P (s) = 0.

notice that

β′P (t, s) = //s (σt)
−1 σ′P (t, s) ,

apply Lemma 6.27 and we have:

Xhα,jβ′P (sk−1+) =
δjkeα√

∆j

−
∫ sk−1

0

RuP (τ) (β′P (τ+) , hα,j (τ)) dτβ′P (sk−1+) (6.75)
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Therefore,

∣∣∣ȦkP (r)
∣∣∣ ≤ N

∣∣Xhα,jβ′P (sk−1+)
∣∣ |β′P (sk−1)|

≤ N

(
1√
|P|

+Nsup
j,s
|hα,j (s)| sup

s∈[0,1]

|β′P (s)|2
)
|β′P (sk−1)|

≤ N

(
1√
|P|

+Nf (Kγ)
√
|P| |P|2(γ−1)

)
Kγ |P|γ−1

≤ f (Kγ) |P|3γ−
5
2

where f (Kγ) is some random variable in L1 (Wo (M)), so

|g̃j (1)| ≤ Cf (Kγ) |P|5γ−
3
2 (6.76)

From there we can see:

d,n∑
α,j=1,1

〈I, eα〉
√

∆j =

d,n∑
α,j=1,1

〈(
Xhα,jT ∗j

)
K−1
P (1)HP , eα

〉√
∆j

=
d∑

α=1

〈
n∑
j=1

(
g̃∗j (1)

√
|P|
)

KP (1)−1HP , eα

〉

From (6.76) we know that
∑n

j=1

(
g̃∗j (1)

√
|P|
)
→ 0 in L∞− (W ), also notice that

KP (1)−1HP → K (1)−1 H̃ in L∞− (Wo (M)), so:

d∑
α=1

〈
n∑
j=1

(
g̃∗j (1)

√
|P|
)

KP (1)−1HP , eα

〉
→ 0 in L∞− (Wo (M)) .

Lemma 6.31 If M has constant sectional curvature, then

d,n∑
α,j=1,1

〈II, eα〉
√

∆j → 0
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as |P| → 0 in L∞− (Wo (M)) .

Proof. Notice that

Xhα,j
(
KP (1)−1) = −KP (1)−1Xhα,j (KP (1)) KP (1)−1

so ∣∣Xhα,j
(
KP (1)−1)∣∣ ≤ ∣∣Xhα,j (KP (1))

∣∣
then use g̃j (s) := Xhα,j (KP (s)) and the Lemma follows from a Lemma 6.30-type

argument.



Chapter 7

Proof of Main Theorem

Before proving Theorem 1.11, first we need some supplementary results.

Recall that the manifold considered in Theorem 1.11 is a Hadamard manifold with

constant sectional curvature.

Proposition 7.1 For any f ∈ FC∞, X ∈ Γ (TM) with compact support,

X̃ tr,νf ∈ L∞− (Wo (M) , ν) .

Lemma 7.2

d∑
α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
· f ∈ L∞− (Wo (M) , ν) .

Proof. For any v ∈ Cd,

〈(∫ 1

0

T̃−1
r T ∗ (r)−1 dr

)
v, v

〉
=

∫ 1

0

∥∥T ∗ (r)−1 v
∥∥2
dr ≥ C ‖v‖2

So ∥∥∥∥∥
(∫ 1

0

T̃−1
r T ∗ (r)−1 dr

)−1
∥∥∥∥∥ ≤ 1

C

128
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Since X has compact support and is smooth, ‖X (·)‖ ∈ C0 (M) and

∥∥∥H̃ (σ)
∥∥∥ = ‖X ◦ E1 (σ)‖ ≤ sup ‖X‖ < C

also notice that C (σ) is independent of (σ), so we have

∥∥∥〈C (σ) H̃ (σ) , eα

〉∥∥∥ ≤ ‖C (σ)‖
∥∥∥H̃ (σ)

∥∥∥ ≤ C
∥∥∥H̃ (σ)

∥∥∥ ≤ C.

Since [
T̃ (s)−1

]
is bounded[

T̃ (s)−1
]
∈ L∞ ([0, 1])

Using Burkholder’s inequality, we get:

∫ 1

0

〈[
T̃ (s)−1

]∗
eα, dβs

〉
∈ L∞− (Wo (M))

Therefore,

d∑
α=1

〈
C (σ) H̃ (σ) , eα

〉∫ 1

0

〈[
T̃ (s)−1

]∗
eα, dβs

〉
· f ∈ L∞− (W0 (M))

Lemma 7.3

d∑
α=1

〈
C (σ)X

Z∫ ·
0[T̃−1

r ]
∗
eαdrH̃, eα

〉
· f ∈ L∞− (Wo (M) , ν) .
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Proof. From Lemma 4.43 we know:

−
d∑

α=1

〈
X
Z∫ ·

0[T̃ (r)−1]∗eαdr
(
C (σ) H̃ (σ)

)
, eα

〉
= divX ◦ E1 (σ)−

d∑
α=1

〈
CA

〈
Z∫ ·

0[T̃ (r)−1]
∗
eαdr

〉
(1) H̃ (σ) , eα

〉
. (7.1)

where

A
〈
Z∫ ·

0[T̃ (r)−1]
∗
eαdr

〉
(1) =

∫ 1

0

Rũ(s)

(
Z∫ ·

0[T̃ (r)−1]
∗
eαdr

(s) , δβs

)
(7.2)

Since
∫ ·

0

[
T̃ (r)−1

]∗
eαdr is bounded, by Gronwall’s inequality one can see that

Z∫ ·
0[T̃ (r)−1]

∗
eαdr

is bounded and thus using Burkholder’s inequality, we have:

A
〈
Z∫ ·

0[T̃ (r)−1]
∗
eαdr

〉
(1) ∈ L∞− (Wo (M)) . (7.3)

It is easy to see divX ◦ E1 (σ) is bounded because X ∈ Γ (TM) with compact

support. Therefore:

d∑
α=1

〈
C (σ)X

Z∫ ·
0[T̃−1

r ]
∗
eαdrH̃, eα

〉
· f ∈ L∞− (Wo (M) , ν) .

Proof of Proposition 7.1. Recall that from Lemma 4.43 and 4.42, we have:

X̃ tr,νf = −XZΦf +
d∑

α=1

〈
C̃H̃, eα

〉∫ 1

0

〈(
T̃−1
s

)∗
eα, dβs

〉
· f

−
d∑

α=1

〈
C (σ)X

Z∫ ·
0[T̃−1

r ]
∗
eαdrH̃, eα

〉
· f

A similar argument as in Lemma 4.43 can show that X̃f ∈ L∞− (Wo (M)), then

combine Lemma 7.2 and 7.3 and we can prove Proposition 7.1.

Lemma 7.4 For any f ∈ FC∞P , X̃
tr,ν1
P

P f ∈ L∞− (HP (M) , ν1
P) .
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Proof. From Theorem 6.23 we know that

X̃
tr,ν1
P

P f (φ (bP))− X̃f̃ → 0 in L∞− (Wo (M)) . (7.4)

where f̃ (σ) = f (ũ) ∈ FC∞.

From Proposition 7.1 we know X̃f̃ ∈ L∞− (Wo (M)), so X̃
tr,ν1
P

P f (φ (bP)) ∈

L∞− (Wo (M)).

Since the law of φ (bP) under ν is ν1
P , so

X̃
tr,ν1
P

P f ∈ L∞−
(
HP (M) , ν1

P
)
⇐⇒ X̃

tr,ν1
P

P f (φ (bP)) ∈ L∞− (Wo (M)) .

Notation 7.5 Denote by g any one of {gi}di=0 defined in Theorem 3.3 and
{
g(m)

}
m

be the approximating sequence in L
d
d−1 (M) as defined in Remark 3.5.

Lemma 7.6 Define g̃ (σ) = g (σ (1)) and g̃(m) (σ) = g(m) (σ (1)), then for any

f ∈ FC∞, ∫
W (M)

g̃ (σ) X̃ tr,νf (σ) dν (σ) makes sense

and

lim
m→∞

∫
W (M)

g̃(m) (σ) X̃ tr,νf (σ) dν (σ) =

∫
W (M)

g̃ (σ) X̃ tr,νf (σ) dν (σ)

Proof. Since ν {σ : σ (1) = e} = 0, so g̃ is ν − a.s. well-defined. In particular, for

any p > 0,

∫
W (M)

|g̃ (σ)|p dν (σ) =

∫
M

|g (x)|p p1 (0, x) dλ (x) (7.5)
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Since g has compact support and p1 (0, ·) ∈ C∞ (M),

∫
M

|g (x)|p p1 (0, x) dλ (x) ≤ C ‖g‖pLp(M) (7.6)

Since g ∈ L1+ 1
d−1 (M), we have

g̃ ∈ L1+ 1
d−1 (Wo (M)) .

Notice that from Proposition 7.1, we have X̃ tr,νf ∈ L∞− (Wo (M)), so by Holder’s

inequality, we get: ∫
W (M)

∣∣∣g̃ (σ) X̃ tr,νf (σ)
∣∣∣ dν (σ) <∞.

To prove (7.6), just notice that ∪msuppg(m) is compact, so we have, following the

same argument as before:

∫
W (M)

∣∣g̃(m) − g̃
∣∣p (σ) dν (σ) =

∫
M

∣∣g(m) (x)− g (x)
∣∣p p1 (0, x) dλ (x) (7.7)

≤ C
∥∥g(m) − g

∥∥p
Lp(M)

(7.8)

Using Holder’s inequality again we can get (7.6).

Lemma 7.7 Define g̃ : HP (M)→ R to be g̃ (σ) = g (σ (1)), then

g̃ ∈ L
d
d−1

(
HP (M) , ν1

P
)
.

Proof. Apply the Co-area formula to |g̃|
d
d−1 , we have:

∫
HP (M)

|g̃ (σ)|
d
d−1 dν1

P (σ) =

∫
M

|g (x)|
d
d−1 hP (x) dx

where hP (x) ∈ C (M) is defined in Theorem 3.33. Since g has compact support,
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we know: ∫
M

|g (x)|
d
d−1 hP (x) dx ≤ C

∫
M

|g (x)|
d
d−1 dx (7.9)

Therefore g̃ ∈ L
d
d−1 (HP (M) , ν1

P).

Lemma 7.8 Define g̃ (σ) = g (σ (1)) and g̃(m) (σ) = g(m) (σ (1)), then for any

f ∈ FC∞P , ∫
HP (M)

g̃ (σ) X̃ tr,ν1
Pf (σ) dν1

P (σ) makes sense

and

lim
m→∞

∫
HP (M)

g̃(m) (σ) X̃ tr,ν1
Pf (σ) dν1

P (σ) =

∫
HP (M)

g̃ (σ) X̃ tr,ν1
Pf (σ) dν1

P (σ)

Proof. Using Lemma 7.4, Lemma 7.7 and Holder’s inequality, we can easily see

∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) makes sense

Then apply the co-area formula, we have:

∫
HP (M)

∣∣(g̃(m) − g̃
)

(σ)
∣∣ d
d−1 dν1

P (σ) =

∫
M

|(gm − g) (x)|
d
d−1 hP (x) dx

Since hP (x) ∈ C (M) and ∪msupp (gm − g) is compact, so

∫
M

|(gm − g) (x)|
d
d−1 hP (x) dx→ 0 as m→ 0

and

g̃(m) − g̃ → 0 in L
d
d−1

(
dνP

1
)
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Using Holder’s inequality again we have:∣∣∣∣∫
HP (M)

(
g̃(m) (σ)− g̃ (σ)

)
X̃
tr,ν1
P

P f (σ) dν1
P (σ)

∣∣∣∣ (7.10)

≤
∥∥g̃(m) − g̃

∥∥
L

d
d−1 (ν1

P)

∥∥∥X̃ tr,ν1
P

P f
∥∥∥
Ld(ν1

P)
. (7.11)

Therefore

lim
m→∞

∫
HP (M)

g̃(m) (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) =

∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ)

Theorem 7.9 For any f ∈ FC∞P :

lim
|P|→0

∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) =

∫
W (M)

g̃ (σ) X̃ tr,ν f̃ (σ) dν (σ)

Proof. Since the law of φ ◦ bP under ν is νP
1, we have:

∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ) = Eν

[
g̃ · X̃ tr,ν1

P
P f (φ ◦ bP)

]
(7.12)

Also ∫
W (M)

g̃ (σ) X̃ tr,ν f̃ (σ) dν (σ) = Eν
[
g̃ · X̃ tr,ν f̃

]
(7.13)

So ∣∣∣∣∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ)−

∫
W (M)

g̃ (σ) X̃ tr,ν f̃ (σ) dν (σ)

∣∣∣∣ (7.14)

≤ E
[∣∣∣g̃ · X̃ tr,ν1

P
P f (φ ◦ bP)− g̃ · X̃ tr,ν f̃

∣∣∣] (7.15)

≤ E
[
|g̃ (φ ◦ βP)| ·

∣∣∣X̃ tr,ν1
P

P f (φ ◦ bP)− X̃ tr,ν f̃
∣∣∣]+ E

[
|g̃ (φ ◦ bP)− g̃| ·

∣∣∣X̃ tr,ν f̃
∣∣∣]

(7.16)
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From Lemma 7.7, we have

g̃ (φ ◦ βP) ∈ L
d
d−1 (Wo (M))

and from Theorem we have

X̃
tr,ν1
P

P f (φ ◦ bP)− X̃ tr,ν f̃ → 0 in L∞ (Wo (M)) .

So by Holder’s inequality,

E
[
|g̃ (φ ◦ βP)| ·

∣∣∣X̃ tr,ν1
P

P f (φ ◦ bP)− X̃ tr,ν f̃
∣∣∣]→ 0 as |P| → 0. (7.17)

Then we consider

E
[
|g̃ (φ ◦ bP)− g̃| ·

∣∣∣X̃ tr,ν f̃
∣∣∣]

By Holder’s inequality,

E
[
|g̃ (φ ◦ bP)− g̃| ·

∣∣∣X̃ tr,ν f̃
∣∣∣] ≤ E [|g̃ (φ ◦ bP)− g̃|p]

1
p · E

[∣∣∣X̃ tr,ν f̃
∣∣∣q] 1

q

(7.18)

where p > 0 and q > 0 satisfying 1
p

+ 1
q

= 1.

From Proposition 7.1 we know X̃ tr,ν f̃ ∈ L∞− (Wo (M)), therefore in order

to show∣∣∣∣∫
HP (M)

g̃ (σ) X̃
tr,ν1
P

P f (σ) dν1
P (σ)−

∫
W (M)

g̃ (σ) X̃ tr,ν f̃ (σ) dν (σ)

∣∣∣∣→ 0 as |P| → 0,

(7.19)

It suffices to show there exists p > 1 such that

Eν [|g̃ (φ ◦ bP)− g̃|p]→ 0. (7.20)
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Notice that for some ε > 0 to be determined,

|g̃ (φ ◦ bP)− g̃|p(1+ε) ≤ Cp,ε

(
|g̃ (φ ◦ bP)|p(1+ε) + |g̃|p(1+ε)

)
It is easy to see that as long as p (1 + ε) < d

d−1
, E
[
|g̃|p(1+ε)

]
<∞.

Lemma 7.10 For any p ≤ d
d−1

,

sup
P

E [|g̃ (φ ◦ bP)|p] <∞. (7.21)

Proof. Since the law of φ ◦ bP under ν is ν1
P , we have:

E [|g̃ (φ ◦ bP)|p] =

∫
HP (M)

|g̃|p (σ) dν1
P (σ) . (7.22)

Then apply co-area formula, we get:

∫
HP (M)

|g̃|p (σ) dν1
P (σ) =

∫
M

|g (x)|p hP (x) dx (7.23)

where hP (x) is defined as in Theorem 3.12.

Apply Proposition 3.32 we know that:

sup
P
hP (x) <∞ (7.24)

Since g has compact support, supP hP (x) is bounded on its support and the bound

is independent of P , from there it follows that (using Holder’s inequality):

sup
P

∫
M

|g (x)|p hP (x) dx <∞ (7.25)

Apply Lemma 7.10 with a choice of ε such that p (1 + ε) < d
d−1

, we get:

sup
P

Eν
[
|g̃ (φ ◦ bP)− g̃|p(1+ε)

]
<∞ (7.26)



137

Therefore

{|g̃ (φ ◦ bP)− g̃|p} is uniformly integrable under ν.

Then consider

UP :=
{
σ ∈ Wo (M) : π ◦ Φ−1 ◦ πP ◦ Φ̃ ◦ Σ (σ) = e

}
(7.27)

Since the law of Φ−1 ◦ πP ◦ Φ̃ ◦ Σ under ν is ν1
P , denote

VP := {σ ∈ HP (M) : E1 (σ) = e} (7.28)

Combine this with uniform integrability, we get

Then

ν1
P (VP) = ν (UP) .{

b ∈ W0

(
Rd
)

: (π ◦ φ ◦ πP) (b) = e
}

Apply the co-area formula with f (x) = 1{x=e}, we get:

ν1
P (VP) =

∫
HP (M)

f (σ (1)) dν1
P (σ) =

∫
M

f (x)hP (x) dx = 0. (7.29)

From there we can construct a ν−Null set:

N := ∪PUP ∪ {σ ∈ Wo (M) : E1 (σ) = e} .

Recall from Corollary 6.3, we have

Eν [|uP (1)− ũ (1)|q]→ 0 as |P| → 0 for any q ≥ 1. (7.30)

This implies that

|uP (1)− ũ (1)| → 0 in probability.
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Notice that g ∈ C∞ (M/e) and π : O (M) → M is smooth, so excluding N , we

have

|g̃ (φ ◦ bP)− g̃| = |g ◦ π(uP (1))− g ◦ π (ũ (1))| → 0 in probability. (7.31)

Combine 7.20 and 7.31 we know

E
[
|g̃ (φ ◦ bP)− g̃| ·

∣∣∣X̃ tr,ν f̃
∣∣∣]→ 0

Notation 7.11 Denote by FC∞1− the subspace of FC∞consisting of functions that

are Fs – measurable for some s < 1.

Proposition 7.12 Let f ∈ L1 (Wo (M) , dν) be Fs – measurable for some s < 1,

then

lim
m→∞

∫
Wo(M)

δ(m)
x (Σ1) fdν =

∫
Wo(M)

fdνx.

Here Fs := σ (Σr : 0 ≤ r ≤ s) where Σr (σ) = σ (r) is the canonical process on

Wo (M) .

Proof. First off recall that νx and ν are absolutely continuous relative to one

another when restricted to Fs and in fact,

dνx = p1−s (Σs, x) dν, (7.32)

where pt (x, y) is the heat kernel for (M, g) . As p1−s (Σs, x) is bounded on M, we

may conclude that f ∈ L1 (Wo (M) , dνx) for all x ∈M so that
∫
Wo(M)

fdνx is well

defined.
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By the Markov property

∫
Wo(M)

δ(m)
x (Σ1) fdν =

∫
Wo(M)

(
P1−sδ

(m)
x

)
(Σs) fdν, (7.33)

where (using dz for the Riemannian volume measure),

(
P1−sδ

(m)
x

)
(y) =

∫
M

p1−s (y, z) δ(m)
x (z) dz → p1−s (y, x) as m→∞.

Using this limiting result, Eq. (7.32), the fact that

∣∣(P1−sδ
(m)
x

)
(y)
∣∣ ≤ sup

y,z∈M
p1−s (y, z) =: Ks <∞,

along with DCT, we may pass to the limit in Eq. (7.33) to find

lim
m→∞

∫
Wo(M)

δ(m)
x (Σ1) fdν =

∫
Wo(M)

p1−s (Σs, x) fdν =

∫
Wo(M)

fdνx.

Proof of Theorem 1.11. Recall from Remark 3.5 that we can approximate the

delta mass δx on M in the following way:

δ(m)
x := g

(m)
0 +

d∑
j=1

Xjg
(m)
j ∈ C∞0 (M)

and

δ(m)
x → δx in D′ (M)

where
{
g

(m)
j : 0 ≤ j ≤ d,m ≥ 1

}
⊂ C∞0 (M) and {Xj : 1 ≤ j ≤ d} ⊂ Γ (TM) with

compact supports. Using the Orthogonal lift, we get:

˜
δ

(m)
x :=

˜
g

(m)
0 +

d∑
j=1

XP,j
˜
g

(m)
j ∈ C∞0 (M)
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where g̃ (σ) = g ◦ E1 (σ) for any g ∈ C (M) and XP,i is the Orthogonal lift of Xi

into Γ (THP (M)).

For any 0 ≤ j ≤ d (with the convention that XP,0 = I), using integration

by parts, we get:

∫
HP (M)

(
˜
g

(m)
0 +

d∑
j=1

XP,j
˜
g

(m)
j

)
fdν1

P =

∫
HP (M)

(
˜
g

(m)
0 · f +

d∑
j=1

X
tr,ν1
P

P,j f · ˜
g

(m)
j

)
dν1
P

(7.34)

Now let m→∞, from Corollary 3.33 we have:

LHS of 7.34 =

∫
HP,x(M)

fdν1
P,x

Apply Lemma 7.8 to each
(

˜
g

(m)
j , XP,j

)
, we have:

RHS of 7.34 =

∫
HP (M)

(
g̃0 · f +

d∑
j=1

X
tr,ν1
P

P,j f · g̃j

)
dν1
P (7.35)

Then let |P| → 0, from Theorem 7.9 we have:

lim
|P|→0

∫
HP,x(M)

fdν1
P,x =

∫
Wo(M)

(
g̃0 · f +

d∑
j=1

X̃j
tr,ν
f · g̃j

)
dν (7.36)

According to Lemma 7.6,

∫
Wo(M)

(
g̃0 · f +

d∑
j=1

X̃j
tr,ν
f · g̃j

)
dν (7.37)

= lim
m→∞

∫
Wo(M)

(
˜
g

(m)
0 · f +

d∑
j=1

X̃j
tr,ν
f · ˜

g
(m)
j

)
dν (7.38)
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Then use integration by parts formula developed in Lemma 4.42 we have:

∫
Wo(M)

(
˜
g

(m)
0 · f +

d∑
j=1

X̃j
tr,ν
f · ˜

g
(m)
j

)
dν =

∫
Wo(M)

(
˜
g

(m)
0 +

d∑
j=1

X̃j
˜
g

(m)
j

)
· fdν

(7.39)

=

∫
Wo(M)

δ̃x
(m)
fdν. (7.40)

If f ∈ FC∞1−, then apply Proposition 7.12 we have

∫
Wo(M)

δ̃x
(m)
fdν →

∫
Wo(M)

fdνx.

Therefore

lim
|P|→0

∫
HP,x(M)

fdν1
P,x =

∫
Wo(M)

fdνx. (7.41)



Appendix A

Riemannian Manifolds

A.1 Hadamard Manifold

Definition A.1 (Hadamard Manifold) A Hadamard manifold is a complete

Riemannian manifold, simply connected and with non–positive sectional curvature.

Hadamard manifolds share very nice global properties as recorded in the following

theorem as the Theorem of Hadamard.

Theorem A.2 If M is a Hadamard manifold, then M is diffeomorphic to Rd,

d = dimM ; more precisely for any x ∈M , expx : TxM →M is a diffeomorphism.

A.2 Connections on Principal Bundle

Notation A.3 Denote by Γ∞ (TM) the smooth sections of the tangent bundle.

You can think of this as the space of smooth vector field.

Definition A.4 (Affine connection) An affine connection is a map ∇ : Γ (TM)×

Γ (TM) 7→ Γ (TM) or (X, Y ) 7→ ∇XY satisfying the following conditions: for

142
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X, Y, Z ∈ Γ (TM) and f, g ∈ C∞ (M) :

∇XfY = (Xf)Y + f∇XfY

∇X (Y + Z) = ∇XY +∇XZ

∇fX+gYZ = f∇XZ + g∇YZ

Definition A.5 An affine connection ∇ is said to be metric compatible if the

following is true for any X, Y, Z ∈ Γ (TM):

∇Zg (X, Y ) = g (∇ZX, Y ) + g (X,∇ZY )

A metric compatible connection is also called the metric connection.

Definition A.6 For any X, Y, Z ∈ Γ (TM) , define the Riemann curvature

tensor R : Γ (TM) × Γ (TM) × Γ (TM) → Γ (TM) and torsion tensor T :

Γ (TM)× Γ (TM)→ Γ (TM) to be:

R (X, Y, Z) = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

T (X, Y ) = ∇XY −∇YX − [X, Y ]

A connection is said to be symmetric if T ≡ 0.

Theorem A.7 (Levi-Civita) There exists a unique symmetric metric connection,

which is called the Levi-Civita connection.

Throughout this paper we stick with the Levi-Civita connection ∇.

Definition A.8 (Principal bundle) A principal bundle (P,G, π,M, {Uα} , φα)

consists of the following data:

• P,M are smooth manifolds. π : P →M smooth submersion is called the fibre

projection map.
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• A Lie group G is said to be the structure group of P : i.e. G admits a free

and transitive group action on P on the right:

(G,P ) 3 (g, u)→ u · g ∈ P

• (Local trivialization) {Uα} is an open covering of M , then φα : π−1 (Uα)→

Uα ×G is a diffeomorphism.

Example A.9 (Frame bundle L (M)) Let G be the general linear group GL (d,R)

where d = dimM and for each x ∈M , denote by L (M)x the linear frames of TxM

( Here we will identify a linear frame with a linear isomorphism from Rd → TxM ).

Then L (M) := ∪x∈ML (M)x can be made a principal bundle with structure group

GL (d,R) . We will call this principal bundle the frame bundle over M , simply

denoted by L (M) .

Example A.10 (Orthonormal frame bundle (O (M) , π)) See Definition 2.1

Definition A.11 (Fundamental vector field) Given a principal bundle P over

M with structure group G, for any p ∈M , dentote by Gp := π−1 ({p}) the fiber at

p = π (u) . Let VuP be the tangent space of P at u which is tangent to Gp. Since

Gp
∼= G, so

dimVuP = dimG = dim g.

One can construct a base of VuP in the following way: take a basis {Ai} of

g, consider

u (s) := u exp (sAi)

then u (s) is a differentiable curve on VuP with u (0) = u. Define:

A†i :=
d

ds
|0 u (s)
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This is called the fundamental vector field generated by Ai. Using substitution, one

can see that the map A → A† is a real vector space isomorphism. (Actually this

is a Lie algebra isomorphism.) However, there is no unique way to specify the

“orthogonal compliment” of this vector bundle V P unless some more structures are

involved, which is called connection on P.

Definition A.12 (Connection on principal bundle) A (smooth) connection

on a principal bundle P is a choice of (smooth) decomposition of the tangent bundle

TP over P as follows, for any u ∈ P :

TuP = VuP ⊕HuP

and

HugP = Rg∗HuP

where Rg : P 3 u→ ug ∈ P is the right action of G on P.

Definition A.13 (Connection one-form) A connection one-form is a Lie-algebra-

valued one form on P , i.e. ω ∈ g⊗ T ∗P satisfying the following requirement:

(i) ω
(
A†
)

= A for any A ∈ g

(ii) R∗gω = Adg−1ω for any g ∈ G
(A.1)

here Adg−1X = g−1Xg for any X ∈ g.

Remark A.14 Given a smooth connection on P, we can naturally get a connection

one-form ω in the following way: for each X ∈ TuP , there exists unique AX ∈ g

and XH ∈ HuP such that X = A†X +XH . define ω (X) = AX . It is easy to see that

ω satisfies A.1. Conversely, given a smooth connection one-form ω, we can define

HuP = kerωu and it gives a smooth connection on P.

Remark A.15 It is known that a smooth connection on a principal bundle P

induces a smooth connection on its associated vector bundles. In particular, it gives
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rise to a connection on M defined as in Definition A.4. There are usually two ways

to see that. One is to use the connection on P to derive “horizontal lift” and further

parallel translation, then use parallel translation to define covariant derivative and

further a connection on M. Interested readers can refer to the Chapter III section 1

in the classical book [27] by Kobayashi and Nomizu for a more detailed exposition.

The other way is to use local one-forms of ω in P and the push-forward of the

representation of G to derive a compatible local one-forms on M from which one

can construct a connection on M .

Conversely, an affine connection on M gives rise to a connection on the

frame bundle L (M) introduced on Example A.9, see Chapter III section 2 in [27]

and section 2.1 in [22]. In particular, if the connection ∇ is a metric connection on

M , the connection on L (M) reduces to a connection on O (M) . Throughout this

paper we will fix ∇ to be the Levi-civita connection and consider only the connection

on O (M) induced by ∇. We also fix a u0 ∈ O (M)o so that O (M) becomes a

pointed manifold and further we use u0 to identify ToM with Rd.

Remark A.16 π induces an isomorphism π∗ : HuO (M)→ Tπ(u)M following the

decomposition specified by ∇. This is a result of the fact that π∗ {VuO (M)} and

dimTuO (M) = d + dim so (d) = d + dimVuO (M). Therefore for any x ∈ M ,

u ∈ π−1 ({x}), X ∈ TxM , there exists a unique tangent vector X∗ ∈ HuO (M) such

that π∗X
∗ = X. X∗ is called the horizontal lift of X to u. ss



Appendix B

ODE estimates

Proposition B.1 Consider an ODE:

Y ′′ (s) = A (s)Y (s)

where Y (s) , A (s) ∈Mn×n (R) are real n× n matrices and A (s) is positive semi-

definite.

Denote by {C (s) , S (s)}the solutions to this ODE with initial values:

C (0) = I, C ′ (0) = 0 and S (0) = 0, S ′ (0) = I

Recall that in this paper we use eig (X) to denote the set of eigenvalues of matrix

X. Then

• If λ ∈ eig (C (s)) , then |λ| ≥ 1.

• If λ ∈ eig (S (s)) , then |λ| ≥ s.

Proof. For all v ∈ Cd, define v (s) := C (s) v, then:

〈v′′ (s) , v (s)〉 = 〈A (s) v (s) , v (s)〉 ≥ 0.
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Therefore,
d

ds
〈v′ (s) , v (s)〉 = 〈v′′ (s) , v (s)〉+ ‖v′ (s)‖2 ≥ 0.

Since 〈v′ (0) , v (0)〉 = 0, so 〈v′ (s) , v (s)〉 ≥ 0. Therefore

d

ds
‖v (s)‖2 = 2Re 〈v′ (s) , v (s)〉 ≥ 0.

Notice that ‖v (0)‖2 = ‖v‖2, so

‖v (s)‖2 ≥ ‖v‖2 .

Therefore if λ ∈ eig (C (s)), choose v ∈ Cd to be an eigenvector associated to λ,

then

‖λv‖2 = ‖C (s) v‖2 ≥ ‖v‖2 .

So

|λ| ≥ 1.

Therefore C (s) is invertible and

‖C (s)‖ = max
λ∈eig(C(s))

|λ| ≥ 1.

A lower bound result for ‖S(s)v‖ can be found in [29, Appendix E]:

‖S(s)v‖ ≥ s ‖v‖ .

From there it follows

If λ ∈ eig (S (s)) , then |λ| ≥ s
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and S (s) is invertible with

‖S (s)‖ = max
λ∈eig(S(s))

|λ| ≥ s.

Definition B.2 Denote Ru(s) (ξ, ·) ξ by Aξ (s), (Cξ (s) , Sξ (s))t is the fundamental

solution to the ODE:

V ′ (s) =

 0 1

Aξx 0

V (s)

Proposition B.3 If R is bounded by a constant N , i.e. |R (ξ, ·) ξ| ≤ N |ξ|2 , then

|Cξ (s)| ≤ cosh
(√

N |ξ| s
)
≤ e

1
2
N |ξ|2s2 (B.1)

|Sξ(s)| ≤
√
N |ξ| s

sinh
(√

N |ξ| s
)

√
N |ξ| s

≤ cosh
(√

N |ξ| s
)√

N |ξ| s

≤
√
N |ξ| se

1
2
N |ξ|2s2 (B.2)

|Sξ (s)− sI| ≤ N |ξ|2 s3

6
e

1
2
N |ξ|2s2 (B.3)

and

|Cξ (s)− I| ≤ N |ξ|2 s2

2
e

1
2
N |ξ|2s2 (B.4)

Proof. B.1 and B.2 are quite elementary, so here we only resent the proof of B.3

and B.4.

By Taylor’s expansion,

Sξ (s) = sI +

∫ s

0

Rũr (ξ, Sξ (r)) ξ (s− r) dr.
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|Sξ (s)− sI| ≤ N |ξ|2
∫ s

0

|Sξ (r)| (s− r) dr

≤ N |ξ|2
∫ s

0

[|Sξ (r)− rI|+ r] (s− r) dr

Define f (s) := |Sξ (s)− sI| , then we have:

f (s) ≤
∫ s

0

N |ξ|2 (s− r) f (r) dr +N |ξ|2 s
3

6

By Gronwall’s inequality:

f (s) ≤ N |ξ|2 s
3

6
e

1
2
N |ξ|2s2

Then we consider Cξ (s) :

Cξ (s) = I +

∫ s

0

Rũr (ξ, Cξ (r)) ξ (s− r) dr.

So

|Cξ (s)− I| ≤ N |ξ|2
∫ s

0

|Cξ (r)| (s− r) dr

≤ N |ξ|2
∫ s

0

[|Cξ (r)− I|+ 1] (s− r) dr.

Define f (s) := |Cξ (s)− I| , then we have:

f (s) ≤
∫ s

0

N |ξ|2 (s− r) f (r) dr +N |ξ|2 s
2

2
.

By Gronwall’s inequality:

f (s) ≤ N |ξ|2 s
2

2
e

1
2
N |ξ|2s2 .
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Calculus on Differential Forms

Theorem C.1 (change of variable formula on manifold) If F : M → N is

an orientation preserving diffeomorphism and α is a d−form on N with d = dimM .

Then F ∗α is a d−form on M and the following is true:

∫
M

F ∗α =

∫
N

α. (C.1)

In particular, if M and N are Riemannian manifolds with volume forms volM and

volN , then

F ∗volN = JFvolM . (C.2)

where JF =
√

det (DF )trDF.

Proof. Since the integral of forms are independent of the choice of open coverings,

so it suffices to prove for in a chart (U, x) of N ,

∫
F−1(U)

F ∗α =

∫
U

α

Locally on U , α = f (x) dx1∧ · · ·∧dxd and F ∗α = f ◦Fd (x1 ◦ F )∧ · · ·∧d (xd ◦ F ).
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Choose a chart map y on F−1 (U) ∼= Rd, then

F ∗α = f ◦ F ◦ y−1d
(
x1 ◦ F ◦ y−1

)
∧ · · · ∧ d

(
xd ◦ F ◦ y−1

)
(C.3)

= f ◦ F ◦ y−1 det

(
∂ (xi ◦ F ◦ y−1)

∂yj

)
dy1 ∧ · · · ∧ dyd (C.4)

Notice that F is orientation preserving, so Equation C.1 is easily follows from the

change of variable formula on Rd applied to x ◦ F ◦ y−1 : Rd → Rd. Equation C.1

is thus easily obtained by using orthonormal frames on M and N .

C.1 A Structure Theorem for divg
(
X̃
)

This section is devoted to a structure theorem for divg

(
X̃
)

which is t

Let π : (M, g)→ (N, h) be a submersion of two smooth Riemannian mani-

folds. To each m ∈M and v ∈ Tπ(m)N, let v̂ := πtr
∗m (π∗mπ

tr
∗m)
−1
v ∈ TmM so that v̂

is the unique shortest vector in TmM such that π∗mv̂ = v. So if X ∈ Γ (TN) is a vec-

tor field on N, then X̂ ∈ Γ (TM) is defined by X̂ (m) = πtr
∗m (π∗mπ

tr
∗m)
−1
X (π (m))

and we have π∗X̂ = X ◦π. Finally, let Volg and Volh be the volume forms on (M, g)

and (N, h) respectively.

Lemma C.2 If K := dimM > k := dimN, then there exists a unique K − k –

form (γ) on M such that;

1. Volg = (π∗Volh) ∧ γ

2. iv̂γ = 0 for any v ∈ Tπ(m)N and m ∈M.

Proof. Uniqueness. Assuming such a γ exists, choose an orthonormal basis
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{e1, . . . , ek} for Tπ(m)N such that Volh (e1, . . . , ek) = 1. Then it follows that

Volg (ê1, . . . , êk, ·, . . . , ·) = (π∗Volh) (ê1, . . . , êk) ∧ γ

= Volh (π∗ê1, . . . , π∗êk) ∧ γ

= Volh (e1, . . . , ek) ∧ γ = γ

which shows γ is unique if it exists.

Existence. Now suppose that {e1, . . . , ek} is a local orthonormal frame on

M in a neighborhood of π (m) such that Volh (e1, . . . , ek) = 1. Then by above we

must define

γ := Volg (ê1, . . . , êk, ·, . . . , ·) in a neighborhood of m.

It is now straightforward to check that this γ has the desired properties and is

defined independent of the choice of frame.

Corollary C.3 If X ∈ Γ (TN) and X̂ ∈ Γ (TM) is its lift as described above, then

divg

(
X̂
)

= divh (X) ◦ π + ρX̂

where ρX̂ (m) is a function on M depending only on X̂ (m) . {To compute ρX̂

explicitly will require a better understanding of dγ.]

Proof. From Lemma C.2 we learn,

divg

(
X̂
)

Volg = d [iX̂ Volg] = d [iX̂ ((π∗Volh) ∧ γ)]

= d [(iX̂ (π∗Volh) ∧ γ)]

= [d (iX̂ (π∗Volh))] ∧ γ + (−1)k (iX̂ (π∗Volh) ∧ dγ) .
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Since

iX̂ (π∗Volh) = (π∗Volh)
(
X̂,−−

)
= Volh

(
π∗X̂, π∗ −−

)
= Volh (X ◦ π, π∗ −−) = π∗ (iX Volh)

it follows that

d (iX̂ (π∗Volh)) = d (π∗ (iX Volh)) = π∗ (d (iX Volh))

= π∗ (divh (X) Volh) = divh (X) ◦ π · π∗Volh .

Combining these equations then shows,

divg

(
X̂
)

Volg = divh (X) ◦ π · (π∗Volh) ∧ γ + (−1)k (iX̂ (π∗Volh) ∧ dγ)

= [divh (X) ◦ π + ρX̂ ] · Volg

where

ρX̂ =
(−1)k (iX̂ (π∗Volh) ∧ dγ)

Volg
.
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Some matrix analysis

Consider

a :=


a1

a2

...

an

 ∈ Rn and S =

 In×n

atr



so that

Str =
[
In×n a

]
.

Notice that S is a (n+ 1)×n and Str is n× (n+ 1) matrix. For x ∈ Rn and u ∈ R

we have

Str

 x

u

 = x+ ua and Sx =

 x

a · x


StrSx = x+ (a · x) a = x+ a atrx =

(
I + aatr

)
x.

Thus choosing an orthonormal basis {ui}ni=1 for Rn such that u1 = â we learn that

StrSu1 =
(
1 + ‖a‖2)u1 and StrSui = ui for i > 1.
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Thus it follows that det (StrS) = 1 + ‖a‖2 . We record the higher dimensional

generalization of the result above. It is used in computing some determinants in

the thesis.

Theorem D.1 Suppose that V is a finite dimensional inner product space, A :

V n → V is a linear map, and

S :=

 IV n×V n

A

 : V n → V n+1.

Then

det
[
StrS

]
= det

[
IV + AAtr

]
.

Proof. First observe that

StrS =
[
I Atr

] I

A

 = I + AtrA.

We let {uj}nj=1 ⊂ V be an orthonormal basis of eigenvectors for AAtr : V → V so

that AAtruj = λjuj and then let vj := Atruj. Then it follows that

AtrAvj = AtrAAtruj = Atrλjuj = λjA
truj = λjvj.

Now extend {vj}nj=1 to a basis for all V n. From this we will find that StrS has

eigenvalues {1} ∪ {1 + λj}nj=1 and therefore

det
(
StrS

)
=

n∏
j=1

(1 + λj) = det
(
I + AAtr

)
.
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[5] Christian Bär and Frank Pfäffle, Wiener measures on Riemannian manifolds
and the Feynman-Kac formula, Mat. Contemp. 40 (2011), 37–90. MR 3098046

[6] Jean-Michel Bismut, Index theorem and equivariant cohomology on the loop
space, Comm. Math. Phys. 98 (1985), no. 2, 213–237. MR 786574 (86h:58129)

[7] R. H. Cameron and W. T. Martin, Transformations of Wiener integrals under
translations, Ann. of Math. (2) 45 (1944), 386–396. MR 0010346 (6,5f)

[8] Ana-Bela Cruzeiro and Paul Malliavin, Renormalized differential geometry on
path space: structural equation, curvature, J. Funct. Anal. 139 (1996), no. 1,
119–181. MR 1399688 (97h:58175)

[9] Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory &
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