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Part

Homework Problems





-3

Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

-3.1 Homework 1. Due Wednesday, September 30, 2009

• Read over Chapter 1.
• Hand in Exercises 1.1, 1.2, and 1.3.

-3.2 Homework 2. Due Wednesday, October 7, 2009

• Look at Resnick, p. 20-27: 9, 12, 17, 19, 27, 30, 36, and Exercise 3.9 from
the lecture notes.

• Hand in Resnick, p. 20-27: 5, 18, 23, 40*, 41, and Exercise 4.1 from the
lecture notes.

*Notes on Resnick’s #40: (i) B ((0, 1]) should be B ([0, 1)) in the statement
of this problem, (ii) k is an integer, (iii) r ≥ 2.

-3.3 Homework 3. Due Wednesday, October 21, 2009

• Look at Lecture note Exercises; 4.7, 4.8, 4.9
• Hand in Resnick, p. 63–70; 7* and 13.
• Hand in Lecture note Exercises: 4.3, 4.4, 4.5, 4.6, 4.10 – 4.15.

*Hint: For #7 you might label the coupons as {1, 2, . . . , N} and let Ai be
the event that the collector does not have the ith – coupon after buying n -
boxes of cereal.

-3.4 Homework 4. Due Wednesday, October 28, 2009

• Look at Lecture note Exercises; 5.5, 5.10.
• Look at Resnick, p. 63–70; 5, 14, 16, 19
• Hand in Resnick, p. 63–70; 3, 6, 11
• Hand in Lecture note Exercises: 5.6 – 5.9.

-3.5 Homework 5. Due Wednesday, November 4, 2009

• Look at Resnick, p. 85–90: 3, 7, 8, 12, 17, 21
• Hand in from Resnick, p. 85–90: 4, 6*, 9, 15, 18**.

*Note: In #6, the random variable X is understood to take values in the
extended real numbers.
** I would write the left side in terms of an expectation.

• Look at Lecture note Exercise 6.3, 6.7.
• Hand in Lecture note Exercises: 6.4, 6.6, 6.10.

-3.6 Homework 6. Due Wednesday, November 18, 2009

• Look at Lecture note Exercise 7.4, 7.9, 7.12, 7.17, 7.18, and 7.27.
• Hand in Lecture note Exercises: 7.5, 7.7, 7.8, 7.11, 7.13, 7.14, 7.16
• Look at from Resnik, p. 155–166: 6, 13, 26, 37
• Hand in from Resnick,p. 155–166: 7, 38

-3.7 Homework 7. Due Wednesday, November 25, 2009

• Look at Lecture note Exercise 9.12 – 9.14.
• Look at from Resnick§ 5.10: #18, 19, 20, 22, 31.
• Hand in Lecture note Exercises: 8.1, 8.2, 8.3, 8.4, 8.5, 9.4, 9.5, 9.6, 9.7, and

9.9.
• Hand in from Resnick § 5.10: #9, 29.

See next page!

-3.8 Homework 8. Due Monday, December 7, 2009 by
11:00AM (Put under my office door if I am not in.)

• Look at Lecture note Exercise 10.1, 10.2, 10.4, 10.5, 10.7.
• Look at from Resnick § 4.5: 3, 5, 6, 8, 19, 28, 29.
• Look at from Resnick § 5.10: #6, 7, 8, 11, 13, 16, 22, 34



• Hand in Lecture note Exercises: 9.8, 10.6.
• Hand in from Resnick § 4.5: 1, 9*, 11, 18, 25. *Exercise 10.7 may be useful

here.
• Hand in from Resnick § 5.10: #14, 26.
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-2.1 Homework 1. Due Wednesday, January 13, 2010

• Hand in Lecture note Exercise 11.1, 11.2, 11.3, 11.4, 11.5, 11.6.
• Look at from Resnick § 5.10: #39

-2.2 Homework 2. Due Wednesday, January 20, 2010

• Look at from §6.7: 3, 4, 14, 15(Hint: see Corollary 12.9 or use |a − b| =
2(a− b)+ − (a− b)), 16, 17, 19, 24, 27, 30

• Look at Lecture note Exercise 12.12
• Hand in from Resnick §6.7: 1a, d, 12, 13, 18 (Also assume EXn = 0)*, 33.
• Hand in lecture note exercises: 12.1, 12.3

* For Problem 18, please add the missing assumption that the random
variables should have mean zero. (The assertion to prove is false without
this assumption.) With this assumption, Var(X) = E[X2]. Also note that
Cov(X,Y ) = 0 is equivalent to E[XY ] = EX · EY.

-2.3 Homework 3. Due Wednesday, January 27, 2010

• Look at from §6.7:
• Look at Lecture note Exercise 13.3, 13.5
• Hand in from Resnick §6.7: 5*, 7 (Hint: Observe that Xn

d= σnN (0, 1) .)
*For one possible proof of #5 it is useful to first show {Xn}∞n=1 are U.I.
first.

• Hand in lecture note exercises: 13.2, 13.4, 13.6

-2.4 Homework 4. Due Wednesday, February 3, 2010

• Look at Resnick Chapter 10: 11
• Hand in lecture note exercises: 10.3, 14.1, 14.2, 14.3, 14.4.
• Hand in from Resnick §10.17: 2†, 5*, 7††, 8**

†In part 2b, please explain what convention you are using when the denom-
inator is 0.

*A Poisson process, {N (t)}t≥0 , with parameter λ satisfies (by definition): (i)
N has independent increments, so that N(s) and N(t)−N(s) are independent;
(ii) if 0 ≤ u < v then N(v)−N(u) has the Poisson distribution with parameter
λ(v − u).
†† For 7a and 7b it is illuminating to find a formula for E [g (X1) |X1 +X2] .
**Hint: use Exercise 10.3 to first show Cov (Y, f (Y )) ≤ 0.

-2.5 Homework 5. Due Wednesday, February 10, 2010

• Look at the following Exercises from the Lecture Notes: 12.13, 16.2
• Do the following Exercises from the Lecture Notes: 12.14, 12.15, 14.5, 14.7,

14.8

-2.6 Homework 6. Due Friday, February 19, 2010

• Look at the following Exercises from the Lecture Notes: 17.5, 17.15, 17.16
• Do the following Exercises from the Lecture Notes: 17.1, 17.2, 17.3, 17.4,

17.6, 17.8.

-2.7 Homework 7. Due Monday, March 1, 2010

• Do the following Exercises from the Lecture Notes: 17.7, 17.9, 17.10, 17.11,
17.12, 17.13.

-2.8 Homework 8. Due Monday, March 8, 2010

• Hand in the following Exercises from the Lecture Notes: 18.1, 18.2, 18.3,
18.5,

• Resnick Chapter 10: Hand in 14, 15, 16, 33.



-2.9 Homework 9. (Not) Due Monday, March 15, 2010

The following homework will not be collected but it would certainly be good
if you did the problems. Solutions will appear during finals week.

• Hand in the following Exercises from the Lecture Notes: 18.7, 18.18.
• Look at the following Exercises from the Lecture Notes: 18.4, 18.6, 18.8.
• Resnick Chapter 10.17: Hand in 19. For this problem please define

Xn+1/Xn = Zn+1 where

Zn+1 =

Xn+1/Xn if Xn 6= 0
1 if Xn = 0 = Xn+1

∞ ·Xn+1 if Xn = 0 and Xn+1 6= 0.
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-1.1 Homework 1. Due Wednesday, April 7, 2010

• Look at from Resnick §10.17: 22
• Look at Lecture note Exercises: 18.13, 18.14, 18.15, 18.16, 18.17, 18.20,

18.22, 18.26, 18.27, 18.31.
• Hand in from Resnick §10.17: 18b, 23, 28 (hint: consider lnXn)
• Hand in lecture note exercises: , 18.19, 18.21, 18.23, 18.24, 18.25

-1.2 Homework 2. Due Wednesday, April 14, 2010

• Look at from Resnick §10: #25
• Look at Lecture note Exercises: 20.2
• Hand in from Resnick §7: #1, #2, #28*, #42 (#15 was assigned here in

error previously – see Exercise 20.4 on next homework.)

[*Correction to #28: In the second part of the problem, the condi-
tion “E[XiXj ] ≤ ρ(i − j) for i > j” should be “E[XiXj ] ≤ ρ(i − j) for
i ≥ j”.]

• Hand in lecture note exercises: 19.2, 19.3, 19.4, 20.1.

-1.3 Homework 3. Due Wednesday April 21, 2010

• Look at from Resnick §7: #12. Hint: let {Un : n = 0, 1, 2, ...} be i.i.d.
random variables uniformly distributed on (0,1) and take X0 = U0 and then
define Xn inductively so that Xn+1 = Xn · Un+1.

• Hand in from Resnick §7: #13, #16, #33, #36 (assume each Xn is inte-
grable!)

• Hand in lecture note exercises: 20.3, 20.4

Hints and comments. For Resnick 7.36; It must be assumed that E[Xn] <
∞ for each n, else there is a subtraction-of-infinities problem. In addition the
conclusion reached in the second part of the problem can fail to be true if
the expectations are infinite. Use the assumptions to bound E [Xn] in terms of
E[Xn : Xn ≤ x]. Then use the two series theorem of Exercise 20.4.

-1.4 Homework 4. Due Wednesday April 28, 2010

• Look at lecture note exercises: 21.4, 21.7
• Hand in from Resnick §8.8: #4a-d, #13 (Assume σ2

n = Var (Nn) > 0 for
all n.), #20, #31

• Hand in lecture note exercises: 21.2, 21.3, 21.5, 21.6

-1.5 Homework 5. Due Wednesday May 5, 2010

• Look at from Resnick §8.8: #14, #36
• Resnick Chapter 8: Hand in 8.7* (assume the central limit theorem here),

8.17, 8.30**, 8.34***

Comments and hints:

1. * In 8.7 you will need to use the central limit theorem along with the δ –
method.

2. ** For 8.30, ignore the part of the question referring to the moment generat-
ing function. Hint: use problem 8.31 and the convergence of types theorem.

3. *** For 8.34 use an adaptation of the δ – method. Example 21.46 may be
helpful here as well.
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Part I

Background Material





1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if for
all M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for1 a.a. n, then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, then limn→∞ (can) = c limn→∞ an.
3. {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (1.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (1.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim
n→∞

an + lim
n→∞

bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (1.1) is not of form
∞−∞ is necessary in Lemma 1.2. Similarly by considering the examples an = n

1 Here we use “a.a. n” as an abbreviation for almost all n. So an ≤ bn a.a. n iff there
exists N <∞ such that an ≤ bn for all n ≥ N.

and bn = n−α with α > 0 shows the necessity for assuming right hand side of
Eq. (1.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., suppose
b = ∞ in which case we must assume a > −∞. In this case, for every M > 0,
there exists N such that bn ≥M and an ≥ a− 1 for all n ≥ N and this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since ε > 0 is arbitrary, it follows that limn→∞ (an + bn) = a+b.
Proof of Eq. (1.2). It will be left to the reader to prove the case where lim an

and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0
and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let α := min

(
a
2 , 1
)
. Given any M < ∞, there exists

N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,
anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it follows
that limn→∞ (anbn) =∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (1.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (1.4)
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We will also write lim for lim infn→∞ and lim for lim sup
n→∞

.

Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim sup
n→∞

an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim sup
n→∞

an. Similarly, there is a subsequence {ank}∞k=1 of {an}∞n=1 such that

limk→∞ ank = lim infn→∞ an.
3.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (1.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.6)

provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. 1. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim sup
n→∞

an = a ∈ R. Then for all ε > 0,

there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an =∞. The case where lim sup
n→∞

an = −∞ is handled simi-

larly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for

every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim sup
n→∞

an. If A = ∞, then for all M > 0

there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A =∞ case.
2. – 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let an = (−1)n and
bn = −an = (−1)n+1

. Then an + bn = 0 so that

0 = lim
n→∞

(an + bn) = lim inf
n→∞

(an + bn) = lim sup
n→∞

(an + bn)

while

lim inf
n→∞

an = lim inf
n→∞

bn = −1 and

lim sup
n→∞

an = lim sup
n→∞

bn = 1.

Thus in this case we have
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lim sup
n→∞

(an + bn) < lim sup
n→∞

an + lim sup
n→∞

bn and

lim inf
n→∞

(an + bn) > lim inf
n→∞

an + lim inf
n→∞

bn.

We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n ∈ N, {fn (i)}∞i=1

is a sequence in [0,∞] such that ↑ limn→∞ fn (i) = f (i) by which we mean
fn (i) ↑ f (i) as n→∞. Then

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

f (i) , i.e.

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

lim
n→∞

fn (i) .

We allow for the possibility that these expression may equal to +∞.

Proof. Let M :=↑ limn→∞
∑∞
i=1 fn (i) . As fn (i) ≤ f (i) for all n it follows

that
∑∞
i=1 fn (i) ≤

∑∞
i=1 f (i) for all n and therefore passing to the limit shows

M ≤
∑∞
i=1 f (i) . If N ∈ N we have,

N∑
i=1

f (i) =
N∑
i=1

lim
n→∞

fn (i) = lim
n→∞

N∑
i=1

fn (i) ≤ lim
n→∞

∞∑
i=1

fn (i) = M.

Letting N ↑ ∞ in this equation then shows
∑∞
i=1 f (i) ≤ M which completes

the proof.

Proposition 1.7 (Tonelli’s theorem for sums). If {akn}∞k,n=1 ⊂ [0,∞] ,
then

∞∑
k=1

∞∑
n=1

akn =
∞∑
n=1

∞∑
k=1

akn.

Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let SN (k) :=
∑N
n=1 akn, then by the MCT (Proposi-

tion 1.6),

lim
N→∞

∞∑
k=1

SN (k) =
∞∑
k=1

lim
N→∞

SN (k) =
∞∑
k=1

∞∑
n=1

akn.

On the other hand,

∞∑
k=1

SN (k) =
∞∑
k=1

N∑
n=1

akn =
N∑
n=1

∞∑
k=1

akn

so that

lim
N→∞

∞∑
k=1

SN (k) = lim
N→∞

N∑
n=1

∞∑
k=1

akn =
∞∑
n=1

∞∑
k=1

akn.

Second Proof. Let

M := sup

{
K∑
k=1

N∑
n=1

akn : K,N ∈ N

}
= sup

{
N∑
n=1

K∑
k=1

akn : K,N ∈ N

}

and

L :=
∞∑
k=1

∞∑
n=1

akn.

Since

L =
∞∑
k=1

∞∑
n=1

akn = lim
K→∞

K∑
k=1

∞∑
n=1

akn = lim
K→∞

lim
N→∞

K∑
k=1

N∑
n=1

akn

and
∑K
k=1

∑N
n=1 akn ≤M for all K and N, it follows that L ≤M. Conversely,

K∑
k=1

N∑
n=1

akn ≤
K∑
k=1

∞∑
n=1

akn ≤
∞∑
k=1

∞∑
n=1

akn = L

and therefore taking the supremum of the left side of this inequality over K
and N shows that M ≤ L. Thus we have shown

∞∑
k=1

∞∑
n=1

akn = M.

By symmetry (or by a similar argument), we also have that
∑∞
n=1

∑∞
k=1 akn =

M and hence the proof is complete.
You are asked to prove the next three results in the exercises.

Proposition 1.8 (Fubini for sums). Suppose {akn}∞k,n=1 ⊂ R such that

∞∑
k=1

∞∑
n=1

|akn| =
∞∑
n=1

∞∑
k=1

|akn| <∞.

Then
∞∑
k=1

∞∑
n=1

akn =
∞∑
n=1

∞∑
k=1

akn.
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Example 1.9 (Counter example). Let {Smn}∞m,n=1 be any sequence of complex
numbers such that limm→∞ Smn = 1 for all n and limn→∞ Smn = 0 for all n.
For example, take Smn = 1m≥n + 1

n1m<n. Then define {aij}∞i,j=1 so that

Smn =
m∑
i=1

n∑
j=1

aij .

Then
∞∑
i=1

∞∑
j=1

aij = lim
m→∞

lim
n→∞

Smn = 0 6= 1 = lim
n→∞

lim
m→∞

Smn =
∞∑
j=1

∞∑
i=1

aij .

To find aij , set Smn = 0 if m = 0 or n = 0, then

Smn − Sm−1,n =
n∑
j=1

amj

and

amn = Smn − Sm−1,n − (Sm,n−1 − Sm−1,n−1)
= Smn − Sm−1,n − Sm,n−1 + Sm−1,n−1.

Proposition 1.10 (Fatou’s Lemma for sums). Suppose that for each n ∈ N,
{hn (i)}∞i=1 is any sequence in [0,∞] , then

∞∑
i=1

lim inf
n→∞

hn (i) ≤ lim inf
n→∞

∞∑
i=1

hn (i) .

The next proposition is referred to as the dominated convergence theorem
(DCT for short) for sums.

Proposition 1.11 (DCT for sums). Suppose that for each n ∈ N,
{fn (i)}∞i=1 ⊂ R is a sequence and {gn (i)}∞i=1 is a sequence in [0,∞) such that;

1.
∑∞
i=1 gn (i) <∞ for all n,

2. f (i) = limn→∞ fn (i) and g (i) := limn→∞ gn (i) exists for each i,
3. |fn (i)| ≤ gn (i) for all i and n,
4. limn→∞

∑∞
i=1 gn (i) =

∑∞
i=1 g (i) <∞.

Then

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

lim
n→∞

fn (i) =
∞∑
i=1

f (i) .

(Often this proposition is used in the special case where gn = g for all n.)

Exercise 1.1. Prove Proposition 1.8. Hint: Let a+
kn := max (akn, 0) and a−kn =

max (−akn, 0) and observe that; akn = a+
kn − a

−
kn and

∣∣a+
kn

∣∣ +
∣∣a−kn∣∣ = |akn| .

Now apply Proposition 1.7 with akn replaced by a+
kn and a−kn.

Exercise 1.2. Prove Proposition 1.10. Hint: apply the MCT by applying the
monotone convergence theorem with fn (i) := infm≥n hm (i) .

Exercise 1.3. Prove Proposition 1.11. Hint: Apply Fatou’s lemma twice. Once
with hn (i) = gn (i) + fn (i) and once with hn (i) = gn (i)− fn (i) .
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Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, Ω = {0, 1} .

2. The sample space for flipping a coin N -times could be taken to be, Ω =
{0, 1}N and for flipping an infinite number of times,

Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {0, 1}} = {0, 1}N .

3. If we have a roulette wheel with 38 entries, then we might take

Ω = {00, 0, 1, 2, . . . , 36}

for one spin,
Ω = {00, 0, 1, 2, . . . , 36}N

for N spins, and
Ω = {00, 0, 1, 2, . . . , 36}N

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Ω = DR :=
{

(x, y) ∈ R2 : x2 + y2 ≤ R
}

for one throw,
Ω = DN

R

for N throws, and
Ω = DN

R

for an infinite number of throws.
5. Suppose we release a perfume particle at location x ∈ R3 and follow its

motion for all time, 0 ≤ t <∞. In this case, we might take,

Ω =
{
ω ∈ C ([0,∞) ,R3) : ω (0) = x

}
.

Definition 2.3. An event, A, is a subset of Ω. Given A ⊂ Ω we also define
the indicator function of A by

1A (ω) :=
{

1 if ω ∈ A
0 if ω /∈ A.

Example 2.4. Suppose that Ω = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here ωn = 1 represents the fact that a head was
thrown on the nth – toss, while ωn = 0 represents a tail on the nth – toss.

1. A = {ω ∈ Ω : ω3 = 1} represents the event that the third toss was a head.
2. A = ∪∞i=1 {ω ∈ Ω : ωi = ωi+1 = 1} represents the event that (at least) two

heads are tossed twice in a row at some time.
3. A = ∩∞N=1 ∪n≥N {ω ∈ Ω : ωn = 1} is the event where there are infinitely

many heads tossed in the sequence.
4. A = ∪∞N=1 ∩n≥N {ω ∈ Ω : ωn = 1} is the event where heads occurs from

some time onwards, i.e. ω ∈ A iff there exists, N = N (ω) such that ωn = 1
for all n ≥ N.

Ideally we would like to assign a probability, P (A) , to all events A ⊂ Ω.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, ω (n) ∈ Ω for each n ∈ N,
then try to “define” P (A) by

P (A) = lim
N→∞

1
N

N∑
k=1

1A (ω (k)) (2.1)

= lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A} . (2.2)
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That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {ω (k)}∞k=1 .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we know that B has occurred. Thus we would
like to compute:

P (A|B) = lim
N→∞

# {k : 1 ≤ k ≤ N and ωk ∈ A ∩B}
# {k : 1 ≤ k ≤ N and ωk ∈ B}

,

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

P (A|B) = lim
N→∞

1
N# {k : 1 ≤ k ≤ N and ωk ∈ A ∩B}

1
N# {k : 1 ≤ k ≤ N and ωk ∈ B}

=
P (A ∩B)
P (B)

.

Definition 2.5. If B is a non-null event, i.e. P (B) > 0, define the condi-
tional probability of A given B by,

P (A|B) :=
P (A ∩B)
P (B)

.

There are of course a number of problems with this definition of P in Eq.
(2.1) including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P (A) ∈ [0, 1] for all A ⊂ Ω.
2. P (∅) = 0 and P (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩ B = AB = ∅, then

1A∪B = 1A + 1B so that

P (A ∪B) = lim
N→∞

1
N

N∑
k=1

1A∪B (ω (k)) = lim
N→∞

1
N

N∑
k=1

[1A (ω (k)) + 1B (ω (k))]

= lim
N→∞

[
1
N

N∑
k=1

1A (ω (k)) +
1
N

N∑
k=1

1B (ω (k))

]
= P (A) + P (B) .

4. Countable Additivity. If {Aj}∞j=1 are pairwise disjoint events (i.e. Aj ∩
Ak = ∅ for all j 6= k), then again, 1∪∞

j=1Aj
=
∑∞
j=1 1Aj and therefore we

might hope that,

P
(
∪∞j=1Aj

)
= lim
N→∞

1
N

N∑
k=1

1∪∞
j=1Aj

(ω (k)) = lim
N→∞

1
N

N∑
k=1

∞∑
j=1

1Aj (ω (k))

= lim
N→∞

∞∑
j=1

1
N

N∑
k=1

1Aj (ω (k))

?=
∞∑
j=1

lim
N→∞

1
N

N∑
k=1

1Aj (ω (k)) (by a leap of faith)

=
∞∑
j=1

P (Aj) .

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every ω ∈ Ω is equally likely, i.e. P ({ω}) = 1

2N
.

Assuming this we are then forced to define

P (A) =
1

2N
# (A) .

Observe that this probability has the following property. Suppose that σ ∈
{0, 1}k is a given sequence, then

P ({ω : (ω1, . . . , ωk) = σ}) =
1

2N
· 2N−k =

1
2k
.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now Ω = {0, 1}N , then we should define

P ({ω ∈ Ω : (ω1, . . . , ωk) = σ}) =
1
2k

(2.3)

for any k ≥ 1 and σ ∈ {0, 1}k . Assuming there exists a probability, P : 2Ω →
[0, 1] such that Eq. (2.3) holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

An = {ω ∈ Ω : ωn = 1} = {heads at time n}
BN := ∪n≥NAn = {at least one heads at time N or later}

and
B = ∩∞N=1BN = {An i.o.} = ∩∞N=1 ∪n≥N An.

Since
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BcN = ∩n≥NAcn ⊂ ∩M≥n≥NAcn = {ω ∈ Ω : ωN = ωN+1 = · · · = ωM = 0} ,

we see that
P (BcN ) ≤ 1

2M−N
→ 0 as M →∞.

Therefore, P (BN ) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using BN ↓ B, that

P (B) = lim
N→∞

P (BN ) = 1.

Without this continuity assumption we would not be able to compute P (B) .

The unfortunate fact is that we can not always assign a desired probability
function, P (A) , for all A ⊂ Ω. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z ∈ C : |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 2S → [0, 1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limits.

Proof. We are going to use the fact proved below in Proposition 5.3, that
the continuity condition on P is equivalent to the σ – additivity of P. For z ∈ S
and N ⊂ S let

zN := {zn ∈ S : n ∈ N}, (2.4)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that

P (zN) = P (N) (2.5)

for all z ∈ S and N ⊂ S.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z, w ∈ S are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ S be the set of these representative
points. Then every point z ∈ S may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

S =
∑
r∈R

(rN) (2.6)

where
∑
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (2.5) and (2.6),

1 = P (S) =
∑
r∈R

P (rN) =
∑
r∈R

P (N). (2.7)

We have thus arrived at a contradiction, since the right side of Eq. (2.7) is either
equal to 0 or to ∞ depending on whether P (N) = 0 or P (N) > 0.

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2Ω . So we are going to only define P on
particular subsets, B ⊂ 2Ω . We will developed this below.
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3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative integers
and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N
by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 3.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏
α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 3.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = B ∩Ac.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 3.4 We will also write
∑
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk,

sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := {An i.o.} := {x ∈ X : # {n : x ∈ An} =∞}

and
lim inf
n→∞

An := {An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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Definition 3.5. Given a set A ⊂ X, let

1A (x) =
{

1 if x ∈ A
0 if x /∈ A

be the indicator function of A.

Lemma 3.6. We have:

1. (∪nAn)c = ∩nAcn,
2. {An i.o.}c = {Acn a.a.} ,
3. lim sup

n→∞
An = {x ∈ X :

∑∞
n=1 1An (x) =∞} ,

4. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Acn (x) <∞

}
,

5. supk≥n 1Ak (x) = 1∪k≥nAk = 1supk≥n Ak ,
6. infk≥n 1Ak (x) = 1∩k≥nAk = 1infk≥n Ak ,
7. 1lim sup

n→∞
An = lim sup

n→∞
1An , and

8. 1lim infn→∞ An = lim infn→∞ 1An .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N→ X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item

2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is
injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N×N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N→X and g : N→Y are
surjective functions, then the function (f × g) ◦ h : N→X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N→ ∪∞m=1Am, where h : N→ N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of
contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as
(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X0 is uncountable then so
is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

3.2 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (∩i∈IAi)c = ∪i∈IAci .
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Exercise 3.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 3.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 3.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 3.5. Find a counterexample which shows that f(C ∩ D) = f(C) ∩
f(D) need not hold.

Example 3.9. Let X = {a, b, c} and Y = {1, 2} and define f (a) = f (b) = 1
and f (c) = 2. Then ∅ = f ({a} ∩ {b}) 6= f ({a}) ∩ f ({b}) = {1} and {1, 2} =
f ({a}c) 6= f ({a})c = {2} .

3.3 Algebraic sub-structures of sets

Definition 3.10. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.11. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
3′. A is closed under finite intersections.

Definition 3.12. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.13. Here are some examples of algebras.

1. B = 2X , then B is a σ – algebra.
2. B = {∅, X} is a σ – algebra called the trivial σ – field.
3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

Proposition 3.14. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M :M is a σ – algebra such that E ⊂M}.

Example 3.15. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
3.1. Then

Fig. 3.1. A collection of subsets.

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that Ei ⊂ 2X for i = 1, 2. Show that A (E1) = A (E2)
iff E1 ⊂ A (E2) and E2 ⊂ A (E1) . Similarly show, σ (E1) = σ (E2) iff E1 ⊂ σ (E2)
and E2 ⊂ σ (E1) . Give a simple example where A (E1) = A (E2) while E1 6= E2.

In this course we will often be interested in the Borel σ – algebra on a
topological space.

Definition 3.16 (Borel σ – field). The Borel σ – algebra, B = BR =
B (R) , on R is the smallest σ -field containing all of the open subsets of R.
More generally if (X, τ) is a topological space, the Borel σ – algebra on X is
BX := σ (τ) – i.e. the smallest σ – algebra containing all open (closed) subsets
of X.
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Exercise 3.7. Verify the Borel σ – algebra, BR, is generated by any of the
following collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Hint: make use of Exercise 3.6.

We will postpone a more in depth study of σ – algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 3.17. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F .

Example 3.18. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.

Example 3.19. Suppose that X is a set and that A ⊂ 2X is a finite algebra, i.e.
# (A) <∞. For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest set
in A which contains x.

Now suppose that y ∈ X. If x ∈ Ay then Ax ⊂ Ay so that Ax ∩ Ay = Ax.
On the other hand, if x /∈ Ay then x ∈ Ax \Ay and therefore Ax ⊂ Ax \Ay, i.e.
Ax ∩ Ay = ∅. Therefore we have shown, either Ax ∩ Ay = ∅ or Ax ∩ Ay = Ax.
By reversing the roles of x and y it also follows that either Ay ∩ Ax = ∅ or
Ay ∩Ax = Ay. Therefore we may conclude, either Ax = Ay or Ax ∩Ay = ∅ for
all x, y ∈ X.

Let us now define {Bi}ki=1 to be an enumeration of {Ax}x∈X . It is a straight-
forward to conclude that

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

For example observe that for any A ∈ A, we have A = ∪x∈AAx = ∪i∈ΛBi where
Λ := {i : Bi ⊂ A} .

Proposition 3.20. Suppose that B ⊂ 2X is a σ – algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂ B and every element B ∈ B is of the form

B = ∪{A ∈ F : A ⊂ B} . (3.1)

In particular B is actually a finite set and # (B) = 2n for some n ∈ N.

Proof. We proceed as in Example 3.19. For each x ∈ X let

Ax = ∩{A ∈ B : x ∈ A} ∈ B,

wherein we have used B is a countable σ – algebra to insure Ax ∈ B. Just as
above either Ax ∩Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ B is a
(necessarily countable) partition of X for which Eq. (3.1) holds for all B ∈ B.

Enumerate the elements of F as F = {Pn}Nn=1 where N ∈ N or N = ∞. If
N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ B

is bijective and therefore, by Lemma 3.8, B is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 3.21 (Countable/Co-countable σ – Field). Let X = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A is
countable or Ac is countable. Similarly, A (E) consists of those subsets, A ⊂ R,
such that A is finite or Ac is finite. More generally we have the following exercise.

Exercise 3.8. Let X be a set, I be an infinite index set, and E = {Ai}i∈I be a
partition of X. Prove the algebra, A (E) , and that σ – algebra, σ (E) , generated
by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) <∞ or # (Λc) <∞}

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable}

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.
In particular if I is countable, then

σ(E) = {∪i∈ΛAi : Λ ⊂ I} .

Proposition 3.22. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (3.2)
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Proof. Let A denote the right member of Eq. (3.2). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z ∈ A be expressed as

Z =
N⋃
i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Acij ∈ Ec, we find that

Zc =
N⋂
i=1

K⋃
j=1

Bij =
K⋃

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1∩B2j2∩· · ·∩BNjN is a finite intersection
of sets from Ec.

Remark 3.23. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =
∞⋃
i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞⋃

j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac`,j`

)

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe σ(E), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition 3.20.

Exercise 3.9. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

Solution to Exercise (3.9). In this case τc is the collection of sets which are
either open or closed. Now if Vi ⊂o X and Fj @ X for each j, then (∩ni=1Vi) ∩(
∩mj=1Fj

)
is simply a set of the form V ∩F where V ⊂o X and F @ X. Therefore

the result is an immediate consequence of Proposition 3.22.

Definition 3.24. A set S ⊂ 2X is said to be an semialgebra or elementary
class provided that

• ∅ ∈ S
• S is closed under finite intersections
• if E ∈ S, then Ec is a finite disjoint union of sets from S. (In particular

X = ∅c is a finite disjoint union of elements from S.)

Proposition 3.25. Suppose S ⊂ 2X is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition 3.22, it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S ⊂ A ⊂ A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that ∅, X ∈ A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that Ai =
∑
F∈Λi F ∈ A

where, for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets from S. Then

n⋂
i=1

Ai =
n⋂
i=1

(∑
F∈Λi

F

)
=

⋃
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (A is closed under complementation.) IfA =
∑
F∈Λ F with Λ being a finite

collection of disjoint sets from S, then Ac =
⋂
F∈Λ F

c. Since, by assumption,
F c ∈ A for all F ∈ Λ ⊂ S and A is closed under finite intersections by step 1.,
it follows that Ac ∈ A.

Example 3.26. Let X = R, then

S :=
{

(a, b] ∩ R : a, b ∈ R̄
}

= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is a semi-field. The algebra, A(S), generated by S consists of finite disjoint
unions of sets from S. For example,

A = (0, π] ∪ (2π, 7] ∪ (11,∞) ∈ A (S) .

Exercise 3.10. Let A ⊂ 2X and B ⊂ 2Y be semi-fields. Show the collection

S := {A×B : A ∈ A and B ∈ B}

is also a semi-field.
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Solution to Exercise (3.10). Clearly ∅ = ∅ × ∅ ∈ E = A × B. Let Ai ∈ A
and Bi ∈ B, then

∩ni=1(Ai ×Bi) = (∩ni=1Ai)× (∩ni=1Bi) ∈ A× B

showing E is closed under finite intersections. For A×B ∈ E ,

(A×B)c = (Ac ×Bc)
∑

(Ac ×B)
∑

(A×Bc)

and by assumption Ac =
∑n
i=1Ai with Ai ∈ A and Bc =

∑m
j=1Bi with Bj ∈ B.

Therefore

Ac ×Bc =

(
n∑
i=1

Ai

)
×

 m∑
j=1

Bi

 =
n,m∑

i=1,j=1

Ai ×Bi,

Ac ×B =
n∑
i=1

Ai ×B, and A×Bc =
m∑
j=1

A×Bi

showing (A×B)c may be written as finite disjoint union of elements from S.



4

Finitely Additive Measures / Integration

Definition 4.1. Suppose that E ⊂ 2X is a collection of subsets of X and µ :
E → [0,∞] is a function. Then

1. µ is additive or finitely additive on E if

µ(E) =
n∑
i=1

µ(Ei) (4.1)

whenever E =
∑n
i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n <∞.

2. µ is σ – additive (or countable additive) on E if Eq. (4.1) holds even
when n =∞.

3. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑
i=1

µ(Ei)

whenever E =
⋃n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).

4. µ is a finitely additive measure if E = A is an algebra, µ (∅) = 0, and µ
is finitely additive on A.

5. µ is a premeasure if µ is a finitely additive measure which is σ – additive
on A.

6. µ is a measure if µ is a premeasure on a σ – algebra. Furthermore if
µ (X) = 1, we say µ is a probability measure on X.

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose µ is a finitely additive measure on an algebra, A ⊂ 2X , A,B ∈ A with
A ⊂ Band {Aj}nj=1 ⊂ A, then :

1. (µ is monotone) µ (A) ≤ µ(B) if A ⊂ B.
2. For A,B ∈ A, the following strong additivity formula holds;

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (4.2)

3. (µ is finitely subbadditive) µ(∪nj=1Aj) ≤
∑n
j=1 µ(Aj).

4. µ is sub-additive on A iff

µ(A) ≤
∞∑
i=1

µ(Ai) for A =
∞∑
i=1

Ai (4.3)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets.

5. (µ is countably superadditive) If A =
∑∞
i=1Ai with Ai, A ∈ A, then

µ

( ∞∑
i=1

Ai

)
≥
∞∑
i=1

µ (Ai) . (4.4)

(See Remark 4.9 for example where this inequality is strict.)
6. A finitely additive measure, µ, is a premeasure iff µ is subadditive.

Proof.

1. Since B is the disjoint union of A and (B \ A) and B \ A = B ∩ Ac ∈ A it
follows that

µ(B) = µ(A) + µ(B \A) ≥ µ(A).
2. Since

A ∪B = [A \ (A ∩B)]
∑

[B \ (A ∩B)]
∑

A ∩B,

µ (A ∪B) = µ (A ∪B \ (A ∩B)) + µ (A ∩B)
= µ (A \ (A ∩B)) + µ (B \ (A ∩B)) + µ (A ∩B) .

Adding µ (A ∩B) to both sides of this equation proves Eq. (4.2).
3. Let Ẽj = Ej \ (E1 ∪ · · · ∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and
E = ∪nj=1Ẽj . Since Ẽj ⊂ Ej it follows from the monotonicity of µ that

µ(E) =
n∑
j=1

µ(Ẽj) ≤
n∑
j=1

µ(Ej).

4. If A =
⋃∞
i=1Bi with A ∈ A and Bi ∈ A, then A =

∑∞
i=1Ai where Ai :=

Bi \ (B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of
µ and Eq. (4.3)

µ(A) ≤
∞∑
i=1

µ(Ai) ≤
∞∑
i=1

µ(Bi).

5. Suppose that A =
∑∞
i=1Ai with Ai, A ∈ A, then

∑n
i=1Ai ⊂ A for all n

and so by the monotonicity and finite additivity of µ,
∑n
i=1 µ (Ai) ≤ µ (A) .

Letting n→∞ in this equation shows µ is superadditive.
6. This is a combination of items 5. and 6.
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4.1 Examples of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Example 4.3. Suppose that Ω is a finite set, B := 2Ω , and p : Ω → [0, 1] is a
function such that ∑

ω∈Ω
p (ω) = 1.

Then
P (A) :=

∑
ω∈A

p (ω) for all A ⊂ Ω

defines a measure on 2Ω .

Example 4.4. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =
{

1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 4.5. Suppose B ⊂ 2X is a σ algebra, µ is a measure on B, and λ > 0,
then λ · µ is also a measure on B. Moreover, if J is an index set and {µj}j∈J
are all measures on B, then µ =

∑∞
j=1 µj , i.e.

µ(A) :=
∞∑
j=1

µj(A) for all A ∈ B,

defines another measure on B. To prove this we must show that µ is countably
additive. Suppose that A =

∑∞
i=1Ai with Ai ∈ B, then (using Tonelli for sums,

Proposition 1.7),

µ(A) =
∞∑
j=1

µj(A) =
∞∑
j=1

∞∑
i=1

µj(Ai)

=
∞∑
i=1

∞∑
j=1

µj(Ai) =
∞∑
i=1

µ(Ai).

Example 4.6. Suppose that X is a countable set and λ : X → [0,∞] is a func-
tion. Let X = {xn}∞n=1 be an enumeration of X and then we may define a
measure µ on 2X by,

µ = µλ :=
∞∑
n=1

λ(xn)δxn .

We will now show this measure is independent of our choice of enumeration of
X by showing,

µ(A) =
∑
x∈A

λ(x) := sup
Λ⊂⊂A

∑
x∈Λ

λ (x) ∀ A ⊂ X. (4.5)

Here we are using the notation, Λ ⊂⊂ A to indicate that Λ is a finite subset of
A.

To verify Eq. (4.5), let M := supΛ⊂⊂A
∑
x∈Λ λ (x) and for each N ∈ N let

ΛN := {xn : xn ∈ A and 1 ≤ n ≤ N} .

Then by definition of µ,

µ (A) =
∞∑
n=1

λ(xn)δxn (A) = lim
N→∞

N∑
n=1

λ(xn)1xn∈A

= lim
N→∞

∑
x∈ΛN

λ (x) ≤M.

On the other hand if Λ ⊂⊂ A, then∑
x∈Λ

λ(x) =
∑

n: xn∈Λ
λ(xn) = µ (Λ) ≤ µ (A)

from which it follows that M ≤ µ (A) . This shows that µ is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and λ : X → [0,∞] is any function. In this setting we simply may define
µ : 2X → [0,∞] using Eq. (4.5). We leave it to the reader to verify that this is
indeed a measure on 2X .

We will construct many more measure in Chapter 5 below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 4.7 (Construction of Finitely Additive Measures). Sup-
pose S ⊂ 2X is a semi-algebra (see Definition 3.24) and A = A(S) is the
algebra generated by S. Then every additive function µ : S → [0,∞] such that
µ (∅) = 0 extends uniquely to an additive measure (which we still denote by µ)
on A.

Proof. Since (by Proposition 3.25) every element A ∈ A is of the form
A =

∑
iEi for a finite collection of Ei ∈ S, it is clear that if µ extends to a

measure then the extension is unique and must be given by

Page: 30 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



4.1 Examples of Measures 31

µ(A) =
∑
i

µ(Ei). (4.6)

To prove existence, the main point is to show that µ(A) in Eq. (4.6) is well
defined; i.e. if we also have A =

∑
j Fj with Fj ∈ S, then we must show∑

i

µ(Ei) =
∑
j

µ(Fj). (4.7)

But Ei =
∑
j (Ei ∩ Fj) and the additivity of µ on S implies µ(Ei) =

∑
j µ(Ei∩

Fj) and hence ∑
i

µ(Ei) =
∑
i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, ∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (4.7) holds. It is
now easy to verify that µ extended to A as in Eq. (4.6) is an additive measure
on A.

Proposition 4.8. Let X = R, S be the semi-algebra,

S = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (4.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition 3.25. To each finitely additive probability measures µ :
A → [0,∞], there is a unique increasing function F : R̄→ [0, 1] such that
F (−∞) = 0, F (∞) = 1 and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (4.9)

Conversely, given an increasing function F : R̄→ [0, 1] such that F (−∞) = 0,
F (∞) = 1 there is a unique finitely additive measure µ = µF on A such that
the relation in Eq. (4.9) holds. (Eventually we will only be interested in the case
where F (−∞) = lima↓−∞ F (a) and F (∞) = limb↑∞ F (b) .)

Proof. Given a finitely additive probability measure µ, let

F (x) := µ ((−∞, x] ∩ R) for all x ∈ R̄.

Then F (∞) = 1, F (−∞) = 0 and for b > a,

F (b)− F (a) = µ ((−∞, b] ∩ R)− µ ((−∞, a]) = µ ((a, b] ∩ R) .

Conversely, suppose F : R̄→ [0, 1] as in the statement of the theorem is
given. Define µ on S using the formula in Eq. (4.9). The argument will be
completed by showing µ is additive on S and hence, by Proposition 4.7, has a
unique extension to a finitely additive measure on A. Suppose that

(a, b] =
n∑
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b] ∩ R) = F (b)− F (a) =
n∑
i=1

[F (bi)− F (ai)] =
n∑
i=1

µ((ai, bi] ∩ R).

Remark 4.9. Suppose that F : R̄→ R̄ is any non-decreasing function such that
F (R) ⊂ R. Then the same methods used in the proof of Proposition 4.8 shows
that there exists a unique finitely additive measure, µ = µF , on A = A (S) such
that Eq. (4.9) holds. If F (∞) > limb↑∞ F (b) and Ai = (i, i+ 1] for i ∈ N, then

∞∑
i=1

µF (Ai) =
∞∑
i=1

(F (i+ 1)− F (i)) = lim
N→∞

N∑
i=1

(F (i+ 1)− F (i))

= lim
N→∞

(F (N + 1)− F (1)) < F (∞)− F (1) = µF (∪∞i=1Ai) .

This shows that strict inequality can hold in Eq. (4.4) and that µF is not
a premeasure. Similarly one shows µF is not a premeasure if F (−∞) <
lima↓−∞ F (a) or if F is not right continuous at some point a ∈ R. Indeed,
in the latter case consider

(a, a+ 1] =
∞∑
n=1

(a+
1

n+ 1
, a+

1
n

].

Working as above we find,

∞∑
n=1

µF

(
(a+

1
n+ 1

, a+
1
n

]
)

= F (a+ 1)− F (a+)

while µF ((a, a+ 1]) = F (a+ 1)−F (a) . We will eventually show in Chapter 5
below that µF extends uniquely to a σ – additive measure on BR whenever F
is increasing, right continuous, and F (±∞) = limx→±∞ F (x) .
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Before constructing σ – additive measures (see Chapter 5 below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are allowed to integrate.

4.2 Simple Random Variables

Definition 4.10 (Simple random variables). A function, f : Ω → Y is said
to be simple if f (Ω) ⊂ Y is a finite set. If A ⊂ 2Ω is an algebra, we say that a
simple function f : Ω → Y is measurable if {f = y} := f−1 ({y}) ∈ A for all
y ∈ Y. A measurable simple function, f : Ω → C, is called a simple random
variable relative to A.

Notation 4.11 Given an algebra, A ⊂ 2Ω , let S(A) denote the collection of
simple random variables from Ω to C. For example if A ∈ A, then 1A ∈ S (A)
is a measurable simple function.

Lemma 4.12. Let A ⊂ 2Ω be an algebra, then;

1. S (A) is a sub-algebra of all functions from Ω to C.
2. f : Ω → C, is a A – simple random variable iff there exists αi ∈ C and
Ai ∈ A for 1 ≤ i ≤ n for some n ∈ N such that

f =
n∑
i=1

αi1Ai . (4.10)

3. For any function, F : C→ C, F ◦f ∈ S (A) for all f ∈ S (A) . In particular,
|f | ∈ S (A) if f ∈ S (A) .

Proof. 1. Let us observe that 1Ω = 1 and 1∅ = 0 are in S (A) . If f, g ∈ S (A)
and c ∈ C\ {0} , then

{f + cg = λ} =
⋃

a,b∈C:a+cb=λ

({f = a} ∩ {g = b}) ∈ A (4.11)

and
{f · g = λ} =

⋃
a,b∈C:a·b=λ

({f = a} ∩ {g = b}) ∈ A (4.12)

from which it follows that f + cg and f · g are back in S (A) .
2. Since S (A) is an algebra, every f of the form in Eq. (4.10) is in S (A) .

Conversely if f ∈ S (A) it follows by definition that f =
∑
α∈f(Ω) α1{f=α}

which is of the form in Eq. (4.10).

3. If F : C→ C, then

F ◦ f =
∑

α∈f(Ω)

F (α) · 1{f=α} ∈ S (A) .

Exercise 4.1 (A – measurable simple functions). As in Example 3.19, let
A ⊂ 2X be a finite algebra and {B1, . . . , Bk} be the partition of X associated to
A. Show that a function, f : X → C, is an A – simple function iff f is constant
on Bi for each i. Thus any A – simple function is of the form,

f =
k∑
i=1

αi1Bi (4.13)

for some αi ∈ C.

Corollary 4.13. Suppose that Λ is a finite set and Z : X → Λ is a function.
Let

A := A (Z) := Z−1
(
2Λ
)

:=
{
Z−1 (E) : E ⊂ Λ

}
.

Then A is an algebra and f : X → C is an A – simple function iff f = F ◦ Z
for some function F : Λ→ C.

Proof. For λ ∈ Λ, let

Aλ := {Z = λ} = {x ∈ X : Z (x) = λ} .

The {Aλ}λ∈Λ is the partition of X determined by A. Therefore f is an A –
simple function iff f |Aλ is constant for each λ ∈ Λ. Let us denote this constant
value by F (λ) . As Z = λ on Aλ, F : Λ→ C is a function such that f = F ◦Z.

Conversely if F : Λ→ C is a function and f = F ◦Z, then f = F (λ) on Aλ,
i.e. f is an A – simple function.

4.2.1 The algebraic structure of simple functions*

Definition 4.14. A simple function algebra, S, is a subalgebra1 of the
bounded complex functions on X such that 1 ∈ S and each function in S is
a simple function. If S is a simple function algebra, let

A (S) := {A ⊂ X : 1A ∈ S} .

(It is easily checked that A (S) is a sub-algebra of 2X .)
1 To be more explicit we are assuming that S is a linear subspace of bounded functions

which is closed under pointwise multiplication.
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Lemma 4.15. Suppose that S is a simple function algebra, f ∈ S and α ∈ f (X)
– the range of f. Then {f = α} ∈ A (S) .

Proof. Let {λi}ni=0 be an enumeration of f (X) with λ0 = α. Then

g :=

[
n∏
i=1

(α− λi)

]−1 n∏
i=1

(f − λi1) ∈ S.

Moreover, we see that g = 0 on ∪ni=1 {f = λi} while g = 1 on {f = α} . So we
have shown g = 1{f=α} ∈ S and therefore that {f = α} ∈ A (S) .

Exercise 4.2. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A ∈
{

Algebras ⊂ 2X
}
→ S (A) ∈ {simple function algebras on X}

is bijective and the map, S→ A (S) , is the inverse map.

Solution to Exercise (4.2).

1. Since 0 = 1∅, 1 = 1X ∈ S, it follows that ∅ and X are in A (S) . If A ∈ A (S) ,
then 1Ac = 1 − 1A ∈ S and so Ac ∈ A (S) . Finally, if A,B ∈ A (S) then
1A∩B = 1A · 1B ∈ S and thus A ∩B ∈ A (S) .

2. If f, g ∈ S (A) and c ∈ F, then

{f + cg = λ} =
⋃

a,b∈F:a+cb=λ

({f = a} ∩ {g = b}) ∈ A

and
{f · g = λ} =

⋃
a,b∈F:a·b=λ

({f = a} ∩ {g = b}) ∈ A

from which it follows that f + cg and f · g are back in S (A) .
3. If f : Ω → C is a simple function such that 1{f=λ} ∈ S for all λ ∈ C,

then f =
∑
λ∈C λ1{f=λ} ∈ S. Conversely, by Lemma 4.15, if f ∈ S then

1{f=λ} ∈ S for all λ ∈ C. Therefore, a simple function, f : X → C is in S
iff 1{f=λ} ∈ S for all λ ∈ C. With this preparation, we are now ready to
complete the verification.
First off,

A ∈ A (S (A)) ⇐⇒ 1A ∈ S (A) ⇐⇒ A ∈ A

which shows that A (S (A)) = A. Similarly,

f ∈ S (A (S)) ⇐⇒ {f = λ} ∈ A (S) ∀ λ ∈ C
⇐⇒ 1{f=λ} ∈ S ∀ λ ∈ C
⇐⇒ f ∈ S

which shows S (A (S)) = S.

4.3 Simple Integration

Definition 4.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A ⊂ 2X . For f ∈ S (A) the integral or
expectation, E(f) = EP (f), is defined by

EP (f) =
∫
X

fdP =
∑
y∈C

yP (f = y). (4.14)

Example 4.17. Suppose that A ∈ A, then

E1A = 0 · P (Ac) + 1 · P (A) = P (A) . (4.15)

Remark 4.18. Let us recall that our intuitive notion of P (A) was given as in
Eq. (2.1) by

P (A) = lim
N→∞

1
N

∑
1A (ω (k))

where ω (k) ∈ Ω was the result of the kth “independent” experiment. If we use
this interpretation back in Eq. (4.14) we arrive at,

E(f) =
∑
y∈C

yP (f = y) =
∑
y∈C

y · lim
N→∞

1
N

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1
N

∑
y∈C

y

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

∑
y∈C

f (ω (k)) · 1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

f (ω (k)) .

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.
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Proposition 4.19. The expectation operator, E = EP : S (A)→ C, satisfies:

1. If f ∈ S(A) and λ ∈ C, then

E(λf) = λE(f). (4.16)

2. If f, g ∈ S (A) , then
E(f + g) = E(g) + E(f). (4.17)

Items 1. and 2. say that E (·) is a linear functional on S (A) .
3. If f =

∑N
j=1 λj1Aj for some λj ∈ C and some Aj ∈ C, then

E (f) =
N∑
j=1

λjP (Aj) . (4.18)

4. E is positive, i.e. E(f) ≥ 0 for all 0 ≤ f ∈ S (A) . More generally, if
f, g ∈ S (A) and f ≤ g, then E (f) ≤ E (g) .

5. For all f ∈ S (A) ,
|Ef | ≤ E |f | . (4.19)

Proof.

1. If λ 6= 0, then

E(λf) =
∑
y∈C

y P (λf = y) =
∑
y∈C

y P (f = y/λ)

=
∑
z∈C

λz P (f = z) = λE(f).

The case λ = 0 is trivial.
2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), then

E(f + g) =
∑
z∈C

z P (f + g = z)

=
∑
z∈C

z P

( ∑
a+b=z

{f = a, g = b}

)
=
∑
z∈C

z
∑
a+b=z

P ({f = a, g = b})

=
∑
z∈C

∑
a+b=z

(a+ b)P ({f = a, g = b})

=
∑
a,b

(a+ b)P ({f = a, g = b}) .

But ∑
a,b

aP ({f = a, g = b}) =
∑
a

a
∑
b

P ({f = a, g = b})

=
∑
a

aP (∪b {f = a, g = b})

=
∑
a

aP ({f = a}) = Ef

and similarly, ∑
a,b

bP ({f = a, g = b}) = Eg.

Equation (4.17) is now a consequence of the last three displayed equations.
3. If f =

∑N
j=1 λj1Aj , then

Ef = E

 N∑
j=1

λj1Aj

 =
N∑
j=1

λjE1Aj =
N∑
j=1

λjP (Aj) .

4. If f ≥ 0 then
E(f) =

∑
a≥0

aP (f = a) ≥ 0

and if f ≤ g, then g − f ≥ 0 so that

E (g)− E (f) = E (g − f) ≥ 0.

5. By the triangle inequality,

|Ef | =

∣∣∣∣∣∑
λ∈C

λP (f = λ)

∣∣∣∣∣ ≤∑
λ∈C
|λ|P (f = λ) = E |f | ,

wherein the last equality we have used Eq. (4.18) and the fact that |f | =∑
λ∈C |λ| 1f=λ.

Remark 4.20. If Ω is a finite set and A = 2Ω , then

f (·) =
∑
ω∈Ω

f (ω) 1{ω}

and hence
EP f =

∑
ω∈Ω

f (ω)P ({ω}) .
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Remark 4.21. All of the results in Proposition 4.19 and Remark 4.20 remain
valid when P is replaced by a finite measure, µ : A → [0,∞), i.e. it is enough
to assume µ (X) <∞.

Exercise 4.3. Let P is a finitely additive probability measure on an algebra
A ⊂ 2X and for A,B ∈ A let ρ (A,B) := P (A∆B) where A∆B = (A \B) ∪
(B \A) . Show;

1. ρ (A,B) = E |1A − 1B | and then use this (or not) to show
2. ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈ A.

Remark: it is now easy to see that ρ : A×A → [0, 1] satisfies the axioms of
a metric except for the condition that ρ (A,B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.22 (Chebyshev’s Inequality). Suppose that f ∈ S(A), ε > 0, and
p > 0, then

1|f |≥ε ≤
|f |p

εp
1|f |≥ε ≤ ε−p |f |

p

and therefore, see item 4. of Proposition 4.19,

P ({|f | ≥ ε}) = E
[
1|f |≥ε

]
≤ E

[
|f |p

εp
1|f |≥ε

]
≤ ε−pE |f |p . (4.20)

Observe that
|f |p =

∑
λ∈C
|λ|p 1{f=λ}

is a simple random variable and {|f | ≥ ε} =
∑
|λ|≥ε {f = λ} ∈ A as well.

Therefore, |f |
p

εp 1|f |≥ε is still a simple random variable.

Lemma 4.23 (Inclusion Exclusion Formula). If An ∈ A for n =
1, 2, . . . ,M such that µ

(
∪Mn=1An

)
<∞, then

µ
(
∪Mn=1An

)
=

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (4.21)

Proof. This may be proved inductively from Eq. (4.2). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := ∪Mn=1An.

Since Ac =
(
∪Mn=1An

)c = ∩Mn=1A
c
n, we have

1− 1A = 1Ac =
M∏
n=1

1Acn =
M∏
n=1

(1− 1An)

= 1 +
M∑
k=1

(−1)k
∑

1≤n1<n2<···<nk≤M

1An1
· · · 1Ank

= 1 +
M∑
k=1

(−1)k
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank

from which it follows that

1∪Mn=1An
= 1A =

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank . (4.22)

Integrating this identity with respect to µ gives Eq. (4.21).

Remark 4.24. The following identity holds even when µ
(
∪Mn=1An

)
=∞,

µ
(
∪Mn=1An

)
+

M∑
k=2 & k even

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank)

=
M∑

k=1 & k odd

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (4.23)

This can be proved by moving every term with a negative sign on the right
side of Eq. (4.22) to the left side and then integrate the resulting identity.
Alternatively, Eq. (4.23) follows directly from Eq. (4.21) if µ

(
∪Mn=1An

)
< ∞

and when µ
(
∪Mn=1An

)
=∞ one easily verifies that both sides of Eq. (4.23) are

infinite.

To better understand Eq. (4.22), consider the case M = 3 where,

1− 1A = (1− 1A1) (1− 1A2) (1− 1A3)
= 1− (1A1 + 1A2 + 1A3)
+ 1A11A2 + 1A11A3 + 1A21A3 − 1A11A21A3

so that

1A1∪A2∪A3 = 1A1 + 1A2 + 1A3 − (1A1∩A2 + 1A1∩A3 + 1A2∩A3) + 1A1∩A2∩A3

Here is an alternate proof of Eq. (4.22). Let ω ∈ Ω and by relabeling the
sets {An} if necessary, we may assume that ω ∈ A1 ∩ · · · ∩Am and ω /∈ Am+1 ∪
· · · ∪AM for some 0 ≤ m ≤M. (When m = 0, both sides of Eq. (4.22) are zero
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and so we will only consider the case where 1 ≤ m ≤ M.) With this notation
we have

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank (ω)

=
m∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤m

1An1∩···∩Ank (ω)

=
m∑
k=1

(−1)k+1

(
m

k

)

= 1−
m∑
k=0

(−1)k (1)n−k
(
m

k

)
= 1− (1− 1)m = 1.

This verifies Eq. (4.22) since 1∪Mn=1An
(ω) = 1.

Example 4.25 (Coincidences). Let Ω be the set of permutations (think of card
shuffling), ω : {1, 2, . . . , n} → {1, 2, . . . , n} , and define P (A) := #(A)

n! to be the
uniform distribution (Haar measure) on Ω. We wish to compute the probability
of the event, B, that a random permutation fixes some index i. To do this, let
Ai := {ω ∈ Ω : ω (i) = i} and observe that B = ∪ni=1Ai. So by the Inclusion
Exclusion Formula, we have

P (B) =
n∑
k=1

(−1)k+1
∑

1≤i1<i2<i3<···<ik≤n

P (Ai1 ∩ · · · ∩Aik) .

Since

P (Ai1 ∩ · · · ∩Aik) = P ({ω ∈ Ω : ω (i1) = i1, . . . , ω (ik) = ik})

=
(n− k)!
n!

and

# {1 ≤ i1 < i2 < i3 < · · · < ik ≤ n} =
(
n

k

)
,

we find

P (B) =
n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!
n!

=
n∑
k=1

(−1)k+1 1
k!
. (4.24)

For large n this gives,

P (B) = −
n∑
k=1

1
k!

(−1)k ∼= 1−
∞∑
k=0

1
k!

(−1)k = 1− e−1 ∼= 0.632.

Example 4.26 (Expected number of coincidences). Continue the notation in Ex-
ample 4.25. We now wish to compute the expected number of fixed points of
a random permutation, ω, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi = 1Ai

and observe that

N (ω) =
n∑
i=1

Xi (ω) =
n∑
i=1

1ω(i)=i = # {i : ω (i) = i} .

denote the number of fixed points of ω. Hence we have

EN =
n∑
i=1

EXi =
n∑
i=1

P (Ai) =
n∑
i=1

(n− 1)!
n!

= 1.

Let us check the above formulas when n = 3. In this case we have

ω N (ω)
1 2 3 3
1 3 2 1
2 1 3 1
2 3 1 0
3 1 2 0
3 2 1 1

and so
P (∃ a fixed point) =

4
6

=
2
3
∼= 0.67 ∼= 0.632

while
3∑
k=1

(−1)k+1 1
k!

= 1− 1
2

+
1
6

=
2
3

and
EN =

1
6

(3 + 1 + 1 + 0 + 0 + 1) = 1.

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (Ω,A, P ) is a finitely additive probability space, so P (Ω) = 1,
2. Ai ∈ A for i = 1, 2, . . . , n,
3. N (ω) :=

∑n
i=1 1Ai (ω) = # {i : ω ∈ Ai} , and
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4. {Sk}nk=1 are given by

Sk :=
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

=
∑

Λ⊂{1,2,...,n}3|Λ|=k

P (∩i∈ΛAi) .

Exercise 4.4. For 1 ≤ k ≤ n, show;

1. (as functions on Ω) that(
N

k

)
=

∑
Λ⊂{1,2,...,n}3|Λ|=k

1∩i∈ΛAi , (4.25)

where by definition (
m

k

)
=


0 if k > m
m!

k!·(m−k)! if 1 ≤ k ≤ m
1 if k = 0

. (4.26)

2. Conclude from Eq. (4.25) that for all z ∈ C,

(1 + z)N = 1 +
n∑
k=1

zk
∑

1≤i1<i2<···<ik≤n

1Ai1∩···∩Aik (4.27)

provided (1 + z)0 = 1 even when z = −1.
3. Conclude from Eq. (4.25) that Sk = EP

(
N
k

)
.

Exercise 4.5. Taking expectations of Eq. (4.27) implies,

E
[
(1 + z)N

]
= 1 +

n∑
k=1

Skz
k. (4.28)

Show that setting z = −1 in Eq. (4.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out
E
[
(1 + z)N

]
explicitly.

Exercise 4.6. Let 1 ≤ m ≤ n. In this problem you are asked to compute the
probability that there are exactly m – coincidences. Namely you should show,

P (N = m) =
n∑

k=m

(−1)k−m
(
k

m

)
Sk

=
n∑

k=m

(−1)k−m
(
k

m

) ∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

Hint: differentiate Eq. (4.28) m times with respect to z and then evaluate the
result at z = −1. In order to do this you will find it useful to derive formulas
for;

dm

dzm
|z=−1 (1 + z)n and

dm

dzm
|z=−1z

k.

Example 4.27. Let us again go back to Example 4.26 where we computed,

Sk =
(
n

k

)
(n− k)!
n!

=
1
k!
.

Therefore it follows from Exercise 4.6 that

P (∃ exactly m fixed points) = P (N = m)

=
n∑

k=m

(−1)k−m
(
k

m

)
1
k!

=
1
m!

n∑
k=m

(−1)k−m
1

(k −m)!
.

So if n is much bigger than m we may conclude that

P (∃ exactly m fixed points) ∼=
1
m!
e−1.

Let us check our results are consistent with Eq. (4.24);

P (∃ a fixed point) =
n∑

m=1

P (N = m)

=
n∑

m=1

n∑
k=m

(−1)k−m
(
k

m

)
1
k!

=
∑

1≤m≤k≤n

(−1)k−m
(
k

m

)
1
k!

=
n∑
k=1

k∑
m=1

(−1)k−m
(
k

m

)
1
k!

=
n∑
k=1

[
k∑

m=0

(−1)k−m
(
k

m

)
− (−1)k

]
1
k!

= −
n∑
k=1

(−1)k
1
k!

wherein we have used,
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k∑
m=0

(−1)k−m
(
k

m

)
= (1− 1)k = 0.

4.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma 4.23. In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 4.28. Let n ∈ N0 and 0 ≤ k ≤ n, then

k∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1
k

)
1n>0 + 1n=0. (4.29)

Proof. The case n = 0 is trivial. We give two proofs for when n ∈ N.
First proof. Just use induction on k. When k = 0, Eq. (4.29) holds since

1 = 1. The induction step is as follows,

k+1∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1
k

)
+
(

n

k + 1

)

=
(−1)k+1

(k + 1)!
[n (n− 1) . . . (n− k)− (k + 1) (n− 1) . . . (n− k)]

=
(−1)k+1

(k + 1)!
[(n− 1) . . . (n− k) (n− (k + 1))] = (−1)k+1

(
n− 1
k + 1

)
.

Second proof. Let X = {1, 2, . . . , n} and observe that

mk :=
k∑
l=0

(−1)l
(
n

l

)
=

k∑
l=0

(−1)l ·#
(
Λ ∈ 2X : # (Λ) = l

)
=

∑
Λ∈2X : #(Λ)≤k

(−1)#(Λ) (4.30)

Define T : 2X → 2X by

T (S) =
{
S ∪ {1} if 1 /∈ S
S \ {1} if 1 ∈ S .

Observe that T is a bijection of 2X such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let

Γk :=
{
Λ ∈ 2X : # (Λ) ≤ k and 1 ∈ Λ if # (Λ) = k

}
,

then T (Γk) = Γk for all 1 ≤ k ≤ n. Since∑
Λ∈Γk

(−1)#(Λ) =
∑
Λ∈Γk

(−1)#(T (Λ)) =
∑
Λ∈Γk

− (−1)#(Λ)

we see that
∑
Λ∈Γk (−1)#(Λ) = 0. Using this observation with Eq. (4.30) implies

mk =
∑
Λ∈Γk

(−1)#(Λ) +
∑

#(Λ)=k & 1/∈Λ

(−1)#(Λ) = 0 + (−1)k
(
n− 1
k

)
.

Corollary 4.29 (Bonferroni Inequalitites). Let µ : A → [0, µ (X)] be a
finitely additive finite measure on A ⊂ 2X , An ∈ A for n = 1, 2, . . . ,M, N :=∑M
n=1 1An , and

Sk :=
∑

1≤i1<···<ik≤M

µ (Ai1 ∩ · · · ∩Aik) = Eµ
[(
N

k

)]
.

Then for 1 ≤ k ≤M,

µ
(
∪Mn=1An

)
=

k∑
l=1

(−1)l+1
Sl + (−1)k Eµ

[(
N − 1
k

)]
. (4.31)

This leads to the Bonferroni inequalities;

µ
(
∪Mn=1An

)
≤

k∑
l=1

(−1)l+1
Sl if k is odd

and

µ
(
∪Mn=1An

)
≥

k∑
l=1

(−1)l+1
Sl if k is even.

Proof. By Lemma 4.28,

k∑
l=0

(−1)l
(
N

l

)
= (−1)k

(
N − 1
k

)
1N>0 + 1N=0.

Therefore integrating this equation with respect to µ gives,

µ (X) +
k∑
l=1

(−1)l Sl = µ (N = 0) + (−1)k Eµ
(
N − 1
k

)
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and therefore,

µ
(
∪Mn=1An

)
= µ (N > 0) = µ (X)− µ (N = 0)

= −
k∑
l=1

(−1)l Sl + (−1)k Eµ
(
N − 1
k

)
.

The Bonferroni inequalities are a simple consequence of Eq. (4.31) and the fact
that (

N − 1
k

)
≥ 0 =⇒ Eµ

(
N − 1
k

)
≥ 0.

4.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A ⊂ 2X be an algebra of sets, and P := µ :
A → [0,∞) be a finitely additive measure with µ (X) <∞. As above let

Eµf :=
∫
X

fdµ :=
∑
λ∈C

λµ(f = λ) ∀ f ∈ S (A) . (4.32)

Notation 4.30 For any function, f : X → C let ‖f‖u := supx∈X |f (x)| .
Further, let S̄ := S (A) denote those functions, f : X → C such that there exists
fn ∈ S (A) such that limn→∞ ‖f − fn‖u = 0.

Exercise 4.7. Prove the following statements.

1. For all f ∈ S (A) ,
|Eµf | ≤ µ (X) ‖f‖u . (4.33)

2. If f ∈ S̄ and fn ∈ S := S (A) such that limn→∞ ‖f − fn‖u = 0, show
limn→∞ Eµfn exists. Also show that defining Eµf := limn→∞ Eµfn is well
defined, i.e. you must show that limn→∞ Eµfn = limn→∞ Eµgn if gn ∈ S
such that limn→∞ ‖f − gn‖u = 0.

3. Show Eµ : S̄→ C is still linear and still satisfies Eq. (4.33).
4. Show |f | ∈ S̄ if f ∈ S̄ and that Eq. (4.19) is still valid, i.e. |Eµf | ≤ Eµ |f |

for all f ∈ S̄.

Let us now specialize the above results to the case where X = [0, T ] for
some T <∞. Let S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 4.31 (Riemann Stieljtes integral). Let F : [0, T ] → R be an
increasing function, then;

1. there exists a unique finitely additive measure, µF , on A := A (S) such that
µF ((a, b]) = F (b)− F (a) for all 0 ≤ a ≤ b ≤ T and µF ({0}) = 0. (In fact
one could allow for µF ({0}) = λ for any λ ≥ 0, but we would then have to
write µF,λ rather than µF .)

2. Show C ([0, 1] ,C) ⊂ S (A). More precisely, suppose π :=
{0 = t0 < t1 < · · · < tn = T} is a partition of [0, T ] and c = (c1, . . . , cn) ∈
[0, T ]n with ti−1 ≤ ci ≤ ti for each i. Then for f ∈ C ([0, 1] ,C) , let

fπ,c := f (0) 1{0} +
n∑
i=1

f (ci) 1(ti−1,ti]. (4.34)

Show that ‖f − fπ,c‖u is small provided, |π| := max {|ti − ti−1| : i = 1, 2, . . . , n}
is small.

3. Using the above results, show∫
[0,T ]

fdµF = lim
|π|→0

n∑
i=1

f (ci) (F (ti)− F (ti−1))

where the ci may be chosen arbitrarily subject to the constraint that ti−1 ≤
ci ≤ ti.

It is customary to write
∫ T

0
fdF for

∫
[0,T ]

fdµF . This integral satisfies the
estimates,∣∣∣∣∣

∫
[0,T ]

fdµF

∣∣∣∣∣ ≤
∫

[0,T ]

|f | dµF ≤ ‖f‖u (F (T )− F (0)) ∀ f ∈ S (A).

When F (t) = t, ∫ T

0

fdF =
∫ T

0

f (t) dt,

is the usual Riemann integral.

Exercise 4.8. Let a ∈ (0, T ) , λ > 0, and

G (x) = λ · 1x≥a =
{
λ if x ≥ a
0 if x < a

.

1. Explicitly compute
∫

[0,T ]
fdµG for all f ∈ C ([0, 1] ,C) .

2. If F (x) = x + λ · 1x≥a describe
∫

[0,T ]
fdµF for all f ∈ C ([0, 1] ,C) . Hint:

if F (x) = G (x) + H (x) where G and H are two increasing functions on
[0, T ] , show ∫

[0,T ]

fdµF =
∫

[0,T ]

fdµG +
∫

[0,T ]

fdµH .
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Exercise 4.9. Suppose that F,G : [0, T ]→ R are two increasing functions such
that F (0) = G (0) , F (T ) = G (T ) , and F (x) 6= G (x) for at most countably
many points, x ∈ (0, T ) . Show∫

[0,T ]

fdµF =
∫

[0,T ]

fdµG for all f ∈ C ([0, 1] ,C) . (4.35)

Note well, given F (0) = G (0) , µF = µG on A iff F = G.

One of the points of the previous exercise is to show that Eq. (4.35) holds
when G (x) := F (x+) – the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps, see
Remark 21.16. So if we only want to integrate continuous functions, we may
always assume that F : [0, T ]→ R is right continuous.

4.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {αk}∞k=1 ⊂ Λ1 and
{βk}∞k=1 ⊂ Λ2 where Λ1 and Λ2 are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent experiments, suppose that one experiment
is the outcome of spinning a roulette wheel and the second is the outcome of
rolling a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice – one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 4.32 (Heuristic). Suppose that {αk}∞k=1 ⊂ Λ1 and {βk}∞k=1 ⊂ Λ2 are
the outcomes of repeatedly running two experiments independent of each other
and for x ∈ Λ1 and y ∈ Λ2,

p (x, y) := lim
N→∞

1
N

# {1 ≤ k ≤ N : αk = x and βk = y} ,

p1 (x) := lim
N→∞

1
N

# {1 ≤ k ≤ N : αk = x} , and

p2 (y) := lim
N→∞

1
N

# {1 ≤ k ≤ N : βk = y} . (4.36)

Then p (x, y) = p1 (x) p2 (y) . In particular this then implies for any h : Λ1 ×
Λ2 → R we have,

Eh = lim
N→∞

1
N

N∑
k=1

h (αk, βk) =
∑

(x,y)∈Λ1×Λ2

h (x, y) p1 (x) p2 (y) .

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as,

{
α`k
}∞
k=1

, where ` ∈ N indicates the `th –
run of the experiment. Then we have postulated that, independent of `,

p (x, y) := lim
N→∞

1
N

N∑
k=1

1{α`k=x and βk=y} = lim
N→∞

1
N

N∑
k=1

1{α`k=x} · 1{βk=y}

So for any L ∈ N we must also have,

p (x, y) =
1
L

L∑
`=1

p (x, y) =
1
L

L∑
`=1

lim
N→∞

1
N

N∑
k=1

1{α`k=x} · 1{βk=y}

= lim
N→∞

1
N

N∑
k=1

1
L

L∑
`=1

1{α`k=x} · 1{βk=y}.

Taking the limit of this equation as L→∞ and interchanging the order of the
limits (this is faith based) implies,

p (x, y) = lim
N→∞

1
N

N∑
k=1

1{βk=y} · lim
L→∞

1
L

L∑
`=1

1{α`k=x}. (4.37)

Since for fixed k,
{
α`k
}∞
`=1

is just another run of the first experiment, by our
postulate, we conclude that

lim
L→∞

1
L

L∑
`=1

1{α`k=x} = p1 (x) (4.38)

independent of the choice of k. Therefore combining Eqs. (4.36), (4.37), and
(4.38) implies,

p (x, y) = lim
N→∞

1
N

N∑
k=1

1{βk=y} · p1 (x) = p2 (y) p1 (x) .

To understand this “Lemma” in another but equivalent way, let X1 : Λ1 ×
Λ2 → Λ1 and X2 : Λ1 × Λ2 → Λ2 be the projection maps, X1 (x, y) = x and

Page: 40 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



4.4 Simple Independence and the Weak Law of Large Numbers 41

X2 (x, y) = y respectively. Further suppose that f : Λ1 → R and g : Λ2 → R
are functions, then using the heuristics Lemma 4.32 implies,

E [f (X1) g (X2)] =
∑

(x,y)∈Λ1×Λ2

f (x) g (y) p1 (x) p2 (y)

=
∑
x∈Λ1

f (x) p1 (x) ·
∑
y∈Λ2

g (y) p2 (y) = Ef (X1) · Eg (X2) .

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
– independent experiments. For notational simplicity we will now assume that
Λ1 = Λ2 = · · · = Λn = Λ.

Let Λ be a finite set, n ∈ N, Ω = Λn, and Xi : Ω → Λ be defined by
Xi (ω) = ωi for ω ∈ Ω and i = 1, 2, . . . , n. We further suppose p : Ω → [0, 1] is
a function such that ∑

ω∈Ω
p (ω) = 1

and P : 2Ω → [0, 1] is the probability measure defined by

P (A) :=
∑
ω∈A

p (ω) for all A ∈ 2Ω . (4.39)

Exercise 4.10 (Simple Independence 1.). Suppose qi : Λ → [0, 1] are
functions such that

∑
λ∈Λ qi (λ) = 1 for i = 1, 2, . . . , n and now define

p (ω) =
∏n
i=1 qi (ωi) . Show for any functions, fi : Λ→ R that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] =
n∏
i=1

EQifi

where Qi is the measure on Λ defined by, Qi (γ) =
∑
λ∈γ qi (λ) for all γ ⊂ Λ.

Exercise 4.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] (4.40)

for any functions, fi : Λ → R, then there exists functions qi : Λ → [0, 1] with∑
λ∈Λ qi (λ) = 1, such that p (ω) =

∏n
i=1 qi (ωi) .

Definition 4.33 (Independence). We say simple random variables,
X1, . . . , Xn with values in Λ on some probability space, (Ω,A, P ) are indepen-
dent (more precisely P – independent) if Eq. (4.40) holds for all functions,
fi : Λ→ R.

Exercise 4.12 (Simple Independence 3.). Let X1, . . . , Xn : Ω → Λ and
P : 2Ω → [0, 1] be as described before Exercise 4.10. Show X1, . . . , Xn are
independent iff

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) . . . P (Xn ∈ An) (4.41)

for all choices of Ai ⊂ Λ. Also explain why it is enough to restrict the Ai to
single point subsets of Λ.

Exercise 4.13 (A Weak Law of Large Numbers). Suppose that Λ ⊂ R
is a finite set, n ∈ N, Ω = Λn, p (ω) =

∏n
i=1 q (ωi) where q : Λ → [0, 1]

such that
∑
λ∈Λ q (λ) = 1, and let P : 2Ω → [0, 1] be the probability measure

defined as in Eq. (4.39). Further let Xi (ω) = ωi for i = 1, 2, . . . , n, ξ := EXi,

σ2 := E (Xi − ξ)2
, and

Sn =
1
n

(X1 + · · ·+Xn) .

1. Show, ξ =
∑
λ∈Λ λ q (λ) and

σ2 =
∑
λ∈Λ

(λ− ξ)2
q (λ) =

∑
λ∈Λ

λ2q (λ)− ξ2. (4.42)

2. Show, ESn = ξ.
3. Let δij = 1 if i = j and δij = 0 if i 6= j. Show

E [(Xi − ξ) (Xj − ξ)] = δijσ
2.

4. Using Sn − ξ may be expressed as, 1
n

∑n
i=1 (Xi − ξ) , show

E (Sn − ξ)2 =
1
n
σ2. (4.43)

5. Conclude using Eq. (4.43) and Remark 4.22 that

P (|Sn − ξ| ≥ ε) ≤
1
nε2

σ2. (4.44)

So for large n, Sn is concentrated near ξ = EXi with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 4.34 (Covariance). Let (Ω,B, P ) is a finitely additive probability.
The covariance, Cov (X,Y ) , of X,Y ∈ S (B) is defined by

Cov (X,Y ) = E [(X − ξX) (Y − ξY )] = E [XY ]− EX · EY

where ξX := EX and ξY := EY. The variance of X,
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Var (X) := Cov (X,X) = E
[
X2
]
− (EX)2

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] = EX ·
EY. More generally we say {Xk}nk=1 ⊂ S (B) are uncorrelated iff Cov (Xi, Xj) =
0 for all i 6= j.

Remark 4.35. 1. Observe that X and Y are independent iff f (X) and g (Y ) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y ) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
4.13 you will see that it suffices to assume that {Xi}ni=1 are uncorrelated rather
than the stronger condition of being independent.

Exercise 4.14 (Bernoulli Random Variables). Let Λ = {0, 1} , X : Λ→ R
be defined by X (0) = 0 and X (1) = 1, x ∈ [0, 1] , and define Q = xδ1 +
(1− x) δ0, i.e. Q ({0}) = 1− x and Q ({1}) = x. Verify,

ξ (x) := EQX = x and

σ2 (x) := EQ (X − x)2 = (1− x)x ≤ 1/4.

Theorem 4.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f ∈ C([0, 1] ,C) and

pn (x) :=
n∑
k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k .

Then
lim
n→∞

sup
x∈[0,1]

|f (x)− pn (x)| = 0.

Proof. Let x ∈ [0, 1] , Λ = {0, 1} , q (0) = 1− x, q (1) = x, Ω = Λn, and

Px ({ω}) = q (ω1) . . . q (ωn) = x
∑n

i=1
ωi · (1− x)1−

∑n

i=1
ωi .

As above, let Sn = 1
n (X1 + · · ·+Xn) , where Xi (ω) = ωi and observe that

Px

(
Sn =

k

n

)
=
(
n

k

)
xk (1− x)n−k .

Therefore, writing Ex for EPx , we have

Ex [f (Sn)] =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k = pn (x) .

Hence we find

|pn (x)− f (x)| = |Exf (Sn)− f (x)| = |Ex [f (Sn)− f (x)]|
≤ Ex |f (Sn)− f (x)|
= Ex [|f (Sn)− f (x)| : |Sn − x| ≥ ε]

+ Ex [|f (Sn)− f (x)| : |Sn − x| < ε]
≤ 2M · Px (|Sn − x| ≥ ε) + δ (ε)

where

M := max
y∈[0,1]

|f (y)| and

δ (ε) := sup {|f(y)− f(x)| : x, y ∈ [0, 1] and |y − x| ≤ ε}

is the modulus of continuity of f. Now by the above exercises,

Px (|Sn − x| ≥ ε) ≤
1

4nε2
(see Figure 4.1) (4.45)

and hence we may conclude that

max
x∈[0,1]

|pn (x)− f (x)| ≤ M

2nε2
+ δ (ε)

and therefore, that

lim sup
n→∞

max
x∈[0,1]

|pn (x)− f (x)| ≤ δ (ε) .

This completes the proof, since by uniform continuity of f, δ (ε) ↓ 0 as ε ↓ 0.

4.4.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem 4.42 which states that
any continuous 2π – periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem 4.36. All of the results in this section have
natural generalization to higher dimensions as well , see Theorem 4.50.

Theorem 4.37 (Weierstrass Approximation Theorem). Suppose that
K = [0, 1]2 , f ∈ C(K,C), and

pn (x, y) :=
n∑

k,l=0

f

(
k

n
,
l

n

)(
n

k

)(
n

l

)
xk (1− x)n−k yl (1− y)n−l . (4.46)

Then pn → f uniformly on K.
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4.4 Simple Independence and the Weak Law of Large Numbers 43

Fig. 4.1. Plots of Px (Sn = k/n) versus k/n for n = 100 with x = 1/4 (black), x = 1/2
(red), and x = 5/6 (green).

Proof. We are going to follow the argument given in the proof of Theorem
4.36. By considering the real and imaginary parts of f separately, it suffices
to assume f ∈ C([0, 1]2 ,R). For (x, y) ∈ K and n ∈ N we may choose a
collection of independent Bernoulli simple random variables {Xi, Yi}ni=1 such
that P (Xi = 1) = x and P (Yi = 1) = y for all 1 ≤ i ≤ n. Then letting
Sn := 1

n

∑n
i=1Xi and Tn := 1

n

∑n
i=1 Yi, we have

E [f (Sn, Tn)] =
n∑

k,l=0

f

(
k

n
,
l

n

)
P (n · Sn = k, n · Tn = l) = pn (x, y)

where pn (x, y) is the polynomial given in Eq. (4.46) wherein the assumed in-
dependence is needed to show,

P (n · Sn = k, n · Tn = l) =
(
n

k

)(
n

l

)
xk (1− x)n−k yl (1− y)n−l .

Thus if M = sup {|f(x, y)| : (x, y) ∈ K} , ε > 0,

δε = sup {|f(x′, y′)− f(x, y)| : (x, y) , (x′, y′) ∈ K and ‖x′, y′ − (x, y)‖ ≤ ε} ,

and
A := {‖(Sn, Tn)− (x, y)‖ > ε} ,

we have,

|f(x, y)− pn(x, y)| = |E (f(x, y)− f ((Sn, Tn)))|
≤ E |f(x, y)− f ((Sn, Tn))|

=E [|f(x, y)− f (Sn, Tn)| : A]
+ E [|f(x, y)− f (Sn, Tn)| : Ac]

≤2M · P (A) + δε · P (Ac)
≤ 2M · P (A) + δε. (4.47)

To estimate P (A) , observe that if

‖(Sn, Tn)− (x, y)‖2 = (Sn − x)2 + (Tn − y)2
> ε2,

then either,
(Sn − x)2

> ε2/2 or (Tn − y)2
> ε2/2

and therefore by sub-additivity and Eq. (4.45) we know

P (A) ≤ P
(
|Sn − x| > ε/

√
2
)

+ P
(
|Tn − y| > ε/

√
2
)

≤ 1
2nε2

+
1

2nε2
=

1
nε2

. (4.48)

Using this estimate in Eq. (4.47) gives,

|f(x, y)− pn(x, y)| ≤ 2M · 1
nε2

+ δε

and as right is independent of (x, y) ∈ K we may conclude,

lim sup
n→∞

sup
(x,y)∈K

|f (x, y)− pn (x, y)| ≤ δε

which completes the proof since δε ↓ 0 as ε ↓ 0 because f is uniformly continuous
on K.

Remark 4.38. We can easily improve our estimate on P (A) in Eq. (4.48) by a
factor of two as follows. As in the proof of Theorem 4.36,

E
[
‖(Sn, Tn)− (x, y)‖2

]
= E

[
(Sn − x)2 + (Tn − y)2

]
= Var (Sn) + Var (Tn)

=
1
n
x (1− x) + y (1− y) ≤ 1

2n
.

Therefore by Chebyshev’s inequality,

P (A) = P (‖(Sn, Tn)− (x, y)‖ > ε) ≤ 1
ε2

E ‖(Sn, Tn)− (x, y)‖2 ≤ 1
2nε2

.
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Corollary 4.39. Suppose that K = [a, b]× [c, d] is any compact rectangle in R2.
Then every function, f ∈ C(K,C), may be uniformly approximated by polyno-
mial functions in (x, y) ∈ R2.

Proof. Let F (x, y) := f (a+ x (b− a) , c+ y (d− c)) – a continuous func-
tion of (x, y) ∈ [0, 1]2 . Given ε > 0, we may use Theorem Theorem 4.37 to find
a polynomial, p (x, y) , such that sup(x,y)∈[0,1]2 |F (x, y)− p (x, y)| ≤ ε. Letting
ξ = a+ x (b− a) and η := c+ y (d− c) , it now follows that

sup
(ξ.η)∈K

∣∣∣∣f (ξ, η)− p
(
ξ − a
b− a

,
η − c
d− c

)∣∣∣∣ ≤ ε
which completes the proof since p

(
ξ−a
b−a ,

η−c
d−c

)
is a polynomial in (ξ, η) .

Here is a version of the complex Weierstrass approximation theorem.

Theorem 4.40 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ C is a compact rectangle. Then there exists poly-
nomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ C, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ R × R → z = x + iy ∈ C is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on R × R may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p

(
z + z̄

2
,
z − z̄

2i

)
.

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 4.37.

Example 4.41. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1). To prove this first observe
if f ∈ C

(
S1
)

then F (z) = |z| f
(
z
|z|

)
for z 6= 0 and F (0) = 0 defines F ∈ C(C)

such that F |S1 = f. By applying Theorem 4.40 to F restricted to a compact
rectangle containing S1 we may find qn (z, z̄) converging uniformly to F on K
and hence on S1. Since z̄ on S1, we have shown polynomials in z and z−1 are
dense in C(S1).

Theorem 4.42 (Density of Trigonometric Polynomials). Any 2π – pe-
riodic continuous function, f : R → C, may be uniformly approximated by a
trigonometric polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Z and aλ ∈ C for all λ ∈ Λ.

Proof. For z ∈ S1, define F (z) := f(θ) where θ ∈ R is chosen so that
z = eiθ. Since f is 2π – periodic, F is well defined since if θ solves eiθ = z then
all other solutions are of the form {θ + 2πn : n ∈ Z} . Since the map θ → eiθ

is a local homeomorphism, i.e. for any J = (a, b) with b − a < 2π, the map

θ ∈ J φ→ J̃ :=
{
eiθ : θ ∈ J

}
⊂ S1 is a homeomorphism, it follows that F (z) =

f ◦ φ−1(z) for z ∈ J̃ . This shows F is continuous when restricted to J̃ . Since
such sets cover S1, it follows that F is continuous.

By Example 4.41, the polynomials in z and z̄ = z−1 are dense in C(S1).
Hence for any ε > 0 there exists

p(z, z̄) =
∑

0≤m,n≤N

am,nz
mz̄n

such that |F (z)− p(z, z̄)| ≤ ε for all z ∈ S1. Taking z = eiθ then implies

sup
θ

∣∣f(θ)− p
(
eiθ, e−iθ

)∣∣ ≤ ε
where

p
(
eiθ, e−iθ

)
=

∑
0≤m,n≤N

am,ne
i(m−n)θ

is the desired trigonometry polynomial.

4.4.2 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X,A, µ), where X is a set, A ⊂ 2X is an algebra, and
µ : A → [0,∞] is a finitely additive measure. Let (Y,B, ν) be another finitely
additive measure space.

Definition 4.43. Let A�B be the smallest sub-algebra of 2X×Y containing all
sets of the form S := {A×B : A ∈ A and B ∈ B} . As we have seen in Exercise
3.10, S is a semi-algebra and therefore A� B consists of subsets, C ⊂ X × Y,
which may be written as;

C =
n∑
i=1

Ai ×Bi with Ai ×Bi ∈ S. (4.49)
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Theorem 4.44 (Product Measure and Fubini’s Theorem). Assume that
µ (X) < ∞ and ν (Y ) < ∞ for simplicity. Then there is a unique finitely
additive measure, µ� ν, on A�B such that µ� ν (A×B) = µ (A) ν (B) for all
A ∈ A and B ∈ B. Moreover if f ∈ S (A� B) then;

1. y → f (x, y) is in S (B) for all x ∈ X and x → f (x, y) is in S (A) for all
y ∈ Y.

2. x→
∫
Y
f (x, y) dν (y) is in S (A) and y →

∫
X
f (x, y) dµ (x) is in S (B) .

3. we have,∫
X

[∫
Y

f (x, y) dν (y)
]
dµ (x)

=
∫
X×Y

f (x, y) d (µ� ν) (x, y)

=
∫
Y

[∫
X

f (x, y) dµ (x)
]
dν (y) .

We will refer to µ� ν as the product measure of µ and ν.

Proof. According to Eq. (4.49),

1C (x, y) =
n∑
i=1

1Ai×Bi (x, y) =
n∑
i=1

1Ai (x) 1Bi (y)

from which it follows that 1C (x, ·) ∈ S (B) for each x ∈ X and∫
Y

1C (x, y) dν (y) =
n∑
i=1

1Ai (x) ν (Bi) .

It now follows from this equation that x→
∫
Y

1C (x, y) dν (y) ∈ S (A) and that∫
X

[∫
Y

1C (x, y) dν (y)
]
dµ (x) =

n∑
i=1

µ (Ai) ν (Bi) .

Similarly one shows that∫
Y

[∫
X

1C (x, y) dµ (x)
]
dν (y) =

n∑
i=1

µ (Ai) ν (Bi) .

In particular this shows that we may define

(µ� ν) (C) =
n∑
i=1

µ (Ai) ν (Bi)

and with this definition we have,∫
X

[∫
Y

1C (x, y) dν (y)
]
dµ (x)

= (µ� ν) (C)

=
∫
Y

[∫
X

1C (x, y) dµ (x)
]
dν (y) .

From either of these representations it is easily seen that µ � ν is a finitely
additive measure on A � B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1C with C ∈ A �
B. Since the general element, f ∈ S (A� B) , is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general.

Example 4.45. Suppose that f ∈ S (A) and g ∈ S (B) . Let f ⊗ g (x, y) :=
f (x) g (y) . Since we have,

f ⊗ g (x, y) =

(∑
a

a1f=a (x)

)(∑
b

b1g=b (y)

)
=
∑
a,b

ab1{f=a}×{g=b} (x, y)

it follows that f ⊗ g ∈ S (A� B) . Moreover, using Fubini’s Theorem 4.44 it
follows that ∫

X×Y
f ⊗ g d (µ� ν) =

[∫
X

f dµ

] [∫
Y

g dν

]
.

4.5 Simple Conditional Expectation

In this section, B is a sub-algebra of 2Ω , P : B → [0, 1] is a finitely additive
probability measure, and A ⊂ B is a finite sub-algebra. As in Example 3.19, for
each ω ∈ Ω, let Aω := ∩{A ∈ A : ω ∈ A} and recall that either Aω = Aω′ or
Aω ∩Aω′ = ∅ for all ω, ω′ ∈ Ω. In particular there is a partition, {B1, . . . , Bn} ,
of Ω such that Aω ∈ {B1, . . . , Bn} for all ω ∈ Ω.

Definition 4.46 (Conditional expectation). Let X : Ω → R be a B – simple
random variable, i.e. X ∈ S (B) , and

X̄ (ω) :=
1

P (Aω)
E [1AωX] for all ω ∈ Ω, (4.50)
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where by convention, X̄ (ω) = 0 if P (Aω) = 0. We will denote X̄ by E [X|A]
for EAX and call it the conditional expectation of X given A. Alternatively we
may write X̄ as

X̄ =
n∑
i=1

E [1BiX]
P (Bi)

1Bi , (4.51)

again with the convention that E [1BiX] /P (Bi) = 0 if P (Bi) = 0.

It should be noted, from Exercise 4.1, that X̄ = EAX ∈ S (A) . Heuristi-
cally, if (ω (1) , ω (2) , ω (3) , . . . ) is the sequence of outcomes of “independently”
running our “experiment” repeatedly, then

X̄|Bi =
E [1BiX]
P (Bi)

“ = ”
limN→∞

1
N

∑N
n=1 1Bi (ω (n))X (ω (n))

limN→∞
1
N

∑N
n=1 1Bi (ω (n))

= lim
N→∞

∑N
n=1 1Bi (ω (n))X (ω (n))∑N

n=1 1Bi (ω (n))
.

So to compute X̄|Bi “empirically,” we remove all experimental outcomes from
the list, (ω (1) , ω (2) , ω (3) , . . . ) ∈ ΩN, which are not in Bi to form a new
list, (ω̄ (1) , ω̄ (2) , ω̄ (3) , . . . ) ∈ BN

i . We then compute X̄|Bi using the empirical
formula for the expectation of X relative to the “bar” list, i.e.

X̄|Bi = lim
N→∞

1
N

N∑
n=1

X (ω̄ (n)) .

Exercise 4.15 (Simple conditional expectation). Let X ∈ S (B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

1. (Orthogonal Projection Property 1.) If Z ∈ S (A), then

E [XZ] = E
[
X̄Z

]
= E [EAX · Z] (4.52)

and

(EAZ) (ω) =
{
Z (ω) if P (Aω) > 0

0 if P (Aω) = 0 . (4.53)

In particular, EA [EAZ] = EAZ.
This basically says that EA is orthogonal projection from S (B) onto S (A)
relative to the inner product

(f, g) = E [fg] for all f, g ∈ S (B) .

2. (Orthogonal Projection Property 2.) If Y ∈ S (A) satisfies, E [XZ] =
E [Y Z] for all Z ∈ S (A) , then Y (ω) = X̄ (ω) whenever P (Aω) > 0. In
particular, P

(
Y 6= X̄

)
= 0. Hint: use item 1. to compute E

[(
X̄ − Y

)2]
.

3. (Best Approximation Property.) For any Y ∈ S (A) ,

E
[(
X − X̄

)2] ≤ E
[
(X − Y )2

]
(4.54)

with equality iff X̄ = Y almost surely (a.s. for short), where X̄ = Y a.s. iff
P
(
X̄ 6= Y

)
= 0. In words, X̄ = EAX is the best (“L2”) approximation to

X by an A – measurable random variable.
4. (Contraction Property.) E

∣∣X̄∣∣ ≤ E |X| . (It is typically not true that∣∣X̄ (ω)
∣∣ ≤ |X (ω)| for all ω.)

5. (Pull Out Property.) If Z ∈ S (A) , then

EA [ZX] = ZEAX.

Example 4.47 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Λ1 = {1, 2, . . . , 10} and rolling a die with values in Λ2 = {1, 2, 3, 4, 5, 6} . So
the outcome of an experiment is represented by a point, ω = (x, y) ∈ Ω =
Λ1 × Λ2. Let X (x, y) = x, Y (x, y) = y, B = 2Ω , and

A = A (X) = X−1
(
2Λ1
)

=
{
X−1 (A) : A ⊂ Λ1

}
⊂ B,

so that A is the smallest algebra of subsets of Ω such that {X = x} ∈ A for all
x ∈ Λ1. Notice that the partition associated to A is precisely

{{X = 1} , {X = 2} , . . . , {X = 10}} .

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
produce a sequence of results, ωn = (xn, yn) for all n ∈ N. If g : Λ2 → R is a
function, we have (heuristically) that

EA [g (Y )] (x, y) = lim
N→∞

∑N
n=1 g (Y (ω (n))) 1X(ω(n))=x∑N

n=1 1X(ω(n))=x

= lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

.

As the {yn} sequence of results are independent of the {xn} sequence, we should
expect by the usual mantra2 that

lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

= lim
N→∞

1
M (N)

M(N)∑
n=1

g (ȳn) = E [g (Y )] ,

2 That is it should not matter which sequence of independent experiments are used
to compute the time averages.
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where M (N) =
∑N
n=1 1xn=x and (ȳ1, ȳ2, . . . ) = {yl : 1xl=x} . (We are also

assuming here that P (X = x) > 0 so that we expect, M (N) ∼ P (X = x)N
for N large, in particular M (N) → ∞.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced
that EA [g (Y )] : Ω → R is the constant function;

EA [g (Y )] (x, y) = E [g (Y )] for all (x, y) ∈ Ω. (4.55)

Let us further observe that if f : Λ1 → R is any other function, then f (X) is
an A – simple function and therefore by Eq. (4.55) and Exercise 4.15

E [f (X)]·E [g (Y )] = E [f (X) · E [g (Y )]] = E [f (X) · EA [g (Y )]] = E [f (X) · g (Y )] .

This observation along with Exercise 4.12 gives another “proof” of Lemma 4.32.

Lemma 4.48 (Conditional Expectation and Independence). Let Ω =
Λ1 × Λ2, X, Y, B = 2Ω , and A =X−1

(
2Λ1
)
, be as in Example 4.47 above.

Assume that P : B → [0, 1] is a probability measure. If X and Y are P –
independent, then Eq. (4.55) holds.

Proof. From the definitions of conditional expectation and of independence
we have,

EA [g (Y )] (x, y) =
E [1X=x · g (Y )]
P (X = x)

=
E [1X=x] · E [g (Y )]

P (X = x)
= E [g (Y )] .

The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

Theorem 4.49 (Independence result summary). Let (Ω,B, P ) be a
finitely additive probability space, Λ be a finite set, and X,Y : Ω → Λ be two
B – measurable simple functions, i.e. {X = x} ∈ B and {Y = y} ∈ B for all
x, y ∈ Λ. Further let A = A (X) := A ({X = x} : x ∈ Λ) . Then the following
are equivalent;

1. P (X = x, Y = y) = P (X = x) · P (Y = y) for all x ∈ Λ and y ∈ Λ,
2. E [f (X) g (Y )] = E [f (X)] E [g (Y )] for all functions, f : Λ → R and g :
Λ→ R,

3. EA(X) [g (Y )] = E [g (Y )] for all g : Λ→ R, and
4. EA(Y ) [f (X)] = E [f (X)] for all f : Λ→ R.

We say that X and Y are P – independent if any one (and hence all) of the
above conditions holds.

4.6 Appendix: A Multi-dimensional Weirstrass
Approximation Theorem

The following theorem is the multi-dimensional generalization of Theorem 4.36.

Theorem 4.50 (Weierstrass Approximation Theorem). Suppose that
K = [a1, b1] × . . . [ad, bd] with −∞ < ai < bi < ∞ is a compact rectangle
in Rd. Then for every f ∈ C(K,C), there exists polynomials pn on Rd such that
pn → f uniformly on K.

Proof. By a simple scaling and translation of the arguments of f we may
assume without loss of generality that K = [0, 1]d . By considering the real and
imaginary parts of f separately, it suffices to assume f ∈ C([0,1],R).

Given x ∈ K, let
{
Xn =

(
X1
n, . . . , X

d
n

)}∞
n=1

be i.i.d. random vectors with
values in Rd such that

P (Xn = η) =
d∏
i=1

(1− xi)1−ηi xηii

for all η = (η1, . . . , ηd) ∈ {0, 1}d . Since each Xj
n is a Bernoulli random variable

with P
(
Xj
n = 1

)
= xj , we know that

EXn = x and Var
(
Xj
n

)
= xj − x2

j = xj(1− xj).

As usual let Sn = Sn := X1 + · · ·+Xn ∈ Rd, then

E
[
Sn
n

]
= x and

E

[∥∥∥∥Snn − x
∥∥∥∥2
]

=
d∑
j=1

E
(
Sjn
n
− xj

)2

=
d∑
j=1

Var
(
Sjn
n
− xj

)

=
d∑
j=1

Var
(
Sjn
n

)
=

1
n2
·
d∑
j=1

n∑
k=1

Var
(
Xj
k

)

=
1
n

d∑
j=1

xj(1− xj) ≤
d

4n
.

This shows Sn/n→ x in L2 (P ) and hence by Chebyshev’s inequality, Sn/n
P→ x

in and by a continuity theorem, f
(
Sn
n

) P→ f (x) as n→∞. This along with the
dominated convergence theorem shows

pn(x) := E
[
f

(
Sn
n

)]
→ f (x) as n→∞, (4.56)
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where

pn(x) =
∑

η:{1,2,...,n}→{0,1}d
f

(
η (1) + · · ·+ η (n)

n

)
P (X1 = η (1) , . . . , Xn = η (n))

=
∑

η:{1,2,...,n}→{0,1}d
f

(
η (1) + · · ·+ η (n)

n

) n∏
k=1

d∏
i=1

(1− xi)1−ηi(k)
x
ηi(k)
i

is a polynomial of degree nd. In fact more is true.
Suppose ε > 0 is given, M = sup {|f(x)| : x ∈ K} , and

δε = sup {|f(y)− f(x)| : x, y ∈ K and ‖y − x‖ ≤ ε} .

By uniform continuity of f on K, limε↓0 δε = 0. Therefore,

|f(x)− pn(x)| =
∣∣∣∣E(f(x)− f

(
Sn
n

))∣∣∣∣ ≤ E
∣∣∣∣f(x)− f

(
Sn
n

)∣∣∣∣
≤E

[∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣ : ‖Sn − x‖ > ε

]
+ E

[∣∣∣∣f(x)− f
(
Sn
n

)∣∣∣∣ : ‖Sn − x‖ ≤ ε
]

≤2MP (‖Sn − x‖ > ε) + δε. (4.57)

By Chebyshev’s inequality,

P (‖Sn − x‖ > ε) ≤ 1
ε2

E ‖Sn − x‖2 =
d

4nε2
,

and therefore, Eq. (4.57) yields the estimate

sup
x∈K
|f (x)− pn (x)| ≤ 2dM

nε2
+ δε

and hence
lim sup
n→∞

sup
x∈K
|f (x)− pn (x)| ≤ δε → 0 as ε ↓ 0.

Here is a version of the complex Weirstrass approximation theorem.

Theorem 4.51 (Complex Weierstrass Approximation Theorem). Sup-
pose that K ⊂ Cd ∼= Rd × Rd is a compact rectangle. Then there ex-
ists polynomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ Cd, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ Rd×Rd → z = x+ iy ∈ Cd is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on Rd × Rd may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p(
z + z̄

2
,
z − z̄

2i
).

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 4.50.

Example 4.52. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1). To prove this first observe
if f ∈ C

(
S1
)

then F (z) = |z| f( z
|z| ) for z 6= 0 and F (0) = 0 defines F ∈ C(C)

such that F |S1 = f. By applying Theorem 4.51 to F restricted to a compact
rectangle containing S1 we may find qn (z, z̄) converging uniformly to F on
K and hence on S1. Since z̄ = z−1 on S1, we have shown polynomials in z
and z−1 are dense in C(S1). This example generalizes in an obvious way to
K =

(
S1
)d ⊂ Cd.

Exercise 4.16. Use Example 4.52 to show that any 2π – periodic continuous
function, g : Rd → C, may be uniformly approximated by a trigonometric
polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Zd and aλ ∈ C for all λ ∈ Λ. Hint: start by
showing there exists a unique continuous function, f :

(
S1
)d → C such that

f
(
eix1 , . . . , eixd

)
= F (x) for all x = (x1, . . . , xd) ∈ Rd.

Solution to Exercise (4.16). I will write out the solution when d = 1. For
z ∈ S1, define F (z) := f(eiθ) where θ ∈ R is chosen so that z = eiθ. Since f is 2π
– periodic, F is well defined since if θ solves eiθ = z then all other solutions are of
the form {θ + 2πn : n ∈ Z} . Since the map θ → eiθ is a local homeomorphism,

i.e. for any J = (a, b) with b−a < 2π, the map θ ∈ J φ→ J̃ :=
{
eiθ : θ ∈ J

}
⊂ S1

is a homeomorphism, it follows that F (z) = f ◦ φ−1(z) for z ∈ J̃ . This shows
F is continuous when restricted to J̃ . Since such sets cover S1, it follows that
F is continuous. It now follows from Example 4.52 that polynomials in z and
z−1 are dense in C(S1). Hence for any ε > 0 there exists

p(z, z̄) =
∑

am,nz
mz̄n =

∑
am,nz

mz−n =
∑

am,nz
m−n

such that |F (z)− p(z, z̄)| ≤ ε for all z. Taking z = eiθ then implies there exists
bn ∈ C and N ∈ N such that
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pε (θ) :=
N∑

n=−N
bne

inθ (4.58)

satisfies
sup
θ

∣∣f̄(θ)− p (θ)
∣∣ ≤ ε.

Exercise 4.17. Suppose f ∈ C (R,C) is a 2π – periodic function (i.e.
f (x+ 2π) = f (x) for all x ∈ R) and∫ 2π

0

f (x) einxdx = 0 for all n ∈ Z,

show again that f ≡ 0. Hint: Use Exercise 4.16.

Solution to Exercise (4.17). By assumption,
∫ 2π

0
f (θ) einθdθ = 0 for all n

and so by the linearity of the Riemann integral,

0 =
∫ 2π

0

f (θ) pε (θ) dθ. (4.59)

Choose trigonometric polynomials, pε, as in Eq. (4.58) such that pε (θ)→ f̄ (θ)
uniformly in θ as ε ↓ 0. Passing to the limit in Eq. (4.59) implies

0 = lim
ε↓0

∫ 2π

0

f (θ) pε (θ) dθ =
∫ 2π

0

f (θ) f̄ (θ) dθ =
∫ 2π

0

|f (θ)|2 dθ.

From this it follows that f ≡ 0, for if |f (θ0)| > 0 for some θ0 then |f (θ)| ≥ ε > 0
for θ in a neighborhood of θ0 by continuity of f. It would then follow that∫ 2π

0
|f (θ)|2 dθ > 0.





5

Countably Additive Measures

Let A ⊂ 2Ω be an algebra and µ : A → [0,∞] be a finitely additive measure.
Recall that µ is a premeasure on A if µ is σ – additive on A. If µ is a
premeasure on A and A is a σ – algebra (Definition 3.12), we say that µ is a
measure on (Ω,A) and that (Ω,A) is a measurable space.

Definition 5.1. Let (Ω,B) be a measurable space. We say that P : B → [0, 1] is
a probability measure on (Ω,B) if P is a measure on B such that P (Ω) = 1.
In this case we say that (Ω,B, P ) a probability space.

5.1 Overview

The goal of this chapter is develop methods for proving the existence of proba-
bility measures with desirable properties. The main results of this chapter may
are summarized in the following theorem.

Theorem 5.2. A finitely additive probability measure P on an algebra, A ⊂ 2Ω ,
extends to σ – additive measure on σ (A) iff P is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition 5.15 below. The ex-
istence assertion of the theorem in the content of Theorem 5.27.

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 5.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A ⊂ 2Ω . Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is σ – additive on A.
2. For all An ∈ A such that An ↑ A ∈ A, P (An) ↑ P (A) .
3. For all An ∈ A such that An ↓ A ∈ A, P (An) ↓ P (A) .
4. For all An ∈ A such that An ↑ Ω, P (An) ↑ 1.
5. For all An ∈ A such that An ↓ ∅, P (An) ↓ 0.

Proof. We will start by showing 1 ⇐⇒ 2 ⇐⇒ 3.
1. =⇒ 2. Suppose An ∈ A such that An ↑ A ∈ A. Let A′n := An \ An−1

with A0 := ∅. Then {A′n}
∞
n=1 are disjoint, An = ∪nk=1A

′
k and A = ∪∞k=1A

′
k.

Therefore,

P (A) =
∞∑
k=1

P (A′k) = lim
n→∞

n∑
k=1

P (A′k) = lim
n→∞

P (∪nk=1A
′
k) = lim

n→∞
P (An) .

2. =⇒ 1. If {An}∞n=1 ⊂ A are disjoint and A := ∪∞n=1An ∈ A, then
∪Nn=1An ↑ A. Therefore,

P (A) = lim
N→∞

P
(
∪Nn=1An

)
= lim
N→∞

N∑
n=1

P (An) =
∞∑
n=1

P (An) .

2. =⇒ 3. If An ∈ A such that An ↓ A ∈ A, then Acn ↑ Ac and therefore,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

3. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then Acn ↓ Ac and therefore we
again have,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

The same proof used for 2. ⇐⇒ 3. shows 4. ⇐⇒ 5 and it is clear that
3. =⇒ 5. To finish the proof we will show 5. =⇒ 2.

5. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then A \An ↓ ∅ and therefore

lim
n→∞

[P (A)− P (An)] = lim
n→∞

P (A \An) = 0.

Remark 5.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (Ω) = 1 and in fact P (Ω) =∞ may
be allowed for this equivalence.

Lemma 5.5. If µ : A → [0,∞] is a premeasure, then µ is countably sub-additive
on A.
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Proof. Suppose that An ∈ A with ∪∞n=1An ∈ A. Let A
′

1 := A1 and for
n ≥ 2, let A′n := An \ (A1 ∪ . . . An−1) ∈ A. Then ∪∞n=1An =

∑∞
n=1A

′
n and

therefore by the countable additivity and monotonicity of µ we have,

µ (∪∞n=1An) = µ

( ∞∑
n=1

A′n

)
=
∞∑
n=1

µ (A′n) ≤
∞∑
n=1

µ (An) .

Let us now specialize to the case where Ω = R and A =
A ({(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}) . In this case we will describe proba-
bility measures, P, on BR by their “cumulative distribution functions.”

Definition 5.6. Given a probability measure, P on BR, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = FP : R→ [0, 1]
given as

F (x) := P ((−∞, x]) . (5.1)

Example 5.7. Suppose that

P = pδ−1 + qδ1 + rδπ

with p, q, r > 0 and p+ q + r = 1. In this case,

F (x) =


0 for x < −1
p for −1 ≤ x < 1

p+ q for 1 ≤ x < π
1 for π ≤ x <∞

.

A plot of F (x) with p = .2, q = .3, and r = .5.

Lemma 5.8. If F = FP : R→ [0, 1] is a distribution function for a probability
measure, P, on BR, then:

1. F is non-decreasing,
2. F is right continuous,
3. F (−∞) := limx→−∞ F (x) = 0, and F (∞) := limx→∞ F (x) = 1.

Proof. The monotonicity of P shows that F (x) in Eq. (5.1) is non-
decreasing. For b ∈ R let An = (−∞, bn] with bn ↓ b as n→∞. The continuity
of P implies

F (bn) = P ((−∞, bn]) ↓ µ((−∞, b]) = F (b).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
F (b+) := limy↓b F (y) = F (b). This show that F is right continuous. Similar
arguments show that F (∞) = 1 and F (−∞) = 0.

It turns out that Lemma 5.8 has the following important converse.

Theorem 5.9. To each function F : R→ [0, 1] satisfying properties 1. – 3.. in
Lemma 5.8, there exists a unique probability measure, PF , on BR such that

PF ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Proof. The uniqueness assertion is proved in Corollary 5.17 below or see
Exercises 5.2 and 5.11 below. The existence portion of the theorem is a special
case of Theorem 5.33 below.

Example 5.10 (Uniform Distribution). The function,

F (x) :=

 0 for x ≤ 0
x for 0 ≤ x < 1
1 for 1 ≤ x <∞

,

is the distribution function for a measure, m on BR which is concentrated on
(0, 1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem 5.2.

5.2 π – λ Theorem

Recall that a collection, P ⊂ 2Ω , is a π – class or π – system if it is closed
under finite intersections. We also need the notion of a λ –system.

Definition 5.11 (λ – system). A collection of sets, L ⊂ 2Ω , is λ – class or
λ – system if

a. Ω ∈ L
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Fig. 5.1. The cumulative distribution function for the uniform distribution.

b. If A,B ∈ L and A ⊂ B, then B \A ∈ L. (Closed under proper differences.)
c. If An ∈ L and An ↑ A, then A ∈ L. (Closed under countable increasing

unions.)

Remark 5.12. If L is a collection of subsets of Ω which is both a λ – class and
a π – system then L is a σ – algebra. Indeed, since Ac = Ω \ A, we see that
any λ - system is closed under complementation. If L is also a π – system, it is
closed under intersections and therefore L is an algebra. Since L is also closed
under increasing unions, L is a σ – algebra.

Lemma 5.13 (Alternate Axioms for a λ – System*). Suppose that L ⊂ 2Ω

is a collection of subsets Ω. Then L is a λ – class iff λ satisfies the following
postulates:

1. Ω ∈ L
2. A ∈ L implies Ac ∈ L. (Closed under complementation.)
3. If {An}∞n=1 ⊂ L are disjoint, then

∑∞
n=1An ∈ L. (Closed under disjoint

unions.)

Proof. Suppose that L satisfies a. – c. above. Clearly then postulates 1. and
2. hold. Suppose that A,B ∈ L such that A ∩B = ∅, then A ⊂ Bc and

Ac ∩Bc = Bc \A ∈ L.

Taking complements of this result shows A ∪ B ∈ L as well. So by induction,
Bm :=

∑m
n=1An ∈ L. Since Bm ↑

∑∞
n=1An it follows from postulate c. that∑∞

n=1An ∈ L.

Now suppose that L satisfies postulates 1. – 3. above. Notice that ∅ ∈ L
and by postulate 3., L is closed under finite disjoint unions. Therefore if A,B ∈
L with A ⊂ B, then Bc ∈ L and A ∩ Bc = ∅ allows us to conclude that
A ∪ Bc ∈ L. Taking complements of this result shows B \ A = Ac ∩ B ∈ L as
well, i.e. postulate b. holds. If An ∈ L with An ↑ A, then Bn := An \An−1 ∈ L
for all n, where by convention A0 = ∅. Hence it follows by postulate 3 that
∪∞n=1An =

∑∞
n=1Bn ∈ L.

Theorem 5.14 (Dynkin’s π – λ Theorem). If L is a λ class which contains
a contains a π – class, P, then σ(P) ⊂ L.

Proof. We start by proving the following assertion; for any element C ∈ L,
the collection of sets,

LC := {D ∈ L : C ∩D ∈ L} ,

is a λ – system. To prove this claim, observe that: a. Ω ∈ LC , b. if A ⊂ B with
A,B ∈ LC , then A ∩ C, B ∩ C ∈ L with A ∩ C ⊂ B ∩ C and therefore,

(B \A) ∩ C = [B ∩ C] \A = [B ∩ C] \ [A ∩ C] ∈ L.

This shows that LC is closed under proper differences. c. If An ∈ LC with
An ↑ A, then An ∩C ∈ L and An ∩C ↑ A∩C ∈ L, i.e. A ∈ LC . Hence we have
verified LC is still a λ – system.

For the rest of the proof, we may assume without loss of generality that L
is the smallest λ – class containing P – if not just replace L by the intersection
of all λ – classes containing P. Then for C ∈ P we know that LC ⊂ L is a λ
- class containing P and hence LC = L. Since C ∈ P was arbitrary, we have
shown, C ∩ D ∈ L for all C ∈ P and D ∈ L. We may now conclude that if
C ∈ L, then P ⊂ LC ⊂ L and hence again LC = L. Since C ∈ L is arbitrary,
we have shown C∩D ∈ L for all C,D ∈ L, i.e. L is a π – system. So by Remark
5.12, L is a σ algebra. Since σ (P) is the smallest σ – algebra containing P it
follows that σ (P) ⊂ L.

As an immediate corollary, we have the following uniqueness result.

Proposition 5.15. Suppose that P ⊂ 2Ω is a π – system. If P and Q are two
probability1 measures on σ (P) such that P = Q on P, then P = Q on σ (P) .

Proof. Let L := {A ∈ σ (P) : P (A) = Q (A)} . One easily shows L is a λ –
class which contains P by assumption. Indeed, Ω ∈ P ⊂ L, if A,B ∈ L with
A ⊂ B, then

P (B \A) = P (B)− P (A) = Q (B)−Q (A) = Q (B \A)

1 More generally, P and Q could be two measures such that P (Ω) = Q (Ω) <∞.
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so that B \A ∈ L, and if An ∈ L with An ↑ A, then P (A) = limn→∞ P (An) =
limn→∞Q (An) = Q (A) which shows A ∈ L. Therefore σ (P) ⊂ L = σ (P) and
the proof is complete.

Example 5.16. Let Ω := {a, b, c, d} and let µ and ν be the probability measure
on 2Ω determined by, µ ({x}) = 1

4 for all x ∈ Ω and ν ({a}) = ν ({d}) = 1
8 and

ν ({b}) = ν ({c}) = 3/8. In this example,

L :=
{
A ∈ 2Ω : P (A) = Q (A)

}
is λ – system which is not an algebra. Indeed, A = {a, b} and B = {a, c} are in
L but A ∩B /∈ L.

Exercise 5.1. Suppose that µ and ν are two measures (not assumed to be
finite) on a measure space, (Ω,B) such that µ = ν on a π – system, P. Further
assume B = σ (P) and there exists Ωn ∈ P such that; i) µ (Ωn) = ν (Ωn) <∞
for all n and ii) Ωn ↑ Ω as n ↑ ∞. Show µ = ν on B.

Hint: Consider the measures, µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) .

Solution to Exercise (5.1). Let µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) for all A ∈ B. Then µn and νn are finite measure such µn (Ω) =
νn (Ω) and µn = νn on P. Therefore by Proposition 5.15, µn = νn on B. So by
the continuity properties of µ and ν, it follows that

µ (A) = lim
n→∞

µ (A ∩Ωn) = lim
n→∞

µn (A) = lim
n→∞

νn (A) = lim
n→∞

ν (A ∩Ωn) = ν (A)

for all A ∈ B.

Corollary 5.17. A probability measure, P, on (R,BR) is uniquely determined
by its cumulative distribution function,

F (x) := P ((−∞, x]) .

Proof. This follows from Proposition 5.15 wherein we use the fact that
P := {(−∞, x] : x ∈ R} is a π – system such that BR = σ (P) .

Remark 5.18. Corollary 5.17 generalizes to Rn. Namely a probability measure,
P, on (Rn,BRn) is uniquely determined by its CDF,

F (x) := P ((−∞, x]) for all x ∈ Rn

where now

(−∞, x] := (−∞, x1]× (−∞, x2]× · · · × (−∞, xn].

5.2.1 A Density Result*

Exercise 5.2 (Density of A in σ (A)). Suppose that A ⊂ 2Ω is an algebra,
B := σ (A) , and P is a probability measure on B. Let ρ (A,B) := P (A∆B) .
The goal of this exercise is to use the π – λ theorem to show that A is dense in
B relative to the “metric,” ρ. More precisely you are to show using the following
outline that for every B ∈ B there exists A ∈ A such that that P (A4B) < ε.

1. Recall from Exercise 4.3 that ρ (a,B) = P (A4B) = E |1A − 1B | .
2. Observe; if B = ∪Bi and A = ∪iAi, then

B \A = ∪i [Bi \A] ⊂ ∪i (Bi \Ai) ⊂ ∪iAi 4Bi and
A \B = ∪i [Ai \B] ⊂ ∪i (Ai \Bi) ⊂ ∪iAi 4Bi

so that
A4B ⊂ ∪i (Ai 4Bi) .

3. We also have

(B2 \B1) \ (A2 \A1) = B2 ∩Bc1 ∩ (A2 \A1)c

= B2 ∩Bc1 ∩ (A2 ∩Ac1)c

= B2 ∩Bc1 ∩ (Ac2 ∪A1)
= [B2 ∩Bc1 ∩Ac2] ∪ [B2 ∩Bc1 ∩A1]
⊂ (B2 \A2) ∪ (A1 \B1)

and similarly,

(A2 \A1) \ (B2 \B1) ⊂ (A2 \B2) ∪ (B1 \A1)

so that

(A2 \A1)4 (B2 \B1) ⊂ (B2 \A2) ∪ (A1 \B1) ∪ (A2 \B2) ∪ (B1 \A1)
= (A1 4B1) ∪ (A2 4B2) .

4. Observe that An ∈ B and An ↑ A, then

P (B 4An) = P (B \An) + P (An \B)
→ P (B \A) + P (A \B) = P (A4B) .

5. Let L be the collection of sets B ∈ B for which the assertion of the theorem
holds. Show L is a λ – system which contains A.
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Solution to Exercise (5.2). Since L contains the π – system, A it suffices by
the π – λ theorem to show L is a λ – system. Clearly, Ω ∈ L since Ω ∈ A ⊂ L.
If B1 ⊂ B2 with Bi ∈ L and ε > 0, there exists Ai ∈ A such that P (Bi 4Ai) =
EP |1Ai − 1Bi | < ε/2 and therefore,

P ((B2 \B1)4 (A2 \A1)) ≤ P ((A1 4B1) ∪ (A2 4B2))
≤ P ((A1 4B1)) + P ((A2 4B2)) < ε.

Also if Bn ↑ B with Bn ∈ L, there exists An ∈ A such that P (Bn 4An) < ε2−n

and therefore,

P ([∪nBn]4 [∪nAn]) ≤
∞∑
n=1

P (Bn 4An) < ε.

Moreover, if we let B := ∪nBn and AN := ∪Nn=1An, then

P
(
B 4AN

)
= P

(
B \AN

)
+P

(
AN \B

)
→ P (B \A)+P (A \B) = P (B 4A)

where A := ∪nAn. Hence it follows for N large enough that P
(
B 4AN

)
< ε.

Since ε > 0 was arbitrary we have shown B ∈ L as desired.

5.3 Construction of Measures

Definition 5.19. Given a collection of subsets, E , of Ω, let Eσ denote the col-
lection of subsets of Ω which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of Ω which are finite or count-
able intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ ,
etc.

Lemma 5.20. Suppose that A ⊂ 2Ω is an algebra. Then:

1. Aσ is closed under taking countable unions and finite intersections.
2. Aδ is closed under taking countable intersections and finite unions.
3. {Ac : A ∈ Aσ} = Aδ and {Ac : A ∈ Aδ} = Aσ.

Proof. By construction Aσ is closed under countable unions. Moreover if
A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3.

Remark 5.21. Let us recall from Proposition 5.3 and Remark 5.4 that a finitely
additive measure µ : A → [0,∞] is a premeasure on A iff µ (An) ↑ µ(A) for all
{An}∞n=1 ⊂ A such that An ↑ A ∈ A. Furthermore if µ (Ω) < ∞, then µ is a
premeasure on A iff µ(An) ↓ 0 for all {An}∞n=1 ⊂ A such that An ↓ ∅.

Proposition 5.22. Given a premeasure, µ : A → [0,∞] , we extend µ to Aσ
by defining

µ (B) := sup {µ (A) : A 3 A ⊂ B} . (5.2)

This function µ : Aσ → [0,∞] then satisfies;

1. (Monotonicity) If A,B ∈ Aσ with A ⊂ B then µ (A) ≤ µ (B) .
2. (Continuity) If An ∈ A and An ↑ A ∈ Aσ, then µ (An) ↑ µ (A) as n→∞.
3. (Strong Additivity) If A,B ∈ Aσ, then

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (5.3)

4. (Sub-Additivity on Aσ) The function µ is sub-additive on Aσ, i.e. if
{An}∞n=1 ⊂ Aσ, then

µ (∪∞n=1An) ≤
∞∑
n=1

µ (An) . (5.4)

5. (σ - Additivity on Aσ) The function µ is countably additive on Aσ.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.2) which then
implies µ (An) ≤ µ (B) for all n. Therefore M := limn→∞ µ (An) ≤ µ (B) . To
prove the reverse inequality, let A 3 A ⊂ B. Then by the continuity of µ on
A and the fact that An ∩ A ↑ A we have µ (An ∩A) ↑ µ (A) . As µ (An) ≥
µ (An ∩A) for all n it then follows that M := limn→∞ µ (An) ≥ µ (A) . As
A ∈ A with A ⊂ B was arbitrary we may conclude,

µ (B) = sup {µ (A) : A 3 A ⊂ B} ≤M.

3. Suppose that A,B ∈ Aσ and {An}∞n=1 and {Bn}∞n=1 are sequences in A
such that An ↑ A and Bn ↑ B as n→∞. Then passing to the limit as n→∞
in the identity,

µ (An ∪Bn) + µ (An ∩Bn) = µ (An) + µ (Bn)

proves Eq. (5.3). In particular, it follows that µ is finitely additive on Aσ.
4 and 5. Let {An}∞n=1 be any sequence in Aσ and choose {An,i}∞i=1 ⊂ A

such that An,i ↑ An as i→∞. Then we have,

µ
(
∪Nn=1An,N

)
≤

N∑
n=1

µ (An,N ) ≤
N∑
n=1

µ (An) ≤
∞∑
n=1

µ (An) . (5.5)
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Since A 3 ∪Nn=1An,N ↑ ∪∞n=1An ∈ Aσ, we may let N → ∞ in Eq. (5.5) to
conclude Eq. (5.4) holds. If we further assume that {An}∞n=1 ⊂ Aσ are pairwise
disjoint, by the finite additivity and monotonicity of µ on Aσ, we have

∞∑
n=1

µ (An) = lim
N→∞

N∑
n=1

µ (An) = lim
N→∞

µ
(
∪Nn=1An

)
≤ µ (∪∞n=1An) .

This inequality along with Eq. (5.4) shows that µ is σ – additive on Aσ.
Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and A ∈ Aδ ∩Aσ.

Since A,Ac ∈ Aσ and Ω = A∪Ac, it follows that µ (Ω) = µ (A)+µ (Ac) . From
this observation we may extend µ to a function on Aδ ∪ Aσ by defining

µ (A) := µ (Ω)− µ (Ac) for all A ∈ Aδ. (5.6)

Lemma 5.23. Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and µ
has been extended to Aδ ∪ Aσ as described in Proposition 5.22 and Eq. (5.6)
above.

1. If A ∈ Aδ then µ (A) = inf {µ (B) : A ⊂ B ∈ A} .
2. If A ∈ Aδ and An ∈ A such that An ↓ A, then µ (A) =↓ limn→∞ µ (An) .
3. µ is strongly additive when restricted to Aδ.
4. If A ∈ Aδ and C ∈ Aσ such that A ⊂ C, then µ (C \A) = µ (C)− µ (A) .

Proof.

1. Since µ (B) = µ (Ω)− µ (Bc) and A ⊂ B iff Bc ⊂ Ac, it follows that

inf {µ (B) : A ⊂ B ∈ A} = inf {µ (Ω)− µ (Bc) : A 3 Bc ⊂ Ac}
= µ (Ω)− sup {µ (B) : A 3 B ⊂ Ac}
= µ (Ω)− µ (Ac) = µ (A) .

2. Similarly, since Acn ↑ Ac ∈ Aσ, by the definition of µ (A) and Proposition
5.22 it follows that

µ (A) = µ (Ω)− µ (Ac) = µ (Ω)− ↑ lim
n→∞

µ (Acn)

=↓ lim
n→∞

[µ (Ω)− µ (Acn)] =↓ lim
n→∞

µ (An) .

3. Suppose A,B ∈ Aδ and An, Bn ∈ A such that An ↓ A and Bn ↓ B, then
An ∪Bn ↓ A ∪B and An ∩Bn ↓ A ∩B and therefore,

µ (A ∪B) + µ (A ∩B) = lim
n→∞

[µ (An ∪Bn) + µ (An ∩Bn)]

= lim
n→∞

[µ (An) + µ (Bn)] = µ (A) + µ (B) .

All we really need is the finite additivity of µ which can be proved as follows.
Suppose that A,B ∈ Aδ are disjoint, then A∩B = ∅ implies Ac ∪Bc = Ω.
So by the strong additivity of µ on Aσ it follows that

µ (Ω) + µ (Ac ∩Bc) = µ (Ac) + µ (Bc)

from which it follows that

µ (A ∪B) = µ (Ω)− µ (Ac ∩Bc)
= µ (Ω)− [µ (Ac) + µ (Bc)− µ (Ω)]
= µ (A) + µ (B) .

4. Since Ac, C ∈ Aσ we may use the strong additivity of µ on Aσ to conclude,

µ (Ac ∪ C) + µ (Ac ∩ C) = µ (Ac) + µ (C) .

Because Ω = Ac ∪C, and µ (Ac) = µ (Ω)− µ (A) , the above equation may
be written as

µ (Ω) + µ (C \A) = µ (Ω)− µ (A) + µ (C)

which finishes the proof.

Notation 5.24 (Inner and outer measures) Let µ : A → [0,∞) be a finite
premeasure extended to Aσ ∪ Aδ as above. The for any B ⊂ Ω let

µ∗ (B) := sup {µ (A) : Aδ 3 A ⊂ B} and
µ∗ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} .

We refer to µ∗ (B) and µ∗ (B) as the inner and outer content of B respec-
tively.

If B ⊂ Ω has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem 5.27 below, this
extension becomes a σ – additive measure on a σ – algebra of subsets of Ω.

Definition 5.25 (Measurable Sets). Suppose µ is a finite premeasure on an
algebra A ⊂ 2Ω . We say that B ⊂ Ω is measurable if µ∗ (B) = µ∗ (B) . We
will denote the collection of measurable subsets of Ω by B = B (µ) and define
µ̄ : B → [0, µ (Ω)] by

µ̄ (B) := µ∗ (B) = µ∗ (B) for all B ∈ B. (5.7)
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Remark 5.26. Observe that µ∗ (B) = µ∗ (B) iff for all ε > 0 there exists A ∈ Aδ
and C ∈ Aσ such that A ⊂ B ⊂ C and

µ (C \A) = µ (C)− µ (A) < ε,

wherein we have used Lemma 5.23 for the first equality. Moreover we will use
below that if B ∈ B and Aδ 3 A ⊂ B ⊂ C ∈ Aσ, then

µ (A) ≤ µ∗ (B) = µ̄ (B) = µ∗ (B) ≤ µ (C) . (5.8)

Theorem 5.27 (Finite Premeasure Extension Theorem). Suppose µ is a
finite premeasure on an algebra A ⊂ 2Ω and µ̄ : B := B (µ) → [0, µ (Ω)] be as
in Definition 5.25. Then B is a σ – algebra on Ω which contains A and µ̄ is a
σ – additive measure on B. Moreover, µ̄ is the unique measure on B such that
µ̄|A = µ.

Proof. It is clear that A ⊂ B and that B is closed under complementation.
Now suppose that Bi ∈ B for i = 1, 2 and ε > 0 is given. We may then
choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε for
i = 1, 2. Then with A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, we have
Aδ 3 A ⊂ B ⊂ C ∈ Aσ. Since

C \A = (C1 \A) ∪ (C2 \A) ⊂ (C1 \A1) ∪ (C2 \A2) ,

it follows from the sub-additivity of µ that with

µ (C \A) ≤ µ (C1 \A1) + µ (C2 \A2) < 2ε.

Since ε > 0 was arbitrary, we have shown that B ∈ B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a σ – algebra it suffices to show
that B =

∑∞
n=1Bn ∈ B whenever {Bn}∞n=1 is a disjoint sequence in B. To prove

B ∈ B, let ε > 0 be given and choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ,
and µ (Ci \Ai) < ε2−i for all i. Since the {Ai}∞i=1 are pairwise disjoint we may
use Lemma 5.23 to show,

n∑
i=1

µ (Ci) =
n∑
i=1

(µ (Ai) + µ (Ci \Ai))

= µ (∪ni=1Ai) +
n∑
i=1

µ (Ci \Ai) ≤ µ (Ω) +
n∑
i=1

ε2−i.

Passing to the limit, n→∞, in this equation then shows

∞∑
i=1

µ (Ci) ≤ µ (Ω) + ε <∞. (5.9)

Let B = ∪∞i=1Bi, C := ∪∞i=1Ci ∈ Aσ and for n ∈ N let An :=
∑n
i=1Ai ∈ Aδ.

Then Aδ 3 An ⊂ B ⊂ C ∈ Aσ, C \An ∈ Aσ and

C \An = ∪∞i=1 (Ci \An) ⊂ [∪ni=1 (Ci \Ai)] ∪
[
∪∞i=n+1Ci

]
∈ Aσ.

Therefore, using the sub-additivity of µ on Aσ and the estimate in Eq. (5.9),

µ (C \An) ≤
n∑
i=1

µ (Ci \Ai) +
∞∑

i=n+1

µ (Ci)

≤ ε+
∞∑

i=n+1

µ (Ci)→ ε as n→∞.

Since ε > 0 is arbitrary, it follows that B ∈ B and that

n∑
i=1

µ (Ai) = µ (An) ≤ µ̄ (B) ≤ µ (C) ≤
∞∑
i=1

µ (Ci) .

Letting n→∞ in this equation then shows,

∞∑
i=1

µ (Ai) ≤ µ̄ (B) ≤
∞∑
i=1

µ (Ci) . (5.10)

On the other hand, since Ai ⊂ Bi ⊂ Ci, it follows (see Eq. (5.8) that

∞∑
i=1

µ (Ai) ≤
∞∑
i=1

µ̄ (Bi) ≤
∞∑
i=1

µ (Ci) . (5.11)

As
∞∑
i=1

µ (Ci)−
∞∑
i=1

µ (Ai) =
∞∑
i=1

µ (Ci \Ai) ≤
∞∑
i=1

ε2−i = ε,

we may conclude from Eqs. (5.10) and (5.11) that∣∣∣∣∣µ̄ (B)−
∞∑
i=1

µ̄ (Bi)

∣∣∣∣∣ ≤ ε.
Since ε > 0 is arbitrary, we have shown µ̄ (B) =

∑∞
i=1 µ̄ (Bi) . This completes

the proof that B is a σ - algebra and that µ̄ is a measure on B.
Since we really had no choice as to how to extend µ, it is to be expected

that the extension is unique. You are asked to supply the details in Exercise 5.3
below.
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Exercise 5.3. Let µ, µ̄, A, and B := B (µ) be as in Theorem 5.27. Further
suppose that B0 ⊂ 2Ω is a σ – algebra such that A ⊂ B0 ⊂ B and ν : B0 →
[0, µ (Ω)] is a σ – additive measure on B0 such that ν = µ on A. Show that
ν = µ̄ on B0 as well. (When B0 = σ (A) this exercise is of course a consequence
of Proposition 5.15. It is not necessary to use this information to complete the
exercise.)

Corollary 5.28. Suppose that A ⊂ 2Ω is an algebra and µ : B0 := σ (A) →
[0, µ (Ω)] is a σ – additive measure. Then for every B ∈ σ (A) and ε > 0;

1. there exists Aδ 3 A ⊂ B ⊂ C ∈ Aσand ε > 0 such that µ (C \A) < ε and
2. there exists A ∈ A such that µ (A∆B) < ε.

Exercise 5.4. Prove corollary 5.28 by considering ν̄ where ν := µ|A. Hint:
you may find Exercise 4.3 useful here.

Theorem 5.29. Suppose that µ is a σ – finite premeasure on an algebra A.
Then

µ̄ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ∈ σ (A) (5.12)

defines a measure on σ (A) and this measure is the unique extension of µ on A
to a measure on σ (A) . Recall that

µ (C) = sup {µ (A) : A 3 A ⊂ C} .

Proof. Let {Ωn}∞n=1 ⊂ A be chosen so that µ (Ωn) <∞ for all n and Ωn ↑
Ω as n→∞ and let

µn (A) := µn (A ∩Ωn) for all A ∈ A.

Each µn is a premeasure (as is easily verified) on A and hence by Theorem 5.27
each µn has an extension, µ̄n, to a measure on σ (A) . Since the measure µ̄n are
increasing, µ̄ := limn→∞ µ̄n is a measure which extends µ.

The proof will be completed by verifying that Eq. (5.12) holds. Let B ∈
σ (A) , Bm = Ωm ∩ B and ε > 0 be given. By Theorem 5.27, there exists
Cm ∈ Aσ such that Bm ⊂ Cm ⊂ Ωm and µ̄(Cm \Bm) = µ̄m(Cm \Bm) < ε2−n.
Then C := ∪∞m=1Cm ∈ Aσ and

µ̄(C \B) ≤ µ̄

( ∞⋃
m=1

(Cm \B)

)
≤
∞∑
m=1

µ̄(Cm \B) ≤
∞∑
m=1

µ̄(Cm \Bm) < ε.

Thus
µ̄ (B) ≤ µ̄ (C) = µ̄ (B) + µ̄(C \B) ≤ µ̄ (B) + ε

which, since ε > 0 is arbitrary, shows µ̄ satisfies Eq. (5.12). The uniqueness of
the extension µ̄ is proved in Exercise 5.11.

The following slight reformulation of Theorem 5.29 can be useful.

Corollary 5.30. Let A be an algebra of sets, {Ωm}∞m=1 ⊂ A is a given sequence
of sets such that Ωm ↑ Ω as m→∞. Let

Af := {A ∈ A : A ⊂ Ωm for some m ∈ N} .

Notice that Af is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that µ : Af → [0,∞) is an additive
set function such that µ (An) ↓ 0 for any sequence, {An} ⊂ Af such that An ↓ ∅
as n→∞. Then µ extends uniquely to a σ – finite measure on A.

Proof. Existence. By assumption, µm := µ|AΩm : AΩm → [0,∞) is a
premeasure on (Ωm,AΩm) and hence by Theorem 5.29 extends to a measure
µ′m on (Ωm, σ (AΩm) = BΩm) . Let µ̄m (B) := µ′m (B ∩Ωm) for all B ∈ B.
Then {µ̄m}∞m=1 is an increasing sequence of measure on (Ω,B) and hence µ̄ :=
limm→∞ µ̄m defines a measure on (Ω,B) such that µ̄|Af = µ.

Uniqueness. If µ1 and µ2 are two such extensions, then µ1 (Ωm ∩B) =
µ2 (Ωm ∩B) for all B ∈ A and therefore by Proposition 5.15 or Exercise 5.11
we know that µ1 (Ωm ∩B) = µ2 (Ωm ∩B) for all B ∈ B. We may now let
m→∞ to see that in fact µ1 (B) = µ2 (B) for all B ∈ B, i.e. µ1 = µ2.

5.4 Radon Measures on R

We say that a measure, µ, on (R,BR) is a Radon measure if µ ([a, b]) < ∞
for all −∞ < a < b < ∞. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 5.31. Suppose that S ⊂ 2Ω is a semi-algebra, A = A(S) and
µ : A → [0,∞] is a finitely additive measure. Then µ is a premeasure on A iff
µ is countably sub-additive on S.

Proof. Clearly if µ is a premeasure on A then µ is σ - additive and hence
sub-additive on S. Because of Proposition 4.2, to prove the converse it suffices
to show that the sub-additivity of µ on S implies the sub-additivity of µ on A.

So suppose A =
∑∞
n=1An ∈ A with each An ∈ A . By Proposition 3.25 we

may write A =
∑k
j=1Ej and An =

∑Nn
i=1En,i with Ej , En,i ∈ S. Intersecting

the identity, A =
∑∞
n=1An, with Ej implies

Ej = A ∩ Ej =
∞∑
n=1

An ∩ Ej =
∞∑
n=1

Nn∑
i=1

En,i ∩ Ej .

By the assumed sub-additivity of µ on S,
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µ(Ej) ≤
∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =
k∑
j=1

µ(Ej) ≤
k∑
j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=
∞∑
n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =
∞∑
n=1

Nn∑
i=1

µ (En,i) =
∞∑
n=1

µ (An) .

Suppose now that µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that

µ ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞. (5.13)

For example if µ (R) <∞ we can take F (x) = µ ((−∞, x]) while if µ (R) =∞
we might take

F (x) =
{
µ ((0, x]) if x ≥ 0
−µ ((x, 0]) if x ≤ 0 .

The function F is uniquely determined modulo translation by a constant.

Lemma 5.32. If µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that µ ((a, b]) = F (b)− F (a) , then F is increasing and right continuous.

Proof. The function F is increasing by the monotonicity of µ. To see that
F is right continuous, let b ∈ R and choose a ∈ (−∞, b) and any sequence
{bn}∞n=1 ⊂ (b,∞) such that bn ↓ b as n → ∞. Since µ ((a, b1]) < ∞ and
(a, bn] ↓ (a, b] as n→∞, it follows that

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b).

The key result of this section is the converse to this lemma.

Theorem 5.33. Suppose F : R→ R is a right continuous increasing function.
Then there exists a unique Radon measure, µ = µF , on (R,BR) such that Eq.
(5.13) holds.

Proof. Let S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} , and A = A (S) consists
of those sets, A ⊂ R which may be written as finite disjoint unions of sets
from S as in Example 3.26. Recall that BR = σ (A) = σ (S) . Further define
F (±∞) := limx→±∞ F (x) and let µ = µF be the finitely additive measure

on (R,A) described in Proposition 4.8 and Remark 4.9. To finish the proof it
suffices by Theorem 5.29 to show that µ is a premeasure on A = A (S) where
S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} . So in light of Proposition 5.31, to finish
the proof it suffices to show µ is sub-additive on S, i.e. we must show

µ(J) ≤
∞∑
n=1

µ(Jn). (5.14)

where J =
∑∞
n=1 Jn with J = (a, b] ∩ R and Jn = (an, bn] ∩ R. Recall from

Proposition 4.2 that the finite additivity of µ implies

∞∑
n=1

µ(Jn) ≤ µ (J) . (5.15)

We begin with the special case where −∞ < a < b <∞. Our proof will be
by “continuous induction.” The strategy is to show a ∈ Λ where

Λ :=

{
α ∈ [a, b] : µ(J ∩ (α, b]) ≤

∞∑
n=1

µ(Jn ∩ (α, b])

}
. (5.16)

As b ∈ J, there exists an k such that b ∈ Jk and hence (ak, bk] = (ak, b] for this
k. It now easily follows that Jk ⊂ Λ so that Λ is not empty. To finish the proof
we are going to show ā := inf Λ ∈ Λ and that ā = a.

• If ā /∈ Λ, there would exist αm ∈ Λ such that αm ↓ ā, i.e.

µ(J ∩ (αm, b]) ≤
∞∑
n=1

µ(Jn ∩ (αm, b]). (5.17)

Since µ(Jn ∩ (αm, b]) ≤ µ(Jn) and
∑∞
n=1 µ (Jn) ≤ µ (J) <∞ by Eq. (5.15),

we may use the right continuity of F and the dominated convergence the-
orem for sums in order to pass to the limit as m → ∞ in Eq. (5.17) to
learn,

µ(J ∩ (ā, b]) ≤
∞∑
n=1

µ(Jn ∩ (ā, b]).

This shows ā ∈ Λ which is a contradiction to the original assumption that
ā /∈ Λ.

• If ā > a, then ā ∈ Jl = (al, bl] for some l. Letting α = al < ā, we have,
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µ(J ∩ (α, b]) = µ(J ∩ (α, ā]) + µ(J ∩ (ā, b])

≤ µ(Jl ∩ (α, ā]) +
∞∑
n=1

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, ā]) + µ (Jl ∩ (ā, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

≤
∞∑
n=1

µ(Jn ∩ (α, b]).

This shows α ∈ Λ and α < ā which violates the definition of ā. Thus we
must conclude that ā = a.

The hard work is now done but we still have to check the cases where
a = −∞ or b =∞. For example, suppose that b =∞ so that

J = (a,∞) =
∞∑
n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =
∞∑
n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑
n=1

µ(Jn ∩ IM ) ≤
∞∑
n=1

µ(Jn).

Now let M →∞ in this last inequality to find that

µ((a,∞)) = F (∞)− F (a) ≤
∞∑
n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b =∞ are handled
similarly.

5.4.1 Lebesgue Measure

If F (x) = x for all x ∈ R, we denote µF by m and call m Lebesgue measure on
(R,BR) .

Theorem 5.34. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (5.18)

Lebesgue measure, m, is the unique measure on BR such that m((0, 1]) = 1 and
Eq. (5.18) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (5.19)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x+B), then one easily shows that mx is a measure

on BR such that mx((a, b]) = b − a for all a < b. Therefore, mx = m by
the uniqueness assertion in Exercise 5.11. For the converse, suppose that m is
translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

(
k − 1
n

+ (0,
1
n

]
)
.

Therefore,

1 = m((0, 1]) =
n∑
k=1

m

(
k − 1
n

+ (0,
1
n

]
)

=
n∑
k=1

m((0,
1
n

]) = n ·m((0,
1
n

]).

That is to say

m((0,
1
n

]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (5.19) we may assume that λ 6= 0
since this case is trivial to prove. Now let mλ(B) := |λ|−1

m(λB). It is easily
checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
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5.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let S be a finite or countable set (we refer to S as state space),
Ω := S∞ := SN (think of N as time and Ω as path space)

An := {B ×Ω : B ⊂ Sn} for all n ∈ N,

A := ∪∞n=1An, and B := σ (A) . We call the elements, A ⊂ Ω, the cylinder
subsets of Ω. Notice that A ⊂ Ω is a cylinder set iff there exists n ∈ N and
B ⊂ Sn such that

A = B ×Ω := {ω ∈ Ω : (ω1, . . . , ωn) ∈ B} .

Also observe that we may write A as A = B′ ×Ω where B′ = B × Sk ⊂ Sn+k

for any k ≥ 0.

Exercise 5.5. Show;

1. An is a σ – algebra for each n ∈ N,
2. An ⊂ An+1 for all n, and
3. A ⊂ 2Ω is an algebra of subsets of Ω. (In fact, you might show that
A = ∪∞n=1An is an algebra whenever {An}∞n=1 is an increasing sequence
of algebras.)

Lemma 5.35 (Baby Tychonov Theorem). Suppose {Cn}∞n=1 ⊂ A is a de-
creasing sequence of non-empty cylinder sets. Further assume there exists
Nn ∈ N and Bn ⊂⊂ SNn such that Cn = Bn × Ω. (This last assumption is
vacuous when S is a finite set. Recall that we write Λ ⊂⊂ A to indicate that Λ
is a finite subset of A.) Then ∩∞n=1Cn 6= ∅.

Proof. Since Cn+1 ⊂ Cn, if Nn > Nn+1, we would have Bn+1×SNn+1−Nn ⊂
Bn. If S is an infinite set this would imply Bn is an infinite set and hence we
must have Nn+1 ≥ Nn for all n when # (S) = ∞. On the other hand, if S is
a finite set, we can always replace Bn+1 by Bn+1 × Sk for some appropriate
k and arrange it so that Nn+1 ≥ Nn for all n. So from now we assume that
Nn+1 ≥ Nn.

Case 1. limn→∞Nn <∞ in which case there exists some N ∈ N such that
Nn = N for all large n. Thus for large N, Cn = Bn × Ω with Bn ⊂⊂ SN and
Bn+1 ⊂ Bn and hence # (Bn) ↓ as n→∞. By assumption, limn→∞# (Bn) 6= 0
and therefore # (Bn) = k > 0 for all n large. It then follows that there exists
n0 ∈ N such that Bn = Bn0 for all n ≥ n0. Therefore ∩∞n=1Cn = Bn0 ×Ω 6= ∅.

Case 2. limn→∞Nn = ∞. By assumption, there exists ω (n) =
(ω1 (n) , ω2 (n) , . . . ) ∈ Ω such that ω (n) ∈ Cn for all n. Moreover, since
ω (n) ∈ Cn ⊂ Ck for all k ≤ n, it follows that

(ω1 (n) , ω2 (n) , . . . , ωNk (n)) ∈ Bk for all n ≥ k (5.20)

and as Bk is a finite set {ωi (n)}∞n=1 must be a finite set for all 1 ≤ i ≤ Nk.
As Nk → ∞ as k → ∞ it follows that {ωi (n)}∞n=1 is a finite set for all i ∈ N.
Using this observation, we may find, s1 ∈ S and an infinite subset, Γ1 ⊂ N such
that ω1 (n) = s1 for all n ∈ Γ1. Similarly, there exists s2 ∈ S and an infinite
set, Γ2 ⊂ Γ1, such that ω2 (n) = s2 for all n ∈ Γ2. Continuing this procedure
inductively, there exists (for all j ∈ N) infinite subsets, Γj ⊂ N and points
sj ∈ S such that Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . and ωj (n) = sj for all n ∈ Γj .

We are now going to complete the proof by showing s := (s1, s2, . . . ) ∈
∩∞n=1Cn. By the construction above, for all N ∈ N we have

(ω1 (n) , . . . , ωN (n)) = (s1, . . . , sN ) for all n ∈ ΓN .

Taking N = Nk and n ∈ ΓNk with n ≥ k, we learn from Eq. (5.20) that

(s1, . . . , sNk) = (ω1 (n) , . . . , ωNk (n)) ∈ Bk.

But this is equivalent to showing s ∈ Ck. Since k ∈ N was arbitrary it follows
that s ∈ ∩∞n=1Cn.

Let S̄ := S is S is a finite set and S̄ = S ∪ {∞} if S is an infinite set. Here,
∞, is simply another point not in S which we call infinity Let {xn}∞n=1 ⊂ S̄
be a sequence, then we way limn→∞ xn = ∞ if for every A ⊂⊂ S, xn /∈ A for
almost all n and we say that limn→∞ xn = s ∈ S if xn = s for almost all n.
For example this is the usual notion of convergence for S =

{
1
n : n ∈ N

}
and

S̄ = S ∪ {0} ⊂ [0, 1] , where 0 is playing the role of infinity here. Observe that
either limn→∞ xn = ∞ or there exists a finite subset F ⊂ S such that xn ∈ F
infinitely often. Moreover, there must be some point, s ∈ F such that xn = s
infinitely often. Thus if we let {n1 < n2 < . . . } ⊂ N be chosen such that xnk = s
for all k, then limk→∞ xnk = s. Thus we have shown that every sequence in S̄
has a convergent subsequence.

Lemma 5.36 (Baby Tychonov Theorem I.). Let Ω̄ := S̄N and {ω (n)}∞n=1

be a sequence in Ω̄. Then there is a subsequence, {nk}∞k=1 of {n}∞n=1 such that
limk→∞ ω (nk) exists in Ω̄ by which we mean, limk→∞ ωi (nk) exists in S̄ for
all i ∈ N.

Proof. This follows by the usual cantor’s diagonalization argument. Indeed,
let
{
n1
k

}∞
k=1
⊂ {n}∞n=1 be chosen so that limk→∞ ω1

(
n1
k

)
= s1 ∈ S̄ exists. Then

choose
{
n2
k

}∞
k=1
⊂
{
n1
k

}∞
k=1

so that limk→∞ ω2

(
n2
k

)
= s2 ∈ S̄ exists. Continue

on this way to inductively choose{
n1
k

}∞
k=1
⊃
{
n2
k

}∞
k=1
⊃ · · · ⊃

{
nlk
}∞
k=1
⊃ . . .

such that limk→∞ ωl
(
nlk
)

= sl ∈ S̄. The subsequence, {nk}∞k=1 of {n}∞n=1 , may
now be defined by, nk = nkk.
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Corollary 5.37 (Baby Tychonov Theorem II.). Suppose that {Fn}∞n=1 ⊂
Ω̄ is decreasing sequence of non-empty sets which are closed under taking se-
quential limits, then ∩∞n=1Fn 6= ∅.

Proof. Since Fn 6= ∅ there exists ω (n) ∈ Fn for all n. Using Lemma 5.36,
there exists {nk}∞k=1 ⊂ {n}

∞
n=1 such that ω := limk→∞ ω (nk) exits in Ω̄. Since

ω (nk) ∈ Fn for all k ≥ n, it follows that ω ∈ Fn for all n, i.e. ω ∈ ∩∞n=1Fn and
hence ∩∞n=1Fn 6= ∅.

Example 5.38. Suppose that 1 ≤ N1 < N2 < N3 < . . . , Fn = Kn × Ω with
Kn ⊂⊂ SNn such that {Fn}∞n=1 ⊂ Ω is a decreasing sequence of non-empty sets.
Then ∩∞n=1Fn 6= ∅. To prove this, let F̄n := Kn × Ω̄ in which case F̄n are non –
empty sets closed under taking limits. Therefore by Corollary 5.37, ∩nF̄n 6= ∅.
This completes the proof since it is easy to check that ∩∞n=1Fn = ∩nF̄n 6= ∅.

Corollary 5.39. If S is a finite set and {An}∞n=1 ⊂ A is a decreasing sequence
of non-empty cylinder sets, then ∩∞n=1An 6= ∅.

Proof. This follows directly from Example 5.38 since necessarily, An =
Kn ×Ω, for some Kn ⊂⊂ SNn .

Theorem 5.40 (Kolmogorov’s Extension Theorem I.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A → [0, 1] , has a unique extension to
a probability measure on B := σ (A) .

Proof. From Theorem 5.27, it suffices to show limn→∞ P (An) = 0 whenever
{An}∞n=1 ⊂ A with An ↓ ∅. However, by Lemma 5.35 with Cn = An, An ∈ A
and An ↓ ∅, we must have that An = ∅ for a.a. n and in particular P (An) = 0
for a.a. n. This certainly implies limn→∞ P (An) = 0.

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : σ (A) → [0, 1] is a probability
measure and for n ∈ N and (s1, . . . , sn) ∈ Sn, let

pn (s1, . . . , sn) := P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) . (5.21)

Exercise 5.6 (Consistency Conditions). If pn is defined as above, show:

1.
∑
s∈S p1 (s) = 1 and

2. for all n ∈ N and (s1, . . . , sn) ∈ Sn,

pn (s1, . . . , sn) =
∑
s∈S

pn+1 (s1, . . . , sn, s) .

Exercise 5.7 (Converse to 5.6). Suppose for each n ∈ N we are given func-
tions, pn : Sn → [0, 1] such that the consistency conditions in Exercise 5.6 hold.
Then there exists a unique probability measure, P on σ (A) such that Eq. (5.21)
holds for all n ∈ N and (s1, . . . , sn) ∈ Sn.

Example 5.41 (Existence of iid simple R.V.s). Suppose now that q : S → [0, 1]
is a function such that

∑
s∈S q (s) = 1. Then there exists a unique probability

measure P on σ (A) such that, for all n ∈ N and (s1, . . . , sn) ∈ Sn, we have

P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) = q (s1) . . . q (sn) .

This is a special case of Exercise 5.7 with pn (s1, . . . , sn) := q (s1) . . . q (sn) .

Theorem 5.42 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A → [0, 1] is a finitely additive measure such
that P |An is a σ – additive measure for each n ∈ N. Then P extends uniquely
to a probability measure on B := σ (A) .

Proof. From Theorem 5.27 it suffice to show; if {Am}∞n=1 ⊂ A is a decreas-
ing sequence of subsets such that ε := infm P (Am) > 0, then ∩∞m=1Am 6= ∅.
You are asked to verify this property of P in the next couple of exercises.

For the next couple of exercises the hypothesis of Theorem 5.42 are to be
assumed.

Exercise 5.8. Show for each n ∈ N, A ∈ An, and ε > 0 are given. Show there
exists F ∈ An such that F ⊂ A, F = K×Ω with K ⊂⊂ Sn, and P (A \ F ) < ε.

Exercise 5.9. Let {Am}∞n=1 ⊂ A be a decreasing sequence of subsets such that
ε := infm P (Am) > 0. Using Exercise 5.8, choose Fm = Km × Ω ⊂ Am with
Km ⊂⊂ SNn and P (Am \ Fm) ≤ ε/2m+1. Further define Cm := F1 ∩ · · · ∩ Fm
for each m. Show;

1. Show Am \ Cm ⊂ (A1 \ F1) ∪ (A2 \ F2) ∪ · · · ∪ (Am \ Fm) and use this to
conclude that P (Am \ Cm) ≤ ε/2.

2. Conclude Cm is not empty for m.
3. Use Lemma 5.35 to conclude that ∅ 6= ∩∞m=1Cm ⊂ ∩∞m=1Am.

Exercise 5.10. Convince yourself that the results of Exercise 5.6 and 5.7 are
valid when S is a countable set. (See Example 4.6.)

In summary, the main result of this section states, to any sequence of
functions, pn : Sn → [0, 1] , such that

∑
λ∈Sn pn (λ) = 1 and

∑
s∈S pn+1 (λ, s) =

pn (λ) for all n and λ ∈ Sn, there exists a unique probability measure, P, on
B := σ (A) such that

P (B ×Ω) =
∑
λ∈B

pn (λ) ∀ B ⊂ Sn and n ∈ N.

Example 5.43 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S × S → [0, 1] be a Markov kernel, i.e.
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y∈S

p (x, y) = 1 for all x ∈ S. (5.22)

Also let π : S → [0, 1] be a probability function, i.e.
∑
x∈S π (x) = 1. We now

take
Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S}

and let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn for all n ∈ N0.

Then there exists a unique probability measure, Pπ, on σ (A) such that

Pπ (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn)

for all n ∈ N0 and x0, x1, . . . , xn ∈ S. To see such a measure exists, we need
only verify that

pn (x0, . . . , xn) := π (x0) p (x0, x1) . . . p (xn−1, xn)

verifies the hypothesis of Exercise 5.6 taking into account a shift of the n –
index.

5.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 5.44 (Finite Regularity Result). Suppose A ⊂ 2Ω is an algebra,
B = σ (A) and µ : B → [0,∞) is a finite measure, i.e. µ (Ω) < ∞. Then for
every ε > 0 and B ∈ B there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C
and µ (C \A) < ε.

Proof. Let B0 denote the collection of B ∈ B such that for every ε > 0
there here exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε.
It is now clear that A ⊂ B0 and that B0 is closed under complementation. Now
suppose that Bi ∈ B0 for i = 1, 2, . . . and ε > 0 is given. By assumption there
exists Ai ∈ Aδ and Ci ∈ Aσ such that Ai ⊂ Bi ⊂ Ci and µ (Ci \Ai) < 2−iε.

Let A := ∪∞i=1Ai, A
N := ∪Ni=1Ai ∈ Aδ, B := ∪∞i=1Bi, and C := ∪∞i=1Ci ∈

Aσ. Then AN ⊂ A ⊂ B ⊂ C and

C \A = [∪∞i=1Ci] \A = ∪∞i=1 [Ci \A] ⊂ ∪∞i=1 [Ci \Ai] .

Therefore,

µ (C \A) = µ (∪∞i=1 [Ci \A]) ≤
∞∑
i=1

µ (Ci \A) ≤
∞∑
i=1

µ (Ci \Ai) < ε.

Since C \ AN ↓ C \ A, it also follows that µ
(
C \AN

)
< ε for sufficiently large

N and this shows B = ∪∞i=1Bi ∈ B0. Hence B0 is a sub-σ-algebra of B = σ (A)
which contains A which shows B0 = B.

Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.

Definition 5.45. Suppose Ω is a set, E ⊂ B ⊂ 2Ω and µ : B → [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) < ∞ and Ω = ∪∞n=1En. If B is a σ – algebra and µ is a measure on B
which is σ – finite on B we will say (Ω,B, µ) is a σ – finite measure space.

The reader should check that if µ is a finitely additive measure on an algebra,
B, then µ is σ – finite on B iff there exists Ωn ∈ B such that Ωn ↑ Ω and
µ(Ωn) <∞.

Corollary 5.46 (σ – Finite Regularity Result). Theorem 5.44 continues
to hold under the weaker assumption that µ : B → [0,∞] is a measure which is
σ – finite on A.

Proof. Let Ωn ∈ A such that ∪∞n=1Ωn = Ω and µ(Ωn) <∞ for all n.Since
A ∈ B →µn (A) := µ (Ωn ∩A) is a finite measure on A ∈ B for each n, by
Theorem 5.44, for every B ∈ B there exists Cn ∈ Aσ such that B ⊂ Cn and
µ (Ωn ∩ [Cn \B]) = µn (Cn \B) < 2−nε. Now let C := ∪∞n=1 [Ωn ∩ Cn] ∈ Aσ
and observe that B ⊂ C and

µ (C \B) = µ (∪∞n=1 ([Ωn ∩ Cn] \B))

≤
∞∑
n=1

µ ([Ωn ∩ Cn] \B) =
∞∑
n=1

µ (Ωn ∩ [Cn \B]) < ε.

Applying this result to Bc shows there exists D ∈ Aσ such that Bc ⊂ D and

µ (B \Dc) = µ (D \Bc) < ε.

So if we let A := Dc ∈ Aδ, then A ⊂ B ⊂ C and

µ (C \A) = µ ([B \A] ∪ [(C \B) \A]) ≤ µ (B \A) + µ (C \B) < 2ε

and the result is proved.
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Exercise 5.11. Suppose A ⊂ 2Ω is an algebra and µ and ν are two measures
on B = σ (A) .

a. Suppose that µ and ν are finite measures such that µ = ν on A. Show
µ = ν.

b. Generalize the previous assertion to the case where you only assume that
µ and ν are σ – finite on A.

Corollary 5.47. Suppose A ⊂ 2Ω is an algebra and µ : B = σ (A) → [0,∞] is
a measure which is σ – finite on A. Then for all B ∈ B, there exists A ∈ Aδσ
and C ∈ Aσδ such that A ⊂ B ⊂ C and µ (C \A) = 0.

Proof. By Theorem 5.44, given B ∈ B, we may choose An ∈ Aδ and
Cn ∈ Aσ such that An ⊂ B ⊂ Cn and µ(Cn \B) ≤ 1/n and µ(B \ An) ≤ 1/n.
By replacing AN by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑
and Cn ↓ as n increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then
A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)
≤ 2/n→ 0 as n→∞.

Exercise 5.12. Let B = BRn = σ ({open subsets of Rn}) be the Borel σ –
algebra on Rn and µ be a probability measure on B. Further, let B0 denote
those sets B ∈ B such that for every ε > 0 there exists F ⊂ B ⊂ V such that
F is closed, V is open, and µ (V \ F ) < ε. Show:

1. B0 contains all closed subsets of B. Hint: given a closed subset, F ⊂ Rn and
k ∈ N, let Vk := ∪x∈FB (x, 1/k) , where B (x, δ) := {y ∈ Rn : |y − x| < δ} .
Show, Vk ↓ F as k →∞.

2. Show B0 is a σ – algebra and use this along with the first part of this
exercise to conclude B = B0. Hint: follow closely the method used in the
first step of the proof of Theorem 5.44.

3. Show for every ε > 0 and B ∈ B, there exist a compact subset,K ⊂ Rn, such
that K ⊂ B and µ (B \K) < ε. Hint: take K := F ∩ {x ∈ Rn : |x| ≤ n}
for some sufficiently large n.

5.7 Appendix: Completions of Measure Spaces*

Definition 5.48. A set E ⊂ Ω is a null set if E ∈ B and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ Ω, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ Ω : P is false for x}

is a null set. For example if f and g are two measurable functions on (Ω,B, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 5.49. A measure space (Ω,B, µ) is complete if every subset of a
null set is in B, i.e. for all F ⊂ Ω such that F ⊂ E ∈ B with µ(E) = 0 implies
that F ∈ B.

Proposition 5.50 (Completion of a Measure). Let (Ω,B, µ) be a measure
space. Set

N = N µ := {N ⊂ Ω : ∃ F ∈ B such that N ⊂ F and µ(F ) = 0} ,
B = B̄µ := {A ∪N : A ∈ B and N ∈ N} and

µ̄(A ∪N) := µ(A) for A ∈ B and N ∈ N ,

see Fig. 5.2. Then B̄ is a σ – algebra, µ̄ is a well defined measure on B̄, µ̄ is the
unique measure on B̄ which extends µ on B, and (Ω, B̄, µ̄) is complete measure
space. The σ-algebra, B̄, is called the completion of B relative to µ and µ̄, is
called the completion of µ.

Proof. Clearly Ω, ∅ ∈ B̄. Let A ∈ B and N ∈ N and choose F ∈ B such

Fig. 5.2. Completing a σ – algebra.

that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ B. Thus B̄ is closed under
complements. If Ai ∈ B and Ni ⊂ Fi ∈ B such that µ(Fi) = 0 then
∪(Ai ∪ Ni) = (∪Ai) ∪ (∪Ni) ∈ B̄ since ∪Ai ∈ B and ∪Ni ⊂ ∪Fi and
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µ(∪Fi) ≤
∑
µ(Fi) = 0. Therefore, B̄ is a σ – algebra. Suppose A∪N1 = B∪N2

with A,B ∈ B and N1, N2,∈ N . Then A ⊂ A ∪ N1 ⊂ A ∪ N1 ∪ F2 = B ∪ F2

which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure, i.e.
that it is countable additive.

5.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 5.51 (Montone Class). C ⊂ 2Ω is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 5.52 (Monotone Class Theorem*). Suppose A ⊂ 2Ω is an algebra
and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then Bcn ↓ Bc
and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bcn ↓ C ∩Bc and
C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C, i.e.
B ∈ C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C, then
A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows that
A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A ∈ A. Let
B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observation and
the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all B ∈ C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B ∈ C. That is to say, if A,B ∈ C then
A ∈ C = C(B) and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C is closed under
complements (since Ω ∈ A ⊂ C) and finite intersections and increasing unions
from which it easily follows that C is a σ – algebra.
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Random Variables

Notation 6.1 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 6.2. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A→ X be the
inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

The following results will be used frequently (often without further refer-
ence) in the sequel.

Lemma 6.3 (A key measurability lemma). If f : X → Y is a function and
E ⊂ 2Y , then

σ
(
f−1(E)

)
= f−1(σ(E)). (6.1)

In particular, if A ⊂ Y then

(σ(E))A = σ(EA), (6.2)

(Similar assertion hold with σ (·) being replaced by A (·) .)

Proof. Since E ⊂ σ(E), it follows that f−1(E) ⊂ f−1(σ(E)). Moreover, by
Exercise 6.1 below, f−1(σ(E)) is a σ – algebra and therefore,

σ(f−1(E)) ⊂ f−1(σ(E)).

To finish the proof we must show f−1(σ(E)) ⊂ σ(f−1(E)), i.e. that f−1 (B) ∈
σ(f−1(E)) for all B ∈ σ (E) . To do this we follow the usual measure theoretic
mantra, namely let

M :=
{
B ⊂ Y : f−1 (B) ∈ σ(f−1(E))

}
= f∗σ(f−1(E)).

We will now finish the proof by showing σ (E) ⊂ M. This is easily achieved
by observing that M is a σ – algebra (see Exercise 6.1) which contains E and
therefore σ (E) ⊂M.

Equation (6.2) is a special case of Eq. (6.1). Indeed, f = iA : A → X we
have

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).

Exercise 6.1. If f : X → Y is a function and F ⊂ 2Y and B ⊂ 2X are σ –
algebras (algebras), then f−1F and f∗B are σ – algebras (algebras).

Example 6.4. Let E = {(a, b] : −∞ < a < b <∞} and B = σ (E) be the Borel σ
– field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}
and we have

B(0,1] = σ
(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.

6.1 Measurable Functions

Definition 6.5. A measurable space is a pair (X,M), where X is a set and
M is a σ – algebra on X.

To motivate the notion of a measurable function, suppose (X,M, µ) is a
measure space and f : X → R+ is a function. Roughly speaking, we are going
to define

∫
X

fdµ as a certain limit of sums of the form,

∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈ M for all a < b.
Because of Corollary 6.11 below, this last condition is equivalent to the condition
f−1(BR) ⊂M.

Definition 6.6. Let (X,M) and (Y,F) be measurable spaces. A function f :
X → Y is measurable of more precisely, M/F – measurable or (M,F) –
measurable, if f−1(F) ⊂M, i.e. if f−1 (A) ∈M for all A ∈ F .

Remark 6.7. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y , the σ
– algebraM := f−1(F) is the smallest σ – algebra on X such that f is (M,F)
- measurable . Similarly, if M is a σ - algebra on X then

F = f∗M ={A ∈ 2Y |f−1(A) ∈M}

is the largest σ – algebra on Y such that f is (M,F) - measurable.
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Example 6.8 (Indicator Functions). Let (X,M) be a measurable space and A ⊂
X. Then 1A is (M,BR) – measurable iff A ∈ M. Indeed, 1−1

A (W ) is either ∅,
X, A or Ac for any W ⊂ R with 1−1

A ({1}) = A.

Example 6.9. Suppose f : X → Y with Y being a finite or countable set and
F = 2Y . Then f is measurable iff f−1 ({y}) ∈M for all y ∈ Y.

Proposition 6.10. Suppose that (X,M) and (Y,F) are measurable spaces and
further assume E ⊂ F generates F , i.e. F = σ (E) . Then a map, f : X → Y is
measurable iff f−1 (E) ⊂M.

Proof. If f is M/F measurable, then f−1 (E) ⊂ f−1 (F) ⊂M. Conversely
if f−1 (E) ⊂M then σ

(
f−1 (E)

)
⊂M and so making use of Lemma 6.3,

f−1 (F) = f−1 (σ (E)) = σ
(
f−1 (E)

)
⊂M.

Corollary 6.11. Suppose that (X,M) is a measurable space. Then the follow-
ing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Exercise 6.2. Prove Corollary 6.11. Hint: See Exercise 3.7.

Exercise 6.3. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 6.4. Let (X,M) be a measure space and fn : X → R be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in R} ∈ M.
Similarly show the same holds if R is replaced by C.

Exercise 6.5. Show that every monotone function f : R→ R is (BR,BR) –
measurable.

Definition 6.12. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A→ Y is measurable iff f is MA/F – measur-
able.

Proposition 6.13 (Localizing Measurability). Let (X,M) and (Y,F) be
measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is MA/F – measurable.

2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn/F
– measurable for all n, then f is M – measurable.

Proof. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F and
therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈ M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

Lemma 6.14 (Composing Measurable Functions). Suppose that
(X,M), (Y,F) and (Z,G) are measurable spaces. If f : (X,M) → (Y,F) and
g : (Y,F) → (Z,G) are measurable functions then g ◦ f : (X,M) → (Z,G) is
measurable as well.

Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
(
g−1 (G)

)
⊂ f−1 (F) ⊂M.

Definition 6.15 (σ – Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ I} and
functions fα : X → Yα for all α ∈ I. Let σ(fα : α ∈ I) denote the smallest σ –
algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ I) = σ(∪αf−1
α (Fα)).

Example 6.16. Suppose that Y is a finite set, F = 2Y , and X = Y N for some
N ∈ N. Let πi : Y N → Y be the projection maps, πi (y1, . . . , yN ) = yi. Then,
as the reader should check,

σ (π1, . . . , πn) =
{
A× ΛN−n : A ⊂ Λn

}
.

Proposition 6.17. Assuming the notation in Definition 6.15 (so fα : X →
Yα for all α ∈ I) and additionally let (Z,M) be a measurable space. Then

g : Z → X is (M, σ(fα : α ∈ I)) – measurable iff fα ◦ g
(
Z

g→ X
fα→ Yα

)
is

(M,Fα)–measurable for all α ∈ I.

Proof. (⇒) If g is (M, σ(fα : α ∈ I)) – measurable, then the composition
fα ◦ g is (M,Fα) – measurable by Lemma 6.14.
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(⇐) Since σ(fα : α ∈ I) = σ (E) where E := ∪αf−1
α (Fα), according to

Proposition 6.10, it suffices to show g−1 (A) ∈M for A ∈ f−1
α (Fα). But this is

true since if A = f−1
α (B) for some B ∈ Fα, then g−1 (A) = g−1

(
f−1
α (B)

)
=

(fα ◦ g)−1 (B) ∈M because fα ◦ g : Z → Yα is assumed to be measurable.

Definition 6.18. If {(Yα,Fα) : α ∈ I} is a collection of measurable spaces, then
the product measure space, (Y,F) , is Y :=

∏
α∈I Yα, F := σ (πα : α ∈ I) where

πα : Y → Yα is the α – component projection. We call F the product σ – algebra
and denote it by, F = ⊗α∈IFα.

Let us record an important special case of Proposition 6.17.

Corollary 6.19. If (Z,M) is a measure space, then g : Z → Y =
∏
α∈I Yα is

(M,F := ⊗α∈IFα) – measurable iff πα ◦ g : Z → Yα is (M,Fα) – measurable
for all α ∈ I.

As a special case of the above corollary, if A = {1, 2, . . . , n} , then Y =
Y1 × · · · × Yn and g = (g1, . . . , gn) : Z → Y is measurable iff each component,
gi : Z → Yi, is measurable. Here is another closely related result.

Proposition 6.20. Suppose X is a set, {(Yα,Fα) : α ∈ I} is a collection of
measurable spaces, and we are given maps, fα : X → Yα, for all α ∈ I. If
f : X → Y :=

∏
α∈I Yα is the unique map, such that πα ◦ f = fα, then

σ (fα : α ∈ I) = σ (f) = f−1 (F)

where F := ⊗α∈IFα.

Proof. Since πα ◦ f = fα is σ (fα : α ∈ I) /Fα – measurable for all α ∈ I it
follows from Corollary 6.19 that f : X → Y is σ (fα : α ∈ I) /F – measurable.
Since σ (f) is the smallest σ – algebra on X such that f is measurable we may
conclude that σ (f) ⊂ σ (fα : α ∈ I) .

Conversely, for each α ∈ I, fα = πα ◦ f is σ (f) /Fα – measurable for all
α ∈ I being the composition of two measurable functions. Since σ (fα : α ∈ I)
is the smallest σ – algebra on X such that each fα : X → Yα is measurable, we
learn that σ (fα : α ∈ I) ⊂ σ (f) .

Exercise 6.6. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
Ei is a subset of Fi such that Yi ∈ Ei and Fi = σ (Ei) for i = 1 and 2. Show
F1 ⊗F2 = σ (E) where E := {A1 ×A2 : Ai ∈ Ei for i = 1, 2} . Hints:

1. First show that if Y is a set and S1 and S2 are two non-empty sub-
sets of 2Y , then σ (σ (S1) ∪ σ (S2)) = σ (S1 ∪ S2) . (In fact, one has that
σ (∪α∈Iσ (Sα)) = σ (∪α∈ISα) for any collection of non-empty subsets,
{Sα}α∈I ⊂ 2Y .)

2. After this you might start your proof as follows;

F1⊗F2 := σ
(
π−1

1 (F1) ∪ π−1
2 (F2)

)
= σ

(
π−1

1 (σ (E2)) ∪ π−1
2 (σ (E2))

)
= . . . .

Remark 6.21. The reader should convince herself that Exercise 6.6 admits the
following extension. If I is any finite or countable index set, {(Yi,Fi)}i∈I are
measurable spaces and Ei ⊂ Fi are such that Yi ∈ Ei and Fi = σ (Ei) for all
i ∈ I, then

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Ej for all j ∈ I

})
and in particular,

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Fj for all j ∈ I

})
.

The last fact is easily verified directly without the aid of Exercise 6.6.

Exercise 6.7. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
∅ 6= Bi ⊂ Yi for i = 1, 2. Show

[F1 ⊗F2]B1×B2
= [F1]B1

⊗ [F2]B2
.

Hint: you may find it useful to use the result of Exercise 6.6 with

E := {A1 ×A2 : Ai ∈ Fi for i = 1, 2} .

Definition 6.22. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .

Proposition 6.23. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 6.3 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Example 6.24. For i = 1, 2, . . . , n, let πi : Rn → R be defined by πi (x) = xi.
Then each πi is continuous and therefore BRn/BR – measurable.

Lemma 6.25. Let E denote the collection of open rectangle in Rn, then BRn =
σ (E) . We also have that BRn = σ (π1, . . . , πn) = BR⊗· · ·⊗BR and in particular,
A1 × · · · × An ∈ BRn whenever Ai ∈ BR for i = 1, 2, . . . , n. Therefore BRn may
be described as the σ algebra generated by {A1 × · · · ×An : Ai ∈ BR} . (Also see
Remark 6.21.)
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Proof. Assertion 1. Since E ⊂ BRn , it follows that σ (E) ⊂ BRn . Let

E0 := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) . (6.3)

Since every open set, V ⊂ Rn, may be written as a (necessarily) countable
union of elements from E0, we have

V ∈ σ (E0) ⊂ σ (E) ,

i.e. σ (E0) and hence σ (E) contains all open subsets of Rn. Hence we may
conclude that

BRn = σ (open sets) ⊂ σ (E0) ⊂ σ (E) ⊂ BRn .

Assertion 2. Since each πi : Rn → R is continuous, it is BRn/BR – measur-
able and therefore, σ (π1, . . . , πn) ⊂ BRn . Moreover, if (a, b) is as in Eq. (6.3),
then

(a, b) = ∩ni=1π
−1
i ((ai, bi)) ∈ σ (π1, . . . , πn) .

Therefore, E ⊂ σ (π1, . . . , πn) and BRn = σ (E) ⊂ σ (π1, . . . , πn) .
Assertion 3. If Ai ∈ BR for i = 1, 2, . . . , n, then

A1 × · · · ×An = ∩ni=1π
−1
i (Ai) ∈ σ (π1, . . . , πn) = BRn .

Corollary 6.26. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each i.
In particular, a function f : X → C is (M,BC) – measurable iff Re f and Im f
are (M,BR) – measurable.

Proof. This is an application of Lemma 6.25 and Corollary 6.19 with Yi = R
for each i.

Corollary 6.27. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C
by F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and
M are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC2) –
measurable since π1◦F = f and π2◦F = g are (M,BC) – measurable. Therefore
A±◦F = f±g and M ◦F = f ·g, being the composition of measurable functions,
are also measurable.

Lemma 6.28. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) – measurable function. Then

F (x) :=
{ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \ {0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

Remark 6.29. For the real case of Lemma 6.28, define i as above but now take
z to real. From the plot of i, Figure 6.29, the reader may easily verify that
i−1 ((−∞, a]) is an infinite half interval for all a and therefore i is measurable.
See Example 6.34 for another proof of this fact.

Page: 70 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



6.1 Measurable Functions 71

We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄ defined
by

BR̄ := σ ({[a,∞] : a ∈ R}) . (6.4)

Proposition 6.30 (The Structure of BR̄). Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (6.5)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.

Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,

{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
(
i−1

({
[a,∞] : a ∈ R̄

}))
= σ

({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.

This implies:

1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A∩R ∈BR there exists B ∈ BR̄ such that A∩R = B∩R.

Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude that
A ∈ BR̄ as well.

This proves Eq. (6.5).
The proofs of the next two corollaries are left to the reader, see Exercises

6.8 and 6.9.

Corollary 6.31. Let (X,M) be a measurable space and f : X → R̄ be a func-
tion. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) :=
{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Corollary 6.32. Let (X,M) be a measurable space, f, g : X → R̄ be functions
and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions, 0 ·∞ = 0
and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞ and g (x) =
∞. Then f · g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.8. Prove Corollary 6.31 noting that the equivalence of items 1. – 3.
is a direct analogue of Corollary 6.11. Use Proposition 6.30 to handle item 4.

Exercise 6.9. Prove Corollary 6.32.

Proposition 6.33 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M)→ R for j ∈ N is a sequence of
M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are allM/BR – measurable functions. (Note that this result is in generally false
when (X,M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g+(x) := sup j fj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.

Example 6.34. As we saw in Remark 6.29, i : R→ R defined by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

is measurable by a simple direct argument. For an alternative argument, let

in (z) :=
z

z2 + 1
n

for all n ∈ N.

Then in is continuous and limn→∞ in (z) = i (z) for all z ∈ R from which it
follows that i is Borel measurable.
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Example 6.35. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Then f : R→ R̄ is measurable. Indeed, if

gn (x) =

{
1√
|x−rn|

if x 6= rn

0 if x = rn

then gn (x) =
√
|i (x− rn)| is measurable as the composition of measurable is

measurable. Therefore gn + 5 · 1{rn} is measurable as well. Finally,

f (x) = lim
N→∞

N∑
n=1

2−n
1√
|x− rn|

is measurable since sums of measurable functions are measurable and limits
of measurable functions are measurable. Moral: if you can explicitly write a
function f : R̄→ R̄ down then it is going to be measurable.

Definition 6.36. Given a function f : X → R̄ let f+(x) := max {f(x), 0} and
f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 6.37. Suppose (X,M) is a measurable space and f : X → R̄ is a
function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 6.33 implies f± are measurable.
Conversely if f± are measurable then so is f = f+ − f−.

Definition 6.38. Let (X,M) be a measurable space. A function ϕ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if ϕ is M – BF
measurable and ϕ(X) contains only finitely many elements.

Any such simple functions can be written as

ϕ =
n∑
i=1

λi1Ai with Ai ∈M and λi ∈ F. (6.6)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of ϕ and Ai =
ϕ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

ϕ =
∑
y∈F

y1ϕ−1({y}). (6.7)

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.39 (Approximation Theorem). Let f : X → [0,∞] be measur-
able and define, see Figure 6.1,

ϕn(x) :=
22n−1∑
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2n1f−1((2n,∞])(x)

=
22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n }(x) + 2n1{f>2n}(x)

then ϕn ≤ f for all n, ϕn(x) ↑ f(x) for all x ∈ X and ϕn ↑ f uniformly on the
sets XM := {x ∈ X : f(x) ≤M} with M <∞.

Moreover, if f : X → C is a measurable function, then there exists simple
functions ϕn such that limn→∞ ϕn(x) = f(x) for all x and |ϕn| ↑ |f | as n→∞.

Proof. Since f−1
(
( k

2n ,
k+1
2n ]
)

and f−1((2n,∞]) are inM as f is measurable,
ϕn is a measurable simple function for each n. Because

(
k

2n
,
k + 1

2n
] = (

2k
2n+1

,
2k + 1
2n+1

] ∪ (
2k + 1
2n+1

,
2k + 2
2n+1

],

if x ∈ f−1
(
( 2k

2n+1 ,
2k+1
2n+1 ]

)
then ϕn(x) = ϕn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then ϕn(x) = 2k

2n+1 <
2k+1
2n+1 = ϕn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

and so for x ∈ f−1((2n+1,∞]), ϕn(x) = 2n < 2n+1 = ϕn+1(x) and for x ∈
f−1((2n, 2n+1]), ϕn+1(x) ≥ 2n = ϕn(x). Therefore ϕn ≤ ϕn+1 for all n. It is
clear by construction that 0 ≤ ϕn(x) ≤ f(x) for all x and that 0 ≤ f(x) −
ϕn(x) ≤ 2−n if x ∈ X2n = {f ≤ 2n} . Hence we have shown that ϕn(x) ↑ f(x)
for all x ∈ X and ϕn ↑ f uniformly on bounded sets.

For the second assertion, first assume that f : X → R is a measurable
function and choose ϕ±n to be non-negative simple functions such that ϕ±n ↑ f±
as n→∞ and define ϕn = ϕ+

n − ϕ−n . Then (using ϕ+
n · ϕ−n ≤ f+ · f− = 0)

|ϕn| = ϕ+
n + ϕ−n ≤ ϕ+

n+1 + ϕ−n+1 = |ϕn+1|

and clearly |ϕn| = ϕ+
n +ϕ−n ↑ f+ + f− = |f | and ϕn = ϕ+

n −ϕ−n → f+− f− = f
as n → ∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and
vn → Im f as n→∞. Let ϕn = un + ivn, then

|ϕn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and ϕn = un + ivn → Re f + i Im f = f as n→∞.
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Fig. 6.1. Constructing the simple function, ϕ2, approximating a function, f : X →
[0,∞]. The graph of ϕ2 is in red.

6.2 Factoring Random Variables

Lemma 6.40. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, h : Ω → R̄, there is a
(F ,BR̄) – measurable function H : Y→ R̄ such that h = H ◦Y. More generally,
R̄ may be replaced by any “standard Borel space,”1 i.e. a space, (S,BS) which
is measure theoretic isomorphic to a Borel subset of R.

(Ω, σ(Y ))
Y- (Y,F)

(S,BS)

h
? H�

Proof. First suppose that h = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma

1 Standard Borel spaces include almost any measurable space that we will consider in
these notes. For example they include all complete seperable metric spaces equipped
with the Borel σ – algebra, see Section 9.10.

is valid in this case with H = 1B . More generally if h =
∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence h = H ◦Y
with H :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, h, from Ω → R̄, choose simple
functions hn converging to h. Let Hn : Y → R̄ be simple functions such that
hn = Hn ◦ Y. Then it follows that

h = lim
n→∞

hn = lim sup
n→∞

hn = lim sup
n→∞

Hn ◦ Y = H ◦ Y

where H := lim sup
n→∞

Hn – a measurable function from Y to R̄.

For the last assertion we may assume that S ∈ BR and BS = (BR)S =
{A ∩ S : A ∈ BR} . Since iS : S → R is measurable, what we have just proved
shows there exists, H : Y → R̄ which is (F ,BR̄) – measurable such that h =
iS ◦ h = H ◦ Y. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

HS =
{
H|H−1(S) on H−1 (S)
∗ on Y \H−1 (S)

where ∗ is some fixed arbitrary point in S. It follows from Proposition 6.13 that
HS : Y→ S is (F ,BS) – measurable and we still have h = HS ◦ Y as the range
of Y must necessarily be in H−1 (S) .

Here is how this lemma will often be used in these notes.

Corollary 6.41. Suppose that (Ω,B) is a measurable space, Xn : Ω → R are
B/BR – measurable functions, and Bn := σ (X1, . . . , Xn) ⊂ B for each n ∈ N.
Then h : Ω → R is Bn – measurable iff there exists H : Rn → R which is
BRn/BR – measurable such that h = H (X1, . . . , Xn) .

(Ω,Bn = σ (Y ))
Y :=(X1,...,Xn)- (Rn,BRn)

(R,BR)

h
? H�

Proof. By Lemma 6.25 and Corollary 6.19, the map, Y := (X1, . . . , Xn) :
Ω → Rn is (B,BRn = BR ⊗ · · · ⊗ BR) – measurable and by Proposition 6.20,
Bn = σ (X1, . . . , Xn) = σ (Y ) . Thus we may apply Lemma 6.40 to see that
there exists a BRn/BR – measurable map, H : Rn → R, such that h = H ◦ Y =
H (X1, . . . , Xn) .
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6.3 Summary of Measurability Statements

It may be worthwhile to gather the statements of the main measurability re-
sults of Sections 6.1 and 6.2 in one place. To do this let (Ω,B) , (X,M), and
{(Yα,Fα)}α∈I be measurable spaces and fα : Ω → Yα be given maps for all
α ∈ I. Also let πα : Y → Yα be the α – projection map,

F := ⊗α∈IFα := σ (πα : α ∈ I)

be the product σ – algebra on Y, and f : Ω → Y be the unique map determined
by πα ◦ f = fα for all α ∈ I. Then the following measurability results hold;

1. For A ⊂ Ω, the indicator function, 1A, is (B,BR) – measurable iff A ∈ B.
(Example 6.8).

2. If E ⊂M generatesM (i.e.M = σ (E)), then a map, g : Ω → X is (B,M)
– measurable iff g−1 (E) ⊂ B (Lemma 6.3 and Proposition 6.10).

3. The notion of measurability may be localized (Proposition 6.13).
4. Composition of measurable functions are measurable (Lemma 6.14).
5. Continuous functions between two topological spaces are also Borel mea-

surable (Proposition 6.23).
6. σ (f) = σ (fα : α ∈ I) (Proposition 6.20).
7. A map, h : X → Ω is (M, σ (f) = σ (fα : α ∈ I)) – measurable iff fα ◦ h is

(M,Fα) – measurable for all α ∈ I (Proposition 6.17).
8. A map, h : X → Y is (M,F) – measurable iff πα◦h is (M,Fα) – measurable

for all α ∈ I (Corollary 6.19).
9. If I = {1, 2, . . . , n} , then

⊗α∈IFα = F1 ⊗ · · · ⊗ Fn = σ ({A1 ×A2 × · · · ×An : Ai ∈ Fi for i ∈ I}) ,

this is a special case of Remark 6.21.
10. BRn = BR ⊗ · · · ⊗ BR (n - times) for all n ∈ N, i.e. the Borel σ – algebra on

Rn is the same as the product σ – algebra. (Lemma 6.25).
11. The collection of measurable functions from (Ω,B) to

(
R̄,BR̄

)
is closed un-

der the usual pointwise algebraic operations (Corollary 6.32). They are also
closed under the countable supremums, infimums, and limits (Proposition
6.33).

12. The collection of measurable functions from (Ω,B) to (C,BC) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
6.27 and Proposition 6.33). The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (Ω,B) to
(
R̄,BR̄

)
and from (Ω,B)

to (C,BC) may be well approximated by measurable simple functions (The-
orem 6.39).

14. If Xi : Ω → R are B/BR – measurable maps and Bn := σ (X1, . . . , Xn) ,
then h : Ω → R is Bn – measurable iff h = H (X1, . . . , Xn) for some BRn/BR
– measurable map, H : Rn → R (Corollary 6.41).

15. We also have the more general factorization Lemma 6.40.

For the most part most of our future measurability issues can be resolved
by one or more of the items on this list.
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6.4 Distributions / Laws of Random Vectors

The proof of the following proposition is routine and will be left to the reader.

Proposition 6.42. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞] by
ν(A) := µ(f−1(A)) for all A ∈ F . Then ν is a measure on (Y,F) . (In the future
we will denote ν by f∗µ or µ◦f−1 or Lawµ (f) and call f∗µ the push-forward
of µ by f or the law of f under µ.

Definition 6.43. Suppose that {Xi}ni=1 is a sequence of random variables on a
probability space, (Ω,B, P ) . The probability measure,

µ = (X1, . . . , Xn)∗ P = P ◦ (X1, . . . , Xn)−1 on BR

(see Proposition 6.42) is called the joint distribution (or law) of
(X1, . . . , Xn) . To be more explicit,

µ (B) := P ((X1, . . . , Xn) ∈ B) := P ({ω ∈ Ω : (X1 (ω) , . . . , Xn (ω)) ∈ B})

for all B ∈ BRn .

Corollary 6.44. The joint distribution, µ is uniquely determined from the
knowledge of

P ((X1, . . . , Xn) ∈ A1 × · · · ×An) for all Ai ∈ BR

or from the knowledge of

P (X1 ≤ x1, . . . , Xn ≤ xn) for all Ai ∈ BR

for all x = (x1, . . . , xn) ∈ Rn.

Proof. Apply Proposition 5.15 with P being the π – systems defined by

P := {A1 × · · · ×An ∈ BRn : Ai ∈ BR}

for the first case and

P := {(−∞, x1]× · · · × (−∞, xn] ∈ BRn : xi ∈ R}

for the second case.

Definition 6.45. Suppose that {Xi}ni=1 and {Yi}ni=1 are two finite sequences of
random variables on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) respec-
tively. We write (X1, . . . , Xn) d= (Y1, . . . , Yn) if (X1, . . . , Xn) and (Y1, . . . , Yn)
have the same distribution / law, i.e. if

P ((X1, . . . , Xn) ∈ B) = P ′ ((Y1, . . . , Yn) ∈ B) for all B ∈ BRn .

More generally, if {Xi}∞i=1 and {Yi}∞i=1 are two sequences of random variables

on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) we write {Xi}∞i=1
d= {Yi}∞i=1

iff (X1, . . . , Xn) d= (Y1, . . . , Yn) for all n ∈ N.

Proposition 6.46. Let us continue using the notation in Definition 6.45. Fur-
ther let

X = (X1, X2, . . . ) : Ω → RN and Y := (Y1, Y2, . . . ) : Ω′ → RN

and let F := ⊗n∈NBR – be the product σ – algebra on RN. Then {Xi}∞i=1
d=

{Yi}∞i=1 iff X∗P = Y∗P
′ as measures on

(
RN,F

)
.

Proof. Let

P := ∪∞n=1

{
A1 ×A2 × · · · ×An × RN : Ai ∈ BR for 1 ≤ i ≤ n

}
.

Notice that P is a π – system and it is easy to show σ (P) = F (see Exercise
6.6). Therefore by Proposition 5.15, X∗P = Y∗P

′ iff X∗P = Y∗P
′ on P. Now

for A1 ×A2 × · · · ×An × RN ∈ P we have,

X∗P
(
A1 ×A2 × · · · ×An × RN) = P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An)

and hence the condition becomes,

P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An) = P ′ ((Y1, . . . , Yn) ∈ A1 ×A2 × · · · ×An)

for all n ∈ N and Ai ∈ BR. Another application of Proposition 5.15 or us-
ing Corollary 6.44 allows us to conclude that shows that X∗P = Y∗P

′ iff
(X1, . . . , Xn) d= (Y1, . . . , Yn) for all n ∈ N.

Corollary 6.47. Continue the notation above and assume that {Xi}∞i=1
d=

{Yi}∞i=1 . Further let

X± =
{

lim supn→∞Xn if +
lim infn→∞Xn if −

and define Y± similarly. Then (X−, X+) d= (Y−, Y+) as random variables into(
R̄2,BR̄ ⊗ BR̄

)
. In particular,

P
(

lim
n→∞

Xn exists in R
)

= P ′
(

lim
n→∞

Y exists in R
)
. (6.8)
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Proof. First suppose that (Ω′,B′, P ′) =
(
RN,F , P ′ := X∗P

)
where

Yi (a1, a2, . . . ) := ai = πi (a1, a2, . . . ) . Then for C ∈ BR̄ ⊗ BR̄ we have,

X−1 ({(Y−, Y+) ∈ C}) = {(Y− ◦X,Y+ ◦X) ∈ C} = {(X−, X+) ∈ C} ,

since, for example,

Y− ◦X = lim inf
n→∞

Yn ◦X = lim inf
n→∞

Xn = X−.

Therefore it follows that

P ((X−, X+) ∈ C) = P ◦X−1 ({(Y−, Y+) ∈ C}) = P ′ ({(Y−, Y+) ∈ C}) . (6.9)

The general result now follows by two applications of this special case.
For the last assertion, take

C = {(x, x) : x ∈ R} ∈ BR2 = BR ⊗ BR ⊂ BR̄ ⊗ BR̄.

Then (X−, X+) ∈ C iff X− = X+ ∈ R which happens iff limn→∞Xn exists in
R. Similarly, (Y−, Y+) ∈ C iff limn→∞ Yn exists in R and therefore Eq. (6.8)
holds as a consequence of Eq. (6.9).

Exercise 6.10. Let {Xi}∞i=1 and {Yi}∞i=1 be two sequences of random variables

such that {Xi}∞i=1
d= {Yi}∞i=1 . Let {Sn}∞n=1 and {Tn}∞n=1 be defined by, Sn :=

X1 + · · ·+Xn and Tn := Y1 + · · ·+ Yn. Prove the following assertions.

1. Suppose that f : Rn → Rk is a BRn/BRk – measurable function, then
f (X1, . . . , Xn) d= f (Y1, . . . , Yn) .

2. Use your result in item 1. to show {Sn}∞n=1
d= {Tn}∞n=1 .

Hint: Apply item 1. with k = n after making a judicious choice for f :
Rn → Rn.

6.5 Generating All Distributions from the Uniform
Distribution

Theorem 6.48. Given a distribution function, F : R→ [0, 1] let G : (0, 1)→ R
be defined (see Figure 6.2) by,

G (y) := inf {x : F (x) ≥ y} .

Then G : (0, 1)→ R is Borel measurable and G∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Fig. 6.2. A pictorial definition of G.

Fig. 6.3. As can be seen from this picture, G (y) ≤ x0 iff y ≤ F (x0) and similarly,
G (y) ≤ x1 iff y ≤ x1.

Proof. Since G : (0, 1)→ R is a non-decreasing function, G is measurable.
We also claim that, for all x0 ∈ R, that

G−1 ((0, x0]) = {y : G (y) ≤ x0} = (0, F (x0)] ∩ R, (6.10)

see Figure 6.3.
To give a formal proof of Eq. (6.10), G (y) = inf {x : F (x) ≥ y} ≤ x0, there

exists xn ≥ x0 with xn ↓ x0 such that F (xn) ≥ y. By the right continuity of F,
it follows that F (x0) ≥ y. Thus we have shown

{G ≤ x0} ⊂ (0, F (x0)] ∩ (0, 1) .

For the converse, if y ≤ F (x0) then G (y) = inf {x : F (x) ≥ y} ≤ x0, i.e.
y ∈ {G ≤ x0} . Indeed, y ∈ G−1 ((−∞, x0]) iff G (y) ≤ x0. Observe that
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G (F (x0)) = inf {x : F (x) ≥ F (x0)} ≤ x0

and hence G (y) ≤ x0 whenever y ≤ F (x0) . This shows that

(0, F (x0)] ∩ (0, 1) ⊂ G−1 ((0, x0]) .

As a consequence we have G∗m = µF . Indeed,

(G∗m) ((−∞, x]) = m
(
G−1 ((−∞, x])

)
= m ({y ∈ (0, 1) : G (y) ≤ x})

= m ((0, F (x)] ∩ (0, 1)) = F (x) .

See section 2.5.2 on p. 61 of Resnick for more details.

Theorem 6.49 (Durret’s Version). Given a distribution function, F :
R→ [0, 1] let Y : (0, 1)→ R be defined (see Figure 6.4) by,

Y (x) := sup {y : F (y) < x} .

Then Y : (0, 1)→ R is Borel measurable and Y∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Fig. 6.4. A pictorial definition of Y (x) .

Proof. Since Y : (0, 1)→ R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (x) , then F (y) < x and hence,

F (Y (x)−) = lim
y↑Y (x)

F (y) ≤ x.

For y > Y (x) , we have F (y) ≥ x and therefore,

F (Y (x)) = F (Y (x) +) = lim
y↓Y (x)

F (y) ≥ x

and so we have shown

F (Y (x)−) ≤ x ≤ F (Y (x)) .

We will now show

{x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . (6.11)

For the inclusion “⊂,” if x ∈ (0, 1) and Y (x) ≤ y0, then x ≤ F (Y (x)) ≤ F (y0),
i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely if x ∈ (0, 1) and x ≤ F (y0) then (by
definition of Y (x)) y0 ≥ Y (x) .

From the identity in Eq. (6.11), it follows that Y is measurable and

(Y∗m) ((−∞, y0)) = m
(
Y −1(−∞, y0)

)
= m ((0, F (y0)] ∩ (0, 1)) = F (y0) .

Therefore, Law (Y ) = µF as desired.
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Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section 4.3 above. Recall there that if (Ω,B, µ) was
measurable space and ϕ : Ω → [0,∞) was a measurable simple function, then
we let

Eµϕ :=
∑

λ∈[0,∞)

λµ (ϕ = λ) .

The conventions being use here is that 0 · µ (ϕ = 0) = 0 even when µ (ϕ = 0) =
∞. This convention is necessary in order to make the integral linear – at a
minimum we will want Eµ [0] = 0. Please be careful not blindly apply the
0 · ∞ = 0 convention in other circumstances.

7.1 Integrals of positive functions

Definition 7.1. Let L+ = L+ (B) = {f : Ω → [0,∞] : f is measurable}. Define∫
Ω

f (ω) dµ (ω) =
∫
Ω

fdµ := sup {Eµϕ : ϕ is simple and ϕ ≤ f} .

We say the f ∈ L+ is integrable if
∫
Ω
fdµ <∞. If A ∈ B, let∫

A

f (ω) dµ (ω) =
∫
A

fdµ :=
∫
Ω

1Af dµ.

We also use the notation,

Ef =
∫
Ω

fdµ and E [f : A] :=
∫
A

fdµ.

Remark 7.2. Because of item 3. of Proposition 4.19, if ϕ is a non-negative simple
function,

∫
Ω
ϕdµ = Eµϕ so that

∫
Ω

is an extension of Eµ.

Lemma 7.3. Let f, g ∈ L+ (B) . Then:

1. if λ ≥ 0, then ∫
Ω

λfdµ = λ

∫
Ω

fdµ

wherein λ
∫
Ω
fdµ ≡ 0 if λ = 0, even if

∫
Ω
fdµ =∞.

2. if 0 ≤ f ≤ g, then ∫
Ω

fdµ ≤
∫
Ω

gdµ. (7.1)

3. For all ε > 0 and p > 0,

µ(f ≥ ε) ≤ 1
εp

∫
Ω

fp1{f≥ε}dµ ≤
1
εp

∫
Ω

fpdµ. (7.2)

The inequality in Eq. (7.2) is called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. If
∫
Ω
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the set {f > 0}

is σ – finite.

Proof. 1. We may assume λ > 0 in which case,∫
Ω

λfdµ = sup {Eµϕ : ϕ is simple and ϕ ≤ λf}

= sup
{
Eµϕ : ϕ is simple and λ−1ϕ ≤ f

}
= sup {Eµ [λψ] : ψ is simple and ψ ≤ f}
= sup {λEµ [ψ] : ψ is simple and ψ ≤ f}

= λ

∫
Ω

fdµ.

2. Since

{ϕ is simple and ϕ ≤ f} ⊂ {ϕ is simple and ϕ ≤ g} ,

Eq. (7.1) follows from the definition of the integral.
3. Since 1{f≥ε} ≤ 1{f≥ε} 1

εf ≤
1
εf we have

1{f≥ε} ≤ 1{f≥ε}

(
1
ε
f

)p
≤
(

1
ε
f

)p
and by monotonicity and the multiplicative property of the integral,

µ(f ≥ ε) =
∫
Ω

1{f≥ε}dµ ≤
(

1
ε

)p ∫
Ω

1{f≥ε}fpdµ ≤
(

1
ε

)p ∫
Ω

fpdµ.
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4. If µ (f =∞) > 0, then ϕn := n1{f=∞} is a simple function such that
ϕn ≤ f for all n and hence

nµ (f =∞) = Eµ (ϕn) ≤
∫
Ω

fdµ

for all n. Letting n → ∞ shows
∫
Ω
fdµ = ∞. Thus if

∫
Ω
fdµ < ∞ then

µ (f =∞) = 0.
Moreover,

{f > 0} = ∪∞n=1 {f > 1/n}
with µ (f > 1/n) ≤ n

∫
Ω
fdµ <∞ for each n.

Theorem 7.4 (Monotone Convergence Theorem). Suppose fn ∈ L+ is a
sequence of functions such that fn ↑ f (f is necessarily in L+) then∫

fn ↑
∫
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,∫
fn ≤

∫
fm ≤

∫
f

from which if follows
∫
fn is increasing in n and

lim
n→∞

∫
fn ≤

∫
f. (7.3)

For the opposite inequality, let ϕ : Ω → [0,∞) be a simple function such
that 0 ≤ ϕ ≤ f, α ∈ (0, 1) and Ωn := {fn ≥ αϕ} . Notice that Ωn ↑ Ω and
fn ≥ α1Ωnϕ and so by definition of

∫
fn,∫

fn ≥ Eµ [α1Ωnϕ] = αEµ [1Ωnϕ] . (7.4)

Then using the identity

1Ωnϕ = 1Ωn
∑
y>0

y1{ϕ=y} =
∑
y>0

y1{ϕ=y}∩Ωn ,

and the linearity of Eµ we have,

lim
n→∞

Eµ [1Ωnϕ] = lim
n→∞

∑
y>0

y · µ(Ωn ∩ {ϕ = y})

=
∑
y>0

y lim
n→∞

µ(Ωn ∩ {ϕ = y}) (finite sum)

=
∑
y>0

yµ({ϕ = y}) = Eµ [ϕ] ,

wherein we have used the continuity of µ under increasing unions for the
third equality. This identity allows us to let n → ∞ in Eq. (7.4) to conclude
limn→∞

∫
fn ≥ αEµ [ϕ] and since α ∈ (0, 1) was arbitrary we may further con-

clude, Eµ [ϕ] ≤ limn→∞
∫
fn. The latter inequality being true for all simple

functions ϕ with ϕ ≤ f then implies that∫
f = sup

0≤ϕ≤f
Eµ [ϕ] ≤ lim

n→∞

∫
fn,

which combined with Eq. (7.3) proves the theorem.

Remark 7.5 (“Explicit” Integral Formula). Given f : Ω → [0,∞] measurable,
we know from the approximation Theorem 6.39 ϕn ↑ f where

ϕn :=
22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n } + 2n1{f>2n}.

Therefore by the monotone convergence theorem,∫
Ω

fdµ = lim
n→∞

∫
Ω

ϕndµ

= lim
n→∞

22n−1∑
k=0

k

2n
µ

(
k

2n
< f ≤ k + 1

2n

)
+ 2nµ (f > 2n)

 .
Corollary 7.6. If fn ∈ L+ is a sequence of functions then∫ ∞∑

n=1

fn =
∞∑
n=1

∫
fn.

In particular, if
∑∞
n=1

∫
fn <∞ then

∑∞
n=1 fn <∞ a.e.

Proof. First off we show that∫
(f1 + f2) =

∫
f1 +

∫
f2

by choosing non-negative simple function ϕn and ψn such that ϕn ↑ f1 and
ψn ↑ f2. Then (ϕn + ψn) is simple as well and (ϕn + ψn) ↑ (f1 + f2) so by the
monotone convergence theorem,∫

(f1 + f2) = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

(∫
ϕn +

∫
ψn

)
= lim
n→∞

∫
ϕn + lim

n→∞

∫
ψn =

∫
f1 +

∫
f2.
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Now to the general case. Let gN :=
N∑
n=1

fn and g =
∞∑
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞∑
n=1

∫
fn := lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn

= lim
N→∞

∫
gN =

∫
g =:

∫ ∞∑
n=1

fn.

Remark 7.7. It is in the proof of Corollary 7.6 (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition

∫
fdµ makes sense for all functions f : Ω → [0,∞]

not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary 7.6, we use the approximation Theorem 6.39 which relies heavily on
the measurability of the functions to be approximated.

Example 7.8 (Sums as Integrals I). Suppose, Ω = N, B := 2N, µ (A) = # (A)
for A ⊂ Ω is the counting measure on B, and f : N→ [0,∞] is a function. Since

f =
∞∑
n=1

f (n) 1{n},

it follows from Corollary 7.6 that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =
∞∑
n=1

f (n) .

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 7.9 (Sums as Integrals II*). Let Ω be a set and ρ : Ω → [0,∞] be
a function, let µ =

∑
ω∈Ω ρ(ω)δω on B = 2Ω , i.e.

µ(A) =
∑
ω∈A

ρ(ω).

If f : Ω → [0,∞] is a function (which is necessarily measurable), then∫
Ω

fdµ =
∑
Ω

fρ.

Proof. Suppose that ϕ : Ω → [0,∞) is a simple function, then ϕ =∑
z∈[0,∞) z1{ϕ=z} and∑

Ω

ϕρ =
∑
ω∈Ω

ρ(ω)
∑

z∈[0,∞)

z1{ϕ=z}(ω) =
∑

z∈[0,∞)

z
∑
ω∈Ω

ρ(ω)1{ϕ=z}(ω)

=
∑

z∈[0,∞)

zµ({ϕ = z}) =
∫
Ω

ϕdµ.

So if ϕ : Ω → [0,∞) is a simple function such that ϕ ≤ f, then∫
Ω

ϕdµ =
∑
Ω

ϕρ ≤
∑
Ω

fρ.

Taking the sup over ϕ in this last equation then shows that∫
Ω

fdµ ≤
∑
Ω

fρ.

For the reverse inequality, let Λ ⊂⊂ Ω be a finite set and N ∈ (0,∞).
Set fN (ω) = min {N, f(ω)} and let ϕN,Λ be the simple function given by
ϕN,Λ(ω) := 1Λ(ω)fN (ω). Because ϕN,Λ(ω) ≤ f(ω),∑

Λ

fNρ =
∑
Ω

ϕN,Λρ =
∫
Ω

ϕN,Λdµ ≤
∫
Ω

fdµ.

Since fN ↑ f as N →∞, we may let N →∞ in this last equation to concluded∑
Λ

fρ ≤
∫
Ω

fdµ.

Since Λ is arbitrary, this implies∑
Ω

fρ ≤
∫
Ω

fdµ.

Exercise 7.1. Suppose that µn : B → [0,∞] are measures on B for n ∈ N. Also
suppose that µn(A) is increasing in n for all A ∈ B. Prove that µ : B → [0,∞]
defined by µ(A) := limn→∞ µn(A) is also a measure.

Proposition 7.10. Suppose that f ≥ 0 is a measurable function. Then∫
Ω
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
∫
fdµ ≤

∫
gdµ. In particular if f = g a.e. then

∫
fdµ =

∫
gdµ.
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Proof. If f = 0 a.e. and ϕ ≤ f is a simple function then ϕ = 0 a.e. This
implies that µ(ϕ−1({y})) = 0 for all y > 0 and hence

∫
Ω
ϕdµ = 0 and therefore∫

Ω
fdµ = 0. Conversely, if

∫
fdµ = 0, then by (Lemma 7.3),

µ(f ≥ 1/n) ≤ n
∫
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤
∑∞
n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e.

For the second assertion let E be the exceptional set where f > g, i.e.

E := {ω ∈ Ω : f(ω) > g(ω)}.

By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere. Because g =
1Ecg + 1Eg and 1Eg = 0 a.e.,∫

gdµ =
∫

1Ecgdµ+
∫

1Egdµ =
∫

1Ecgdµ

and similarly
∫
fdµ =

∫
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,∫

fdµ =
∫

1Ecfdµ ≤
∫

1Ecgdµ =
∫
gdµ.

Corollary 7.11. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, then∫

fn ↑
∫
f as n→∞.

Proof. Let E ⊂ Ω be a null set such that fn1Ec ↑ f1Ec as n → ∞. Then
by the monotone convergence theorem and Proposition 7.10,∫

fn =
∫
fn1Ec ↑

∫
f1Ec =

∫
f as n→∞.

Lemma 7.12 (Fatou’s Lemma). If fn : Ω → [0,∞] is a sequence of measur-
able functions then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∫
gk ≤

∫
fn for all n ≥ k

and therefore ∫
gk ≤ lim inf

n→∞

∫
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∫
lim inf

n→∞
fn =

∫
lim
k→∞

gk
MCT= lim

k→∞

∫
gk ≤ lim inf

n→∞

∫
fn.

The following Corollary and the next lemma are simple applications of Corol-
lary 7.6.

Corollary 7.13. Suppose that (Ω,B, µ) is a measure space and {An}∞n=1 ⊂ B
is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞∑
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =
∫
Ω

1∪∞n=1An
dµ and

∞∑
n=1

µ(An) =
∫
Ω

∞∑
n=1

1Andµ

it suffices to show
∞∑
n=1

1An = 1∪∞n=1An
µ – a.e. (7.5)

Now
∑∞
n=1 1An ≥ 1∪∞n=1An

and
∑∞
n=1 1An(ω) 6= 1∪∞n=1An

(ω) iff ω ∈ Ai ∩Aj for
some i 6= j, that is{

ω :
∞∑
n=1

1An(ω) 6= 1∪∞n=1An
(ω)

}
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (7.5) and hence the corollary.

Lemma 7.14 (The First Borell – Cantelli Lemma). Let (Ω,B, µ) be a
measure space, An ∈ B, and set

{An i.o.} = {ω ∈ Ω : ω ∈ An for infinitely many n’s} =
∞⋂
N=1

⋃
n≥N

An.

If
∑∞
n=1 µ(An) <∞ then µ({An i.o.}) = 0.
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Proof. (First Proof.) Let us first observe that

{An i.o.} =

{
ω ∈ Ω :

∞∑
n=1

1An(ω) =∞

}
.

Hence if
∑∞
n=1 µ(An) <∞ then

∞ >

∞∑
n=1

µ(An) =
∞∑
n=1

∫
Ω

1An dµ =
∫
Ω

∞∑
n=1

1An dµ

implies that
∞∑
n=1

1An(ω) <∞ for µ - a.e. ω. That is to say µ({An i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 ⋃
n≥N

An


≤ lim
N→∞

∑
n≥N

µ(An)

and the last limit is zero since
∑∞
n=1 µ(An) <∞.

Example 7.15. Suppose that (Ω,B, P ) is a probability space (i.e. P (Ω) = 1)
and Xn : Ω → {0, 1} are Bernoulli random variables with P (Xn = 1) = pn and
P (Xn = 0) = 1 − pn. If

∑∞
n=1 pn < ∞, then P (Xn = 1 i.o.) = 0 and hence

P (Xn = 0 a.a.) = 1. In particular, P (limn→∞Xn = 0) = 1.

7.2 Integrals of Complex Valued Functions

Definition 7.16. A measurable function f : Ω → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ; R) for the space
of real valued integrable functions. For f ∈ L1 (µ; R) , let∫

Ω

fdµ =
∫
Ω

f+dµ−
∫
Ω

f−dµ.

To shorten notation in this chapter we may simply write
∫
fdµ or even

∫
f for∫

Ω
fdµ.

Convention: If f, g : Ω → R̄ are two measurable functions, let f+g denote
the collection of measurable functions h : Ω → R̄ such that h(ω) = f(ω) + g(ω)
whenever f(ω) +g(ω) is well defined, i.e. is not of the form∞−∞ or −∞+∞.
We use a similar convention for f − g. Notice that if f, g ∈ L1 (µ; R) and
h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 7.17 (Abuse of notation) We will sometimes denote the integral∫
Ω
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all A ∈ B.

Remark 7.18. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
∫
|f | dµ <∞. Hence

L1 (µ; R) :=
{
f : Ω → R̄ : f is measurable and

∫
Ω

|f | dµ <∞
}
.

If f, g ∈ L1 (µ; R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 7.10 that

∫
fdµ =

∫
gdµ. In particular if f, g ∈ L1 (µ; R) we may

define ∫
Ω

(f + g) dµ =
∫
Ω

hdµ

where h is any element of f + g.

Proposition 7.19. The map

f ∈ L1 (µ; R)→
∫
Ω

fdµ ∈ R

is linear and has the monotonicity property:
∫
fdµ ≤

∫
gdµ for all f, g ∈

L1 (µ; R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ; R) and a, b ∈ R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af + bg ∈ L1 (µ; R)
because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ; R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that ∫
af = −a

∫
f− + a

∫
f+ = a(

∫
f+ −

∫
f−) = a

∫
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that ∫

af = a

∫
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
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h+ + f− + g− = h− + f+ + g+.

Therefore, ∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

and hence∫
h =

∫
h+ −

∫
h− =

∫
f+ +

∫
g+ −

∫
f− −

∫
g− =

∫
f +

∫
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that ∫

f+ +
∫
g− ≤

∫
g+ +

∫
f−

or equivalently that∫
f =

∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 7.10.

Definition 7.20. A measurable function f : Ω → C is integrable if∫
Ω
|f | dµ <∞. Analogously to the real case, let

L1 (µ; C) :=
{
f : Ω → C : f is measurable and

∫
Ω

|f | dµ <∞
}
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤

√
2 max (|Re f | , |Im f |) ,

∫
|f | dµ <∞ iff∫

|Re f | dµ+
∫
|Im f | dµ <∞.

For f ∈ L1 (µ; C) define∫
f dµ =

∫
Re f dµ+ i

∫
Im f dµ.

It is routine to show the integral is still linear on L1 (µ; C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ; C) or L1 (µ; R) . If A ∈ B
and f ∈ L1 (µ; C) or f : Ω → [0,∞] is a measurable function, let∫

A

fdµ :=
∫
Ω

1Afdµ.

Proposition 7.21. Suppose that f ∈ L1 (µ; C) , then∣∣∣∣∫
Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|f | dµ. (7.6)

Proof. Start by writing
∫
Ω
f dµ = Reiθ with R ≥ 0. We may assume that

R =
∣∣∫
Ω
fdµ

∣∣ > 0 since otherwise there is nothing to prove. Since

R = e−iθ
∫
Ω

f dµ =
∫
Ω

e−iθf dµ =
∫
Ω

Re
(
e−iθf

)
dµ+ i

∫
Ω

Im
(
e−iθf

)
dµ,

it must be that
∫
Ω

Im
[
e−iθf

]
dµ = 0. Using the monotonicity in Proposition

7.10, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣ =
∫
Ω

Re
(
e−iθf

)
dµ ≤

∫
Ω

∣∣Re
(
e−iθf

)∣∣ dµ ≤ ∫
Ω

|f | dµ.

Proposition 7.22. Let f, g ∈ L1 (µ) , then

1. The set {f 6= 0} is σ – finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥ 1

n ) <
∞ for all n.

2. The following are equivalent
a)
∫
E
f =

∫
E
g for all E ∈ B

b)
∫
Ω

|f − g| = 0

c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 7.3,

µ(|f | ≥ 1
n

) ≤ n
∫
Ω

|f | dµ <∞

for all n.
2. (a) =⇒ (c) Notice that∫

E

f =
∫
E

g ⇔
∫
E

(f − g) = 0

for all E ∈ B. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re
∫
E

(f − g)dµ =
∫

1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff
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µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e.

(c) =⇒ (b) is clear and so is (b) =⇒ (a) since∣∣∣∣∫
E

f −
∫
E

g

∣∣∣∣ ≤ ∫ |f − g| = 0.

Lemma 7.23 (Integral Comparison I). Suppose that h ∈ L1 (µ) satisfies∫
A

hdµ ≥ 0 for all A ∈ B, (7.7)

then h ≥ 0 a.e.

Proof. Since by assumption,

0 = Im
∫
A

hdµ =
∫
A

Imhdµ for all A ∈ B,

we may apply Proposition 7.22 to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (7.7) implies∫

Ω

1A |h| dµ =
∫
Ω

−1Ahdµ = −
∫
A

hdµ ≤ 0.

However 1A |h| ≥ 0 and therefore it follows that
∫
Ω

1A |h| dµ = 0 and so Propo-
sition 7.22 implies 1A |h| = 0 a.e. which then implies 0 = µ (A) = µ (h < 0) = 0.

Lemma 7.24 (Integral Comparison II). Suppose (Ω,B, µ) is a σ – finite
measure space (i.e. there exists Ωn ∈ B such that Ωn ↑ Ω and µ (Ωn) < ∞ for
all n) and f, g : Ω → [0,∞] are B – measurable functions. Then f ≥ g a.e. iff∫

A

fdµ ≥
∫
A

gdµ for all A ∈ B. (7.8)

In particular f = g a.e. iff equality holds in Eq. (7.8).

Proof. It was already shown in Proposition 7.10 that f ≥ g a.e. implies Eq.
(7.8). For the converse assertion, let Bn := {f ≤ n1Ωn} . Then from Eq. (7.8),

∞ > nµ (Ωn) ≥
∫
f1Bndµ ≥

∫
g1Bndµ

from which it follows that both f1Bn and g1Bn are in L1 (µ) and hence h :=
f1Bn − g1Bn ∈ L1 (µ) . Using Eq. (7.8) again we know that∫

A

h =
∫
f1Bn∩A −

∫
g1Bn∩A ≥ 0 for all A ∈ B.

An application of Lemma 7.23 implies h ≥ 0 a.e., i.e. f1Bn ≥ g1Bn a.e. Since
Bn ↑ {f <∞} , we may conclude that

f1{f<∞} = lim
n→∞

f1Bn ≥ lim
n→∞

g1Bn = g1{f<∞} a.e.

Since f ≥ g whenever f =∞, we have shown f ≥ g a.e.
If equality holds in Eq. (7.8), then we know that g ≤ f and f ≤ g a.e., i.e.

f = g a.e.
Notice that we can not drop the σ – finiteness assumption in Lemma 7.24.

For example, let µ be the measure on B such that µ (A) = ∞ when A 6= ∅,
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ∅
when they are both zero) in Eq. (7.8) holds even though f < g everywhere.

Definition 7.25. Let (Ω,B, µ) be a measure space and L1(µ) = L1(Ω,B, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

‖f − g‖L1 =
∫
|f − g| dµ

and into a metric space using ρ1(f, g) = ‖f − g‖L1 .

Warning: in the future we will often not make much of a distinction between
L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 7.26. More generally we may define Lp(µ) = Lp(Ω,B, µ) for p ∈ [1,∞)
as the set of measurable functions f such that∫

Ω

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in later that

‖f‖Lp =
(∫
|f |p dµ

)1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), ‖·‖Lp) is a Banach space in this norm and in particular,

‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp (µ) .
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Theorem 7.27 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

∫
Ω
gndµ →

∫
Ω
gdµ.

Then f ∈ L1 (µ) and ∫
Ω

fdµ = lim
h→∞

∫
Ω

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,∫

Ω

(g ± f)dµ =
∫
Ω

lim inf
n→∞

(gn ± fn) dµ ≤ lim inf
n→∞

∫
Ω

(gn ± fn) dµ

= lim
n→∞

∫
Ω

gndµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
=
∫
Ω

gdµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
Since lim infn→∞(−an) = − lim sup

n→∞
an, we have shown,

∫
Ω

gdµ±
∫
Ω

fdµ ≤
∫
Ω

gdµ+

{
lim infn→∞

∫
Ω
fndµ

− lim sup
n→∞

∫
Ω
fndµ

and therefore

lim sup
n→∞

∫
Ω

fndµ ≤
∫
Ω

fdµ ≤ lim inf
n→∞

∫
Ω

fndµ.

This shows that lim
n→∞

∫
Ω
fndµ exists and is equal to

∫
Ω
fdµ.

Exercise 7.2. Give another proof of Proposition 7.21 by first proving Eq. (7.6)
with f being a simple function in which case the triangle inequality for complex
numbers will do the trick. Then use the approximation Theorem 6.39 along with
the dominated convergence Theorem 7.27 to handle the general case.

Corollary 7.28. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that∑∞
n=1 ‖fn‖L1(µ) <∞, then

∑∞
n=1 fn is convergent a.e. and

∫
Ω

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
Ω

fndµ.

Proof. The condition
∑∞
n=1 ‖fn‖L1(µ) < ∞ is equivalent to

∑∞
n=1 |fn| ∈

L1 (µ) . Hence
∑∞
n=1 fn is almost everywhere convergent and if SN :=

∑N
n=1 fn,

then

|SN | ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,∫
Ω

( ∞∑
n=1

fn

)
dµ =

∫
Ω

lim
N→∞

SNdµ = lim
N→∞

∫
Ω

SNdµ

= lim
N→∞

N∑
n=1

∫
Ω

fndµ =
∞∑
n=1

∫
Ω

fndµ.

Example 7.29 (Sums as integrals). Suppose, Ω = N, B := 2N, µ is counting
measure on B (see Example 7.8), and f : N→ C is a function. From Example
7.8 we have f ∈ L1 (µ) iff

∑∞
n=1 |f (n)| < ∞, i.e. iff the sum,

∑∞
n=1 f (n) is

absolutely convergent. Moreover, if f ∈ L1 (µ) , we may again write

f =
∞∑
n=1

f (n) 1{n}

and then use Corollary 7.28 to conclude that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =
∞∑
n=1

f (n) .

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.

However if f (n) = (−1)n 1
n , then

∞∑
n=1

f (n) := lim
N→∞

N∑
n=1

f (n)

is perfectly well defined while
∫

N fdµ is not. In fact in this case we have,∫
N
f±dµ =∞.

The point is that when we write
∑∞
n=1 f (n) the ordering of the terms in the

sum may matter. On the other hand,
∫

N fdµ knows nothing about the integer
ordering.
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The following corollary will be routinely be used in the sequel – often without
explicit mention.

Corollary 7.30 (Differentiation Under the Integral). Suppose that J ⊂ R
is an open interval and f : J ×Ω → C is a function such that

1. ω → f(t, ω) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f

∂t (t, ω) exists for all (t, ω).

4. There is a function g ∈ L1 (µ) such that
∣∣∣∂f∂t (t, ·)

∣∣∣ ≤ g for each t ∈ J.

Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.
∫
Ω
|f(t, ω)| dµ(ω) < ∞), t →∫

Ω
f(t, ω)dµ(ω) is a differentiable function on J, and

d

dt

∫
Ω

f(t, ω)dµ(ω) =
∫
Ω

∂f

∂t
(t, ω)dµ(ω).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

∂f

∂t
(t, ω) = lim

n→∞
n(f(t+ n−1, ω)− f(t, ω))

and therefore, for ω → ∂f
∂t (t, ω) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, ω)− f(t0, ω)| ≤ g(ω) |t− t0| for all t ∈ J (7.9)

and hence

|f(t, ω)| ≤ |f(t, ω)− f(t0, ω)|+ |f(t0, ω)| ≤ g(ω) |t− t0|+ |f(t0, ω)| .

This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=
∫
Ω
f(t, ω)dµ(ω), then

G(t)−G(t0)
t− t0

=
∫
Ω

f(t, ω)− f(t0, ω)
t− t0

dµ(ω).

By assumption,

lim
t→t0

f(t, ω)− f(t0, ω)
t− t0

=
∂f

∂t
(t, ω) for all ω ∈ Ω

and by Eq. (7.9),∣∣∣∣f(t, ω)− f(t0, ω)
t− t0

∣∣∣∣ ≤ g(ω) for all t ∈ J and ω ∈ Ω.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)
tn − t0

= lim
n→∞

∫
Ω

f(tn, ω)− f(t0, ω)
tn − t0

dµ(ω)

=
∫
Ω

lim
n→∞

f(tn, ω)− f(t0, ω)
tn − t0

dµ(ω)

=
∫
Ω

∂f

∂t
(t0, ω)dµ(ω)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =
limt→t0

G(t)−G(t0)
t−t0 exists and

Ġ(t0) =
∫
Ω

∂f

∂t
(t0, ω)dµ(ω).

Corollary 7.31. Suppose that {an}∞n=0 ⊂ C is a sequence of complex numbers
such that series

f(z) :=
∞∑
n=0

an(z − z0)n

is convergent for |z − z0| < R, where R is some positive number. Then f :
D(z0, R)→ C is complex differentiable on D(z0, R) and

f ′(z) =
∞∑
n=0

nan(z − z0)n−1 =
∞∑
n=1

nan(z − z0)n−1. (7.10)

By induction it follows that f (k) exists for all k and that

f (k)(z) =
∞∑
n=0

n(n− 1) . . . (n− k + 1)an(z − z0)n−1.

Proof. Let ρ < R be given and choose r ∈ (ρ,R). Since z = z0 + r ∈
D(z0, R), by assumption the series

∞∑
n=0

anr
n is convergent and in particular

M := supn |anrn| < ∞. We now apply Corollary 7.30 with X = N∪{0} , µ
being counting measure, Ω = D(z0, ρ) and g(z, n) := an(z − z0)n. Since

|g′(z, n)| = |nan(z − z0)n−1| ≤ n |an| ρn−1

≤ 1
r
n
(ρ
r

)n−1

|an| rn ≤
1
r
n
(ρ
r

)n−1

M
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and the function G(n) := M
r n
(
ρ
r

)n−1 is summable (by the Ratio test for exam-
ple), we may use G as our dominating function. It then follows from Corollary
7.30

f(z) =
∫
X

g(z, n)dµ(n) =
∞∑
n=0

an(z − z0)n

is complex differentiable with the differential given as in Eq. (7.10).

Definition 7.32 (Moment Generating Function). Let (Ω,B, P ) be a prob-
ability space and X : Ω → R a random variable. The moment generating
function of X is MX : R→ [0,∞] defined by

MX (t) := E
[
etX
]
.

Proposition 7.33. Suppose there exists ε > 0 such that E
[
eε|X|

]
< ∞, then

MX (t) is a smooth function of t ∈ (−ε, ε) and

MX (t) =
∞∑
n=0

tn

n!
EXn if |t| ≤ ε. (7.11)

In particular,

EXn =
(
d

dt

)n
|t=0MX (t) for all n ∈ N0. (7.12)

Proof. If |t| ≤ ε, then

E

[ ∞∑
n=0

|t|n

n!
|X|n

]
≤ E

[ ∞∑
n=0

εn

n!
|X|n

]
= E

[
eε|X|

]
<∞.

it etX ≤ eε|X| for all |t| ≤ ε. Hence it follows from Corollary 7.28 that, for
|t| ≤ ε,

MX (t) = E
[
etX
]

= E

[ ∞∑
n=0

tn

n!
Xn

]
=
∞∑
n=0

tn

n!
EXn.

Equation (7.12) now is a consequence of Corollary 7.31.

Exercise 7.3. Let d ∈ N, Ω = Nd0, B = 2Ω , µ : B → N0 ∪ {∞} be counting
measure on Ω, and for x ∈ Rd and ω ∈ Ω, let xω := xω1

1 . . . xωnn . Further suppose
that f : Ω → C is function and ri > 0 for 1 ≤ i ≤ d such that∑

ω∈Ω
|f (ω)| rω =

∫
Ω

|f (ω)| rωdµ (ω) <∞,

where r := (r1, . . . , rd) . Show;

1. There is a constant, C <∞ such that |f (ω)| ≤ C
rω for all ω ∈ Ω.

2. Let

U :=
{
x ∈ Rd : |xi| < ri ∀ i

}
and Ū =

{
x ∈ Rd : |xi| ≤ ri ∀ i

}
Show

∑
ω∈Ω |f (ω)xω| < ∞ for all x ∈ Ū and the function, F : U → R

defined by
F (x) =

∑
ω∈Ω

f (ω)xω is continuous on Ū .

3. Show, for all x ∈ U and 1 ≤ i ≤ d, that

∂

∂xi
F (x) =

∑
ω∈Ω

ωif (ω)xω−ei

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith – standard basis vector on Rd.
4. For any α ∈ Ω, let ∂α :=

(
∂
∂x1

)α1

. . .
(

∂
∂xd

)αd
and α! :=

∏d
i=1 αi! Explain

why we may now conclude that

∂αF (x) =
∑
ω∈Ω

α!f (ω)xω−α for all x ∈ U. (7.13)

5. Conclude that f (α) = (∂αF )(0)
α! for all α ∈ Ω.

6. If g : Ω → C is another function such that
∑
ω∈Ω g (ω)xω =

∑
ω∈Ω f (ω)xω

for x in a neighborhood of 0 ∈ Rd, then g (ω) = f (ω) for all ω ∈ Ω.

Solution to Exercise (7.3). We take each item in turn.

1. If no such C existed, then there would exist ω (n) ∈ Ω such that
|f (ω (n))| rω(n) ≥ n for all n ∈ N and therefore,

∑
ω∈Ω |f (ω)| rω ≥ n

for all n ∈ N which violates the assumption that
∑
ω∈Ω |f (ω)| rω <∞.

2. If x ∈ Ū , then |xω| ≤ rω and therefore
∑
ω∈Ω |f (ω)xω| ≤∑

ω∈Ω |f (ω)| rω < ∞. The continuity of F now follows by the DCT
where we can take g (ω) := |f (ω)| rω as the integrable dominating
function.

3. For notational simplicity assume that i = 1 and let ρi ∈ (0, ri) be chosen.
Then for |xi| < ρi, we have,∣∣ω1f (ω)xω−e1

∣∣ ≤ ω1ρ
ω−e1 C

rω
=: g (ω)

where ρ = (ρ1, . . . , ρd) . Notice that g (ω) is summable since,
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7.2 Integrals of Complex Valued Functions 89∑
ω∈Ω

g (ω) ≤ C

ρ1

∞∑
ω1=0

ω1

(
ρ1

r1

)ω1

·
d∏
i=2

∞∑
ωi=0

(
ρi
ri

)ωi

≤ C

ρ1

d∏
i=2

1
1− ρi

ri

·
∞∑

ω1=0

ω1

(
ρ1

r1

)ω1

<∞

where the last sum is finite as we saw in the proof of Corollary 7.31. Thus
we may apply Corollary 7.30 in order to differentiate past the integral (=
sum).

4. This is a simple matter of induction. Notice that each time we differentiate,
the resulting function is still defined and differentiable on all of U.

5. Setting x = 0 in Eq. (7.13) shows (∂αF ) (0) = α!f (α) .
6. This follows directly from the previous item since,

α!f (α) = ∂α

(∑
ω∈Ω

f (ω)xω
)
|x=0 = ∂α

(∑
ω∈Ω

g (ω)xω
)
|x=0 = α!g (α) .

7.2.1 Square Integrable Random Variables and Correlations

Suppose that (Ω,B, P ) is a probability space. We say that X : Ω → R is
integrable if X ∈ L1 (P ) and square integrable if X ∈ L2 (P ) . When X is
integrable we let aX := EX be the mean of X.

Now suppose that X,Y : Ω → R are two square integrable random variables.
Since

0 ≤ |X − Y |2 = |X|2 + |Y |2 − 2 |X| |Y | ,

it follows that
|XY | ≤ 1

2
|X|2 +

1
2
|Y |2 ∈ L1 (P ) .

In particular by taking Y = 1, we learn that |X| ≤ 1
2

(
1 +

∣∣X2
∣∣) which shows

that every square integrable random variable is also integrable.

Definition 7.34. The covariance, Cov (X,Y ) , of two square integrable ran-
dom variables, X and Y, is defined by

Cov (X,Y ) = E [(X − aX) (Y − aY )] = E [XY ]− EX · EY

where aX := EX and aY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)2 (7.14)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}nk=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

It follows from Eq. (7.14) that

Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (7.15)

Lemma 7.35. The covariance function, Cov (X,Y ) is bilinear in X and Y and
Cov (X,Y ) = 0 if either X or Y is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k2 Var (X) . If {Xk}nk=1 are uncorrelated L2 (P ) –
random variables, then

Var (Sn) =
n∑
k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)
= Cov (X + k,X) = Cov (X,X) + Cov (k,X)
= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property that
Cov (Y, k) = 0 whenever k is a constant.

Exercise 7.4 (A Weak Law of Large Numbers). Assume {Xn}∞n=1 is a se-
quence if uncorrelated square integrable random variables which are identically
distributed, i.e. Xn

d= Xm for all m,n ∈ N. Let Sn :=
∑n
k=1Xk, µ := EXk and

σ2 := Var (Xk) (these are independent of k). Show;

E
[
Sn
n

]
= µ,

E
(
Sn
n
− µ

)2

= Var
(
Sn
n

)
=
σ2

n
, and

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N. (Compare this with Exercise 4.13.)

7.2.2 Some Discrete Distributions

Definition 7.36 (Generating Function). Suppose that N : Ω → N0 is an
integer valued random variable on a probability space, (Ω,B, P ) . The generating
function associated to N is defined by

GN (z) := E
[
zN
]

=
∞∑
n=0

P (N = n) zn for |z| ≤ 1. (7.16)
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By Corollary 7.31, it follows that P (N = n) = 1
n!G

(n)
N (0) so that GN can

be used to completely recover the distribution of N.

Proposition 7.37 (Generating Functions). The generating function satis-
fies,

G
(k)
N (z) = E

[
N (N − 1) . . . (N − k + 1) zN−k

]
for |z| < 1

and
G(k) (1) = lim

z↑1
G(k) (z) = E [N (N − 1) . . . (N − k + 1)] ,

where it is possible that one and hence both sides of this equation are infinite.
In particular, G′ (1) := limz↑1G

′ (z) = EN and if EN2 <∞,

Var (N) = G′′ (1) +G′ (1)− [G′ (1)]2 . (7.17)

Proof. By Corollary 7.31 for |z| < 1,

G
(k)
N (z) =

∞∑
n=0

P (N = n) · n (n− 1) . . . (n− k + 1) zn−k

= E
[
N (N − 1) . . . (N − k + 1) zN−k

]
. (7.18)

Since, for z ∈ (0, 1) ,

0 ≤ N (N − 1) . . . (N − k + 1) zN−k ↑ N (N − 1) . . . (N − k + 1) as z ↑ 1,

we may apply the MCT to pass to the limit as z ↑ 1 in Eq. (7.18) to find,

G(k) (1) = lim
z↑1

G(k) (z) = E [N (N − 1) . . . (N − k + 1)] .

Exercise 7.5 (Some Discrete Distributions). Let p ∈ (0, 1] and λ > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function, GN (z) , in each case and use it to verify the given
formulas for EN and Var (N) .

1. Bernoulli(p) : P (N = 1) = p and P (N = 0) = 1 − p. You should find
EN = p and Var (N) = p− p2.

2. Binomial(n, p) : P (N = k) =
(
n
k

)
pk (1− p)n−k for k = 0, 1, . . . , n.

(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n

(
p− p2

)
.

3. Geometric(p) : P (N = k) = p (1− p)k−1 for k ∈ N. (P (N = k) is the
probability that the kth – trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 1−p

p2 .

4. Poisson(λ) : P (N = k) = λk

k! e
−λ for all k ∈ N0. You should find EN = λ =

Var (N) .

Exercise 7.6. Let Sn,p
d= Binomial(n, p) , k ∈ N, pn = λn/n where λn → λ > 0

as n→∞. Show that

lim
n→∞

P (Sn,pn = k) =
λk

k!
e−λ = P (Poisson (λ) = k) .

Thus we see that for p = O (1/n) and k not too large relative to n that for large
n,

P (Binomial (n, p) = k) ∼= P (Poisson (pn) = k) =
(pn)k

k!
e−pn.

(We will come back to the Poisson distribution and the related Poisson process
later on.)

Solution to Exercise (7.6). We have,

P (Sn,pn = k) =
(
n

k

)
(λn/n)k (1− λn/n)n−k

=
λkn
k!
n (n− 1) . . . (n− k + 1)

nk
(1− λn/n)n−k .

The result now follows since,

lim
n→∞

n (n− 1) . . . (n− k + 1)
nk

= 1

and

lim
n→∞

ln (1− λn/n)n−k = lim
n→∞

(n− k) ln (1− λn/n)

= − lim
n→∞

[(n− k)λn/n] = −λ.

7.3 Integration on R

Notation 7.38 If m is Lebesgue measure on BR, f is a non-negative Borel
measurable function and a < b with a, b ∈ R̄, we will often write

∫ b
a
f (x) dx or∫ b

a
fdm for

∫
(a,b]∩R fdm.

Example 7.39. Suppose −∞ < a < b <∞, f ∈ C([a, b],R) and m be Lebesgue
measure on R. Given a partition,

π = {a = a0 < a1 < · · · < an = b},
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let
mesh(π) := max{|aj − aj−1| : j = 1, . . . , n}

and

fπ (x) :=
n−1∑
l=0

f (al) 1(al,al+1](x).

Then ∫ b

a

fπ dm =
n−1∑
l=0

f (al)m ((al, al+1]) =
n−1∑
l=0

f (al) (al+1 − al)

is a Riemann sum. Therefore if {πk}∞k=1 is a sequence of partitions with
limk→∞mesh(πk) = 0, we know that

lim
k→∞

∫ b

a

fπk dm =
∫ b

a

f (x) dx (7.19)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a, b] , it easily follows that limk→∞ fπk (x) = f (x) and that |fπk (x)| ≤
g (x) := M1(a,b] (x) for all x ∈ (a, b] where M := maxx∈[a,b] |f (x)| < ∞. Since∫

R gdm = M (b− a) <∞, we may apply D.C.T. to conclude,

lim
k→∞

∫ b

a

fπk dm =
∫ b

a

lim
k→∞

fπk dm =
∫ b

a

f dm.

This equation with Eq. (7.19) shows∫ b

a

f dm =
∫ b

a

f (x) dx

whenever f ∈ C([a, b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem 7.68 below for a more general statement
along these lines.

Theorem 7.40 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b < ∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

∫ x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩ C1((a, b),R).
2. F ′(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.
f = G′|(a,b)) then ∫ b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
∫

R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y) for
m – a.e. y and

∣∣1(a,x)(y)f(y)
∣∣ ≤ 1(a,b)(y) |f(y)| is an L1 – function, it follows

from the dominated convergence Theorem 7.27 that F is continuous on [a, b].
Simple manipulations show,∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
1
|h|


∣∣∣∫ x+h

x
[f(y)− f(x)] dm(y)

∣∣∣ if h > 0∣∣∣∫ xx+h
[f(y)− f(x)] dm(y)

∣∣∣ if h < 0

≤ 1
|h|

{∫ x+h

x
|f(y)− f(x)| dm(y) if h > 0∫ x

x+h
|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}

and the latter expression, by the continuity of f, goes to zero as h → 0 . This
shows F ′ = f on (a, b).

For the converse direction, we have by assumption that G′(x) = F ′(x) for
x ∈ (a, b). Therefore by the mean value theorem, F −G = C for some constant
C. Hence ∫ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

We can use the above results to integrate some non-Riemann integrable
functions:

Example 7.41. For all λ > 0,∫ ∞
0

e−λxdm(x) = λ−1 and
∫

R

1
1 + x2

dm(x) = π.

The proof of these identities are similar. By the monotone convergence theorem,
Example 7.39 and the fundamental theorem of calculus for Riemann integrals
(or Theorem 7.40 below),∫ ∞

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdx

= − lim
N→∞

1
λ
e−λx|N0 = λ−1

and ∫
R

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dx

= lim
N→∞

[
tan−1(N)− tan−1(−N)

]
= π.
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Let us also consider the functions x−p. Using the MCT and the fundamental
theorem of calculus,∫

(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

0

1( 1
n ,1](x)

1
xp
dm(x)

= lim
n→∞

∫ 1

1
n

1
xp
dx = lim

n→∞

x−p+1

1− p

∣∣∣∣1
1/n

=
{ 1

1−p if p < 1
∞ if p > 1

If p = 1 we find∫
(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

1
n

1
x
dx = lim

n→∞
ln(x)|11/n =∞.

Exercise 7.7. Show ∫ ∞
1

1
xp
dm (x) =

{
∞ if p ≤ 1
1
p−1 if p > 1 .

Example 7.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

Then∫ β

α

( ∞∑
n=0

anx
n

)
dm(x) =

∞∑
n=0

an

∫ β

α

xndm(x) =
∞∑
n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 7.28 since

∞∑
n=0

∫ β

α

|an| |x|n dm(x) ≤
∞∑
n=0

(∫ |β|
0

|an| |x|n dm(x) +
∫ |α|

0

|an| |x|n dm(x)

)

≤
∞∑
n=0

|an|
|β|n+1 + |α|n+1

n+ 1
≤ 2r

∞∑
n=0

|an| rn <∞

where r = max(|β| , |α|).

Example 7.43. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Since, By Theorem 7.40,∫ 1

0

1√
|x− rn|

dx =
∫ 1

rn

1√
x− rn

dx+
∫ rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

(√
1− rn −

√
rn
)

≤ 4,

we find∫
[0,1]

f(x)dm(x) =
∞∑
n=1

2−n
∫

[0,1]

1√
|x− rn|

dx ≤
∞∑
n=1

2−n4 = 4 <∞.

In particular, m(f = ∞) = 0, i.e. that f < ∞ for almost every x ∈ [0, 1] and
this implies that

∞∑
n=1

2−n
1√
|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 7.44. The following limit holds,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = 1. (7.20)

DCT Proof. To verify this, let fn(x) :=
(
1− x

n

)n 1[0,n](x). Then
limn→∞ fn(x) = e−x for all x ≥ 0. Moreover by simple calculus1

1− x ≤ e−x for all x ∈ R.

Therefore, for x < n, we have

0 ≤ 1− x

n
≤ e−x/n =⇒

(
1− x

n

)n
≤
[
e−x/n

]n
= e−x,

from which it follows that

0 ≤ fn(x) ≤ e−x for all x ≥ 0.

1 Since y = 1 − x is the tangent line to y = e−x at x = 0 and e−x is convex up, it
follows that 1− x ≤ e−x for all x ∈ R.
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From Example 7.41, we know∫ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = lim

n→∞

∫ ∞
0

fn(x)dm(x)

=
∫ ∞

0

lim
n→∞

fn(x)dm(x) =
∫ ∞

0

e−xdm(x) = 1.

MCT Proof. The limit in Eq. (7.20) may also be computed using the
monotone convergence theorem. To do this we must show that n → fn (x) is
increasing in n for each x and for this it suffices to consider n > x. But for
n > x,

d

dn
ln fn (x) =

d

dn

[
n ln

(
1− x

n

)]
= ln

(
1− x

n

)
+

n

1− x
n

x

n2

= ln
(

1− x

n

)
+

x
n

1− x
n

= h (x/n)

where, for 0 ≤ y < 1,
h (y) := ln(1− y) +

y

1− y
.

Since h (0) = 0 and

h′ (y) = − 1
1− y

+
1

1− y
+

y

(1− y)2 > 0

it follows that h ≥ 0. Thus we have shown, fn (x) ↑ e−x as n→∞ as claimed.

Example 7.45. Suppose that fn (x) := n1(0, 1n ] (x) for n ∈ N. Then
limn→∞ fn (x) = 0 for all x ∈ R while

lim
n→∞

∫
R
fn (x) dx = lim

n→∞
1 = 1 6= 0 =

∫
R

lim
n→∞

fn (x) dx.

The problem is that the best dominating function we can take is

g (x) = sup
n
fn (x) =

∞∑
n=1

n · 1( 1
n+1 ,

1
n ] (x) .

Notice that ∫
R
g (x) dx =

∞∑
n=1

n ·
(

1
n
− 1
n+ 1

)
=
∞∑
n=1

1
n+ 1

=∞.

Example 7.46 (Jordan’s Lemma). In this example, let us consider the limit;

lim
n→∞

∫ π

0

cos
(

sin
θ

n

)
e−n sin(θ)dθ.

Let

fn (θ) := 1(0,π] (θ) cos
(

sin
θ

n

)
e−n sin(θ).

Then
|fn| ≤ 1(0,π] ∈ L1 (m)

and
lim
n→∞

fn (θ) = 1(0,π] (θ) 1{π} (θ) = 1{π} (θ) .

Therefore by the D.C.T.,

lim
n→∞

∫ π

0

cos
(

sin
θ

n

)
e−n sin(θ)dθ =

∫
R

1{π} (θ) dm (θ) = m ({π}) = 0.

Example 7.47. Recall from Example 7.41 that

λ−1 =
∫

[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
(
− d

dλ

)n
e−λx = xne−λx ≤ Cn(ε)e−εx.

Using this fact, Corollary 7.30 and induction gives

n!λ−n−1 =
(
− d

dλ

)n
λ−1 =

∫
[0,∞)

(
− d

dλ

)n
e−λxdm(x)

=
∫

[0,∞)

xne−λxdm(x).

That is
n! = λn

∫
[0,∞)

xne−λxdm(x). (7.21)

Remark 7.48. Corollary 7.30 may be generalized by allowing the hypothesis to
hold for x ∈ X \E where E ∈ B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary 7.30 to g(t) :=∫∞

0
1x≤tdm(x),

ġ(t) =
d

dt

∫ ∞
0

1x≤tdm(x) ?=
∫ ∞

0

∂

∂t
1x≤tdm(x).
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The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is not

defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should decide
which hypothesis of Corollary 7.30 has been violated in this example.)

Exercise 7.8 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim
n→∞

∫∞
0

sin( xn )

(1+ x
n )n dx.

2. lim
n→∞

∫ 1

0
1+nx2

(1+x2)n dx

3. lim
n→∞

∫∞
0

n sin(x/n)
x(1+x2) dx

4. For all a ∈ R compute,

f (a) := lim
n→∞

∫ ∞
a

n(1 + n2x2)−1dx.

Exercise 7.9 (Integration by Parts). Suppose that f, g : R→ R are two
continuously differentiable functions such that f ′g, fg′, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;∫

R
f ′ (x) · g (x) dx = −

∫
R
f (x) · g′ (x) dx. (7.22)

Similarly show that if Suppose that f, g : [0,∞)→ [0,∞) are two continuously
differentiable functions such that f ′g, fg′, and fg are all Lebesgue integrable
functions on [0,∞), then∫ ∞

0

f ′ (x) · g (x) dx = −f (0) g (0)−
∫ ∞

0

f (x) · g′ (x) dx. (7.23)

Outline: 1. First notice that Eq. (7.22) holds if f (x) = 0 for |x| ≥ N for
some N <∞ by undergraduate calculus.

2. Let ψ : R→ [0, 1] be a continuously differentiable function such that
ψ (x) = 1 if |x| ≤ 1 and ψ (x) = 0 if |x| ≥ 2. For any ε > 0 let ψε(x) = ψ(εx)
Write out the identity in Eq. (7.22) with f (x) being replaced by f (x)ψε (x) .

3. Now use the dominated convergence theorem to pass to the limit as ε ↓ 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. (7.23).

Solution to Exercise (7.9). If f has compact support in [−N,N ] for some
N <∞, then by undergraduate integration by parts,

∫
R
f ′ (x) · g (x) dx =

∫ N

−N
f ′ (x) · g (x) dx

= f (x) g (x) |N−N −
∫ N

−N
f (x) · g′ (x) dx

= −
∫ N

−N
f (x) · g′ (x) dx = −

∫
R
f (x) · g′ (x) dx.

Similarly if f has compact support in [0,∞), then∫ ∞
0

f ′ (x) · g (x) dx =
∫ N

0

f ′ (x) · g (x) dx

= f (x) g (x) |N0 −
∫ N

0

f (x) · g′ (x) dx

= −f (0) g (0)−
∫ N

0

f (x) · g′ (x) dx

= −f (0)−
∫ ∞

0

f (x) · g′ (x) dx.

For general f we may apply this identity with f (x) replaced by ψε (x) f (x) to
learn,∫

R
f ′ (x) ·g (x)ψε (x) dx+

∫
R
f (x) ·g (x)ψ′ε (x) dx = −

∫
R
ψε (x) f (x) ·g′ (x) dx.

(7.24)
Since ψε (x) → 1 boundedly and |ψ′ε (x)| = ε |ψ′ (εx)| ≤ Cε, we may use the
DCT to conclude,

lim
ε↓0

∫
R
f ′ (x) · g (x)ψε (x) dx =

∫
R
f ′ (x) · g (x) dx,

lim
ε↓0

∫
R
f (x) · g′ (x)ψε (x) dx =

∫
R
f (x) · g′ (x) dx, and∣∣∣∣∫

R
f (x) · g (x)ψ′ε (x) dx

∣∣∣∣ ≤ Cε · ∫
R
|f (x) · g (x)| dx→ 0 as ε ↓ 0.

Therefore passing to the limit as ε ↓ 0 in Eq. (7.24) completes the proof of Eq.
(7.22). Equation (7.23) is proved in the same way.

Definition 7.49 (Gamma Function). The Gamma function, Γ : R+ →
R+ is defined by

Γ (x) :=
∫ ∞

0

ux−1e−udu (7.25)

(The reader should check that Γ (x) <∞ for all x > 0.)
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Here are some of the more basic properties of this function.

Example 7.50 (Γ – function properties). Let Γ be the gamma function, then;

1. Γ (1) = 1 as is easily verified.
2. Γ (x+ 1) = xΓ (x) for all x > 0 as follows by integration by parts;

Γ (x+ 1) =
∫ ∞

0

e−u ux+1 du

u
=
∫ ∞

0

ux
(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x).

In particular, it follows from items 1. and 2. and induction that

Γ (n+ 1) = n! for all n ∈ N. (7.26)

(Equation 7.26was also proved in Eq. (7.21).)
3. Γ (1/2) =

√
π. This last assertion is a bit trickier. One proof is to make use

of the fact (proved below in Lemma 9.29) that∫ ∞
−∞

e−ar
2
dr =

√
π

a
for all a > 0. (7.27)

Taking a = 1 and making the change of variables, u = r2 below implies,

√
π =

∫ ∞
−∞

e−r
2
dr = 2

∫ ∞
0

u−1/2e−udu = Γ (1/2) .

Γ (1/2) = 2
∫ ∞

0

e−r
2
dr =

∫ ∞
−∞

e−r
2
dr

= I1(1) =
√
π.

4. A simple induction argument using items 2. and 3. now shows that

Γ

(
n+

1
2

)
=

(2n− 1)!!
2n

√
π

where (−1)!! := 1 and (2n− 1)!! = (2n− 1) (2n− 3) . . . 3 · 1 for n ∈ N.

7.4 Densities and Change of Variables Theorems

Exercise 7.10 (Measures and Densities). Let (X,M, µ) be a measure
space and ρ : X → [0,∞] be a measurable function. For A ∈ M, set
ν(A) :=

∫
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.
2. Let f : X → [0,∞] be a measurable function, show∫

X

fdν =
∫
X

fρdµ. (7.28)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (7.28) still holds.

Solution to Exercise (7.10). The fact that ν is a measure follows easily from
Corollary 7.6. Clearly Eq. (7.28) holds when f = 1A by definition of ν. It then
holds for positive simple functions, f, by linearity. Finally for general f ∈ L+,
choose simple functions, ϕn, such that 0 ≤ ϕn ↑ f. Then using MCT twice we
find∫

X

fdν = lim
n→∞

∫
X

ϕndν = lim
n→∞

∫
X

ϕnρdµ =
∫
X

lim
n→∞

ϕnρdµ =
∫
X

fρdµ.

By what we have just proved, for all f : X → C we have∫
X

|f | dν =
∫
X

|f | ρdµ

so that f ∈ L1 (µ) iff |f | ρ ∈ L1(µ). If f ∈ L1 (µ) and f is real,∫
X

fdν =
∫
X

f+dν −
∫
X

f−dν =
∫
X

f+ρdµ−
∫
X

f−ρdµ

=
∫
X

[f+ρ− f−ρ] dµ =
∫
X

fρdµ.

The complex case easily follows from this identity.

Notation 7.51 It is customary to informally describe ν defined in Exercise
7.10 by writing dν = ρdµ.

Exercise 7.11 (Abstract Change of Variables Formula). Let (X,M, µ)
be a measure space, (Y,F) be a measurable space and f : X → Y be a mea-
surable map. Recall that ν = f∗µ : F → [0,∞] defined by ν(A) := µ(f−1(A))
for all A ∈ F is a measure on F .

1. Show ∫
Y

gdν =
∫
X

(g ◦ f) dµ (7.29)

for all measurable functions g : Y → [0,∞].Hint: see the hint from Exercise
7.10.
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2. Show a measurable function g : Y → C is in L1(ν) iff g ◦ f ∈ L1(µ) and
that Eq. (7.29) holds for all g ∈ L1(ν).

Example 7.52. Suppose (Ω,B, P ) is a probability space and {Xi}ni=1 are random
variables on Ω with ν := LawP (X1, . . . , Xn) , then

E [g (X1, . . . , Xn)] =
∫

Rn
g dν

for all g : Rn → R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise 7.11 with f := (X1, . . . , Xn) :
Ω → Rn and µ = P.

Remark 7.53. As a special case of Example 7.52, suppose that X is a random
variable on a probability space, (Ω,B, P ) , and F (x) := P (X ≤ x) . Then

E [f (X)] =
∫

R
f (x) dF (x) (7.30)

where dF (x) is shorthand for dµF (x) and µF is the unique probability measure
on (R,BR) such that µF ((−∞, x]) = F (x) for all x ∈ R. Moreover if F : R →
[0, 1] happens to be C1-function, then

dµF (x) = F ′ (x) dm (x) (7.31)

and Eq. (7.30) may be written as

E [f (X)] =
∫

R
f (x)F ′ (x) dm (x) . (7.32)

To verify Eq. (7.31) it suffices to observe, by the fundamental theorem of cal-
culus, that

µF ((a, b]) = F (b)− F (a) =
∫ b

a

F ′ (x) dx =
∫

(a,b]

F ′dm.

From this equation we may deduce that µF (A) =
∫
A
F ′dm for all A ∈ BR.

Equation 7.32 now follows from Exercise 7.10.

Exercise 7.12. Let F : R → R be a C1-function such that F ′(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the inverse function theorem that F−1 is
a C1 – function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
(
F−1

)−1
(A)) =

(
F−1
∗ m

)
(A)

for all A ∈ BR. Show dν = F ′dm. Use this result to prove the change of variable
formula, ∫

R
h ◦ F · F ′dm =

∫
R
hdm (7.33)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F ′dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Exercise 5.11 to
conclude dν = F ′dm on all of BR. To prove Eq. (7.33) apply Exercise 7.11 with
g = h ◦ F and f = F−1.

Solution to Exercise (7.12). Let dµ = F ′dm and A = (a, b], then

ν((a, b]) = m(F ((a, b])) = m((F (a), F (b)]) = F (b)− F (a)

while

µ((a, b]) =
∫

(a,b]

F ′dm =
∫ b

a

F ′(x)dx = F (b)− F (a).

It follows that both µ = ν = µF – where µF is the measure described in
Theorem 5.33. By Exercise 7.11 with g = h ◦ F and f = F−1, we find∫

R
h ◦ F · F ′dm =

∫
R
h ◦ Fdν =

∫
R
h ◦ Fd

(
F−1
∗ m

)
=
∫

R
(h ◦ F ) ◦ F−1dm

=
∫

R
hdm.

This result is also valid for all h ∈ L1(m).

7.5 Some Common Continuous Distributions

Example 7.54 (Uniform Distribution). Suppose that X has the uniform distri-
bution in [0, b] for some b ∈ (0,∞) , i.e. X∗P = 1

b ·m on [0, b] . More explicitly,

E [f (X)] =
1
b

∫ b

0

f (x) dx for all bounded measurable f.

The moment generating function for X is;

MX (t) =
1
b

∫ b

0

etxdx =
1
bt

(
etb − 1

)
=
∞∑
n=1

1
n!

(bt)n−1 =
∞∑
n=0

bn

(n+ 1)!
tn.
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On the other hand (see Proposition 7.33),

MX (t) =
∞∑
n=0

tn

n!
EXn.

Thus it follows that
EXn =

bn

n+ 1
.

Of course this may be calculated directly just as easily,

EXn =
1
b

∫ b

0

xndx =
1

b (n+ 1)
xn+1|b0 =

bn

n+ 1
.

Definition 7.55. A random variable T ≥ 0 is said to be exponential with
parameter λ ∈ [0,∞) provided, P (T > t) = e−λt for all t ≥ 0. We will write
T

d= E (λ) for short.

If λ > 0, we have

P (T > t) = e−λt =
∫ ∞
t

λe−λτdτ

from which it follows that P (T ∈ (t, t+ dt)) = λ1t≥0e
−λtdt. Applying Corollary

7.30 repeatedly implies,

ET =
∫ ∞

0

τλe−λτdτ = λ

(
− d

dλ

)∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)
λ−1 = λ−1

and more generally that

ET k =
∫ ∞

0

τke−λτλdτ = λ

(
− d

dλ

)k ∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)k
λ−1 = k!λ−k.

(7.34)
In particular we see that

Var (T ) = 2λ−2 − λ−2 = λ−2. (7.35)

Alternatively we may compute the moment generating function for T,

MT (a) := E
[
eaT
]

=
∫ ∞

0

eaτλe−λτdτ

=
∫ ∞

0

eaτλe−λτdτ =
λ

λ− a
=

1
1− aλ−1

(7.36)

which is valid for a < λ. On the other hand (see Proposition 7.33), we know
that

E
[
eaT
]

=
∞∑
n=0

an

n!
E [Tn] for |a| < λ. (7.37)

Comparing this with Eq. (7.36) again shows that Eq. (7.34) is valid.
Here is yet another way to understand and generalize Eq. (7.36). We simply

make the change of variables, u = λτ in the integral in Eq. (7.34) to learn,

ET k = λ−k
∫ ∞

0

uke−udτ = λ−kΓ (k + 1) .

This last equation is valid for all k ∈ (−1,∞) – in particular k need not be an
integer.

Theorem 7.56 (Memoryless property). A random variable, T ∈ (0,∞] has
an exponential distribution iff it satisfies the memoryless property:

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0,

where as usual, P (A|B) := P (A ∩B) /P (B) when p (B) > 0. (Note that T d=
E (0) means that P (T > t) = e0t = 1 for all t > 0 and therefore that T = ∞
a.s.)

Proof. (The following proof is taken from [41].) Suppose first that T d= E (λ)
for some λ > 0. Then

P (T > s+ t|T > s) =
P (T > s+ t)
P (T > s)

=
e−λ(s+t)

e−λs
= e−λt = P (T > t) .

For the converse, let g (t) := P (T > t) , then by assumption,

g (t+ s)
g (s)

= P (T > s+ t|T > s) = P (T > t) = g (t)

whenever g (s) 6= 0 and g (t) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (t) = 0 for all t > s. Thus it follows that

g (t+ s) = g (t) g (s) for all s, t ≥ 0.

Since T > 0, we know that g (1/n) = P (T > 1/n) > 0 for some n and
therefore, g (1) = g (1/n)n > 0 and we may write g (1) = e−λ for some 0 ≤ λ <
∞.

Observe for p, q ∈ N, g (p/q) = g (1/q)p and taking p = q then shows,
e−λ = g (1) = g (1/q)q . Therefore, g (p/q) = e−λp/q so that g (t) = e−λt for all
t ∈ Q+ := Q ∩ R+. Given r, s ∈ Q+ and t ∈ R such that r ≤ t ≤ s we have,
since g is decreasing, that
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e−λr = g (r) ≥ g (t) ≥ g (s) = e−λs.

Hence letting s ↑ t and r ↓ t in the above equations shows that g (t) = e−λt for
all t ∈ R+ and therefore T d= E (λ) .

Exercise 7.13 (Gamma Distributions). Let X be a positive random vari-
able. For k, θ > 0, we say that X d=Gamma(k, θ) if

(X∗P ) (dx) = f (x; k, θ) dx for x > 0,

where

f (x; k, θ) := xk−1 e−x/θ

θkΓ (k)
for x > 0, and k, θ > 0.

Find the moment generating function (see Definition 7.32), MX (t) = E
[
etX
]

for t < θ−1. Differentiate your result in t to show

E [Xm] = k (k + 1) . . . (k +m− 1) θm for all m ∈ N0.

In particular, E [X] = kθ and Var (X) = kθ2. (Notice that when k = 1 and
θ = λ−1, X

d= E (λ) .)

7.5.1 Normal (Gaussian) Random Variables

Definition 7.57 (Normal / Gaussian Random Variables). A random
variable, Y, is normal with mean µ standard deviation σ2 iff

P (Y ∈ B) =
1√

2πσ2

∫
B

e−
1

2σ2 (y−µ)2dy for all B ∈ BR. (7.38)

We will abbreviate this by writing Y d= N
(
µ, σ2

)
. When µ = 0 and σ2 = 1 we

will simply write N for N (0, 1) and if Y d= N, we will say Y is a standard
normal random variable.

Observe that Eq. (7.38) is equivalent to writing

E [f (Y )] =
1√

2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2dy

for all bounded measurable functions, f : R→ R. Also observe that Y
d=

N
(
µ, σ2

)
is equivalent to Y d= σN+µ. Indeed, by making the change of variable,

y = σx+ µ, we find

E [f (σN + µ)] =
1√
2π

∫
R
f (σx+ µ) e−

1
2x

2
dx

=
1√
2π

∫
R
f (y) e−

1
2σ2 (y−µ)2 dy

σ
=

1√
2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2dy.

Lastly the constant,
(
2πσ2

)−1/2 is chosen so that

1√
2πσ2

∫
R
e−

1
2σ2 (y−µ)2dy =

1√
2π

∫
R
e−

1
2y

2
dy = 1,

see Example 7.50 and Lemma 9.29.

Exercise 7.14. Suppose that X d= N (0, 1) and f : R→ R is a C1 – function
such that Xf (X) , f ′ (X) and f (X) are all integrable random variables. Show

E [Xf (X)] = − 1√
2π

∫
R
f (x)

d

dx
e−

1
2x

2
dx

=
1√
2π

∫
R
f ′ (x) e−

1
2x

2
dx = E [f ′ (X)] .

Example 7.58. Suppose that X d= N (0, 1) and define αk := E
[
X2k

]
for all

k ∈ N0. By Exercise 7.14,

αk+1 = E
[
X2k+1 ·X

]
= (2k + 1)αk with α0 = 1.

Hence it follows that

α1 = α0 = 1, α2 = 3α1 = 3, α3 = 5 · 3

and by a simple induction argument,

EX2k = αk = (2k − 1)!!, (7.39)

where (−1)!! := 0. Actually we can use the Γ – function to say more. Namely
for any β > −1,

E |X|β =
1√
2π

∫
R
|x|β e− 1

2x
2
dx =

√
2
π

∫ ∞
0

xβe−
1
2x

2
dx.

Now make the change of variables, y = x2/2 (i.e. x =
√

2y and dx = 1√
2
y−1/2dy)

to learn,

E |X|β =
1√
π

∫ ∞
0

(2y)β/2 e−yy−1/2dy

=
1√
π

2β/2
∫ ∞

0

y(β+1)/2e−yy−1dy =
1√
π

2β/2Γ
(
β + 1

2

)
. (7.40)
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Exercise 7.15. Suppose that X d= N (0, 1) and λ ∈ R. Show

f (λ) := E
[
eiλX

]
= exp

(
−λ2/2

)
. (7.41)

Hint: Use Corollary 7.30 to show, f ′ (λ) = iE
[
XeiλX

]
and then use Exercise

7.14 to see that f ′ (λ) satisfies a simple ordinary differential equation.

Solution to Exercise (7.15). Using Corollary 7.30 and Exercise 7.14,

f ′ (λ) = iE
[
XeiλX

]
= iE

[
d

dX
eiλX

]
= i · (iλ) E

[
eiλX

]
= −λf (λ) with f (0) = 1.

Solving for the unique solution of this differential equation gives Eq. (7.41).

Exercise 7.16. Suppose that X
d= N (0, 1) and t ∈ R. Show E

[
etX
]

=
exp

(
t2/2

)
. (You could follow the hint in Exercise 7.15 or you could use a

completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 7.17. Use Exercise 7.16 and Proposition 7.33 to give another proof
that EX2k = (2k − 1)!! when X

d= N (0, 1) .

Exercise 7.18. Let X d= N (0, 1) and α ∈ R, find ρ : R+ → R+ := (0,∞) such
that

E [f (|X|α)] =
∫

R+

f (x) ρ (x) dx

for all continuous functions, f : R+ → R with compact support in R+.

Lemma 7.59 (Gaussian tail estimates). Suppose that X is a standard nor-
mal random variable, i.e.

P (X ∈ A) =
1√
2π

∫
A

e−x
2/2dx for all A ∈ BR,

then for all x ≥ 0,

P (X ≥ x) ≤ min
(

1
2
− x√

2π
e−x

2/2,
1√
2πx

e−x
2/2

)
≤ 1

2
e−x

2/2. (7.42)

Moreover (see [45, Lemma 2.5]),

P (X ≥ x) ≥ max
(

1− x√
2π
,

x

x2 + 1
1√
2π
e−x

2/2

)
(7.43)

which combined with Eq. (7.42) proves Mill’s ratio (see [21]);

lim
x→∞

P (X ≥ x)
1√
2πx

e−x2/2
= 1. (7.44)

Proof. See Figure 7.1 where; the green curve is the plot of P (X ≥ x) , the
black is the plot of

min
(

1
2
− 1√

2πx
e−x

2/2,
1√
2πx

e−x
2/2

)
,

the red is the plot of 1
2e
−x2/2, and the blue is the plot of

max
(

1
2
− x√

2π
,

x

x2 + 1
1√
2π
e−x

2/2

)
.

The formal proof of these estimates for the reader who is not convinced by

Fig. 7.1. Plots of P (X ≥ x) and its estimates.

Figure 7.1 is given below.
We begin by observing that

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy ≤ 1√

2π

∫ ∞
x

y

x
e−y

2/2dy

≤ − 1√
2π

1
x
e−y

2/2|−∞x =
1√
2π

1
x
e−x

2/2. (7.45)

If we only want to prove Mill’s ratio (7.44), we could proceed as follows. Let
α > 1, then for x > 0,

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy

≥ 1√
2π

∫ αx

x

y

αx
e−y

2/2dy = − 1√
2π

1
αx

e−y
2/2|y=αx

y=x

=
1√
2π

1
αx

e−x
2/2
[
1− e−α

2x2/2
]
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100 7 Integration Theory

from which it follows,

lim inf
x→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≥ 1/α ↑ 1 as α ↓ 1.

The estimate in Eq. (7.45) shows lim supx→∞
[√

2πxex
2/2 · P (X ≥ x)

]
≤ 1.

To get more precise estimates, we begin by observing,

P (X ≥ x) =
1
2
− 1√

2π

∫ x

0

e−y
2/2dy (7.46)

≤ 1
2
− 1√

2π

∫ x

0

e−x
2/2dy ≤ 1

2
− 1√

2π
e−x

2/2x.

This equation along with Eq. (7.45) gives the first equality in Eq. (7.42). To
prove the second equality observe that

√
2π > 2, so

1√
2π

1
x
e−x

2/2 ≤ 1
2
e−x

2/2 if x ≥ 1.

For x ≤ 1 we must show,
1
2
− x√

2π
e−x

2/2 ≤ 1
2
e−x

2/2

or equivalently that f (x) := ex
2/2 −

√
2
πx ≤ 1 for 0 ≤ x ≤ 1. Since f is convex(

f ′′ (x) =
(
x2 + 1

)
ex

2/2 > 0
)
, f (0) = 1 and f (1) ∼= 0.85 < 1, it follows that

f ≤ 1 on [0, 1] . This proves the second inequality in Eq. (7.42).
It follows from Eq. (7.46) that

P (X ≥ x) =
1
2
− 1√

2π

∫ x

0

e−y
2/2dy

≥ 1
2
− 1√

2π

∫ x

0

1dy =
1
2
− 1√

2π
x for all x ≥ 0.

So to finish the proof of Eq. (7.43) we must show,

f (x) :=
1√
2π
xe−x

2/2 −
(
1 + x2

)
P (X ≥ x)

=
1√
2π

[
xe−x

2/2 −
(
1 + x2

) ∫ ∞
x

e−y
2/2dy

]
≤ 0 for all 0 ≤ x <∞.

This follows by observing that f (0) = −1/2 < 0, limx↑∞ f (x) = 0 and

f ′ (x) =
1√
2π

[
e−x

2/2
(
1− x2

)
− 2xP (X ≥ x) +

(
1 + x2

)
e−x

2/2
]

= 2
(

1√
2π
e−x

2/2 − xP (X ≥ y)
)
≥ 0,

where the last inequality is a consequence Eq. (7.42).

7.6 Stirling’s Formula

On occasion one is faced with estimating an integral of the form,
∫
J
e−G(t)dt,

where J = (a, b) ⊂ R and G (t) is a C1 – function with a unique (for simplicity)
global minimum at some point t0 ∈ J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (t0 − α, t0 + α) ,
of t0. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G (t) ∼= G (t0) +
1
2
G̈ (t0) (t− t0)2

.

Notice that the linear term is zero since t0 is a minimum and therefore Ġ (t0) =
0. We will further assume that G̈ (t0) 6= 0 and hence G̈ (t0) > 0. Under these
hypothesis we will have,∫

J

e−G(t)dt ∼= e−G(t0)

∫
|t−t0|<α

exp
(
−1

2
G̈ (t0) (t− t0)2

)
dt.

Making the change of variables, s =
√
G̈ (t0) (t− t0) , in the above integral then

gives,∫
J

e−G(t)dt ∼=
1√
G̈ (t0)

e−G(t0)

∫
|s|<
√
G̈(t0)·α

e−
1
2 s

2
ds

=
1√
G̈ (t0)

e−G(t0)

[
√

2π −
∫ ∞
√
G̈(t0)·α

e−
1
2 s

2
ds

]

=
1√
G̈ (t0)

e−G(t0)

√2π −O

 1√
G̈ (t0) · α

e−
1
2 G̈(t0)·α2

 .
If α is sufficiently large, for example if

√
G̈ (t0) · α = 3, then the error term is

about 0.0037 and we should be able to conclude that∫
J

e−G(t)dt ∼=

√
2π

G̈ (t0)
e−G(t0). (7.47)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 7.60 (Stirling’s formula). The Gamma function (see Definition
7.49), satisfies Stirling’s formula,
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7.6 Stirling’s Formula 101

lim
x→∞

Γ (x+ 1)√
2πe−xxx+1/2

= 1. (7.48)

In particular, if n ∈ N, we have

n! = Γ (n+ 1) ∼
√

2πe−nnn+1/2

where we write an ∼ bn to mean, limn→∞
an
bn

= 1. (See Example ?? below for a
slightly cruder but more elementary estimate of n!)

Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for Γ (x+ 1) ;

Γ (x+ 1) =
∫ ∞

0

e−ttxdt =
∫ ∞

0

e−Gx(t)dt, (7.49)

where
Gx (t) := t− x ln t.

Then Ġx (t) = 1−x/t, G̈x (t) = x/t2, Gx has a global minimum (since G̈x > 0)
at t0 = x where

Gx (x) = x− x lnx and G̈x (x) = 1/x.

So if Eq. (7.47) is valid in this case we should expect,

Γ (x+ 1) ∼=
√

2πxe−(x−x ln x) =
√

2πe−xxx+1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s =
√
G̈ (t0) (t− t0) =

1√
x

(t− x) as suggested above. Then

Gx (t)−Gx (x) = (t− x)− x ln (t/x) =
√
xs− x ln

(
x+
√
xs

x

)
= x

[
s√
x
− ln

(
1 +

s√
x

)]
= s2q

(
s√
x

)
where

q (u) :=
1
u2

[u− ln (1 + u)] for u > −1 with q (0) :=
1
2
.

Setting q (0) = 1/2 makes q a continuous and in fact smooth function on
(−1,∞) , see Figure 7.2. Using the power series expansion for ln (1 + u) we
find,

q (u) =
1
2

+
∞∑
k=3

(−u)k−2

k
for |u| < 1. (7.50)

Fig. 7.2. Plot of q (u) .

Making the change of variables, t = x +
√
xs in the second integral in Eq.

(7.49) yields,

Γ (x+ 1) = e−(x−x ln x)
√
x

∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds = xx+1/2e−x · I (x) ,

where

I (x) =
∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds =

∫ ∞
−∞

1s≥−√x · e
−q
(
s√
x

)
s2
ds. (7.51)

From Eq. (7.50) it follows that limu→0 q (u) = 1/2 and therefore,∫ ∞
−∞

lim
x→∞

[
1s≥−√x · e

−q
(
s√
x

)
s2
]
ds =

∫ ∞
−∞

e−
1
2 s

2
ds =

√
2π. (7.52)

So if there exists a dominating function, F ∈ L1 (R,m) , such that

1s≥−√x · e
−q
(
s√
x

)
s2 ≤ F (s) for all s ∈ R and x ≥ 1,

we can apply the DCT to learn that limx→∞ I (x) =
√

2π which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. (7.50) it follows that
q (u) ≥ 1/2 for −1 < u ≤ 0. Since u− ln (1 + u) > 0 for u 6= 0 (u− ln (1 + u) is
convex and has a minimum of 0 at u = 0) we may conclude that q (u) > 0 for
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102 7 Integration Theory

all u > −1 therefore by compactness (on [0,M ]), min−1<u≤M q (u) = ε (M) > 0
for all M ∈ (0,∞) , see Remark 7.61 for more explicit estimates. Lastly, since
1
u ln (1 + u)→ 0 as u→∞, there exists M <∞ (M = 3 would due) such that
1
u ln (1 + u) ≤ 1

2 for u ≥M and hence,

q (u) =
1
u

[
1− 1

u
ln (1 + u)

]
≥ 1

2u
for u ≥M.

So there exists ε > 0 and M <∞ such that (for all x ≥ 1),

1s≥−√xe
−q
(
s√
x

)
s2 ≤ 1−√x<s≤Me

−εs2 + 1s≥Me−
√
xs/2

≤ 1−√x<s≤Me
−εs2 + 1s≥Me−s/2

≤ e−εs
2

+ e−|s|/2 =: F (s) ∈ L1 (R, ds) .

We will sometimes use the following variant of Eq. (7.48);

lim
x→∞

Γ (x)√
2π
x

(
x
e

)x = 1 (7.53)

To prove this let x go to x− 1 in Eq. (7.48) in order to find,

1 = lim
x→∞

Γ (x)
√

2πe−x · e · (x− 1)x−1/2
= lim
x→∞

Γ (x)√
2π
x

(
x
e

)x ·√ x
x−1 · e ·

(
1− 1

x

)x
which gives Eq. (7.53) since

lim
x→∞

√
x

x− 1
· e ·

(
1− 1

x

)x
= 1.

Remark 7.61 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C2 –
function on [0, 1] , then by the fundamental theorem of calculus and integration
by parts,

h (1)− h (0) =
∫ 1

0

ḣ (t) dt = −
∫ 1

0

ḣ (t) d (1− t)

= −ḣ (t) (1− t) |10 +
∫ 1

0

ḧ (t) (1− t) dt

= ḣ (0) +
1
2

∫ 1

0

ḧ (t) dν (t) (7.54)

where dν (t) := 2 (1− t) dt which is a probability measure on [0, 1] . Applying
this to h (t) = F (a+ t (b− a)) for a C2 – function on an interval of points
between a and b in R then implies,

F (b)− F (a) = (b− a) Ḟ (a) +
1
2

(b− a)2
∫ 1

0

F̈ (a+ t (b− a)) dν (t) . (7.55)

(Similar formulas hold to any order.) Applying this result with F (x) = x −
ln (1 + x) , a = 0, and b = u ∈ (−1,∞) gives,

u− ln (1 + u) =
1
2
u2

∫ 1

0

1
(1 + tu)2 dν (t) ,

i.e.

q (u) =
1
2

∫ 1

0

1
(1 + tu)2 dν (t) .

From this expression for q (u) it now easily follows that

q (u) ≥ 1
2

∫ 1

0

1
(1 + 0)2 dν (t) =

1
2

if − 1 < u ≤ 0

and

q (u) ≥ 1
2

∫ 1

0

1
(1 + u)2 dν (t) =

1
2 (1 + u)2 .

So an explicit formula for ε (M) is ε (M) = (1 +M)−2
/2.

7.6.1 Two applications of Stirling’s formula

In this subsection suppose x ∈ (0, 1) and Sn
d=Binomial(n, x) for all n ∈ N, i.e.

Px (Sn = k) =
(
n

k

)
xk (1− x)n−k for 0 ≤ k ≤ n. (7.56)

Recall that ESn = nx and Var (Sn) = nσ2 where σ2 := x (1− x) . The weak
law of large numbers states (Exercise 4.13) that

P

(∣∣∣∣Snn − x
∣∣∣∣ ≥ ε) ≤ 1

nε2
σ2

and therefore, Snn is concentrating near its mean value, x, for n large, i.e. Sn ∼=
nx for n large. The next central limit theorem describes the fluctuations of Sn
about nx.
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7.6 Stirling’s Formula 103

Theorem 7.62 (De Moivre-Laplace Central Limit Theorem). For all
−∞ < a < b <∞,

lim
n→∞

P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

=
1√
2π

∫ b

a

e−
1
2y

2
dy

= P (a ≤ N ≤ b)

where N d= N (0, 1) . Informally, Sn−nx
σ
√
n

d∼= N or equivalently, Sn
d∼= nx+σ

√
n·N

which if valid in a neighborhood of nx whose length is order
√
n.

Proof. (We are not going to cover all the technical details in this proof as
we will give much more general versions of this theorem later.) Starting with
the definition of the Binomial distribution we have,

pn := P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

= P
(
Sn ∈ nx+ σ

√
n [a, b]

)
=

∑
k∈nx+σ

√
n[a,b]

P (Sn = k)

=
∑

k∈nx+σ
√
n[a,b]

(
n

k

)
xk (1− x)n−k .

Letting k = nx+σ
√
nyk, i.e. yk = (k − nx) /σ

√
n we see that ∆yk = yk+1−yk =

1/ (σ
√
n) . Therefore we may write pn as

pn =
∑

yk∈[a,b]

σ
√
n

(
n

k

)
xk (1− x)n−k∆yk. (7.57)

So to finish the proof we need to show, for k = O (
√
n) (yk = O (1)), that

σ
√
n

(
n

k

)
xk (1− x)n−k ∼ 1√

2π
e−

1
2y

2
k as n→∞ (7.58)

in which case the sum in Eq. (7.57) may be well approximated by the “Riemann
sum;”

pn ∼
∑

yk∈[a,b]

1√
2π
e−

1
2y

2
k∆yk →

1√
2π

∫ b

a

e−
1
2y

2
dy as n→∞.

By Stirling’s formula,

σ
√
n

(
n

k

)
= σ
√
n

1
k!

n!
(n− k)!

∼ σ
√
n√

2π
nn+1/2

kk+1/2 (n− k)n−k+1/2

=
σ√
2π

1(
k
n

)k+1/2 (
1− k

n

)n−k+1/2

=
σ√
2π

1(
x+ σ√

n
yk

)k+1/2 (
1− x− σ√

n
yk

)n−k+1/2

∼ σ√
2π

1√
x (1− x)

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k
=

1√
2π

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k .
In order to shorten the notation, let zk := σ√

n
yk = O

(
n−1/2

)
so that k =

nx+ nzk = n (x+ zk) . In this notation we have shown,

√
2πσ
√
n

(
n

k

)
xk (1− x)n−k ∼ xk (1− x)n−k

(x+ zk)k (1− x− zk)n−k

=
1(

1 + 1
xzk
)k (1− 1

1−xzk

)n−k
=

1(
1 + 1

xzk
)n(x+zk)

(
1− 1

1−xzk

)n(1−x−zk)
=: q (n, k) .

(7.59)

Taking logarithms and using Taylor’s theorem we learn

n (x+ zk) ln
(

1 +
1
x
zk

)
= n (x+ zk)

(
1
x
zk −

1
2x2

z2
k +O

(
n−3/2

))
= nzk +

n

2x
z2
k +O

(
n−3/2

)
and

n (1− x− zk) ln
(

1− 1
1− x

zk

)
= n (1− x− zk)

(
− 1

1− x
zk −

1
2 (1− x)2 z

2
k +O

(
n−3/2

))
= −nzk +

n

2 (1− x)
z2
k +O

(
n−3/2

)
.
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and then adding these expressions shows,

− ln q (n, k) =
n

2
z2
k

(
1
x

+
1

1− x

)
+O

(
n−3/2

)
=

n

2σ2
z2
k +O

(
n−3/2

)
=

1
2
y2
k +O

(
n−3/2

)
.

Combining this with Eq. (7.59) shows,

σ
√
n

(
n

k

)
xk (1− x)n−k ∼ 1√

2π
exp

(
−1

2
y2
k +O

(
n−3/2

))
which gives the desired estimate in Eq. (7.58).

The previous central limit theorem has shown that

Sn
n

d∼= x+
σ√
n
N

which implies the major fluctuations of Sn/n occur within intervals about x
of length O

(
1√
n

)
. The next result aims to understand the rare events where

Sn/n makes a “large” deviation from its mean value, x – in this case a large
deviation is something of size O (1) as n→∞.

Theorem 7.63 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem 7.62. Then for all y ∈ (0, x) ,

lim
n→∞

1
n

lnPx

(
Sn
n
≤ y
)

= y ln
x

y
+ (1− y) ln

1− x
1− y

.

Roughly speaking,

Px

(
Sn
n
≤ y
)
≈ e−nIx(y)

where Ix (y) is the “rate function,”

Ix (y) := y ln
y

x
+ (1− y) ln

1− y
1− x

,

see Figure 7.3 for the graph of I1/2.

Proof. By definition of the binomial distribution,

Px

(
Sn
n
≤ y
)

= Px (Sn ≤ ny) =
∑
k≤ny

(
n

k

)
xk (1− x)n−k .

If ak ≥ 0, then we have the following crude estimates on
∑m−1
k=0 ak,

Fig. 7.3. A plot of the rate function, I1/2.

max
k<m

ak ≤
m−1∑
k=0

ak ≤ m ·max
k<m

ak. (7.60)

In order to apply this with ak =
(
n
k

)
xk (1− x)n−k and m = [ny] , we need to

find the maximum of the ak for 0 ≤ k ≤ ny. This is easy to do since ak is
increasing for 0 ≤ k ≤ ny as we now show. Consider,

ak+1

ak
=

(
n
k+1

)
xk+1 (1− x)n−k−1(
n
k

)
xk (1− x)n−k

=
k! (n− k)! · x

(k + 1)! · (n− k − 1)! · (1− x)

=
(n− k) · x

(k + 1) · (1− x)
.

Therefore, where the latter expression is greater than or equal to 1 iff

ak+1

ak
≥ 1 ⇐⇒ (n− k) · x ≥ (k + 1) · (1− x)

⇐⇒ nx ≥ k + 1− x ⇐⇒ k < (n− 1)x− 1.

Thus for k < (n− 1)x− 1 we may conclude that
(
n
k

)
xk (1− x)n−k is increasing

in k.
Thus the crude bound in Eq. (7.60) implies,
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n

[ny]

)
x[ny] (1− x)n−[ny] ≤ Px

(
Sn
n
≤ y
)
≤ [ny]

(
n

[ny]

)
x[ny] (1− x)n−[ny]

or equivalently,

1
n

ln
[(

n

[ny]

)
x[ny] (1− x)n−[ny]

]
≤ 1
n

lnPx

(
Sn
n
≤ y
)

≤ 1
n

ln
[
(ny)

(
n

[ny]

)
x[ny] (1− x)n−[ny]

]
.

By Stirling’s formula, for k such that k and n− k is large we have,(
n

k

)
∼ 1√

2π
nn+1/2

kk+1/2 · (n− k)n−k+1/2
=
√
n√
2π

1(
k
n

)k+1/2 ·
(
1− k

n

)n−k+1/2

and therefore,

1
n

ln
(
n

k

)
∼ −k

n
ln
(
k

n

)
−
(

1− k

n

)
ln
(

1− k

n

)
.

So taking k = [ny] , we learn that

lim
n→∞

1
n

ln
(
n

[ny]

)
= −y ln y − (1− y) ln (1− y)

and therefore,

lim
n→∞

1
n

lnPx

(
Sn
n
≤ y
)

= −y ln y − (1− y) ln (1− y) + y lnx+ (1− y) ln (1− x)

= y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
.

As a consistency check it is worth noting, by Jensen’s inequality described
below, that

−Ix (y) = y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
≤ ln

(
y
x

y
+ (1− y)

1− x
1− y

)
= ln (1) = 0.

This must be the case since

−Ix (y) = lim
n→∞

1
n

lnPx

(
Sn
n
≤ y
)
≤ lim
n→∞

1
n

ln 1 = 0.

7.7 Comparison of the Lebesgue and the Riemann
Integral*

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition

π = {a = t0 < t1 < · · · < tn = b} (7.61)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
n∑
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
n∑
1

mj1(tj−1,tj ] and

Sπf =
∑

Mj(tj − tj−1) and sπf =
∑

mj(tj − tj−1).

Notice that

Sπf =
∫ b

a

Gπdm and sπf =
∫ b

a

gπdm.

The upper and lower Riemann integrals are defined respectively by∫ b

a

f(x)dx = inf
π
Sπf and

∫ a

b

f(x)dx = sup
π

sπf.

Definition 7.64. The function f is Riemann integrable iff
∫ b
a
f =

∫ b
a
f ∈ R

and which case the Riemann integral
∫ b
a
f is defined to be the common value:∫ b

a

f(x)dx =
∫ b

a

f(x)dx =
∫ b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 7.29.

Lemma 7.65. If π′ and π are two partitions of [a, b] and π ⊂ π′ then

Gπ ≥ Gπ′ ≥ f ≥ gπ′ ≥ gπ and
Sπf ≥ Sπ′f ≥ sπ′f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπkf ↓
∫ b

a

f and sπkf ↑
∫ b

a

f as k →∞.
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If we let
G := lim

k→∞
Gπk and g := lim

k→∞
gπk (7.62)

then by the dominated convergence theorem,∫
[a,b]

gdm = lim
k→∞

∫
[a,b]

gπk = lim
k→∞

sπkf =
∫ b

a

f(x)dx (7.63)

and∫
[a,b]

Gdm = lim
k→∞

∫
[a,b]

Gπk = lim
k→∞

Sπkf =
∫ b

a

f(x)dx. (7.64)

Notation 7.66 For x ∈ [a, b], let

H(x) = lim sup
y→x

f(y) := lim
ε↓0

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 7.67. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (7.62), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (7.65)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk := Gπk ↓ G and gk := gπk ↑ g.

1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim
y→x

f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k

and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (7.66)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y) over
some interval contained in [x − ε, x + ε]. Again letting k → ∞ implies

sup
|y−x|≤ε

f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (7.66) then implies H(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (7.65) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 7.68. Let f : [a, b]→ R be a bounded function. Then∫ b

a

f =
∫

[a,b]

Hdm and
∫ b

a

f =
∫

[a,b]

hdm (7.67)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}

is an m̄ – null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable2, i.e. f is L/B –
measurable where L is the Lebesgue σ – algebra and B is the Borel σ – algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, then∫

[a,b]

Hdm =
∫ b

a

f(x)dx =
∫

[a,b]

fdm̄ =
∫

[a,b]

hdm. (7.68)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as de-
scribed in Lemma 7.65 and let G and g be defined as in Lemma 7.67. Since
m(π) = 0, H = G a.e., Eq. (7.67) is a consequence of Eqs. (7.63) and (7.64).
From Eq. (7.67), f is Riemann integrable iff∫

[a,b]

Hdm =
∫

[a,b]

hdm

2 f need not be Borel measurable.
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and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m – null
set. In light of these results and Eq. (7.65), the remaining assertions including
Eq. (7.68) are now consequences of Lemma 7.71.

Notation 7.69 In view of this theorem we will often write
∫ b
a
f(x)dx for∫ b

a
fdm.

7.8 Measurability on Complete Measure Spaces*

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 7.70. Suppose that (X,B, µ) is a complete measure space3 and
f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ – a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in B and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)−1(A) =
{
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)−1(A) if 0 /∈ A (7.69)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness
of B that (1Eg)−1(B) ∈ B if 0 /∈ B. Therefore Eq. (7.69) shows that 1Eg is
measurable. 2. Let E = {x : lim

n→∞
fn(x) 6= f(x)} by assumption E ∈ B and

µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.

The above results are in general false if (X,B, µ) is not complete. For exam-
ple, let X = {0, 1, 2}, B = {{0}, {1, 2}, X, ϕ} and µ = δ0. Take g(0) = 0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 7.71. Suppose that (X,M, µ) is a measure space and M̄ is the com-
pletion of M relative to µ and µ̄ is the extension of µ to M̄. Then a function
f : X → R is (M̄,B = BR) – measurable iff there exists a function g : X → R
3 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈ M and µ(A) = 0,

then N ∈M as well.

that is (M,B) – measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0,
i.e. f(x) = g(x) for µ̄ – a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄) iff
g ∈ L1(µ) and in which case ∫

X

fdµ̄ =
∫
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) – measurable, we see from Proposition 7.70 that f is (M̄,B) –
measurable. Conversely if f is (M̄,B) – measurable, by considering f± we may
assume that f ≥ 0. Choose (M̄,B) – measurable simple function ϕn ≥ 0 such
that ϕn ↑ f as n→∞. Writing

ϕn =
∑

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak \Bk) = 0.
Letting

ϕ̃n :=
∑

ak1Bk

we have produced a (M,B) – measurable simple function ϕ̃n ≥ 0 such that
En := {ϕn 6= ϕ̃n} has zero µ̄ – measure. Since µ̄ (∪nEn) ≤

∑
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F · ϕ̃n = 1F · ϕn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) – measurable and that {f 6= g} ⊂ F has µ̄
– measure zero. Since f = g, µ̄ – a.e.,

∫
X
fdµ̄ =

∫
X
gdµ̄ so to prove Eq. (7.70)

it suffices to prove ∫
X

gdµ̄ =
∫
X

gdµ. (7.70)

Because µ̄ = µ on M, Eq. (7.70) is easily verified for non-negative M – mea-
surable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 6.39 it holds for all M – measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by con-
sidering (Re g)± and (Im g)± .

7.9 More Exercises

Exercise 7.19. Let µ be a measure on an algebra A ⊂ 2X , then µ(A)+µ(B) =
µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.

Exercise 7.20 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where
A∆B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:
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1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A∆B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B. Show
“∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let [A] :=
{B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a well defined
metric on M/ ∼ .

4. Similarly show µ̃ ([A]) = µ (A) is a well defined function onM/ ∼ and show
µ̃ : (M/ ∼)→ R+ is ρ̄ – continuous.

Exercise 7.21. Suppose that µn :M→ [0,∞] are measures on M for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈M. Prove that µ :M→
[0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 7.22. Now suppose that Λ is some index set and for each λ ∈ Λ, µλ :
M→ [0,∞] is a measure onM. Define µ :M→ [0,∞] by µ(A) =

∑
λ∈Λ µλ(A)

for each A ∈M. Show that µ is also a measure.

Exercise 7.23. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞

µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 7.24 (Folland 2.13 on p. 52.). Suppose that {fn}∞n=1 is a sequence
of non-negative measurable functions such that fn → f pointwise and

lim
n→∞

∫
fn =

∫
f <∞.

Then ∫
E

f = lim
n→∞

∫
E

fn

for all measurable sets E ∈M. The conclusion need not hold if limn→∞
∫
fn =∫

f. Hint: “Fatou times two.”

Exercise 7.25. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

∫
fndm = ∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 while∫
gndm = 1 for all n.

Exercise 7.26. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.∑∞
n=−∞ |an| < ∞), then f(θ) :=

∑∞
n=−∞ ane

inθ is a continuous function for
θ ∈ R and

an =
1

2π

∫ π

−π
f(θ)e−inθdθ.

Exercise 7.27. For any function f ∈ L1 (m) , show x ∈
R→

∫
(−∞,x]

f (t) dm (t) is continuous in x. Also find a finite measure, µ,
on BR such that x→

∫
(−∞,x]

f (t) dµ (t) is not continuous.

Exercise 7.28. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is wrong
by a factor of −1 and the sum is on k = 1 to ∞. In part (e), s should be taken
to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =
∞∑
n=0

(2n− 1)!!
2nn!

zn =
∞∑
n=0

(2n)!
4n (n!)2 z

n for |z| < 1.

Exercise 7.29. Prove Lemma 7.65.
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8

Functional Forms of the π – λ Theorem

In this chapter we will develop a very useful function analogue of the π – λ
theorem. The results in this section will be used often in the sequel.

8.1 Multiplicative System Theorems

Notation 8.1 Let Ω be a set and H be a subset of the bounded real valued
functions on Ω. We say that H is closed under bounded convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω, then f ∈ H.

A subset, M, of H is called a multiplicative system if M is closed under
finite intersections.

The following result may be found in Dellacherie [11, p. 14]. The style of
proof given here may be found in Janson [26, Appendix A., p. 309].

Theorem 8.2 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from Ω to R which contains the
constant functions and is closed under bounded convergence. If M ⊂ H is a mul-
tiplicative system, then H contains all bounded σ (M) – measurable functions.

Proof. In this proof, we may (and do) assume that H is the smallest sub-
space of bounded functions onΩ which contains the constant functions, contains
M, and is closed under bounded convergence. (As usual such a space exists by
taking the intersection of all such spaces.) The remainder of the proof will be
broken into four steps.

Step 1. (H is an algebra of functions.) For f ∈ H, let Hf :=
{g ∈ H : gf ∈ H} . The reader will now easily verify that Hf is a linear sub-
space of H, 1 ∈ Hf , and Hf is closed under bounded convergence. Moreover if
f ∈M, since M is a multiplicative system, M ⊂ Hf . Hence by the definition of
H, H = Hf , i.e. fg ∈ H for all f ∈ M and g ∈ H. Having proved this it now
follows for any f ∈ H that M ⊂ Hf and therefore as before, Hf = H. Thus we
may conclude that fg ∈ H whenever f, g ∈ H, i.e. H is an algebra of functions.

Step 2. (B := {A ⊂ Ω : 1A ∈ H} is a σ – algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed

under complementation, finite intersections, and contains Ω, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is σ – algebra.

Step 3. (H contains all bounded B – measurable functions.) Since H is a
vector space and H contains 1A for all A ∈ B, H contains all B – measurable
simple functions. Since every bounded B – measurable function may be written
as a bounded limit of such simple functions (see Theorem 6.39), it follows that
H contains all bounded B – measurable functions.

Step 4. (σ (M) ⊂ B.) Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 8.1 below)
so that ϕn (x) ↑ 1x>0. Given f ∈ M and a ∈ R, let Fn := ϕn (f − a) and
M := supω∈Ω |f (ω)− a| . By the Weierstrass approximation Theorem 4.36, we
may find polynomial functions, pl (x) such that pl → ϕn uniformly on [−M,M ] .
Since pl is a polynomial and H is an algebra, pl (f − a) ∈ H for all l. Moreover,
pl ◦ (f − a)→ Fn uniformly as l→∞, from with it follows that Fn ∈ H for all
n. Since, Fn ↑ 1{f>a} it follows that 1{f>a} ∈ H, i.e. {f > a} ∈ B. As the sets
{f > a} with a ∈ R and f ∈M generate σ (M) , it follows that σ (M) ⊂ B.

Fig. 8.1. Plots of ϕ1, ϕ2 and ϕ3.

Second proof.* (This proof may safely be skipped.) This proof will make
use of Dynkin’s π – λ Theorem 5.14. Let

L := {A ⊂ Ω : 1A ∈ H} .
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We then have Ω ∈ L since 1Ω = 1 ∈ H, if A,B ∈ L with A ⊂ B then B \A ∈ L
since 1B\A = 1B − 1A ∈ H, and if An ∈ L with An ↑ A, then A ∈ L because
1An ∈ H and 1An ↑ 1A ∈ H. Therefore L is λ – system.

Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 8.1 above) so that ϕn (x) ↑ 1x>0.
Given f1, f2, . . . , fk ∈M and a1, . . . , ak ∈ R, let

Fn :=
k∏
i=1

ϕn (fi − ai)

and let
M := sup

i=1,...,k
sup
ω
|fi (ω)− ai| .

By the Weierstrass approximation Theorem 4.36, we may find polynomial func-
tions, pl (x) such that pl → ϕn uniformly on [−M,M ] .Since pl is a polynomial
it is easily seen that

∏k
i=1 pl ◦ (fi − ai) ∈ H. Moreover,

k∏
i=1

pl ◦ (fi − ai)→ Fn uniformly as l→∞,

from with it follows that Fn ∈ H for all n. Since,

Fn ↑
k∏
i=1

1{fi>ai} = 1∩k
i=1{fi>ai}

it follows that 1∩k
i=1{fi>ai}

∈ H or equivalently that ∩ki=1 {fi > ai} ∈ L. There-
fore L contains the π – system, P, consisting of finite intersections of sets of
the form, {f > a} with f ∈M and a ∈ R.

As a consequence of the above paragraphs and the π – λ Theorem 5.14, L
contains σ (P) = σ (M) . In particular it follows that 1A ∈ H for all A ∈ σ (M) .
Since any positive σ (M) – measurable function may be written as a increasing
limit of simple functions (see Theorem 6.39)), it follows that H contains all non-
negative bounded σ (M) – measurable functions. Finally, since any bounded
σ (M) – measurable functions may be written as the difference of two such
non-negative simple functions, it follows that H contains all bounded σ (M) –
measurable functions.

Corollary 8.3. Suppose H is a subspace of bounded real valued functions such
that 1 ∈ H and H is closed under bounded convergence. If P ⊂ 2Ω is a mul-
tiplicative class such that 1A ∈ H for all A ∈ P, then H contains all bounded
σ(P) – measurable functions.

Proof. Let M = {1}∪{1A : A ∈ P} . Then M ⊂ H is a multiplicative system
and the proof is completed with an application of Theorem 8.2.

Example 8.4. Suppose µ and ν are two probability measure on (Ω,B) such that∫
Ω

fdµ =
∫
Ω

fdν (8.1)

for all f in a multiplicative subset, M, of bounded measurable functions on Ω.
Then µ = ν on σ (M) . Indeed, apply Theorem 8.2 with H being the bounded
measurable functions on Ω such that Eq. (8.1) holds. In particular if M =
{1} ∪ {1A : A ∈ P} with P being a multiplicative class we learn that µ = ν on
σ (M) = σ (P) .

Here is a complex version of Theorem 8.2.

Theorem 8.5 (Complex Multiplicative System Theorem). Suppose H is
a complex linear subspace of the bounded complex functions on Ω, 1 ∈ H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M ⊂ H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued σ(M)-measurable functions.

Proof. Let M0 = spanC(M∪ {1}) be the complex span of M. As the reader
should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex conjuga-
tion and σ (M0) = σ (M) . Let

HR := {f ∈ H : f is real valued} and

MR
0 := {f ∈M0 : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and MR

0 ⊂ HR. Moreover, MR
0 is a multiplicative

system (as the reader should check) and therefore by Theorem 8.2, HR contains
all bounded σ

(
MR

0

)
– measurable real valued functions. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in H or

M0 respectively. Therefore M0 = MR
0 + iMR

0 , σ
(
MR

0

)
= σ (M0) = σ (M) , and

H = HR + iHR. Hence if f : Ω → C is a bounded σ (M) – measurable function,
then f = Re f + i Im f ∈ H since Re f and Im f are in HR.

Lemma 8.6. Suppose that −∞ < a < b <∞ and let Trig(R) ⊂ C (R,C) be the
complex linear span of

{
x→ eiλx : λ ∈ R

}
. Then there exists fn ∈ Cc (R, [0, 1])

and gn ∈Trig(R) such that limn→∞ fn (x) = 1(a,b] (x) = limn→∞ gn (x) for all
x ∈ R.

Proof. The assertion involving fn ∈ Cc (R, [0, 1]) was the content of one of
your homework assignments. For the assertion involving gn ∈Trig(R) , it will
suffice to show that any f ∈ Cc (R) may be written as f (x) = limn→∞ gn (x)
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8.1 Multiplicative System Theorems 111

for some {gn} ⊂Trig(R) where the limit is uniform for x in compact subsets of
R.

So suppose that f ∈ Cc (R) and L > 0 such that f (x) = 0 if |x| ≥ L/4.
Then

fL (x) :=
∞∑

n=−∞
f (x+ nL)

is a continuous L – periodic function on R, see Figure 8.2. If ε > 0 is given, we

Fig. 8.2. This is plot of f8 (x) where f (x) =
(
1− x2

)
1|x|≤1. The center hump by

itself would be the plot of f (x) .

may apply Theorem 4.42 to find Λ ⊂⊂ Z such that∣∣∣∣∣fL
(
L

2π
x

)
−
∑
α∈Λ

aλe
iαx

∣∣∣∣∣ ≤ ε for all x ∈ R,

wherein we have use the fact that x → fL
(
L
2πx
)

is a 2π – periodic function of
x. Equivalently we have,

max
x

∣∣∣∣∣fL (x)−
∑
α∈Λ

aλe
i 2παL x

∣∣∣∣∣ ≤ ε.
In particular it follows that fL (x) is a uniform limit of functions from Trig(R) .
Since limL→∞ fL (x) = f (x) uniformly on compact subsets of R, it is easy to

conclude there exists gn ∈Trig(R) such that limn→∞ gn (x) = f (x) uniformly
on compact subsets of R.

Corollary 8.7. Each of the following σ – algebras on Rd are equal to BRd ;

1.M1 := σ (∪ni=1 {x→ f (xi) : f ∈ Cc (R)}) ,
2.M2 := σ (x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R))
3.M3 = σ

(
Cc
(
Rd
))
, and

4.M4 := σ
({
x→ eiλ·x : λ ∈ Rd

})
.

Proof. As the functions defining each Mi are continuous and hence Borel
measurable, it follows thatMi ⊂ BRd for each i. So to finish the proof it suffices
to show BRd ⊂Mi for each i.
M1 case. Let a, b ∈ R with −∞ < a < b < ∞. By Lemma 8.6, there

exists fn ∈ Cc (R) such that limn→∞ fn = 1(a,b]. Therefore it follows that
x → 1(a,b] (xi) is M1 – measurable for each i. Moreover if −∞ < ai < bi < ∞
for each i, then we may conclude that

x→
d∏
i=1

1(ai,bi] (xi) = 1(a1,b1]×···×(ad,bd] (x)

is M1 – measurable as well and hence (a1, b1] × · · · × (ad, bd] ∈ M1. As such
sets generate BRd we may conclude that BRd ⊂M1.

and therefore M1 = BRd .
M2 case. As above, we may find fi,n → 1(ai,bi] as n→∞ for each 1 ≤ i ≤ d

and therefore,

1(a1,b1]×···×(ad,bd] (x) = lim
n→∞

f1,n (x1) . . . fd,n (xd) for all x ∈ Rd.

This shows that 1(a1,b1]×···×(ad,bd] is M2 – measurable and therefore (a1, b1] ×
· · · × (ad, bd] ∈M2.
M3 case. This is easy since BRd =M2 ⊂M3.
M4 case. By Lemma 8.6 here exists gn ∈Trig(R) such that limn→∞ gn =

1(a,b]. Since x→ gn (xi) is in the span
{
x→ eiλ·x : λ ∈ Rd

}
for each n, it follows

that x → 1(a,b] (xi) is M4 – measurable for all −∞ < a < b < ∞. Therefore,
just as in the proof of case 1., we may now conclude that BRd ⊂M4.

Corollary 8.8. Suppose that H is a subspace of complex valued functions on
Rd which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M := {x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R)}
2. M := Cc

(
Rd
)
, or

3. M :=
{
x→ eiλ·x : λ ∈ Rd

}
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112 8 Functional Forms of the π – λ Theorem

then H contains all bounded complex Borel measurable functions on Rd.

Proof. Observe that if f ∈ Cc (R) such that f (x) = 1 in a neighborhood
of 0, then fn (x) := f (x/n) → 1 as n → ∞. Therefore in cases 1. and 2., H
contains the constant function, 1, since

1 = lim
n→∞

fn (x1) . . . fn (xd) .

In case 3, 1 ∈ M ⊂ H as well. The result now follows from Theorem 8.5 and
Corollary 8.7.

Proposition 8.9 (Change of Variables Formula). Suppose that −∞ <
a < b < ∞ and u : [a, b] → R is a continuously differentiable function. Let
[c, d] = u ([a, b]) where c = minu ([a, b]) and d = maxu ([a, b]). (By the interme-
diate value theorem u ([a, b]) is an interval.) Then for all bounded measurable
functions, f : [c, d]→ R we have∫ u(b)

u(a)

f (x) dx =
∫ b

a

f (u (t)) u̇ (t) dt. (8.2)

Moreover, Eq. (8.2) is also valid if f : [c, d]→ R is measurable and∫ b

a

|f (u (t))| |u̇ (t)| dt <∞. (8.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. (8.2) holds. It is easily checked that H is a linear space closed under bounded
convergence. Next we show that M = C ([c, d] ,R) ⊂ H which coupled with
Corollary 8.8 will show that H contains all bounded measurable functions from
[c, d] to R.

If f : [c, d] → R is a continuous function and let F be an anti-derivative of
f. Then by the fundamental theorem of calculus,∫ b

a

f (u (t)) u̇ (t) dt =
∫ b

a

F ′ (u (t)) u̇ (t) dt

=
∫ b

a

d

dt
F (u (t)) dt = F (u (t)) |ba

= F (u (b))− F (u (a)) =
∫ u(b)

u(a)

F ′ (x) dx =
∫ u(b)

u(a)

f (x) dx.

Thus M ⊂ H and the first assertion of the proposition is proved.
Now suppose that f : [c, d]→ R is measurable and Eq. (8.3) holds. For M <

∞, let fM (x) = f (x) · 1|f(x)|≤M – a bounded measurable function. Therefore
applying Eq. (8.2) with f replaced by |fM | shows,

∣∣∣∣∣
∫ u(b)

u(a)

|fM (x)| dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

|fM (u (t))| u̇ (t) dt

∣∣∣∣∣ ≤
∫ b

a

|fM (u (t))| |u̇ (t)| dt.

Using the MCT, we may let M ↑ ∞ in the previous inequality to learn∣∣∣∣∣
∫ u(b)

u(a)

|f (x)| dx

∣∣∣∣∣ ≤
∫ b

a

|f (u (t))| |u̇ (t)| dt <∞.

Now apply Eq. (8.2) with f replaced by fM to learn∫ u(b)

u(a)

fM (x) dx =
∫ b

a

fM (u (t)) u̇ (t) dt.

Using the DCT we may now let M →∞ in this equation to show that Eq. (8.2)
remains valid.

Exercise 8.1. Suppose that u : R→ R is a continuously differentiable function
such that u̇ (t) ≥ 0 for all t and limt→±∞ u (t) = ±∞. Show that∫

R
f (x) dx =

∫
R
f (u (t)) u̇ (t) dt (8.4)

for all measurable functions f : R→ [0,∞] . In particular applying this result
to u (t) = at+ b where a > 0 implies,∫

R
f (x) dx = a

∫
R
f (at+ b) dt.

Definition 8.10. The Fourier transform or characteristic function of a
finite measure, µ, on

(
Rd,BRd

)
, is the function, µ̂ : Rd → C defined by

µ̂ (λ) :=
∫

Rd
eiλ·xdµ (x) for all λ ∈ Rd

Corollary 8.11. Suppose that µ and ν are two probability measures on(
Rd,BRd

)
. Then any one of the next three conditions implies that µ = ν;

1.
∫

Rd f1 (x1) . . . fd (xd) dν (x) =
∫

Rd f1 (x1) . . . fd (xd) dµ (x) for all fi ∈
Cc (R) .

2.
∫

Rd f (x) dν (x) =
∫

Rd f (x) dµ (x) for all f ∈ Cc
(
Rd
)
.

3. ν̂ = µ̂.

Item 3. asserts that the Fourier transform is injective.
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Proof. Let H be the collection of bounded complex measurable functions
from Rd to C such that ∫

Rd
fdµ =

∫
Rd
fdν. (8.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary 8.8, it contains all bounded Borel measurable
functions form Rd → C. Thus we may take f = 1A with A ∈ BRd in Eq. (8.5)
to learn, µ (A) = ν (A) for all A ∈ BRd .

In many cases we can replace the condition in item 3. of Corollary 8.11 by;∫
Rd
eλ·xdµ (x) =

∫
Rd
eλ·xdν (x) for all λ ∈ U, (8.6)

where U is a neighborhood of 0 ∈ Rd. In order to do this, one must assume
at least assume that the integrals involved are finite for all λ ∈ U. The idea
is to show that Condition 8.6 implies ν̂ = µ̂. You are asked to carry out this
argument in Exercise 8.2 making use of the following lemma.

Lemma 8.12 (Analytic Continuation). Let ε > 0 and Sε :=
{x+ iy ∈ C : |x| < ε} be an ε strip in C about the imaginary axis. Sup-
pose that h : Sε → C is a function such that for each b ∈ R, there exists
{cn (b)}∞n=0 ⊂ C such that

h (z + ib) =
∞∑
n=0

cn (b) zn for all |z| < ε. (8.7)

If cn (0) = 0 for all n ∈ N0, then h ≡ 0.

Proof. It suffices to prove the following assertion; if for some b ∈ R we know
that cn (b) = 0 for all n, then cn (y) = 0 for all n and y ∈ (b− ε, b+ ε) . We
now prove this assertion.

Let us assume that b ∈ R and cn (b) = 0 for all n ∈ N0. It then follows from
Eq. (8.7) that h (z + ib) = 0 for all |z| < ε. Thus if |y − b| < ε, we may conclude
that h (x+ iy) = 0 for x in a (possibly very small) neighborhood (−δ, δ) of 0.
Since

∞∑
n=0

cn (y)xn = h (x+ iy) = 0 for all |x| < δ,

it follows that
0 =

1
n!

dn

dxn
h (x+ iy) |x=0 = cn (y)

and the proof is complete.

8.2 Exercises

Exercise 8.2. Suppose ε > 0 and X and Y are two random variables such that
E
[
etX
]

= E
[
etY
]
<∞ for all |t| ≤ ε. Show;

1. E
[
eε|X|

]
and E

[
eε|Y |

]
are finite.

2. E
[
eitX

]
= E

[
eitY

]
for all t ∈ R. Hint: Consider h (z) := E

[
ezX

]
−E

[
ezY
]

for z ∈ Sε. Now show for |z| ≤ ε and b ∈ R, that

h (z + ib) = E
[
eibXezX

]
− E

[
eibY ezY

]
=
∞∑
n=0

cn (b) zn (8.8)

where
cn (b) :=

1
n!
(
E
[
eibXXn

]
− E

[
eibY Y n

])
. (8.9)

3. Conclude from item 2. that X d= Y, i.e. that LawP (X) = LawP (Y ) .

Exercise 8.3. Let (Ω,B, P ) be a probability space and X,Y : Ω → R be a pair
of random variables such that

E [f (X) g (Y )] = E [f (X) g (X)]

for every pair of bounded measurable functions, f, g : R→ R. Show
P (X = Y ) = 1. Hint: Let H denote the bounded Borel measurable functions,
h : R2 → R such that

E [h (X,Y )] = E [h (X,X)] .

Use Theorem 8.2 to show H is the vector space of all bounded Borel measurable
functions. Then take h (x, y) = 1{x=y}.

Exercise 8.4 (Density of A – simple functions). Let (Ω,B, P ) be a proba-
bility space and assume that A is a sub-algebra of B such that B = σ (A) . Let H
denote the bounded measurable functions f : Ω → R such that for every ε > 0
there exists an an A – simple function, ϕ : Ω → R such that E |f − ϕ| < ε.
Show H consists of all bounded measurable functions, f : Ω → R. Hint: let M
denote the collection of A – simple functions.

Corollary 8.13. Suppose that (Ω,B, P ) is a probability space, {Xn}∞n=1 is a
collection of random variables on Ω, and B∞ := σ (X1, X2, X3, . . . ) . Then for
all ε > 0 and all bounded B∞ – measurable functions, f : Ω → R, there exists
an n ∈ N and a bounded BRn – measurable function G : Rn → R such that
E |f −G (X1, . . . , Xn)| < ε. Moreover we may assume that supx∈Rn |G (x)| ≤
M := supω∈Ω |f (ω)| .
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Proof. Apply Exercise 8.4 with A := ∪∞n=1σ (X1, . . . , Xn) in order to find
an A – measurable simple function, ϕ, such that E |f − ϕ| < ε. By the definition
of A we know that ϕ is σ (X1, . . . , Xn) – measurable for some n ∈ N. It now
follows by the factorization Lemma 6.40 that ϕ = G (X1, . . . , Xn) for some BRn

– measurable function G : Rn → R. If necessary, replace G by [G ∧M ]∨ (−M)
in order to insure supx∈Rn |G (x)| ≤M.

Exercise 8.5 (Density of A in B = σ (A)). Keeping the same notation as
in Exercise 8.4 but now take f = 1B for some B ∈ B and given ε > 0, write
ϕ =

∑n
i=0 λi1Ai where λ0 = 0, {λi}ni=1 is an enumeration of ϕ (Ω) \ {0} , and

Ai := {ϕ = λi} . Show; 1.

E |1B − ϕ| = P (A0 ∩B) +
n∑
i=1

[|1− λi|P (B ∩Ai) + |λi|P (Ai \B)] (8.10)

≥ P (A0 ∩B) +
n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} . (8.11)

2. Now let ψ =
∑n
i=0 αi1Ai with

αi =
{

1 if P (Ai \B) ≤ P (B ∩Ai)
0 if P (Ai \B) > P (B ∩Ai)

.

Then show that

E |1B − ψ| = P (A0 ∩B) +
n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} ≤ E |1B − ϕ| .

Observe that ψ = 1D where D = ∪i:αi=1Ai ∈ A and so you have shown; for
every ε > 0 there exists a D ∈ A such that

P (B∆D) = E |1B − 1D| < ε.

8.3 A Strengthening of the Multiplicative System
Theorem*

Notation 8.14 We say that H ⊂ `∞ (Ω,R) is closed under monotone con-
vergence if; for every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that 0 ≤ fn (ω) ≤M for all ω ∈ Ω and n ∈ N,
2. fn (ω) is increasing in n for all ω ∈ Ω, then f := limn→∞ fn ∈ H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. I learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [59, p. 365].

Proposition 8.15. *Let Ω be a set. Suppose that H is a vector subspace of
bounded real valued functions from Ω to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}∞n=1 ⊂ H
with supn∈N supω∈Ω |fn (ω)| <∞ and fn → f, then f ∈ H.

Proof. Let us first assume that {fn}∞n=1 ⊂ H such that fn converges uni-
formly to a bounded function, f : Ω → R. Let ‖f‖∞ := supω∈Ω |f (ω)| . Let
ε > 0 be given. By passing to a subsequence if necessary, we may assume
‖f − fn‖∞ ≤ ε2−(n+1). Let

gn := fn − δn +M

with δn and M constants to be determined shortly. We then have

gn+1 − gn = fn+1 − fn + δn − δn+1 ≥ −ε2−(n+1) + δn − δn+1.

Taking δn := ε2−n, then δn − δn+1 = ε2−n (1− 1/2) = ε2−(n+1) in which case
gn+1 − gn ≥ 0 for all n. By choosing M sufficiently large, we will also have
gn ≥ 0 for all n. Since H is a vector space containing the constant functions,
gn ∈ H and since gn ↑ f +M, it follows that f = f +M −M ∈ H. So we have
shown that H is closed under uniform convergence.

This proposition immediately leads to the following strengthening of Theo-
rem 8.2.

Theorem 8.16. *Suppose that H is a vector subspace of bounded real valued
functions on Ω which contains the constant functions and is closed under
monotone convergence. If M ⊂ H is multiplicative system, then H contains
all bounded σ (M) – measurable functions.

Proof. Proposition 8.15 reduces this theorem to Theorem 8.2.

8.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 8.17 Given a collection of bounded functions, M, from a set, Ω, to
R, let M↑ (M↓) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : Ω → R is in M↑
respectively M↓ iff there exists fn ∈M such that fn ↑ f respectively fn ↓ f.

Theorem 8.18 (Bounded Approximation Theorem*). Let (Ω,B, µ) be a
finite measure space and M be an algebra of bounded R – valued measurable
functions such that:

1. σ (M) = B,
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2. 1 ∈M, and
3. |f | ∈M for all f ∈M.

Then for every bounded σ (M) measurable function, g : Ω → R, and every
ε > 0, there exists f ∈M↓ and h ∈M↑ such that f ≤ g ≤ h and µ (h− f) < ε.1

Proof. Let us begin with a few simple observations.

1. M is a “lattice” – if f, g ∈M then

f ∨ g =
1
2

(f + g + |f − g|) ∈M

and
f ∧ g =

1
2

(f + g − |f − g|) ∈M.

2. If f, g ∈M↑ or f, g ∈M↓ then f + g ∈M↑ or f + g ∈M↓ respectively.
3. If λ ≥ 0 and f ∈M↑ (f ∈M↓), then λf ∈M↑ (λf ∈M↓) .
4. If f ∈M↑ then −f ∈M↓ and visa versa.
5. If fn ∈M↑ and fn ↑ f where f : Ω → R is a bounded function, then f ∈M↑.

Indeed, by assumption there exists fn,i ∈ M such that fn,i ↑ fn as i→∞.
By observation (1), gn := max {fij : i, j ≤ n} ∈M. Moreover it is clear that
gn ≤ max {fk : k ≤ n} = fn ≤ f and hence gn ↑ g := limn→∞ gn ≤ f. Since
fij ≤ g for all i, j, it follows that fn = limj→∞ fnj ≤ g and consequently
that f = limn→∞ fn ≤ g ≤ f. So we have shown that gn ↑ f ∈M↑.

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M ⊂ H and in fact it is also easy
to see that M↑ and M↓ are contained in H as well. For example, if f ∈ M↑, by
definition, there exists fn ∈ M ⊂ M↓ such that fn ↑ f. Since M↓ 3 fn ≤ f ≤
f ∈ M↑ and µ (f − fn) → 0 by the dominated convergence theorem, it follows
that f ∈ H. As similar argument shows M↓ ⊂ H. We will now show H is a
vector sub-space of the bounded B = σ (M) – measurable functions.

H is closed under addition. If gi ∈ H for i = 1, 2, and ε > 0 is given, we
may find fi ∈M↓ and hi ∈M↑ such that fi ≤ gi ≤ hi and µ (hi − fi) < ε/2 for
i = 1, 2. Since h = h1 + h2 ∈M↑, f := f1 + f2 ∈M↓, f ≤ g1 + g2 ≤ h, and

µ (h− f) = µ (h1 − f1) + µ (h2 − f2) < ε,

it follows that g1 + g2 ∈ H.
H is closed under scalar multiplication. If g ∈ H then λg ∈ H for all

λ ∈ R. Indeed suppose that ε > 0 is given and f ∈ M↓ and h ∈ M↑ such that
f ≤ g ≤ h and µ (h− f) < ε. Then for λ ≥ 0, M↓ 3 λf ≤ λg ≤ λh ∈M↑ and

1 Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies
of bounded functions.

µ (λh− λf) = λµ (h− f) < λε.

Since ε > 0 was arbitrary, if follows that λg ∈ H for λ ≥ 0. Similarly, M↓ 3
−h ≤ −g ≤ −f ∈M↑ and

µ (−f − (−h)) = µ (h− f) < ε.

which shows −g ∈ H as well.
Because of Theorem 8.16, to complete this proof, it suffices to show H is

closed under monotone convergence. So suppose that gn ∈ H and gn ↑ g, where
g : Ω → R is a bounded function. Since H is a vector space, it follows that
0 ≤ δn := gn+1 − gn ∈ H for all n ∈ N. So if ε > 0 is given, we can find,
M↓ 3 un ≤ δn ≤ vn ∈ M↑ such that µ (vn − un) ≤ 2−nε for all n. By replacing
un by un∨0 ∈M↓ (by observation 1.), we may further assume that un ≥ 0. Let

v :=
∞∑
n=1

vn =↑ lim
N→∞

N∑
n=1

vn ∈M↑ (using observations 2. and 5.)

and for N ∈ N, let

uN :=
N∑
n=1

un ∈M↓ (using observation 2).

Then
∞∑
n=1

δn = lim
N→∞

N∑
n=1

δn = lim
N→∞

(gN+1 − g1) = g − g1

and uN ≤ g − g1 ≤ v. Moreover,

µ
(
v − uN

)
=

N∑
n=1

µ (vn − un) +
∞∑

n=N+1

µ (vn) ≤
N∑
n=1

ε2−n +
∞∑

n=N+1

µ (vn)

≤ ε+
∞∑

n=N+1

µ (vn) .

However, since
∞∑
n=1

µ (vn) ≤
∞∑
n=1

µ
(
δn + ε2−n

)
=
∞∑
n=1

µ (δn) + εµ (Ω)

=
∞∑
n=1

µ (g − g1) + εµ (Ω) <∞,

it follows that for N ∈ N sufficiently large that
∑∞
n=N+1 µ (vn) < ε. Therefore,

for this N, we have µ
(
v − uN

)
< 2ε and since ε > 0 is arbitrary, if follows

that g − g1 ∈ H. Since g1 ∈ H and H is a vector space, we may conclude that
g = (g − g1) + g1 ∈ H.
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9

Multiple and Iterated Integrals

9.1 Iterated Integrals

Notation 9.1 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two mea-
sure spaces and f : X×Y → C is aM⊗N – measurable function, the iterated
integrals of f (when they make sense) are:∫

X

dµ(x)
∫
Y

dν(y)f(x, y) :=
∫
X

[∫
Y

f(x, y)dν(y)
]
dµ(x)

and ∫
Y

dν(y)
∫
X

dµ(x)f(x, y) :=
∫
Y

[∫
X

f(x, y)dµ(x)
]
dν(y).

Notation 9.2 Suppose that f : X → C and g : Y → C are functions, let f ⊗ g
denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f ⊗ g is (M⊗N ,BC) – measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦ π1 where
π1 : X × Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

9.2 Tonelli’s Theorem and Product Measure

Theorem 9.3. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) – measurable function, then for each y ∈ Y,

x→ f(x, y) is M – B[0,∞] measurable, (9.1)

for each x ∈ X,
y → f(x, y) is N – B[0,∞] measurable, (9.2)

x→
∫
Y

f(x, y)dν(y) is M – B[0,∞] measurable, (9.3)

y →
∫
X

f(x, y)dµ(x) is N – B[0,∞] measurable, (9.4)

and ∫
X

dµ(x)
∫
Y

dν(y)f(x, y) =
∫
Y

dν(y)
∫
X

dµ(x)f(x, y). (9.5)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (9.1) and (9.2) hold. Moreover∫
Y

f(x, y)dν(y) =
∫
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (9.3) holds and we have∫
X

dµ(x)
∫
Y

dν(y)f(x, y) = ν(B)µ(A). (9.6)

Similarly, ∫
X

f(x, y)dµ(x) = µ(A)1B(y) and∫
Y

dν(y)
∫
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (9.4) and (9.5) hold in this case as well.
For the moment let us now further assume that µ(X) < ∞ and ν(Y ) < ∞

and let H be the collection of all bounded (M⊗N ,BR) – measurable functions
on X × Y such that Eqs. (9.1) – (9.5) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1E ∈ H
for all E in the π – class, E , it follows by Corollary 8.3 that H is the space
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of all bounded (M⊗N ,BR) – measurable functions on X × Y. Moreover, if
f : X × Y → [0,∞] is a (M⊗N ,BR̄) – measurable function, let fM = M ∧ f
so that fM ↑ f as M →∞. Then Eqs. (9.1) – (9.5) hold with f replaced by fM
for all M ∈ N. Repeated use of the monotone convergence theorem allows us to
pass to the limit M →∞ in these equations to deduce the theorem in the case
µ and ν are finite measures.

For the σ – finite case, choose Xn ∈M, Yn ∈ N such that Xn ↑ X, Yn ↑ Y,
µ(Xn) <∞ and ν(Yn) <∞ for all m,n ∈ N. Then define µm(A) = µ(Xm ∩A)
and νn(B) = ν(Yn ∩ B) for all A ∈ M and B ∈ N or equivalently dµm =
1Xmdµ and dνn = 1Yndν. By what we have just proved Eqs. (9.1) – (9.5) with
µ replaced by µm and ν by νn for all (M⊗N ,BR̄) – measurable functions,
f : X×Y → [0,∞]. The validity of Eqs. (9.1) – (9.5) then follows by passing to
the limits m → ∞ and then n → ∞ making use of the monotone convergence
theorem in the following context. For all u ∈ L+(X,M),∫

X

udµm =
∫
X

u1Xmdµ ↑
∫
X

udµ as m→∞,

and for all and v ∈ L+(Y,N ),∫
Y

vdµn =
∫
Y

v1Yndµ ↑
∫
Y

vdµ as n→∞.

Corollary 9.4. Suppose (X,M, µ) and (Y,N , ν) are σ – finite measure spaces.
Then there exists a unique measure π onM⊗N such that π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N . Moreover π is given by

π(E) =
∫
X

dµ(x)
∫
Y

dν(y)1E(x, y) =
∫
Y

dν(y)
∫
X

dµ(x)1E(x, y) (9.7)

for all E ∈M⊗N and π is σ – finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ – finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) < ∞, ν(Yn) < ∞, Xn ↑ X and Yn ↑ Y,
then Xn × Yn ∈ M ⊗ N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n.
The uniqueness assertion is a consequence of the combination of Exercises 3.10
and 5.11 Proposition 3.25 with E = M×N . For the existence, it suffices to
observe, using the monotone convergence theorem, that π defined in Eq. (9.7)
is a measure onM⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N from Eq. (9.6).

Notation 9.5 The measure π is called the product measure of µ and ν and will
be denoted by µ⊗ ν.

Theorem 9.6 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are σ
– finite measure spaces and π = µ⊗ν is the product measure on M⊗N . If f ∈
L+(X × Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈ L+(Y,N )
for all x ∈ X,∫

Y

f(·, y)dν(y) ∈ L+(X,M),
∫
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and ∫
X×Y

f dπ =
∫
X

dµ(x)
∫
Y

dν(y)f(x, y) (9.8)

=
∫
Y

dν(y)
∫
X

dµ(x)f(x, y). (9.9)

Proof. By Theorem 9.3 and Corollary 9.4, the theorem holds when f = 1E
with E ∈M⊗N . Using the linearity of all of the statements, the theorem is also
true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with the approximation Theorem 6.39, one deduces
the theorem for general f ∈ L+(X × Y,M⊗N ).

Example 9.7. In this example we are going to show, I :=
∫

R e
−x2/2dm (x) =√

2π. To this end we observe, using Tonelli’s theorem, that

I2 =
[∫

R
e−x

2/2dm (x)
]2

=
∫

R
e−y

2/2

[∫
R
e−x

2/2dm (x)
]
dm (y)

=
∫

R2
e−(x2+y2)/2dm2 (x, y)

where m2 = m⊗m is “Lebesgue measure” on
(
R2,BR2 = BR ⊗ BR

)
. From the

monotone convergence theorem,

I2 = lim
R→∞

∫
DR

e−(x2+y2)/2dm2 (x, y)

where DR =
{

(x, y) : x2 + y2 < R2
}
. Using the change of variables theorem

described in Section 9.5 below,1 we find∫
DR

e−(x2+y2)/2dπ (x, y) =
∫

(0,R)×(0,2π)

e−r
2/2rdrdθ

= 2π
∫ R

0

e−r
2/2rdr = 2π

(
1− e−R

2/2
)
.

1 Alternatively, you can easily show that the integral
∫
DR

fdm2 agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

I2 = lim
R→∞

2π
(

1− e−R
2/2
)

= 2π

as desired.

9.3 Fubini’s Theorem

Notation 9.8 If (X,M, µ) is a measure space and f : X → C is any measur-
able function, let∫

X

fdµ :=
{∫

X
fdµ if

∫
X
|f | dµ <∞

0 otherwise.

Theorem 9.9 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are σ
– finite measure spaces, π = µ ⊗ ν is the product measure on M ⊗ N and
f : X × Y → C is a M⊗N – measurable function. Then the following three
conditions are equivalent:∫

X×Y
|f | dπ <∞, i.e. f ∈ L1(π), (9.10)∫

X

(∫
Y

|f(x, y)| dν(y)
)
dµ(x) <∞ and (9.11)∫

Y

(∫
X |f(x, y)| dµ(x)

)
dν(y) <∞. (9.12)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ-a.e.
x, f(·, y) ∈ L1(µ) for ν-a.e. y,

∫
Y
f(·, y)dv(y) ∈ L1(µ),

∫
X
f(x, ·)dµ(x) ∈ L1(ν)

and Eqs. (9.8) and (9.9) are still valid after putting a bar over the integral
symbols.

Proof. The equivalence of Eqs. (9.10) – (9.12) is a direct consequence of
Tonelli’s Theorem 9.6. Now suppose f ∈ L1(π) is a real valued function and let

E :=
{
x ∈ X :

∫
Y

|f (x, y)| dν (y) =∞
}
. (9.13)

Then by Tonelli’s theorem, x →
∫
Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem implies∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) =

∫
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then∫

Y

f (x, y) dν (y) =
∫
Y

1Ec (x) f (x, y) dν (y)

=
∫
Y

1Ec (x) [f+ (x, y)− f− (x, y)] dν (y)

=
∫
Y

1Ec (x) f+ (x, y) dν (y)−
∫
Y

1Ec (x) f− (x, y) dν (y) .

(9.14)

Noting that 1Ec (x) f± (x, y) = (1Ec ⊗ 1Y · f±) (x, y) is a positive M ⊗ N –
measurable function, it follows from another application of Tonelli’s theorem
that x →

∫
Y
f (x, y) dν (y) is M – measurable, being the difference of two

measurable functions. Moreover∫
X

∣∣∣∣∣
∫
Y

f (x, y) dν (y)

∣∣∣∣∣ dµ (x) ≤
∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) <∞,

which shows
∫
Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (9.14) on x and using

Tonelli’s theorem repeatedly implies,∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x)

=
∫
X

dµ (x)
∫
Y

dν (y) 1Ec (x) f+ (x, y)−
∫
X

dµ (x)
∫
Y

dν (y) 1Ec (x) f− (x, y)

=
∫
Y

dν (y)
∫
X

dµ (x) 1Ec (x) f+ (x, y)−
∫
Y

dν (y)
∫
X

dµ (x) 1Ec (x) f− (x, y)

=
∫
Y

dν (y)
∫
X

dµ (x) f+ (x, y)−
∫
Y

dν (y)
∫
X

dµ (x) f− (x, y)

=
∫
X×Y

f+dπ −
∫
X×Y

f−dπ =
∫
X×Y

(f+ − f−) dπ =
∫
X×Y

fdπ (9.15)

which proves Eq. (9.8) holds.
Now suppose that f = u + iv is complex valued and again let E be as in

Eq. (9.13). Just as above we still have E ∈M and µ (E) = 0 and∫
Y

f (x, y) dν (y) =
∫
Y

1Ec (x) f (x, y) dν (y) =
∫
Y

1Ec (x) [u (x, y) + iv (x, y)] dν (y)

=
∫
Y

1Ec (x)u (x, y) dν (y) + i

∫
Y

1Ec (x) v (x, y) dν (y) .
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The last line is a measurable in x as we have just proved. Similarly one shows∫
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (9.8) still holds by a computation similar to

that done in Eq. (9.15). The assertions pertaining to Eq. (9.9) may be proved
in the same way.

The previous theorems generalize to products of any finite number of σ –
finite measure spaces.

Theorem 9.10. Suppose {(Xi,Mi, µi)}ni=1 are σ – finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure (π) on
(X,M1 ⊗ · · · ⊗Mn) such that

π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi. (9.16)

(This measure and its completion will be denoted by µ1 ⊗ · · · ⊗ µn.) If f : X →
[0,∞] is a M1 ⊗ · · · ⊗Mn – measurable function then∫

X

fdπ =
∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (9.17)

where σ is any permutation of {1, 2, . . . , n}. In particular f ∈ L1(π), iff∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ. Furthermore, if f ∈ L1 (π) , then∫
X

fdπ =
∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (9.18)

for all permutations σ.

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems 9.6 and 9.9. So
let n ≥ 3 and assume the theorem is valid for n− 1 factors or less. To simplify
notation, for 1 ≤ i ≤ n, let Xi =

∏
j 6=iXj ,Mi := ⊗j 6=iMi, and µi := ⊗j 6=iµj

be the product measure on
(
Xi,Mi

)
which is assumed to exist by the induction

hypothesis. Also letM :=M1⊗· · ·⊗Mn and for x = (x1, . . . , xi, . . . , xn) ∈ X
let

xi := (x1, . . . , x̂i, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) .

Here is an outline of the argument with some details being left to the reader.

1. If f : X → [0,∞] is M -measurable, then

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi -measurable. Thus by the induction hypothesis, the right side of Eq.
(9.17) is well defined.

2. If σ ∈ Sn (the permutations of {1, 2, . . . , n}) we may define a measure π on
(X,M) by;

π (A) :=
∫
Xσ1

dµσ1 (xσ1) . . .
∫
Xσn

dµσn (xσn) 1A (x1, . . . , xn) . (9.19)

It is easy to check that π is a measure which satisfies Eq. (9.16). Using the
σ – finiteness assumptions and the fact that

P := {A1 × · · · ×An : Ai ∈Mi for 1 ≤ i ≤ n}

is a π – system such that σ (P) =M, it follows from Exercise 5.1 that there
is only one such measure satisfying Eq. (9.16). Thus the formula for π in
Eq. (9.19) is independent of σ ∈ Sn.

3. From Eq. (9.19) and the usual simple function approximation arguments
we may conclude that Eq. (9.17) is valid.
Now suppose that f ∈ L1 (X,M, π) .

4. Using step 1 it is easy to check that

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi – measurable. Indeed,

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi)

is Mi – measurable and therefore

E :=
{

(x1, . . . , x̂i, . . . , xn) :
∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi) <∞
}
∈Mi.

Now let u := Re f and v := Im f and u± and v± are the positive and
negative parts of u and v respectively, then∫

Xi

f (x) dµi (xi) =
∫
Xi

1E
(
xi
)
f (x) dµi (xi)

=
∫
Xi

1E
(
xi
)
u (x) dµi (xi) + i

∫
Xi

1E
(
xi
)
v (x) dµi (xi) .

Both of these later terms are Mi – measurable since, for example,∫
Xi

1E
(
xi
)
u (x) dµi (xi) =

∫
Xi

1E
(
xi
)
u+ (x) dµi (xi)−

∫
Xi

1E
(
xi
)
u− (x) dµi (xi)

which is Mi – measurable by step 1.
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5. It now follows by induction that the right side of Eq. (9.18) is well defined.
6. Let i := σn and T : X → Xi ×Xi be the obvious identification;

T (xi, (x1, . . . , x̂i, . . . , xn)) = (x1, . . . , xn) .

One easily verifies T is M/Mi ⊗ Mi – measurable (use Corollary 6.19
repeatedly) and that π ◦ T−1 = µi ⊗ µi (see Exercise 5.1).

7. Let f ∈ L1 (π) . Combining step 6. with the abstract change of variables
Theorem (Exercise 7.11) implies∫

X

fdπ =
∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
. (9.20)

By Theorem 9.9, we also have∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
=
∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f ◦ T (xi, xi)

=
∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f(x1, . . . , xn).

(9.21)

Then by the induction hypothesis,∫
Xi
dµi (xi)

∫
Xi

dµi(xi) f(x1, . . . , xn) =
∏
j 6=i

∫
Xj

dµj (xj)
∫
Xi

dµi(xi) f(x1, . . . , xn)

(9.22)
where the ordering the integrals in the last product are inconsequential.
Combining Eqs. (9.20) – (9.22) completes the proof.

Convention: We are now going to drop the bar above the integral sign
with the understanding that

∫
X
fdµ = 0 whenever f : X → C is a measurable

function such that
∫
X
|f | dµ =∞. However if f is a non-negative function (i.e.

f : X → [0,∞]) non-integrable function we will interpret
∫
X
fdµ to be infinite.

Example 9.11. In this example we will show

lim
M→∞

∫ M

0

sinx
x

dx = π/2. (9.23)

To see this write 1
x =

∫∞
0
e−txdt and use Fubini-Tonelli to conclude that

∫ M

0

sinx
x

dx =
∫ M

0

[∫ ∞
0

e−tx sinx dt
]
dx

=
∫ ∞

0

[∫ M

0

e−tx sinx dx

]
dt

=
∫ ∞

0

1
1 + t2

(
1− te−Mt sinM − e−Mt cosM

)
dt

→
∫ ∞

0

1
1 + t2

dt =
π

2
as M →∞,

wherein we have used the dominated convergence theorem (for instance, take
g (t) := 1

1+t2 (1 + te−t + e−t)) to pass to the limit.

The next example is a refinement of this result.

Example 9.12. We have∫ ∞
0

sinx
x

e−Λxdx =
1
2
π − arctanΛ for all Λ > 0 (9.24)

and forΛ,M ∈ [0,∞),∣∣∣∣∣
∫ M

0

sinx
x

e−Λxdx− 1
2
π + arctanΛ

∣∣∣∣∣ ≤ C e−MΛ

M
(9.25)

where C = maxx≥0
1+x
1+x2 = 1

2
√

2−2
∼= 1.2. In particular Eq. (9.23) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
∣∣∣∣∫ x

0

cos ydy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

1dy
∣∣∣∣ = |x|

so
∣∣ sin x
x

∣∣ ≤ 1 for all x 6= 0. Making use of the identity∫ ∞
0

e−txdt = 1/x

and Fubini’s theorem,
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0

sinx
x

e−Λxdx =
∫ M

0

dx sinx e−Λx
∫ ∞

0

e−txdt

=
∫ ∞

0

dt

∫ M

0

dx sinx e−(Λ+t)x

=
∫ ∞

0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)2 + 1
dt

=
∫ ∞

0

1
(Λ+ t)2 + 1

dt−
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt

=
1
2
π − arctanΛ− ε(M,Λ) (9.26)

where

ε(M,Λ) =
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt.

Since ∣∣∣∣∣cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

∣∣∣∣∣ ≤ 1 + (Λ+ t)
(Λ+ t)2 + 1

≤ C,

|ε(M,Λ)| ≤
∫ ∞

0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (9.26) proves Eq. (9.25) from which Eq. (9.23) fol-
lows by taking Λ→∞ and Eq. (9.24) follows (using the dominated convergence
theorem again) by letting M →∞.

Lemma 9.13. Suppose that X is a random variable and ϕ : R→ R is a C1

– functions such that limx→−∞ ϕ (x) = 0 and either ϕ′ (x) ≥ 0 for all x or∫
R |ϕ

′ (x)| dx <∞. Then

E [ϕ (X)] =
∫ ∞
−∞

ϕ′ (y)P (X > y) dy.

Similarly if X ≥ 0 and ϕ : [0,∞) → R is a C1 – function such that ϕ (0) = 0
and either ϕ′ ≥ 0 or

∫∞
0
|ϕ′ (x)| dx <∞, then

E [ϕ (X)] =
∫ ∞

0

ϕ′ (y)P (X > y) dy.

Proof. By the fundamental theorem of calculus for all M <∞ and x ∈ R,

ϕ (x) = ϕ (−M) +
∫ x

−M
ϕ′ (y) dy. (9.27)

Under the stated assumptions on ϕ, we may use either the monotone or the
dominated convergence theorem to let M →∞ in Eq. (9.27) to find,

ϕ (x) =
∫ x

−∞
ϕ′ (y) dy =

∫
R

1y<xϕ′ (y) dy for all x ∈ R.

Therefore,

E [ϕ (X)] = E
[∫

R
1y<Xϕ′ (y) dy

]
=
∫

R
E [1y<X ]ϕ′ (y) dy =

∫ ∞
−∞

ϕ′ (y)P (X > y) dy,

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader.

Example 9.14. Here are a couple of examples involving Lemma 9.13.

1. Suppose X is a random variable, then

E
[
eX
]

=
∫ ∞
−∞

P (X > y) eydy =
∫ ∞

0

P (X > lnu) du, (9.28)

where we made the change of variables, u = ey, to get the second equality.
2. If X ≥ 0 and p ≥ 1, then

EXp = p

∫ ∞
0

yp−1P (X > y) dy. (9.29)

9.4 Fubini’s Theorem and Completions*

Notation 9.15 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.

Theorem 9.16. Suppose (X,M, µ) and (Y,N , ν) are complete σ – finite mea-
sure spaces. Let (X × Y,L, λ) be the completion of (X × Y,M⊗N , µ⊗ ν). If f
is L – measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N – measurable
for µ a.e. x and fy is M – measurable for ν a.e. y and in case (b) fx ∈ L1(ν)
and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,
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9.5 Lebesgue Measure on Rd and the Change of Variables Theorem 123(
x→

∫
Y

fxdν

)
∈ L1 (µ) and

(
y →

∫
X

fydµ

)
∈ L1 (ν)

and ∫
X×Y

fdλ =
∫
Y

dν

∫
X

dµ f =
∫
X

dµ

∫
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =
∫
X

ν(xE)dµ(x) =
∫
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y. If h is L measurable and
h = 0 for λ – a.e., then there exists E ∈ M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and
{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

∫
Y
h(x, y)dν(y)

exists and equals 0 for µ a.e. x and similarly that
∫
X
h(x, y)dµ(x) exists and

equals 0 for ν a.e. y. Therefore

0 =
∫
X×Y

hdλ =
∫
Y

(∫
X

hdµ

)
dν =

∫
X

(∫
Y

hdν

)
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M⊗N , µ⊗ν) such that f(x, y) =
g(x, y) for λ− a.e. (x, y). Define h := f−g. Then h = 0, λ− a.e. Hence by what
we have just proved and Theorem 9.6 f = g + h has the following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) and∫
Y

f(x, y)dν(y) =
∫
Y

g(x, y)dν(y).

2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) and∫
X

f(x, y)dµ(x) =
∫
X

g(x, y)dµ(x).

From these assertions and Theorem 9.6, it follows that∫
X

dµ(x)
∫
Y

dν(y)f(x, y) =
∫
X

dµ(x)
∫
Y

dν(y)g(x, y)

=
∫
Y

dν(y)
∫
Y

dν(x)g(x, y)

=
∫
X×Y

g(x, y)d(µ⊗ ν)(x, y)

=
∫
X×Y

f(x, y)dλ(x, y).

Similarly it is shown that∫
Y

dν(y)
∫
X

dµ(x)f(x, y) =
∫
X×Y

f(x, y)dλ(x, y).

9.5 Lebesgue Measure on Rd and the Change of Variables
Theorem

Notation 9.17 Let

md :=
d times︷ ︸︸ ︷

m⊗ · · · ⊗m on BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR

be the d – fold product of Lebesgue measure m on BR. We will also use md

to denote its completion and let Ld be the completion of BRd relative to md.
A subset A ∈ Ld is called a Lebesgue measurable set and md is called d –
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 9.18. A function f : Rd → R is Lebesgue measurable if
f−1(BR) ⊂ Ld.

Notation 9.19 I will often be sloppy in the sequel and write m for md and dx
for dm(x) = dmd(x), i.e.∫

Rd
f (x) dx =

∫
Rd
fdm =

∫
Rd
fdmd.

Hopefully the reader will understand the meaning from the context.

Theorem 9.20. Lebesgue measure md is translation invariant. Moreover md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
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Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then

x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that

md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x+ A) = md(A) for all A ∈ BRd since it holds for A in a multi-
plicative system which generates BRd . From this fact we see that the measure
md(x + ·) and md(·) have the same null sets. Using this it is easily seen that
m(x+A) = m(A) for all A ∈ Ld. The proof of the second assertion is Exercise
9.13.

Exercise 9.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations and
satisfies, m(B0(ε)) > 0 for all ε > 0. Show m(V ) = ∞ for all non-empty open
subsets V ⊂ H.

Theorem 9.21 (Change of Variables Theorem). Let Ω ⊂o Rd be an open
set and T : Ω → T (Ω) ⊂o Rd be a C1 – diffeomorphism,2 see Figure 9.1. Then
for any Borel measurable function, f : T (Ω)→ [0,∞],∫

Ω

f (T (x)) |detT ′ (x) |dx =
∫

T (Ω)

f (y) dy, (9.30)

where T ′(x) is the linear transformation on Rd defined by T ′(x)v := d
dt |0T (x+

tv). More explicitly, viewing vectors in Rd as columns, T ′ (x) may be represented
by the matrix

T ′ (x) =

∂1T1 (x) . . . ∂dT1 (x)
...

. . .
...

∂1Td (x) . . . ∂dTd (x)

 , (9.31)

i.e. the i - j – matrix entry of T ′(x) is given by T ′(x)ij = ∂iTj(x) where
T (x) = (T1(x), . . . , Td(x))tr and ∂i = ∂/∂xi.

Remark 9.22. Theorem 9.21 is best remembered as the statement: if we make
the change of variables y = T (x) , then dy = |detT ′ (x) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if x ranges through Ω
then y must range through T (Ω) .
2 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the

inverse map T−1 : T (Ω)→ Ω is also continuously differentiable.

Fig. 9.1. The geometric setup of Theorem 9.21.

Note: you may skip the rest of this section!

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise 7.12. Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < α < β < b such that [a, b] is a compact
subinterval of Ω. Then |detT ′| = |T ′| and∫

[a,b]

1T ((α,β]) (T (x)) |T ′ (x)| dx =
∫

[a,b]

1(α,β] (x) |T ′ (x)| dx =
∫ β

α

|T ′ (x)| dx.

If T ′ (x) > 0 on [a, b] , then∫ β

α

|T ′ (x)| dx =
∫ β

α

T ′ (x) dx = T (β)− T (α)

= m (T ((α, β])) =
∫
T ([a,b])

1T ((α,β]) (y) dy

while if T ′ (x) < 0 on [a, b] , then∫ β

α

|T ′ (x)| dx = −
∫ β

α

T ′ (x) dx = T (α)− T (β)

= m (T ((α, β])) =
∫
T ([a,b])

1T ((α,β]) (y) dy.
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Combining the previous three equations shows∫
[a,b]

f (T (x)) |T ′ (x)| dx =
∫
T ([a,b])

f (y) dy (9.32)

whenever f is of the form f = 1T ((α,β]) with a < α < β < b. An application
of Dynkin’s multiplicative system Theorem 8.16 then implies that Eq. (9.32)
holds for every bounded measurable function f : T ([a, b]) → R. (Observe that
|T ′ (x)| is continuous and hence bounded for x in the compact interval, [a, b] .)
Recall that Ω =

∑N
n=1 (an, bn) where an, bn ∈ R∪{±∞} for n = 1, 2, · · · < N

with N =∞ possible. Hence if f : T (Ω)→ R + is a Borel measurable function
and an < αk < βk < bn with αk ↓ an and βk ↑ bn, then by what we have
already proved and the monotone convergence theorem∫

Ω

1(an,bn) · (f ◦ T ) · |T ′|dm =
∫
Ω

(
1T ((an,bn)) · f

)
◦ T · |T ′|dm

= lim
k→∞

∫
Ω

(
1T ([αk,βk]) · f

)
◦ T · |T ′| dm

= lim
k→∞

∫
T (Ω)

1T ([αk,βk]) · f dm

=
∫

T (Ω)

1T ((an,bn)) · f dm.

Summing this equality on n, then shows Eq. (9.30) holds.
To carry out the induction step, we now suppose d > 1 and suppose the

theorem is valid with d being replaced by d−1. For notational compactness, let
us write vectors in Rd as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T ′ (x) , will always be taken to be given
as in Eq. (9.31).

Case 1. Suppose T (x) has the form

T (x) = (xi, T2 (x) , . . . , Td (x)) (9.33)

or
T (x) = (T1 (x) , . . . , Td−1 (x) , xi) (9.34)

for some i ∈ {1, . . . , d} . For definiteness we will assume T is as in Eq. (9.33), the
case of T in Eq. (9.34) may be handled similarly. For t ∈ R, let it : Rd−1 → Rd
be the inclusion map defined by

it (w) := wt := (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ,

Ωt be the (possibly empty) open subset of Rd−1 defined by

Ωt :=
{
w ∈ Rd−1 : (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ∈ Ω

}
and Tt : Ωt → Rd−1 be defined by

Tt (w) = (T2 (wt) , . . . , Td (wt)) ,

see Figure 9.2. Expanding detT ′ (wt) along the first row of the matrix T ′ (wt)

Fig. 9.2. In this picture d = i = 3 and Ω is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map T and slicing the
set Ω along planes where x3 = t.

shows
|detT ′ (wt)| = |detT ′t (w)| .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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126 9 Multiple and Iterated Integrals∫
Ω

f ◦ T |detT ′|dm =
∫
Rd

1Ω · f ◦ T |detT ′|dm

=
∫
Rd

1Ω (wt) (f ◦ T ) (wt) |detT ′ (wt) |dwdt

=
∫

R

∫
Ωt

(f ◦ T ) (wt) |detT ′ (wt) |dw

 dt
=
∫

R

∫
Ωt

f (t, Tt (w)) |detT ′t (w) |dw

 dt
=
∫

R

 ∫
Tt(Ωt)

f (t, z) dz

 dt =
∫

R

 ∫
Rd−1

1T (Ω) (t, z) f (t, z) dz

 dt
=
∫

T (Ω)

f (y) dy

wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;

T (Ω) =
∑
t∈R

T (it (Ω)) =
∑
t∈R
{(t, z) : z ∈ Tt (Ωt)} .

Case 2. (Eq. (9.30) is true locally.) Suppose that T : Ω → Rd is a general
map as in the statement of the theorem and x0 ∈ Ω is an arbitrary point. We
will now show there exists an open neighborhood W ⊂ Ω of x0 such that∫

W

f ◦ T |detT ′|dm =
∫
T (W )

fdm

holds for all Borel measurable function, f : T (W ) → [0,∞]. Let Mi be the 1-i
minor of T ′ (x0) , i.e. the determinant of T ′ (x0) with the first row and ith –
column removed. Since

0 6= detT ′ (x0) =
d∑
i=1

(−1)i+1
∂iTj (x0) ·Mi,

there must be some i such that Mi 6= 0. Fix an i such that Mi 6= 0 and let,

S (x) := (xi, T2 (x) , . . . , Td (x)) . (9.35)

Observe that |detS′ (x0)| = |Mi| 6= 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of x0 such that W ⊂o Ω and S (W ) ⊂o Rd

and S : W → S (W ) is a C1 – diffeomorphism. Let R : S (W )→ T (W ) ⊂o Rd
to be the C1 – diffeomorphism defined by

R (z) := T ◦ S−1 (z) for all z ∈ S (W ) .

Because

(T1 (x) , . . . , Td (x)) = T (x) = R (S (x)) = R ((xi, T2 (x) , . . . , Td (x)))

for all x ∈W, if

(z1, z2, . . . , zd) = S (x) = (xi, T2 (x) , . . . , Td (x))

then
R (z) =

(
T1

(
S−1 (z)

)
, z2, . . . , zd

)
. (9.36)

Observe that S is a map of the form in Eq. (9.33), R is a map of the form in Eq.
(9.34), T ′ (x) = R′ (S (x))S′ (x) (by the chain rule) and (by the multiplicative
property of the determinant)

|detT ′ (x)| = |detR′ (S (x)) | |detS′ (x)| ∀ x ∈W.

So if f : T (W )→ [0,∞] is a Borel measurable function, two applications of the
results in Case 1. shows,∫

W

f ◦ T · | detT ′|dm =
∫
W

(f ◦R · | detR′|) ◦ S · |detS′| dm

=
∫

S(W )

f ◦R · | detR′|dm =
∫

R(S(W ))

fdm

=
∫
T (W )

fdm

and Case 2. is proved.
Case 3. (General Case.) Let f : Ω → [0,∞] be a general non-negative Borel

measurable function and let

Kn := {x ∈ Ω : dist(x,Ωc) ≥ 1/n and |x| ≤ n} .

Then each Kn is a compact subset of Ω and Kn ↑ Ω as n → ∞. Using the
compactness of Kn and case 2, for each n ∈ N, there is a finite open cover Wn

of Kn such that W ⊂ Ω and Eq. (9.30) holds with Ω replaced by W for each
W ∈ Wn. Let {Wi}∞i=1 be an enumeration of ∪∞n=1Wn and set W̃1 = W1 and
W̃i := Wi \(W1 ∪ · · · ∪Wi−1) for all i ≥ 2. Then Ω =

∑∞
i=1 W̃i and by repeated

use of case 2.,
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9.5 Lebesgue Measure on Rd and the Change of Variables Theorem 127∫
Ω

f ◦ T |detT ′|dm =
∞∑
i=1

∫
Ω

1W̃i
· (f ◦ T ) · | detT ′|dm

=
∞∑
i=1

∫
Wi

[(
1T(W̃i)f

)
◦ T
]
· | detT ′|dm

=
∞∑
i=1

∫
T (Wi)

1T(W̃i) · f dm =
n∑
i=1

∫
T (Ω)

1T(W̃i) · f dm

=
∫

T (Ω)

fdm.

Remark 9.23. When d = 1, one often learns the change of variables formula as∫ b

a

f (T (x))T ′ (x) dx =
∫ T (b)

T (a)

f (y) dy (9.37)

where f : [a, b]→ R is a continuous function and T is C1 – function defined in
a neighborhood of [a, b] . If T ′ > 0 on (a, b) then T ((a, b)) = (T (a) , T (b)) and
Eq. (9.37) is implies Eq. (9.30) with Ω = (a, b) . On the other hand if T ′ < 0
on (a, b) then T ((a, b)) = (T (b) , T (a)) and Eq. (9.37) is equivalent to∫

(a,b)

f (T (x)) (− |T ′ (x)|) dx = −
∫ T (a)

T (b)

f (y) dy = −
∫
T ((a,b))

f (y) dy

which is again implies Eq. (9.30). On the other hand Eq. (9.37) is more general
than Eq. (9.30) since it does not require T to be injective. The standard proof
of Eq. (9.37) is as follows. For z ∈ T ([a, b]) , let

F (z) :=
∫ z

T (a)

f (y) dy.

Then by the chain rule and the fundamental theorem of calculus,∫ b

a

f (T (x))T ′ (x) dx =
∫ b

a

F ′ (T (x))T ′ (x) dx =
∫ b

a

d

dx
[F (T (x))] dx

= F (T (x)) |ba =
∫ T (b)

T (a)

f (y) dy.

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(9.37) holds for all bounded measurable functions f on (a, b) . Then by the
usual truncation argument, it also holds for all positive measurable functions
on (a, b) .

Exercise 9.2. Continuing the setup in Theorem 9.21, show that
f ∈ L1

(
T (Ω) ,md

)
iff ∫

Ω

|f ◦ T | |detT ′|dm <∞

and if f ∈ L1
(
T (Ω) ,md

)
, then Eq. (9.30) holds.

Example 9.24. Continuing the setup in Theorem 9.21, if A ∈ BΩ , then

m (T (A)) =
∫

Rd
1T (A) (y) dy =

∫
Rd

1T (A) (Tx) |detT ′ (x)| dx

=
∫

Rd
1A (x) |detT ′ (x)| dx

wherein the second equality we have made the change of variables, y = T (x) .
Hence we have shown

d (m ◦ T ) = |detT ′ (·)| dm.

Taking T ∈ GL(d,R) = GL(Rd) – the space of d × d invertible matrices in
the previous example implies m ◦ T = |detT |m, i.e.

m (T (A)) = |detT |m (A) for all A ∈ BRd . (9.38)

This equation also shows that m ◦ T and m have the same null sets and hence
the equality in Eq. (9.38) is valid for any A ∈ Ld. In particular we may conclude
that m is invariant under those T ∈ GL(d,R) with |det (T )| = 1. For example
if T is a rotation (i.e. T trT = I), then detT = ±1 and hence m is invariant
under all rotations. This is not obvious from the definition of md as a product
measure!

Example 9.25. Suppose that T (x) = x+b for some b ∈ Rd. In this case T ′ (x) =
I and therefore it follows that∫

Rd

f (x+ b) dx =
∫
Rd

f (y) dy

for all measurable f : Rd → [0,∞] or for any f ∈ L1 (m) . In particular Lebesgue
measure is invariant under translations.

Example 9.26 (Polar Coordinates). Suppose T : (0,∞)×(0, 2π)→ R2 is defined
by

x = T (r, θ) = (r cos θ, r sin θ) ,
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i.e. we are making the change of variable,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In this case

T ′(r, θ) =
(

cos θ − r sin θ
sin θ r cos θ

)
and therefore

dx = |detT ′(r, θ)| drdθ = rdrdθ.

Observing that

R2 \ T ((0,∞)× (0, 2π)) = ` := {(x, 0) : x ≥ 0}

has m2 – measure zero, it follows from the change of variables Theorem 9.21
that ∫

R2
f(x)dx =

∫ 2π

0

dθ

∫ ∞
0

dr r · f(r (cos θ, sin θ)) (9.39)

for any Borel measurable function f : R2 → [0,∞].

Example 9.27 (Holomorphic Change of Variables). Suppose that f : Ω ⊂o C ∼=
R2→ C is an injective holomorphic function such that f ′ (z) 6= 0 for all z ∈ Ω.
We may express f as

f (x+ iy) = U (x, y) + iV (x, y)

for all z = x+ iy ∈ Ω. Hence if we make the change of variables,

w = u+ iv = f (x+ iy) = U (x, y) + iV (x, y)

then

dudv =
∣∣∣∣det

[
Ux Uy
Vx Vy

]∣∣∣∣ dxdy = |UxVy − UyVx| dxdy.

Recalling that U and V satisfy the Cauchy Riemann equations, Ux = Vy and
Uy = −Vx with f ′ = Ux + iVx, we learn

UxVy − UyVx = U2
x + V 2

x = |f ′|2 .

Therefore
dudv = |f ′ (x+ iy)|2 dxdy.

Example 9.28. In this example we will evaluate the integral

I :=
∫∫

Ω

(
x4 − y4

)
dxdy

Fig. 9.3. The region Ω consists of the two curved rectangular regions shown.

where
Ω =

{
(x, y) : 1 < x2 − y2 < 2, 0 < xy < 1

}
,

see Figure 9.3. We are going to do this by making the change of variables,

(u, v) := T (x, y) =
(
x2 − y2, xy

)
,

in which case

dudv =
∣∣∣∣det

[
2x −2y
y x

]∣∣∣∣ dxdy = 2
(
x2 + y2

)
dxdy

Notice that(
x4 − y4

)
=
(
x2 − y2

) (
x2 + y2

)
= u

(
x2 + y2

)
=

1
2
ududv.

The function T is not injective on Ω but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
Ω = −D ∪ D and T (±D) = (1, 2) × (0, 1) . The change of variables theorem
then implies

I± :=
∫∫
±D

(
x4 − y4

)
dxdy =

1
2

∫∫
(1,2)×(0,1)

ududv =
1
2
u2

2
|21 · 1 =

3
4

and therefore I = I+ + I− = 2 · (3/4) = 3/2.

Exercise 9.3 (Spherical Coordinates). Let T : (0,∞)×(0, π)×(0, 2π)→ R3

be defined by
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Fig. 9.4. The relation of x to (r, φ, θ) in spherical coordinates.

T (r, ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)
= r (sinϕ cos θ, sinϕ sin θ, cosϕ) ,

see Figure 9.4. By making the change of variables x = T (r, ϕ, θ) , show∫
R3
f(x)dx =

∫ π

0

dϕ

∫ 2π

0

dθ

∫ ∞
0

dr r2 sinϕ · f(T (r, ϕ, θ))

for any Borel measurable function, f : R3 → [0,∞].

Lemma 9.29. Let a > 0 and

Id(a) :=
∫
Rd

e−a|x|
2
dm(x).

Then Id(a) = (π/a)d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =
∫

Rd−1×R
e−a|y|

2
e−at

2
md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (9.40)

So it suffices to compute:

I2(a) =
∫
R2

e−a|x|
2
dm(x) =

∫
R2\{0}

e−a(x2
1+x2

2)dx1dx2.

Using polar coordinates, see Eq. (9.39), we find,

I2(a) =
∫ ∞

0

dr r

∫ 2π

0

dθ e−ar
2

= 2π
∫ ∞

0

re−ar
2
dr

= 2π lim
M→∞

∫ M

0

re−ar
2
dr = 2π lim

M→∞

e−ar
2

−2a

∫ M

0

=
2π
2a

= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (9.40).

9.6 The Polar Decomposition of Lebesgue Measure*

Let

Sd−1 = {x ∈ Rd : |x|2 :=
d∑
i=1

x2
i = 1}

be the unit sphere in Rd equipped with its Borel σ – algebra, BSd−1 and Φ :
Rd \{0} → (0,∞)×Sd−1 be defined by Φ(x) := (|x| , |x|−1

x). The inverse map,
Φ−1 : (0,∞)× Sd−1 → Rd \ {0} , is given by Φ−1(r, ω) = rω. Since Φ and Φ−1

are continuous, they are both Borel measurable. For E ∈ BSd−1 and a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]× E) ∈ BRd .

Definition 9.30. For E ∈ BSd−1 , let σ(E) := d ·m(E1). We call σ the surface
measure on Sd−1.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]× E) ∈ BRd so that m(E1) is well defined. Moreover if E =

∑∞
i=1Ei,

then E1 =
∑∞
i=1 (Ei)1 and

σ(E) = d ·m(E1) =
∞∑
i=1

m ((Ei)1) =
∞∑
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and ε > 0
is a small number, then the volume of

(1, 1 + ε] · E = {rω : r ∈ (1, 1 + ε] and ω ∈ E}

should be approximately given by m ((1, 1 + ε] · E) ∼= σ(E)ε, see Figure 9.5
below. On the other hand

m ((1, 1 + ε]E) = m (E1+ε \ E1) =
{

(1 + ε)d − 1
}
m(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
ε↓0

{
(1 + ε)d − 1

}
m(E1)

ε
= d ·m(E1).

The following theorem is motivated by Example 9.26 and Exercise 9.3.
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Fig. 9.5. Motivating the definition of surface measure for a sphere.

Theorem 9.31 (Polar Coordinates). If f : Rd → [0,∞] is a (BRd ,B)–
measurable function then∫

Rd

f(x)dm(x) =
∫

(0,∞)×Sd−1

f(rω)rd−1 drdσ(ω). (9.41)

In particular if f : R+ → R+ is measurable then∫
Rd

f(|x|)dx =
∫ ∞

0

f(r)dV (r) (9.42)

where V (r) = m (B(0, r)) = rdm (B(0, 1)) = d−1σ
(
Sd−1

)
rd.

Proof. By Exercise 7.11,∫
Rd

fdm =
∫

Rd\{0}

(
f ◦ Φ−1

)
◦ Φ dm =

∫
(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (Φ∗m) (9.43)

and therefore to prove Eq. (9.41) we must work out the measure Φ∗m on B(0,∞)⊗
BSd−1 defined by

Φ∗m(A) := m
(
Φ−1(A)

)
∀ A ∈ B(0,∞) ⊗ BSd−1 . (9.44)

If A = (a, b]× E with 0 < a < b and E ∈ BSd−1 , then

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} = bE1 \ aE1

wherein we have used Ea = aE1 in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Φ∗m) ((a, b]× E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1) = d ·m(E1)
∫ b

a

rd−1dr. (9.45)

Letting dρ(r) = rd−1dr, i.e.

ρ(J) =
∫
J

rd−1dr ∀ J ∈ B(0,∞), (9.46)

Eq. (9.45) may be written as

(Φ∗m) ((a, b]× E) = ρ((a, b]) · σ(E) = (ρ⊗ σ) ((a, b]× E) . (9.47)

Since
E = {(a, b]× E : 0 < a < b and E ∈ BSd−1} ,

is a π class (in fact it is an elementary class) such that σ(E) = B(0,∞) ⊗BSd−1 ,
it follows from the π – λ Theorem and Eq. (9.47) that Φ∗m = ρ⊗ σ. Using this
result in Eq. (9.43) gives∫

Rd

fdm =
∫

(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (ρ⊗ σ)

which combined with Tonelli’s Theorem 9.6 proves Eq. (9.43).

Corollary 9.32. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(9.48)

where Γ is the gamma function is as in Example 7.47 and 7.50.

Proof. Using Theorem 9.31 we find

Id(1) =
∫ ∞

0

dr rd−1e−r
2
∫

Sd−1

dσ = σ(Sd−1)
∫ ∞

0

rd−1e−r
2
dr.

We simplify this last integral by making the change of variables u = r2 so that
r = u1/2 and dr = 1

2u
−1/2du. The result is∫ ∞

0

rd−1e−r
2
dr =

∫ ∞
0

u
d−1
2 e−u

1
2
u−1/2du

=
1
2

∫ ∞
0

u
d
2−1e−udu =

1
2
Γ (d/2). (9.49)

Combing the the last two equations with Lemma 9.29 which states that Id(1) =
πd/2, we conclude that

πd/2 = Id(1) =
1
2
σ(Sd−1)Γ (d/2)

which proves Eq. (9.48).
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9.7 More Spherical Coordinates*

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞) ×
[0, 2π) so that (

x1

x2

)
=
(
r cos θ
r sin θ

)
= T2(θ, r).

For n = 3 we let x3 = r cosϕ1 and then(
x1

x2

)
= T2(θ, r sinϕ1),

as can be seen from Figure 9.6, so that

Fig. 9.6. Setting up polar coordinates in two and three dimensions.

x1

x2

x3

 =
(
T2(θ, r sinϕ1)

r cosϕ1

)
=

 r sinϕ1 cos θ
r sinϕ1 sin θ
r cosϕ1

 =: T3(θ, ϕ1, r, ).

We continue to work inductively this way to define
x1

...
xn
xn+1

 =
(
Tn(θ, ϕ1, . . . , ϕn−2, r sinϕn−1, )

r cosϕn−1

)
= Tn+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r).

So for example,

x1 = r sinϕ2 sinϕ1 cos θ
x2 = r sinϕ2 sinϕ1 sin θ
x3 = r sinϕ2 cosϕ1

x4 = r cosϕ2

and more generally,

x1 = r sinϕn−2 . . . sinϕ2 sinϕ1 cos θ
x2 = r sinϕn−2 . . . sinϕ2 sinϕ1 sin θ
x3 = r sinϕn−2 . . . sinϕ2 cosϕ1

...
xn−2 = r sinϕn−2 sinϕn−3 cosϕn−4

xn−1 = r sinϕn−2 cosϕn−3

xn = r cosϕn−2. (9.50)

By the change of variables formula,∫
Rn
f(x)dm(x)

=
∫ ∞

0

dr

∫
0≤ϕi≤π,0≤θ≤2π

dϕ1 . . . dϕn−2dθ

[
∆n(θ, ϕ1, . . . , ϕn−2, r)
×f(Tn(θ, ϕ1, . . . , ϕn−2, r))

]
(9.51)

where
∆n(θ, ϕ1, . . . , ϕn−2, r) := |detT ′n(θ, ϕ1, . . . , ϕn−2, r)| .

Proposition 9.33. The Jacobian, ∆n is given by

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1. (9.52)

If f is a function on rSn−1 – the sphere of radius r centered at 0 inside of Rn,
then∫
rSn−1

f(x)dσ(x) = rn−1

∫
Sn−1

f(rω)dσ(ω)

=
∫

0≤ϕi≤π,0≤θ≤2π

f(Tn(θ, ϕ1, . . . , ϕn−2, r))∆n(θ, ϕ1, . . . , ϕn−2, r)dϕ1 . . . dϕn−2dθ

(9.53)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinϕn−1

and writing ∂Tn
∂ξ for ∂Tn

∂ξ (θ, ϕ1, . . . , ϕn−2, ρ) we have

∆n+1(θ,ϕ1, . . . , ϕn−2, ϕn−1, r)

=
∣∣∣∣[ ∂Tn∂θ ∂Tn

∂ϕ1

0 0
. . . ∂Tn

∂ϕn−2

. . . 0

∂Tn
∂ρ r cosϕn−1

−r sinϕn−1

∂Tn
∂ρ sinϕn−1

cosϕn−1

]∣∣∣∣
= r

(
cos2 ϕn−1 + sin2 ϕn−1

)
∆n(, θ, ϕ1, . . . , ϕn−2, ρ)

= r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1),
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i.e.

∆n+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r) = r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1). (9.54)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with ∆2(θ, r) = r already derived in Example 9.26, Eq. (9.54)
implies,

∆3(θ, ϕ1, r) = r∆2(θ, r sinϕ1) = r2 sinϕ1

∆4(θ, ϕ1, ϕ2, r) = r∆3(θ, ϕ1, r sinϕ2) = r3 sin2 ϕ2 sinϕ1

...

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1

which proves Eq. (9.52). Equation (9.53) now follows from Eqs. (9.41), (9.51)
and (9.52).

As a simple application, Eq. (9.53) implies

σ(Sn−1) =
∫

0≤ϕi≤π,0≤θ≤2π

sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1dϕ1 . . . dϕn−2dθ

= 2π
n−2∏
k=1

γk = σ(Sn−2)γn−2 (9.55)

where γk :=
∫ π

0
sink ϕdϕ. If k ≥ 1, we have by integration by parts that,

γk =
∫ π

0

sink ϕdϕ = −
∫ π

0

sink−1 ϕ d cosϕ = 2δk,1 + (k − 1)
∫ π

0

sink−2 ϕ cos2 ϕdϕ

= 2δk,1 + (k − 1)
∫ π

0

sink−2 ϕ
(
1− sin2 ϕ

)
dϕ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1
k

γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1
2
π, γ3 =

2
3

2, γ4 =
3
4

1
2
π, γ5 =

4
5

2
3

2, γ6 =
5
6

3
4

1
2
π

and more generally by induction that

γ2k = π
(2k − 1)!!

(2k)!!
and γ2k+1 = 2

(2k)!!
(2k + 1)!!

.

Indeed,

γ2(k+1)+1 =
2k + 2
2k + 3

γ2k+1 =
2k + 2
2k + 3

2
(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!
(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1
2k + 1

γ2k =
2k + 1
2k + 2

π
(2k − 1)!!

(2k)!!
= π

(2k + 1)!!
(2k + 2)!!

.

The recursion relation in Eq. (9.55) may be written as

σ(Sn) = σ
(
Sn−1

)
γn−1 (9.56)

which combined with σ
(
S1
)

= 2π implies

σ
(
S1
)

= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1
2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 =

22π2

2!!
· 22

3
=

23π2

3!!

σ(S5) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π · 4

5
2
3

2 =
24π3

5!!
and more generally that

σ(S2n) =
2 (2π)n

(2n− 1)!!
and σ(S2n+1) =

(2π)n+1

(2n)!!
(9.57)

which is verified inductively using Eq. (9.56). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)n

(2n− 1)!!
π

(2n− 1)!!
(2n)!!

=
(2π)n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)n+1

(2n)!!
2

(2n)!!
(2n+ 1)!!

=
2 (2π)n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (9.41) and (9.57 are in
agreement. We may also write the formula in Eq. (9.57) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even
(2π)

n+1
2

(n−1)!! for n odd.
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9.8 Gaussian Random Vectors

Definition 9.34 (Gaussian Random Vectors). Let (Ω,B, P ) be a probabil-
ity space and X : Ω → Rd be a random vector. We say that X is Gaussian if
there exists an d× d – symmetric matrix Q and a vector µ ∈ Rd such that

E
[
eiλ·X

]
= exp

(
−1

2
Qλ · λ+ iµ · λ

)
for all λ ∈ Rd. (9.58)

We will write X d= N (Q,µ) to denote a Gaussian random vector such that Eq.
(9.58) holds.

Notice that if there exists a random variable satisfying Eq. (9.58) then its law
is uniquely determined by Q and µ because of Corollary 8.11. In the exercises
below your will develop some basic properties of Gaussian random vectors – see
Theorem 9.38 for a summary of what you will prove.

Exercise 9.4. Show that Q must be non-negative in Eq. (9.58).

Definition 9.35. Given a Gaussian random vector, X, we call the pair, (Q,µ)
appearing in Eq. (9.58) the characteristics of X. We will also abbreviate the
statement that X is a Gaussian random vector with characteristics (Q,µ) by
writing X d= N (Q,µ) .

Lemma 9.36. Suppose that X d= N (Q,µ) and A : Rd → Rm is a m× d – real
matrix and α ∈ Rm, then AX + α

d= N (AQAtr, Aµ+ α) . In short we might
abbreviate this by saying, AN (Q,µ) + α

d= N (AQAtr, Aµ+ α) .

Proof. Let ξ ∈ Rm, then

E
[
eiξ·(AX+α)

]
= eiξ·αE

[
eiA

trξ·X
]

= eiξ·α exp
(
−1

2
QAtrξ ·Atrξ + iµ ·Atrξ

)
= eiξ·α exp

(
−1

2
AQAtrξ · ξ + iAµ · ξ

)
= exp

(
−1

2
AQAtrξ · ξ + i (Aµ+ α) · ξ

)
from which it follows that AX + α

d= N (AQAtr, Aµ+ α) .

Exercise 9.5. Let P be the probability measure on Ω := Rd defined by

dP (x) :=
(

1
2π

)d/2
e−

1
2x·xdx =

d∏
i=1

(
1√
2π
e−x

2
i /2dxi

)
.

Show that N : Ω → Rd defined by N (x) = x is Gaussian and satisfies Eq.
(9.58) with Q = I and µ = 0. Also show

µi = ENi and δij = Cov (Ni, Nj) for all 1 ≤ i, j ≤ d. (9.59)

Hint: use Exercise 7.15 and (of course) Fubini’s theorem.

Exercise 9.6. Let A be any real m×d matrix and µ ∈ Rm and set X := AN+µ
where Ω = Rd, P, and N are as in Exercise 9.5. Show that X is Gaussian by
showing Eq. (9.58) holds with Q = AAtr (Atr is the transpose of the matrix A)
and µ = µ. Also show that

µi = EXi and Qij = Cov (Xi, Xj) for all 1 ≤ i, j ≤ m. (9.60)

Remark 9.37 (Spectral Theorem). Recall that if Q is a real symmetric d × d
matrix, then the spectral theorem asserts there exists an orthonormal basis,
{u}dj=1 , such that Quj = λjuj for some λj ∈ R. Moreover, λj ≥ 0 for all j is
equivalent to Q being non-negative. When Q ≥ 0 we may define Q1/2 by

Q1/2uj :=
√
λjuj for 1 ≤ j ≤ d.

Notice that Q1/2 ≥ 0 and Q =
(
Q1/2

)2
and Q1/2 is still symmetric. If Q is

positive definite, we may also define, Q−1/2 by

Q−1/2uj :=
1√
λj
uj for 1 ≤ j ≤ d

so that Q−1/2 =
[
Q1/2

]−1
.

Exercise 9.7. Suppose that Q is a positive definite (for simplicity) d × d real
matrix and µ ∈ Rd and let Ω = Rd, P, and N be as in Exercise 9.5. By Exercise
9.6 we know that X = Q1/2N + µ is a Gaussian random vector satisfying Eq.
(9.58). Use the multi-dimensional change of variables formula to show

LawP (X) (dy) =
1√

det (2πQ)
exp

(
−1

2
Q−1 (y − µ) · (y − µ)

)
dy.

Let us summarize some of what the preceding exercises have shown.

Theorem 9.38. To each positive definite d × d real symmetric matrix Q and
µ ∈ Rd there exist Gaussian random vectors, X, satisfying Eq. (9.58). Moreover
for such an X,

LawP (X) (dy) =
1√

det (2πQ)
exp

(
−1

2
Q−1 (y − µ) · (y − µ)

)
dy

where Q and µ may be computed from X using,

µi = EXi and Qij = Cov (Xi, Xj) for all 1 ≤ i, j ≤ m. (9.61)
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When Q is degenerate, i.e. Nul (Q) 6= {0} , then X = Q1/2N + µ is still a
Gaussian random vectors satisfying Eq. (9.58). However now the LawP (X) is
a measure on Rd which is concentrated on the non-trivial subspace, Nul (Q)⊥ –
the details of this are left to the reader for now.

Exercise 9.8 (Gaussian random vectors are “highly” integrable.). Sup-
pose that X : Ω → Rd is a Gaussian random vector, say X

d= N (Q,µ) . Let
‖x‖ :=

√
x · x and m := max {Qx · x : ‖x‖ = 1} be the largest eigenvalue3 of Q.

Then E
[
eε‖X‖

2
]
<∞ for every ε < 1

2m .

Because of Eq. (9.61), for all λ ∈ Rd we have

µ · λ =
d∑
i=1

EXi · λi = E (λ ·X)

and

Qλ · λ =
∑
i,j

Qijλiλj =
∑
i,j

λiλj Cov (Xi, Xj)

= Cov

∑
i

λiXi,
∑
j

λjXj

 = Var (λ ·X) .

Therefore we may reformulate the definition of a Gaussian random vector as
follows.

Definition 9.39 (Gaussian Random Vectors). Let (Ω,B, P ) be a probabil-
ity space. A random vector, X : Ω → Rd, is Gaussian iff for all λ ∈ Rd,

E
[
eiλ·X

]
= exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
. (9.62)

In short, X is a Gaussian random vector iff λ·X is a Gaussian random variable
for all λ ∈ Rd.

Remark 9.40. To conclude that a random vector, X : Ω → Rd, is Gaussian it
is not enough to check that each of its components, {Xi}di=1 , are Gaussian
random variables. The following simple counter example was provided by Nate
Eldredge. Let (X,Y ) : Ω → R2 be a Random vector such that (X,Y )∗ P = µ⊗ν
where dµ (x) = 1√

2π
e−

1
2x

2
dx and ν = 1

2 (δ−1 + δ1) . Then (X,Y X) : Ω → R2 is
a random vector such that both components, X and Y X, are Gaussian random
variables but (X,Y X) is not a Gaussian random vector.

Exercise 9.9. Prove the assertion made in Remark 9.40. Hint: explicitly com-
pute E

[
ei(λ1X+λ2XY )

]
.

3 For those who know about operator norms observe that m = ‖Q‖ in this case.

9.9 Kolmogorov’s Extension Theorems

In this section we will extend the results of Section 5.5 to spaces which are not
simply products of discrete spaces. We begin with a couple of results involving
the topology on RN .

9.9.1 Regularity and compactness results

Theorem 9.41 (Inner-Outer Regularity). Suppose µ is a probability mea-
sure on

(
RN ,BRN

)
, then for all B ∈ BRN we have

µ (B) = inf {µ (V ) : B ⊂ V and V is open} (9.63)

and
µ (B) = sup {µ (K) : K ⊂ B with K compact} . (9.64)

Proof. In this proof, C, and Ci will always denote a closed subset of RN
and V, Vi will always be open subsets of RN . Let F be the collection of sets,
A ∈ B, such that for all ε > 0 there exists an open set V and a closed set, C,
such that C ⊂ A ⊂ V and µ (V \ C) < ε. The key point of the proof is to show
F = B for this certainly implies Equation (9.63) and also that

µ (B) = sup {µ (C) : C ⊂ B with C closed} . (9.65)

Moreover, by MCT, we know that if C is closed and Kn :=
C ∩

{
x ∈ RN : |x| ≤ n

}
, then µ (Kn) ↑ µ (C) . This observation along

with Eq. (9.65) shows Eq. (9.64) is valid as well.
To prove F = B, it suffices to show F is a σ – algebra which contains all

closed subsets of RN . To the prove the latter assertion, given a closed subset,
C ⊂ RN , and ε > 0, let

Cε := ∪x∈CB (x, ε)

where B (x, ε) :=
{
y ∈ RN : |y − x| < ε

}
. Then Cε is an open set and Cε ↓ C

as ε ↓ 0. (You prove.) Hence by the DCT, we know that µ (Cε \ C) ↓ 0 form
which it follows that C ∈ F .

We will now show that F is an algebra. Clearly F contains the empty set
and if A ∈ F with C ⊂ A ⊂ V and µ (V \ C) < ε, then V c ⊂ Ac ⊂ Cc with
µ (Cc \ V c) = µ (V \ C) < ε. This shows Ac ∈ F . Similarly if Ai ∈ F for i = 1, 2
and Ci ⊂ Ai ⊂ Vi with µ (Vi \ Ci) < ε, then

C := C1 ∪ C2 ⊂ A1 ∪A2 ⊂ V1 ∪ V2 =: V

and
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9.9 Kolmogorov’s Extension Theorems 135

µ (V \ C) ≤ µ (V1 \ C) + µ (V2 \ C)
≤ µ (V1 \ C1) + µ (V2 \ C2) < 2ε.

This implies that A1 ∪A2 ∈ F and we have shown F is an algebra.
We now show that F is a σ – algebra. To do this it suffices to show A :=∑∞
n=1An ∈ F if An ∈ F with An ∩Am = ∅ for m 6= n. Let Cn ⊂ An ⊂ Vn with

µ (Vn \ Cn) < ε2−n for all n and let CN := ∪n≤NCn and V := ∪∞n=1Vn. Then
CN ⊂ A ⊂ V and

µ
(
V \ CN

)
≤
∞∑
n=0

µ
(
Vn \ CN

)
≤

N∑
n=0

µ (Vn \ Cn) +
∞∑

n=N+1

µ (Vn)

≤
N∑
n=0

ε2−n +
∞∑

n=N+1

[
µ (An) + ε2−n

]
= ε+

∞∑
n=N+1

µ (An) .

The last term is less that 2ε for N sufficiently large because
∑∞
n=1 µ (An) =

µ (A) <∞.

Notation 9.42 Let I := [0, 1] , Q = IN, πj : Q → I be the projection
map, πj (x) = xj (where x = (x1, x2, . . . , xj , . . . ) for all j ∈ N, and BQ :=
σ (πj : j ∈ N) be the product σ – algebra on Q. Let us further say that a sequence
{x (m)}∞m=1 ⊂ Q, where x (m) = (x1 (m) , x2 (m) , . . . ) , converges to x ∈ Q iff
limm→∞ xj (m) = xj for all j ∈ N. (This is just pointwise convergence.)

Lemma 9.43 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)}∞m=1 ⊂ Q has a convergent
subsequence,{x (mk)}∞k=1 .

Proof. Since I is compact, it follows that for each j ∈ N, {xj (m)}∞m=1 has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {mk}∞k=1 , of N such that limk→∞ xj (mk) ∈ I exists
for all j ∈ N.

Corollary 9.44 (Finite Intersection Property). Suppose that Km ⊂ Q are
sets which are, (i) closed under taking sequential limits4, and (ii) have the finite
intersection property, (i.e. ∩nm=1Km 6= ∅ for all m ∈ N), then ∩∞m=1Km 6= ∅.

Proof. By assumption, for each n ∈ N, there exists x (n) ∈ ∩nm=1Km. Hence
by Lemma 9.43 there exists a subsequence, x (nk) , such that x := limk→∞ x (nk)
4 For example, if Km = K′m × Q with K′m being a closed subset of Im, then Km is

closed under sequential limits.

exists in Q. Since x (nk) ∈ ∩nm=1Km for all k large, and each Km is closed
under sequential limits, it follows that x ∈ Km for all m. Thus we have shown,
x ∈ ∩∞m=1Km and hence ∩∞m=1Km 6= ∅.

9.9.2 Kolmogorov’s Extension Theorem and Infinite Product
Measures

Theorem 9.45 (Kolmogorov’s Extension Theorem). Let I := [0, 1] .
For each n ∈ N, let µn be a probability measure on (In,BIn) such that
µn+1 (A× I) = µn (A) . Then there exists a unique measure, P on (Q,BQ)
such that

P (A×Q) = µn (A) (9.66)

for all A ∈ BIn and n ∈ N.

Proof. Let A := ∪Bn where Bn := {A×Q : A ∈ BIn} = σ (π1, . . . , πn) ,
where πi (x) = xi if x = (x1, x2, . . . ) ∈ Q. Then define P on A by Eq. (9.66)
which is easily seen (Exercise 9.10) to be a well defined finitely additive measure
on A. So to finish the proof it suffices to show if Bn ∈ A is a decreasing sequence
such that

inf
n
P (Bn) = lim

n→∞
P (Bn) = ε > 0,

then B := ∩Bn 6= ∅.
To simplify notation, we may reduce to the case where Bn ∈ Bn for all n.

To see this is permissible, Let us choose 1 ≤ n1 < n2 < n3 < . . . . such that
Bk ∈ Bnk for all k. (This is possible since Bn is increasing in n.) We now define

a new decreasing sequence of sets,
{
B̃k

}∞
k=1

as follows,

(
B̃1, B̃2, . . .

)
=

n1−1 times︷ ︸︸ ︷
Q, . . . , Q,

n2−n1 times︷ ︸︸ ︷
B1, . . . , B1 ,

n3−n2 times︷ ︸︸ ︷
B2, . . . , B2 ,

n4−n3 times︷ ︸︸ ︷
B3, . . . , B3, . . .

 .

We then have B̃n ∈ Bn for all n, limn→∞ P
(
B̃n

)
= ε > 0, and B = ∩∞n=1B̃n.

Hence we may replace Bn by B̃n if necessary so as to have Bn ∈ Bn for all n.
Since Bn ∈ Bn, there exists B′n ∈ BIn such that Bn = B′n × Q for all n.

Using the regularity Theorem 9.41, there are compact sets, K ′n ⊂ B′n ⊂ In,
such that µn (B′n \K ′n) ≤ ε2−n−1 for all n ∈ N. Let Kn := K ′n × Q, then
P (Bn \Kn) ≤ ε2−n−1 for all n. Moreover,

P (Bn \ [∩nm=1Km]) = P (∪nm=1 [Bn \Km]) ≤
n∑

m=1

P (Bn \Km)

≤
n∑

m=1

P (Bm \Km) ≤
n∑

m=1

ε2−m−1 ≤ ε/2.
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So, for all n ∈ N,

P (∩nm=1Km) = P (Bn)− P (Bn \ [∩nm=1Km]) ≥ ε− ε/2 = ε/2,

and in particular, ∩nm=1Km 6= ∅. An application of Corollary 9.44 now implies,
∅ 6= ∩nKn ⊂ ∩nBn.

Exercise 9.10. Show that Eq. (9.66) defines a well defined finitely additive
measure on A := ∪Bn.

The next result is an easy corollary of Theorem 9.45.

Theorem 9.46. Suppose {(Xn,Mn)}n∈N are standard Borel spaces (see Ap-
pendix 9.10 below), X :=

∏
n∈N

Xn, πn : X → Xn be the nth – projection map,

Bn := σ (πk : k ≤ n) , B = σ(πn : n ∈ N), and Tn := Xn+1 × Xn+2 × . . . .
Further suppose that for each n ∈ N we are given a probability measure, µn on
M1 ⊗ · · · ⊗Mn such that

µn+1 (A×Xn+1) = µn (A) for all n ∈ N and A ∈M1 ⊗ · · · ⊗Mn.

Then there exists a unique probability measure, P, on (X,B) such that
P (A× Tn) = µn (A) for all A ∈M1 ⊗ · · · ⊗Mn.

Proof. Since each (Xn,Mn) is measure theoretic isomorphic to a Borel
subset of I, we may assume that Xn ∈ BI and Mn = (BI)Xn for all n. Given
A ∈ BIn , let µ̄n (A) := µn (A ∩ [X1 × · · · ×Xn]) – a probability measure on
BIn . Furthermore,

µ̄n+1 (A× I) = µn+1 ([A× I] ∩ [X1 × · · · ×Xn+1])
= µn+1 ((A ∩ [X1 × · · · ×Xn])×Xn+1)
= µn ((A ∩ [X1 × · · · ×Xn])) = µ̄n (A) .

Hence by Theorem 9.45, there is a unique probability measure, P̄ , on IN such
that

P̄
(
A× IN) = µ̄n (A) for all n ∈ N and A ∈ BIn .

We will now check that P := P̄ |⊗∞n=1Mn
is the desired measure. First off we

have

P̄ (X) = lim
n→∞

P̄
(
X1 × · · · ×Xn × IN) = lim

n→∞
µ̄n (X1 × · · · ×Xn)

= lim
n→∞

µn (X1 × · · · ×Xn) = 1.

Secondly, if A ∈M1 ⊗ · · · ⊗Mn, we have

P (A× Tn) = P̄ (A× Tn) = P̄
((
A× IN) ∩X)

= P̄
(
A× IN) = µ̄n (A) = µn (A) .

Here is an example of this theorem in action.

Theorem 9.47 (Infinite Product Measures). Suppose that {νn}∞n=1 are a
sequence of probability measures on (R,BR) and B := ⊗n∈NBR is the product σ
– algebra on RN. Then there exists a unique probability measure, ν, on

(
RN,B

)
,

such that

ν
(
A1 ×A2 × · · · ×An × RN) = ν1 (A1) . . . νn (An) ∀ Ai ∈ BR & n ∈ N.

(9.67)
Moreover, this measure satisfies,∫

RN
f (x1, . . . , xn) dν (x) =

∫
Rn
f (x1, . . . , xn) dν1 (x1) . . . dνn (xn) (9.68)

for all n ∈ N and f : Rn → R which are bounded and measurable or non-negative
and measurable.

Proof. The measure ν is created by apply Theorem 9.46 with µn := ν1 ⊗
· · · ⊗ νn on (Rn,BRn = ⊗nk=1BR) for each n ∈ N. Observe that

µn+1 (A× R) = µn (A) · νn+1 (R) = µn (A) ,

so that {µn}∞n=1 satisfies the needed consistency conditions. Thus there exists
a unique measure ν on

(
RN,B

)
such that

ν
(
A× RN) = µn (A) for all A ∈ BRn and n ∈ N.

Taking A = A1 × A2 × · · · × An with Ai ∈ BR then gives Eq. (9.67). For this
measure, it follows that Eq. (9.68) holds when f = 1A1×···×An . Thus by an
application of Theorem 8.2 with M = {1A1×···×An : Ai ∈ BR} and H being the
set of bounded measurable functions, f : Rn → R, for which Eq. (9.68) shows
that Eq. (9.68) holds for all bounded and measurable functions, f : Rn → R.
The statement involving non-negative functions follows by a simple limiting
argument involving the MCT.

It turns out that the existence of infinite product measures require no topo-
logical restrictions on the measure spaces involved. See Theorem ?? below.

9.10 Appendix: Standard Borel Spaces*

For more information along the lines of this section, see Royden [56] and
Parthasarathy [44].
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Definition 9.48. Two measurable spaces, (X,M) and (Y,N ) are said to be
isomorphic if there exists a bijective map, f : X → Y such that f (M) = N
and f−1 (N ) = M, i.e. both f and f−1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X ∼= Y.

Definition 9.49. A measurable space, (X,M) is said to be a standard Borel
space if (X,M) ∼= (B,BB) where B is a Borel subset of

(
(0, 1) ,B(0,1)

)
.

Definition 9.50 (Polish spaces). A Polish space is a separable topological
space (X, τ) which admits a complete metric, ρ, such that τ = τρ.

The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary 9.60 below. Along the way we
will show a number of spaces, including [0, 1] , (0, 1], [0, 1]d , Rd, {0, 1}N , and
RN, are all (measure theoretic) isomorphic to (0, 1) . Moreover we also will see
that a countable product of standard Borel spaces is again a standard Borel
space, see Corollary 9.57.

*On first reading, you may wish to skip the rest of this
section.

Lemma 9.51. Suppose (X,M) and (Y,N ) are measurable spaces such that
X =

∑∞
n=1Xn, Y =

∑∞
n=1 Yn, with Xn ∈ M and Yn ∈ N . If (Xn,MXn)

is isomorphic to (Yn,NYn) for all n then X ∼= Y. Moreover, if (Xn,Mn) and
(Yn,Nn) are isomorphic measure spaces, then (X :=

∏∞
n=1Xn,⊗∞n=1Mn) are

(Y :=
∏∞
n=1 Yn,⊗∞n=1Nn) are isomorphic.

Proof. For each n ∈ N, let fn : Xn → Yn be a measure theoretic isomor-
phism. Then define f : X → Y by f = fn on Xn. Clearly, f : X → Y is a
bijection and if B ∈ N , then

f−1 (B) = ∪∞n=1f
−1 (B ∩ Yn) = ∪∞n=1f

−1
n (B ∩ Yn) ∈M.

This shows f is measurable and by similar considerations, f−1 is measurable
as well. Therefore, f : X → Y is the desired measure theoretic isomorphism.

For the second assertion, let fn : Xn → Yn be a measure theoretic isomor-
phism of all n ∈ N and then define

f (x) = (f1 (x1) , f2 (x2) , . . . ) with x = (x1, x2, . . . ) ∈ X.

Again it is clear that f is bijective and measurable, since

f−1

( ∞∏
n=1

Bn

)
=
∞∏
n=1

f−1
n (Bn) ∈ ⊗∞n=1Nn

for all Bn ∈Mn and n ∈ N. Similar reasoning shows that f−1 is measurable as
well.

Proposition 9.52. Let −∞ < a < b < ∞. The following measurable spaces
equipped with there Borel σ – algebras are all isomorphic; (0, 1) , [0, 1] , (0, 1],
[0, 1), (a, b) , [a, b] , (a, b], [a, b), R, and (0, 1)∪Λ where Λ is a finite or countable
subset of R \ (0, 1) .

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (−1, 1) ∼= [−1, 1] . To prove this it suffices, by Lemma 9.51,to
observe that

(−1, 1) = {0} ∪
∞∑
n=0

(
(−2−n,−2−n] ∪ [2−n−1, 2−n)

)
and

[−1, 1] = {0} ∪
∞∑
n=0

(
[−2−n,−2−n−1) ∪ (2−n−1, 2−n]

)
.

Similarly (0, 1) is isomorphic to (0, 1] because

(0, 1) =
∞∑
n=0

[2−n−1, 2−n) and (0, 1] =
∞∑
n=0

(2−n−1, 2−n].

The assertion involving R can be proved using the bijection, tan :
(−π/2, π/2)→ R.

If Λ = {1} , then by Lemma 9.51 and what we have already proved, (0, 1)∪
{1} = (0, 1] ∼= (0, 1) . Similarly if N ∈ N with N ≥ 2 and Λ = {2, . . . , N + 1} ,
then

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ = (0, 2−N+1] ∪

[
N−1∑
n=1

(2−n, 2−n−1]

]
∪ Λ

while

(0, 1) =
(
0, 2−N+1

)
∪

[
N−1∑
n=1

(
2−n, 2−n−1

)]
∪
{

2−n : n = 1, 2, . . . , N
}

and so again it follows from what we have proved and Lemma 9.51 that (0, 1) ∼=
(0, 1) ∪ Λ. Finally if Λ = {2, 3, 4, . . . } is a countable set, we can show (0, 1) ∼=
(0, 1) ∪ Λ with the aid of the identities,

(0, 1) =

[ ∞∑
n=1

(
2−n, 2−n−1

)]
∪
{

2−n : n ∈ N
}

and

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ =

[ ∞∑
n=1

(2−n, 2−n−1]

]
∪ Λ.
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Notation 9.53 Suppose (X,M) is a measurable space and A is a set. Let
πa : XA → X denote projection operator onto the ath – component of XA (i.e.
πa (ω) = ω (a) for all a ∈ A) and let M⊗A := σ (πa : a ∈ A) be the product σ –
algebra on XA.

Lemma 9.54. If ϕ : A→ B is a bijection of sets and (X,M) is a measurable
space, then

(
XA,M⊗A

) ∼= (XB ,M⊗B
)
.

Proof. The map f : XB → XA defined by f (ω) = ω ◦ ϕ for all ω ∈ XB is
a bijection with f−1 (α) = α ◦ ϕ−1. If a ∈ A and ω ∈ XB , we have

πX
A

a ◦ f (ω) = f (ω) (a) = ω (ϕ (a)) = πX
B

ϕ(a) (ω) ,

where πX
A

a and πX
B

b are the projection operators on XA and XB respectively.
Thus πX

A

a ◦ f = πX
B

ϕ(a) for all a ∈ A which shows f is measurable. Similarly,

πX
B

b ◦ f−1 = πX
A

ϕ−1(b) showing f−1 is measurable as well.

Proposition 9.55. Let Ω := {0, 1}N , πi : Ω → {0, 1} be projection onto the
ith component, and B := σ (π1, π2, . . . ) be the product σ – algebra on Ω. Then
(Ω,B) ∼=

(
(0, 1) ,B(0,1)

)
.

Proof. We will begin by using a specific binary digit expansion of a point
x ∈ [0, 1) to construct a map from [0, 1)→ Ω. To this end, let r1 (x) = x,

γ1 (x) := 1x≥2−1 and r2 (x) := x− 2−1γ1 (x) ∈ (0, 2−1),

then let γ2 := 1r2≥2−2 and r3 = r2− 2−2γ2 ∈
(
0, 2−2

)
. Working inductively, we

construct {γk (x) , rk (x)}∞k=1 such that γk (x) ∈ {0, 1} , and

rk+1 (x) = rk (x)− 2−kγk (x) = x−
k∑
j=1

2−jγj (x) ∈
(
0, 2−k

)
(9.69)

for all k. Let us now define g : [0, 1)→ Ω by g (x) := (γ1 (x) , γ2 (x) , . . . ) . Since
each component function, πj ◦ g = γj : [0, 1)→ {0, 1} , is measurable it follows
that g is measurable.

By construction,

x =
k∑
j=1

2−jγj (x) + rk+1 (x)

and rk+1 (x)→ 0 as k →∞, therefore

x =
∞∑
j=1

2−jγj (x) and rk+1 (x) =
∞∑

j=k+1

2−jγj (x) . (9.70)

Hence if we define f : Ω → [0, 1] by f =
∑∞
j=1 2−jπj , then f (g (x)) = x for all

x ∈ [0, 1). This shows g is injective, f is surjective, and f in injective on the
range of g.

We now claim that Ω0 := g ([0, 1)) , the range of g, consists of those ω ∈ Ω
such that ωi = 0 for infinitely many i. Indeed, if there exists an k ∈ N such
that γj (x) = 1 for all j ≥ k, then (by Eq. (9.70)) rk+1 (x) = 2−k which
would contradict Eq. (9.69). Hence g ([0, 1)) ⊂ Ω0. Conversely if ω ∈ Ω0 and
x = f (ω) ∈ [0, 1), it is not hard to show inductively that γj (x) = ωj for all
j, i.e. g (x) = ω. For example, if ω1 = 1 then x ≥ 2−1 and hence γ1 (x) = 1.
Alternatively, if ω1 = 0, then

x =
∞∑
j=2

2−jωj <
∞∑
j=2

2−j = 2−1

so that γ1 (x) = 0. Hence it follows that r2 (x) =
∑∞
j=2 2−jωj and by similar

reasoning we learn r2 (x) ≥ 2−2 iff ω2 = 1, i.e. γ2 (x) = 1 iff ω2 = 1. The full
induction argument is now left to the reader.

Since single point sets are in B and

Λ := Ω \Ω0 = ∪∞n=1 {ω ∈ Ω : ωj = 1 for j ≥ n}

is a countable set, it follows that Λ ∈ B and therefore Ω0 = Ω \ Λ ∈ B.
Hence we may now conclude that g :

(
[0, 1),B[0,1)

)
→ (Ω0,BΩ0) is a measurable

bijection with measurable inverse given by f |Ω0 , i.e.
(
[0, 1),B[0,1)

) ∼= (Ω0,BΩ0) .
An application of Lemma 9.51 and Proposition 9.52 now implies

Ω = Ω0 ∪ Λ ∼= [0, 1) ∪ N ∼= [0, 1) ∼= (0, 1) .

Corollary 9.56. The following spaces are all isomorphic to
(
(0, 1) ,B(0,1)

)
;

(0, 1)d and Rd for any d ∈ N and [0, 1]N and RN where both of these spaces
are equipped with their natural product σ – algebras, .

Proof. In light of Lemma 9.51 and Proposition 9.52 we know that (0, 1)d ∼=
Rd and (0, 1)N ∼= [0, 1]N ∼= RN. So, using Proposition 9.55, it suffices to show
(0, 1)d ∼= Ω ∼= (0, 1)N and to do this it suffices to show Ωd ∼= Ω and ΩN ∼= Ω.

To reduce the problem further, let us observe that Ωd ∼= {0, 1}N×{1,2,...,d}

and ΩN ∼= {0, 1}N
2

. For example, let g : ΩN → {0, 1}N
2

be defined by

g (ω) (i, j) = ω (i) (j) for all ω ∈ ΩN =
[
{0, 1}N

]N
. Then g is a bijection and

since π{0,1}
N2

(i,j) ◦ g (ω) = πΩj

(
πΩ

N

i (ω)
)
, it follows that g is measurable. The in-

verse, g−1 : {0, 1}N
2

→ ΩN, to g is given by g−1 (α) (i) (j) = α (i, j) . To see
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this map is measurable, we have πΩ
N

i ◦ g−1 : {0, 1}N
2

→ Ω = {0, 1}N is given
πΩ

N

i ◦ g−1 (α) = g−1 (α) (i) (·) = α (i, ·) and hence

πΩj ◦ πΩ
N

i ◦ g (α) = α (i, j) = π
{0,1}N2

i,j (α)

from which it follows that πΩj ◦πΩ
N

i ◦g−1 = π{0,1}
N2

is measurable for all i, j ∈ N
and hence πΩ

N

i ◦ g−1 is measurable for all i ∈ N and hence g−1 is measurable.
This shows ΩN ∼= {0, 1}N

2

. The proof that Ωd ∼= {0, 1}N×{1,2,...,d} is analogous.
We may now complete the proof with a couple of applications of Lemma

9.54. Indeed N, N × {1, 2, . . . , d} , and N2 all have the same cardinality and
therefore,

{0, 1}N×{1,2,...,d} ∼= {0, 1}N
2 ∼= {0, 1}N = Ω.

Corollary 9.57. Suppose that (Xn,Mn) for n ∈ N are standard Borel spaces,
then X :=

∏∞
n=1Xn equipped with the product σ – algebra, M := ⊗∞n=1Mn is

again a standard Borel space.

Proof. Let An ∈ B[0,1] be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, fn : Xn → An. Then f : X → A :=

∏∞
n=1An defined by

f (x1, x2, . . . ) = (f1 (x1) , f2 (x2) , . . . ) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product σ – algebra, ⊗∞n=1BAn . So ac-
cording to Corollary 9.56, to finish the proof it suffice to show ⊗∞n=1BAn =MA

where M := ⊗∞n=1B[0,1] is the product σ – algebra on [0, 1]N .
The σ – algebra, ⊗∞n=1BAn , is generated by sets of the form, B :=

∏∞
n=1Bn

where Bn ∈ BAn ⊂ B[0,1]. On the other hand, the σ – algebra,MA is generated
by sets of the form, A ∩ B̃ where B̃ :=

∏∞
n=1 B̃n with B̃n ∈ B[0,1]. Since

A ∩ B̃ =
∞∏
n=1

(
B̃n ∩An

)
=
∞∏
n=1

Bn

where Bn = B̃n ∩An is the generic element in BAn , we see that ⊗∞n=1BAn and
MA can both be generated by the same collections of sets, we may conclude
that ⊗∞n=1BAn =MA.

Our next goal is to show that any Polish space with its Borel σ – algebra is
a standard Borel space.

Notation 9.58 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=
∞∑
n=1

1
2n
|an − bn| =

∞∑
n=1

1
2n
|πn (a)− πn (b)| . (9.71)

Exercise 9.11. Show d is a metric and that the Borel σ – algebra on (Q, d) is
the same as the product σ – algebra.

Solution to Exercise (9.11). It is easily seen that d is a metric on Q which,
by Eq. (9.71) is measurable relative to the product σ – algebra, M.. There-
fore, M contains all open balls and hence contains the Borel σ – algebra, B.
Conversely, since

|πn (a)− πn (b)| ≤ 2nd (a, b) ,

each of the projection operators, πn : Q → [0, 1] is continuous. Therefore each
πn is B – measurable and hence M = σ ({πn}∞n=1) ⊂ B.

Theorem 9.59. To every separable metric space (X, ρ), there exists a contin-
uous injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeomor-
phism. Moreover if the metric, ρ, is also complete, then G (X) is a Gδ –set, i.e.
the G (X) is the countable intersection of open subsets of (Q, d) . In short, any
separable metrizable space X is homeomorphic to a subset of (Q, d) and if X is
a Polish space then X is homeomorphic to a Gδ – subset of (Q, d).

Proof. (This proof follows that in Rogers and Williams [53, Theorem 82.5
on p. 106.].) By replacing ρ by ρ

1+ρ if necessary, we may assume that 0 ≤ ρ < 1.
Let D = {an}∞n=1 be a countable dense subset of X and define

G (x) = (ρ (x, a1) , ρ (x, a2) , ρ (x, a3) , . . . ) ∈ Q

and

γ (x, y) = d (G (x) , G (y)) =
∞∑
n=1

1
2n
|ρ (x, an)− ρ (y, an)|

for x, y ∈ X. To prove the first assertion, we must show G is injective and γ is
a metric on X which is compatible with the topology determined by ρ.

If G (x) = G (y) , then ρ (x, a) = ρ (y, a) for all a ∈ D. Since D is a dense
subset of X, we may choose αk ∈ D such that

0 = lim
k→∞

ρ (x, αk) = lim
k→∞

ρ (y, αk) = ρ (y, x)

and therefore x = y. A simple argument using the dominated convergence
theorem shows y → γ (x, y) is ρ – continuous, i.e. γ (x, y) is small if ρ (x, y) is
small. Conversely,

ρ (x, y) ≤ ρ (x, an) + ρ (y, an) = 2ρ (x, an) + ρ (y, an)− ρ (x, an)
≤ 2ρ (x, an) + |ρ (x, an)− ρ (y, an)| ≤ 2ρ (x, an) + 2nγ (x, y) .

Hence if ε > 0 is given, we may choose n so that 2ρ (x, an) < ε/2 and so if
γ (x, y) < 2−(n+1)ε, it will follow that ρ (x, y) < ε. This shows τγ = τρ. Since
G : (X, γ)→ (Q, d) is isometric, G is a homeomorphism.
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Now suppose that (X, ρ) is a complete metric space. Let S := G (X) and σ
be the metric on S defined by σ (G (x) , G (y)) = ρ (x, y) for all x, y ∈ X. Then
(S, σ) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, τσ = τdS . Consequently, if u ∈ S and ε >
0 is given, we may find δ′ (ε) such that Bσ (u, δ′ (ε)) ⊂ Bd (u, ε) . Taking δ (ε) =
min (δ′ (ε) , ε) , we have diamd (Bd (u, δ (ε))) < ε and diamσ (Bd (u, δ (ε))) < ε
where

diamσ (A) := {supσ (u, v) : u, v ∈ A} and
diamd (A) := {sup d (u, v) : u, v ∈ A} .

Let S̄ denote the closure of S inside of (Q, d) and for each n ∈ N let

Nn := {N ∈ τd : diamd (N) ∨ diamσ (N ∩ S) < 1/n}

and let Un := ∪Nn ∈ τd. From the previous paragraph, it follows that S ⊂ Un
and therefore S ⊂ S̄ ∩ (∩∞n=1Un) .

Conversely if u ∈ S̄ ∩ (∩∞n=1Un) and n ∈ N, there exists Nn ∈ Nn such
that u ∈ Nn. Moreover, since N1 ∩ · · · ∩Nn is an open neighborhood of u ∈ S̄,
there exists un ∈ N1 ∩ · · · ∩ Nn ∩ S for each n ∈ N. From the definition of
Nn, we have limn→∞ d (u, un) = 0 and σ (un, um) ≤ max

(
n−1,m−1

)
→ 0 as

m,n → ∞. Since (S, σ) is complete, it follows that {un}∞n=1 is convergent in
(S, σ) to some element u0 ∈ S. Since (S, dS) has the same topology as (S, σ)
it follows that d (un, u0) → 0 as well and thus that u = u0 ∈ S. We have
now shown, S = S̄ ∩ (∩∞n=1Un) . This completes the proof because we may
write S̄ =

(⋂∞
n=1 S1/n

)
where S1/n :=

{
u ∈ Q : d

(
u, S̄

)
< 1/n

}
and therefore,

S = (
⋂∞
n=1 Un) ∩

(⋂∞
n=1 S1/n

)
is a Gδ set.

Corollary 9.60. Every Polish space, X, with its Borel σ – algebra is a standard
Borel space. Consequently any Borel subset of X is also a standard Borel space.

Proof. Theorem 9.59 shows that X is homeomorphic to a measurable (in
fact a Gδ) subset Q0 of (Q, d) and hence X ∼= Q0. Since Q is a standard Borel
space so is Q0 and hence so is X.

9.11 More Exercises

Exercise 9.12. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1 is
(M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈ M1 ⊗M2 ⊗M3. Then π is the unique measure on M1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable

function. Verify the identity,∫
X1×X2×X3

fdπ =
∫
X3

dµ3(x3)
∫
X2

dµ2(x2)
∫
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible

orderings of the iterated integrals.

Exercise 9.13. Prove the second assertion of Theorem 9.20. That is show md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
Hint: Look at the proof of Theorem 5.34.

Exercise 9.14. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],M =
B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and ν be
counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X} be the
diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)
]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)
]
dν(y)

by explicitly computing both sides of this equation.

Exercise 9.15. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 9.16. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M×BR should be M⊗BR̄ in this problem.)

Exercise 9.17. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.18. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm), g(x) =∫ a
x
f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =
∫ a

0

f(t)dt.
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Exercise 9.19. Show
∫∞

0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x
x dm(x) is not defined as a Lebesgue integral.

Exercise 9.20. Folland Problem 2.57 on p. 77.

Exercise 9.21. Folland Problem 2.58 on p. 77.

Exercise 9.22. Folland Problem 2.60 on p. 77. Properties of the Γ – function.

Exercise 9.23. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.24. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on Sn−1.

Exercise 9.25. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 9.26. Show, using Problem 9.24 that∫
Sd−1

ωiωjdσ (ω) =
1
d
δijσ

(
Sd−1

)
.

Hint: show
∫
Sd−1 ω

2
i dσ (ω) is independent of i and therefore

∫
Sd−1

ω2
i dσ (ω) =

1
d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .





10

Independence

As usual, (Ω,B, P ) will be some fixed probability space. Recall that for
A,B ∈ B with P (B) > 0 we let

P (A|B) :=
P (A ∩B)
P (B)

which is to be read as; the probability of A given B.

Definition 10.1. We say that A is independent of B is P (A|B) = P (A) or
equivalently that

P (A ∩B) = P (A)P (B) .

We further say a finite sequence of collection of sets, {Ci}ni=1 , are independent
if

P (∩j∈JAj) =
∏
j∈J

P (Aj)

for all Ai ∈ Ci and J ⊂ {1, 2, . . . , n} .

10.1 Basic Properties of Independence

If {Ci}ni=1 , are independent classes then so are {Ci ∪ {Ω}}ni=1 . Moreover, if we
assume that Ω ∈ Ci for each i, then {Ci}ni=1 , are independent iff

P
(
∩nj=1Aj

)
=

n∏
j=1

P (Aj) for all (A1, . . . , An) ∈ C1 × · · · × Cn.

Theorem 10.2. Suppose that {Ci}ni=1 is a finite sequence of independent π –
classes. Then {σ (Ci)}ni=1 are also independent.

Proof. As mentioned above, we may always assume without loss of gener-
ality that Ω ∈ Ci. Fix, Aj ∈ Cj for j = 2, 3, . . . , n. We will begin by showing
that

Q (A) := P (A ∩A2 ∩ · · · ∩An) = P (A)P (A2) . . . P (An) for all A ∈ σ (C1) .
(10.1)

Since Q (·) and P (A2) . . . P (An)P (·) are both finite measures agreeing on Ω
and A in the π – system C1, Eq. (10.1) is a direct consequence of Proposition
5.15. Since (A2, . . . , An) ∈ C2 × · · · × Cn were arbitrary we may now conclude
that σ (C1) , C2, . . . , Cn are independent.

By applying the result we have just proved to the sequence, C2, . . . , Cn, σ (C1)
shows that σ (C2) , C3, . . . , Cn, σ (C1) are independent. Similarly we show induc-
tively that

σ (Cj) , Cj+1, . . . , Cn, σ (C1) , . . . , σ (Cj−1)

are independent for each j = 1, 2, . . . , n. The desired result occurs at j = n.

Definition 10.3. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 be a collec-
tion of measurable spaces and Yi : Ω → Si be a measurable map for 1 ≤ i ≤ n.
The maps {Yi}ni=1 are P - independent iff {Ci}ni=1 are P – independent, where
Ci := Y −1

i (Si) = σ (Yi) ⊂ B for 1 ≤ i ≤ n.

Theorem 10.4 (Independence and Product Measures). Let (Ω,B, P ) be
a probability space, {(Si,Si)}ni=1 be a collection of measurable spaces and Yi :
Ω → Si be a measurable map for 1 ≤ i ≤ n. Further let µi := P ◦ Y −1

i =
LawP (Yi) . Then {Yi}ni=1 are independent iff

LawP (Y1, . . . , Yn) = µ1 ⊗ · · · ⊗ µn,

where (Y1, . . . , Yn) : Ω → S1 × · · · × Sn and

LawP (Y1, . . . , Yn) = P ◦ (Y1, . . . , Yn)−1 : S1 ⊗ · · · ⊗ Sn → [0, 1]

is the joint law of Y1, . . . , Yn.

Proof. Recall that the general element of Ci is of the form Ai = Y −1
i (Bi)

with Bi ∈ Si. Therefore for Ai = Y −1
i (Bi) ∈ Ci we have

P (A1 ∩ · · · ∩An) = P ((Y1, . . . , Yn) ∈ B1 × · · · ×Bn)
= ((Y1, . . . , Yn)∗ P ) (B1 × · · · ×Bn) .

If (Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn it follows that

P (A1 ∩ · · · ∩An) = µ1 ⊗ · · · ⊗ µn (B1 × · · · ×Bn)
= µ1 (B1) · · ·µ (Bn) = P (Y1 ∈ B1) · · ·P (Yn ∈ Bn)
= P (A1) . . . P (An)
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and therefore {Ci} are P – independent and hence {Yi} are P – independent.
Conversely if {Yi} are P – independent, i.e. {Ci} are P – independent, then

P ((Y1, . . . , Yn) ∈ B1 × · · · ×Bn) = P (A1 ∩ · · · ∩An)
= P (A1) . . . P (An)
= P (Y1 ∈ B1) · · ·P (Yn ∈ Bn)
= µ1 (B1) · · ·µ (Bn)
= µ1 ⊗ · · · ⊗ µn (B1 × · · · ×Bn) .

Since
π := {B1 × · · · ×Bn : Bi ∈ Si for 1 ≤ i ≤ n}

is a π – system which generates S1 ⊗ · · · ⊗ Sn and

(Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn on π,

it follows that (Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn on all of S1 ⊗ · · · ⊗ Sn.

Remark 10.5. When have a collection of not necessarily independent random
functions, Yi : Ω → Si, like in Theorem 10.4 it is not in general possible
to recover the joint distribution, π := LawP (Y1, . . . , Yn) , from the individual
distributions, µi = LawP (Yi) for all 1 ≤ i ≤ n. For example suppose that
Si = R for i = 1, 2. µ is a probability measure on (R,BR) , and (Y1, Y2) have
joint distribution, π, given by,

π (C) =
∫

R
1C (x, x) dµ (x) for all C ∈ BR.

If we let µi = LawP (Yi) , then for all A ∈ BR we have

µ1 (A) = P (Y1 ∈ A) = P ((Y1, Y2) ∈ A× R)

= π (A× R) =
∫

R
1A×R (x, x) dµ (x) = µ (A) .

Similarly we show that µ2 = µ. On the other hand if µ is not concentrated on
one point, µ ⊗ µ is another probability measure on

(
R2,BR2

)
with the same

marginals as π, i.e. π (A× R) = µ (A) = π (R×A) for all A ∈ BR.

Lemma 10.6. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 and
{(Ti, Ti)}ni=1 be two collection of measurable spaces, Fi : Si → Ti be a mea-
surable map for each i and Yi : Ω → Si be a collection of P – independent
measurable maps. Then {Fi ◦ Yi}ni=1 are also P – independent.

Proof. Notice that

σ (Fi ◦ Yi) = (Fi ◦ Yi)−1 (Ti) = Y −1
i

(
Fi
−1 (Ti)

)
⊂ Y −1

i (Si) = Ci.

The fact that {σ (Fi ◦ Yi)}ni=1 is independent now follows easily from the as-
sumption that {Ci} are P – independent.

Example 10.7. If Ω :=
∏n
i=1 Si, B := S1 ⊗ · · · ⊗ Sn, Yi (s1, . . . , sn) = si for all

(s1, . . . , sn) ∈ Ω, and Ci := Y −1
i (Si) for all i. Then the probability measures, P,

on (Ω,B) for which {Ci}ni=1 are independent are precisely the product measures,
P = µ1 ⊗ · · · ⊗ µn where µi is a probability measure on (Si,Si) for 1 ≤ i ≤ n.
Notice that in this setting,

Ci := Y −1
i (Si) = {S1 × · · · × Si−1 ×B × Si+1 × · · · × Sn : B ∈ Si} ⊂ B.

Proposition 10.8. Suppose that (Ω,B, P ) is a probability space and {Zj}nj=1

are independent integrable random variables. Then
∏n
j=1 Zj is also integrable

and

E

 n∏
j=1

Zj

 =
n∏
j=1

EZj .

Proof. Let µj := P ◦Z−1
j : BR → [0, 1] be the law of Zj for each j. Then we

know (Z1, . . . , Zn)∗ P = µ1⊗· · ·⊗µn. Therefore by Example 7.52 and Tonelli’s
theorem,

E

 n∏
j=1

|Zj |

 =
∫

Rn

 n∏
j=1

|zj |

 d (⊗nj=1µj
)

(z)

=
n∏
j=1

∫
Rn
|zj | dµj (zj) =

n∏
j=1

E |Zj | <∞

which shows that
∏n
j=1 Zj is integrable. Thus again by Example 7.52 and Fu-

bini’s theorem,

E

 n∏
j=1

Zj

 =
∫

Rn

 n∏
j=1

zj

 d (⊗nj=1µj
)

(z)

=
n∏
j=1

∫
R
zjdµj (zj) =

n∏
j=1

EZj .

Theorem 10.9. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 be a collec-
tion of measurable spaces and Yi : Ω → Si be a measurable map for 1 ≤ i ≤ n.
Further let µi := P ◦Y −1

i = LawP (Yi) and π := P ◦(Y1, . . . , Yn)−1 : S1⊗· · ·⊗Sn
be the joint distribution of

(Y1, . . . , Yn) : Ω → S1 × · · · × Sn.

Then the following are equivalent,
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1. {Yi}ni=1 are independent,
2. π = µ1 ⊗ µ2 ⊗ · · · ⊗ µn
3. for all bounded measurable functions, f : (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn) →

(R,BR) ,

Ef (Y1, . . . , Yn) =
∫
S1×···×Sn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (10.2)

( where the integrals may be taken in any order),
4. E [

∏n
i=1 fi (Yi)] =

∏n
i=1 E [fi (Yi)] for all bounded (or non-negative) measur-

able functions, fi : Si → R or C.
Proof. (1 ⇐⇒ 2) has already been proved in Theorem 10.4. The fact

that (2. =⇒ 3.) now follows from Exercise 7.11 and Fubini’s theorem. Sim-
ilarly, (3. =⇒ 4.) follows from Exercise 7.11 and Fubini’s theorem after taking
f (x1, . . . , xn) =

∏n
i=1 fi (xi) . Lastly for (4. =⇒ 1.) , let Ai ∈ Si and take

fi := 1Ai in 4. to learn,

P (∩ni=1 {Yi ∈ Ai}) = E

[
n∏
i=1

1Ai (Yi)

]
=

n∏
i=1

E [1Ai (Yi)] =
n∏
i=1

P (Yi ∈ Ai)

which shows that the {Yi}ni=1 are independent.

Corollary 10.10. Suppose that (Ω,B, P ) is a probability space and
{Yj : Ω → R}nj=1 is a sequence of random variables with countable ranges, say
Λ ⊂ R. Then {Yj}nj=1 are independent iff

P
(
∩nj=1 {Yj = yj}

)
=

n∏
j=1

P (Yj = yj) (10.3)

for all choices of y1, . . . , yn ∈ Λ.
Proof. If the {Yj} are independent then clearly Eq. (10.3) holds by definition

as {Yj = yj} ∈ Y −1
j (BR) . Conversely if Eq. (10.3) holds and fi : R→[0,∞) are

measurable functions then,

E

[
n∏
i=1

fi (Yi)

]
=

∑
y1,...,yn∈Λ

n∏
i=1

fi (yi) · P
(
∩nj=1 {Yj = yj}

)
=

∑
y1,...,yn∈Λ

n∏
i=1

fi (yi) ·
n∏
j=1

P (Yj = yj)

=
n∏
i=1

∑
yi∈Λ

fi (yi) · P (Yj = yj)

=
n∏
i=1

E [fi (Yi)]

wherein we have used Tonelli’s theorem for sum in the third equality. It now
follows that {Yi} are independent using item 4. of Theorem 10.9.

Exercise 10.1. Suppose that Ω = (0, 1], B = B(0,1], and P = m is Lebesgue
measure on B. Let Yi (ω) := ωi be the ith – digit in the base two expansion of
ω. To be more precise, the Yi (ω) ∈ {0, 1} is chosen so that

ω =
∞∑
i=1

Yi (ω) 2−i for all ωi ∈ {0, 1} .

As long as ω 6= k2−n for some 0 < k ≤ n, the above equation uniquely deter-
mines the {Yi (ω)} . Owing to the fact that

∑∞
l=n+1 2−l = 2−n, if ω = k2−n,

there is some ambiguity in the definitions of the Yi (ω) for large i which you
may resolve anyway you choose. Show the random variables, {Yi}ni=1 , are i.i.d.
for each n ∈ N with P (Yi = 1) = 1/2 = P (Yi = 0) for all i.

Hint: the idea is that knowledge of (Y1 (ω) , . . . , Yn (ω)) is equivalent to
knowing for which k ∈ N0 ∩ [0, 2n) that ω ∈ (2−nk, 2−n (k + 1)] and that this
knowledge in no way helps you predict the value of Yn+1 (ω) . More formally,
you might start by showing,

P
(
{Yn+1 = 1} |(2−nk, 2−n (k + 1)]

)
=

1
2

= P
(
{Yn+1 = 0} |(2−nk, 2−n (k + 1)]

)
.

See Section 10.9 if you need some more help with this exercise.

Exercise 10.2. Let X,Y be two random variables on (Ω,B, P ) .

1. Show that X and Y are independent iff Cov (f (X) , g (Y )) = 0 (i.e. f (X)
and g (Y ) are uncorrelated) for bounded measurable functions, f, g : R→
R.

2. If X,Y ∈ L2 (P ) and X and Y are independent, then Cov (X,Y ) = 0.
3. Show by example that if X,Y ∈ L2 (P ) and Cov (X,Y ) = 0 does not

necessarily imply that X and Y are independent. Hint: try taking (X,Y ) =
(X,ZX) where X and Z are independent simple random variables such that
EZ = 0 similar to Remark 9.40.

Solution to Exercise (10.2). 1. Since

Cov (f (X) , g (Y )) = E [f (X) g (Y )]− E [f (X)] E [g (Y )]

it follows that Cov (f (X) , g (Y )) = 0 iff

E [f (X) g (Y )] = E [f (X)] E [g (Y )]

from which item 1. easily follows.
2. Let fM (x) = x1|x|≤M , then by independence,
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E [fM (X) fM (Y )] = E [fM (X)] E [fM (Y )] . (10.4)

Since

|fM (X) fM (Y )| ≤ |XY | ≤ 1
2
(
X2 + Y 2

)
∈ L1 (P ) ,

|fM (X)| ≤ |X| ≤ 1
2
(
1 +X2

)
∈ L1 (P ) , and

|fM (Y )| ≤ |Y | ≤ 1
2
(
1 + Y 2

)
∈ L1 (P ) ,

we may use the DCT three times to pass to the limit as M →∞ in Eq. (10.4)
to learn that E [XY ] = E [X] E [Y ], i.e. Cov (X,Y ) = 0.

3. Let X and Z be independent with P (Z = ±1) = 1
2 and take Y = XZ.

Then EZ = 0 and

Cov (X,Y ) = E
[
X2Z

]
− E [X] E [XZ]

= E
[
X2
]
· EZ − E [X] E [X] EZ = 0.

On the other hand it should be intuitively clear that X and Y are not inde-
pendent since knowledge of X typically will give some information about Y. To
verify this assertion let us suppose that X is a discrete random variable with
P (X = 0) = 0. Then

P (X = x, Y = y) = P (X = x, xZ = y) = P (X = x) · P (X = y/x)

while
P (X = x)P (Y = y) = P (X = x) · P (XZ = y) .

Thus for X and Y to be independent we would have to have,

P (xX = y) = P (XZ = y) for all x, y.

This is clearly not going to be true in general. For example, suppose that
P (X = 1) = 1

2 = P (X = 0) . Taking x = y = 1 in the previously displayed
equation would imply

1
2

= P (X = 1) = P (XZ = 1) = P (X = 1, Z = 1) = P (X = 1)P (Z = 1) =
1
4

which is false.

Exercise 10.3 (A correlation inequality). Suppose that X is a random
variable and f, g : R→ R are two increasing functions such that both f (X)
and g (X) are square integrable, i.e. E |f (X)|2 + E |g (X)|2 < ∞. Show
Cov (f (X) , g (X)) ≥ 0. Hint: let Y be another random variable which has
the same law as X and is independent of X. Then consider

E [(f (Y )− f (X)) · (g (Y )− g (X))] .

Let us now specialize to the case where Si = Rmi and Si = BRmi for some
mi ∈ N.

Theorem 10.11. Let (Ω,B, P ) be a probability space, mj ∈ N, Sj = Rmj ,
Sj = BRmj , Yj : Ω → Sj be random vectors, and µj := LawP (Yj) = P ◦ Y −1

j :
Sj → [0, 1] for 1 ≤ j ≤ n. The the following are equivalent;

1. {Yj}nj=1 are independent,
2. LawP (Y1, . . . , Yn) = µ1 ⊗ µ2 ⊗ · · · ⊗ µn
3. for all bounded measurable functions, f : (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn) →

(R,BR) ,

Ef (Y1, . . . , Yn) =
∫
S1×···×Sn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (10.5)

( where the integrals may be taken in any order),
4. E

[∏n
j=1 fj (Yj)

]
=
∏n
j=1 E [fj (Yj)] for all bounded (or non-negative) mea-

surable functions, fj : Sj → R or C.
5. P

(
∩nj=1 {Yj ≤ yj}

)
=
∏n
j=1 P ({Yj ≤ yj}) for all yj ∈ Sj , where we say

that Yj ≤ yj iff (Yj)k ≤ (yj)k for 1 ≤ k ≤ mj .

6. E
[∏n

j=1 fj (Yj)
]

=
∏n
j=1 E [fj (Yj)] for all fj ∈ Cc (Sj ,R) ,

7. E
[
e
i
∑n

j=1
λj ·Yj

]
=
∏n
j=1 E

[
eiλj ·Yj

]
for all λj ∈ Sj = Rmj .

Proof. The equivalence of 1. – 4. has already been proved in Theorem 10.9.
It is also clear that item 4. implies both or items 5. –7. upon noting that item
5. may be written as,

E

 n∏
j=1

1(−∞,yj ] (Yj)

 =
n∏
j=1

E
[
1(−∞,yj ] (Yj)

]
where (−∞, yj ] := (−∞, (yj)1] × · · · × (−∞, (yj)mj ]. The proofs that either 5.
or 6. or 7. implies item 3. is a simple application of the multiplicative system
theorem in the form of either Corollary 8.3 or Corollary 8.8. In each case, let H
denote the linear space of bounded measurable functions such that Eq. (10.5)
holds. To complete the proof I will simply give you the multiplicative system,
M, to use in each of the cases. To describe M, let N = m1 + · · ·+mn and

y = (y1, . . . , yn) =
(
y1, y2, . . . , yN

)
∈ RN and

λ = (λ1, . . . , λn) =
(
λ1, λ2, . . . , λN

)
∈ RN

For showing 5. =⇒ 3.take M =
{

1(−∞,y] : y ∈ RN
}
.
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For showing 6. =⇒ 3. take M to be a those functions on RN which are of
the form, f (y) =

∏N
l=1 fl

(
yl
)

with each fl ∈ Cc (R) .
For showing 7. =⇒ 3. take M to be the functions of the form,

f (y) = exp

i n∑
j=1

λj · yj

 = exp (iλ · y) .

Definition 10.12. A collection of subsets of B, {Ct}t∈T is said to be indepen-
dent iff {Ct}t∈Λ are independent for all finite subsets, Λ ⊂ T. More explicitly,
we are requiring

P (∩t∈ΛAt) =
∏
t∈Λ

P (At)

whenever Λ is a finite subset of T and At ∈ Ct for all t ∈ Λ.

Corollary 10.13. If {Ct}t∈T is a collection of independent classes such that
each Ct is a π – system, then {σ (Ct)}t∈T are independent as well.

Definition 10.14. A collections of random variables, {Xt : t ∈ T} are inde-
pendent iff {σ (Xt) : t ∈ T} are independent.

Example 10.15. Suppose that {µn}∞n=1 is any sequence of probability measure
on (R,BR) . Let Ω = RN, B := ⊗∞n=1BR be the product σ – algebra on Ω, and
P := ⊗∞n=1µn be the product measure. Then the random variables, {Yn}∞n=1

defined by Yn (ω) = ωn for all ω ∈ Ω are independent with LawP (Yn) = µn for
each n.

Lemma 10.16 (Independence of groupings). Suppose that {Bt : t ∈ T} is
an independent family of σ – fields. Suppose further that {Ts}s∈S is a partition
of T (i.e. T =

∑
s∈S Ts) and let

BTs = ∨t∈TsBt = σ (∪t∈TsBt) .

Then {BTs}s∈S is again independent family of σ fields.

Proof. Let
Cs = {∩α∈KBα : Bα ∈ Bα, K ⊂⊂ Ts} .

It is now easily checked that BTs = σ (Cs) and that {Cs}s∈S is an independent
family of π – systems. Therefore {BTs}s∈S is an independent family of σ –
algebras by Corollary 10.13.

Corollary 10.17. Suppose that {Yn}∞n=1 is a sequence of independent random
variables (or vectors) and Λ1, . . . , Λm is a collection of pairwise disjoint subsets
of N. Further suppose that fi : RΛi → R is a measurable function for each
1 ≤ i ≤ m, then Zi := fi

(
{Yl}l∈Λi

)
is again a collection of independent random

variables.

Proof. Notice that σ (Zi) ⊂ σ
(
{Yl}l∈Λi

)
= σ (∪l∈Λiσ (Yl)) . Since

{σ (Yl)}∞l=1 are independent by assumption, it follows from Lemma 10.16 that{
σ
(
{Yl}l∈Λi

)}m
i=1

are independent and therefore so is {σ (Zi)}mi=1, i.e. {Zi}mi=1

are independent.

Definition 10.18 (i.i.d.). A sequences of random variables, {Xn}∞n=1 , on a
probability space, (Ω,B, P ), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (Xn)∗ P = (Xk)∗ P for all k, n. That is
we should have

P (Xn ∈ A) = P (Xk ∈ A) for all k, n ∈ N and A ∈ BR.

Observe that {Xn}∞n=1 are i.i.d. random variables iff

P (X1 ∈ A1, . . . , Xn ∈ An) =
n∏
j=1

P (Xi ∈ Ai) =
n∏
j=1

P (X1 ∈ Ai) =
n∏
j=1

µ (Ai)

(10.6)
where µ = (X1)∗ P. The identity in Eq. (10.6) is to hold for all n ∈ N and all
Ai ∈ BR. If we choose µn = µ in Example 10.15, the {Yn}∞n=1 there are i.i.d.
with LawP (Yn) = P ◦ Y −1

n = µ for all n ∈ N.
The following theorem follows immediately from the definitions and Theo-

rem 10.11.

Theorem 10.19. Let X := {Xt : t ∈ T} be a collection of random variables.
Then the following are equivalent:

1. The collection X is independent,
2.

P (∩t∈Λ {Xt ∈ At}) =
∏
t∈Λ

P (Xt ∈ At)

for all finite subsets, Λ ⊂ T, and all {At}t∈Λ ⊂ BR.
3.

P (∩t∈Λ {Xt ≤ xt}) =
∏
t∈Λ

P (Xt ≤ xt)

for all finite subsets, Λ ⊂ T, and all {xt}t∈Λ ⊂ R.
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4. For all Γ ⊂⊂ T and ft : Rn→ R which are bounded an measurable for all
t ∈ Γ,

E

[∏
t∈Γ

ft (Xt)

]
=
∏
t∈Γ

Eft (Xt) =
∫

RΓ

∏
t∈Γ

ft (xt)
∏
t∈Γ

dµt (xt) .

5. E
[∏

t∈Γ exp
(
eiλt·Xt

)]
=
∏
t∈Γ µ̂t (λ) .

6. For all Γ ⊂⊂ T and f : (Rn)Γ → R,

E [f (XΓ )] =
∫

(Rn)Γ
f (x)

∏
t∈Γ

dµt (xt) .

7. For all Γ ⊂⊂ T, LawP (XΓ ) = ⊗t∈Γµt.
8. LawP (X) = ⊗t∈Tµt.

Moreover, if Bt is a sub-σ - algebra of B for t ∈ T, then {Bt}t∈T are inde-
pendent iff for all Γ ⊂⊂ T,

E

[∏
t∈Γ

Xt

]
=
∏
t∈Γ

EXt for all Xt ∈ L∞ (Ω,Bt, P ) .

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that σ (Xt) = {{Xt ∈ A} : A ∈ BR} .
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
10.13 with Ct := {{Xt ≤ a} : a ∈ R} and making use the observations that Ct
is a π – system for all t and that σ (Ct) = σ (Xt) . The remaining equivalence
are also easy to check.

10.2 Examples of Independence

10.2.1 An Example of Ranks

Lemma 10.20 (No Ties). Suppose that X and Y are independent random
variables on a probability space (Ω,B, P ) . If F (x) := P (X ≤ x) is continuous,
then P (X = Y ) = 0.

Proof. Let µ (A) := P (X ∈ A) and ν (A) = P (Y ∈ A) . Because F is con-
tinuous, µ ({y}) = F (y)− F (y−) = 0, and hence

P (X = Y ) = E
[
1{X=Y }

]
=
∫

R2
1{x=y}d (µ⊗ ν) (x, y)

=
∫

R
dν (y)

∫
R
dµ (x) 1{x=y} =

∫
R
µ ({y}) dν (y)

=
∫

R
0 dν (y) = 0.

Second Proof. For sake of comparison, lets give a proof where we do not
allow ourselves to use Fubini’s theorem. To this end let

{
al := l

N

}∞
l=−∞ (or for

the moment any sequence such that, al < al+1 for all l ∈ Z, liml→±∞ al = ±∞).
Then

{(x, x) : x ∈ R} ⊂ ∪l∈Z [(al, al+1]× (al, al+1]]

and therefore,

P (X = Y ) ≤
∑
l∈Z

P (X ∈ (al, al+1], Y ∈ (al, al+1]) =
∑
l∈Z

[F (al+1)− F (al)]
2

≤ sup
l∈Z

[F (al+1)− F (al)]
∑
l∈Z

[F (al+1)− F (al)] = sup
l∈Z

[F (al+1)− F (al)] .

Since F is continuous and F (∞+) = 1 and F (∞−) = 0, it is easily seen that
F is uniformly continuous on R. Therefore, if we choose al = l

N , we have

P (X = Y ) ≤ lim sup
N→∞

sup
l∈Z

[
F

(
l + 1
N

)
− F

(
l

N

)]
= 0.

Let {Xn}∞n=1 be i.i.d. with common continuous distribution function, F. So
by Lemma 10.20 we know that

P (Xi = Xj) = 0 for all i 6= j.

Let Rn denote the “rank” of Xn in the list (X1, . . . , Xn) , i.e.

Rn :=
n∑
j=1

1Xj≥Xn = # {j ≤ n : Xj ≥ Xn} .

Thus Rn = k if Xn is the kth – largest element in the list, (X1, . . . , Xn) .
For example if (X1, X2, X3, X4, X5, X6, X7, . . . ) = (9,−8, 3, 7, 23, 0,−11, . . . ) ,
we have R1 = 1, R2 = 2, R3 = 2, R4 = 2, R5 = 1, R6 = 5, and R7 =
7. Observe that rank order, from lowest to highest, of (X1, X2, X3, X4, X5)
is (X2, X3, X4, X1, X5) . This can be determined by the values of Ri for i =
1, 2, . . . , 5 as follows. Since R5 = 1, we must have X5 in the last slot, i.e.
(∗, ∗, ∗, ∗, X5) . Since R4 = 2, we know out of the remaining slots, X4 must be
in the second from the far most right, i.e. (∗, ∗, X4, ∗, X5) . Since R3 = 2, we
know that X3 is again the second from the right of the remaining slots, i.e. we
now know, (∗, X3, X4, ∗, X5) . Similarly, R2 = 2 implies (X2, X3, X4, ∗, X5) and
finally R1 = 1 gives, (X2, X3, X4, X1, X5) (= (−8, 4, 7, 9, 23) in the example).
As another example, if Ri = i for i = 1, 2, . . . , n, then Xn < Xn−1 < · · · < X1.

Theorem 10.21 (Renyi Theorem). Let {Xn}∞n=1 be i.i.d. and assume that
F (x) := P (Xn ≤ x) is continuous. The {Rn}∞n=1 is an independent sequence,
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P (Rn = k) =
1
n

for k = 1, 2, . . . , n,

and the events, An = {Xn is a record} = {Rn = 1} are independent as n varies
and

P (An) = P (Rn = 1) =
1
n
.

Proof. By Problem 6 on p. 110 of Resnick or by Fubini’s theorem,
(X1, . . . , Xn) and (Xσ1, . . . , Xσn) have the same distribution for any permu-
tation σ.

Since F is continuous, it now follows that up to a set of measure zero,

Ω =
∑
σ

{Xσ1 < Xσ2 < · · · < Xσn}

and therefore

1 = P (Ω) =
∑
σ

P ({Xσ1 < Xσ2 < · · · < Xσn}) .

Since P ({Xσ1 < Xσ2 < · · · < Xσn}) is independent of σ we may now conclude
that

P ({Xσ1 < Xσ2 < · · · < Xσn}) =
1
n!

for all σ. As observed before the statement of the theorem, to each realization
(ε1, . . . , εn) , (here εi ∈ N with εi ≤ i) of (R1, . . . , Rn) there is a uniquely
determined permutation, σ = σ (ε1, . . . , εn) , such that Xσ1 < Xσ2 < · · · <
Xσn. (Notice that there are n! permutations of {1, 2, . . . , n} and there are also
n! choices for the {(ε1, . . . , εn) : 1 ≤ εi ≤ i} .) From this it follows that

{(R1, . . . , Rn) = (ε1, . . . , εn)} = {Xσ1 < Xσ2 < · · · < Xσn}

and therefore,

P ({(R1, . . . , Rn) = (ε1, . . . , εn)}) = P (Xσ1 < Xσ2 < · · · < Xσn) =
1
n!
.

Since

P ({Rn = εn}) =
∑

(ε1,...εn−1)

P ({(R1, . . . , Rn) = (ε1, . . . , εn)})

=
∑

(ε1,...εn−1)

1
n!

= (n− 1)! · 1
n!

=
1
n

we have shown that

P ({(R1, . . . , Rn) = (ε1, . . . , εn)}) =
1
n!

=
n∏
j=1

1
j

=
n∏
j=1

P ({Rj = εj}) .

10.3 Gaussian Random Vectors

As you saw in Exercise 10.2, uncorrelated random variables are typically not
independent. However, if the random variables involved are jointly Gaussian,
then independence and uncorrelated are actually the same thing!

Lemma 10.22. Suppose that Z = (X,Y )tr is a Gaussian random vector with
X ∈ Rk and Y ∈ Rl. Then X is independent of Y iff Cov (Xi, Yj) = 0 for all
1 ≤ i ≤ k and 1 ≤ j ≤ l. This lemma also holds more generally. Namely if{
X l
}n
l=1

is a sequence of random vectors such that
(
X1, . . . , Xn

)
is a Gaussian

random vector. Then
{
X l
}n
l=1

are independent iff Cov
(
X l
i , X

l′

k

)
= 0 for all

l 6= l′ and i and k.

Proof. We know by Exercise 10.2 that if Xi and Yj are independent, then
Cov (Xi, Yj) = 0. For the converse direction, if Cov (Xi, Yj) = 0 for all 1 ≤ i ≤ k
and 1 ≤ j ≤ l and x ∈ Rk and y ∈ Rl, then

Var (x ·X + y · Y ) = Var (x ·X) + Var (y · Y ) + 2 Cov (x ·X, y · Y )
= Var (x ·X) + Var (y · Y ) .

Therefore using the fact that (X,Y ) is a Gaussian random vector,

E
[
eix·Xeiy·Y

]
= E

[
ei(x·X+y·Y )

]
= exp

(
−1

2
Var (x ·X + y · Y ) + E (x ·X + y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= E

[
eix·X

]
· E
[
eiy·Y

]
,

and because x and y were arbitrary, we may conclude from Theorem 10.11 that
X and Y are independent.

Corollary 10.23. Suppose that X : Ω → Rk and Y : Ω → Rl are two indepen-
dent random Gaussian vectors, then (X,Y ) is also a Gaussian random vector.
This corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let x ∈ Rk and y ∈ Rl, then
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E
[
ei(x,y)·(X,Y )

]
=E

[
ei(x·X+y·Y )

]
= E

[
eix·Xeiy·Y

]
= E

[
eix·X

]
· E
[
eiy·Y

]
= exp

(
−1

2
Var (x ·X) + iE (x ·X)

)
× exp

(
−1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X + y · Y ) + iE (x ·X + y · Y )

)
which shows that (X,Y ) is again Gaussian.

Notation 10.24 Suppose that {Xi}ni=1 is a collection of R – valued variables or

Rd – valued random vectors. We will write X1

⊥⊥
+ X2

⊥⊥
+ . . .

⊥⊥
+ Xn for X1+· · ·+Xn

under the additional assumption that the {Xi}ni=1 are independent.

Corollary 10.25. Suppose that {Xi}ni=1 are independent Gaussian random
variables, then Sn :=

∑n
i=1Xi is a Gaussian random variables with :

Var (Sn) =
n∑
i=1

Var (Xi) and ESn =
n∑
i=1

EXi, (10.7)

i.e.

X1

⊥⊥
+ X2

⊥⊥
+ . . .

⊥⊥
+ Xn

d= N

(
n∑
i=1

Var (Xi) ,
n∑
i=1

EXi

)
.

In particular if {Xi}∞i=1 are i.i.d. Gaussian random variables with EXi = µ and
σ2 = Var (Xi) , then

Sn
n
− µ d= N

(
0,
σ2

n

)
and (10.8)

Sn − nµ
σ
√
n

d= N (0, 1) . (10.9)

Equation (10.9) is a very special case of the central limit theorem while Eq.
(10.8) leads to a very special case of the strong law of large numbers, see Corol-
lary 10.26.

Proof. The fact that Sn, Snn − µ, and Sn−nµ
σ
√
n

are all Gaussian follows from
Corollary 10.25 and Lemma 9.36 or by direct calculation. The formulas for the
variances and means of these random variables are routine to compute.

Recall the first Borel Cantelli-Lemma 7.14 states that if {An}∞n=1 are mea-
surable sets, then

∞∑
n=1

P (An) <∞ =⇒ P ({An i.o.}) = 0. (10.10)

Corollary 10.26. Let {Xi}∞i=1 be i.i.d. Gaussian random variables with EXi =
µ and σ2 = Var (Xi) . Then limn→∞

Sn
n = µ a.s. and moreover for every α < 1

2 ,
there exists Nα : Ω → N∪{∞} , such that P (Nα =∞) = 0 and∣∣∣∣Snn − µ

∣∣∣∣ ≤ n−α for n ≥ Nα.

In particular, limn→∞
Sn
n = µ a.s.

Proof. Let Z d= N (0, 1) so that σ√
n
Z

d= N
(

0, σ
2

n

)
. From the Eq. (10.8)

and Eq. (7.42),

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) = P

(∣∣∣∣ σ√nZ
∣∣∣∣ ≥ ε) = P

(
|Z| ≥

√
nε

σ

)
≤ exp

(
−1

2

(√
nε

σ

)2
)

= exp
(
− ε2

2σ2
n

)
.

Taking ε = n−α with 1− 2α > 0, it follows that

∞∑
n=1

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ n−α) ≤ ∞∑

n=1

exp
(
− 1

2σ2
n1−2α

)
<∞

and so by the first Borel-Cantelli lemma,

P

({∣∣∣∣Snn − µ
∣∣∣∣ ≥ n−α i.o.

})
= 0.

Therefore, P – a.s.,
∣∣Sn
n − µ

∣∣ ≤ n−α a.a., and in particular limn→∞
Sn
n = µ a.s.

10.4 Summing independent random variables

Exercise 10.4. Suppose that X d= N
(
0, a2

)
and Y

d= N
(
0, b2

)
and X and

Y are independent. Show by direct computation using the formulas for the
distributions of X and Y that X + Y = N

(
0, a2 + b2

)
.
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Solution to Exercise (10.4). If f : R→ R be a bounded measurable func-
tion, then

E [f (X + Y )] =
1
Z

∫
R2
f (x+ y) e−

1
2a2

x2

e−
1

2b2
y2

dxdy,

where Z = 2πab. Let us make the change of variables, (x, z) = (x, x+ y) and
observe that dxdy = dxdz (you check). Therefore we have,

E [f (X + Y )] =
1
Z

∫
R2
f (z) e−

1
2a2

x2

e−
1

2b2
(z−x)2dxdz

which shows, LawP (X + Y ) (dz) = ρ (z) dz where

ρ (z) =
1
Z

∫
R
e−

1
2a2

x2

e−
1

2b2
(z−x)2dx. (10.11)

Working the exponent, for any c ∈ R, we have

1
a2
x2 +

1
b2

(z − x)2 =
1
a2
x2 +

1
b2
(
x2 − 2xz + z2

)
=
(

1
a2

+
1
b2

)
x2 − 2

b2
xz +

1
b2
z2

=
(

1
a2

+
1
b2

)[
(x− cz)2 + 2cxz − c2z2

]
− 2
b2
xz +

1
b2
z2.

Let us now choose (to complete the squares) c such that where c must be chosen
so that

c

(
1
a2

+
1
b2

)
=

1
b2

=⇒ c =
a2

a2 + b2
,

in which case,

1
a2
x2 +

1
b2

(z − x)2 =
(

1
a2

+
1
b2

)[
(x− cz)2

]
+
[

1
b2
− c2

(
1
a2

+
1
b2

)]
z2

where,
1
b2
− c2

(
1
a2

+
1
b2

)
=

1
b2

(1− c) =
1

a2 + b2
.

So making the change of variables, x → x − cz, in the integral in Eq. (10.11)
implies,

ρ (z) =
1
Z

∫
R

exp
(
−1

2

(
1
a2

+
1
b2

)
w2 − 1

2
1

a2 + b2
z2

)
dw

=
1
Z̃

exp
(
−1

2
1

a2 + b2
z2

)

where,

1
Z̃

=
1
Z
·
∫

R
exp

(
−1

2

(
1
a2

+
1
b2

)
w2

)
dw =

1
2πab

√
2π
(

1
a2

+
1
b2

)−1

=
1

2πab

√
2π

a2b2

a2 + b2
=

1√
2π (a2 + b2)

.

Thus it follows that X
⊥⊥
+ Y

d= N
(
a2 + b2, 0

)
.

Exercise 10.5. Show that the sum, N1 +N2, of two independent Poisson ran-
dom variables, N1 and N2, with parameters λ1 and λ2 respectively is again a
Poisson random variable with parameter λ1 + λ2. (You could use generating

functions or do this by hand.) In short Poi (λ1)
⊥⊥
+ Poi (λ2) d= Poi (λ1 + λ2) .

Solution to Exercise (10.5). Let z ∈ C, then by independence,

E
[
zN1+N2

]
= E

[
zN1zN2

]
= E

[
zN1
]
E
[
zN2
]

= eλ1(z−1) · eλ2(z−1) = e(λ1+λ2)(z−1)

from which it follows that N1 +N2
d= Poisson(λ1 + λ2) .

Example 10.27 (Gamma Distribution Sums). We will show here that

Gamma(k, θ)
⊥⊥
+ Gamma(l, θ) =Gamma(k + l, θ) . In Exercise 7.13 you

showed if k, θ > 0 then

E
[
etX
]

= (1− θt)−k for t < θ−1

where X is a positive random variable with X
d=Gamma(k, θ) , i.e.

(X∗P ) (dx) = xk−1 e−x/θ

θkΓ (k)
dx for x > 0.

Suppose that X and Y are independent Random variables with
X

d=Gamma(k, θ) and Y
d=Gamma(l, θ) for some l > 0. It now follows

that

E
[
et(X+Y )

]
= E

[
etXetY

]
= E

[
etX
]
E
[
etY
]

= (1− θt)−k (1− θt)−l = (1− θt)−(k+l)
.

Therefore it follows from Exercise 8.2 that X + Y
d=Gamma(k + l, θ) .
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Example 10.28 (Exponential Distribution Sums). If {Tk}nk=1 are independent

random variables such that Tk
d= E (λk) for all k, then

T1

⊥⊥
+ T2

⊥⊥
+ . . .

⊥⊥
+ Tn = Gamma

(
n, λ−1

)
.

This follows directly from Example 10.27 using E (λ) =Gamma
(
1, λ−1

)
and

induction. We will verify this directly later on in Corollary 11.8.

Example 10.27 may also be verified using brute force. To this end, suppose
that f : R+ → R+ is a measurable function, then

E [f (X + Y )] =
∫

R2
+

f (x+ y)xk−1 e−x/θ

θkΓ (k)
yl−1 e

−y/θ

θlΓ (l)
dxdy

=
1

θk+lΓ (k)Γ (l)

∫
R2

+

f (x+ y)xk−1yl−1e−(x+y)/θdxdy.

Let us now make the change of variables, x = x and z = x+ y, so that dxdy =
dxdz, to find,

E [f (X + Y )] =
1

θk+lΓ (k)Γ (l)

∫
10≤x≤z<∞f (z)xk−1 (z − x)l−1

e−z/θdxdz.

(10.12)
To finish the proof we must now do that x integral and show,∫ z

0

xk−1 (z − x)l−1
dx = zk+l−1Γ (k)Γ (l)

Γ (k + l)
.

(In fact we already know this must be correct from our Laplace transform
computations above.) First make the change of variable, x = zt to find,∫ z

0

xk−1 (z − x)l−1
dx = zk+l−1B (k, l)

where B (k, l) is the beta – function defined by;

B (k, l) :=
∫ 1

0

tk−1 (1− t)l−1
dt for Re k,Re l > 0. (10.13)

Combining these results with Eq. (10.12) then shows,

E [f (X + Y )] =
B (k, l)

θk+lΓ (k)Γ (l)

∫ ∞
0

f (z) zk+l−1e−z/θdz. (10.14)

Since we already know that

∫ ∞
0

zk+l−1e−z/θdz = θk+lΓ (k + l)

it follows by taking f = 1 in Eq. (10.14) that

1 =
B (k, l)

θk+lΓ (k)Γ (l)
θk+lΓ (k + l)

which implies,

B (k, l) =
Γ (k)Γ (l)
Γ (k + l)

. (10.15)

Therefore, using this back in Eq. (10.14) implies

E [f (X + Y )] =
1

θk+lΓ (k + l)

∫ ∞
0

f (z) zk+l−1e−z/θdz

from which it follows that X + Y
d=Gamma(k + l, θ) .

Let us pause to give a direct verification of Eq. (10.15). By definition of the
gamma function,

Γ (k)Γ (l) =
∫

R2
+

xk−1e−xyl−1e−ydxdy =
∫

R2
+

xk−1yl−1e−(x+y)dxdy.

=
∫

0≤x≤z<∞
xk−1 (z − x)l−1

e−zdxdz

Making the change of variables, x = x and z = x+ y it follows,

Γ (k)Γ (l) =
∫

0≤x≤z<∞
xk−1 (z − x)l−1

e−zdxdz.

Now make the change of variables, x = zt to find,

Γ (k)Γ (l) =
∫ ∞

0

dze−z
∫ 1

0

dt (zt)k−1 (z − tz)l−1
z

=
∫ ∞

0

e−zzk+l−1dz ·
∫ 1

0

tk−1 (1− t)l−1
dt

= Γ (k + l)B (k, l) .

Definition 10.29 (Beta distribution). The β – distribution is

dµx,y (t) =
tx−1 (1− t)y−1

dt

B (x, y)
.
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Observe that∫ 1

0

tdµx,y (t) =
B (x+ 1, y)
B (x, y)

=
Γ (x+1)Γ (y)
Γ (x+y+1)

Γ (x)Γ (y)
Γ (x+y)

=
x

x+ y

and ∫ 1

0

t2dµx,y (t) =
B (x+ 2, y)
B (x, y)

=
Γ (x+2)Γ (y)
Γ (x+y+2)

Γ (x)Γ (y)
Γ (x+y)

=
(x+ 1)x

(x+ y + 1) (x+ y)
.

10.5 A Strong Law of Large Numbers

Theorem 10.30 (A simple form of the strong law of large numbers).

If {Xn}∞n=1 is a sequence of i.i.d. random variables such that E
[
|Xn|4

]
< ∞,

then
lim
n→∞

Sn
n

= µ a.s.

where Sn :=
∑n
k=1Xk and µ := EXn = EX1.

Exercise 10.6. Use the following outline to give a proof of Theorem 10.30.

1. First show that xp ≤ 1 + x4 for all x ≥ 0 and 1 ≤ p ≤ 4. Use this to
conclude;

E |Xn|p ≤ 1 + E |Xn|4 <∞ for 1 ≤ p ≤ 4.

Thus γ := E
[
|Xn − µ|4

]
and the standard deviation

(
σ2
)

of Xn defined by,

σ2 := E
[
X2
n

]
− µ2 = E

[
(Xn − µ)2

]
<∞,

are finite constants independent of n.
2. Show for all n ∈ N that

E

[(
Sn
n
− µ

)4
]

=
1
n4

(
nγ + 3n(n− 1)σ4

)
=

1
n2

[
n−1γ + 3

(
1− n−1

)
σ4
]
.

(Thus Sn
n → µ in L4 (P ) .)

3. Use item 2. and Chebyshev’s inequality to show

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤
n−1γ + 3

(
1− n−1

)
σ4

ε4n2
.

4. Use item 3. and the first Borel Cantelli Lemma 7.14 to conclude
limn→∞

Sn
n = µ a.s.

10.6 A Central Limit Theorem

In this section we will give a preliminary a couple versions of the central limit
theorem following [30, Chapter 2.14]. Let us set up some notation. Given a
square integrable random variable Y, let

Ȳ :=
Y − EY
σ (Y )

where σ (Y ) :=
√

E (Y − EY )2 =
√

Var (Y ).

Let us also recall that if Z = N
(
0, σ2

)
, then Z

d=
√
σN (0, 1) and so by Eq.

(7.40) with β = 3 we have,

E
∣∣Z3
∣∣ = σ3E |N (0, 1)|3 =

√
8/πσ3. (10.16)

Theorem 10.31 (A CLT proof w/o Fourier). Suppose that {Xk}∞k=1 ⊂
L3 (P ) is a sequence of independent random variables such that

C := sup
k

E |Xk − EXk|3 <∞

Then for every function, f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞ we have

∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ M

3!

(
1 +

√
8/π

) C

σ (Sn)3 · n, (10.17)

where Sn := X1 + · · ·+Xn and N d= N (0, 1) . In particular if we further assume
that

δ := lim inf
n→∞

1
n
σ (Sn)2 = lim inf

n→∞

1
n

n∑
i=1

Var (Xi) > 0, (10.18)

Then it follows that∣∣Ef (N)− Ef
(
S̄n
)∣∣ = O

(
1√
n

)
as n→∞ (10.19)

which is to say, S̄n is “close” in distribution to N, which we abbreviate by

S̄n
d∼= N for large n.
(It should be noted that the estimate in Eq. (10.17) is valid for any finite

collection of random variables, {Xk}nk=1 .)

Proof. Let n ∈ N be fixed and then Let {Yk, Nk}∞k=1 be a collection of
independent random variables such that

Yk
d= X̄k =

Xk − EXk

σ (Sn)
and Nk

d= N (0,Var (Yk)) for 1 ≤ k ≤ n.
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Let SYn = Y1 + · · ·+ Yn
d= S̄n and Tn := N1 + · · ·+Nn. Since

n∑
k=1

Var (Nk) =
n∑
k=1

Var (Yk) =
1

σ (Sn)2

n∑
k=1

Var (Xk − EXk)

=
1

σ (Sn)2

n∑
k=1

Var (Xk) = 1,

it follows by Corollary 10.25) that Tn
d= N (0, 1) .

To compare Ef
(
S̄n
)

with Ef (N) we may compare Ef
(
SYn
)

with Ef (Tn)
which we will do by interpolating between SYn and Tn. To this end, for 0 ≤ k ≤
n, let

Vk := N1 + · · ·+Nk + Yk+1 + · · ·+ Yn

with the convention that Vn = Tn and V0 = SYn . Then by a telescoping series
argument, it follows that

f (Tn)− f
(
SYn
)

= f (Vn)− f (V0) =
n∑
k=1

[f (Vk)− f (Vk−1)] . (10.20)

We now make use of Taylor’s theorem with integral remainder the form,

f (x+∆)− f (x) = f ′ (x)∆+
1
2
f ′′ (x)∆2 + r (x,∆)∆3 (10.21)

where

r (x,∆) :=
1
2

∫ 1

0

f ′′′ (x+ t∆) (1− t)2
dt.

Taking Eq. (10.20) with ∆ replaced by δ and subtracting the results then implies

f (x+∆)−f (x+ δ) = f ′ (x) (∆− δ)+
1
2
f ′′ (x)

(
∆2 − δ2

)
+ρ (x,∆, δ) , (10.22)

where

|ρ (x,∆, δ)| =
∣∣r (x,∆)∆3 − r (x, δ) δ3

∣∣ ≤ M

3!

[
|∆|3 + |δ|3

]
, (10.23)

wherein we have used the simple estimate, |r (x,∆)| ∨ |r (x, δ)| ≤M/3!.
If we define

Uk := N1 + · · ·+Nk−1 + Yk+1 + · · ·+ Yn,

then Vk = Uk +Nk and Vk−1 = Uk +Yk. Hence, using Eq. (10.22) with x = Uk,
∆ = Nkand δ = Yk, it follows that

f (Vk)− f (Vk−1) = f (Uk +Nk)− f (Uk + Yk)

= f ′ (Uk) (Nk − Yk) +
1
2
f ′′ (Uk)

(
N2
k − Y 2

k

)
+Rk (10.24)

where
|Rk| ≤

M

3!

[
|Nk|3 + |Yk|3

]
. (10.25)

Taking expectations of Eq. (10.24) using; Eq. (10.25), ENk = 0 = EYk, EN2
k =

EY 2
k , and the fact that Uk is independent of both Yk and Nk, we find

|E [f (Vk)− f (Vk−1)]| = |ERk| ≤
M

3!
E
[
|Nk|3 + |Yk|3

]
.

Making use of Eq. (10.16) it follows that

E |Nk|3 =
√

8/π·Var (Nk)3/2 =
√

8/π·Var (Yk)3/2 =
√

8/π·
(
EY 2

k

)3/2 ≤√8/π·E |Yk|3 ,

wherein we have used Jensen’s (or Hölder’s) inequality (see Chapter 12 below)
for the last inequality. Combining these estimates with Eq. (10.20) shows,

∣∣E [f (Tn)− f
(
SYn
)]∣∣ =

∣∣∣∣∣
n∑
k=1

ERk

∣∣∣∣∣ ≤
n∑
k=1

E |Rk|

≤ M

3!

n∑
k=1

E
[
|Nk|3 + |Yk|3

]
≤ M

3!

(
1 +

√
8/π

) n∑
k=1

E
[
|Yk|3

]
. (10.26)

Since

E |Yk|3 = E

∣∣∣∣∣
(
Xk − EXk

σ (Sn)

)3
∣∣∣∣∣ ≤ C

σ (Sn)3 and∣∣Ef (N)− Ef
(
S̄n
)∣∣ =

∣∣E [f (Tn)− f
(
SYn
)]∣∣ ,

we see that Eq. (10.17) now follows from Eq. (10.26).

Corollary 10.32. Suppose that {Xn}∞n=1 is a sequence of i.i.d. random vari-

ables in L3 (P ) , C := E |X1 − EX1|3 < ∞, Sn := X1 + · · · + Xn, and N
d=

N (0, 1) . Then for every function, f ∈ C3 (R) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞
we have ∣∣Ef (N)− Ef

(
S̄n
)∣∣ ≤ M

3!
√
n

(
1 +

√
8/π

) C

Var (X1)3/2
. (10.27)

(This is a specialized form of the “Berry–Esseen theorem.”)
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By a slight modification of the proof of Theorem 10.31 we have the following
central limit theorem.

Theorem 10.33 (A CLT proof w/o Fourier). Suppose that {Xn}∞n=1 is a

sequence of i.i.d. random variables in L2 (P ) , Sn := X1 + · · · + Xn, and N
d=

N (0, 1) . Then for every function, f ∈ C2 (R) with M := supx∈R
∣∣f (2) (x)

∣∣ <∞
and f ′′ being uniformly continuous on R we have,

lim
n→∞

Ef
(
S̄n
)

= Ef (N) .

Proof. In this proof we use the following form of Taylor’s theorem;

f (x+∆)− f (x) = f ′ (x)∆+
1
2
f ′′ (x)∆2 + r (x,∆)∆2 (10.28)

where

r (x,∆) =
∫ 1

0

[f ′′ (x+ t∆)− f ′′ (x)] (1− t) dt.

Taking Eq. (10.28) with ∆ replaced by δ and subtracting the results then implies

f (x+∆)− f (x+ δ) = f ′ (x) (∆− δ) +
1
2
f ′′ (x)

(
∆2 − δ2

)
+ ρ (x,∆, δ)

where now,
ρ (x,∆, δ) = r (x,∆)∆2 − r (x, δ) δ2.

Since f ′′ is uniformly continuous it follows that

ε (∆) :=
1
2

sup {|f ′′ (x+ t∆)− f (x)| : x ∈ R and 0 ≤ t ≤ 1} → 0

Thus we may conclude that

|r (x,∆)| ≤
∫ 1

0

|f ′′ (x+ t∆)− f ′′ (x)| (1− t) dt ≤
∫ 1

0

2ε (∆) (1− t) dt = ε (∆) .

and therefore that
|ρ (x,∆, δ)| ≤ ε (∆)∆2 + ε (δ) δ2.

So working just as in the proof of Theorem 10.31 we may conclude,

∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ n∑

k=1

E |Rk|

where now,
|Rk| = ε (Nk)N2

k + ε (Yk)Y 2
k .

Since the {Yk}nk=1 and the {Nk}nk=1 are i.i.d. now it follows that∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ n · E [ε (N1)N2

1 + ε (Y1)Y 2
1

]
.

Since Var (Sn) = n ·Var (X1) , we have Y1 = X1−EX1√
nσ(X1)

, Var (N1) = Var (Y1) = 1
n

and therefore N1
d=
√

1
nN. Combining these observations shows,

∣∣Ef (N)− Ef
(
S̄n
)∣∣ ≤ E

[
ε

(√
1
n
N

)
N2 + ε

(
X1 − EX1√
nσ (X1)

)
(X1 − EX1)2

σ2 (X1)

]
which goes to zero as n→∞ by the DCT.

Lemma 10.34. Suppose that {W} ∪ {Wn}∞n=1 is a collection of random vari-
ables such that limn→∞ Ef (Wn) = Ef (W ) for all f ∈ C∞c (R) , then
limn→∞ Ef (Wn) = Ef (W ) for all bounded continuous functions, f : R→ R.

Proof. According to Theorem 21.29 below it suffices to show
limn→∞ Ef (Wn) = Ef (W ) for all f ∈ Cc (R) . For such a function,
f ∈ Cc (R) , we may find1 fk ∈ C∞c (R) with all supports being contained in a
compact subset of R such that εk := supx∈R |f (x)− fk (x)| → 0 as k → ∞.
We then have,

|Ef (W )− Ef (Wn)| ≤ |Ef (W )− Efk (W )|
+ |Efk (W )− Efk (Wn)|+ |Efk (Wn)− Ef (Wn)|

≤E |f (W )− fk (W )|
+ |Efk (W )− Efk (Wn)|+ E |fk (Wn)− f (Wn)|

≤2εk + |Efk (W )− Efk (Wn)| .

Therefore it follows that

lim sup
n→∞

|Ef (W )− Ef (Wn)| ≤ 2εk + lim sup
n→∞

|Efk (W )− Efk (Wn)|

= 2εk → 0 as k →∞.

Corollary 10.35. Suppose that {Xn}∞n=1 is a sequence of independent random
variables, then under the hypothesis on this sequence in either of Theorem 10.31
or Theorem 10.33 we have that limn→∞ Ef

(
S̄n
)

= Ef (N (0, 1)) for all f :
R→ R which are bounded and continuous.

For more on the methods employed in this section the reader is advised
to look up “Stein’s method.” In Chapters 22 and 23 below, we will relax
the assumptions in the above theorem. The proofs later will be based in the
characteristic functional or equivalently the Fourier transform.
1 We will eventually prove this standard real analysis fact later in the course.
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10.7 The Second Borel-Cantelli Lemma

Lemma 10.36. If 0 ≤ x ≤ 1
2 , then

e−2x ≤ 1− x ≤ e−x. (10.29)

Moreover, the upper bound in Eq. (10.29) is valid for all x ∈ R.

Proof. The upper bound follows by the convexity of e−x, see Figure 10.1.

Fig. 10.1. A graph of 1− x and e−x showing that 1− x ≤ e−x for all x.

For the lower bound we use the convexity of ϕ (x) = e−2x to conclude that the
line joining (0, 1) = (0, ϕ (0)) and

(
1/2, e−1

)
= (1/2, ϕ (1/2)) lies above ϕ (x)

for 0 ≤ x ≤ 1/2. Then we use the fact that the line 1 − x lies above this line
to conclude the lower bound in Eq. (10.29), see Figure 10.2. See Example 12.54
below for a more formal proof of this lemma.

For {an}∞n=1 ⊂ [0, 1] , let

∞∏
n=1

(1− an) := lim
N→∞

N∏
n=1

(1− an) .

The limit exists since,
∏N
n=1 (1− an) decreases as N increases.

Exercise 10.7. Show; if {an}∞n=1 ⊂ [0, 1), then

∞∏
n=1

(1− an) = 0 ⇐⇒
∞∑
n=1

an =∞.

The implication, ⇐= , holds even if an = 1 is allowed.

Fig. 10.2. A graph of 1−x (in red), the line joining (0, 1) and
(
1/2, e−1

)
(in green), e−x

(in purple), and e−2x (in black) showing that e−2x ≤ 1− x ≤ e−x for all x ∈ [0, 1/2] .

Solution to Exercise (10.7). By Eq. (10.29) we always have,

N∏
n=1

(1− an) ≤
N∏
n=1

e−an = exp

(
−

N∑
n=1

an

)
which upon passing to the limit as N →∞ gives

∞∏
n=1

(1− an) ≤ exp

(
−
∞∑
n=1

an

)
.

Hence if
∑∞
n=1 an =∞ then

∏∞
n=1 (1− an) = 0.

Conversely, suppose that
∑∞
n=1 an <∞. In this case an → 0 as n→∞ and

so there exists an m ∈ N such that an ∈ [0, 1/2] for all n ≥ m. Therefore by
Eq. (10.29), for any N ≥ m,
N∏
n=1

(1− an) =
m∏
n=1

(1− an) ·
N∏

n=m+1

(1− an)

≥
m∏
n=1

(1− an) ·
N∏

n=m+1

e−2an =
m∏
n=1

(1− an) · exp

(
−2

N∑
n=m+1

an

)

≥
m∏
n=1

(1− an) · exp

(
−2

∞∑
n=m+1

an

)
.

So again letting N →∞ shows,
∞∏
n=1

(1− an) ≥
m∏
n=1

(1− an) · exp

(
−2

∞∑
n=m+1

an

)
> 0.
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Lemma 10.37 (Second Borel-Cantelli Lemma). Suppose that {An}∞n=1 are
independent sets. If

∞∑
n=1

P (An) =∞, (10.30)

then
P ({An i.o.}) = 1. (10.31)

Combining this with the first Borel Cantelli Lemma 7.14 gives the (Borel)
Zero-One law,

P (An i.o.) =

0 if
∑∞
n=1 P (An) <∞

1 if
∑∞
n=1 P (An) =∞

.

Proof. We are going to prove Eq. (10.31) by showing,

0 = P ({An i.o.}c) = P ({Acn a.a}) = P (∪∞n=1 ∩k≥n Ack) .

Since ∩k≥nAck ↑ ∪∞n=1 ∩k≥n Ack as n → ∞ and ∩mk=nA
c
k ↓ ∩∞n=1 ∪k≥n Ak as

m→∞,

P (∪∞n=1 ∩k≥n Ack) = lim
n→∞

P (∩k≥nAck) = lim
n→∞

lim
m→∞

P (∩m≥k≥nAck) .

Making use of the independence of {Ak}∞k=1 and hence the independence of
{Ack}

∞
k=1 , we have

P (∩m≥k≥nAck) =
∏

m≥k≥n

P (Ack) =
∏

m≥k≥n

(1− P (Ak)) . (10.32)

Using the upper estimate in Eq. (10.29) along with Eq. (10.32) shows

P (∩m≥k≥nAck) ≤
∏

m≥k≥n

e−P (Ak) = exp

(
−

m∑
k=n

P (Ak)

)
.

Using Eq. (10.30), we find from the above inequality that
limm→∞ P (∩m≥k≥nAck) = 0 and hence

P (∪∞n=1 ∩k≥n Ack) = lim
n→∞

lim
m→∞

P (∩m≥k≥nAck) = lim
n→∞

0 = 0

Note: we could also appeal to Exercise 10.7 above to give a proof of the Borel
Zero-One law without appealing to the first Borel Cantelli Lemma.

Example 10.38 (Example 7.15 continued). Suppose that {Xn} are now indepen-
dent Bernoulli random variables with P (Xn = 1) = pn and P (Xn = 0) = 1 −
pn. Then P (limn→∞Xn = 0) = 1 iff

∑
pn <∞. Indeed, P (limn→∞Xn = 0) =

1 iff P (Xn = 0 a.a.) = 1 iff P (Xn = 1 i.o.) = 0 iff
∑
pn =

∑
P (Xn = 1) <∞.

Proposition 10.39 (Extremal behaviour of iid random variables). Sup-
pose that {Xn}∞n=1 is a sequence of i.i.d. random variables and cn is an increas-
ing sequence of positive real numbers such that for all α > 1 we have

∞∑
n=1

P
(
X1 > α−1cn

)
=∞ (10.33)

while
∞∑
n=1

P (X1 > αcn) <∞. (10.34)

Then
lim sup
n→∞

Xn

cn
= 1 a.s. (10.35)

Proof. By the second Borel-Cantelli Lemma, Eq. (10.33) implies

P
(
Xn > α−1cn i.o. n

)
= 1

from which it follows that

lim sup
n→∞

Xn

cn
≥ α−1 a.s..

Taking α = αk = 1 + 1/k, we find

P

(
lim sup
n→∞

Xn

cn
≥ 1
)

= P

(
∩∞k=1

{
lim sup
n→∞

Xn

cn
≥ 1
αk

})
= 1.

Similarly, by the first Borel-Cantelli lemma, Eq. (10.34) implies

P (Xn > αcn i.o. n) = 0

or equivalently,
P (Xn ≤ αcn a.a. n) = 1.

That is to say,

lim sup
n→∞

Xn

cn
≤ α a.s.

and hence working as above,

P

(
lim sup
n→∞

Xn

cn
≤ 1
)

= P

(
∩∞k=1

{
lim sup
n→∞

Xn

cn
≤ αk

})
= 1.

Hence,

P

(
lim sup
n→∞

Xn

cn
= 1
)

= P

({
lim sup
n→∞

Xn

cn
≥ 1
}
∩
{

lim sup
n→∞

Xn

cn
≤ 1
})

= 1.
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Example 10.40. Let {Xn}∞n=1 be i.i.d. standard normal random variables. Then
by Mills’ ratio (see Lemma 7.59),

P (Xn ≥ αcn) ∼ 1√
2παcn

e−α
2c2n/2.

Now, suppose that we take cn so that

e−c
2
n/2 =

1
n

=⇒ cn =
√

2 ln (n).

It then follows that

P (Xn ≥ αcn) ∼ 1√
2πα

√
2 ln (n)

e−α
2 ln(n) =

1
2α
√
π ln (n)

1
n−α2

and therefore
∞∑
n=1

P (Xn ≥ αcn) =∞ if α < 1

and
∞∑
n=1

P (Xn ≥ αcn) <∞ if α > 1.

Hence an application of Proposition 10.39 shows

lim sup
n→∞

Xn√
2 lnn

= 1 a.s..

Example 10.41. Let {En}∞n=1 be a sequence of i.i.d. random variables with ex-
ponential distributions determined by

P (En > x) = e−(x∨0) or P (En ≤ x) = 1− e−(x∨0).

(Observe that P (En ≤ 0) = 0) so that En > 0 a.s.) Then for cn > 0 and α > 0,
we have

∞∑
n=1

P (En > αcn) =
∞∑
n=1

e−αcn =
∞∑
n=1

(
e−cn

)α
.

Hence if we choose cn = lnn so that e−cn = 1/n, then we have

∞∑
n=1

P (En > α lnn) =
∞∑
n=1

(
1
n

)α
which is convergent iff α > 1. So by Proposition 10.39, it follows that

lim sup
n→∞

En
lnn

= 1 a.s.

Example 10.42. * Suppose now that {Xn}∞n=1 are i.i.d. distributed by the Pois-
son distribution with intensity, λ, i.e.

P (X1 = k) =
λk

k!
e−λ.

In this case we have

P (X1 ≥ n) = e−λ
∞∑
k=n

λk

k!
≥ λn

n!
e−λ

and
∞∑
k=n

λk

k!
e−λ =

λn

n!
e−λ

∞∑
k=n

n!
k!
λk−n

=
λn

n!
e−λ

∞∑
k=0

n!
(k + n)!

λk ≤ λn

n!
e−λ

∞∑
k=0

1
k!
λk =

λn

n!
.

Thus we have shown that

λn

n!
e−λ ≤ P (X1 ≥ n) ≤ λn

n!
.

Thus in terms of convergence issues, we may assume that

P (X1 ≥ x) ∼ λx

x!
∼ λx√

2πxe−xxx

wherein we have used Stirling’s formula,

x! ∼
√

2πxe−xxx.

Now suppose that we wish to choose cn so that

P (X1 ≥ cn) ∼ 1/n.

This suggests that we need to solve the equation, xx = n. Taking logarithms of
this equation implies that

x =
lnn
lnx

and upon iteration we find,

x =
lnn

ln
(

lnn
ln x

) =
lnn

`2 (n)− `2 (x)
=

lnn
`2 (n)− `2

(
lnn
ln x

)
=

lnn
`2 (n)− `3 (n) + `3 (x)

.
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where `k =

k - times︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln. Since, x ≤ ln (n) , it follows that `3 (x) ≤ `3 (n) and

hence

x =
ln (n)

`2 (n) +O (`3 (n))
=

ln (n)
`2 (n)

(
1 +O

(
`3 (n)
`2 (n)

))
.

Thus we are lead to take cn := ln(n)
`2(n) . We then have, for α ∈ (0,∞) that

(αcn)αcn = exp (αcn [lnα+ ln cn])

= exp
(
α

ln (n)
`2 (n)

[lnα+ `2 (n)− `3 (n)]
)

= exp
(
α

[
lnα− `3 (n)

`2 (n)
+ 1
]

ln (n)
)

= nα(1+εn(α))

where

εn (α) :=
lnα− `3 (n)

`2 (n)
.

Hence we have

P (X1 ≥ αcn) ∼ λαcn√
2παcne−αcn (αcn)αcn

∼ (λ/e)αcn√
2παcn

1
nα(1+εn(α))

.

Since
ln (λ/e)αcn = αcn ln (λ/e) = α

lnn
`2 (n)

ln (λ/e) = lnnα
ln(λ/e)
`2(n) ,

it follows that
(λ/e)αcn = n

α
ln(λ/e)
`2(n) .

Therefore,

P (X1 ≥ αcn) ∼ n
α

ln(λ/e)
`2(n)√
ln(n)
`2(n)

1
nα(1+εn(α))

=

√
`2 (n)
ln (n)

1
nα(1+δn(α))

where δn (α)→ 0 as n→∞. From this observation, we may show,
∞∑
n=1

P (X1 ≥ αcn) <∞ if α > 1 and

∞∑
n=1

P (X1 ≥ αcn) =∞ if α < 1

and so by Proposition 10.39 we may conclude that

lim sup
n→∞

Xn

ln (n) /`2 (n)
= 1 a.s.

10.8 Kolmogorov and Hewitt-Savage Zero-One Laws

Let {Xn}∞n=1 be a sequence of random variables on a measurable space, (Ω,B) .
Let Bn := σ (X1, . . . , Xn) ,B∞ := σ (X1, X2, . . . ) , Tn := σ (Xn+1, Xn+2, . . . ) ,
and T := ∩∞n=1Tn ⊂ B∞. We call T the tail σ – field and events, A ∈ T , are
called tail events.

Example 10.43. Let Sn := X1+· · ·+Xn and {bn}∞n=1 ⊂ (0,∞) such that bn ↑ ∞.
Here are some example of tail events and tail measurable random variables:

1. {
∑∞
n=1Xn converges} ∈ T . Indeed,{ ∞∑

k=1

Xk converges

}
=

{ ∞∑
k=n+1

Xk converges

}
∈ Tn

for all n ∈ N.
2. Both lim sup

n→∞
Xn and lim infn→∞Xn are T – measurable as are lim sup

n→∞

Sn
bn

and lim infn→∞ Sn
bn
.

3.
{

limXn exists in R̄
}

=
{

lim sup
n→∞

Xn = lim infn→∞Xn

}
∈ T and similarly,{

lim
Sn
bn

exists in R̄
}

=
{

lim sup
n→∞

Sn
bn

= lim inf
n→∞

Sn
bn

}
∈ T

and{
lim

Sn
bn

exists in R
}

=
{
−∞ < lim sup

n→∞

Sn
bn

= lim inf
n→∞

Sn
bn

<∞
}
∈ T .

4.
{

limn→∞
Sn
bn

= 0
}
∈ T . Indeed, for any k ∈ N,

lim
n→∞

Sn
bn

= lim
n→∞

(Xk+1 + · · ·+Xn)
bn

from which it follows that
{

limn→∞
Sn
bn

= 0
}
∈ Tk for all k.

Definition 10.44. Let (Ω,B, P ) be a probability space. A σ – field, F ⊂ B is
almost trivial iff P (F) = {0, 1} , i.e. P (A) ∈ {0, 1} for all A ∈ F .

The following conditions on a sub-σ-algebra, F ⊂ B are equivalent; 1) F
is almost trivial, 2) P (A) = P (A)2 for all A ∈ F , and 3) F is independent
of itself. For example if F is independent of itself, then P (A) = P (A ∩A) =
P (A)P (A) for all A ∈ F which implies P (A) = 0 or 1. If F is almost trivial
and A,B ∈ F , then P (A ∩B) = 1 = P (A)P (B) if P (A) = P (B) = 1 and
P (A ∩B) = 0 = P (A)P (B) if either P (A) = 0 or P (B) = 0. Therefore F is
independent of itself.
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Lemma 10.45. Suppose that X : Ω → R̄ is a random variable which is F
measurable, where F ⊂ B is almost trivial. Then there exists c ∈ R̄ such that
X = c a.s.

Proof. Since {X =∞} and {X = −∞} are in F , if P (X =∞) > 0 or
P (X = −∞) > 0, then P (X =∞) = 1 or P (X = −∞) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X ∈ R) =
1.

For each x ∈ R, {X ≤ x} ∈ F and therefore, P (X ≤ x) is either 0 or 1. Since
the function, F (x) := P (X ≤ x) ∈ {0, 1} is right continuous, non-decreasing
and F (−∞) = 0 and F (+∞) = 1, there is a unique point c ∈ R where F (c) = 1
and F (c−) = 0. At this point, we have P (X = c) = 1.

Alternatively if X : Ω → R is an integrable F measurable random vari-
able, we know that X is independent of itself and therefore X2 is integrable
and EX2 = (EX)2 =: c2. Thus it follows that E

[
(X − c)2

]
= 0, i.e. X = c

a.s. For general X : Ω → R, let XM := (M ∧X) ∨ (−M) , then XM = EXM

a.s. For sufficiently large M we know by MCT that P (|X| < M) > 0 and since
X = XM = EXM a.s. on {|X| < M} , it follows that c = EXM is constant in-
dependent of M for M large. Therefore, X = limM→∞XM

a.s.= limM→∞ c = c.

Proposition 10.46 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (Ω,B) such that {Xn}∞n=1 are independent random vari-
ables. Then T is almost trivial, i.e. P (A) ∈ {0, 1} for all A ∈ T . In particular
the tail events in Example 10.43 have probability either 0 or 1.

Proof. For each n ∈ N, T ⊂ σ (Xn+1, Xn+2, . . . ) which is independent of
Bn := σ (X1, . . . , Xn) . Therefore T is independent of ∪Bn which is a multi-
plicative system. Therefore T and is independent of B∞ = σ (∪Bn) = ∨∞n=1Bn.
As T ⊂ B∞ it follows that T is independent of itself, i.e. T is almost trivial.

Corollary 10.47. Keeping the assumptions in Proposition 10.46 and let
{bn}∞n=1 ⊂ (0,∞) such that bn ↑ ∞. Then lim sup

n→∞
Xn, lim infn→∞Xn,

lim sup
n→∞

Sn
bn
, and lim infn→∞ Sn

bn
are all constant almost surely. In particular, ei-

ther P
({

lim
n→∞

Sn
bn

exists
})

= 0 or P
({

lim
n→∞

Sn
bn

exists
})

= 1 and in the latter

case lim
n→∞

Sn
bn

= c a.s for some c ∈ R̄.

Example 10.48. Suppose that {An}∞n=1 are independent sets and let Xn := 1An
for all n and T = ∩n≥1σ (Xn, Xn+1, . . . ) . Then {An i.o.} ∈ T and therefore
by the Kolmogorov 0-1 law, P ({An i.o.}) = 0 or 1. Of course, in this case the
Borel zero - one law (Lemma 10.37) tells when P ({An i.o.}) is 0 and when it
is 1 depending on whether

∑∞
n=1 P (An) is finite or infinite respectively.

10.8.1 Hewitt-Savage Zero-One Law

In this subsection, let Ω := R∞ = RN and Xn (ω) = ωn for all ω ∈ Ω and n ∈ N,
and B := σ (X1, X2, . . . ) be the product σ – algebra on Ω. We say a permutation
(i.e. a bijective map on N), π : N→ N is finite if π (n) = n for a.a. n. Define
Tπ : Ω → Ω by Tπ (ω) = (ωπ1, ωπ2, . . . ) . Since Xi ◦ Tπ (ω) = ωπi = Xπi (ω) for
all i, it follows that Tπ is B/B – measurable.

Let us further suppose that µ is a probability measure on (R,BR) and let
P = ⊗∞n=1µ be the infinite product measure on

(
Ω = RN,B

)
. Then {Xn}∞n=1

are i.i.d. random variables with LawP (Xn) = µ for all n. If π : N→ N is a finite
permutation and Ai ∈ BR for all i, then

T−1
π (A1 ×A2 ×A3 × . . . ) = Aπ−11 ×Aπ−12 × . . . .

Since sets of the form, A1×A2×A3× . . . , form a π – system generating B and

P ◦ T−1
π (A1 ×A2 ×A3 × . . . ) =

∞∏
i=1

µ (Aπ−1i)

=
∞∏
i=1

µ (Ai) = P (A1 ×A2 ×A3 × . . . ) ,

we may conclude that P ◦ T−1
π = P.

Definition 10.49. The permutation invariant σ – field, S ⊂ B, is the col-
lection of sets, A ∈ B such that T−1

π (A) = A for all finite permutations π. (You
should check that S is a σ – field!)

Proposition 10.50 (Hewitt-Savage Zero-One Law). Let µ be a probabil-
ity measure on (R,BR) and P = ⊗∞n=1µ be the infinite product measure on(
Ω = RN,B

)
so that {Xn}∞n=1 (recall that Xn (ω) = ωn) is an i.i.d. sequence

with LawP (Xn) = µ for all n. Then S is P – almost trivial.

Proof. Let B ∈ S, f = 1B , and g = G (X1, . . . , Xn) be a σ (X1, X2, . . . , Xn)
– measurable function such that supω∈Ω |g (ω)| ≤ 1. Further let π be a finite
permutation such that {π1, . . . , πn} ∩ {1, 2, . . . , n} = ∅ – for example we could
take π (j) = j + n, π (j + n) = j for j = 1, 2, . . . , n, and π (j + 2n) = j + 2n for
all j ∈ N. Then g ◦ Tπ = G (Xπ1, . . . , Xπn) is independent of g and therefore,

(Eg)2 = Eg · E [g ◦ Tπ] = E [g · g ◦ Tπ] .

Since f ◦ Tπ = 1T−1
π (B) = 1B = f, it follows that Ef = Ef2 = E [f · f ◦ Tπ] and

therefore,
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10.9 Another Construction of Independent Random Variables* 161∣∣∣Ef − (Eg)2
∣∣∣ = |E [f · f ◦ Tπ − g · g ◦ Tπ]|

≤ E |[f − g] f ◦ Tπ|+ E |g [f ◦ Tπ − g ◦ Tπ]|
≤ E |f − g|+ E |f ◦ Tπ − g ◦ Tπ| = 2E |f − g| . (10.36)

According to Corollary 8.13 (or see Corollary 5.28 or Theorem 5.44 or Exercise
8.5)), we may choose g = gk as above with E |f − gk| → 0 as n → ∞ and so
passing to the limit in Eq. (10.36) with g = gk, we may conclude,∣∣∣P (B)− [P (B)]2

∣∣∣ =
∣∣∣Ef − (Ef)2

∣∣∣ ≤ 0.

That is P (B) ∈ {0, 1} for all B ∈ S.
In a nutshell, here is the crux of the above proof. First off we know that

for B ∈ S ⊂ B, there exists g which is σ (X1, . . . , Xn) – measurable such that
f := 1B ∼= g. Since P ◦ T−1

π = P it also follows that f = f ◦ Tπ ∼= g ◦ Tπ. For
judiciously chosen π, we know that g and g ◦ Tπ are independent. Therefore

Ef2 = E [f · f ◦ Tπ] ∼= E [g · g ◦ Tπ] = E [g] · E [g ◦ Tπ] = (Eg)2 ∼= (Ef)2
.

As the approximation f by g may be made as accurate as we please, it follows
that P (B) = Ef2 = (Ef)2 = [P (B)]2 for all B ∈ S.

Example 10.51 (Some Random Walk 0−1 Law Results). Continue the notation
in Proposition 10.50.

1. As above, if Sn = X1 + · · · + Xn, then P (Sn ∈ B i.o.) ∈ {0, 1} for all
B ∈ BR. Indeed, if π is a finite permutation,

T−1
π ({Sn ∈ B i.o.}) = {Sn ◦ Tπ ∈ B i.o.} = {Sn ∈ B i.o.} .

Hence {Sn ∈ B i.o.} is in the permutation invariant σ – field, S. The same
goes for {Sn ∈ B a.a.}

2. If P (X1 6= 0) > 0, then lim sup
n→∞

Sn =∞ a.s. or lim sup
n→∞

Sn = −∞ a.s. Indeed,

T−1
π

{
lim sup
n→∞

Sn ≤ x
}

=
{

lim sup
n→∞

Sn ◦ Tπ ≤ x
}

=
{

lim sup
n→∞

Sn ≤ x
}

which shows that lim sup
n→∞

Sn is S – measurable. Therefore, lim sup
n→∞

Sn = c a.s.

for some c ∈ R̄. Since (X2, X3, . . . )
d= (X1, X2, . . . ) it follows (see Corollary

6.47 and Exercise 6.10) that

c = lim sup
n→∞

Sn
d= lim sup

n→∞
(X2 +X3 + · · ·+Xn+1)

= lim sup
n→∞

(Sn+1 −X1) = lim sup
n→∞

Sn+1 −X1 = c−X1.

By Exercise 10.8 below we may now conclude that c = c − X1 a.s. which
is possible iff c ∈ {±∞} or X1 = 0 a.s. Since the latter is not allowed,
lim sup
n→∞

Sn =∞ or lim sup
n→∞

Sn = −∞ a.s.

3. Now assume that P (X1 6= 0) > 0 and X1
d= −X1, i.e. P (X1 ∈ A) =

P (−X1 ∈ A) for all A ∈ BR. By 2. we know lim sup
n→∞

Sn = c a.s. with

c ∈ {±∞} . Since {Xn}∞n=1 and {−Xn}∞n=1 are i.i.d. and −Xn
d= Xn, it

follows that {Xn}∞n=1
d= {−Xn}∞n=1 .The results of Exercises 6.10 and 10.8

then imply that c d= lim sup
n→∞

Sn
d= lim sup

n→∞
(−Sn) and in particular

c
a.s.= lim sup

n→∞
(−Sn) = − lim inf

n→∞
Sn ≥ − lim sup

n→∞
Sn = −c.

Since the c = −∞ does not satisfy, c ≥ −c, we must c = ∞. Hence in this
symmetric case we have shown,

lim sup
n→∞

Sn =∞ and lim inf
n→∞

Sn = −∞ a.s.

Exercise 10.8. Suppose that (Ω,B, P ) is a probability space, Y : Ω → R̄ is a
random variable and c ∈ R̄ is a constant. Then Y = c a.s. iff Y

d= c.

Solution to Exercise (10.8). If Y = c a.s. then P (Y ∈ A) = P (c ∈ A) for
all A ∈ BR̄ and therefore Y

d= c. Conversely, if Y d= c, then P (Y = c) =
P (c = c) = 1, i.e. Y = c a.s.

10.9 Another Construction of Independent Random
Variables*

This section may be skipped as the results are a special case of those given above.
The arguments given here avoid the use of Kolmogorov’s existence theorem for
product measures.

Example 10.52. Suppose that Ω = Λn where Λ is a finite set, B = 2Ω , P ({ω}) =∏n
j=1 qj (ωj) where qj : Λ→ [0, 1] are functions such that

∑
λ∈Λ qj (λ) = 1. Let

Ci :=
{
Λi−1 ×A× Λn−i : A ⊂ Λ

}
. Then {Ci}ni=1 are independent. Indeed, if

Bi := Λi−1 ×Ai × Λn−i, then

∩Bi = A1 ×A2 × · · · ×An

and we have
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P (∩Bi) =
∑

ω∈A1×A2×···×An

n∏
i=1

qi (ωi) =
n∏
i=1

∑
λ∈Ai

qi (λ)

while

P (Bi) =
∑

ω∈Λi−1×Ai×Λn−i

n∏
i=1

qi (ωi) =
∑
λ∈Ai

qi (λ) .

Example 10.53. Continue the notation of Example 10.52 and further assume
that Λ ⊂ R and let Xi : Ω → Λ be defined by, Xi (ω) = ωi. Then {Xi}ni=1

are independent random variables. Indeed, σ (Xi) = Ci with Ci as in Example
10.52.

Alternatively, from Exercise 4.10, we know that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)]

for all fi : Λ → R. Taking Ai ⊂ Λ and fi := 1Ai in the above identity shows
that

P (X1 ∈ A1, . . . , Xn ∈ An) = EP

[
n∏
i=1

1Ai (Xi)

]
=

n∏
i=1

EP [1Ai (Xi)]

=
n∏
i=1

P (Xi ∈ Ai)

as desired.

Theorem 10.54 (Existence of i.i.d simple R.V.’s). Suppose that {qi}ni=0

is a sequence of positive numbers such that
∑n
i=0 qi = 1. Then there exists a se-

quence {Xk}∞k=1 of simple random variables taking values in Λ = {0, 1, 2 . . . , n}
on ((0, 1],B,m) such that

m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik

for all i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n} and all k ∈ N. (See Example 10.15 above
and Theorem 10.58 below for the general case of this theorem.)

Proof. For i = 0, 1, . . . , n, let σ−1 = 0 and σj :=
∑j
i=0 qi and for any

interval, (a, b], let

Ti ((a, b]) := (a+ σi−1 (b− a) , a+ σi (b− a)].

Given i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}, let

Ji1,i2,...,ik := Tik
(
Tik−1 (. . . Ti1 ((0, 1]))

)

and define {Xk}∞k=1 on (0, 1] by

Xk :=
∑

i1,i2,...,ik∈{0,1,2,...,n}

ik1Ji1,i2,...,ik ,

see Figure 10.3. Repeated applications of Corollary 6.27 shows the functions,
Xk : (0, 1]→ R are measurable.

Fig. 10.3. Here we suppose that p0 = 2/3 and p1 = 1/3 and then we construct Jl
and Jl,k for l, k ∈ {0, 1} .

Observe that

m (Ti ((a, b])) = qi (b− a) = qim ((a, b]) , (10.37)

and so by induction,

m (Ji1,i2,...,ik) = qikqik−1 . . . qi1 .

The reader should convince herself/himself that

{X1 = i1, . . . Xk = ii} = Ji1,i2,...,ik
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and therefore, we have

m ({X1 = i1, . . . , Xk = ii}) = m (Ji1,i2,...,ik) = qikqik−1 . . . qi1

as desired.

Corollary 10.55 (Independent variables on product spaces). Suppose
Λ = {0, 1, 2 . . . , n} , qi > 0 with

∑n
i=0 qi = 1, Ω = Λ∞ = ΛN, and for

i ∈ N, let Yi : Ω → R be defined by Yi (ω) = ωi for all ω ∈ Ω. Further let
B := σ (Y1, Y2, . . . , Yn, . . . ) . Then there exists a unique probability measure,
P : B → [0, 1] such that

P ({Y1 = i1, . . . , Yk = ii}) = qi1 . . . qik .

Proof. Let {Xi}ni=1 be as in Theorem 10.54 and define T : (0, 1]→ Ω by

T (x) = (X1 (x) , X2 (x) , . . . , Xk (x) , . . . ) .

Observe that T is measurable since Yi ◦T = Xi is measurable for all i. We now
define, P := T∗m. Then we have

P ({Y1 = i1, . . . , Yk = ii}) = m
(
T−1 ({Y1 = i1, . . . , Yk = ii})

)
= m ({Y1 ◦ T = i1, . . . , Yk ◦ T = ii})
= m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik .

Theorem 10.56. Given a finite subset, Λ ⊂ R and a function q : Λ → [0, 1]
such that

∑
λ∈Λ q (λ) = 1, there exists a probability space, (Ω,B, P ) and an

independent sequence of random variables, {Xn}∞n=1 such that P (Xn = λ) =
q (λ) for all λ ∈ Λ.

Proof. Use Corollary 10.10 to shows that random variables constructed in
Example 5.41 or Theorem 10.54 fit the bill.

Proposition 10.57. Suppose that {Xn}∞n=1 is a sequence of i.i.d. random
variables with distribution, P (Xn = 0) = P (Xn = 1) = 1

2 . If we let U :=∑∞
n=1 2−nXn, then P (U ≤ x) = (0 ∨ x)∧1, i.e. U has the uniform distribution

on [0, 1] .

Proof. Let us recall that P (Xn = 0 a.a.) = 0 = P (Xn = 1 a.a.) . Hence
we may, by shrinking Ω if necessary, assume that {Xn = 0 a.a.} = ∅ =
{Xn = 1 a.a.} . With this simplification, we have

{
U <

1
2

}
= {X1 = 0} ,{

U <
1
4

}
= {X1 = 0, X2 = 0} and{

1
2
≤ U <

3
4

}
= {X1 = 1, X2 = 0}

and hence that {
U <

3
4

}
=
{
U <

1
2

}
∪
{

1
2
≤ U <

3
4

}
= {X1 = 0} ∪ {X1 = 1, X2 = 0} .

From these identities, it follows that

P (U < 0) = 0, P
(
U <

1
4

)
=

1
4
, P

(
U <

1
2

)
=

1
2
, and P

(
U <

3
4

)
=

3
4
.

More generally, we claim that if x =
∑n
j=1 εj2

−j with εj ∈ {0, 1} , then

P (U < x) = x. (10.38)

The proof is by induction on n. Indeed, we have already verified (10.38) when
n = 1, 2. Suppose we have verified (10.38) up to some n ∈ N and let x =∑n
j=1 εj2

−j and consider

P
(
U < x+ 2−(n+1)

)
= P (U < x) + P

(
x ≤ U < x+ 2−(n+1)

)
= x+ P

(
x ≤ U < x+ 2−(n+1)

)
.

Since {
x ≤ U < x+ 2−(n+1)

}
=
[
∩nj=1 {Xj = εj}

]
∩ {Xn+1 = 0}

we see that
P
(
x ≤ U < x+ 2−(n+1)

)
= 2−(n+1)

and hence
P
(
U < x+ 2−(n+1)

)
= x+ 2−(n+1)

which completes the induction argument.
Since x → P (U < x) is left continuous we may now conclude that

P (U < x) = x for all x ∈ (0, 1) and since x → x is continuous we may also
deduce that P (U ≤ x) = x for all x ∈ (0, 1) . Hence we may conclude that

P (U ≤ x) = (0 ∨ x) ∧ 1.
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We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 10.58. Suppose that {µn}∞n=1 are a sequence of probability measures
on (R,BR) . Then there exists a probability space, (Ω,B, P ) and a sequence
{Yn}∞n=1 independent random variables with Law (Yn) := P ◦ Y −1

n = µn for all
n.

Proof. By Theorem 10.56, there exists a sequence of i.i.d. random variables,
{Zn}∞n=1 , such that P (Zn = 1) = P (Zn = 0) = 1

2 . These random variables may
be put into a two dimensional array, {Xi,j : i, j ∈ N} , see the proof of Lemma

3.8. For each i, let Ui :=
∑∞
j=1 2−iXi,j – σ

(
{Xi,j}∞j=1

)
– measurable random

variable. According to Proposition 10.57, Ui is uniformly distributed on [0, 1] .

Moreover by the grouping Lemma 10.16,
{
σ
(
{Xi,j}∞j=1

)}∞
i=1

are independent

σ – algebras and hence {Ui}∞i=1 is a sequence of i.i.d.. random variables with
the uniform distribution.

Finally, let Fi (x) := µ ((−∞, x]) for all x ∈ R and let Gi (y) =
inf {x : Fi (x) ≥ y} . Then according to Theorem 6.48, Yi := Gi (Ui) has µi as
its distribution. Moreover each Yi is σ

(
{Xi,j}∞j=1

)
– measurable and therefore

the {Yi}∞i=1 are independent random variables.



11

The Standard Poisson Process

11.1 Poisson Random Variables

Recall from Exercise 7.5 that a Random variable, X, is Poisson distributed with
intensity, a, if

P (X = k) =
ak

k!
e−a for all k ∈ N0.

We will abbreviate this in the future by writing X d= Poi (a) . Let us also recall
that

E
[
zX
]

=
∞∑
k=0

zk
ak

k!
e−a = eaze−a = ea(z−1)

and as in Exercise 7.5 we have EX = a = Var (X) .

Lemma 11.1. If X = Poi (a) and Y = Poi (b) and X and Y are independent,
then X + Y = Poi (a+ b) .

Proof. For k ∈ N0,

P (X + Y = k) =
k∑
l=0

P (X = l, Y = k − l) =
k∑
l=0

P (X = l)P (Y = k − l)

=
k∑
l=0

e−a
al

l!
e−b

bk−l

(k − l)!
=
e−(a+b)

k!

k∑
l=0

(
k

l

)
albk−l

=
e−(a+b)

k!
(a+ b)k .

Alternative Proof. Notice that

E
[
zX+Y

]
= E

[
zX
]
E
[
zY
]

= ea(z−1)eb(z−1) = exp ((a+ b) (z − 1)) .

This suffices to complete the proof.

Lemma 11.2. Suppose that {Ni}∞i=1 are independent Poisson random variables
with parameters, {λi}∞i=1 such that

∑∞
i=1 λi =∞. Then

∑∞
i=1Ni =∞ a.s.

Fig. 11.1. This plot shows, 1− e−λ ≥ 1
2

(1 ∧ λ) .

Proof. From Figure 11.1 we see that 1 − e−λ ≥ 1
2 (1 ∧ λ) for all λ ≥ 0.

Therefore,

∞∑
i=1

P (Ni ≥ 1) =
∞∑
i=1

(1− P (Ni = 0)) =
∞∑
i=1

(
1− e−λi

)
≥ 1

2

∞∑
i=1

λi ∧ 1 =∞

and so by the second Borel Cantelli Lemma, P ({Ni ≥ 1 i.o.}) = 1. From this
it certainly follows that

∑∞
i=1Ni =∞ a.s.

Alternatively, let Λn = λ1 + · · ·+ λn, then

P

( ∞∑
i=1

Ni ≥ k

)
≥ P

(
n∑
i=1

Ni ≥ k

)
= 1− e−Λn

k−1∑
l=0

Λln
l!
→ 1 as n→∞.

Therefore P (
∑∞
i=1Ni ≥ k) = 1 for all k ∈ N and hence,

P

( ∞∑
i=1

Ni ≥ ∞

)
= P

(
∩∞k=1

{ ∞∑
i=1

Ni ≥ k

})
= 1.
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11.2 Exponential Random Variables

Recall from Definition 7.55 that T d= E (λ) is an exponential random variable
with parameter λ ∈ [0,∞) provided, P (T > t) = e−λt for all t ≥ 0. We have
seen that

E
[
eaT
]

=
1

1− aλ−1
for a < λ. (11.1)

ET = λ−1 and Var (T ) = λ−2, and (see Theorem 7.56) that T being exponential
is characterized by the following memoryless property;

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0.

Theorem 11.3. Let {Tj}∞j=1 be independent random variables such that Tj
d=

E (λj) with 0 < λj <∞ for all j. Then:

1. If
∑∞
n=1 λ

−1
n < ∞ then P (

∑∞
n=1 Tn =∞) = 0 (i.e. P (

∑∞
n=1 Tn <∞) =

1).
2. If

∑∞
n=1 λ

−1
n =∞ then P (

∑∞
n=1 Tn =∞) = 1.

(By Kolmogorov’s zero-one law (see Proposition 10.46) it follows that
P (
∑∞
n=1 Tn =∞) is always either 0 or 1. We are showing here that

P (
∑∞
n=1 Tn =∞) = 1 iff E [

∑∞
n=1 Tn] =∞.)

Proof. 1. Since

E

[ ∞∑
n=1

Tn

]
=
∞∑
n=1

E [Tn] =
∞∑
n=1

λ−1
n <∞

it follows that
∑∞
n=1 Tn <∞ a.s., i.e. P (

∑∞
n=1 Tn =∞) = 0.

2. By the DCT, independence, and Eq. (11.1) with a = −1,

E
[
e−
∑∞

n=1
Tn
]

= lim
N→∞

E
[
e−
∑N

n=1
Tn

]
= lim
N→∞

N∏
n=1

E
[
e−Tn

]
= lim
N→∞

N∏
n=1

(
1

1 + λ−1
n

)
=
∞∏
n=1

(1− an)

where
an = 1− 1

1 + λ−1
n

=
1

1 + λn
.

Hence by Exercise 10.7, E
[
e−
∑∞

n=1
Tn
]

= 0 iff ∞ =
∑∞
n=1 an which hap-

pens iff
∑∞
n=1 λ

−1
n = ∞ as you should verify. This completes the proof since

E
[
e−
∑∞

n=1
Tn
]

= 0 iff e−
∑∞

n=1
Tn = 0 a.s. or equivalently

∑∞
n=1 Tn =∞ a.s.

11.2.1 Appendix: More properties of Exponential random
Variables*

Theorem 11.4. Let I be a countable set and let {Tk}k∈I be independent ran-
dom variables such that Tk ∼ E (qk) with q :=

∑
k∈I qk ∈ (0,∞) . Let

T := infk Tk and let K = k on the set where Tj > Tk for all j 6= k. On the
complement of all these sets, define K = ∗ where ∗ is some point not in I. Then
P (K = ∗) = 0, K and T are independent, T ∼ E (q) , and P (K = k) = qk/q.

Proof. Let k ∈ I and t ∈ R+ and Λn ⊂f I such that Λn ↑ I \ {k} , then

P (K = k, T > t) = P (∩j 6=k {Tj > Tk} , Tk > t) = lim
n→∞

P (∩j∈Λn {Tj > Tk} , Tk > t)

= lim
n→∞

∫
[0,∞)Λn∪{k}

∏
j∈Λn

1tj>tk · 1tk>tdµn
(
{tj}j∈Λn

)
qke
−qktkdtk

where µn is the joint distribution of {Tj}j∈Λn . So by Fubini’s theorem,

P (K = k, T > t) = lim
n→∞

∫ ∞
t

qke
−qktkdtk

∫
[0,∞)Λn

∏
j∈Λn

1tj>tk · 1tk>tdµn
(
{tj}j∈Λn

)
= lim
n→∞

∫ ∞
t

P (∩j∈Λn {Tj > tk}) qke−qktkdtk

=
∫ ∞
t

P (∩j 6=k {Tj > τ}) qke−qkτdτ

=
∫ ∞
t

∏
j 6=k

e−qjτqke
−qkτdτ =

∫ ∞
t

∏
j∈I

e−qjτqkdτ

=
∫ ∞
t

e
−
∑∞

j=1
qjτqkdτ =

∫ ∞
t

e−qτqkdτ =
qk
q
e−qt. (11.2)

Taking t = 0 shows that P (K = k) = qk
q and summing this on k shows

P (K ∈ I) = 1 so that P (K = ∗) = 0. Moreover summing Eq. (11.2) on k
now shows that P (T > t) = e−qt so that T is exponential. Moreover we have
shown that

P (K = k, T > t) = P (K = k)P (T > t)

proving the desired independence.

Theorem 11.5. Suppose that S ∼ E (λ) and R ∼ E (µ) are independent. Then
for t ≥ 0 we have

µP (S ≤ t < S +R) = λP (R ≤ t < R+ S) .
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Proof. We have

µP (S ≤ t < S +R) = µ

∫ t

0

λe−λsP (t < s+R) ds

= µλ

∫ t

0

e−λse−µ(t−s)ds

= µλe−µt
∫ t

0

e−(λ−µ)sds = µλe−µt · 1− e−(λ−µ)t

λ− µ

= µλ · e
−µt − e−λt

λ− µ

which is symmetric in the interchanged of µ and λ.Alternatively:

P (S ≤ t < S +R) = λµ

∫
R2

+

1s≤t<s+re−λse−µrdsdr

= λµ

∫ t

0

ds

∫ ∞
t−s

dre−λse−µr

= λ

∫ t

0

dse−λse−µ(t−s)

= λe−µt
∫ t

0

dse−(λ−µ)s

= λe−µt
1− e−(λ−µ)t

λ− µ

= λ
e−µt − e−λt

λ− µ
.

Therefore,

µP (S ≤ t < S +R) = µλ
e−µt − e−λt

λ− µ
which is symmetric in the interchanged of µ and λ and hence

λP (R ≤ t < S +R) = µλ
e−µt − e−λt

λ− µ
.

Example 11.6. Suppose T is a positive random variable such that
P (T ≥ t+ s|T ≥ s) = P (T ≥ t) for all s, t ≥ 0, or equivalently

P (T ≥ t+ s) = P (T ≥ t)P (T ≥ s) for all s, t ≥ 0,

then P (T ≥ t) = e−at for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
FT (t) := P (T ≤ t) = 1 − e−a(t∨0). Since FT (t) is piecewise differentiable, the
law of T, µ := P ◦ T−1, has a density,

dµ (t) = F ′T (t) dt = ae−at1t≥0dt.

Therefore,

E
[
eiaT

]
=
∫ ∞

0

ae−ateiλtdt =
a

a− iλ
= µ̂ (λ) .

Since
µ̂′ (λ) = i

a

(a− iλ)2 and µ̂′′ (λ) = −2
a

(a− iλ)3

it follows that

ET =
µ̂′ (0)
i

= a−1 and ET 2 =
µ̂′′ (0)
i2

=
2
a2

and hence Var (T ) = 2
a2 −

(
1
a

)2 = a−2.

11.3 The Standard Poisson Process

Let {Tk}∞k=1 be an i.i.d. sequence of random exponential times with parameter
λ, i.e. P (Tk ∈ [t, t+ dt]) = λe−λtdt. For each n ∈ N let Wn := T1 + · · ·+ Tn be
the “waiting time” for the nth event to occur. Because of Theorem 11.3 we
know that limn→∞Wn =∞ a.s.

Definition 11.7 (Poisson Process I). For any subset A ⊂ R+ let N (A) :=∑∞
n=1 1A (Wn) count the number of waiting times which occurred in A. When

A = (0, t] we will write, Nt := N ((0, t]) for all t ≥ 0 and refer to {Nt}t≥0 as
the Poisson Process with intensity λ. (Observe that {Nt = n} = Wn ≤ t <
Wn+1.)

The next few results summarize a number of the basic properties of this
Poisson process. Many of the proofs will be left as exercises to the reader. We
will use the following notation below; for each n ∈ N and T ≥ 0 let

∆n (T ) := {(w1, . . . , wn) ∈ Rn : 0 < w1 < w2 < · · · < wn < T}

and let

∆n := ∪T>0∆n (T ) = {(w1, . . . , wn) ∈ Rn : 0 < w1 < w2 < · · · < wn <∞} .

(We equip each of these spaces with their Borel σ – algebras.)
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168 11 The Standard Poisson Process

Exercise 11.1. Show mn (∆n (T )) = Tn/n! where mn is Lebesgue measure on
BRn .

Exercise 11.2. If n ∈ N and g : ∆n → R bounded (non-negative) measurable,
then

E [g (W1, . . . ,Wn)] =
∫
∆n

g (w1, w2, . . . , wn)λne−λwndw1 . . . dwn. (11.3)

As a simple corollary we have the following direct proof of Example 10.28.

Corollary 11.8. If n ∈ N, then Wn
d=Gamma

(
n, λ−1

)
.

Proof. Taking g (w1, w2, . . . , wn) = f (wn) in Eq. (11.3) we find with the
aid of Exercise 11.1 that

E [f (Wn)] =
∫
∆n

f (wn)λne−λwndw1 . . . dwn

=
∫ ∞

0

f (w)λn
wn−1

(n− 1)!
e−λwdw

which shows that Wn
d=Gamma

(
n, λ−1

)
.

Corollary 11.9. If t ∈ R+ and f : ∆n (t)→ R is a bounded (or non-negative)
measurable function, then

E [f (W1, . . . ,Wn) : Nt = n]

= λne−λt
∫
∆n(t)

f (w1, w2, . . . , wn) dw1 . . . dwn. (11.4)

Proof. Making use of the observation that {Nt = n} = {Wn ≤ t < Wn+1} ,
we may apply Eq. (11.3) at level n+ 1 with

g (w1, w2, . . . , wn+1) = f (w1, w2, . . . , wn) 1wn≤t<wn+1

to learn

E [f (W1, . . . ,Wn) : Nt = n]

=
∫

0<w1<···<wn<t<wn+1

f (w1, w2, . . . , wn)λn+1e−λwn+1dw1 . . . dwndwn+1

=
∫
∆n(t)

f (w1, w2, . . . , wn)λne−λtdw1 . . . dwn.

Exercise 11.3. Show Nt
d= Poi (λt) for all t > 0.

Definition 11.10 (Order Statistics). Suppose that X1, . . . , Xn are non-
negative random variables such that P (Xi = Xj) = 0 for all i 6= j. The order

statistics of X1, . . . , Xn are the random variables, X̃1, X̃2, . . . , X̃n defined by

X̃k = max
#(Λ)=k

min {Xi : i ∈ Λ} (11.5)

where Λ always denotes a subset of {1, 2, . . . , n} in Eq. (11.5).

The reader should verify that X̃1 ≤ X̃2 ≤ · · · ≤ X̃n, {X1, . . . , Xn} ={
X̃1, X̃2, . . . , X̃n

}
with repetitions, and that X̃1 < X̃2 < · · · < X̃n if

Xi 6= Xj for all i 6= j. In particular if P (Xi = Xj) = 0 for all i 6= j then
P (∪i6=j {Xi = Xj}) = 0 and X̃1 < X̃2 < · · · < X̃n a.s.

Exercise 11.4. Suppose that X1, . . . , Xn are non-negative1 random variables
such that P (Xi = Xj) = 0 for all i 6= j. Show;

1. If f : ∆n → R is bounded (non-negative) measurable, then

E
[
f
(
X̃1, . . . , X̃n

)]
=
∑
σ∈Sn

E [f (Xσ1, . . . , Xσn) : Xσ1 < Xσ2 < · · · < Xσn] ,

(11.6)
where Sn is the permutation group on {1, 2, . . . , n} .

2. If we further assume that {X1, . . . , Xn} are i.i.d. random variables, then

E
[
f
(
X̃1, . . . , X̃n

)]
= n! · E [f (X1, . . . , Xn) : X1 < X2 < · · · < Xn] .

(11.7)
(It is not important that f

(
X̃1, . . . , X̃n

)
is not defined on the null set,

∪i 6=j {Xi = Xj} .)
3. f : Rn+ → R is a bounded (non-negative) measurable symmetric function

(i.e. f (wσ1, . . . , wσn) = f (w1, . . . , wn) for all σ ∈ Sn and (w1, . . . , wn) ∈
Rn+) then

E
[
f
(
X̃1, . . . , X̃n

)]
= E [f (X1, . . . , Xn)] .

4. Suppose that Y1, . . . , Yn is another collection of non-negative random vari-
ables such that P (Yi = Yj) = 0 for all i 6= j such that

E [f (X1, . . . , Xn)] = E [f (Y1, . . . , Yn)]

1 The non-negativity of the Xi are not really necessary here but this is all we need
to consider.
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11.3 The Standard Poisson Process 169

for all bounded (non-negative) measurable symmetric functions from Rn+ →
R. Show that

(
X̃1, . . . , X̃n

)
d=
(
Ỹ1, . . . , Ỹn

)
.

Hint: if g : ∆n → R is a bounded measurable function, define f : Rn+ → R
by;

f (y1, . . . , yn) =
∑
σ∈Sn

1yσ1<yσ2<···<yσng (yσ1, yσ2, . . . , yσn)

and then show f is symmetric.

Exercise 11.5. Let t ∈ R+ and {Ui}ni=1 be i.i.d. uniformly distributed random

variables on [0, t] . Show that the order statistics,
(
Ũ1, . . . , Ũn

)
, of (U1, . . . , Un)

has the same distribution as (W1, . . . ,Wn) given Nt = n. (Thus, given Nt =
n, the collection of points, {W1, . . . ,Wn} , has the same distribution as the
collection of points, {U1, . . . , Un} , in [0, t] .)

Theorem 11.11 (Joint Distributions). If {Ai}ki=1 ⊂ B[0,t] is a partition

of [0, t] , then {N (Ai)}ki=1 are independent random variables and N (A) d=
Poi (λm (A)) for all A ∈ B[0,t] with m (A) < ∞. In particular, if 0 < t1 <

t2 < · · · < tn, then
{
Nti −Nti−1

}n
i=1

are independent random variables and

Nt − Ns
d= Poi (λ (t− s)) for all 0 ≤ s < t < ∞. (We say that {Nt}t≥0 is a

stochastic process with independent increments.)

Proof. If z ∈ C and A ∈ B[0,t], then

zN(A) = z
∑n

i=1
1A(Wi) on {Nt = n} .

Let n ∈ N, zi ∈ C, and define

f (w1, . . . , wn) = z

∑n

i=1
1A1 (wi)

1 . . . z

∑n

i=1
1Ak (wi)

k

which is a symmetric function. On Nt = n we have,

z
N(A1)
1 . . . z

N(Ak)
k = f (W1, . . . ,Wn)

and therefore,

E
[
z
N(A1)
1 . . . z

N(Ak)
k |Nt = n

]
= E [f (W1, . . . ,Wn) |Nt = n]

= E [f (U1, . . . , Un)]

= E
[
z

∑n

i=1
1A1 (Ui)

1 . . . z

∑n

i=1
1Ak (Ui)

k

]
=

n∏
i=1

E
[(
z

1A1 (Ui)
1 . . . z

1Ak (Ui)

k

)]
=
(
E
[(
z

1A1 (U1)
1 . . . z

1Ak (U1)

k

)])n
=

(
1
t

k∑
i=1

m (Ai) · zi

)n
,

wherein we have made use of the fact that {Ai}ni=1 is a partition of [0, t] so that

z
1A1 (U1)
1 . . . z

1Ak (U1)

k =
k∑
i=1

zi1Ai (Ui) .

Thus it follows that

E
[
z
N(A1)
1 . . . z

N(Ak)
k

]
=
∞∑
n=0

E
[
z
N(A1)
1 . . . z

N(Ak)
k |Nt = n

]
P (Nt = n)

=
∞∑
n=0

(
1
t

k∑
i=1

m (Ai) · zi

)n
(λt)n

n!
e−λt

=
∞∑
n=0

1
n!

(
λ

k∑
i=1

m (Ai) · zi

)n
e−λt

= exp

(
λ

[
k∑
i=1

m (Ai) zi − t

])

= exp

(
λ

[
k∑
i=1

m (Ai) (zi − 1)

])
.

From this result it follows that {N (Ai)}ni=1 are independent random variables
and N (A) = Poi (λm (A)) for all A ∈ BR with m (A) <∞.

Alternatively; suppose that ai ∈ N0 and n := a1 + · · ·+ ak, then
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170 11 The Standard Poisson Process

P [N (A1) = a1, . . . , N (Ak) = ak|Nt = n] = P

[
n∑
i=1

1Al (Ui) = al for 1 ≤ l ≤ k

]

=
n!

a1! . . . ak!

k∏
l=1

[
m (Al)
t

]al
=
n!
tn
·
k∏
l=1

[m (Al)]
al

al!

and therefore,

P [N (A1) = a1, . . . , N (Ak) = ak]
= P [N (A1) = a1, . . . , N (Ak) = ak|Nt = n] · P (Nt = n)

=
n!
tn
·
k∏
l=1

[m (Al)]
al

al!
· e−λt (λt)

n

n!

=
k∏
l=1

[m (Al)]
al

al!
· e−λtλn

=
k∏
l=1

[m (Al)λ]al

al!
e−λal

which shows that {N (Al)}kl=1 are independent and that N (Al)
d= Poi (λm (Al))

for each l.

Remark 11.12. If A ∈ B[0,∞) with m (A) = ∞, then N (A) = ∞ a.s. To prove
this observe that N (A) =↑ limn→∞N (A ∩ [0, n]) . Therefore for any k ∈ N, we
have

P (N (A) ≥ k) ≥ P (N (A ∩ [0, n]) ≥ k)

= 1− e−λm(A∩[0,n])
∑

0≤l<k

(λm (A ∩ [0, n]))l

l!
→ 1 as n→∞.

This shows that N (A) ≥ k a.s. for all k ∈ N, i.e. N (A) =∞ a.s.

Exercise 11.6 (A Generalized Poisson Process I). Suppose that (S,BS , µ)
is a finite measure space with µ (S) <∞. Define Ω =

∑∞
n=0 S

n where S0 = {∗} ,
were ∗ is some arbitrary point. Define BΩ to be those sets, B =

∑∞
n=0Bn where

Bn ∈ BSn := B⊗nS – the product σ – algebra on Sn. Now define a probability
measure, P, on (Ω,BΩ) by

P (B) := e−µ(S)
∞∑
n=0

1
n!
µ⊗n (Bn)

where µ⊗0 ({∗}) = 1 by definition. (We denote P schematically by P :=
e−µ(S)eµ⊗.) Finally for ever ω ∈ Ω, let Nω, be the point measure on (S,BS)
defined by; N∗ = 0 and

Nω =
n∑
i=1

δsi if ω = (s1, . . . , sn) ∈ Sn for n ≥ 1.

So for A ∈ BS , we have N∗ (A) = 0 and Nω (A) =
∑n
i=1 1A (si) . Show;

1. For each A ∈ BS , ω → Nω (A) is a Poisson random variable with intensity
µ (A) , i.e. N (A) = Poi (µ (A)) .

2. If {Ak}mk=1 ⊂ BS are disjoint sets, the {ω → Nω (Ak)}mk=1 are independent
random variables.

An integer valued random measure on (S,BS) (Ω 3 ω → Nω) satisfying
properties 1. and 2. of Exercise 11.6 is called a Poisson process on (S,BS)
with intensity measure µ. For more motivation as to why Poisson processes
are important see Proposition 21.11 below.

Exercise 11.7 (A Generalized Poisson Process II). Let (S,BS , µ) be as in
Exercise 11.6, {Yi}∞i=1 be i.i.d. S – valued Random variables with LawP (Yi) =
µ (·) /µ (S) and ν be a Poi (µ (S)) – random variable which is independent of
{Yi} . Show N :=

∑ν
i=1 δYi is a Poisson process on (S,BS) with intensity mea-

sure, µ.

Exercise 11.8 (A Generalized Poisson Process III). Suppose now that
(S,BS , µ) is a σ – finite measure space and S =

∑∞
l=1 Sl is a partition of S such

that 0 < µ (Sl) < ∞ for all l. For each l ∈ N, using either of the construction
above we may construct a Poisson point process, Nl, on (S,BS) with intensity
measure, µl where µl (A) := µ (A ∩ Sl) for all A ∈ BS . We do this in such a
what that {Nl}∞l=1 are all independent. Show that N :=

∑∞
l=1Nl is a Poisson

point process on (S,BS) with intensity measure, µ. To be more precise observe
that N is a random measure on (S,BS) which satisfies (as you should show);

1. For each A ∈ BS with µ (A) <∞, show N (A) d= Poi (µ (A)) .
2. If {Ak}mk=1 ⊂ BS are disjoint sets with µ (Ak) <∞, show {N (Ak)}mk=1 are

independent random variables.
3. If A ∈ BS with µ (A) =∞, show N (A) =∞ a.s.

11.4 Poission Process Extras*

(This subsection still needs work!) In Definition 11.7 we really gave a construc-
tion of a Poisson process as defined in Definition 11.13. The goal of this section
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is to show that the Poisson process, {Nt}t≥0 , as defined in Definition 11.13 is
uniquely determined and is essentially equivalent to what we have already done
above.

Definition 11.13 (Poisson Process II). Let (Ω,B, P ) be a probability space
and Nt : Ω → N0 be a random variable for each t ≥ 0. We say that {Nt}t≥0 is a

Poisson process with intensity λ if; 1) N0 = 0, 2) Nt −Ns
d= Poi (λ (t− s)) for

all 0 ≤ s < t <∞, 3) {Nt}t≥0 has independent increments, and 4) t→ Nt (ω)
is right continuous and non-decreasing for all ω ∈ Ω.

Let N∞ (ω) :=↑ limt↑∞Nt (ω) and observe that N∞ =∑∞
k=0 (Nk −Nk−1) = ∞ a.s. by Lemma 11.2. Therefore, we may and do

assume that N∞ (ω) =∞ for all ω ∈ Ω.

Lemma 11.14. There is zero probability that {Nt}t≥0 makes a jump greater
than or equal to 2.

Proof. Suppose that T ∈ (0,∞) is fixed and ω ∈ Ω is sample point where
t → Nt (ω) makes a jump of 2 or more for t ∈ [0, T ] . Then for all n ∈ N we
must have ω ∈ ∪nk=1

{
N k
nT
−N k−1

n T ≥ 2
}
. Therefore,

P ∗ ({ω : [0, T ] 3 t→ Nt (ω) has jump ≥ 2})

≤
n∑
k=1

P
(
N k
nT
−N k−1

n T ≥ 2
)

=
n∑
k=1

O
(
T 2/n2

)
= O (1/n)→ 0

as n → ∞. I am leaving open the possibility that the set of ω where a jump
size 2 or larger is not measurable.

Theorem 11.15. Suppose that {Nt}t≥0 is a Poisson process with intensity λ
as in Definition 11.13,

Wn := inf {t : Nt = n} for all n ∈ N0

be the first time Nt reaches n. (The {Wn}∞n=0 are well defined off a set of
measure zero and Wn < Wn+1 for all n by the right continuity of {Nt}t≥0 .)
Then the {Tn := Wn −Wn−1}∞n=1 are i.i.d. E (λ) – random variables. Thus the
two descriptions of a Poisson process given in Definitions 11.7 and 11.13 are
equivalent.

Proof. Suppose that Ji = (ai, bi] with bi ≤ ai+1 < ∞ for all i. We will
begin by showing

P (∩ni=1 {Wi ∈ Ji}) = λn
n−1∏
i=1

m (Ji) ·
∫
Jn

e−λwndwn (11.8)

= λn
∫
J1×J2×···×Jn

e−λwndw1 . . . dwn. (11.9)

To show this let Ki := (bi−1, ai] where b0 = 0. Then

∩ni=1 {Wi ∈ Ji} = ∩ni=1 {N (Ki) = 0} ∩ ∩n−1
i=1 {N (Ji) = 0} ∩ {N (Jn) ≥ 2}

and therefore,

P (∩ni=1 {Wi ∈ Ji}) =
n∏
i=1

e−λm(Ki) ·
n−1∏
i=1

e−λm(Ji)λm (Ji) ·
(

1− e−λm(Jn)
)

= λn−1
n−1∏
i=1

m (Ji) ·
[
e−λan − e−λbn

]
= λn−1

n−1∏
i=1

m (Ji) ·
∫
Jn

λe−λwndwn.

We may now apply a π – λ – argument, using σ ({J1 × · · · × Jn}) = B∆n ,
to show

E [g (W1, . . . ,Wn)] =
∫
∆n

g (w1, . . . , wn)λne−λwndw1 . . . dwn

holds for all bounded B∆n/BR measurable functions, g : ∆n → R. Undoing
the change of variables you made in Exercise 11.2 allows us to conclude that
{Tn}∞n=1 are i.i.d. E (λ) – distributed random variables.
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Lp – spaces

Let (Ω,B, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : Ω → C let

‖f‖p :=
(∫

Ω

|f |p dµ
)1/p

(12.1)

and when p =∞, let

‖f‖∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (12.2)

For 0 < p ≤ ∞, let

Lp(Ω,B, µ) = {f : Ω → C : f is measurable and ‖f‖p <∞}/ ∼

where f ∼ g iff f = g a.e. Notice that ‖f − g‖p = 0 iff f ∼ g and if f ∼ g then
‖f‖p = ‖g‖p. In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 12.1. Suppose that ‖f‖∞ ≤M, then for all a > M, µ(|f | > a) = 0 and
therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(ω)| ≤ M for µ -
a.e. ω. Conversely, if |f | ≤ M a.e. and a > M then µ(|f | > a) = 0 and hence
‖f‖∞ ≤M. This leads to the identity:

‖f‖∞ = inf {a ≥ 0 : |f(ω)| ≤ a for µ – a.e. ω} .

12.1 Modes of Convergence

Let {fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on
Ω. We have the following notions of convergence and Cauchy sequences.

Definition 12.2. 1. fn → f a.e. if there is a set E ∈ B such that µ(E) = 0
and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ – measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We
will abbreviate this by saying fn → f in L0 or by fn

µ→ f.
3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ ‖fn − f‖p = 0.

Definition 12.3. 1. {fn} is a.e. Cauchy if there is a set E ∈ B such that
µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.

2. {fn} is Cauchy in µ – measure (or L0 – Cauchy) if limm,n→∞ µ(|fn−fm| >
ε) = 0 for all ε > 0.

3. {fn} is Cauchy in Lp if limm,n→∞ ‖fn − fm‖p = 0.

When µ is a probability measure, we describe, fn
µ→ f as fn converging

to f in probability. If a sequence {fn}∞n=1 is Lp – convergent, then it is Lp

– Cauchy. For example, when p ∈ [1,∞] and fn → f in Lp, we have (using
Minikowski’s inequality of Theorem 12.22 below)

‖fn − fm‖p ≤ ‖fn − f‖p + ‖f − fm‖p → 0 as m,n→∞.

The case where p = 0 will be handled in Theorem 12.8 below.

Lemma 12.4 (Lp – convergence implies convergence in probability).
Let p ∈ [1,∞). If {fn} ⊂ Lp is Lp – convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.2),

µ (|f | ≥ ε) = µ (|f |p ≥ εp) ≤ 1
εp

∫
Ω

|f |p dµ =
1
εp
‖f‖pp

and therefore if {fn} is Lp – Cauchy, then

µ (|fn − fm| ≥ ε) ≤
1
εp
‖fn − fm‖pp → 0 as m,n→∞

showing {fn} is L0 – Cauchy. A similar argument holds for the Lp – convergent
case.

Example 12.5. Let us consider a number of examples here to get a feeling for
these different notions of convergence. In each of these examples we will work
in the measure space,

(
R+,B = BR+ ,m

)
.

1. Let fn = 1
n1[0,n] as in Figure 12.1. In this case fn 9 0 in L1 but fn → 0

a.e.,fn → 0 in Lp for all p > 1 and fn
m→ 0.
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Fig. 12.1. Graphs of fn = 1
n

1[0,n] for n = 1, 2, 3, 4.

2. Let fn = 1[n−1,n] as in the figure below. Then fn → 0 a.e., yet fn 9 0 in
any Lp –space or in measure.

3. Now suppose that fn = n · 1[0,1/n] as in Figure 12.2. In this case fn → 0
a.e., fn

m→ 0 but fn 9 0 in L1 or in any Lp for p ≥ 1. Observe that
‖fn‖p = n1−1/p for all p ≥ 1.

Fig. 12.2. Graphs of fn = n · 1[0,n] for n = 1, 2, 3, 4.

4. For n ∈ N and 1 ≤ k ≤ n, let gn,k := 1( k−1
n , kn ]. Then define {fn} as

(f1, f2, f3, . . . ) = (g1,1, g2,1, g2,2, g3,1, g3,2, g3,3, g4,1, g4,2, g4,3, g4,4, . . . )

as depicted in the figures below.

For this sequence of functions we have fn → 0 in Lp for all 1 ≤ p <∞ and
fn

m→ 0 but fn 9 0 a.e. and fn 9 0 in L∞. In this case, ‖gn,k‖p =
(

1
n

)1/p
for 1 ≤ p <∞ while ‖gn,k‖∞ = 1 for all n, k.

12.2 Almost Everywhere and Measure Convergence

Theorem 12.6 (Egorov: a.s. =⇒ convergence in probability). Suppose
µ(Ω) = 1 and fn → f a.s. Then for all ε > 0 there exists E = Eε ∈ B such
that µ(E) < ε and fn → f uniformly on Ec. In particular fn

µ−→ f as n→∞.

Proof. Let fn → f a.e. Then for all ε > 0,

0 = µ({|fn − f | > ε i.o. n})

= lim
N→∞

µ

 ⋃
n≥N

{|fn − f | > ε}

 (12.3)

≥ lim sup
N→∞

µ ({|fN − f | > ε})
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12.2 Almost Everywhere and Measure Convergence 175

from which it follows that fn
µ−→ f as n→∞.

We now prove that the convergence is uniform off a small exceptional set.
By Eq. (12.3), there exists an increasing sequence {Nk}∞k=1 , such that µ(Ek) <
ε2−k, where

Ek :=
⋃

n≥Nk

{
|fn − f | >

1
k

}
.

If we now set E := ∪∞k=1Ek, then µ(E) <
∑
k ε2

−k = ε and for ω /∈ E we have
|fn (ω)− f (ω)| ≤ 1

k for all n ≥ Nk and k ∈ N. That is fn → f uniformly on
Ec.

Lemma 12.7. Suppose an ∈ C and |an+1 − an| ≤ εn and
∞∑
n=1

εn < ∞. Then

lim
n→∞

an = a ∈ C exists and |a− an| ≤ δn :=
∞∑
k=n

εk.

Proof. Let m > n then

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)
∣∣∣∣ ≤ m−1∑

k=n

|ak+1 − ak| ≤
∞∑
k=n

εk := δn . (12.4)

So |am − an| ≤ δmin(m,n) → 0 as ,m, n → ∞, i.e. {an} is Cauchy. Let m → ∞
in (12.4) to find |a− an| ≤ δn.

Theorem 12.8. Let (Ω,B, µ) be a measure space and {fn}∞n=1 be a sequence
of measurable functions on Ω.

1. If f and g are measurable functions and fn
µ→ f and fn

µ→ g then f = g
a.e.

2. If fn
µ→ f and gn

µ→ g then λfn → λf for all λ ∈ C and fn + gn
µ→ f + g.

3. If fn
µ→ f then {fn}∞n=1 is Cauchy in measure.

4. If {fn}∞n=1 is Cauchy in measure, there exists a measurable function, f, and
a subsequence gj = fnj of {fn} such that limj→∞ gj := f exists a.e.

5. (Completeness of convergence in measure.) If {fn}∞n=1 is Cauchy in
measure and f is as in item 4. then fn

µ→ f.

Proof. One of the basic tricks here is to observe that if ε > 0 and a, b ≥ 0
such that a+ b ≥ ε, then either a ≥ ε/2 or b ≥ ε/2.

1. Suppose that f and g are measurable functions such that fn
µ→ g and

fn
µ→ f as n→∞ and ε > 0 is given. Since

|f − g| ≤ |f − fn|+ |fn − g| ,

if ε > 0 and |f − g| ≥ ε, then either |f − fn| ≥ ε/2 or |fn − g| ≥ ε/2. Thus
it follows

{|f − g| > ε} ⊂ {|f − fn| > ε/2} ∪ {|g − fn| > ε/2} ,

and therefore,

µ(|f − g| > ε) ≤ µ(|f − fn| > ε/2) + µ(|g − fn| > ε/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ

(
∪∞n=1

{
|f − g| > 1

n

})
≤
∞∑
n=1

µ

(
|f − g| > 1

n

)
= 0,

i.e. f = g a.e.
2. The first claim is easy and the second follows similarly to the proof of the

first item.
3. Suppose fn

µ→ f, ε > 0 and m,n ∈ N, then |fn − fm| ≤ |f − fn|+ |fm − f | .
So by the basic trick,

µ (|fn − fm| > ε) ≤ µ (|fn − f | > ε/2)+µ (|fm − f | > ε/2)→ 0 as m,n→∞.

4. Suppose {fn} is L0 (µ) – Cauchy and let εn > 0 such that
∞∑
n=1

εn < ∞

(εn = 2−n would do) and set δn =
∞∑
k=n

εk. Choose gj = fnj where {nj} is a

subsequence of N such that

µ({|gj+1 − gj | > εj}) ≤ εj .

Let

FN := ∪j≥N {|gj+1 − gj | > εj} and
E := ∩∞N=1FN = {|gj+1 − gj | > εj i.o.} .

Since
µ (FN ) ≤ δN <∞

and FN ↓ E it follows1 that 0 = µ (E) = limN→∞ µ (FN ) . For ω /∈ E,
|gj+1 (ω)− gj (ω)| ≤ εj for a.a. j and so by Lemma 12.7, f (ω) := lim

j→∞
gj(ω)

exists. For ω ∈ E we may define f (ω) ≡ 0.
5. Next we will show gN

µ→ f as N →∞ where f and gN are as above. If

ω ∈ F cN = ∩j≥N {|gj+1 − gj | ≤ εj} ,

then
1 Alternatively, µ (E) = 0 by the first Borel Cantelli lemma and the fact that∑∞

j=1 µ({|gj+1 − gj | > εj}) ≤
∑∞
j=1 εj <∞.
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|gj+1 (ω)− gj (ω)| ≤ εj for all j ≥ N.

Another application of Lemma 12.7 shows |f(ω)− gj(ω)| ≤ δj for all j ≥ N,
i.e.

F cN ⊂ ∩j≥N {|f − gj | ≤ δj} ⊂ {|f − gN | ≤ δN} .

Therefore, by taking complements of this equation, {|f − gN | > δN} ⊂ FN
and hence

µ(|f − gN | > δN ) ≤ µ(FN ) ≤ δN → 0 as N →∞

and in particular, gN
µ→ f as N →∞.

With this in hand, it is straightforward to show fn
µ→ f. Indeed, by the

usual trick, for all j ∈ N,

µ({|fn − f | > ε}) ≤ µ({|f − gj | > ε/2}) + µ(|gj − fn| > ε/2).

Therefore, letting j →∞ in this inequality gives,

µ({|fn − f | > ε}) ≤ lim sup
j→∞

µ(|gj − fn| > ε/2)→ 0 as n→∞,

wherein we have used {fn}∞n=1 is Cauchy in measure and gj
µ→ f.

Corollary 12.9 (Dominated Convergence Theorem). Let (Ω,B, µ) be a
measure space. Suppose {fn} , {gn} , and g are in L1 and f ∈ L0 are functions
such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
∫
gn →

∫
g as n→∞.

Then f ∈ L1 and limn→∞ ‖f − fn‖1 = 0, i.e. fn → f in L1. In particular
limn→∞

∫
fn =

∫
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To see
that |f | ≤ g, use item 4. of Theorem 12.8 to find subsequences {fnk} and {gnk}
of {fn} and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.

If (for sake of contradiction) limn→∞ ‖f − fn‖1 6= 0 there exists ε > 0 and a
subsequence {fnk} of {fn} such that∫

|f − fnk | ≥ ε for all k. (12.5)

Using item 4. of Theorem 12.8 again, we may assume (by passing to a further
subsequences if necessary) that fnk → f and gnk → g almost everywhere.
Noting, |f − fnk | ≤ g+ gnk → 2g and

∫
(g + gnk)→

∫
2g, an application of the

dominated convergence Theorem 7.27 implies limk→∞
∫
|f − fnk | = 0 which

contradicts Eq. (12.5).

Exercise 12.1 (Fatou’s Lemma). Let (Ω,B, µ) be a measure space. If fn ≥ 0
and fn → f in measure, then

∫
Ω
fdµ ≤ lim infn→∞

∫
Ω
fndµ.

Lemma 12.10. Suppose 1 ≤ p < ∞, {fn}∞n=1 ⊂ Lp (µ) , and fn
µ→ f,

then ‖f‖p ≤ lim infn→∞ ‖fn‖p . Moreover if {fn}∞n=1 ∪ {f} ⊂ Lp (µ) , then

‖f − fn‖p → 0 as n→∞ iff limn→∞ ‖fn‖p = ‖f‖p <∞ and fn
µ−→ f.

Proof. Choose a subsequence, gk = fnk , such that lim infn→∞ ‖fn‖p =
limk→∞ ‖gk‖p . By passing to a further subsequence if necessary, we may further
assume that gk → f a.e. Therefore, by Fatou’s lemma,

‖f‖pp =
∫
Ω

|f |p dµ =
∫
Ω

lim
k→∞

|gk|p dµ ≤ lim inf
k→∞

∫
Ω

|gk|p dµ = lim inf
n→∞

‖fn‖pp

which proves the first assertion.
If ‖f − fn‖p → 0 as n → ∞, then by the triangle inequality,∣∣∣‖f‖p − ‖fn‖p∣∣∣ ≤ ‖f − fn‖p which shows

∫
|fn|p →

∫
|f |p if fn → f in

Lp. Chebyschev’s inequality implies fn
µ−→ f if fn → f in Lp.

Conversely if limn→∞ ‖fn‖p = ‖f‖p <∞ and fn
µ−→ f, let Fn := |f − fn|p

and Gn := 2p−1 [|f |p + |fn|p] . Then Fn
µ−→ 02, Fn ≤ Gn ∈ L1, and

∫
Gn →

∫
G

where G := 2p |f |p ∈ L1. Therefore, by Corollary 12.9,
∫
|f − fn|p =

∫
Fn →∫

0 = 0.

Exercise 12.2. Let (Ω,B, µ) be a measure space, p ∈ [1,∞), and suppose that
0 ≤ f ∈ L1 (µ) , 0 ≤ fn ∈ L1 (µ) for all n, fn

µ−→ f, and
∫
fndµ→

∫
fdµ. Then

fn → f in L1 (µ) . In particular if f, fn ∈ Lp (µ) and fn → f in Lp (µ) , then
|fn|p → |f |p in L1 (µ) .

Solution to Exercise (12.2). Let Fn := |f − fn| ≤ f + fn := gn and g :=
2f. Then Fn

µ−→ 0, gn
µ−→ g, and

∫
gndµ →

∫
gdµ. So by Corollary 12.9,∫

|f − fn| dµ =
∫
Fndµ→ 0 as n→∞.

Proposition 12.11. Suppose (Ω,B, µ) is a probability space and {fn}∞n=1 be a
sequence of measurable functions on Ω. Then {fn}∞n=1 converges to f in prob-
ability iff every subsequence, {f ′n}

∞
n=1 of {fn}∞n=1 has a further subsequence,

{f ′′n}
∞
n=1 , which is almost surely convergent to f.

2 This is becuase |Fn| ≥ ε iff |f − fn| ≥ ε1/p.
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Proof. If {fn}∞n=1 is convergent and hence Cauchy in probability then any
subsequence, {f ′n}

∞
n=1 is also Cauchy in probability. Hence by item 4. of Theo-

rem 12.8 there is a further subsequence, {f ′′n}
∞
n=1 of {f ′n}

∞
n=1 which is convergent

almost surely.
Conversely if {fn}∞n=1 does not converge to f in probability, then there

exists an ε > 0 and a subsequence, {nk} such that infk µ (|f − fnk | ≥ ε) > 0.
Any subsequence of {fnk} would have the same property and hence can not be
almost surely convergent because of Egorov’s Theorem 12.6.

Corollary 12.12. Suppose (Ω,B, µ) is a probability space, fn
µ−→ f and gn

µ−→
g and ϕ : R→ R and ψ : R2 → R are continuous functions. Then

1. ϕ (fn)
µ−→ ϕ (f) ,

2. ψ (fn, gn)
µ−→ ψ (f, g) , and

3. fn · gn
µ−→ f · g.

Proof. Item 1. and 3. follow from item 2. by taking ψ (x, y) = ϕ (x) and
ψ (x, y) = x · y respectively. So it suffices to prove item 2. To do this we will
make repeated use of Theorem 12.8.

Given any subsequence, {nk} , of N there is a subsequence, {n′k} of {nk}
such that fn′

k
→ f a.s. and yet a further subsequence {n′′k} of {n′k} such that

gn′′
k
→ g a.s. Hence, by the continuity of ψ, it now follows that

lim
k→∞

ψ
(
fn′′

k
, gn′′

k

)
= ψ (f, g) a.s.

which completes the proof.

Example 12.13. It is not possible to drop the assumption that µ (Ω) < ∞ in
Corollary 12.12. For example, let Ω = R, B = BR, µ = m be Lebesgue measure,
fn (x) = 1

n and gn (x) = x2 = g (x) . Then fn
µ→ 0, gn

µ→ g while fngn does not
converge to 0 = 0 · g in measure. Also if we let ϕ (y) = y2, fn (x) = x+ 1/n and
f (x) = x for all x ∈ R, then fn

µ→ f while

[ϕ (fn)− ϕ (f)] (x) = (x+ 1/n)2 − x2 =
2
n
x+

1
n2

does not go to 0 in measure as n→∞.

12.3 Jensen’s, Hölder’s and Minikowski’s Inequalities

Theorem 12.14 (Jensen’s Inequality). Suppose that (Ω,B, µ) is a proba-
bility space, i.e. µ is a positive measure and µ(Ω) = 1. Also suppose that

f ∈ L1(µ), f : Ω → (a, b), and ϕ : (a, b) → R is a convex function, (i.e.
ϕ′′ (x) ≥ 0 on (a, b) .) Then

ϕ

(∫
Ω

fdµ

)
≤
∫
Ω

ϕ(f)dµ

where if ϕ ◦ f /∈ L1(µ), then ϕ ◦ f is integrable in the extended sense and∫
Ω
ϕ(f)dµ =∞.

Proof. Let t =
∫
Ω
fdµ ∈ (a, b) and let β ∈ R (β = ϕ̇ (t) when ϕ̇ (t) exists),

be such that ϕ(s) − ϕ(t) ≥ β(s − t) for all s ∈ (a, b). (See Lemma 12.52) and
Figure 12.5 when ϕ is C1 and Theorem 12.55 below for the existence of such a
β in the general case.) Then integrating the inequality, ϕ(f)−ϕ(t) ≥ β(f − t),
implies that

0 ≤
∫
Ω

ϕ(f)dµ− ϕ(t) =
∫
Ω

ϕ(f)dµ− ϕ(
∫
Ω

fdµ).

Moreover, if ϕ(f) is not integrable, then ϕ(f) ≥ ϕ(t) + β(f − t) which shows
that negative part of ϕ(f) is integrable. Therefore,

∫
Ω
ϕ(f)dµ =∞ in this case.

Example 12.15. Since ex for x ∈ R, − lnx for x > 0, and xp for x ≥ 0 and p ≥ 1
are all convex functions, we have the following inequalities

exp
(∫

Ω

fdµ

)
≤
∫
Ω

efdµ, (12.6)∫
Ω

log(|f |)dµ ≤ log
(∫

Ω

|f | dµ
)

and for p ≥ 1, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣p ≤ (∫
Ω

|f | dµ
)p
≤
∫
Ω

|f |p dµ.

Example 12.16. As a special case of Eq. (12.6), if pi, si > 0 for i = 1, 2, . . . , n
and

∑n
i=1

1
pi

= 1, then

s1 . . . sn = e
∑n

i=1
ln si = e

∑n

i=1
1
pi

ln s
pi
i ≤

n∑
i=1

1
pi
eln s

pi
i =

n∑
i=1

spii
pi
. (12.7)

Indeed, we have applied Eq. (12.6) with Ω = {1, 2, . . . , n} , µ =
∑n
i=1

1
pi
δi and

f (i) := ln spii . As a special case of Eq. (12.7), suppose that s, t, p, q ∈ (1,∞)
with q = p

p−1 (i.e. 1
p + 1

q = 1) then

st ≤ 1
p
sp +

1
q
tq. (12.8)
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(When p = q = 1/2, the inequality in Eq. (12.8) follows from the inequality,
0 ≤ (s− t)2

.)
As another special case of Eq. (12.7), take pi = n and si = a

1/n
i with ai > 0,

then we get the arithmetic geometric mean inequality,

n
√
a1 . . . an ≤

1
n

n∑
i=1

ai. (12.9)

Example 12.17. Let (Ω,B, µ) be a probability space, 0 < p < q < ∞, and
f : Ω → C be a measurable function. Then by Jensen’s inequality,(∫

Ω

|f |p dµ
)q/p

≤
∫
Ω

(|f |p)q/p dµ =
∫
Ω

|f |q dµ

from which it follows that ‖f‖p ≤ ‖f‖q . In particular, Lp (µ) ⊂ Lq (µ) for all
0 < p < q <∞. See Corollary 12.31 for an alternative proof.

Theorem 12.18 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p
p−1 , or equivalently p−1 + q−1 = 1. If f and g are measurable functions then

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (12.10)

Assuming p ∈ (1,∞) and ‖f‖p · ‖g‖q <∞, equality holds in Eq. (12.10) iff |f |p
and |g|q are linearly dependent as elements of L1 which happens iff

|g|q‖f‖pp = ‖g‖qq |f |
p a.e. (12.11)

Proof. The cases p = 1 and q = ∞ or p = ∞ and q = 1 are easy to deal
with and will be left to the reader. So we now assume that p, q ∈ (1,∞) . If
‖f‖q = 0 or ∞ or ‖g‖p = 0 or ∞, Eq. (12.10) is again easily verified. So we will
now assume that 0 < ‖f‖q, ‖g‖p < ∞. Taking s = |f | /‖f‖p and t = |g|/‖g‖q
in Eq. (12.8) gives,

|fg|
‖f‖p‖g‖q

≤ 1
p

|f |p

‖f‖p
+

1
q

|g|q

‖g‖q
(12.12)

with equality iff |g/‖g‖q| = |f |p−1
/‖f‖(p−1)

p = |f |p/q /‖f‖p/qp , i.e. |g|q‖f‖pp =
‖g‖qq |f |

p
. Integrating Eq. (12.12) implies

‖fg‖1
‖f‖p‖g‖q

≤ 1
p

+
1
q

= 1

with equality iff Eq. (12.11) holds. The proof is finished since it is easily checked
that equality holds in Eq. (12.10) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.

Example 12.19. Suppose that ak ∈ C for k = 1, 2, . . . , n and p ∈ [1,∞), then∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣
p

≤ np−1
n∑
k=1

|ak|p . (12.13)

Indeed, by Hölder’s inequality applied using the measure space, {1, 2, . . . , n}
equipped with counting measure, we have∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

ak · 1

∣∣∣∣∣ ≤
(

n∑
k=1

|ak|p
)1/p( n∑

k=1

1q
)1/q

= n1/q

(
n∑
k=1

|ak|p
)1/p

where q = p
p−1 . Taking the pth – power of this inequality then gives, Eq. (12.14).

Theorem 12.20 (Generalized Hölder’s inequality). Suppose that fi : Ω →
C are measurable functions for i = 1, . . . , n and p1, . . . , pn and r are positive
numbers such that

∑n
i=1 p

−1
i = r−1, then∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
r

≤
n∏
i=1

‖fi‖pi . (12.14)

Proof. One may prove this theorem by induction based on Hölder’s Theo-
rem 12.18 above. Alternatively we may give a proof along the lines of the proof
of Theorem 12.18 which is what we will do here.

Since Eq. (12.14) is easily seen to hold if ‖fi‖pi = 0 for some i, we will
assume that ‖fi‖pi > 0 for all i. By assumption,

∑n
i=1

ri
pi

= 1, hence we may
replace si by sri and pi by pi/r for each i in Eq. (12.7) to find

sr1 . . . s
r
n ≤

n∑
i=1

(sri )
pi/r

pi/r
= r

n∑
i=1

spii
pi
.

Now replace si by |fi| / ‖fi‖pi in the previous inequality and integrate the result
to find

1∏n
i=1 ‖fi‖pi

∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
r

r

≤ r
n∑
i=1

1
pi

1
‖fi‖pipi

∫
Ω

|fi|pi dµ =
n∑
i=1

r

pi
= 1.

Definition 12.21. A norm on a vector space Z is a function ‖·‖ : Z → [0,∞)
such that

1. (Homogeneity) ‖λf‖ = |λ| ‖f‖ for all λ ∈ F and f ∈ Z.
2. (Triangle inequality) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ Z.
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3. (Positive definite) ‖f‖ = 0 implies f = 0.

A pair (Z, ‖·‖) where Z is a vector space and ‖·‖ is a norm on Z is called a
normed vector space.

Theorem 12.22 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp (µ)
then

‖f + g‖p ≤ ‖f‖p + ‖g‖p. (12.15)

In particular,
(
Lp (µ) , ‖·‖p

)
is a normed vector space for all 1 ≤ p ≤ ∞.

Proof. When p =∞, |f | ≤ ‖f‖∞ a.e. and |g| ≤ ‖g‖∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ a.e. and therefore

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ .

When p <∞,

|f + g|p ≤ (2 max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

which implies3 f + g ∈ Lp since

‖f + g‖pp ≤ 2p
(
‖f‖pp + ‖g‖pp

)
<∞.

Furthermore, when p = 1 we have

‖f + g‖1 =
∫
Ω

|f + g|dµ ≤
∫
Ω

|f | dµ+
∫
Ω

|g|dµ = ‖f‖1 + ‖g‖1.

We now consider p ∈ (1,∞) . We may assume ‖f + g‖p, ‖f‖p and ‖g‖p are
all positive since otherwise the theorem is easily verified. Integrating

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

and then applying Holder’s inequality with q = p/(p− 1) gives∫
Ω

|f + g|pdµ ≤
∫
Ω

|f | |f + g|p−1dµ+
∫
Ω

|g| |f + g|p−1dµ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q, (12.16)

where

‖|f + g|p−1‖qq =
∫
Ω

(|f + g|p−1)qdµ =
∫
Ω

|f + g|pdµ = ‖f + g‖pp. (12.17)

Combining Eqs. (12.16) and (12.17) implies

‖f + g‖pp ≤ ‖f‖p‖f + g‖p/qp + ‖g‖p‖f + g‖p/qp (12.18)

Solving this inequality for ‖f + g‖p gives Eq. (12.15).
3 In light of Example 12.19, the last 2p in the above inequality may be replaced by

2p−1.

12.4 Completeness of Lp – spaces

Definition 12.23 (Banach space). A normed vector space (Z, ‖·‖) is a
Banach space if is is complete, i.e. all Cauchy sequences are conver-
gent. To be more precise we are assuming that if {xn}∞n=1 ⊂ Z satis-
fies, limm,n→∞ ‖xn − xm‖ = 0, then there exists an x ∈ Z such that
limn→∞ ‖x− xn‖ = 0.

Theorem 12.24. Let ‖·‖∞ be as defined in Eq. (12.2), then
(L∞(Ω,B, µ), ‖·‖∞) is a Banach space. A sequence {fn}∞n=1 ⊂ L∞ con-
verges to f ∈ L∞ iff there exists E ∈ B such that µ(E) = 0 and fn → f
uniformly on Ec. Moreover, bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 12.22, ‖·‖∞ satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ‖·‖∞ is a
norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
‖f − fn‖∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
(
|f − fn| > k−1

)
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

{
|f − fn| > k−1

}
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈ B such that
µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩ Ec) = 0

for all n sufficiently large. That is to say lim sup
j→∞

‖f − fn‖∞ ≤ ε for all ε > 0.

The density of simple functions follows from the approximation Theorem 6.39.
So the last item to prove is the completeness of L∞.

Suppose εm,n := ‖fm − fn‖∞ → 0 as m,n → ∞. Let Em,n =
{|fn − fm| > εm,n} and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.

Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec. Letting
f = limn→∞ 1Ecfn, it then follows that limn→∞ ‖fn − f‖∞ = 0.

Theorem 12.25 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp – norm, ‖·‖p (see Eq. (12.1)), is a Banach space.
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Proof. By Minkowski’s Theorem 12.22, ‖·‖p satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure ‖·‖p
is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p <∞, the
case p =∞ being done in Theorem 12.24.

Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 12.4), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
12.8 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,

‖gj − f‖pp =
∫

lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf
∫
|gj − gk|pdµ

= lim
k→∞

inf ‖gj − gk‖pp → 0 as j →∞.

In particular, ‖f‖p ≤ ‖gj − f‖p + ‖gj‖p <∞ so the f ∈ Lp and gj
Lp−→ f. The

proof is finished because,

‖fn − f‖p ≤ ‖fn − gj‖p + ‖gj − f‖p → 0 as j, n→∞.

See Definition 14.2 for a very important example of where completeness is
used. To end this section we are going to record a few results we will need later
regarding subspace of Lp (µ) which are induced by sub – σ – algebras, B0 ⊂ B.

Lemma 12.26. Let (Ω,B, µ) be a measure space and B0 be a sub – σ – algebra
of B. Then for 1 ≤ p < ∞, the map i : Lp (Ω,B0, µ) → Lp (Ω,B, µ) defined by
i ([f ]0) = [f ] is a well defined linear isometry. Here we are writing,

[f ]0 = {g ∈ Lp (Ω,B0, µ) : g = f a.e.} and
[f ] = {g ∈ Lp (Ω,B, µ) : g = f a.e.} .

Moreover the image of i, i (Lp (Ω,B0, µ)) , is a closed subspace of Lp (Ω,B, µ) .

Proof. This is proof is routine and most of it will be left to the reader. Let us
just check that i (Lp (Ω,B0, µ)) , is a closed subspace of Lp (Ω,B, µ) . To this end,
suppose that i ([fn]0) = [fn] is a convergent sequence in Lp (Ω,B, µ) . Because,
i, is an isometry it follows that {[fn]0}

∞
n=1

is a Cauchy and hence convergent
sequence in Lp (Ω,B0, µ) . Letting f ∈ Lp (Ω,B0, µ) such that ‖f − fn‖Lp(µ) →
0, we will have, since i is isometric, that [fn]→ [f ] = i ([f ]0) ∈ i (Lp (Ω,B0, µ))
as desired.

Exercise 12.3. Let (Ω,B, µ) be a measure space and B0 be a sub – σ – algebra
of B. Further suppose that to every B ∈ B there exists A ∈ B0 such that
µ (B∆A) = 0. Show for all 1 ≤ p <∞ that i (Lp (Ω,B0, µ)) = Lp (Ω,B, µ) , i.e.
to each f ∈ Lp (Ω,B, µ) there exists a g ∈ Lp (Ω,B0, µ) such that f = g a.e.
Hints: 1. verify the last assertion for simple functions in Lp (Ω,B0, µ) . 2. then
make use of Theorem 6.39 and Exercise 6.4.

Exercise 12.4. Suppose that 1 ≤ p <∞, (Ω,B, µ) is a σ – finite measure space
and B0 is a sub – σ – algebra of B. Show that i (Lp (Ω,B0, µ)) = Lp (Ω,B, µ)
implies; to every B ∈ B there exists A ∈ B0 such that µ (B∆A) = 0.

Solution to Exercise (12.4). Let B ∈ B with µ (B) < ∞. Then 1B ∈
Lp (Ω,B, µ) and hence by assumption there exists g ∈ Lp (Ω,B0, µ) such that
g = 1B a.e. Let A := {g = 1} ∈ B0 and observe that A∆B ⊂ {g 6= 1B} . There-
fore µ (A∆B) = µ (g 6= 1B) = 0. For general the case we use the fact that
(Ω,B, µ) is a σ – finite measure space to conclude that each B ∈ B may be
written as a disjoint union, B =

∑∞
n=1Bn, with Bn ∈ B and µ (Bn) < ∞. By

what we have just proved we may find An ∈ B0 such that µ (Bn∆An) = 0. I
now claim that A := ∪∞n=1An ∈ B0 satisfies µ (A∆B) = 0. Indeed, notice that

A \B = ∪∞n=1An \B ⊂ ∪∞n=1An \Bn,

similarly B \A ⊂ ∪∞n=1Bn \An, and therefore A∆B ⊂ ∪∞n=1An∆Bn. Therefore
by sub-additivity of µ, µ (A∆B) ≤

∑∞
n=1 µ (An∆Bn) = 0.

Convention: From now on we will drop the cumbersome notation and
simply identify [f ] with f and Lp (Ω,B0, µ) with its image, i (Lp (Ω,B0, µ)) , in
Lp (Ω,B, µ) .

12.5 Density Results

Theorem 12.27 (Density Theorem). Let p ∈ [1,∞), (Ω,B, µ) be a measure
space and M be an algebra of bounded R – valued measurable functions such
that

1. M ⊂ Lp (µ,R) and σ (M) = B.
2. There exists ψk ∈M such that ψk → 1 boundedly.

Then to every function f ∈ Lp (µ,R) , there exist ϕn ∈ M such that
limn→∞ ‖f − ϕn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,R) .

Proof. Fix k ∈ N for the moment and let H denote those bounded B –
measurable functions, f : Ω → R, for which there exists {ϕn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − ϕn‖Lp(µ) = 0. A routine check shows H is a subspace of
the bounded measurable R – valued functions on Ω, 1 ∈ H, M ⊂ H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn ∈ H and fn → f boundedly. Then, by the dominated convergence theorem,
limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.4 (Take the dominating function to be g =

4 It is at this point that the proof would break down if p =∞.
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[2C |ψk|]p where C is a constant bounding all of the {|fn|}∞n=1 .) We may now
choose ϕn ∈M such that ‖ϕn − ψkfn‖Lp(µ) ≤

1
n then

lim sup
n→∞

‖ψkf − ϕn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − ϕn‖Lp(µ) = 0 (12.19)

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem 8.16, now shows

H contains all bounded measurable functions on Ω. Let f ∈ Lp (µ) be given. The
dominated convergence theorem implies limk→∞

∥∥ψk1{|f |≤k}f − f
∥∥
Lp(µ)

= 0.
(Take the dominating function to be g = [2C |f |]p where C is a bound on all of
the |ψk| .) Using this and what we have just proved, there exists ϕk ∈ M such
that ∥∥ψk1{|f |≤k}f − ϕk

∥∥
Lp(µ)

≤ 1
k
.

The same line of reasoning used in Eq. (12.19) now implies
limk→∞ ‖f − ϕk‖Lp(µ) = 0.

Example 12.28. Let µ be a measure on (R,BR) such that µ ([−M,M ]) < ∞
for all M < ∞. Then, Cc (R,R) (the space of continuous functions on R with
compact support) is dense in Lp (µ) for all 1 ≤ p < ∞. To see this, apply
Theorem 12.27 with M = Cc (R,R) and ψk := 1[−k,k].

Theorem 12.29. Suppose p ∈ [1,∞), A ⊂ B ⊂ 2Ω is an algebra such that
σ(A) = B and µ is σ – finite on A. Let S(A, µ) denote the measurable simple
functions, ϕ : Ω → R such {ϕ = y} ∈ A for all y ∈ R and µ ({ϕ 6= 0}) < ∞.
Then S(A, µ) is dense subspace of Lp(µ).

Proof. Let M := S(A, µ). By assumption there exists Ωk ∈ A such that
µ(Ωk) <∞ and Ωk ↑ Ω as k →∞. If A ∈ A, then Ωk∩A ∈ A and µ (Ωk ∩A) <
∞ so that 1Ωk∩A ∈ M. Therefore 1A = limk→∞ 1Ωk∩A is σ (M) – measurable
for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ B and therefore B =
σ (A) ⊂ σ (M) ⊂ B, i.e. σ (M) = B. The theorem now follows from Theorem
12.27 after observing ψk := 1Ωk ∈M and ψk → 1 boundedly.

Theorem 12.30 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂ B
is a countable algebra such that σ(A) = B and µ is σ – finite on A. Then Lp(µ)
is separable and

D = {
∑

aj1Aj : aj ∈ Q + iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, µ) relative to the Lp(µ)
– norm. Once this is done, the proof is then complete since S(A, µ) is a dense
subspace of Lp (µ) by Theorem 12.29.

12.6 Relationships between different Lp – spaces

The Lp(µ) – norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point x0 ∈ Ω, then locally near x0 it is harder for f to be in Lp(µ)
as p increases. On the other hand a function f ∈ Lp(µ) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
there are two notable exceptions. (1) If µ(Ω) <∞, then there is no behavior at
infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≥ p as is shown in Corollary
12.31 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then all functions
in Lp(µ) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≥ p, see Corollary 12.36
below.

Corollary 12.31 (Example 12.17 revisited). If µ(Ω) < ∞ and 0 < p ≤
q ≤ ∞, then Lq(µ) ⊂ Lp(µ), the inclusion map is bounded and in fact

‖f‖p ≤ [µ(Ω)](
1
p−

1
q ) ‖f‖q .

Proof. Take a ∈ [1,∞] such that

1
p

=
1
a

+
1
q
, i.e. a =

pq

q − p
.

Then by Theorem 12.20,

‖f‖p = ‖f · 1‖p ≤ ‖f‖q · ‖1‖a = µ(Ω)1/a‖f‖q = µ(Ω)( 1
p−

1
q )‖f‖q.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

The rest of this section may be skipped.

Example 12.32 (Power Inequalities). Let a := (a1, . . . , an) with ai > 0 for i =
1, 2, . . . , n and for p ∈ R \ {0} , let

‖a‖p :=

(
1
n

n∑
i=1

api

)1/p

.

Then by Corollary 12.31, p→ ‖a‖p is increasing in p for p > 0. For p = −q < 0,
we have
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‖a‖p :=

(
1
n

n∑
i=1

a−qi

)−1/q

=

 1
1
n

∑n
i=1

(
1
ai

)q
1/q

=
∥∥∥∥1
a

∥∥∥∥−1

q

where 1
a := (1/a1, . . . , 1/an) . So for p < 0, as p increases, q = −p decreases, so

that
∥∥ 1
a

∥∥
q

is decreasing and hence
∥∥ 1
a

∥∥−1

q
is increasing. Hence we have shown

that p→ ‖a‖p is increasing for p ∈ R \ {0} .
We now claim that limp→0 ‖a‖p = n

√
a1 . . . an. To prove this, write api =

ep ln ai = 1 + p ln ai +O
(
p2
)

for p near zero. Therefore,

1
n

n∑
i=1

api = 1 + p
1
n

n∑
i=1

ln ai +O
(
p2
)
.

Hence it follows that

lim
p→0
‖a‖p = lim

p→0

(
1
n

n∑
i=1

api

)1/p

= lim
p→0

(
1 + p

1
n

n∑
i=1

ln ai +O
(
p2
))1/p

= e
1
n

∑n

i=1
ln ai = n

√
a1 . . . an.

So if we now define ‖a‖0 := n
√
a1 . . . an, the map p ∈ R→‖a‖p ∈ (0,∞) is

continuous and increasing in p.
We will now show that limp→∞ ‖a‖p = maxi ai =: M and limp→−∞ ‖a‖p =

mini ai =: m. Indeed, for p > 0,

1
n
Mp ≤ 1

n

n∑
i=1

api ≤M
p

and therefore, (
1
n

)1/p

M ≤ ‖a‖p ≤M.

Since
(

1
n

)1/p → 1 as p→∞, it follows that limp→∞ ‖a‖p = M. For p = −q < 0,
we have

lim
p→−∞

‖a‖p = lim
q→∞

(
1∥∥ 1
a

∥∥
q

)
=

1
maxi (1/ai)

=
1

1/m
= m = min

i
ai.

Conclusion. If we extend the definition of ‖a‖p to p = ∞ and p = −∞
by ‖a‖∞ = maxi ai and ‖a‖−∞ = mini ai, then R̄ 3p → ‖a‖p ∈ (0,∞) is a
continuous non-decreasing function of p.

Proposition 12.33. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1
pλ

=
1− λ
p0

+
λ

p1
(12.20)

with the interpretation that λ/p1 = 0 if p1 = ∞.5 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g + h with g ∈ Lp0 and h ∈ Lp1 .
For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

‖f‖ := inf
{
‖g‖p0 + ‖h‖p1 : f = g + h

}
.

Then (Lp0 + Lp1 , ‖·‖) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact ‖f‖ ≤ 2 ‖f‖pλ for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined by
f on Ec. Hence let g = f1E and h = f1Ec so that f = g + h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,

‖g‖p0p0 =
∫
|f |p0 1|f |>M = Mp0

∫ ∣∣∣∣ fM
∣∣∣∣p0 1|f |>M

≤Mp0

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |>M ≤Mp0−pλ ‖f‖pλpλ <∞

and

‖h‖p1p1 =
∥∥f1|f |≤M

∥∥p1
p1

=
∫
|f |p1 1|f |≤M = Mp1

∫ ∣∣∣∣ fM
∣∣∣∣p1 1|f |≤M

≤Mp1

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |≤M ≤Mp1−pλ ‖f‖pλpλ <∞.

Moreover this shows

‖f‖ ≤M1−pλ/p0 ‖f‖pλ/p0pλ
+M1−pλ/p1 ‖f‖pλ/p1pλ

.

Taking M = λ ‖f‖pλ then gives

‖f‖ ≤
(
λ1−pλ/p0 + λ1−pλ/p1

)
‖f‖pλ

and then taking λ = 1 shows ‖f‖ ≤ 2 ‖f‖pλ . The proof that (Lp0 + Lp1 , ‖·‖) is
a Banach space is left as Exercise 12.11 to the reader.
5 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0

pλ
· p1 − pλ
p1 − p0

.
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Corollary 12.34 (Interpolation of Lp – norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (12.20), then Lp0 ∩
Lp1 ⊂ Lpλ and

‖f‖pλ ≤ ‖f‖
λ
p0
‖f‖1−λp1

. (12.21)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let

‖f‖ := ‖f‖p0 + ‖f‖p1 .

Then (Lp0 ∩Lp1 , ‖·‖) is a Banach space and the inclusion map of Lp0 ∩Lp1 into
Lpλ is bounded, in fact

‖f‖pλ ≤ max
(
λ−1, (1− λ)−1

) (
‖f‖p0 + ‖f‖p1

)
. (12.22)

The heuristic explanation of this corollary is that if f ∈ Lp0 ∩ Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.

Proof. Let λ be determined as above, a = p0/λ and b = p1/(1 − λ), then
by Theorem 12.20,

‖f‖pλ =
∥∥∥|f |λ |f |1−λ∥∥∥

pλ
≤
∥∥∥|f |λ∥∥∥

a

∥∥∥|f |1−λ∥∥∥
b

= ‖f‖λp0 ‖f‖
1−λ
p1

.

It is easily checked that ‖·‖ is a norm on Lp0 ∩ Lp1 . To show this space is
complete, suppose that {fn} ⊂ Lp0 ∩ Lp1 is a ‖·‖ – Cauchy sequence. Then
{fn} is both Lp0 and Lp1 – Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ ‖f − fn‖p0 = 0 and limn→∞ ‖g − fn‖pλ = 0. By Chebyshev’s
inequality (Lemma 12.4) fn → f and fn → g in measure and therefore by
Theorem 12.8, f = g a.e. It now is clear that limn→∞ ‖f − fn‖ = 0. The
estimate in Eq. (12.22) is left as Exercise 12.10 to the reader.

Remark 12.35. Combining Proposition 12.33 and Corollary 12.34 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (12.20).

Corollary 12.36. Suppose now that µ is counting measure on Ω. Then Lp(µ) ⊂
Lq(µ) for all 0 < p < q ≤ ∞ and ‖f‖q ≤ ‖f‖p .

Proof. Suppose that 0 < p < q =∞, then

‖f‖p∞ = sup {|f(x)|p : x ∈ Ω} ≤
∑
x∈Ω
|f(x)|p = ‖f‖pp ,

i.e. ‖f‖∞ ≤ ‖f‖p for all 0 < p <∞. For 0 < p ≤ q ≤ ∞, apply Corollary 12.34
with p0 = p and p1 =∞ to find

‖f‖q ≤ ‖f‖
p/q
p ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p .

12.6.1 Summary:

1. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
2. If p ≤ q, then `p ⊂ `q and ‖f‖q ≤ ‖f‖p .
3. Since µ(|f | > ε) ≤ ε−p ‖f‖pp , Lp – convergence implies L0 – convergence.
4. L0 – convergence implies almost everywhere convergence for some subse-

quence.
5. If µ(Ω) < ∞ then almost everywhere convergence implies uniform con-

vergence off certain sets of small measure and in particular we have L0 –
convergence.

6. If µ(Ω) < ∞, then Lq ⊂ Lp for all p ≤ q and Lq – convergence implies Lp

– convergence.

12.7 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 – convergent sequence is Lp – convergent. This will lead us
to the notion of uniform integrability. To simplify matters a bit here, it will be
assumed that (Ω,B, µ) is a finite measure space for this section.

Notation 12.37 For f ∈ L1(µ) and E ∈ B, let

µ(f : E) :=
∫
E

fdµ.

and more generally if A,B ∈ B let

µ(f : A,B) :=
∫
A∩B

fdµ.

When µ is a probability measure, we will often write E [f : E] for µ(f : E) and
E [f : A,B] for µ(f : A,B).

Definition 12.38. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly integrable if,

lim
a→∞

sup
f∈Λ

µ (|f | : |f | ≥ a) = 0. (12.23)

In words, Λ ⊂ L1 (µ) is uniformly integrable if “tail expectations” can be made
uniformly small.
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The condition in Eq. (12.23) implies supf∈Λ ‖f‖1 < ∞.6 Indeed, choose a
sufficiently large so that supf∈Λ µ (|f | : |f | ≥ a) ≤ 1, then for f ∈ Λ

‖f‖1 = µ (|f | : |f | ≥ a) + µ (|f | : |f | < a) ≤ 1 + aµ (Ω) .

Example 12.39. If Λ = {f} with f ∈ L1 (µ) , then Λ is uniformly integrable.
Indeed, lima→∞ µ (|f | : |f | ≥ a) = 0 by the dominated convergence theorem.

Exercise 12.5. Suppose A is an index set, {fα}α∈A and {gα}α∈A are two col-
lections of random variables. If {gα}α∈A is uniformly integrable and |fα| ≤ |gα|
for all α ∈ A, show {fα}α∈A is uniformly integrable as well.

Solution to Exercise (12.5). For a > 0 we have

E [|fα| : |fα| ≥ a] ≤ E [|gα| : |fα| ≥ a] ≤ E [|gα| : |gα| ≥ a] .

Therefore,

lim
a→∞

sup
α

E [|fα| : |fα| ≥ a] ≤ lim
a→∞

sup
α

E [|gα| : |gα| ≥ a] = 0.

Definition 12.40. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly absolutely continuous if for all ε > 0 there exists δ > 0 such that

sup
f∈Λ

µ (|f | : E) < ε whenever µ (E) < δ. (12.24)

Equivalently put,

lim
δ↓0

sup {µ (|f | : E) : f ∈ Λ and µ (E) < δ} = 0. (12.25)

Remark 12.41. It is not in general true that if {fn} ⊂ L1(µ) is uniformly ab-
solutely continuous implies supn ‖fn‖1 < ∞. For example take Ω = {∗} and
µ({∗}) = 1. Let fn(∗) = n. Since for δ < 1 a set E ⊂ Ω such that µ(E) < δ
is in fact the empty set and hence {fn}∞n=1 is uniformly absolutely continuous.
However, for finite measure spaces without “atoms”, for every δ > 0 we may
find a finite partition of Ω by sets {E`}k`=1 with µ(E`) < δ. If Eq. (12.24) holds
with ε = 1, then

µ(|fn|) =
k∑
`=1

µ(|fn| : E`) ≤ k

showing that µ(|fn|) ≤ k for all n.

6 This is not necessarily the case if µ (Ω) = ∞. Indeed, if Ω = R and µ = m is
Lebesgue measure, the sequences of functions,

{
fn := 1[−n,n]

}∞
n=1

are uniformly

integrable but not bounded in L1 (m) .

Proposition 12.42. A subset Λ ⊂ L1 (µ) is uniformly integrable iff Λ ⊂ L1 (µ)
is bounded and uniformly absolutely continuous.

Proof. ( =⇒ ) We have already seen that uniformly integrable subsets, Λ,
are bounded in L1 (µ) . Moreover, for f ∈ Λ, and E ∈ B,

µ(|f | : E) = µ(|f | : |f | ≥M,E) + µ(|f | : |f | < M,E)
≤ µ(|f | : |f | ≥M) +Mµ(E).

Therefore,

lim
δ↓0

sup {µ (|f | : E) : f ∈ Λ and µ (E) < δ} ≤ sup
f∈Λ

µ(|f | : |f | ≥M)→ 0 as M →∞

which verifies that Λ is uniformly absolutely continuous.
(⇐=) Let K := supf∈Λ ‖f‖1 <∞. Then for f ∈ Λ, we have

µ (|f | ≥ a) ≤ ‖f‖1 /a ≤ K/a for all a > 0.

Hence given ε > 0 and δ > 0 as in the definition of uniform absolute continuity,
we may choose a = K/δ in which case

sup
f∈Λ

µ (|f | : |f | ≥ a) < ε.

Since ε > 0 was arbitrary, it follows that lima→∞ supf∈Λ µ (|f | : |f | ≥ a) = 0 as
desired.

Corollary 12.43. Suppose {fα}α∈A and {gα}α∈A are two uniformly integrable
collections of functions, then {fα + gα}α∈A is also uniformly integrable.

Proof. By Proposition 12.42, {fα}α∈A and {gα}α∈A are both bounded
in L1 (µ) and are both uniformly absolutely continuous. Since ‖fα + gα‖1 ≤
‖fα‖1 + ‖gα‖1 it follows that {fα + gα}α∈A is bounded in L1 (µ) as well.
Moreover, for ε > 0 we may choose δ > 0 such that µ (|fα| : E) < ε and
µ (|gα| : E) < ε whenever µ (E) < δ. For this choice of ε and δ, we then have

µ (|fα + gα| : E) ≤ µ (|fα|+ |gα| : E) < 2ε whenever µ (E) < δ,

showing {fα + gα}α∈A uniformly absolutely continuous. Another application of
Proposition 12.42 completes the proof.

Exercise 12.6 (Problem 5 on p. 196 of Resnick.). Suppose that {Xn}∞n=1

is a sequence of integrable and i.i.d random variables. Then
{
Sn
n

}∞
n=1

is uni-
formly integrable.
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Theorem 12.44 (Vitali Convergence Theorem). Let (Ω,B, µ) be a finite
measure space,Λ := {fn}∞n=1 be a sequence of functions in L1 (µ) , and f : Ω →
C be a measurable function. Then f ∈ L1 (µ) and ‖f − fn‖1 → 0 as n→∞ iff
fn → f in µ measure and Λ is uniformly integrable.

Proof. ( =⇒ ) If fn → f in L1 (µ) , then by Chebyschev’s inequality it fol-
lows that fn → f in µ – measure. Given ε > 0 we may choose N = Nε ∈ N such
that ‖f − fn‖1 ≤ ε/2 for n ≥ Nε. Since convergent sequences are bounded,
we have K := supn ‖fn‖1 < ∞ and µ (|fn| ≥ a) ≤ K/a for all a > 0. Apply-
ing Proposition 12.42 with Λ = {f} , for any a sufficiently large we will have
supn µ(|f | : |fn| ≥ a) ≤ ε/2. Thus for a sufficiently large and n ≥ N, it follows
that

µ(|fn| : |fn| ≥ a) ≤ µ(|f − fn| : |fn| ≥ a) + µ(|f | : |fn| ≥ a)
≤ ‖f − fn‖1 + µ(|f | : |fn| ≥ a) ≤ ε/2 + ε/2 = ε.

By Example 12.39 we also know that lim supa→∞maxn<N µ(|fn| : |fn| ≥ a) = 0
for any finite N. Therefore we have shown,

lim sup
a→∞

sup
n
µ(|fn| : |fn| ≥ a) ≤ ε

and as ε > 0 was arbitrary it follows that {fn}∞n=1 is uniformly integrable.
(⇐=) If fn → f in µ measure and Λ = {fn}∞n=1 is uniformly integrable then

we know M := supn ‖fn‖1 < ∞. Hence and application of Fatou’s lemma, see
Exercise 12.1, ∫

Ω

|f | dµ ≤ lim inf
n→∞

∫
Ω

|fn| dµ ≤M <∞,

i.e. f ∈ L1(µ). It then follows by Example 12.39 and Corollary 12.43 that
Λ0 := {f − fn}∞n=1 is uniformly integrable.

Therefore,

‖f − fn‖1 = µ (|f − fn| : |f − fn| ≥ a) + µ (|f − fn| : |f − fn| < a)

≤ ε (a) +
∫
Ω

1|f−fn|<a |f − fn| dµ (12.26)

where
ε (a) := sup

m
µ (|f − fm| : |f − fm| ≥ a)→ 0 as a→∞.

Since 1|f−fn|<a |f − fn| ≤ a ∈ L1 (µ) and 1|f−fn|<a |f − fn|
µ→ 0 becuase

µ
(
1|f−fn|<a |f − fn| > ε

)
≤ µ (|f − fn| > ε)→ 0 as n→∞,

we may pass to the limit in Eq. (12.26), with the aid of the dominated conver-
gence theorem (see Corollary 12.9), to find

lim sup
n→∞

‖f − fn‖1 ≤ ε (a)→ 0 as a→∞.

Example 12.45. Let Ω = [0, 1] , B = B[0,1] and P = m be Lebesgue measure on
B. Then the collection of functions, fε := 1

ε1[0,ε] for ε ∈ (0, 1) is bounded in
L1 (P ) , fε → 0 a.e. as ε ↓ 0 but

0 =
∫
Ω

lim
ε↓0

fεdP 6= lim
ε↓0

∫
Ω

fεdP = 1.

This is a typical example of a bounded and pointwise convergent sequence in L1

which is not uniformly integrable. This is easy to check directly as well since,

sup
ε∈(0,1)

m (|fε| : |fε| ≥ a) = 1 for all a > 0.

Example 12.46. Let Ω = [0, 1] , P be Lebesgue measure on B = B[0,1], and for
ε ∈ (0, 1) let aε > 0 with limε↓0 aε = ∞ and let fε := aε1[0,ε]. Then Efε = εaε
and so supε>0 ‖fε‖1 =: K <∞ iff εaε ≤ K for all ε. Since

sup
ε

E [fε : fε ≥M ] = sup
ε

[εaε · 1aε≥M ] ,

if {fε} is uniformly integrable and δ > 0 is given, for large M we have εaε ≤ δ for
ε small enough so that aε ≥M. From this we conclude that lim supε↓0 (εaε) ≤ δ
and since δ > 0 was arbitrary, limε↓0 εaε = 0 if {fε} is uniformly integrable. By
reversing these steps one sees the converse is also true.

Alternatively. No matter how aε > 0 is chosen, limε↓0 fε = 0 a.s.. So from
Theorem 12.44, if {fε} is uniformly integrable we would have to have

lim
ε↓0

(εaε) = lim
ε↓0

Efε = E0 = 0.

Corollary 12.47. Let (Ω,B, µ) be a finite measure space, p ∈ [1,∞), {fn}∞n=1

be a sequence of functions in Lp (µ) , and f : Ω → C be a measurable function.
Then f ∈ Lp (µ) and ‖f − fn‖p → 0 as n → ∞ iff fn → f in µ measure and
Λ := {|fn|p}

∞
n=1 is uniformly integrable.

Proof. (⇐= ) Suppose that fn → f in µ measure and Λ := {|fn|p}
∞
n=1

is uniformly integrable. By Corollary 12.12, |fn|p
µ→ |f |p in µ – measure, and

hn := |f − fn|p
µ→ 0, and by Theorem 12.44, |f |p ∈ L1 (µ) and |fn|p → |f |p in

L1 (µ) . It now follows by an application of Lemma 12.10 that ‖f − fn‖p → 0
as n→∞.

(=⇒) Suppose f ∈ Lp and fn → f in Lp. Again fn → f in µ – measure by
Lemma 12.4. Let
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hn := ||fn|p − |f |p| ≤ |fn|p + |f |p =: gn ∈ L1

and g := 2|f |p ∈ L1. Then gn
µ→ g, hn

µ→ 0 and
∫
gndµ →

∫
gdµ. Therefore

by the dominated convergence theorem in Corollary 12.9, lim
n→∞

∫
hn dµ = 0,

i.e. |fn|p → |f |p in L1 (µ) .7 Hence it follows from Theorem 12.44 that Λ is
uniformly integrable.

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 12.48. Suppose that µ(Ω) < ∞, and Λ ⊂ L0(Ω) is a collection of
functions.

1. If there exists a measurable function ϕ : R+ → R+ such that
limx→∞ ϕ(x)/x =∞ and

K := sup
f∈Λ

µ(ϕ(|f |)) <∞, (12.27)

then Λ is uniformly integrable. (A typical example for ϕ in item 1. is ϕ (x) =
xp for some p > 1.)

2. *(Skip this if you like.) Conversely if Λ is uniformly integrable, there exists
a non-decreasing continuous function ϕ : R+ → R+ such that ϕ(0) = 0,
limx→∞ ϕ(x)/x =∞ and Eq. (12.27) is valid.

Proof. 1. Let ϕ be as in item 1. above and set εa := supx≥a
x

ϕ(x) → 0 as
a→∞ by assumption. Then for f ∈ Λ

µ(|f | : |f | ≥ a) = µ

(
|f |

ϕ (|f |)
ϕ (|f |) : |f | ≥ a

)
≤ µ(ϕ (|f |) : |f | ≥ a)εa

≤ µ(ϕ (|f |))εa ≤ Kεa

and hence
7 Here is an alternative proof. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f | , |fn|))p−1 ||f | − |fn|| ≤ p(|f |+ |fn|)p−1 ||f | − |fn||

and therefore by Hölder’s inequality,∫
||f |p − |fn|p| dµ ≤ p

∫
(|f |+ |fn|)p−1 ||f | − |fn|| dµ ≤ p

∫
(|f |+ |fn|)p−1 |f − fn| dµ

≤ p‖f − fn‖p‖(|f |+ |fn|)p−1‖q = p‖ |f |+ |fn|‖p/qp ‖f − fn‖p
≤ p(‖f‖p + ‖fn‖p)p/q‖f − fn‖p

where q := p/(p− 1). This shows that
∫
||f |p − |fn|p| dµ→ 0 as n→∞.

lim
a→∞

sup
f∈Λ

µ
(
|f | 1|f |≥a

)
≤ lim
a→∞

Kεa = 0.

2. *(Skip this if you like.) By assumption, εa := supf∈Λ µ
(
|f | 1|f |≥a

)
→ 0 as

a→∞. Therefore we may choose an ↑ ∞ such that

∞∑
n=0

(n+ 1) εan <∞

where by convention a0 := 0. Now define ϕ so that ϕ(0) = 0 and

ϕ′(x) =
∞∑
n=0

(n+ 1) 1(an,an+1](x),

i.e.

ϕ(x) =
∫ x

0

ϕ′(y)dy =
∞∑
n=0

(n+ 1) (x ∧ an+1 − x ∧ an) .

By construction ϕ is continuous, ϕ(0) = 0, ϕ′(x) is increasing (so ϕ is convex)
and ϕ′(x) ≥ (n+ 1) for x ≥ an. In particular

ϕ(x)
x
≥ ϕ(an) + (n+ 1)x

x
≥ n+ 1 for x ≥ an

from which we conclude limx→∞ ϕ(x)/x =∞. We also have ϕ′(x) ≤ (n+ 1) on
[0, an+1] and therefore

ϕ(x) ≤ (n+ 1)x for x ≤ an+1.

So for f ∈ Λ,

µ (ϕ(|f |)) =
∞∑
n=0

µ
(
ϕ(|f |)1(an,an+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1(an,an+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1|f |≥an

)
≤
∞∑
n=0

(n+ 1) εan

and hence

sup
f∈Λ

µ (ϕ(|f |)) ≤
∞∑
n=0

(n+ 1) εan <∞.
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Exercise 12.7. Show directly that if µ (Ω) < ∞, ϕ is as in Lemma 12.48,
and {fn} ⊂ L1 (Ω) such that fn

µ→ f and K := supn E [ϕ (|fn|)] < ∞, then
‖f − fn‖1 → 0 as n→∞.

Solution to Exercise (12.7). Letting εa := supx≥a
x

ϕ(x) as above we have
x ≤ εaϕ (x) for x ≥ a. Therefore,

E |fn| = E [|fn| : |fn| ≥ a] + E [|fn| : |fn| < a]
≤ εaE [ϕ (|fn|) : |fn| ≥ a] + a

≤ εaE [ϕ (|fn|)] + a = a+ εaK

from which it follows supn E |fn| <∞. Hence by Fatou’s lemma,

E |f | ≤ lim inf
n→∞

E |fn| ≤ sup
n

E |fn| <∞.

Similarly,

E [|f − fn| : |fn| ≥ a] ≤ E [|f | : |fn| ≥ a] + E [|fn| : |fn| ≥ a]
≤ E [|f | : |fn| ≥ a] + εaK

and for b > 0

E [|f | : |fn| ≥ a] = E [|f | : |f | ≥ b, |fn| ≥ a] + E [|f | : |f | < b, |fn| ≥ a]
≤ E [|f | : |f | ≥ b] + bP (|fn| ≥ a)

≤ E [|f | : |f | ≥ b] + b
1
a

sup
n

E |fn| .

Therefore,

lim sup
a→∞

E [|f − fn| : |fn| ≥ a] ≤ lim sup
a→∞

(E [|f | : |fn| ≥ a] + εaK)

≤ E [|f | : |f | ≥ b] .

Now by the DCT, limn→∞ E [|f − fn| : |fn| < a] = 0 and hence

lim sup
n→∞

E [|f − fn|] ≤ lim sup
n→∞

E [|f − fn| : |fn| ≥ a] + lim sup
n→∞

E [|f − fn| : |fn| < a]

≤ E [|f | : |f | ≥ b] .

Another application of the DCT now show E [|f | : |f | ≥ b]→ 0 as b→∞ which
completes the proof.

12.8 Exercises

Exercise 12.8. Let f ∈ Lp∩L∞ for some p <∞. Show ‖f‖∞ = limq→∞ ‖f‖q .
If we further assume µ(X) < ∞, show ‖f‖∞ = limq→∞ ‖f‖q for all mea-
surable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ ‖f‖q < ∞.
Hints: Use Corollary 12.34 to show lim supq→∞ ‖f‖q ≤ ‖f‖∞ and to show
lim infq→∞ ‖f‖q ≥ ‖f‖∞ , let M < ‖f‖∞ and make use of Chebyshev’s in-
equality.

Exercise 12.9. Let ∞ > a, b > 1 with a−1 + b−1 = 1. Give a calculus proof of
the inequality

st ≤ sa

a
+
tb

b
for all s, t ≥ 0.

Hint: by taking s = xtb/a, show that it suffices to prove

x ≤ xa

a
+

1
b

for all x ≥ 0.

and then maximize the function f (x) = x− xa/a for x ∈ [0,∞).

Exercise 12.10. Prove Eq. (12.22) in Corollary 12.34. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a, b ≥ 1 with a−1 + b−1 = 1 chosen
appropriately,

st ≤ sa

a
+
tb

b

applied to the right side of Eq. (12.21).

Exercise 12.11. Complete the proof of Proposition 12.33 by showing (Lp +
Lr, ‖·‖) is a Banach space.

Exercise 12.12. Let (Ω,B, µ) be a probability space. Show directly that for
any g ∈ L1(µ), Λ = {g} is uniformly absolutely continuous. (We already know
this is true by combining Example 12.39 with Proposition 12.42.)

Solution to Exercise (12.12). First Proof. If the statement is false, there
would exist ε > 0 and sets En such that µ(En)→ 0 while µ(|g| : En) ≥ ε for all
n. Since |1Eng| ≤ |g| ∈ L1 and for any δ > 0, µ(1En · |g| > δ) ≤ µ(En) → 0 as
n→∞ so that 1En · |g|

µ→ 0, the dominated convergence theorem of Corollary
12.9 implies limn→∞ µ(|g| : En) = 0. This contradicts µ(|g| : En) ≥ ε for all n
and the proof is complete.

Second Proof. Let ϕ =
∑n
i=1 ci1Bi be a simple function such that

‖g − ϕ‖1 < ε/2. Then
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µ (|g| : E) ≤ µ (|ϕ| : E) + µ (|g − ϕ| : E)

≤
n∑
i=1

|ci|µ (E ∩Bi) + ‖g − ϕ‖1 ≤

(
n∑
i=1

|ci|

)
µ (E) + ε/2.

This shows µ (|g| : E) < ε provided that µ (E) < ε (2
∑n
i=1 |ci|)

−1
.

Exercise 12.13. Suppose that (Ω,B, P ) is a probability space and {Xn}∞n=1 is
a sequence of uncorrelated (i.e. Cov (Xn, Xm) = 0 if m 6= n) square integrable
random variables such that µ = EXn and σ2 = Var (Xn) for all n. Let Sn :=
X1 + · · ·+Xn. Show

∥∥Sn
n − µ

∥∥2

2
= σ2

n → 0 as n→∞.

Solution to Exercise (12.13). To say that the {Xn}∞n=1 are uncorrelated
is equivalent to saying that {Xn − µ}∞n=1 is an orthogonal set. Thus by
Pythagorean’s theorem,∥∥∥∥Snn − µ

∥∥∥∥2

2

=
1
n2
‖Sn − nµ‖22

=
1
n2
‖(X1 − µ) + · · ·+ (Xn − µ)‖22

=
1
n2

n∑
i=1

‖Xi − µ‖22 =
nσ2

n2
→ 0 as n→∞.

Exercise 12.14. Suppose that {Xn}∞n=1 are i.i.d. integrable random variables
and Sn := X1 + · · · + Xn and µ := EXn. Show, Sn

n → µ in L1 (P ) as n →
∞. (Incidentally, this shows that

{
Sn
n

}∞
n=1

is U.I. Hint: for M ∈ (0,∞) , let
XM
i := Xi · 1|Xi|≤M and SMn := XM

1 + · · ·+XM
n and use Exercise 12.13 to see

that
SMn
n
→ EXM

1 in L2 (P ) ⊂ L1 (P ) for all M.

Using this to show limn→∞
∥∥Sn
n − EX1

∥∥
1

= 0 by getting good control on∥∥∥Snn − SMn
n

∥∥∥
1

and
∣∣EXn − EXM

n

∣∣ .
Exercise 12.15. Suppose 1 ≤ p < ∞, {Xn}∞n=1 are i.i.d. random variables
such that E |Xn|p < ∞, Sn := X1 + · · · + Xn and µ := EXn. Show, Sn

n → µ

in Lp (P ) as n→∞. Hint: show
{∣∣Sn

n

∣∣p}∞
n=1

is U.I. – this is not meant to be
hard!

12.9 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 12.49. Given any function, ϕ : (a, b)→ R, we say that ϕ is convex
if for all a < x0 ≤ x1 < b and t ∈ [0, 1] ,

ϕ (xt) ≤ ht := (1− t)ϕ(x0) + tϕ(x1) for all t ∈ [0, 1] , (12.28)

where
xt := x0 + t (x1 − x0) = (1− t)x0 + tx1, (12.29)

see Figure 12.3 below.

Fig. 12.3. A convex function along with three cords corresponding to x0 = −5 and
x1 = −2 x0 = −2 and x1 = 5/2, and x0 = −5 and x1 = 5/2 with slopes, m1 = −15/3,
m2 = 15/6 and m3 = −1/2 respectively. Notice that m1 ≤ m3 ≤ m2.

Lemma 12.50. Let ϕ : (a, b)→ R be a function and

F (x0, x1) :=
ϕ (x1)− ϕ (x0)

x1 − x0
for a < x0 < x1 < b.

Then the following are equivalent;

1. ϕ is convex,
2. F (x0, x1) is non-decreasing in x0 for all a < x0 < x1 < b, and
3. F (x0, x1) is non-decreasing in x1 for all a < x0 < x1 < b.

Proof. Let xt and ht be as in Eq. (12.28), then (xt, ht) is on the line segment
joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the statement that ϕ is convex is then
equivalent to the assertion that ϕ (xt) ≤ ht for all 0 ≤ t ≤ 1. Since (xt, ht) lies
on a straight line we always have the following three slopes are equal;
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Fig. 12.4. A convex function with three cords. Notice the slope relationships; m1 ≤
m3 ≤ m2.

ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

.

In light of this identity, it is now clear that the convexity of ϕ is equivalent to
either,

F (x0, xt) =
ϕ (xt)− ϕ (x0)

xt − x0
≤ ht − ϕ (x0)

xt − x0
=
ϕ (x1)− ϕ (x0)

x1 − x0
= F (x0, x1)

or

F (x0, x1) =
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)
x1 − xt

= F (xt, x1)

holding for all x0 < xt < x1.

Lemma 12.51 (A generalized FTC). If ϕ ∈ PC1 ((a, b)→ R)8, then for all
a < x < y < b,

8 PC1 denotes the space of piecewise C1 – functions, i.e. ϕ ∈ PC1 ((a, b)→ R) means
the ϕ is continuous and there are a finite number of points,

{a = a0 < a1 < a2 < · · · < an−1 < an = b} ,

such that ϕ|[aj−1,aj ]∩(a,b) is C1 for all j = 1, 2, . . . , n.

ϕ (y)− ϕ (x) =
∫ y

x

ϕ′ (t) dt.

Proof. Let b1, . . . , bl−1 be the points of non-differentiability of ϕ in (x, y)
and set b0 = x and bl = y. Then

ϕ (y)− ϕ (x) =
l∑

k=1

[ϕ (bk)− ϕ (bk−1)]

=
l∑

k=1

∫ bk

bk−1

ϕ′ (t) dt =
∫ y

x

ϕ′ (t) dt.

Figure 12.5 below serves as motivation for the following elementary lemma
on convex functions.

Fig. 12.5. A convex function, ϕ, along with a cord and a tangent line. Notice that
the tangent line is always below ϕ and the cord lies above ϕ between the points of
intersection of the cord with the graph of ϕ.

Lemma 12.52 (Convex Functions). Let ϕ ∈ PC1 ((a, b)→ R) and for x ∈
(a, b) , let

ϕ′ (x+) := lim
h↓0

ϕ (x+ h)− ϕ (x)
h

and

ϕ′ (x−) := lim
h↑0

ϕ (x+ h)− ϕ (x)
h

.

(Of course, ϕ′ (x±) = ϕ′ (x) at points x ∈ (a, b) where ϕ is differentiable.)
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1. If ϕ′ (x) ≤ ϕ′ (y) for all a < x < y < b with x and y be points where ϕ is
differentiable, then for any x0 ∈ (a, b) , we have ϕ′ (x0−) ≤ ϕ′ (x0+) and
for m ∈ (ϕ′ (x0−) , ϕ′ (x0+)) we have,

ϕ (x0) +m (x− x0) ≤ ϕ (x) ∀ x0, x ∈ (a, b) . (12.30)

2. If ϕ ∈ PC2 ((a, b)→ R)9 with ϕ′′ (x) ≥ 0 for almost all x ∈ (a, b) , then Eq.
(12.30) holds with m = ϕ′ (x0) .

3. If either of the hypothesis in items 1. and 2. above hold then ϕ is convex.

(This lemma applies to the functions, eλx for all λ ∈ R, |x|α for α > 1,
and − lnx to name a few examples. See Appendix 12.9 below for much more on
convex functions.)

Proof. 1. If x0 is a point where ϕ is not differentiable and h > 0 is small, by
the mean value theorem, for all h > 0 small, there exists c+ (h) ∈ (x0, x0 + h)
and c− (h) ∈ (x0 − h, x0) such that

ϕ (x0 − h)− ϕ (x0)
−h

= ϕ′ (c− (h)) ≤ ϕ′ (c+ (h)) =
ϕ (x0 + h)− ϕ (x0)

h
.

Letting h ↓ 0 in this equation shows ϕ′ (x0−) ≤ ϕ′ (x0+) . Furthermore if
x < x0 < y with x and y being points of differentiability of ϕ, the for small
h > 0,

ϕ′ (x) ≤ ϕ′ (c− (h)) ≤ ϕ′ (c+ (h)) ≤ ϕ′ (y) .

Letting h ↓ 0 in these inequalities shows,

ϕ′ (x) ≤ ϕ′ (x0−) ≤ ϕ′ (x0+) ≤ ϕ′ (y) . (12.31)

Now let m ∈ (ϕ′ (x0−) , ϕ′ (x0+)) . By the fundamental theorem of calculus in
Lemma 12.51 and making use of Eq. (12.31), if x > x0 then

ϕ (x)− ϕ (x0) =
∫ x

x0

ϕ′ (t) dt ≥
∫ x

x0

m dt = m (x− x0)

and if x < x0, then

ϕ (x0)− ϕ (x) =
∫ x0

x

ϕ′ (t) dt ≤
∫ x0

x

m dt = m (x0 − x) .

9 PC2 denotes the space of piecewise C2 – functions, i.e. ϕ ∈ PC2 ((a, b)→ R) means
the ϕ is C1 and there are a finite number of points,

{a = a0 < a1 < a2 < · · · < an−1 < an = b} ,

such that ϕ|[aj−1,aj ]∩(a,b) is C2 for all j = 1, 2, . . . , n.

These two equations implies Eq. (12.30) holds.
2. Notice that ϕ′ ∈ PC1 ((a, b)) and therefore,

ϕ′ (y)− ϕ′ (x) =
∫ y

x

ϕ′′ (t) dt ≥ 0 for all a < x ≤ y < b

which shows that item 1. may be used.
Alternatively; by Taylor’s theorem with integral remainder (see Eq. (7.55)

with F = ϕ, a = x0, and b = x) implies

ϕ (x) = ϕ (x0) + ϕ′ (x0) (x− x0) + (x− x0)2
∫ 1

0

ϕ′′ (x0 + τ (x− x0)) (1− τ) dτ

≥ ϕ (x0) + ϕ′ (x0) (x− x0) .

3. For any ξ ∈ (a, b) , let hξ (x) := ϕ (x0) + ϕ′ (x0) (x− x0) . By Eq. (12.30)
we know that hξ (x) ≤ ϕ (x) for all ξ, x ∈ (a, b) with equality when ξ = x and
therefore,

ϕ (x) = sup
ξ∈(a,b)

hξ (x) .

Since hξ is an affine function for each ξ ∈ (a, b) , it follows that

hξ (xt) = (1− t)hξ (x0) + thξ (x1) ≤ (1− t)ϕ (x0) + tϕ (x1)

for all t ∈ [0, 1] . Thus we may conclude that

ϕ (xt) = sup
ξ∈(a,b)

hξ (xt) ≤ (1− t)ϕ (x0) + tϕ (x1)

as desired.
*For fun, here are three more proofs of Eq. (12.28) under the hypothesis of

item 2. Clearly these proofs may be omitted.
3a. By Lemma 12.50 below it suffices to show either

d

dx

ϕ (y)− ϕ (x)
y − x

≥ 0 or
d

dy

ϕ (y)− ϕ (x)
y − x

≥ 0 for a < x < y < b.

For the first case,

d

dx

ϕ (y)− ϕ (x)
y − x

=
ϕ (y)− ϕ (x)− ϕ′ (x) (y − x)

(y − x)2

=
∫ 1

0

ϕ′′ (x+ t (y − x)) (1− t) dt ≥ 0.

Similarly,
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d

dy

ϕ (y)− ϕ (x)
y − x

=
ϕ′ (y) (y − x)− [ϕ (y)− ϕ (x)]

(y − x)2

where we now use,

ϕ (x)− ϕ (y) = ϕ′ (y) (x− y) + (x− y)2
∫ 1

0

ϕ′′ (y + t (x− y)) (1− t) dt

so that

ϕ′ (y) (y − x)− [ϕ (y)− ϕ (x)]
(y − x)2 = (x− y)2

∫ 1

0

ϕ′′ (y + t (x− y)) (1− t) dt ≥ 0

again.
3b. Let

f (t) := ϕ (u) + t (ϕ (v)− ϕ (u))− ϕ (u+ t (v − u)) .

Then f (0) = f (1) = 0 with f̈ (t) = − (v − u)2
ϕ′′ (u+ t (v − u)) ≤ 0 for almost

all t. By the mean value theorem, there exists, t0 ∈ (0, 1) such that ḟ (t0) = 0
and then by the fundamental theorem of calculus it follows that

ḟ (t) =
∫ t

t0

f̈ (τ) dt.

In particular, ḟ (t) ≤ 0 for t > t0 and ḟ (t) ≥ 0 for t < t0 and hence f (t) ≥
f (1) = 0 for t ≥ t0 and f (t) ≥ f (0) = 0 for t ≤ t0, i.e. f (t) ≥ 0.

3c. Let h : [0, 1]→ R be a piecewise C2 – function. Then by the fundamental
theorem of calculus and integration by parts,

h (t) = h (0) +
∫ t

0

h (τ) dτ = h (0) + th (t)−
∫ t

0

h (τ) τdτ

and

h (1) = h (t) +
∫ 1

t

h (τ) d (τ − 1) = h (t)− (t− 1)h (t)−
∫ 1

t

h (τ) (τ − 1) dτ.

Thus we have shown,

h (t) = h (0) + th (t)−
∫ t

0

h (τ) τdτ and

h (t) = h (1) + (t− 1)h (t) +
∫ 1

t

h (τ) (τ − 1) dτ.

So if we multiply the first equation by (1− t) and add to it the second equation
multiplied by t shows,

h (t) = (1− t)h (0) + th (1)−
∫ 1

0

G (t, τ) ḧ (τ) dτ, (12.32)

where

G (t, τ) :=
{
τ (1− t) if τ ≤ t
t (1− τ) if τ ≥ t .

(The function G (t, τ) is the “Green’s function” for the operator −d2/dt2 on
[0, 1] with Dirichlet boundary conditions. The formula in Eq. (12.32) is a stan-
dard representation formula for h (t) which appears naturally in the study of
harmonic functions.)

We now take h (t) := ϕ (x0 + t (x1 − x0)) in Eq. (12.32) to learn

ϕ (x0 + t (x1 − x0)) = (1− t)ϕ (x0) + tϕ (x1)

− (x1 − x0)2
∫ 1

0

G (t, τ) ϕ̈ (x0 + τ (x1 − x0)) dτ

≤ (1− t)ϕ (x0) + tϕ (x1) ,

because ϕ̈ ≥ 0 and G (t, τ) ≥ 0.

Example 12.53. The functions exp(x) and − log(x) are convex and |x|p is
convex iff p ≥ 1 as follows from Lemma 12.52.

Example 12.54 (Proof of Lemma 10.36). Taking ϕ (x) = e−x in Lemma 12.52,
Eq. (12.30) with x0 = 0 implies (see Figure 10.1),

1− x ≤ ϕ (x) = e−x for all x ∈ R.

Taking ϕ (x) = e−2x in Lemma 12.52, Eq. (12.28) with x0 = 0 and x1 = 1
implies, for all t ∈ [0, 1] ,

e−t ≤ ϕ
(

(1− t) 0 + t
1
2

)
≤ (1− t)ϕ (0) + tϕ

(
1
2

)
= 1− t+ te−1 ≤ 1− 1

2
t,

wherein the last equality we used e−1 < 1
2 . Taking t = 2x in this equation then

gives (see Figure 10.2)

e−2x ≤ 1− x for 0 ≤ x ≤ 1
2
. (12.33)

Theorem 12.55. Suppose that ϕ : (a, b) → R is convex and for x, y ∈ (a, b)
with x < y, let10

10 The same formula would define F (x, y) for x 6= y. However, since F (x, y) =
F (y, x) , we would gain no new information by this extension.
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F (x, y) :=
ϕ (y)− ϕ (x)

y − x
.

Then;

1. F (x, y) is increasing in each of its arguments.
2. The following limits exist,

ϕ′+ (x) := F (x, x+) := lim
y↓x

F (x, y) <∞ and (12.34)

ϕ′− (y) := F (y−, y) := lim
x↑y

F (x, y) > −∞. (12.35)

3. The functions, ϕ′± are both increasing functions and further satisfy,

−∞ < ϕ′− (x) ≤ ϕ′+ (x) ≤ ϕ′− (y) <∞ ∀ a < x < y < b. (12.36)

4. For any t ∈
[
ϕ′− (x) , ϕ′+ (x)

]
,

ϕ (y) ≥ ϕ (x) + t (y − x) for all x, y ∈ (a, b) . (12.37)

5. For a < α < β < b, let K := max
{∣∣ϕ′+ (α)

∣∣ , ∣∣ϕ′− (β)
∣∣} . Then

|ϕ (y)− ϕ (x)| ≤ K |y − x| for all x, y ∈ [α, β] .

That is ϕ is Lipschitz continuous on [α, β] .
6. The function ϕ′+ is right continuous and ϕ′− is left continuous.
7. The set of discontinuity points for ϕ′+ and for ϕ′− are the same as the set of

points of non-differentiability of ϕ. Moreover this set is at most countable.

Proof. BRUCE: The first two items are a repetition of Lemma 12.50.
1. and 2. If we let ht = tϕ(x1) + (1 − t)ϕ(x0), then (xt, ht) is on the line

segment joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the statement that ϕ is convex
is then equivalent of ϕ (xt) ≤ ht for all 0 ≤ t ≤ 1. Since

ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

,

the convexity of ϕ is equivalent to

ϕ (xt)− ϕ (x0)
xt − x0

≤ ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
for all x0 ≤ xt ≤ x1

and to

ϕ (x1)− ϕ (x0)
x1 − x0

=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)
x1 − xt

for all x0 ≤ xt ≤ x1.

Convexity also implies

ϕ (xt)− ϕ (x0)
xt − x0

=
ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)
x1 − xt

.

These inequalities may be written more compactly as,

ϕ (v)− ϕ (u)
v − u

≤ ϕ (w)− ϕ (u)
w − u

≤ ϕ (w)− ϕ (v)
w − v

, (12.38)

valid for all a < u < v < w < b, again see Figure 12.4. The first (second)
inequality in Eq. (12.38) shows F (x, y) is increasing y (x). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

−∞ < ϕ′− (x) = F (x−, x) ≤ F (x, x+) = ϕ′+ (x) <∞

and
ϕ′+ (x) = F (x, x+) ≤ F (y−, y) = ϕ′− (y)

as desired.
4. Let t ∈

[
ϕ′− (x) , ϕ′+ (x)

]
. Then

t ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) =
ϕ (y)− ϕ (x)

y − x

or equivalently,
ϕ (y) ≥ ϕ (x) + t (y − x) for y ≥ x.

Therefore Eq. (12.37) holds for y ≥ x. Similarly, for y < x,

t ≥ ϕ′− (x) = F (x−, x) ≥ F (y, x) =
ϕ (x)− ϕ (y)

x− y

or equivalently,

ϕ (y) ≥ ϕ (x)− t (x− y) = ϕ (x) + t (y − x) for y ≤ x.

Hence we have proved Eq. (12.37) for all x, y ∈ (a, b) .
5. For a < α ≤ x < y ≤ β < b, we have

ϕ′+ (α) ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) ≤ F (y−, y) = ϕ′− (y) ≤ ϕ′− (β)
(12.39)

and in particular,

−K ≤ ϕ′+ (α) ≤ ϕ (y)− ϕ (x)
y − x

≤ ϕ′− (β) ≤ K.

This last inequality implies, |ϕ (y)− ϕ (x)| ≤ K (y − x) which is the desired
Lipschitz bound.
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6. For a < c < x < y < b, we have ϕ′+ (x) = F (x, x+) ≤ F (x, y) and letting
x ↓ c (using the continuity of F ) we learn ϕ′+ (c+) ≤ F (c, y) . We may now let
y ↓ c to conclude ϕ′+ (c+) ≤ ϕ′+ (c) . Since ϕ′+ (c) ≤ ϕ′+ (c+) , it follows that
ϕ′+ (c) = ϕ′+ (c+) and hence that ϕ′+ is right continuous.

Similarly, for a < x < y < c < b, we have ϕ′− (y) ≥ F (x, y) and letting
y ↑ c (using the continuity of F ) we learn ϕ′− (c−) ≥ F (x, c) . Now let x ↑ c to
conclude ϕ′− (c−) ≥ ϕ′− (c) . Since ϕ′− (c) ≥ ϕ′− (c−) , it follows that ϕ′− (c) =
ϕ′− (c−) , i.e. ϕ′− is left continuous.

7. Since ϕ± are increasing functions, they have at most countably many
points of discontinuity. Letting x ↑ y in Eq. (12.36), using the left continuity
of ϕ′−, shows ϕ′− (y) = ϕ′+ (y−) . Hence if ϕ′− is continuous at y, ϕ′− (y) =
ϕ′− (y+) = ϕ′+ (y) and ϕ is differentiable at y. Conversely if ϕ is differentiable
at y, then

ϕ′+ (y−) = ϕ′− (y) = ϕ′ (y) = ϕ′+ (y)

which shows ϕ′+ is continuous at y. Thus we have shown that set of discontinuity
points of ϕ′+ is the same as the set of points of non-differentiability of ϕ. That
the discontinuity set of ϕ′− is the same as the non-differentiability set of ϕ is
proved similarly.

Corollary 12.56. If ϕ : (a, b) → R is a convex function and D ⊂ (a, b) is a
dense set, then

ϕ (y) = sup
x∈D

[
ϕ (x) + ϕ′± (x) (y − x)

]
for all x, y ∈ (a, b) .

Proof. Let ψ± (y) := supx∈D [ϕ (x) + ϕ± (x) (y − x)] . According to Eq.
(12.37) above, we know that ϕ (y) ≥ ψ± (y) for all y ∈ (a, b) . Now suppose that
x ∈ (a, b) and xn ∈ Λ with xn ↑ x. Then passing to the limit in the estimate,
ψ− (y) ≥ ϕ (xn) + ϕ′− (xn) (y − xn) , shows ψ− (y) ≥ ϕ (x) + ϕ′− (x) (y − x) .
Since x ∈ (a, b) is arbitrary we may take x = y to discover ψ− (y) ≥ ϕ (y) and
hence ϕ (y) = ψ− (y) . The proof that ϕ (y) = ψ+ (y) is similar.

Lemma 12.57. Suppose that ϕ : (a, b) → R is a non-decreasing function such
that

ϕ

(
1
2

(x+ y)
)
≤ 1

2
[ϕ (x) + ϕ (y)] for all x, y ∈ (a, b) , (12.40)

then ϕ is convex. The result remains true if ϕ is assumed to be continuous
rather than non-decreasing.

Proof. Let x0, x1 ∈ (a, b) and xt := x0 + t (x1 − x0) as above. For n ∈ N let
Dn =

{
k
2n : 1 ≤ k < 2n

}
. We are going to being by showing Eq. (12.40) implies

ϕ (xt) ≤ (1− t)ϕ (x0) + tϕ (x1) for all t ∈ D := ∪nDn. (12.41)

We will do this by induction on n. For n = 1, this follows directly from Eq.
(12.40). So now suppose that Eq. (12.41) holds for all t ∈ Dn and now suppose
that t = 2k+1

2n ∈ Dn+1. Observing that

xt =
1
2

(
x k

2n−1
+ x k+1

2n

)
we may again use Eq. (12.40) to conclude,

ϕ (xt) ≤
1
2

(
ϕ
(
x k

2n−1

)
+ ϕ

(
x k+1

2n−1

))
.

Then use the induction hypothesis to conclude,

ϕ (xt) ≤
1
2

( (
1− k

2n−1

)
ϕ (x0) + k

2n−1ϕ (x1)
+
(
1− k+1

2n−1

)
ϕ (x0) + k+1

2n−1ϕ (x1)

)
= (1− t)ϕ (x0) + tϕ (x1)

as desired.
For general t ∈ (0, 1) , let τ ∈ D such that τ > t. Since ϕ is increasing and

by Eq. (12.41) we conclude,

ϕ (xt) ≤ ϕ (xτ ) ≤ (1− τ)ϕ (x0) + τϕ (x1) .

We may now let τ ↓ t to complete the proof. This same technique clearly also
works if we were to assume that ϕ is continuous rather than monotonic.
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Hilbert Space Basics

Definition 13.1. Let H be a complex vector space. An inner product on H is
a function, 〈·|·〉 : H ×H → C, such that

1. 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉 i.e. x→ 〈x|z〉 is linear.
2. 〈x|y〉 = 〈y|x〉.
3. ‖x‖2 := 〈x|x〉 ≥ 0 with ‖x‖2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x → 〈z|x〉 is conjugate
linear for fixed z ∈ H, i.e.

〈z|ax+ by〉 = ā〈z|x〉+ b̄〈z|y〉.

The following identity will be used frequently in the sequel without further
mention,

‖x+ y‖2 = 〈x+ y|x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x|y〉+ 〈y|x〉
= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉. (13.1)

Theorem 13.2 (Schwarz Inequality). Let (H, 〈·|·〉) be an inner product
space, then for all x, y ∈ H

|〈x|y〉| ≤ ‖x‖‖y‖

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0 and observe;
if x = αy for some α ∈ C, then 〈x|y〉 = ᾱ ‖y‖2 and hence

|〈x|y〉| = |α| ‖y‖2 = ‖x‖‖y‖.

Now suppose that x ∈ H is arbitrary, let z := x−‖y‖−2〈x|y〉y. (So ‖y‖−2〈x|y〉y
is the “orthogonal projection” of x along y, see Figure 13.1.) Then

0 ≤ ‖z‖2 =
∥∥∥∥x− 〈x|y〉‖y‖2

y

∥∥∥∥2

= ‖x‖2 +
|〈x|y〉|2

‖y‖4
‖y‖2 − 2Re〈x| 〈x|y〉

‖y‖2
y〉

= ‖x‖2 − |〈x|y〉|
2

‖y‖2

from which it follows that 0 ≤ ‖y‖2‖x‖2 − |〈x|y〉|2 with equality iff z = 0 or
equivalently iff x = ‖y‖−2〈x|y〉y.

Fig. 13.1. The picture behind the proof of the Schwarz inequality.

Corollary 13.3. Let (H, 〈·|·〉) be an inner product space and ‖x‖ :=
√
〈x|x〉.

Then the Hilbertian norm, ‖ ·‖, is a norm on H. Moreover 〈·|·〉 is continuous
on H ×H, where H is viewed as the normed space (H, ‖·‖).

Proof. If x, y ∈ H, then, using Schwarz’s inequality,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x|y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle inequal-
ity.

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If x, y,∆x,∆y ∈ H, then

|〈x+∆x|y +∆y〉 − 〈x|y〉| = |〈x|∆y〉+ 〈∆x|y〉+ 〈∆x|∆y〉|
≤ ‖x‖‖∆y‖+ ‖y‖‖∆x‖+ ‖∆x‖‖∆y‖
→ 0 as ∆x,∆y → 0,

from which it follows that 〈·|·〉 is continuous.

Definition 13.4. Let (H, 〈·|·〉) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff 〈x|y〉 = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A (write x ⊥ A) iff 〈x|y〉 = 0 for all y ∈ A. Let
A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
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is an orthogonal set if x ⊥ y for all distinct elements x, y ∈ S. If S further
satisfies, ‖x‖ = 1 for all x ∈ S, then S is said to be an orthonormal set.

Proposition 13.5. Let (H, 〈·|·〉) be an inner product space then

1. (Parallelogram Law)

‖a+ b‖2 + ‖a− b‖2 = 2‖a‖2 + 2‖b‖2 (13.2)

for all a, b ∈ H.
2. (Pythagorean Theorem) If S ⊂⊂ H is a finite orthogonal set, then∥∥∥∥∥∑

x∈S
x

∥∥∥∥∥
2

=
∑
x∈S
‖x‖2. (13.3)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

‖a+ b‖2 + ‖a− b‖2

= ‖a‖2 + ‖b‖2 + 2Re〈a|b〉+ ‖a‖2 + ‖b‖2 − 2Re〈a|b〉
= 2‖a‖2 + 2‖b‖2,

and ∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

= 〈
∑
x∈S

x|
∑
y∈S

y〉 =
∑
x,y∈S

〈x|y〉

=
∑
x∈S
〈x|x〉 =

∑
x∈S
‖x‖2.

Item 3. is a consequence of the continuity of 〈·|·〉 and the fact that

A⊥ = ∩x∈A Nul(〈·|x〉)

where Nul(〈·|x〉) = {y ∈ H : 〈y|x〉 = 0} – a closed subspace of H. Alternatively,
if xn ∈ A⊥ and xn → x in H, then

0 = lim
n→∞

0 = lim
n→∞

〈xn|a〉 =
〈

lim
n→∞

xn|a
〉

= 〈x|a〉 ∀ a ∈ A

which shows that x ∈ A⊥.

Definition 13.6. A Hilbert space is an inner product space (H, 〈·|·〉) such
that the induced Hilbertian norm is complete.

Example 13.7. For any measure space, (Ω,B, µ) , H := L2 (µ) with inner prod-
uct,

〈f |g〉 =
∫
Ω

f (ω) ḡ (ω) dµ (ω)

is a Hilbert space – see Theorem 12.25 for the completeness assertion.

Definition 13.8. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 13.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M ⊂ H is a closed convex subset of H. Then for any x ∈ H
there exists a unique y ∈M such that

‖x− y‖ = d(x,M) = inf
z∈M
‖x− z‖.

Moreover, if M is a vector subspace of H, then the point y may also be charac-
terized as the unique point in M such that (x− y) ⊥M.

Proof. Let x ∈ H, δ := d(x,M), y, z ∈M, and, referring to Figure 13.2, let
w = z + (y − x) and c = (z + y) /2 ∈ M. It then follows by the parallelogram
law (Eq. (13.2) with a = (y − x) and b = (z − x)) and the fact that c ∈M that

2 ‖y − x‖2 + 2 ‖z − x‖2 = ‖w − x‖2 + ‖y − z‖2

= ‖z + y − 2x‖2 + ‖y − z‖2

= 4 ‖x− c‖2 + ‖y − z‖2

≥ 4δ2 + ‖y − z‖2 .

Thus we have shown for all y, z ∈M that,

‖y − z‖2 ≤ 2 ‖y − x‖2 + 2 ‖z − x‖2 − 4δ2. (13.4)

Uniqueness. If y, z ∈ M minimize the distance to x, then ‖y − x‖ = δ =
‖z − x‖ and it follows from Eq. (13.4) that y = z.

Existence. Let yn ∈M be chosen such that ‖yn−x‖ = δn → δ = d(x,M).
Taking y = ym and z = yn in Eq. (13.4) shows

‖yn − ym‖2 ≤ 2δ2
m + 2δ2

n − 4δ2 → 0 as m,n→∞.

Therefore, by completeness of H, {yn}∞n=1 is convergent. Because M is closed,
y := lim

n→∞
yn ∈M and because the norm is continuous,

‖y − x‖ = lim
n→∞

‖yn − x‖ = δ = d(x,M).
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Fig. 13.2. In this figure y, z ∈M and by convexity, c = (z + y) /2 ∈M.

So y is the desired point in M which is closest to x.
Orthogonality property. Now suppose M is a closed subspace of H and

x ∈ H. Let y ∈M be the closest point in M to x. Then for w ∈M, the function

g(t) := ‖x− (y + tw)‖2 = ‖x− y‖2 − 2tRe〈x− y|w〉+ t2‖w‖2

has a minimum at t = 0 and therefore 0 = g′(0) = −2Re〈x−y|w〉. Since w ∈M
is arbitrary, this implies that (x− y) ⊥M, see Figure 13.3.

Fig. 13.3. The orthogonality relationships of closest points.

Finally suppose y ∈M is any point such that (x− y) ⊥M. Then for z ∈M,
by Pythagorean’s theorem,

‖x− z‖2 = ‖x− y + y − z‖2 = ‖x− y‖2 + ‖y − z‖2 ≥ ‖x− y‖2

which shows d(x,M)2 ≥ ‖x− y‖2. That is to say y is the point in M closest to
x.

Notation 13.10 If A : X → Y is a linear operator between two normed spaces,
we let

‖A‖ := sup
x∈X\{0}

‖Ax‖Y
‖x‖X

= sup
‖x‖X=1

‖Ax‖Y .

We refer to ‖A‖ as the operator norm of A and call A a bounded operator if
‖A‖ < ∞. We further let L (X,Y ) be the set of bounded operators from X to
Y.

Exercise 13.1. Show that a linear operator, A : X → Y, is a bounded iff it is
continuous.

Solution to Exercise (13.1). If A is continuous at x = 0, then (as A0 = 0)
there exists δ > 0 such that ‖Ax‖Y ≤ 1 for ‖x‖X ≤ δ. Thus if x 6= 0, we have∥∥∥ δ
‖x‖X

x
∥∥∥
X

= δ and therefore,

δ

‖x‖X
‖Ax‖Y =

∥∥∥∥A δ

‖x‖X
x

∥∥∥∥
Y

≤ 1

from which it follows that ‖Ax‖Y ≤ δ−1 ‖x‖X which shows that ‖A‖ ≤ δ−1 <
∞. Conversely if ‖A‖ <∞, then

‖Ax−Ax′‖Y = ‖A (x− x′)‖Y ≤ ‖A‖ ‖x− x
′‖X

from which it follows that A is continuous.

Definition 13.11. Suppose that A : H → H is a bounded operator. The
adjoint of A, denoted A∗, is the unique operator A∗ : H → H such that
〈Ax|y〉 = 〈x|A∗y〉. (The proof that A∗ exists and is unique will be given in
Proposition 13.16 below.) A bounded operator A : H → H is self - adjoint or
Hermitian if A = A∗.

Definition 13.12. H be a Hilbert space and M ⊂ H be a closed subspace. The
orthogonal projection of H onto M is the function PM : H → H such that for
x ∈ H, PM (x) is the unique element in M such that (x − PM (x)) ⊥ M, i.e.
PM (x) is the unique element in M such that

〈x|m〉 = 〈PM (x)|m〉 for all m ∈M. (13.5)
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Given a linear transformation A, we will let Ran (A) and Nul (A) denote the
range and the null-space of A respectively.

Theorem 13.13 (Projection Theorem). Let H be a Hilbert space and M ⊂
H be a closed subspace. The orthogonal projection PM satisfies:

1. PM is linear and hence we will write PMx rather than PM (x).
2. P 2

M = PM (PM is a projection).
3. P ∗M = PM (PM is self-adjoint).
4. Ran(PM ) = M and Nul(PM ) = M⊥.
5. If N ⊂M ⊂ H is another closed subspace, the PNPM = PMPN = PN .

Proof.

1. Let x1, x2 ∈ H and α ∈ C, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
2. Obviously Ran(PM ) = M and PMx = x for all x ∈M . Therefore P 2

M = PM .
3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

〈PMx|y〉 = 〈PMx|PMy + y − PMy〉 = 〈PMx|PMy〉
= 〈PMx+ (x− PMx)|PMy〉 = 〈x|PMy〉.

4. We have already seen, Ran(PM ) = M and PMx = 0 iff x = x − 0 ∈ M⊥,
i.e. Nul(PM ) = M⊥.

5. If N ⊂ M ⊂ H it is clear that PMPN = PN since PM = Id on
N = Ran(PN ) ⊂ M. Taking adjoints gives the other identity, namely that
PNPM = PN .
Alternative proof 1 of PNPM = PN . If x ∈ H, then (x− PMx) ⊥ M
and therefore (x− PMx) ⊥ N. We also have (PMx− PNPMx) ⊥ N and
therefore,

x− PNPMx = (x− PMx) + (PMx− PNPMx) ∈ N⊥

which shows PNPMx = PNx.
Alternative proof 2 of PNPM = PN . If x ∈ H and n ∈ N, we have

〈PNPMx|n〉 = 〈PMx|PNn〉 = 〈PMx|n〉 = 〈x|PMn〉 = 〈x|n〉 .

Since this holds for all n we may conclude that PNPMx = PNx.

Corollary 13.14. If M ⊂ H is a proper closed subspace of a Hilbert space H,
then H = M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x−y ∈M⊥. Then x = y+(x−y) ∈
M+M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. ‖x‖2 = 〈x|x〉 = 0. So M ∩M⊥ = {0} .

Exercise 13.2. Suppose M is a subset of H, then M⊥⊥ = span(M) where (as
usual), span (M) denotes all finite linear combinations of elements from M.

Theorem 13.15 (Riesz Theorem). Let H∗ be the dual space of H, i.e. f ∈
H∗ iff f : H → F is linear and continuous. The map

z ∈ H j−→ 〈·|z〉 ∈ H∗ (13.6)

is a conjugate linear1 isometric isomorphism, where for f ∈ H∗ we let,

‖f‖H∗ := sup
x∈H\{0}

|f (x)|
‖x‖

= sup
‖x‖=1

|f (x)| .

Proof. Let f ∈ H∗ and M =Nul(f) – a closed proper subspace of H since f
is continuous. If f = 0, then clearly f (·) = 〈·|0〉 . If f 6= 0 there exists y ∈ H\M.
Then for any α ∈ C we have e := α (y − PMy) ∈M⊥. We now choose α so that
f (e) = 1. Hence if x ∈ H,

f (x− f (x) e) = f (x)− f (x) f (e) = f (x)− f (x) = 0,

which shows x− f (x) e ∈M. As e ∈M⊥ it follows that

0 = 〈x− f (x) e|e〉 = 〈x|e〉 − f (x) ‖e‖2

which shows f (·) = 〈·|z〉 = jz where z := e/ ‖e‖2 and thus j is surjective.
The map j is conjugate linear by the axioms of the inner products. Moreover,

for x, z ∈ H,
|〈x|z〉| ≤ ‖x‖ ‖z‖ for all x ∈ H

with equality when x = z. This implies that ‖jz‖H∗ = ‖〈·|z〉‖H∗ = ‖z‖ . There-
fore j is isometric and this implies j is injective.

Proposition 13.16 (Adjoints). Let H and K be Hilbert spaces and A : H →
K be a bounded operator. Then there exists a unique bounded operator A∗ :
K → H such that

〈Ax|y〉K = 〈x|A∗y〉H for all x ∈ H and y ∈ K. (13.7)

Moreover, for all A,B ∈ L(H,K) and λ ∈ C,
1 Recall that j is conjugate linear if

j (z1 + αz2) = jz1 + ᾱjz2

for all z1, z2 ∈ H and α ∈ C.
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1. (A+ λB)∗ = A∗ + λ̄B∗,
2. A∗∗ := (A∗)∗ = A,
3. ‖A∗‖ = ‖A‖ and
4. ‖A∗A‖ = ‖A‖2 .
5. If K = H, then (AB)∗ = B∗A∗. In particular A ∈ L (H) has a bounded

inverse iff A∗ has a bounded inverse and (A∗)−1 =
(
A−1

)∗
.

Proof. For each y ∈ K, the map x→ 〈Ax|y〉K is in H∗ and therefore there
exists, by Theorem 13.15, a unique vector z ∈ H (we will denote this z by
A∗ (y)) such that

〈Ax|y〉K = 〈x|z〉H for all x ∈ H.

This shows there is a unique map A∗ : K → H such that 〈Ax|y〉K = 〈x|A∗(y)〉H
for all x ∈ H and y ∈ K.

To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

〈Ax|y1 + λy2〉K = 〈Ax|y1〉K + λ̄〈Ax|y2〉K
= 〈x|A∗(y1)〉K + λ̄〈x|A∗(y2)〉H
= 〈x|A∗(y1) + λA∗(y2)〉H

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y).
Since

〈A∗y|x〉H = 〈x|A∗y〉H = 〈Ax|y〉K = 〈y|Ax〉K
it follows that A∗∗ = A. The assertion that (A+ λB)∗ = A∗ + λ̄B∗ is Exercise
13.3.

Items 3. and 4. Making use of Schwarz’s inequality (Theorem 13.2), we
have

‖A∗‖ = sup
k∈K:‖k‖=1

‖A∗k‖

= sup
k∈K:‖k‖=1

sup
h∈H:‖h‖=1

|〈A∗k|h〉|

= sup
h∈H:‖h‖=1

sup
k∈K:‖k‖=1

|〈k|Ah〉| = sup
h∈H:‖h‖=1

‖Ah‖ = ‖A‖

so that ‖A∗‖ = ‖A‖ . Since

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
h∈H:‖h‖=1

‖Ah‖2 = sup
h∈H:‖h‖=1

|〈Ah|Ah〉|

= sup
h∈H:‖h‖=1

|〈h|A∗Ah〉| ≤ sup
h∈H:‖h‖=1

‖A∗Ah‖ = ‖A∗A‖ (13.8)

we also have ‖A∗A‖ ≤ ‖A‖2 ≤ ‖A∗A‖ which shows ‖A‖2 = ‖A∗A‖ .
Alternatively, from Eq. (13.8),

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖ ‖A∗‖ (13.9)

which then implies ‖A‖ ≤ ‖A∗‖ . Replacing A by A∗ in this last inequality
shows ‖A∗‖ ≤ ‖A‖ and hence that ‖A∗‖ = ‖A‖ . Using this identity back in
Eq. (13.9) proves ‖A‖2 = ‖A∗A‖ .

Now suppose that K = H. Then

〈ABh|k〉 = 〈Bh|A∗k〉 = 〈h|B∗A∗k〉

which shows (AB)∗ = B∗A∗. If A−1 exists then(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I and

A∗
(
A−1

)∗
=
(
A−1A

)∗
= I∗ = I.

This shows that A∗ is invertible and (A∗)−1 =
(
A−1

)∗
. Similarly if A∗ is

invertible then so is A = A∗∗.

Exercise 13.3. Let H,K,M be Hilbert spaces, A,B ∈ L(H,K), C ∈ L(K,M)
and λ ∈ C. Show (A+ λB)∗ = A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈ L(M,H).

Exercise 13.4. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. 〈z|w〉H = z · w̄ for z, w ∈ H. Let A be an m×n matrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Lemma 13.17. Suppose A : H → K is a bounded operator, then:

1. Nul(A∗) = Ran(A)⊥.
2. Ran(A) = Nul(A∗)⊥.
3. if K = H and V ⊂ H is an A – invariant subspace (i.e. A(V ) ⊂ V ), then
V ⊥ is A∗ – invariant.

Proof. An element y ∈ K is in Nul(A∗) iff 0 = 〈A∗y|x〉 = 〈y|Ax〉 for all
x ∈ H which happens iff y ∈ Ran(A)⊥. Because, by Exercise 13.2, Ran(A) =
Ran(A)⊥⊥, and so by the first item, Ran(A) = Nul(A∗)⊥. Now suppose A(V ) ⊂
V and y ∈ V ⊥, then

〈A∗y|x〉 = 〈y|Ax〉 = 0 for all x ∈ V
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which shows A∗y ∈ V ⊥.
The next elementary theorem (referred to as the bounded linear transfor-

mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 13.18 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
bounded linear transformation (i.e. there exists C <∞ such that ‖Tz‖ ≤ C ‖z‖
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and
this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Proof. Let z ∈ Z and choose zn ∈ S such that zn → z. Since

‖Tzm − Tzn‖ ≤ C ‖zm − zn‖ → 0 as m,n→∞,

it follows by the completeness of X that limn→∞ Tzn =: T̄ z exists. Moreover,
if wn ∈ S is another sequence converging to z, then

‖Tzn − Twn‖ ≤ C ‖zn − wn‖ → C ‖z − z‖ = 0

and therefore T̄ z is well defined. It is now a simple matter to check that T̄ :
Z → X is still linear and that∥∥T̄ z∥∥ = lim

n→∞
‖Tzn‖ ≤ lim

n→∞
C ‖zn‖ = C ‖z‖ for all x ∈ Z.

Thus T̄ is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader.

13.1 Compactness Results for Lp – Spaces*

In this section we are going to identify the sequentially “weak” compact subsets
of Lp (Ω,B, P ) for 1 ≤ p <∞, where (Ω,B, P ) is a probability space. The key
to our proofs will be the following Hilbert space compactness result.

Theorem 13.19. Suppose {xn}∞n=1 is a bounded sequence in a Hilbert space H
(i.e. C := supn ‖xn‖ <∞), then there exists a sub-sequence, yk := xnk and an
x ∈ H such that limk→∞ 〈yk|h〉 = 〈x|h〉 for all h ∈ H. We say that yk converges
to x weakly in this case and denote this by yk

w→ x.

Proof. Let H0 := span(xk : k ∈ N). Then H0 is a closed separable Hilbert
subspace of H and {xk}∞k=1 ⊂ H0. Let {hn}∞n=1 be a countable dense subset of
H0. Since |〈xk|hn〉| ≤ ‖xk‖ ‖hn‖ ≤ C ‖hn‖ <∞, the sequence, {〈xk|hn〉}∞k=1 ⊂
C, is bounded and hence has a convergent sub-sequence for all n ∈ N. By the

Cantor’s diagonalization argument we can find a a sub-sequence, yk := xnk , of
{xn} such that limk→∞ 〈yk|hn〉 exists for all n ∈ N.

We now show ϕ (z) := limk→∞ 〈yk|z〉 exists for all z ∈ H0. Indeed, for any
k, l, n ∈ N, we have

|〈yk|z〉 − 〈yl|z〉| = |〈yk − yl|z〉| ≤ |〈yk − yl|hn〉|+ |〈yk − yl|z − hn〉|
≤ |〈yk − yl|hn〉|+ 2C ‖z − hn‖ .

Letting k, l→∞ in this estimate then shows

lim sup
k,l→∞

|〈yk|z〉 − 〈yl|z〉| ≤ 2C ‖z − hn‖ .

Since we may choose n ∈ N such that ‖z − hn‖ is as small as we please, we may
conclude that lim supk,l→∞ |〈yk|z〉 − 〈yl|z〉| , i.e. ϕ (z) := limk→∞ 〈yk|z〉 exists.

The function, ϕ̄ (z) = limk→∞ 〈z|yk〉 is a bounded linear functional on H
because

|ϕ̄ (z)| = lim inf
k→∞

|〈z|yk〉| ≤ C ‖z‖ .

Therefore by the Riesz Theorem 13.15, there exists x ∈ H0 such that ϕ̄ (z) =
〈z|x〉 for all z ∈ H0. Thus, for this x ∈ H0 we have shown

lim
k→∞

〈yk|z〉 = 〈x|z〉 for all z ∈ H0. (13.10)

To finish the proof we need only observe that Eq. (13.10) is valid for all
z ∈ H. Indeed if z ∈ H, then z = z0 + z1 where z0 = PH0z ∈ H0 and z1 =
z − PH0z ∈ H⊥0 . Since yk, x ∈ H0, we have

lim
k→∞

〈yk|z〉 = lim
k→∞

〈yk|z0〉 = 〈x|z0〉 = 〈x|z〉 for all z ∈ H.

Since unbounded subsets of H are clearly not sequentially weakly compact,
Theorem 13.19 states that a set is sequentially precompact inH iff it is bounded.
Let us now use Theorem 13.19 to identify the sequentially compact subsets of
Lp (Ω,B, P ) for all 1 ≤ p <∞. We begin with the case p = 1.

Theorem 13.20. If {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) ,
there exists a subsequence Yk := Xnk of {Xn}∞n=1 and X ∈ L1 (Ω,B, P ) such
that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Bb. (13.11)

Proof. For each m ∈ N let Xm
n := Xn1|Xn|≤m. The truncated sequence

{Xm
n }
∞
n=1 is a bounded subset of the Hilbert space, L2 (Ω,B, P ) , for all m ∈ N.

Therefore by Theorem 13.19, {Xm
n }
∞
n=1 has a weakly convergent sub-sequence
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for all m ∈ N. By Cantor’s diagonalization argument, we can find Y mk := Xm
nk

and Xm ∈ L2 (Ω,B, P ) such that Y mk
w→ Xm as m→∞ and in particular

lim
k→∞

E [Y mk h] = E [Xmh] for all h ∈ Bb.

Our next goal is to show Xm → X in L1 (Ω,B, P ) . To this end, for m < M
and h ∈ Bb we have∣∣E [(XM −Xm

)
h
]∣∣ = lim

k→∞

∣∣E [(YMk − Y mk )h]∣∣ ≤ lim inf
k→∞

E
[∣∣YMk − Y mk ∣∣ |h|]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : M ≥ |Yk| > m]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : |Yk| > m] .

Taking h = sgn(XM −Xm) in this inequality shows

E
[∣∣XM −Xm

∣∣] ≤ lim inf
k→∞

E [|Yk| : |Yk| > m]

with the right member of this inequality going to zero as m,M → ∞ with
M ≥ m by the assumed uniform integrability of the {Xn} . Therefore there
exists X ∈ L1 (Ω,B, P ) such that limm→∞ E |X −Xm| = 0.

We are now ready to verify Eq. (13.11) is valid. For h ∈ Bb,

|E [(X − Yk)h]| ≤ |E [(Xm − Y mk )h]|+ |E [(X −Xm)h]|+ |E [(Yk − Y mk )h]|
≤ |E [(Xm − Y mk )h]|+ ‖h‖∞ · (E [|X −Xm|] + E [|Yk| : |Yk| > m])

≤ |E [(Xm − Y mk )h]|+ ‖h‖∞ ·
(

E [|X −Xm|] + sup
l

E [|Yl| : |Yl| > m]
)
.

Passing to the limit as k →∞ in the above inequality shows

lim sup
k→∞

|E [(X − Yk)h]| ≤ ‖h‖∞ ·
(

E [|X −Xm|] + sup
l

E [|Yl| : |Yl| > m]
)
.

Since Xm → X in L1 and supl E [|Yl| : |Yl| > m] → 0 by uniform integrability,
it follows that, lim supk→∞ |E [(X − Yk)h]| = 0.

Example 13.21. Let (Ω,B, P ) =
(
(0, 1) ,B(0,1),m

)
where m is Lebesgue measure

and let Xn (ω) = 2n10<ω<2−n . Then EXn = 1 for all n and hence {Xn}∞n=1 is
bounded in L1 (Ω,B, P ) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X ∈ L1 (Ω,B, P ) and subsequence, Yk := Xnk

such that Yk
w→ X. Then for h ∈ Bb and any ε > 0 we would have

E
[
Xh1(ε,1)

]
= lim
k→∞

E
[
Ykh1(ε,1)

]
= 0.

Then by DCT it would follow that E [Xh] = 0 for all h ∈ Bb and hence that
X ≡ 0. On the other hand we would also have

0 = E [X · 1] = lim
k→∞

E [Yk · 1] = 1

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L1 (Ω,B, P ) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem 13.20.

When 1 < p <∞, the situation is simpler.

Theorem 13.22. Let p ∈ (1,∞) and q = p (p− 1)−1 ∈ (1,∞) be its conjugate
exponent. If {Xn}∞n=1 is a bounded sequence in Lp (Ω,B, P ) , there exists X ∈
Lp (Ω,B, P ) and a subsequence Yk := Xnk of {Xn}∞n=1 such that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Lq (Ω,B, P ) . (13.12)

Proof. Let C := supn∈N ‖Xn‖p < ∞ and recall that Lemma 12.48 guar-
antees that {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) . There-
fore by Theorem 13.20, there exists X ∈ L1 (Ω,B, P ) and a subsequence,
Yk := Xnk , such that Eq. (13.11) holds. We will complete the proof by showing;
a) X ∈ Lp (Ω,B, P ) and b) and Eq. (13.12) is valid.

a) For h ∈ Bb we have

|E [Xh]| ≤ lim inf
k→∞

E [|Ykh|] ≤ lim inf
k→∞

‖Yk‖p · ‖h‖q ≤ C ‖h‖q .

For M <∞, taking h = sgn(X) |X|p−1 1|X|≤M in the previous inequality shows

E
[
|X|p 1|X|≤M

]
≤ C

∥∥∥sgn(X) |X|p−1 1|X|≤M
∥∥∥
q

= C
(
E
[
|X|(p−1)q 1|X|≤M

])1/q

≤ C
(
E
[
|X|p 1|X|≤M

])1/q
from which it follows that(

E
[
|X|p 1|X|≤M

])1/p ≤ (E [|X|p 1|X|≤M
])1−1/q ≤ C.

Using the monotone convergence theorem, we may let M →∞ in this equation
to find ‖X‖p = (E [|X|p])1/p ≤ C <∞.

b) Now that we know X ∈ Lp (Ω,B, P ) , in make sense to consider
E [(X − Yk)h] for all h ∈ Lp (Ω,B, P ) . For M <∞, let hM := h1|h|≤M , then

|E [(X − Yk)h]| ≤
∣∣E [(X − Yk)hM

]∣∣+
∣∣E [(X − Yk)h1|h|>M

]∣∣
≤
∣∣E [(X − Yk)hM

]∣∣+ ‖X − Yk‖p
∥∥h1|h|>M

∥∥
q

≤
∣∣E [(X − Yk)hM

]∣∣+ 2C
∥∥h1|h|>M

∥∥
q
.
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Since hM ∈ Bb, we may pass to the limit k → ∞ in the previous inequality to
find,

lim sup
k→∞

|E [(X − Yk)h]| ≤ 2C
∥∥h1|h|>M

∥∥
q
.

This completes the proof, since
∥∥h1|h|>M

∥∥
q
→ 0 as M →∞ by DCT.

13.2 Exercises

Exercise 13.5. Suppose that {Mn}∞n=1 is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of M0 := ∪∞n=1Mn. Show
limn→∞ PMn

x = PMx for all x ∈ H. Hint: first prove this for x ∈M0 and then
for x ∈M. Also consider the case where x ∈M⊥.

Solution to Exercise (13.5). Let Pn := PMn
and P = PM . If y ∈ M0, then

Pny = y = Py for all n sufficiently large. and therefore, limn→∞ Pny = Py.
Now suppose that x ∈M and y ∈M0. Then

‖Px− Pnx‖ ≤ ‖Px− Py‖+ ‖Py − Pny‖+ ‖Pny − Pnx‖
≤ 2 ‖x− y‖+ ‖Py − Pny‖

and passing to the limit as n→∞ then shows

lim sup
n→∞

‖Px− Pnx‖ ≤ 2 ‖x− y‖ .

The left hand side may be made as small as we like by choosing y ∈ M0

arbitrarily close to x ∈M = M̄0.

For the general case, if x ∈ H, then x = Px+ y where y = x− Px ∈M⊥ ⊂
M⊥n for all n. Therefore,

Pnx = PnPx→ Px as n→∞

by what we have just proved.

Exercise 13.6 (A “Martingale” Convergence Theorem). Suppose that
{Mn}∞n=1 is an increasing sequence of closed subspaces of a Hilbert space, H,
Pn := PMn , and {xn}∞n=1 is a sequence of elements from H such that xn =
Pnxn+1 for all n ∈ N. Show;

1. Pmxn = xm for all 1 ≤ m ≤ n <∞,
2. (xn − xm) ⊥Mm for all n ≥ m,
3. ‖xn‖ is increasing as n increases,
4. if supn ‖xn‖ = limn→∞ ‖xn‖ < ∞, then x := limn→∞ xn exists in M and

that xn = Pnx for all n ∈ N. (Hint: show {xn}∞n=1 is a Cauchy sequence.)

Remark 13.23. Let H = `2 := L2 (N, counting measure),

Mn = {(a (1) , . . . , a (n) , 0, 0, . . . ) : a (i) ∈ C for 1 ≤ i ≤ n} ,

and xn (i) = 1i≤n, then xm = Pmxn for all n ≥ m while ‖xn‖2 = n ↑ ∞ as
n→∞. Thus, we can not drop the assumption that supn ‖xn‖ <∞ in Exercise
13.6.

The rest of this section may be safely skipped.

Exercise 13.7. *Suppose that (X, ‖·‖) is a normed space such that parallelo-
gram law, Eq. (13.2), holds for all x, y ∈ X, then there exists a unique inner
product on 〈·|·〉 such that ‖x‖ :=

√
〈x|x〉 for all x ∈ X. In this case we say that

‖·‖ is a Hilbertian norm.

Solution to Exercise (13.7). If ‖·‖ is going to come from an inner product
〈·|·〉, it follows from Eq. (13.1) that

2Re〈x|y〉 = ‖x+ y‖2 − ‖x‖2 − ‖y‖2

and
−2Re〈x|y〉 = ‖x− y‖2 − ‖x‖2 − ‖y‖2.

Subtracting these two equations gives the “polarization identity,”

4Re〈x|y〉 = ‖x+ y‖2 − ‖x− y‖2. (13.13)

Replacing y by iy in this equation then implies that

4Im〈x|y〉 = ‖x+ iy‖2 − ‖x− iy‖2

from which we find
〈x|y〉 =

1
4

∑
ε∈G

ε‖x+ εy‖2 (13.14)

where G = {±1,±i} – a cyclic subgroup of S1 ⊂ C. Hence, if 〈·|·〉 is going to
exist we must define it by Eq. (13.14) and the uniqueness has been proved.

For existence, define 〈x|y〉 by Eq. (13.14) in which case,

〈x|x〉 =
1
4

∑
ε∈G

ε‖x+ εx‖2 =
1
4
[
‖2x‖2 + i‖x+ ix‖2 − i‖x− ix‖2

]
= ‖x‖2 +

i

4

∣∣1 + i|2
∣∣ ‖x‖2 − i

4

∣∣1− i|2∣∣ ‖x‖2 = ‖x‖2 .

So to finish the proof, it only remains to show that 〈x|y〉 defined by Eq. (13.14)
is an inner product.
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Since

4〈y|x〉 =
∑
ε∈G

ε‖y + εx‖2 =
∑
ε∈G

ε‖ε (y + εx) ‖2

=
∑
ε∈G

ε‖εy + ε2x‖2

= ‖y + x‖2 − ‖ − y + x‖2 + i‖iy − x‖2 − i‖ − iy − x‖2

= ‖x+ y‖2 − ‖x− y‖2 + i‖x− iy‖2 − i‖x+ iy‖2

= 4〈x|y〉

it suffices to show x → 〈x|y〉 is linear for all y ∈ H. For this we will need to
derive an identity from Eq. (13.2),. To do this we make use of Eq. (13.2), three
times to find

‖x+ y + z‖2 = −‖x+ y − z‖2 + 2‖x+ y‖2 + 2‖z‖2

= ‖x− y − z‖2 − 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2

= ‖y + z − x‖2 − 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2

= −‖y + z + x‖2 + 2‖y + z‖2 + 2‖x‖2

− 2‖x− z‖2 − 2‖y‖2 + 2‖x+ y‖2 + 2‖z‖2.

Solving this equation for ‖x+ y + z‖2 gives

‖x+ y + z‖2 = ‖y + z‖2 + ‖x+ y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2. (13.15)

Using Eq. (13.15), for x, y, z ∈ H,

4 Re〈x+ z|y〉 = ‖x+ z + y‖2 − ‖x+ z − y‖2

= ‖y + z‖2 + ‖x+ y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2

−
(
‖z − y‖2 + ‖x− y‖2 − ‖x− z‖2 + ‖x‖2 + ‖z‖2 − ‖y‖2

)
= ‖z + y‖2 − ‖z − y‖2 + ‖x+ y‖2 − ‖x− y‖2

= 4 Re〈x|y〉+ 4 Re〈z|y〉. (13.16)

Now suppose that δ ∈ G, then since |δ| = 1,

4〈δx|y〉 =
1
4

∑
ε∈G

ε‖δx+ εy‖2 =
1
4

∑
ε∈G

ε‖x+ δ−1εy‖2

=
1
4

∑
ε∈G

εδ‖x+ δεy‖2 = 4δ〈x|y〉 (13.17)

where in the third inequality, the substitution ε→ εδ was made in the sum. So
Eq. (13.17) says 〈±ix|y〉 = ±i〈x|y〉 and 〈−x|y〉 = −〈x|y〉. Therefore

Im〈x|y〉 = Re (−i〈x|y〉) = Re〈−ix|y〉

which combined with Eq. (13.16) shows

Im〈x+ z|y〉 = Re〈−ix− iz|y〉 = Re〈−ix|y〉+ Re〈−iz|y〉
= Im〈x|y〉+ Im〈z|y〉

and therefore (again in combination with Eq. (13.16)),

〈x+ z|y〉 = 〈x|y〉+ 〈z|y〉 for all x, y ∈ H.

Because of this equation and Eq. (13.17) to finish the proof that x → 〈x|y〉 is
linear, it suffices to show 〈λx|y〉 = λ〈x|y〉 for all λ > 0. Now if λ = m ∈ N, then

〈mx|y〉 = 〈x+ (m− 1)x|y〉 = 〈x|y〉+ 〈(m− 1)x|y〉

so that by induction 〈mx|y〉 = m〈x|y〉. Replacing x by x/m then shows that
〈x|y〉 = m〈m−1x|y〉 so that 〈m−1x|y〉 = m−1〈x|y〉 and so if m,n ∈ N, we find

〈 n
m
x|y〉 = n〈 1

m
x|y〉 =

n

m
〈x|y〉

so that 〈λx|y〉 = λ〈x|y〉 for all λ > 0 and λ ∈ Q. By continuity, it now follows
that 〈λx|y〉 = λ〈x|y〉 for all λ > 0.

An alternate ending: In the case where X is real, the latter parts of the
proof are easier to digest as we can use Eq. (13.13) for the formula for the inner
product. For example, we have

4 〈x|2z〉 = ‖x+ 2z‖2 − ‖x− 2z‖2

= ‖x+ z + z‖2 + ‖x+ z − z‖2 − ‖x− z + z‖2 − ‖x− z − z‖2

=
1
2

[
‖x+ z‖2 + ‖z‖2

]
− 1

2

[
‖x− z‖2 + ‖z‖2

]
=

1
2

[
‖x+ z‖2 − ‖x− z‖2

]
= 2 〈x|z〉

from which it follows that 〈x|2z〉 = 2 〈x|z〉 . Similarly,

4 [〈x|z〉+ 〈y|z〉] = ‖x+ z‖2 − ‖x− z‖2 + ‖y + z‖2 − ‖y − z‖2

= ‖x+ z‖2 + ‖y + z‖2 − ‖x− z‖2 − ‖y − z‖2

=
1
2

(
‖x+ y + 2z‖2 + ‖x− y‖2

)
− 1

2

(
‖x+ y − 2z‖2 + ‖x− y‖2

)
= 2 〈x+ y|2z〉 = 4 〈x+ y|z〉

from which it follows that and 〈x+ y|z〉 = 〈x|z〉+ 〈y|z〉 . From this identity one
shows as above that 〈·|·〉 is a real inner product on X.
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Now suppose that X is complex and now let

Q (x, y) =
1
4

[
‖x+ z‖2 − ‖x− z‖2

]
.

We should expect that Q (·, ·) = Re 〈·|·〉 and therefore we should define

〈x|y〉 := Q (x, y)− iQ (ix, y) .

Since

4Q (ix, y) = ‖ix+ y‖2 − ‖ix− y‖2 = ‖−i (ix+ y)‖2 − ‖−i (ix− y)‖2

= ‖x− iy‖2 − ‖x+ iy‖2 = −4Q (x, iy) ,

it follows that Q (ix, x) = 0 so that 〈x|x〉 = ‖x‖2 and that

〈y|x〉 = Q (y, x)− iQ (iy, x) = Q (y, x) + iQ (y, ix) = 〈x|y〉.

Since x → 〈x|y〉 is real linear, we now need only show that 〈ix|y〉 = i 〈x|y〉 .
However,

〈ix|y〉 = Q (ix, y)− iQ (i (ix) , y)
= Q (ix, y) + iQ (x, y) = i 〈x|y〉

as desired.
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Conditional Expectation

In this section let (Ω,B, P ) be a probability space and G ⊂ B be a sub –
sigma algebra of B. We will write f ∈ Gb iff f : Ω → C is bounded and f is
(G,BC) – measurable. If A ∈ B and P (A) > 0, we will let

E [X|A] :=
E [X : A]
P (A)

and P (B|A) := E [1B |A] :=
P (A ∩B)
P (A)

for all integrable random variables, X, and B ∈ B. We will often use the fac-
torization Lemma 6.40 in this section. Because of this let us repeat it here.

Lemma 14.1. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, H : Ω → R̄, there is a
(F ,BR̄) – measurable function h : Y→ R̄ such that H = h ◦ Y.

Proof. First suppose that H = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with h = 1B . More generally if H =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence H = h◦Y
with h :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, H, from Ω → R̄, choose simple
functions Hn converging to H. Let hn : Y → R̄ be simple functions such that
Hn = hn ◦ Y. Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ Y = h ◦ Y

where h := lim sup
n→∞

hn – a measurable function from Y to R̄.

Definition 14.2 (Conditional Expectation). Let EG : L2(Ω,B, P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,B, P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,B, P ), we say that EGf ∈ L2(Ω,G, P ) is the
conditional expectation of f given G.

Remark 14.3 (Basic Properties of EG). Let f ∈ L2(Ω,B, P ). By the orthogonal
projection Theorem 13.13 we know that F ∈ L2(Ω,G, P ) is EGf a.s. iff either
of the following two conditions hold;

1. ‖f − F‖2 ≤ ‖f − g‖2 for all g ∈ L2(Ω,G, P ) or

2. E [fh] = E [Fh] for all h ∈ L2(Ω,G, P ).

Moreover if G0 ⊂ G1 ⊂ B then L2(Ω,G0, P ) ⊂ L2(Ω,G1, P ) ⊂ L2(Ω,B, P )
and therefore,

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L2 (Ω,B, P ) . (14.1)

It is also useful to observe that condition 2. above may expressed as

E [f : A] = E [F : A] for all A ∈ G (14.2)

or
E [fh] = E [Fh] for all h ∈ Gb. (14.3)

Indeed, if Eq. (14.2) holds, then by linearity we have E [fh] = E [Fh] for all
G – measurable simple functions, h and hence by the approximation Theorem
6.39 and the DCT for all h ∈ Gb. Therefore Eq. (14.2) implies Eq. (14.3). If Eq.
(14.3) holds and h ∈ L2(Ω,G, P ), we may use DCT to show

E [fh] DCT= lim
n→∞

E
[
fh1|h|≤n

] (14.3)
= lim

n→∞
E
[
Fh1|h|≤n

] DCT= E [Fh] ,

which is condition 2. in Remark 14.3. Taking h = 1A with A ∈ G in condition
2. or Remark 14.3, we learn that Eq. (14.2) is satisfied as well.

Theorem 14.4. Let (Ω,B, P ) and G ⊂ B be as above and let f, g ∈ L1(Ω,B, P ).
The operator EG : L2(Ω,B, P )→ L2(Ω,G, P ) extends uniquely to a linear con-
traction from L1(Ω,B, P ) to L1(Ω,G, P ). This extension enjoys the following
properties;

1. If f ≥ 0, P – a.e. then EGf ≥ 0, P – a.e.
2. Monotonicity. If f ≥ g, P – a.e. there EGf ≥ EGg, P – a.e.
3. L∞ – contraction property. |EGf | ≤ EG |f | , P – a.e.
4. Averaging Property. If f ∈ L1(Ω,B, P ) then F = EGf iff F ∈
L1(Ω,G, P ) and

E(Fh) = E(fh) for all h ∈ Gb. (14.4)

5. Pull out property or product rule. If g ∈ Gb and f ∈ L1(Ω,B, P ), then
EG(gf) = g · EGf, P – a.e.
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6. Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L1 (Ω,B, P ) . (14.5)

Proof. By the definition of orthogonal projection, f ∈ L2 (Ω,B, P ) and
h ∈ Gb,

E(fh) = E(f · EGh) = E(EGf · h). (14.6)

Taking

h = sgn (EGf) :=
EGf
EGf

1|EGf |>0 (14.7)

in Eq. (14.6) shows

E(|EGf |) = E(EGf · h) = E(fh) ≤ E(|fh|) ≤ E(|f |). (14.8)

It follows from this equation and the BLT (Theorem 13.18) that EG extends
uniquely to a contraction form L1(Ω,B, P ) to L1(Ω,G, P ). Moreover, by a sim-
ple limiting argument, Eq. (14.6) remains valid for all f ∈ L1 (Ω,B, P ) and
h ∈ Gb. Indeed, (without reference to Theorem 13.18) if fn := f1|f |≤n ∈
L2 (Ω,B, P ) , then fn → f in L1(Ω,B, P ) and hence

E [|EGfn − EGfm|] = E [|EG (fn − fm)|] ≤ E [|fn − fm|]→ 0 as m,n→∞.

By the completeness of L1(Ω,G, P ), F := L1(Ω,G, P )-limn→∞ EGfn exists.
Moreover the function F satisfies,

E(F · h) = E( lim
n→∞

EGfn · h) = lim
n→∞

E(fn · h) = E(f · h) (14.9)

for all h ∈ Gb and by Proposition 7.22 there is at most one, F ∈ L1(Ω,G, P ),
which satisfies Eq. (14.9). We will again denote F by EGf. This proves the
existence and uniqueness of F satisfying the defining relation in Eq. (14.4) of
item 4. The same argument used in Eq. (14.8) again shows E |F | ≤ E |f | and
therefore that EG : L1 (Ω,B, P )→ L1 (Ω,G, P ) is a contraction.

Items 1 and 2. If f ∈ L1 (Ω,B, P ) with f ≥ 0, then

E(EGf · h) = E(fh) ≥ 0 ∀ h ∈ Gb with h ≥ 0. (14.10)

An application of Lemma 7.23 then shows that EGf ≥ 0 a.s.1 The proof of item
2. follows by applying item 1. with f replaced by f − g ≥ 0.

Item 3. If f is real, ±f ≤ |f | and so by Item 2., ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P – a.e. For complex f, let h ≥ 0 be a bounded and G –
measurable function. Then
1 This can also easily be proved directly here by taking h = 1EGf<0 in Eq. (14.10).

E [|EGf |h] = E
[
EGf · sgn (EGf)h

]
= E

[
f · sgn (EGf)h

]
≤ E [|f |h] = E [EG |f | · h] .

Since h ≥ 0 is an arbitrary G – measurable function, it follows, by Lemma 7.23,
that |EGf | ≤ EG |f | , P – a.s. Recall the item 4. has already been proved.

Item 5. If h, g ∈ Gb and f ∈ L1 (Ω,B, P ) , then

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .

Thus EG (gf) = g · EGf, P – a.e.
Item 6., by the item 5. of the projection Theorem 13.13, Eq. (14.5) holds

on L2(Ω,B, P ). By continuity of conditional expectation on L1 (Ω,B, P ) and
the density of L1 probability spaces in L2 – probability spaces shows that Eq.
(14.5) continues to hold on L1(Ω,B, P ).

Second Proof. For h ∈ (G0)b , we have

E [EG0EG1f · h] = E [EG1f · h] = E [f · h] = E [EG0f · h]

which shows EG0EG1f = EG0f a.s. By the product rule in item 5., it also follows
that

EG1 [EG0f ] = EG1 [EG0f · 1] = EG0f · EG1 [1] = EG0f a.s.
Notice that EG1 [EG0f ] need only be G1 – measurable. What the statement says
there are representatives of EG1 [EG0f ] which is G0 – measurable and any such
representative is also a representative of EG0f.
Remark 14.5. There is another standard construction of EGf based on the char-
acterization in Eq. (14.4) and the Radon Nikodym Theorem 15.8 below. It goes
as follows, for 0 ≤ f ∈ L1 (P ) , letQ be the measure defined by dQ := fdP. Then
Q|G � P |G and hence there exists 0 ≤ g ∈ L1 (Ω,G, P ) such that dQ|G = gdP |G .
This then implies that∫

A

fdP = Q (A) =
∫
A

gdP for all A ∈ G,

i.e. g = EGf. For general real valued, f ∈ L1 (P ) , define EGf = EGf+ − EGf−
and then for complex f ∈ L1 (P ) let EGf = EG Re f + iEG Im f.

Notation 14.6 In the future, we will often write EGf as E [f |G] . Moreover,
if (X,M) is a measurable space and X : Ω → X is a measurable map.
We will often simply denote E [f |σ (X)] simply by E [f |X] . We will further
let P (A|G) := E [1A|G] be the conditional probability of A given G, and
P (A|X) := P (A|σ (X)) be conditional probability of A given X.

Exercise 14.1. Suppose f ∈ L1 (Ω,B, P ) and f > 0 a.s. Show E [f |G] > 0 a.s.
(i.e. show g > 0 a.s. for any version, g, of E [f |G] .) Use this result to conclude if
f ∈ (a, b) a.s. for some a, b such that −∞ ≤ a < b ≤ ∞, then E [f |G] ∈ (a, b) a.s.
More precisely you are to show that any version, g, of E [f |G] satisfies, g ∈ (a, b)
a.s.
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Example 14.7. Suppose G is the trivial σ – algebra, i.e. G = {∅, Ω} . In this case
EGf = Ef a.s.

Example 14.8. On the opposite extreme, if G = B, then EGf = f a.s.

Exercise 14.2 (Exercise 4.15 revisited.). Suppose (Ω,B, P ) is a probability
space and P := {Ai}∞i=1 ⊂ B is a partition of Ω. (Recall this means Ω =∑∞
i=1Ai.) Let G be the σ – algebra generated by P. Show:

1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G – measurable iff g =

∑∞
i=1 λi1Ai for some λi ∈ R.

3. For f ∈ L1(Ω,B, P ), let E [f |Ai] := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E [f |Ai] = 0 otherwise. Show

EGf =
∞∑
i=1

E [f |Ai] 1Ai a.s. (14.11)

Solution to Exercise (14.2). We will only prove part 3. here. To do this,
suppose that EGf =

∑∞
i=1 λi1Ai for some λi ∈ R. Then

E [f : Aj ] = E [EGf : Aj ] = E

[ ∞∑
i=1

λi1Ai : Aj

]
= λjP (Aj)

which holds automatically if P (Aj) = 0 no matter how λj is chosen. Therefore,
we must take

λj =
E [f : Aj ]
P (Aj)

= E [f |Aj ]

which verifies Eq. (14.11).

Example 14.9. If S is a countable or finite set equipped with the σ – algebra,
2S , and X : Ω → S is a measurable map. Then

E [Z|X] =
∑
s∈S

E [Z|X = s] 1X=s a.s.

where by convention we set E [Z|X = s] = 0 if P (X = s) = 1. This is an
immediate consequence of Exercise 14.2 with G = σ (X) which is generated by
the partition, {X = s} for s ∈ S. Thus if we define F (s) := E [Z|X = s] , we
will have E [Z|X] = F (X) a.s.

Lemma 14.10. Suppose (X,M) is a measurable space, X : Ω → X is a mea-
surable function, and G is a sub-σ-algebra of B. If X is independent of G and
f : X → R is a measurable function such that f (X) ∈ L1 (Ω,B, P ) , then
EG [f (X)] = E [f (X)] a.s.. Conversely if EG [f (X)] = E [f (X)] a.s. for all
bounded measurable functions, f : X→ R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X → R is a measurable
function such that f (X) ∈ L1 (Ω,B, P ) , µ := E [f (X)] , and A ∈ G. Then, by
independence,

E [f (X) : A] = E [f (X) 1A] = E [f (X)] E [1A] = E [µ1A] = E [µ : A] .

Therefore EG [f (X)] = µ = E [f (X)] a.s.
Conversely if EG [f (X)] = E [f (X)] = µ and A ∈ G, then

E [f (X) 1A] = E [f (X) : A] = E [µ : A] = µE [1A] = E [f (X)] E [1A] .

Since this last equation is assumed to hold true for all A ∈ G and all bounded
measurable functions, f : X→ R, X is independent of G.

The following remark is often useful in computing conditional expectations.
The following Exercise should help you gain some more intuition about condi-
tional expectations.

Remark 14.11 (Note well.). According to Lemma 14.1, E (f |X) = f̃ (X) a.s.
for some measurable function, f̃ : X → R. So computing E (f |X) = f̃ (X) is
equivalent to finding a function, f̃ : X→ R, such that

E [f · h (X)] = E
[
f̃ (X)h (X)

]
(14.12)

for all bounded and measurable functions, h : X → R. “The” function, f̃ :
X → R, is often denoted by writing f̃ (x) = E (f |X = x). If P (X = x) >
0, then E (f |X = x) = E (f : X = x) /P (X = x) consistent with our previous
definitions – compare with Example 14.9. If P (X = x) , E (f |X = x) is not
given a value but is just a convenient notational way to denote a function f̃ :
X→ R such that Eq. (14.12) holds. (Roughly speaking, you should think that
E (f |X = x) = E [f · δx (X)] /E [δx (X)] where δx is the “Dirac delta function”
at x. If this last comment is confusing to you, please ignore it!)

Example 14.12. Suppose that X is a random variable, t ∈ R and f : R→ R
is a measurable function such that f (X) ∈ L1 (P ) . We wish to compute
E [f (X) |X ∧ t] = h (X ∧ t) . So we are looking for a function, h : (−∞, t]→ R
such that

E [f (X)u (X ∧ t)] = E [h (X ∧ t)u (X ∧ t)] (14.13)

for all bounded measurable functions, u : (−∞, t]→ R. Taking u = 1{t} in Eq.
(14.13) implies,

E [f (X) : X ≥ t] = h (t)P (X ≥ t)

and therefore we should take,

h (t) = E [f (X) |X ≥ t]
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which by convention we set to be (say) zero if P (X ≥ t) = 0. Now suppose that
u (t) = 0, then Eq. (8.6) becomes,

E [f (X)u (X) : X < t] = E [h (X)u (X) : X < t]

from which it follows that f (X) 1X<t = h (X) 1X<t a.s. Thus we can take

h (x) :=
{

f (x) if x < t
E [f (X) |X ≥ t] if x = t

and we have shown,

E [f (X) |X ∧ t] = 1X<tf (X) + 1X≥tE [f (X) |X ≥ t]
= 1X∧t<tf (X) + 1X∧t=tE [f (X) |X ≥ t] .

Proposition 14.13. Suppose that (Ω,B, P ) is a probability space, (X,M, µ)
and (Y,N , ν) are two σ – finite measure spaces, X : Ω → X and Y : Ω → Y
are measurable functions, and there exists 0 ≤ ρ ∈ L1(Ω,B, µ ⊗ ν) such that
P ((X,Y ) ∈ U) =

∫
U
ρ (x, y) dµ (x) dν (y) for all U ∈M⊗N . Let

ρ̄ (x) :=
∫

Y
ρ (x, y) dν (y) (14.14)

and x ∈ X and B ∈ N , let

Q (x,B) :=
{ 1
ρ̄(x)

∫
B
ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)
δy0 (B) if ρ̄ (x) ∈ {0,∞} (14.15)

where y0 is some arbitrary but fixed point in Y. Then for any bounded (or non-
negative) measurable function, f : X× Y→ R, we have

E [f (X,Y ) |X] = Q (X, f (X, ·)) =:
∫

Y
f (X, y)Q (X, dy) = g (X) a.s. (14.16)

where,

g (x) :=
∫

Y
f (x, y)Q (x, dy) = Q (x, f (x, ·)) .

As usual we use the notation,

Q (x, v) :=
∫

Y
v (y)Q (x, dy) =

{ 1
ρ̄(x)

∫
Y v (y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)
δy0 (v) = v (y0) if ρ̄ (x) ∈ {0,∞} .

for all bounded measurable functions, v : Y→ R.

Proof. Our goal is to compute E [f (X,Y ) |X] . According to Remark 14.11,
we are searching for a bounded measurable function, g : X→ R, such that

E [f (X,Y )h (X)] = E [g (X)h (X)] for all h ∈Mb. (14.17)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (14.17);

E [f (X,Y )h (X)] =
∫

X×Y
h (x) f (x, y) ρ (x, y) dµ (x) dν (y)

=
∫

X
h (x)

[∫
Y
f (x, y) ρ (x, y) dν (y)

]
dµ (x) (14.18)

E [g (X)h (X)] =
∫

X×Y
h (x) g (x) ρ (x, y) dµ (x) dν (y)

=
∫

X
h (x) g (x) ρ̄ (x) dµ (x) . (14.19)

Since the right sides of Eqs. (14.18) and (14.19) must be equal for all h ∈Mb,
we must demand (see Lemma 7.23 and 7.24) that∫

Y
f (x, y) ρ (x, y) dν (y) = g (x) ρ̄ (x) for µ – a.e. x. (14.20)

There are two possible problems in solving this equation for g (x) at a particular
point x; the first is when ρ̄ (x) = 0 and the second is when ρ̄ (x) =∞. Since∫

X
ρ̄ (x) dµ (x) =

∫
X

[∫
Y
ρ (x, y) dν (y)

]
dµ (x) = 1,

we know that ρ̄ (x) < ∞ for µ – a.e. x and therefore it does not matter how g
is defined on {ρ̄ =∞} as long as it is measurable. If

0 = ρ̄ (x) =
∫

Y
ρ (x, y) dν (y) ,

then ρ (x, y) = 0 for ν – a.e. y and therefore,∫
Y
f (x, y) ρ (x, y) dν (y) = 0. (14.21)

Hence Eq. (14.20) will be valid no matter how we choose g (x) for x ∈ {ρ̄ = 0} .
So a valid solution of Eq. (14.20) is

g (x) :=
{ 1
ρ̄(x)

∫
Y f (x, y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)

f (x, y0) = δy0 (f (x, ·)) if ρ̄ (x) ∈ {0,∞}
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and with this choice we will have E [f (X,Y ) |X] = g (X) = Q (X, f) a.s.
as desired. (Observe here that when ρ̄ (x) < ∞, ρ (x, ·) ∈ L1 (ν) and hence∫

Y f (x, y) ρ (x, y) dν (y) is a well defined integral.)
It is comforting to observe that

P (X ∈ {ρ̄ = 0}) = P (ρ̄ (X) = 0) =
∫

X
1ρ̄=0ρ̄dµ = 0

and similarly

P (X ∈ {ρ̄ =∞}) =
∫

X
1ρ̄=∞ρ̄dµ = 0.

Thus it follows that P (X ∈ {x ∈ X : ρ̄ (x) = 0 of ∞}) = 0 while the set
{x ∈ X : ρ̄ (x) = 0 of ∞} is precisely where there is ambiguity in defining g (x) .
Just for added security, let us check directly that g (X) = E [f (X,Y ) |X] a.s.
According to Eq. (14.19) we have

E [g (X)h (X)] =
∫

X
h (x) g (x) ρ̄ (x) dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x) g (x) ρ̄ (x) dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x) ρ̄ (x)

(
1

ρ̄ (x)

∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=
∫

X
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

= E [f (X,Y )h (X)] (by Eq. (14.18)),

wherein we have repeatedly used µ (ρ̄ =∞) = 0 and Eq. (14.21) holds when
ρ̄ (x) = 0. This completes the verification that g (X) = E [f (X,Y ) |X] a.s..

Proposition 14.13 shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. Proposition 14.13 also gives an example of regular conditional
probabilities which we now define.

Definition 14.14. Let (X,M) and (Y,N ) be measurable spaces. A function,
Q : X×N → [0, 1] is a probability kernel on X× Y if

1. Q (x, ·) : N → [0, 1] is a probability measure on (Y,N ) for each x ∈ X and
2. Q (·, B) : X→ [0, 1] is M/BR – measurable for all B ∈ N .

If Q is a probability kernel on X × Y and f : Y → R is a bounded
measurable function or a positive measurable function, then x → Q (x, f) :=∫

Y f (y)Q (x, dy) is M/BR – measurable. This is clear for simple functions and
then for general functions via simple limiting arguments.

Definition 14.15. Let (X,M) and (Y,N ) be measurable spaces and X : Ω →
X and Y : Ω → Y be measurable functions. A probability kernel, Q, on X × Y
is said to be a regular conditional distribution of Y given X iff Q (X,B)
is a version of P (Y ∈ B|X) for each B ∈ N . Equivalently, we should have
Q (X, f) = E [f (Y ) |X] a.s. for all f ∈ Nb.

The probability kernel, Q, defined in Eq. (14.15) is an example of a regular
conditional distribution of Y given X.

Remark 14.16. Unfortunately, regular conditional distributions do not always
exists, see Doob [13, p. 624]. However, if we require Y to be a “standard Borel
space,” (i.e. Y is isomorphic to a Borel subset of R), then a conditional distribu-
tion of Y given X will always exists. See Theorem 14.32 in the appendix to this
chapter. Moreover, it is known that “reasonable” measure spaces are standard
Borel spaces, see Section 9.10 above for more details. So in most instances of
interest a regular conditional distribution of Y given X will exist.

Exercise 14.3. Suppose that (X,M) and (Y,N ) are measurable spaces, X :
Ω → X and Y : Ω → Y are measurable functions, and there exists a regular
conditional distribution, Q, of Y given X. Show:

1. For all bounded measurable functions, f : (X× Y,M⊗N )→ R, the func-
tion X 3 x→ Q (x, f (x, ·)) is measurable and

Q (X, f (X, ·)) = E [f (X,Y ) |X] a.s. (14.22)

Hint: let H denote the set of bounded measurable functions, f, on X × Y
such that the two assertions are valid.

2. If A ∈M⊗N and µ := P ◦X−1 be the law of X, then

P ((X,Y ) ∈ A) =
∫

X
Q (x, 1A (x, ·)) dµ (x) =

∫
X
dµ (x)

∫
Y

1A (x, y)Q (x, dy) .

(14.23)

Exercise 14.4. Keeping the same notation as in Exercise 14.3 and further as-
sume that X and Y are independent. Find a regular conditional distribution of
Y given X and prove

E [f (X,Y ) |X] = hf (X) a.s. ∀ bounded measurable f : X× Y→ R,

where
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hf (x) := E [f (x, Y )] for all x ∈ X,

i.e.
E [f (X,Y ) |X] = E [f (x, Y )] |x=X a.s.

Exercise 14.5. Suppose (Ω,B, P ) and (Ω′,B′, P ′) are two probability spaces,
(X,M) and (Y,N ) are measurable spaces, X : Ω → X, X ′ : Ω′ → X, Y :
Ω → Y,and Y ′ : Ω → Y are measurable functions such that P ◦ (X,Y )−1 =
P ′ ◦ (X ′, Y ′) , i.e. (X,Y ) d= (X ′, Y ′) . If f : (X× Y,M⊗N )→ R is a bounded
measurable function and f̃ : (X,M) → R is a measurable function such that
f̃ (X) = E [f (X,Y ) |X] P - a.s. then

E′ [f (X ′, Y ′) |X ′] = f̃ (X ′) P ′ a.s.

Let now suppose that G is a sub-σ-algebra of B and let PG : B → L1 (Ω,G, P )
be defined by, PG (B) = P (B|G) := EG1B ∈ L1 (Ω,B, P ) for all B ∈ B. If B =∑∞
n=1Bn with Bn ∈ B, then 1B =

∑∞
n=1 1Bn and this sum converges in L1 (P )

(in fact in all Lp (P )) by the DCT. Since EG : L1 (Ω,B, P )→ L1 (Ω,G, P ) is a
contraction and therefore continuous it follows that

PG (B) = EG1B = EG
∞∑
n=1

1Bn =
∞∑
n=1

EG1Bn =
∞∑
n=1

PG (Bn) (14.24)

where all equalities are in L1 (Ω,G, P ) . Now suppose that we have chosen a
representative, P̄G (B) : Ω → [0, 1] , of PG (B) for each B ∈ B. From Eq. (14.24)
it follows that

P̄G (B) (ω) =
∞∑
n=1

P̄G (Bn) (ω) for P -a.e. ω. (14.25)

However, note well, the exceptional set of ω’s depends on the sets B,Bn ∈
B. The goal of regular conditioning is to carefully choose the representative,
P̄G (B) : Ω → [0, 1] , such that Eq. (14.25) holds for all ω ∈ Ω and all B,Bn ∈ B
with B =

∑∞
n=1Bn.

Definition 14.17. If G is a sub-σ – algebra of B, a regular conditional dis-
tribution given G is a probability kernel on Q : (Ω,G)× (Ω,B) → [0, 1] such
that

Q (·, B) = P (B|G) (·) a.s. for every B ∈ B. (14.26)

This corresponds to the Q in Definition 14.15 provided, (X,M) = (Ω,G) ,
(Y,N ) = (Ω,B) , and X (ω) = Y (ω) = ω for all ω ∈ Ω.

14.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expectations
to all non-negative functions and to proving conditional versions of the MCT,
DCT, and Fatou’s lemma.

Theorem 14.18 (Extending EG). If f : Ω → [0,∞] is B – measurable, there
is a G – measurable function, F : Ω → [0,∞] , satisfying

E [f : A] = E [F : A] for all A ∈ G. (14.27)

By Lemma 7.24, the function F is uniquely determined up to sets of measure
zero and hence we denote any such version of F by EGf.

1. Properties 2., 5. (with 0 ≤ g ∈ Gb), and 6. of Theorem 14.4 still hold for
any B – measurable functions such that 0 ≤ f ≤ g. Namely;
a) Order Preserving. EGf ≤ EGg a.s. when 0 ≤ f ≤ g,
b) Pull out Property. EG [hf ] = hEG [f ] a.s. for all h ≥ 0 and G –

measurable.
c) Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0EG1f = EG1EG0f = EG0f a.s.

2. Conditional Monotone Convergence (cMCT). Suppose that, almost
surely, 0 ≤ fn ≤ fn+1 for all n, then limn→∞ EGfn = EG [limn→∞ fn] a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 ≤ fn ∈
L1 (Ω,B, P ) a.s., then

EG
[
lim inf
n→∞

fn

]
≤ lim inf

n→∞
EG [fn] a.s. (14.28)

Proof. Since f∧n ∈ L1 (Ω,B, P ) and f∧n is increasing, it follows that F :=↑
limn→∞ EG [f ∧ n] exists a.s. Moreover, by two applications of the standard
MCT, we have for any A ∈ G, that

E [F : A] = lim
n→∞

E [EG [f ∧ n] : A] = lim
n→∞

E [f ∧ n : A] = lim
n→∞

E [f : A] .

Thus Eq. (14.27) holds and this uniquely determines F follows from Lemma
7.24.

Item 1. a) If 0 ≤ f ≤ g, then

EGf = lim
n→∞

EG [f ∧ n] ≤ lim
n→∞

EG [g ∧ n] = EGg a.s.

and so EG still preserves order. We will prove items 1b and 1c at the end of this
proof.
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Item 2. Suppose that, almost surely, 0 ≤ fn ≤ fn+1 for all n, then EGfn
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A ∈ G, we have

E
[

lim
n→∞

EGfn : A
]

= lim
n→∞

E [EGfn : A] = lim
n→∞

E [fn : A]

= E
[

lim
n→∞

fn : A
]

= E
[
EG
[

lim
n→∞

fn

]
: A
]

which combined with Lemma 7.24 implies that limn→∞ EGfn = EG [limn→∞ fn]
a.s.

Item 3. For 0 ≤ fn, let gk := infn≥k fn. Then gk ≤ fk for all k and gk ↑
lim infn→∞ fn and hence by cMCT and item 1.,

EG
[
lim inf
n→∞

fn

]
= lim
k→∞

EGgk ≤ lim inf
k→∞

EGfk a.s.

Item 1. b) If h ≥ 0 is a G – measurable function and f ≥ 0, then by cMCT,

EG [hf ] cMCT= lim
n→∞

EG [(h ∧ n) (f ∧ n)]

= lim
n→∞

(h ∧ n) EG [(f ∧ n)] cMCT= hEGf a.s.

Item 1. c) Similarly by multiple uses of cMCT,

EG0EG1f = EG0 lim
n→∞

EG1 (f ∧ n) = lim
n→∞

EG0EG1 (f ∧ n)

= lim
n→∞

EG0 (f ∧ n) = EG0f

and

EG1EG0f = EG1 lim
n→∞

EG0 (f ∧ n) = lim
n→∞

EG1EG0 [f ∧ n]

= lim
n→∞

EG0 (f ∧ n) = EG0f.

Theorem 14.19 (Conditional Dominated Convergence (cDCT)). If
fn

a.s→ f, and |fn| ≤ g ∈ L1 (Ω,B, P ) , then EGfn → EGf a.s.

Proof. From Corollary 12.9 we know that fn → f in L1 (P ) and therefore
EGfn → EGf in L1 (P ) as conditional expectation is a contraction on L1 (P ) . So
we need only prove the almost sure convergence. As usual it suffices to consider
the real case.

Following the proof of the Dominated convergence theorem, we start with
the fact that 0 ≤ g ± fn a.s. for all n. Hence by cFatou,

EG (g ± f) = EG
[
lim inf
n→∞

(g ± fn)
]

≤ lim inf
n→∞

EG (g ± fn) = EGg +
{

lim infn→∞ EG (fn) in + case
− lim supn→∞ EG (fn) in − case,

where the above equations hold a.s. Cancelling EGg from both sides of the
equation then implies

lim sup
n→∞

EG (fn) ≤ EGf ≤ lim inf
n→∞

EG (fn) a.s.

Remark 14.20. Suppose that fn
P→ f, |fn| ≤ gn ∈ L1 (Ω,B, P ) , gn

P→ g ∈
L1 (Ω,B, P ) and Egn → Eg. Then by the DCT in Corollary 12.9, we know that
fn → f in L1 (Ω,B, P ) . Since EG is a contraction, it follows that EGfn → EGf
in L1 (Ω,B, P ) and hence EGfn

P→ EGf.

Exercise 14.6. Suppose that (X,M) and (Y,N ) are measurable spaces, (Y,N )
X : Ω → X and Y : Ω → Y are measurable functions. Further assume that G is
a sub – σ – algebra of B, X is G/M – measurable and Y is independent of G.
Show for all bounded measurable functions, f : (X× Y,M⊗N )→ R, that

E [f (X,Y ) |G] = hf (X) = E [f (x, Y )] |x=X a.s.

where if µ := LawP (Y ) ,

hf (x) := E [f (x, Y )] =
∫

Y
f (x, y) dµ (y) . (14.29)

Solution to Exercise (14.6). Notice by Fubini’s theorem, hf (x) is N/BR
– measurable and therefore hf (X) is G – measurable. If f (x, y) = u (x) v (y)
where u : (X,M)→ (R,BR) and v : (Y,N )→ (R,BR) are measurable functions,
then by Lemma 14.10

E [f (X,Y ) |G] = E [u (X) v (Y ) |G] = u (X) E [v (Y ) |G]
= u (X) E [v (Y )] = u (X)µ (v) = hf (X) a.s.

The proof may now be completed using the multiplicative systems Theorem
8.2. In more detail, let

H := {f ∈ [M⊗N ]b : E [f (X,Y ) |G] = hf (X) a.s.} .

Using the linearity of conditional expectations and of expectations along with
the DCT and the cDCT (Theorem 14.19), it is easily seen that H is a linear
subspace which is closed under bounded convergence. Moreover we have just
seen that H contains the multiplicative system of product functions of the form
f (x, y) = u (x) v (y) . Since such functions generate M⊗N , it follows that H
consists of all bounded measurable functions on X× Y.
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The next result in Lemma 14.23 shows how to localize conditional expec-
tations. In order to state and prove the lemma we need a little ground work
first.

Definition 14.21. Suppose that F and G are sub-σ-fields of B and A ∈ B. We
say that F = G on A iff FA = GA. Recall that FA = {B ∩A : B ∈ F} .

Lemma 14.22. If A ∈ F ∩ G, then FA ∩ GA = [F ∩ G]A and FA = GA implies

FA = GA = [F ∩ G]A . (14.30)

Proof. If A ∈ F we have B ∈ FA iff there exists B′ ∈ F such that B =
A ∩B′. As A ∈ F it follows that B ∈ F and therefore we have

FA = {B ⊂ A : B ∈ F} .

Thus if A ∈ F ∩ G it follows that FA = {B ⊂ A : B ∈ F} and GA =
{B ⊂ A : B ∈ G} and therefore

FA ∩ GA = {B ⊂ A : B ∈ F ∩ G} = [F ∩ G]A .

Equation (14.30) now clearly follows from this identity when FA = GA.

Lemma 14.23 (Localizing Conditional Expectations). Let (Ω,B, P ) be
a probability space, F and G be sub-sigma-fileds of B, X, Y ∈ L1 (Ω,B, P ) or
X,Y : (Ω,B) → [0,∞] are measurable, and A ∈ F ∩ G. If F = G on A and
X = Y a.s. on A, then

EFX = EF∩GX = EF∩GY = EGY a.s. on A. (14.31)

Proof. It suffices to prove, EFX = EF∩GY a.s. on A and this is equivalent
to 1AEFX = 1AEF∩GY a.s. As both sides of this equation are F – measurable,
by the comparison Lemma 7.24 we need to show

E [1AEFX : B] = E [1AEF∩GY : B] for all B ∈ F .

So let B ∈ F in which case A∩B ∈ FA = GA = [F ∩ G]A ⊂ F ∩G (see Lemma
14.22). Therefore, using the basic properties of conditional expectations, we
have

E [1AEFX : B] = E [EFX : A ∩B] = E [X : A ∩B]

and similarly

E [1AEF∩GY : B] = E [EF∩GY : A ∩B] = E [Y : A ∩B] .

This completes the proof as E [X : A ∩B] = E [Y : A ∩B] because of the as-
sumption that X = Y a.s. on A.

Example 14.24. Let us use Lemma 14.23 to show E [f (X) |X ∧ t] = f (X) =
f (X ∧ t) on {X < t} – a fact we have already seen to be true in Example 14.12.
Let us begin by observing that {X < t} = {X ∧ t < t} ∈ σ (X) ∩ σ (X ∧ t) .
Moreover, using σ (X)A = σ (X|A) for all A ∈ B,2 we see that

σ (X){X<t} = σ
(
X|{X<t}

)
= σ

(
(X ∧ t) |{X<t}

)
= σ (X ∧ t){X<t} .

Therefore it follows that

E [f (X) |X ∧ t] = E [f (X) |σ (X ∧ t)] = E [f (X) |σ (X)] = f (X) a.s. on {X < t} .

What goes wrong with the above argument if you replace {X < t} by {X ≤ t}
everywhere? (Notice that the same argument shows; if X = Y on A ∈ σ (X) ∩
σ (Y ) then E [f (X) |Y ] = f (Y ) = f (X) a.s. on A.)

Theorem 14.25 (Conditional Jensen’s inequality). Let (Ω,B, P ) be a
probability space, −∞ ≤ a < b ≤ ∞, and ϕ : (a, b) → R be a convex func-
tion. Assume f ∈ L1(Ω,B, P ; R) is a random variable satisfying, f ∈ (a, b) a.s.
and ϕ(f) ∈ L1(Ω,B, P ; R). Then ϕ(EGf) ∈ L1 (Ω,G, P ) ,

ϕ(EGf) ≤ EG [ϕ(f)] a.s. (14.32)

and
E [ϕ(EGf)] ≤ E [ϕ(f)] (14.33)

Proof. Let Λ := Q∩ (a, b) – a countable dense subset of (a, b) . By Theorem
12.55 (also see Lemma 12.52) and Figure 12.5 when ϕ is C1)

ϕ(y) ≥ ϕ(x) + ϕ′−(x)(y − x) for all for all x, y ∈ (a, b) , (14.34)

where ϕ′−(x) is the left hand derivative of ϕ at x. Taking y = f and then taking
conditional expectations imply,

EG [ϕ(f)] ≥ EG
[
ϕ(x) + ϕ′−(x)(f − x)

]
= ϕ(x) + ϕ′−(x)(EGf − x) a.s. (14.35)

Since this is true for all x ∈ (a, b) (and hence all x in the countable set, Λ) we
may conclude that

EG [ϕ(f)] ≥ sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
a.s.

2 Here is the verification that σ (X)A = σ (X|A) . Let iA : A → Ω be the inclusion
map. Since σ (X) = X−1 (BR) and σ (X)A = i−1

A σ (X) it follows that

σ (X)A = i−1
A

(
X−1 (BR)

)
= (X ◦ iA)−1 (BR)

= σ (X ◦ iA) = σ (X|A) .
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By Exercise 14.1, EGf ∈ (a, b) , and hence it follows from Corollary 12.56 that

sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
= ϕ (EGf) a.s.

Combining the last two estimates proves Eq. (14.32).
From Eq. (14.32) and Eq. (14.34) with y = EGf and x ∈ (a, b) fixed we find,

ϕ(x) + ϕ′−(x) (EGf − x) ≤ ϕ(EGf) ≤ EG [ϕ(f)] . (14.36)

Therefore

|ϕ(EGf)| ≤ |EG [ϕ(f)]| ∨
∣∣ϕ(x) + ϕ′−(x)(EGf − x)

∣∣ ∈ L1 (Ω,G, P ) (14.37)

which implies that ϕ(EGf) ∈ L1 (Ω,G, P ) . Taking expectations of Eq. (14.32)
is now allowed and immediately gives Eq. (14.33).

Remark 14.26 (On Theorem 14.25 and its proof.). *From Eq. (14.34),

ϕ(f) ≥ ϕ(EGf) + ϕ′−(EGf)(f − EGf). (14.38)

Therefore taking EG of this equation “implies” that

EG [ϕ(f)] ≥ϕ(EGf) + EG
[
ϕ′−(EGf)(f − EGf)

]
= ϕ(EGf) + ϕ′−(EGf)EG [(f − EGf)] = ϕ(EGf). (14.39)

The technical problem with this argument is the justification that
EG
[
ϕ′−(EGf)(f − EGf)

]
= ϕ′−(EGf)EG [(f − EGf)] since there is no rea-

son for ϕ′− to be a bounded function. The proof we give in Theorem 14.25
circumvents this technical detail.

On the other hand let us now suppose that ϕ is C1 (R) is convex and for
the moment that |f | ≤ M < ∞ a.s. Then EGf ∈ [−M,M ] a.s. and hence
ϕ′−(EGf) = ϕ′ (EGf) is bounded and Eq. (14.39) is now valid. Moreover, taking
x = 0 in Eq. (14.36) shows

ϕ(0) + ϕ′(0)EGf ≤ ϕ(EGf) ≤ EG [ϕ(f)] .

If f is unbounded we may apply the above inequality with f replaced by fM :=
f · 1|f |≤M in order to conclude,

ϕ(0) + ϕ′(0)EGfM ≤ ϕ(EGfM ) ≤ EG [ϕ(fM )] .

If we further assume that ϕ (fM ) ≥ 0 is increasing as M increase (for example
this is the case if ϕ (x) = |x|p for some p > 1) we may conclude by passing to
the limit along a nicely chosen subsequence that

ϕ(0) + ϕ′(0)EGf ≤ ϕ(EGf) ≤ EG [ϕ(f)]

where we used EG [ϕ(fM )]→ EG [ϕ(f)] by cMCT.

Corollary 14.27. The conditional expectation operator, EG maps Lp (Ω,B, P )
into Lp (Ω,B, P ) and the map remains a contraction for all 1 ≤ p ≤ ∞.

Proof. The case p = ∞ and p = 1 have already been covered in Theorem
14.4. So now suppose, 1 < p < ∞, and apply Jensen’s inequality with ϕ (x) =
|x|p to find |EGf |p ≤ EG |f |p a.s. Taking expectations of this inequality gives
the desired result.

Exercise 14.7 (Martingale Convergence Theorem for p = 1 and 2.”).
Let (Ω,B, P ) be a probability space and {Bn}∞n=1 be an increasing sequence of
sub-σ-algebras of B. Show;

1. The closure, M, of ∪∞n=1L
2 (Ω,Bn, P ) is L2 (Ω,B∞, P ) where B∞ =

∨∞n=1Bn := σ (∪∞n=1Bn) . Hint: make use of Theorem 12.29.
2. For every X ∈ L2 (Ω,B, P ) , Xn := E [X|Bn]→ E [X|B∞] in L2 (P ) . Hint:

see Exercise 13.5.
3. For every X ∈ L1 (Ω,B, P ) , Xn := E [X|Bn]→ E [X|B∞] in L1 (P ) . Hint:

make use of item 2. by a truncation argument using the contractive prop-
erties of conditional expectations.

(Eventually we will show that Xn = E [X|Bn]→ E [X|B∞] a.s. as well.)

Exercise 14.8 (Martingale Convergence Theorem for general p). Let
1 ≤ p < ∞, (Ω,B, P ) be a probability space, and {Bn}∞n=1 be an increas-
ing sequence of sub-σ-algebras of B. Show for all X ∈ Lp (Ω,B, P ) , Xn :=
E [X|Bn] → E [X|B∞] in Lp (P ) . (Hint: show that {|E [X|Bn]|p}∞n=1 is uni-

formly integrable and E [X|Bn] P→ E [X|B∞] with the aid of item 3. of Exercise
14.7.)

14.3 Construction of Regular Conditional Distributions*

Lemma 14.28. Suppose that h : Q → [0, 1] is an increasing (i.e. non-
decreasing) function and H (t) := inf {h (s) : t < s ∈ Q} for all t ∈ R. Then
H : R→ [0, 1] is an increasing right continuous function.

Proof. If t1 < t2, then

{h (s) : t1 < s ∈ Q} ⊂ {h (s) : t2 < s ∈ Q}

and therefore H (t1) ≤ H (t2) . Let H (t+) := limτ↓tH (τ) . Then for any s ∈ Q
with s > t we have H (t) ≤ H (t+) ≤ h (s) and then taking the infimum over
such s we learn that H (t) ≤ H (t+) ≤ H (t) , i.e. H (t+) = H (t) .
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Lemma 14.29. Suppose that (X,M) is a measurable space and F : X×R→ R
is a function such that; 1) F (·, t) : X→ R is M/BR – measurable for all t ∈ R,
and 2) F (x, ·) : R→ R is right continuous for all x ∈ X. Then F isM⊗BR/BR
– measurable.

Proof. For n ∈ N, the function,

Fn (x, t) :=
∞∑

k=−∞

F
(
x, (k + 1) 2−n

)
1(k2−n,(k+1)2−n] (t) ,

is M⊗BR/BR – measurable. Using the right continuity assumption, it follows
that F (x, t) = limn→∞ Fn (x, t) for all (x, t) ∈ X × R and therefore F is also
M⊗BR/BR – measurable.

Proposition 14.30. Let BR be the Borel σ – algebra on R. Then BR contains
a countable sub-algebra, AR ⊂ BR, which generates BR and has the amazing
property that every finitely additive probability measure on AR extends uniquely
to a countably additive probability measure on BR.

Proof. By the results in Appendix 9.10, we know that (R,BR) is measure
theoretically isomorphic to

(
{0, 1}N ,F

)
where F is the product σ – algebra. As

we saw in Section 5.5, F is generated by the countable algebra, A := ∪∞n=1An
where

An := {B ×Ω : B ⊂ {0, 1}n} for all n ∈ N.

According to the baby Kolmogorov Theorem 5.40, any finitely additive prob-
ability measure on A has a unique extension to a probability measure on F .
The algebra A may now be transferred by the measure theoretic isomorphism
to the desired sub-algebra, AR, of BR.

Theorem 14.31. Suppose that (X,M) is a measurable space, X : Ω → X is a
measurable function and Y : Ω → R is a random variable. Then there exists a
probability kernel, Q, on X×R such that E [f (Y ) |X] = Q (X, f) , P – a.s., for
all bounded measurable functions, f : R→ R.

Proof. First proof. For each r ∈ Q, let qr : X → [0, 1] be a measurable
function such that

E [1Y≤r|X] = qr (X) a.s.

Let ν := P ◦X−1 be the law of X. Then using the basic properties of conditional
expectation, qr ≤ qs ν – a.s. for all r ≤ s, limr↑∞ qr = 1 and limr↓∞ qr = 0, ν –
a.s. Hence the set, X0 ⊂ X where qr (x) ≤ qs (x) for all r ≤ s, limr↑∞ qr (x) = 1,
and limr↓∞ qr (x) = 0 satisfies, ν (X0) = P (X ∈ X0) = 1. For t ∈ R, let

F (x, t) := 1X0 (x) · inf {qr (x) : r > t}+ 1X\X0 (x) · 1t≥0.

Then F (·, t) : X→ R is measurable for each t ∈ R and by Lemma 14.28, F (x, ·)
is a distribution function on R for each x ∈ X. Hence an application of Lemma
14.29 shows F : X× R→ [0, 1] is measurable.

For each x ∈ X and B ∈ BR, let Q (x,B) = µF (x,·) (B) where µF denotes the
probability measure on R determined by a distribution function, F : R→ [0, 1] .

We will now show that Q is the desired probability kernel. To prove this, let
H be the collection of bounded measurable functions, f : R→ R, such that X 3
x→ Q (x, f) ∈ R is measurable and E [f (Y ) |X] = Q (X, f) , P – a.s. It is easily
seen that H is a linear subspace which is closed under bounded convergence. We
will finish the proof by showing that H contains the multiplicative class, M ={

1(−∞,t] : t ∈ R
}

so that multiplicative systems Theorem 8.2 may be applied.
Notice that Q

(
x, 1(−∞,t]

)
= F (x, t) is measurable. Now let r ∈ Q and

g : X→ R be a bounded measurable function, then

E [1Y≤r · g (X)] = E [E [1Y≤r|X] g (X)] = E [qr (X) g (X)]
= E [qr (X) 1X0 (X) g (X)] .

For t ∈ R, we may let r ↓ t in the above equality (use DCT) to learn,

E [1Y≤t · g (X)] = E [F (X, t) 1X0 (X) g (X)] = E [F (X, t) g (X)] .

Since g was arbitrary, we may conclude that

Q
(
X, 1(−∞,t]

)
= F (X, t) = E [1Y≤t|X] a.s.

This completes the proof.
Second proof. Let A := AR be the algebra described in Proposition 14.30.

For each A ∈ A, let µA : X→ R be a measurable function such that µA (X) =
P (Y ∈ A|X) a.s. If A = A1 ∪A2 with Ai ∈ A and A1 ∩A2 = ∅, then

µA1 (X) + µA2 (X) = P (Y ∈ A1|X) + P (Y ∈ A2|X)
= P (Y ∈ A1 ∪A2|X) = µA1+A2 (X) a.s.

Thus if ν := LawP (X) , we have µA1 (x) + µA2 (x) = µA1+A2 (x) for ν – a.e. x.
Since

µR (X) = P (Y ∈ R|X) = 1 a.s.

we know that µR (x) = 1 for ν – a.e. x.
Thus if we let X0 denote those x ∈ X such that µR (x) = 1 and µA1 (x) +

µA2 (x) = µA1+A2 (x) for all disjoint pairs, (A1, A2) ∈ A2, we have ν (X0) = 1
and A 3A → Q0 (x,A) := µA (x) is a finitely additive probability measure on
A. According to Proposition 14.30, Q0 (x, ·) extends to a probability measure,
Q (x, ·) on BR for all x ∈ X0. For x /∈ X0 we let Q0 (x, ·) = δ0 where δ0 (B) =
1B (0) for all B ∈ BR.
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We will now show that Q is the desired probability kernel. To prove this,
let H be the collection of bounded measurable functions, f : R→ R, such that
X 3 x → Q (x, f) ∈ R is measurable and E [f (Y ) |X] = Q (X, f) , P – a.s. By
construction, H contains the multiplicative system, {1A : A ∈ A} . Moreover
it is easily seen that H is a linear subspace which is closed under bounded
convergence. Therefore by the multiplicative systems Theorem 8.2, H consists
of all bounded measurable functions on R.

This result leads fairly immediately to the following far reaching generaliza-
tion.

Theorem 14.32. Suppose that (X,M) is a measurable space and (Y,N ) is
a standard Borel space3, see Appendix 9.10. Suppose that X : Ω → X and
Y : Ω → Y are measurable functions. Then there exists a probability kernel, Q,
on X×Y such that E [f (Y ) |X] = Q (X, f) , P – a.s., for all bounded measurable
functions, f : Y→ R.

Proof. By definition of a standard Borel space, we may assume that Y ∈ BR
and N = BY. In this case Y may also be viewed to be a measurable map form
Ω → R such that Y (Ω) ⊂ Y. By Theorem 14.31, we may find a probability
kernel, Q0, on X× R such that

E [f (Y ) |X] = Q0 (X, f) , P – a.s., (14.40)

for all bounded measurable functions, f : R→ R.
Taking f = 1Y in Eq. (14.40) shows

1 = E [1Y (Y ) |X] = Q0 (X,Y) a.s..

Thus if we let X0 := {x ∈ X : Q0 (x,Y) = 1} , we know that P (X ∈ X0) = 1.
Let us now define

Q (x,B) := 1X0 (x)Q0 (x,B) + 1X\X0 (x) δy (B) for (x,B) ∈ X× BY,

where y is an arbitrary but fixed point in Y. Then and hence Q is a probability
kernel on X× Y. Moreover if B ∈ BY ⊂ BR, then

Q (X,B) = 1X0 (X)Q0 (X,B) = 1X0 (X) E [1B (Y ) |X] = E [1B (Y ) |X] a.s.

This shows that Q is the desired regular conditional probability.

Corollary 14.33. Suppose G is a sub-σ – algebra of B, (Y,N ) is a standard
Borel space, and Y : Ω → Y is a measurable function. Then there exists a
probability kernel, Q, on (Ω,G) × (Y,N ) such that E [f (Y ) |G] = Q (·, f) , P -
a.s. for all bounded measurable functions, f : Y→ R.
3 According to the counter example in Doob [13, p. 624], it is not sufficient to assume

that N is countably generated!

Proof. This is a special case of Theorem 14.32 applied with (X,M) = (Ω,G)
and X : Ω → Ω being the identity map which is B/G – measurable.

Corollary 14.34. Suppose that (Ω,B, P ) is a probability space such that (Ω,B)
is a standard Borel space and G is a sub-σ – algebra B. Then there exists a
probability kernel, Q on (Ω,G) × (Ω,B) such that E [Z|G] = Q (·, Z) , P - a.s.
for all bounded B – measurable random variables, Z : Ω → R.

Proof. This is a special case of Corollary 14.33 with (Y,N ) = (Ω,B) and
Y : Ω → Ω being the identity map which is B/B – measurable.

Remark 14.35. It turns out that every standard Borel space (X,M) possess a
countable sub-algebra A generating M with the property that every finitely
additive probability measure on A extends to a probability measure on M,
see [7]. With this in hand, the second proof of Theorem 14.31 extends easily to
give another proof of Theorem 14.32 all in one go. As the next example shows
it is a bit tricky to produce the algebra A.

Example 14.36. Let Ω := {0, 1}N , πi : Ω → {0, 1} be projection onto the ith

component and B := σ (π1, π2, . . . ) be the product σ – algebra on Ω. Further
let A := ∪∞n=1An where

An := {B ×Ω : B ⊂ {0, 1}n} for all n ∈ N.

Suppose that X = {en}∞n=1 ⊂ Ω where en (i) = δin for i, n ∈ N. I now claim
that

AX = {A ⊂ X : # (A) <∞ or # (Ac) <∞} =: C
is the so called cofinite σ – algebra. To see this observe that A is generated by
sets of the form {πi = 1} for i ∈ N. Therefore AX is generated by sets of the
form {πi = 1}X = {ei} . But these one point sets are easily seen to generate C.

Now suppose that λ : X → [0, 1] is a function such that Z :=
∑
n∈N λ (en) ∈

(0, 1) and let µ (B) :=
∑
a∈B λ (a) for all B ⊂ X. Then µ is a measure on 2X

with µ (X) = Z < 1.
Using this measure µ, we may define P0 : AX = C → [0, 1] by,

P0 (A) :=
{

µ (A) if # (A) <∞
1− µ (Ac) if # (Ac) <∞ .

I claim that P0 is a finitely additive probability measure on AX = C which has
no -extension to a probability measure on 2X . To see that P0 is finitely additive,
let A,B ∈ C be disjoint sets. If both A and B are finite sets, then

P0 (A ∪B) = µ (A ∪B) = µ (A) + µ (B) = P0 (A) + P0 (B) .

If one of the sets is an infinite set, say B, then # (Bc) <∞ and # (A) <∞ for
otherwise A ∩B 6= ∅. As A ∩B = ∅ we know that A ⊂ Bc and therefore,
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P0 (A ∪B) = 1− µ ([A ∪B]c) = 1− µ (Ac ∩Bc)
= 1− µ (Bc \A) = 1− (µ (Bc)− µ (A))
= 1− µ (Bc) + µ (A) = P0 (B) + P0 (A) .

Thus we have shown that P0 : AX → [0, 1] is a finitely additive probability
measure. If P were a countably additive extension of P0, we would have to
have,

1 = P0 (X) = P (X) =
∞∑
n=1

P ({en})

=
∞∑
n=1

P0 ({en}) =
∞∑
n=1

µ ({en}) = Z < 1

which is clearly a contradiction.

There is however a way to fix this example as shown in [7]. It is to replace
AX in this example by the algebra, A, generated by E := {{n} : n ≥ 2} . This
algebra may be described as those A ⊂ N such that either A ⊂⊂ {2, 3, . . . } for
1 ∈ A and # (Ac) <∞. Thus if Ak ∈ A with Ak ↓ ∅ we must have that 1 /∈ Ak
for k large and therefore # (Ak) <∞ for k large. Moreover # (Ak) is decreasing
in k. If limk→∞ # (Ak) = m > 0, we must have that Ak = Al for all k, l large
and therefore ∩Ak 6= ∅. Thus we must conclude that Ak = ∅ for large k. We
therefore may conclude that any finitely additive probability measure, P0, on
A has a unique extension to a probability measure on σ (A) = 2N.
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The Radon-Nikodym Theorem

Theorem 15.1 (A Baby Radon-Nikodym Theorem). Suppose (X,M) is
a measurable space, λ and ν are two finite positive measures on M such that
ν(A) ≤ λ(A) for all A ∈M. Then there exists a measurable function, ρ : X →
[0, 1] such that dν = ρdλ.

Proof. If f is a non-negative simple function, then

ν (f) =
∑
a≥0

aν (f = a) ≤
∑
a≥0

aλ (f = a) = λ (f) .

In light of Theorem 6.39 and the MCT, this inequality continues to hold for all
non-negative measurable functions. Furthermore if f ∈ L1 (λ) , then ν (|f |) ≤
λ (|f |) <∞ and hence f ∈ L1 (ν) and

|ν (f)| ≤ ν (|f |) ≤ λ (|f |) ≤ λ (X)1/2 · ‖f‖L2(λ) .

Therefore, L2 (λ) 3 f → ν (f) ∈ C is a continuous linear functional on L2(λ).
By the Riesz representation Theorem 13.15, there exists a unique ρ ∈ L2(λ)
such that

ν(f) =
∫
X

fρdλ for all f ∈ L2(λ).

In particular this equation holds for all bounded measurable functions, f : X →
R and for such a function we have

ν (f) = Re ν (f) = Re
∫
X

fρdλ =
∫
X

f Re ρ dλ. (15.1)

Thus by replacing ρ by Re ρ if necessary we may assume ρ is real.
Taking f = 1ρ<0 in Eq. (15.1) shows

0 ≤ ν (ρ < 0) =
∫
X

1ρ<0ρ dλ ≤ 0,

from which we conclude that 1ρ<0ρ = 0, λ – a.e., i.e. λ (ρ < 0) = 0. Therefore
ρ ≥ 0, λ – a.e. Similarly for α > 1,

λ (ρ > α) ≥ ν (ρ > α) =
∫
X

1ρ>αρ dλ ≥ αλ (ρ > α)

which is possible iff λ (ρ > α) = 0. Letting α ↓ 1, it follows that λ (ρ > 1) = 0
and hence 0 ≤ ρ ≤ 1, λ - a.e.

Definition 15.2. Let µ and ν be two positive measure on a measurable space,
(X,M). Then:

1. µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M
such that ν (A) = 0 and µ (Ac) = 0. We say that ν lives on A and µ lives
on Ac.

2. The measure ν is absolutely continuous relative to µ (written as ν �
µ) provided ν(A) = 0 whenever µ (A) = 0.

As an example, suppose that µ is a positive measure and ρ ≥ 0 is a measur-
able function. Then the measure, ν := ρµ is absolutely continuous relative to
µ. Indeed, if µ (A) = 0 then

ν (A) =
∫
A

ρdµ = 0.

We will eventually show that if µ and ν are σ – finite and ν � µ, then dν = ρdµ
for some measurable function, ρ ≥ 0.

Definition 15.3 (Lebesgue Decomposition). Let µ and ν be two positive
measure on a measurable space, (X,M). Two positive measures νa and νs form
a Lebesgue decomposition of ν relative to µ if ν = νa + νs, νa � µ, and
νs ⊥ µ.

Lemma 15.4. If µ1, µ2 and ν are positive measures on (X,M) such that µ1 ⊥
ν and µ2 ⊥ ν, then (µ1 + µ2) ⊥ ν. More generally if {µi}∞i=1 is a sequence of
positive measures such that µi ⊥ ν for all i then µ =

∑∞
i=1 µi is singular relative

to ν.

Proof. It suffices to prove the second assertion since we can then take µj ≡ 0
for all j ≥ 3. Choose Ai ∈ M such that ν (Ai) = 0 and µi (Aci ) = 0 for all i.
Letting A := ∪iAi we have ν (A) = 0. Moreover, since Ac = ∩iAci ⊂ Acm for
all m, we have µi (Ac) = 0 for all i and therefore, µ (Ac) = 0. This shows that
µ ⊥ ν.

Lemma 15.5. Let ν and µ be positive measures on (X,M). If there exists a
Lebesgue decomposition, ν = νs + νa, of the measure ν relative to µ then this
decomposition is unique. Moreover: if ν is a σ – finite measure then so are νs
and νa.
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Proof. Since νs ⊥ µ, there exists A ∈M such that µ(A) = 0 and νs (Ac) = 0
and because νa � µ, we also know that νa (A) = 0. So for C ∈M,

ν (C ∩A) = νs (C ∩A) + νa (C ∩A) = νs (C ∩A) = νs (C) (15.2)

and

ν (C ∩Ac) = νs (C ∩Ac) + νa (C ∩Ac) = νa (C ∩Ac) = νa (C) . (15.3)

Now suppose we have another Lebesgue decomposition, ν = ν̃a + ν̃s with
ν̃s ⊥ µ and ν̃a � µ. Working as above, we may choose Ã ∈ M such that
µ(Ã) = 0 and Ãc is ν̃s – null. Then B = A ∪ Ã is still a µ – null set and and
Bc = Ac ∩ Ãc is a null set for both νs and ν̃s. Therefore we may use Eqs. (15.2)
and (15.3) with A being replaced by B to conclude,

νs(C) = ν(C ∩B) = ν̃s(C) and
νa(C) = ν(C ∩Bc) = ν̃a(C) for all C ∈M.

Lastly if ν is a σ – finite measure then there exists Xn ∈ M such that
X =

∑∞
n=1Xn and ν(Xn) <∞ for all n. Since∞ > ν(Xn) = νa(Xn)+νs(Xn),

we must have νa(Xn) < ∞ and νs(Xn) < ∞, showing νa and νs are σ – finite
as well.

Lemma 15.6. Suppose µ is a positive measure on (X,M) and f, g : X → [0,∞]
are functions such that the measures, fdµ and gdµ are σ – finite and further
satisfy, ∫

A

fdµ =
∫
A

gdµ for all A ∈M. (15.4)

Then f(x) = g(x) for µ – a.e. x. (BRUCE: this lemma is very closely related
to Lemma 7.24 above.)

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X and∫
Xn

fdµ < ∞ and
∫
Xn

gdµ < ∞ for all n. Replacing A by A ∩ Xn in Eq.
(15.4) implies∫

A

1Xnfdµ =
∫
A∩Xn

fdµ =
∫
A∩Xn

gdµ =
∫
A

1Xngdµ

for all A ∈M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation implies
1Xnf = 1Xng, µ – a.e. Letting n→∞ then shows that f = g, µ – a.e.

Remark 15.7. Lemma 15.6 is in general false without the σ – finiteness assump-
tion. A trivial counterexample is to takeM = 2X , µ(A) =∞ for all non-empty
A ∈M, f = 1X and g = 2 · 1X . Then Eq. (15.4) holds yet f 6= g.

Theorem 15.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ and ν are σ – finite positive measures on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa + νs relative to µ and there exists
a unique (modulo sets of µ – measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν � µ.

Proof. The uniqueness assertions follow directly from Lemmas 15.5 and
15.6.

Existence when µ and ν are both finite measures. (Von-Neumann’s
Proof. See Remark 15.9 for the motivation for this proof.) First suppose that µ
and ν are finite measures and let λ = µ+ ν. By Theorem 15.1, dν = hdλ with
0 ≤ h ≤ 1 and this implies, for all non-negative measurable functions f, that

ν(f) = λ(fh) = µ(fh) + ν(fh) (15.5)

or equivalently
ν(f(1− h)) = µ(fh). (15.6)

Taking f = 1{h=1} in Eq. (15.6) shows that

µ ({h = 1}) = ν(1{h=1}(1− h)) = 0,

i.e. 0 ≤ h (x) < 1 for µ - a.e. x. Let

ρ := 1{h<1}
h

1− h

and then take f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (15.6) to learn

ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg).

Hence if we define

νa := 1{h<1}ν and νs := 1{h=1}ν,

we then have νs ⊥ µ (since νs “lives” on {h = 1} while µ (h = 1) = 0) and
νa = ρµ and in particular νa � µ. Hence ν = νa + νs is the desired Lebesgue
decomposition of ν. If we further assume that ν � µ, then µ (h = 1) = 0 implies
ν (h = 1) = 0 and hence that νs = 0 and we conclude that ν = νa = ρµ.

Existence when µ and ν are σ-finite measures. Write X =
∑∞
n=1Xn

where Xn ∈ M are chosen so that µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let
dµn = 1Xndµ and dνn = 1Xndν. Then by what we have just proved there exists
ρn ∈ L1(X,µn) ⊂ L1(X,µ) and measure νsn such that dνn = ρndµn + dνsn with
νsn ⊥ µn. Since µn and νsn “live” on Xn there exists An ∈ MXn such that
µ (An) = µn (An) = 0 and
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νsn (X \An) = νsn (Xn \An) = 0.

This shows that νsn ⊥ µ for all n and so by Lemma 15.4, νs :=
∑∞
n=1 ν

s
n is

singular relative to µ. Since

ν =
∞∑
n=1

νn =
∞∑
n=1

(ρnµn + νsn) =
∞∑
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs, (15.7)

where ρ :=
∑∞
n=1 1Xnρn, it follows that ν = νa + νs with νa = ρµ. Hence this

is the desired Lebesgue decomposition of ν relative to µ.

Remark 15.9. Here is the motivation for the above construction. Suppose that
dν = dνs + ρdµ is the Radon-Nikodym decomposition and X = A

∑
B such

that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(hf) = ν(hf) + µ(hf).

Letting f → 1Af then implies that

ν(1Af) = νs(1Af) = ν(1Ahf)

which show that h = 1, ν –a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf) = ν(h1Bf) + µ(h1Bf) = µ(ρh1Bf) + µ(h1Bf)

which implies, ρ = ρh+ h, µ – a.e. on B, i.e.

ρ (1− h) = h, µ– a.e. on B.

In particular it follows that h < 1, µ = ν – a.e. on B and that ρ = h
1−h1h<1,

µ – a.e. So up to sets of ν – measure zero, A = {h = 1} and B = {h < 1} and
therefore,

dν = 1{h=1}dν + 1{h<1}dν = 1{h=1}dν +
h

1− h
1h<1dµ.





16

Some Ergodic Theory

The goal of this chapter is to show (in certain circumstances) that “time
averages” are the same as “spatial averages.” We start with a “simple” Hilbert
space version of the type of theorem that we are after. For more on the following
mean Ergodic theorem, see [22] and [14].

Theorem 16.1 (Von-Neumann’s Mean Ergodic Theorem). Let U : H →
H be an isometry on a Hilbert space H, M = Nul(U−I), P = PM be orthogonal
projection onto M, and Sn =

∑n−1
k=0 U

k. Show Sn
n → PM strongly by which we

mean limn→∞
Sn
n x = PMx for all x ∈ H.

Proof. Since U is an isometry we have (Ux,Uy) = (x, y) for all x, y ∈ H
and therefore that U∗U = I. In general it is not true that UU∗ = I but instead,
UU∗ = PRan(U). Thus U∗U = I iff U is surjective, i.e. U is unitary.

Before starting the proof in earnest we need to prove

Nul(U∗ − I) = Nul(U − I).

If x ∈ Nul (U − I) then x = Ux and therefore U∗x = U∗Ux = x, i.e. x ∈
Nul(U∗ − I). Conversely if x ∈ Nul(U∗ − I) then U∗x = x and we have

‖Ux− x‖2 = 2 ‖x‖2 − 2 Re (Ux, x)

= 2 ‖x‖2 − 2 Re (x, U∗x) = 2 ‖x‖2 − 2 Re (x, x) = 0

which shows that Ux = x, i.e. x ∈ Nul (U − I) . With this remark in hand we
can easily complete the proof.

Let us first observe that

Sn
n

(U − I) =
1
n

[Un − I]→ 0 as n→∞.

Thus if x = (U − I)y ∈ Ran(U − I), we have

Sn
n
x =

1
n

(Uny − y)→ 0 as n→∞.

More generally if x ∈ Ran(U − I) and x′ ∈ Ran(U−I), we have, since
∥∥Sn
n

∥∥ ≤ 1,
that ∥∥∥∥Snn x− Sn

n
x′
∥∥∥∥ ≤ ‖x− x′‖

and hence

lim sup
n→∞

∥∥∥∥Snn x

∥∥∥∥ = lim sup
n→∞

∥∥∥∥Snn x− Sn
n
x′
∥∥∥∥ ≤ ‖x− x′‖ .

Letting x′ ∈ Ran (U − I) tend to x ∈ Ran(U − I) allows us to conclude that
lim supn→∞

∥∥Sn
n x
∥∥ = 0.

For

x ∈ Ran(U − I)
⊥

= Ran (U − I)⊥ = Nul (U∗ − I) = Nul (U − I) = M

we have Sn
n x = x. So for general x ∈ H, we have x = PMx+ y with y ∈M⊥ =

Ran(U − I) and therefore,

Sn
n
x =

Sn
n
PMx+

Sn
n
y = PMx+

Sn
n
y → PMx as n→∞.

For the rest of this section, suppose that (Ω,B, µ) is a σ – finite measure
space and θ : Ω → Ω is a measurable map such that θ∗µ = µ. After Theorem
16.6 we will further assume that µ = P is a probability measure. For more
results along the lines of this chapter, the reader is referred to Kallenberg [28,
Chapter 10]. The reader may also benefit from Norris’s notes in [42].

Definition 16.2. Let

Bθ :=
{
A ∈ B : θ−1 (A) = A

}
and

B′θ :=
{
A ∈ B : µ

(
θ−1 (A)∆A

)
= 0
}

be the invariant σ – field and almost invariant σ –fields respectively.

In what follows we will make use of the following easily proved set identities.
Let {An}∞n=1 , {Bn}

∞
n=1 , and A,B,C be a collection of subsets of Ω, then;

1. A∆C ⊂ [A∆B] ∪ [B∆C] ,
2. [∪∞n=1An]∆ [∪∞n=1Bn] ⊂ ∪∞n=1An∆Bn,
3. [∩∞n=1An]∆ [∩∞n=1Bn] ⊂ ∪∞n=1An∆Bn,
4. B∆ {An i.o.} ⊂ ∪∞n=1 [B∆An] .
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Lemma 16.3. The elements of B′θ are the same as the elements in Bθ modulo
null sets, i.e.

B′θ = {B ∈ B : ∃ A ∈ Bθ 3 µ (A∆B) = 0} .

Moreover if B ∈ B′θ, then

A :=
{
ω ∈ Ω : θk (ω) ∈ B i.o. k

}
∈ Bθ (16.1)

and µ (A∆B) = 0. (We could have just as well taken A to be equal to{
ω ∈ Ω : θk (ω) ∈ B a.a.

}
.)

Proof. If A ∈ Bθ and B ∈ B such that µ (A∆B) = 0, then

µ
(
A∆θ−1 (B)

)
= µ

(
θ−1 (A)∆θ−1 (B)

)
= µθ−1 (A∆B) = µ (A∆B) = 0

and therefore it follows that

µ
(
B∆θ−1 (B)

)
≤ µ (B∆A) + µ

(
A∆θ−1 (B)

)
= 0.

This shows that B ∈ B′θ.
Conversely if B ∈ B′θ then by the invariance of µ under θ it follows that

µ
(
θ−l (B)∆θ−(l+1) (B)

)
= 0 for all k = 0, 1, 2, 3 . . . . In particular we learn

that

µ
(
θ−k (B)∆B

)
= µ

(∣∣1θ−k(B) − 1B
∣∣)

≤
k−1∑
l=0

µ
(∣∣∣1

θ−l(B)
− 1θ−(l+1)(B)

∣∣∣)
=
k−1∑
l=0

µ
(
θ−l (B)∆θ−(l+1) (B)

)
= 0.

Thus if A =
{
θ−k (B) i.o. k

}
as in Eq. (16.1) we have,

µ (B∆A) ≤
∞∑
k=1

µ
(
B∆θ−k (B)

)
= 0.

This completes the proof since

θ−1 (A) =
{
ω ∈ Ω : θk+1 (ω) ∈ B i.o. k

}
= A

and thus A ∈ Bθ.

Definition 16.4. A B – measurable function, f : Ω → R is (almost) invariant
iff f ◦ θ = f (f ◦ θ = f a.s.).

Lemma 16.5. A B – measurable function, f : Ω → R is (almost) invariant iff
f is Bθ (B′θ) measurable. Moreover, if f is almost invariant, then there exists
and invariant function, g : Ω → R, such that f = g, µ – a.e. (This latter
assertion has already been explained in Exercises 12.3 and 12.4.)

Proof. If f is invariant, f ◦ θ = f, then θ−1 ({f ≤ x}) = {f ◦ θ ≤ x} =
{f ≤ x} which shows that {f ≤ x} ∈ Bθ for all x ∈ R and therefore f is Bθ –
measurable. Similarly if f is almost invariant so that f ◦ θ = f (µ – a.e.), then

µ
(∣∣1θ−1({f≤x}) − 1{f≤x}

∣∣) = µ
(∣∣1{f◦θ≤x} − 1{f≤x}

∣∣)
= µ

(∣∣1(−∞,x] ◦ f ◦ θ − 1(−∞,x] ◦ f
∣∣) = 0

from which it follows that {f ≤ x} ∈ B′θ for all x ∈ R, that is f is B′θ –
measurable.

Conversely if f : Ω → R is (B′θ) Bθ -measurable, then for all −∞ < a < b <
∞, ({a < f ≤ b} ∈ B′θ) {a < f ≤ b} ∈ Bθ from which it follows that 1{a<f≤b}
is (almost) invariant. Thus for every N ∈ N the function defined by;

fN :=
N2∑

n=−N2

n

N
1{n−1

N <f≤ n
N },

is (almost) invariant. As f = limN→∞ fN, it follows that f is (almost) invariant
as well.

In the case where f is almost invariant, we can choose DN (n) ∈ Bθ such
that µ

(
DN (n)∆

{
n−1
N < f ≤ n

N

})
= 0 for all n and N and then set

gN :=
N2∑

n=−N2

n

N
1DN (n).

We then have gN = fN a.e. and gN is Bθ – measurable. We may thus conclude
that g̃ := lim supN→∞ gN is Bθ – measurable. It now follows that g := g̃1|g̃|<∞
is Bθ – measurable function such that g = f a.e.

Theorem 16.6. Suppose that (Ω,B, µ) is a σ – finite measure space and θ :
Ω → Ω is a measurable map such that θ∗µ = µ. Then;

1. U : L2 (µ)→ L2 (µ) defined by Uf := f ◦ θ is an isometry. The isometry U
is unitary if θ−1 exists as a measurable map.

2. The map,
L2 (Ω,Bθ, µ) 3 f → f ∈ Nul (U − I)

is unitary. In other words, Uf = f iff there exists g ∈ L2 (Ω,Bθ, µ) such
that f = g a.e.
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3. For every f ∈ L2 (µ) we have,

L2 (µ) – lim
n→∞

f + f ◦ θ + · · ·+ f ◦ θn−1

n
= EBθ [f ]

where EBθ denotes orthogonal projection from L2 (Ω,B, µ) onto
L2 (Ω,Bθ, µ) , i.e. EBθ is conditional expectation.

Proof. 1. To see that U is an isometry observe that

‖Uf‖2 =
∫
Ω

|f ◦ θ|2 dµ =
∫
Ω

|f |2 d (θ∗µ) =
∫
Ω

|f |2 dµ = ‖f‖2

for all f ∈ L2 (µ) .
2. f ∈ Nul (U − I) iff f ◦ θ = Uf = f a.e., i.e. iff f is almost invariant.

According to Lemma 16.5 this happen iff there exists a Bθ – measurable func-
tion, g, such that f = g a.e. Necessarily, g ∈ L2 (µ) so that g ∈ L2 (Ω,Bθ, µ) as
required.

3. The last assertion now follows from items 1. and 2. and the mean ergodic
Theorem 16.1.

Assumption 1 From now on we will assume that µ = P is a probability mea-
sure such that Pθ−1 = θ.

Exercise 16.1. For every Z ∈ L1 (P ) , show that E [Z ◦ θ|Bθ] = E [Z|Bθ] a.s.
More generally, show for sub – σ -algebra, G ⊂ B, show E

[
Z ◦ θ|θ−1G

]
=

E [Z|G] ◦ θ a.s.

Solution to Exercise (16.1). First observe that E [Z|G]◦θ is G – measurable

being the composition of
(
Ω, θ−1G

) θ→ (Ω,G)
E[Z|G]→ (R,BR) . Now let A ∈ G,

then

E
[
E
[
Z ◦ θ|θ−1G

]
: θ−1A

]
= E

[
Z ◦ θ : θ−1A

]
= E [(Z · 1A) ◦ θ]

= E [Z · 1A] = E [E [Z|G] 1A]

= E [(E [Z|G] 1A) ◦ θ] = E
[
E [Z|G] ◦ θ : θ−1A

]
.

As A ∈ G is arbitrary, it follows that E
[
Z ◦ θ|θ−1G

]
= E [Z|G] ◦ θ a.s. Taking

G = Bθ then shows,

E [Z ◦ θ|Bθ] = E
[
Z ◦ θ|θ−1Bθ

]
= E [Z|Bθ] ◦ θ = E [Z|Bθ] a.s.

Exercise 16.2. Let 1 ≤ p < ∞. Following the ideas introduced in Exercises
14.7 and 14.8, show

Lp (P )− lim
n→∞

f + f ◦ θ + · · ·+ f ◦ θn−1

n
= EBθ [f ] for all f ∈ Lp (Ω,B, P ) .

(Some of these ideas will again be used in the proof of Theorem 16.9 below.)

Definition 16.7. A sequence of random variables ξ = {ξk}∞k=1 is a stationary

if (ξ2, ξ3, , . . . )
d= (ξ1, ξ2, . . . ) .

If we temporarily let

θ (x1, x2, x3, . . . ) = θ (x2, x3, . . . ) for (x1, x2, x3, . . . ) ∈ RN, (16.2)

the stationarity condition states that θξ
d= ξ. Equivalently if

µ = LawP (ξ1, ξ2, . . . ) on
(
RN,B⊗N

R
)
, then ξ = {ξk}∞k=1 is stationary iff

µ ◦ θ−1 = µ. Let us also observe that ξ is stationary implies θ2ξ
d= θξ

d= ξ

and θ3ξ
d= θξ

d= ξ, etc. so that θnξ d= ξ for all n ∈ N.1 In what follows for
x ∈ (x1, x2, x3, . . . ) ∈ RN we will let S0 (x) = 0,

Sn (x) = x1 + x2 + · · ·+ xn, and
S∗n := max (S1, S2, . . . , Sn)

for all n ∈ N.

Lemma 16.8 (Maximal Ergodic Lemma). Suppose ξ := {ξk}∞k=1 is a sta-
tionary sequence and Sn (ξ) = ξ1 + · · ·+ ξn as above, then

E
[
ξ1 : sup

n
Sn (ξ) > 0

]
≥ 0. (16.3)

Proof. In this proof, θ will be as in Eq. (16.2). If 1 ≤ k ≤ n, then

Sk (ξ) = ξ1 + Sk−1 (θξ) ≤ ξ1 + S∗k−1 (θξ) ≤ ξ1 + S∗n (θξ) = ξ1 + [S∗n (θξ)]+

and therefore, S∗n (ξ) ≤ ξ1 + [S∗n (θξ)]+ . So we may conclude that

E [ξ1 : S∗n (ξ) > 0] ≥ E
[
S∗n (ξ)− [S∗n (θξ)]+ : S∗n > 0

]
= E

[
[S∗n (ξ)]+ − [S∗n (θξ)]+ 1S∗n>0

]
≥ E

[
[S∗n (ξ)]+ − [S∗n (θξ)]+

]
= E [S∗n (ξ)]+ − E [S∗n (θξ)]+ = 0,

wherein we used ξ
d= θξ for the last equality. Letting n → ∞ making use of

the MCT and the observation that {S∗n (ξ) > 0} ↑ {supn Sn (ξ) > 0} gives Eq.
(16.3).
1 In other words if {ξk}∞k=1 is stationary, then by lopping off the first random variable

on each side of the identity, (ξ2, ξ3, , . . . )
d
= (ξ1, ξ2, . . . ) , implies that

(ξ3, ξ4, . . . )
d
= (ξ2, ξ3, , . . . )

d
= (ξ1, ξ2, . . . ) .

Continuing this way inductively shows that stationarity is equivalent to

(ξn, ξn+1, ξn+2, . . . )
d
= (ξ1, ξ2, . . . ) for all n ∈ N.
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224 16 Some Ergodic Theory

Theorem 16.9 (Birkoff’s Ergodic Theorem). Suppose that f ∈
L1 (Ω,B, P ) or f ≥ 0 and is B – measurable, then

lim
n→∞

1
n

n∑
k=1

f ◦ θk−1 = E [f |Bθ] a.s.. (16.4)

Moreover if f ∈ Lp (Ω,B, P ) for some 1 ≤ p < ∞ then the convergence in Eq.
(16.4) holds in Lp as well.

Proof. Let us begin with the general observation that if ξ = (ξ1, ξ2, . . . ) is
a sequence of random variables such that ξi ◦ θ = ξi+1 for i = 1, 2, . . . , then ξ
is stationary. This is because,

(ξ1, ξ2, . . . )
d= (ξ1, ξ2, . . . ) ◦ θ = (ξ1 ◦ θ, ξ2 ◦ θ, . . . ) = (ξ2, ξ3, . . . ) .

We will first prove Eq. (16.4) under the assumption that f ∈ L1 (P ) . We
now let g := E [f |Bθ] and ξk := f ◦ θk−1 − g for all k ∈ N. Since g is Bθ –
measurable we know that g ◦ θ = g and therefore,

ξk ◦ θ =
(
f ◦ θk−1 − g

)
◦ θ = f ◦ θk − g = ξk+1

and therefore ξ = (ξ1, ξ2, . . . ) is stationary. To simplify notation let us write Sn
for Sn (ξ) = ξ1 +· · ·+ξn. To finish the proof we need to show that limn→∞

Sn
n =

0 a.s. for then,

1
n

n∑
k=1

f ◦ θk−1 =
1
n
Sn + g → g = E [f |Bθ] a.s.

In order to show limn→∞
Sn
n = 0 a.s. it suffices to show M (ξ) :=

lim supn→∞
Sn(ξ)
n ≤ 0 a.s. If we can do this we can also show that M (−ξ) =

lim supn→∞
−Sn(ξ)

n ≤ 0, i.e.

lim inf
n→∞

Sn (ξ)
n
≥ 0 ≥ lim sup

n→∞

Sn (ξ)
n

a.s.

which shows that limn→∞
Sn
n = 0 a.s. Finally in order to prove M (ξ) ≤ 0 a.s.

it suffices to show P (M (ξ) > ε) = 0 for all ε > 0. This is what we will do now.
Since Sn ◦ θ = Sn+1 − ξ1 we have so that

M (ξ) ◦ θ = lim sup
n→∞

1
n

(Sn+1 − ξ1) = lim sup
n→∞

[
n+ 1
n
· 1
n+ 1

Sn+1

]
= M (ξ) .

Thus M (ξ) is an invariant function and therefore Aε := {M (ξ) > ε} ∈ Bθ.
Using E [ξ1|Bθ] = E [f − g|Bθ] = g − g = 0 a.s. it follows that

0 = E [E [ξ1|Bθ] : M (ξ) > ε] = E [ξ1 : M (ξ − ε) > 0]
= E [ξ1 − ε : M (ξ − ε) > 0] + εP (Aε) .

If we now define ξεn := (ξn − ε) 1Aε , which is still stationary since

ξεn ◦ θ = (ξn ◦ θ − ε) 1Aε ◦ θ = (ξn+1 − ε) 1Aε = ξεn+1,

then it is easily verified2 that

Aε = {M (ξ − ε) > 0} =
{

sup
n
Sn (ξε) > 0

}
.

Therefore by an application of the maximal ergodic Lemma 16.8 we have,

−εP (M (ξ) > ε) = E [ξ1 − ε : Aε] = E
[
ξε1 : sup

n
Sn (ξε) > 0

]
≥ 0

which shows P (M (ξ) > ε) = 0.
Now suppose that f ∈ Lp (P ) . To prove the Lp – convergence of the limit in

Eq. (16.4) it suffices by Corollary 12.47 to show
{∣∣ 1
nSn (η)

∣∣p}∞
n=1

is uniformly
integrable. This can be done as in the second solution to Exercise 12.6 (Resnick
§ 6.7, #5). Here are the details.

First observe that {|ηk|p}
∞
k=1 are uniformly integrable. Indeed, by station-

arity,
E [|ηk|p : |ηk|p ≥ a] = E [|η1|p : |η1|p ≥ a]

and therefore

sup
k

E [|ηk|p : |ηk|p ≥ a] = E [|η1|p : |η1|p ≥ a] DCT→ 0 as a→∞.

Thus if ε > 0 is given we may find (see Proposition 12.42) δ > 0 such that
E [|ηk|p : A] ≤ ε whenever A ∈ B with P (A) ≤ δ. Then for such an A, we
have (using Jensen’s inequality relative to normalized counting measure on
{1, 2, . . . , n}),

E
[∣∣∣∣ 1nSn (η)

∣∣∣∣p : A
]
≤ E

[
1
n
Sn (|η|p) : A

]
=

1
n

n∑
k=1

E [|ηk|p : A] ≤ 1
n
nε = ε.

2 Since Aε ⊂ {supSn/n > ε} , it follows that

Aε =

{
sup

Sn
n
> ε

}
∩Aε = {supSn − nε > 0} ∩Aε

= {supSn (ξ − ε) > 0} ∩Aε = {supSn (ξ − ε) 1Aε > 0}

=

{
sup
n
Sn (ξε) > 0

}
.
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Another application of Proposition 12.42 shows
{∣∣ 1
nSn (η)

∣∣p}∞
n=1

is uniformly
integrable as

sup
n

E
∣∣∣∣ 1nSn (η)

∣∣∣∣p ≤ sup
n

1
n

n∑
k=1

E [|ηk|p] = E |η1|p <∞.

Finally we need to consider the case where f ≥ 0 but f /∈ L1 (P ) . As before,
let g = E [f |Bθ] ≥ 0. For r ∈ (0,∞) and let fr := f · 1g≤r. We then have

E [fr|Bθ] = E [f · 1g≤r|Bθ] = 1g≤rE [f · |Bθ] = 1g≤r · g

and in particular, Efr = E (1g≤rg) ≤ r < ∞. Thus by the L1 – case already
proved,

lim
n→∞

1
n

n∑
k=1

fr ◦ θk−1 = 1g≤r · g a.s.

On the other hand, since g is θ –invariant, we see that fr ◦ θk = f ◦ θk · 1g≤r
and therefore

1
n

n∑
k=1

fr ◦ θk−1 =

(
1
n

n∑
k=1

f ◦ θk−1

)
1g≤r.

Using these identities and the fact that r <∞ was arbitrary we may conclude
that

lim
n→∞

1
n

n∑
k=1

f ◦ θk−1 = g a.s. on {g <∞} . (16.5)

To take care of the set where {g =∞} , again let r ∈ (0,∞) but now take
fr = f ∧ r ≤ f. It then follows that

lim inf
n→∞

1
n

n∑
k=1

f ◦ θk−1 ≥ lim inf
n→∞

1
n

n∑
k=1

[
fr ◦ θk−1

]
= E [f ∧ r|Bθ] .

Letting r ↑ ∞ and using the cMCT implies,

lim inf
n→∞

1
n

n∑
k=1

f ◦ θk−1 ≥ E [f |Bθ] = g

and therefore lim infn→∞ 1
n

∑n
k=1 f ◦ θk−1 = ∞ a.s. on {g =∞} . This then

shows that

lim
n→∞

1
n

n∑
k=1

f ◦ θk−1 =∞ = g a.s. on {g =∞} .

which combined with Eq. (16.5) completes the proof.
As a corollary we have the following version of the strong law of large num-

bers, also see Theorems 20.30 and Example 18.78 below for other proofs.

Theorem 16.10 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · ·+Xn. If
Xn are integrable or Xn ≥ 0, then

lim
n→∞

1
n
Sn = EX1 a.s.

and 1
nSn → EX1 in L1 (P ) when E |Xn| <∞.

Proof. We may assume that Ω = RN, B is the product σ – algebra, and
P = µ⊗N where µ = LawP (X1) . In this model, Xn (ω) = ωn for all ω ∈ Ω
and we take θ : Ω → Ω as in Eq. (16.2). Wit this notation we have Xn =
X1 ◦ θn−1 and therefore, Sn =

∑n
k=1X1 ◦ θk−1. So by Birkoff’s ergodic theorem

limn→∞
1
nSn = E [X1|Bθ] =: g a.s.

If A ∈ Bθ, then A = θ−n (A) ∈ σ (Xn+1, Xn+2, . . . ) and therefore A ∈ T =
∩nσ (Xn+1, Xn+2, . . . ) – the tail σ – algebra. However by Kolmogorov’s 0 - 1
law (Proposition 10.46), we know that T is almost trivial and therefore so is
Bθ. Hence we may conclude that g = c a.s. where c ∈ [0,∞] is a constant, see
Lemma 10.45.

If X1 ≥ 0 a.s. and EX1 = ∞ then we must c = E [X1|Bθ] = ∞ a.s. for
if c < ∞, then EX1 = E [E [X1|Bθ]] = E [c] < ∞. When X1 ∈ L1 (P ) , the
convergence in Birkoff’s ergodic theorem is also in L1 and therefore we may
conclude that

c = Ec = lim
n→∞

E
[

1
n
Sn

]
= lim
n→∞

1
n

E [Sn] = EX1.

Thus we have shown in all cases that limn→∞
1
nSn = E [X1|Bθ] = EX1 a.s.
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Part III

Stochastic Processes I





In the sequel (Ω,B, P ) will be a probability space and (S,S) will denote a
measurable space which we refer to as state space. If we say that f : Ω →
S is a function we will always assume that it is B/S – measurable. We also
let Sb denote the bounded S/BR – measurable functions from S to R. On
occasion we will assume that (S,S) is a standard Borel space in order to have
available to us the existence of regular conditional distributions (see Remark
14.16 and Theorem 14.32) and the use of Kolmogorov’s extension Theorem
17.53 for proving the existence of Markov processes.

In the rest of this book we will devote most of our time to studying stochas-
tic processes, i.e. a collection of random variables or more generally random
functions, X := {Xt : Ω → S}t∈T , indexed by some parameter space, T. The
weakest description of such a stochastic process will be through its “finite di-
mensional distributions.”

Definition 16.11. Given a stochastic process, X := {Xt : Ω → S}t∈T , and a
finite subset, Λ ⊂ T, we say that νΛ := LawP

(
{Xt}t∈Λ

)
on
(
SΛ,S⊗Λ

)
is a

finite dimensional distribution of X.

Unless T is a countable or finite set or Xt has some continuity properties
in t, knowledge of the finite dimensional distributions alone is not going to be
adequate for our purposes, however it is a starting point. For now we are going
to restrict our attention to the case where T = N0 or T = R+ := [0,∞) (t ∈ T
is typically interpreted as a time). Later in this part we will further restrict
attention to stochastic processes indexed by N0 leaving the technically more
complicated case where T = R+ to later parts of the book.

Definition 16.12. An increasing (i.e. non-decreasing) sequence {Bt}t∈T of
sub-σ-algebras of B is called a filtration. We will let B∞ := ∨t∈TBt :=
σ (∪t∈TBt) . A four-tuple,

(
Ω,B, {Bt}t∈T , P

)
, where (Ω,B, P ) is a probabil-

ity space and {Bt}t∈T is a filtration is called a filtered probability space. We
say that a stochastic process, {Xt}t∈T , of random functions from Ω → S is
adapted to the filtration if Xt is Bt/S – measurable for every t ∈ T.

A typical way to make a filtration is to start with a stochastic process
{Xt}t∈T and then define BXt := σ (Xs : s ≤ t) . Clearly {Xt}t∈T will always be
adapted to this filtration.

In this part of the book we are going to study stochastic processes with
certain dependency structures. This will take us to the notion of Markov pro-
cesses and martingales. Before starting our study of Markov processes it will be
helpful to record a few more facts about probability kernels.

Given a probability kernel, Q, on S × S (so Q : S × S → [0, 1]), we may
associate a linear transformation, T = TQ : Sb → Sb defined by

(Tf) (x) = Q (x, f) =
∫
S

Q (x, dy) f (y) for all f ∈ Sb. (16.6)

It is easy to check that T satisfies;

1. T1 = 1,
2. Tf ≥ 0 if 0 ≤ f ∈ Sb,
3. if fn ∈ Sb and fn → f boundedly then Tfn → Tf boundedly as well.

Notice that an operator T : Sb → Sb satisfying conditions 1. and 2. above
also satisfies Tf ≤ Tg and Tf is real is f. Indeed if f = f+ − f− is real then

Tf = T (f+ − f−) = Tf+ − Tf−

with 0 ≤ Tf± ∈ R and if f ≤ g then 0 ≤ f − g which implies

Tf − Tg = T (f − g) ≥ 0.

As ±f ≤ |f | when f is real, we have ±Tf ≤ T |f | and therefore |Tf | ≤ T |f | .
More generally if f is complex and x ∈ S, we may choose θ ∈ R such that
eiθ (Tf) (x) ≥ 0 and therefore,

|(Tf) (x)| = eiθ (Tf) (x) =
(
T
[
eiθf

])
(x)

=
(
T Re

[
eiθf

])
(x) + i

(
T Im

[
eiθf

])
(x) .

Furthermore we must have
(
T Im

[
eiθf

])
(x) = 0 and using Re

[
eiθf

]
≤ |f | we

find,
|(Tf) (x)| =

(
T Re

[
eiθf

])
(x) ≤ (T |f |) (x) .

As x ∈ S was arbitrary we have shown that |Tf | ≤ T |f | . Thus if |f | ≤ M for
some 0 ≤M <∞ we may conclude,

|Tf | ≤ T |f | ≤ T (M · 1) = MT1 = M.

Proposition 16.13. If T : Sb → Sb is a linear transformation satisfying the
three properties listed after Eq. (16.6), then Q (x,A) := (T1A) (x) for all A ∈ S
and x ∈ S is a probability kernel such that Eq. (16.6) holds.

The proof of this proposition is straightforward and will be left to the reader.
Let me just remark that if Q (x,A) := (T1A) (x) for all x ∈ S and A ∈ S then
Tf = Q (·, f) for all simple functions in Sb and then by approximation for all
f ∈ Sb.

Corollary 16.14. If Q1 and Q2 are two probability kernels on (S,S)× (S,S) ,
then TQ1TQ2 = TQ where Q is the probability kernel given by

Q (x,A) = (TQ1TQ21A) (x) = Q1 (x,Q2 (·, A))

=
∫
S

Q1 (x, dy)Q2 (y,A)

for all A ∈ S and x ∈ S. We will denote Q by Q1Q2.



From now on we will identify the probability kernel Q : S × S → [0, 1]
with the linear transformation T = TQ and simply write Qf for Q (·, f) . The
last construction that we need involving probability kernels is the following
extension of the notion of product measure.

Proposition 16.15. Suppose that ν is a probability measure on (S,S) and Qk :
S×S → [0, 1] are probability kernels on (S,S)×(S,S) for 1 ≤ k ≤ n. Then there
exists a probability measure µ on

(
Sn+1,S⊗(n+1)

)
such that for all f ∈ S⊗(n+1)

b

we have

µ (f) =
∫
S

dν (x0)
∫
S

Q1 (x0, dx1)
∫
S

Q2 (x1, dx2) ·

. . . ·
∫
S

Qn (xn−1, dxn) f (x0, . . . , xn) . (16.7)

Part of the assertion here is that all functions appearing are bounded and mea-
surable so that all of the above integrals make sense. We will denote µ in the
future by,

dµ (x0, . . . , xn) = dν (x0)Q1 (x0, dx1)Q2 (x1, dx2) . . . Qn (xn−1, dxn) .

Proof. The fact that all of the iterated integrals make sense in Eq. (16.7)
follows from Exercise 14.3, the measurability statements in Fubini’s theorem,
and induction. The measure µ is defined by setting µ (A) = µ (1A) for all A ∈
S⊗(n+1). It is a simple matter to check that µ is a measure on

(
Sn+1,S⊗(n+1)

)
and that

∫
S
fdµ agrees with the right side of Eq. (16.7) for all f ∈ S⊗(n+1)

b .

Remark 16.16. As usual the measure µ is determined by its value on product
functions of the form f (x0, . . . , xn) =

∏n
i=0 fi (xi) with fi ∈ Sb. For such a

function we have

µ (f) = Eν
[
f0Q1Mf1Q2Mf2 . . . Qn−1Mfn−1Qnfn

]
where Mf : Sb → Sb is defined by Mfg = fg, i.e. Mf is multiplication by f.



17

The Markov Property

For purposes of this section, T = N0 or R+,
(
Ω,B, {Bt}t∈T , P

)
is a filtered

probability space, and (S,S) be a measurable space. We will often write t ≥ 0
to mean that t ∈ T. Thus we will often denote a stochastic process by {Xt}t≥0

instead of {Xt}t∈T .

Definition 17.1 (The Markov Property). A stochastic process
{Xt : Ω → S}t∈T is said to satisfy the Markov property if Xt is adapted and

EBsf (Xt) := E [f (Xt) |Bs] = E [f (Xt) |Xs] a.s. for all 0 ≤ s < t (17.1)

and for every f ∈ Sb.

If Eq. (17.1) holds then by the factorization Lemma 6.40 there exists F ∈ Sb
such that F (Xs) = E [f (Xt) |Xs] . Conversely if we want to verify Eq. (17.1) it
suffices to find an F ∈ Sb such that EBsf (Xt) = F (Xs) a.s. This is because,
by the tower property of conditional expectation,

EBsf (Xt) = F (Xs) = E [F (Xs) |Xs] = E [EBsf (Xt) |Xs] = E [f (Xt) |Xs] a.s.
(17.2)

Poetically speaking as stochastic process with the Markov property is forgetful
in the sense that knowing the positions of the process up to some time s ≤ t does
not give any more information about the position of the process, Xt, at time t
than knowing where the process was at time s. We will in fact show (Theorem
17.4 below) that given Xs what the process did before time s is independent of
the what it will do after time s.

Lemma 17.2. If {Xt}t≥0 satisfies the Markov property relative to
the filtration {Bt}t≥0 it also satisfies the Markov property relative to{
BXt = σ (Xs : s ≤ t)

}
t≥0

.

Proof. It is clear that {Xt}t∈T is BXt – adapted and that σ (Xs) ⊂ BXs ⊂ Bs
for all s ∈ T. Therefore using the tower property of conditional expectation we
have,

EBXs f (Xt) = EBXs EBsf (Xt) = EBXs Eσ(Xs)f (Xt) = Eσ(Xs)f (Xt) .

Remark 17.3. If T = N0, a stochastic process {Xn}n≥0 is Markov iff for all
f ∈ Sb,

E [f (Xm+1) |Bm] = E [f (Xm+1) |Xm] a.s. for all m ≥ 0 (17.3)

Indeed if Eq. (17.3) holds for all m, we may use induction on n to show

E [f (Xn) |Bm] = E [f (Xn) |Xm] a.s. for all n ≥ m. (17.4)

It is clear that Eq. (17.4) holds for n = m and n = m+ 1. So now suppose Eq.
(17.4) holds for a given n ≥ m. Using Eq. (17.3) with m = n implies

EBnf (Xn+1) = E [f (Xn+1) |Xn] = F (Xn)

for some F ∈ Sb. Thus by the tower property of conditional expectations and
the induction hypothesis,

EBmf (Xn+1) = EBmEBnf (Xn+1) = EBmF (Xn) = E [F (Xn) |Xm]
= E [EBnf (Xn+1) |Xm] = E [f (Xn+1) |Xm] .

The next theorem and Exercise 17.1 shows that a stochastic process has the
Markov property iff it has the property that given its present state, its past and
future are independent.

Theorem 17.4 (Markov Independence). Suppose that {Xt}t∈T is an
adapted stochastic process with the Markov property and let Fs := σ (Xt : t ≥ s)
be the future σ – algebra. Then Bs is independent of Fs given Xs which we
abbreviate as Bs ⊥⊥

Xs
Fs. In more detail we are asserting the

P (A ∩B|Xs) = P (A|Xs) · P (B|Xs) a.s.

for all A ∈ Bs and B ∈ Fs or equivalently that

E [FG|Xs] = E [F |Xs] · E [G|Xs] a.s. (17.5)

for all F ∈ (Bs)b and G ∈ (Fs)b and s ∈ T.
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Proof. Suppose first that G =
∏n
i=1 gi (Xti) with s < t1 < t2 < · · · < tn and

gi ∈ Sb. Then by the Markov property and the tower property of conditional
expectations,

EBs [G] = EBs

[
n∏
i=1

gi (Xti)

]
= EBsEBtn−1

[
n∏
i=1

gi (Xti)

]

= EBs
n−1∏
i=1

gi (Xti) · EBtn−1
gn (Xtn)

= EBs
n−1∏
i=1

gi (Xti) · E
[
gn (Xtn) |Xtn−1

]
= EBs

n−1∏
i=1

g̃i (Xti)

where g̃i = gi for i < n − 1 and g̃n−1 = gn−1 · g where g is chosen so that
E
[
gn (Xtn) |Xtn−1

]
= g

(
Xtn−1

)
a.s.. Continuing this way inductively we learn

that EBs [G] = F (Xs) a.s. for some F ∈ Sb and therefore,

E [G|Xs] = E [EBsG|Xs] = E [F (Xs) |Xs] = F (Xs) = EBs [G] a.s.

Now suppose that G = g0 (Xs)
∏n
i=1 gi (Xti) where gi ∈ Sb and s < t1 <

t2 < · · · < tn and F ∈ (Bs)b . Then

EBs [FG] = F · EBsG = F · g0 (Xs) EBs

[
n∏
i=1

gi (Xti)

]

= F · g0 (Xs) E

[
n∏
i=1

gi (Xti) |Xs

]

= F · E

[
g0 (Xs)

n∏
i=1

gi (Xti) |Xs

]
= F · E [G|Xs] .

We may now condition this equation on Xs to arrive at Eq. (17.5) for product
functions, G, as above. An application of the multiplicative system Theorem
8.2 may now be used to show that Eq. (17.5) holds for general G ∈ (Fs)b .

Exercise 17.1. Suppose that {Xt}t≥0 is an adapted stochastic process such
that Eq. (17.5) holds for all F ∈ (Bs)b and G ∈ (Fs)b and s ∈ T. Show that
{Xt}t∈T has the Markov property.

17.1 Markov Processes

If S is a standard Borel space (i.e. S is isomorphic to a Borel subset of [0, 1]), we
may a find regular conditional probability kernels, Qs,t on (S,S)×(S,S)→ [0, 1]
for all 0 ≤ s < t such that

E [f (Xt) |Xs] = Qs,t (Xs; f) = (Qs,tf) (Xs) a.s. (17.6)

Moreover by the Markov property if 0 ≤ σ < s < t, then

(Qσ,tf) (Xσ) = E [f (Xt) |Xσ] = E [EBsf (Xt) |Xσ]
= E [(Qstf) (Xs) |Xσ] = (Qσ,sQstf) (Xσ) P – a.s.
= Qσ,s (Xσ;Qs,t (·; f)) , P – a.s.

If we let µt := LawP (Xt) : S → [0, 1] for all t ∈ T, we have just shown that for
every f ∈ Sb, that

Qσ,t (·; f) = Qσ,s (·;Qs,t (·; f)) µσ – a.s. (17.7)

In the sequel we want to assume that such kernels exists and that Eq. (17.7)
holds for everywhere not just µσ – a.s. Thus we make the following definitions.

Definition 17.5 (Markov transition kernels). We say a collection of prob-
ability kernels, {Qs,t}0≤s≤t<∞ , on S × S are Markov transition kernels

if Qs,s (x, dy) = δx (dy) (as an operator Qs,s = ISb) for all s ∈ T and the
Chapmann-Kolmogorov equations hold;

Qσ,t = Qσ,sQs,t for all 0 ≤ σ ≤ s ≤ t. (17.8)

Recall that Eq. (17.8) is equivalent to

Qσ,t (x,A) =
∫
S

Qσ,s (x, dy)Qs,t (y,A) for all x ∈ S and A ∈ S (17.9)

or
Qσ,t (x; f) = Qσ,s (x;Qs,t (·; f)) for all x ∈ S and f ∈ Sb. (17.10)

Thus Markov transition kernels should satisfy Eq. (17.7) everywhere not just
almost everywhere.

The reader should keep in mind that Qσ,t (x,A) represents the jump prob-
ability of starting at x at time σ and ending up in A ∈ S at time t. With this
in mind, Qσ,s (x, dy)Qs,t (y,A) intuitively is the probability of jumping from x
at time s to y at time t followed by a jump into A at time u. Thus Eq. (17.9)
states that averaging these probabilities over the intermediate location (y) of
the particle at time t gives the jump probability of starting at x at time s and
ending up in A ∈ S at time t. This interpretation is rigorously true when S is
a finite or countable set.

Definition 17.6 (Markov process). A Markov process is an adapted
stochastic process, {Xt : Ω → S}t≥0 , with the Markov property such that there
are Markov transition kernels {Qs,t}0≤s≤t<∞ , on S × S such that Eq. (17.6)
holds.
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Definition 17.7. A stochastic process,
{
Xt : Ω → S := Rd

}
t∈T , has indepen-

dent increments if for all finite subsets, Λ = {0 ≤ t0 < t1 < · · · < tn} ⊂ T
the random variables {X0} ∪

{
Xtk −Xtk−1

}n
k=1

are independent. We refer to
Xt −Xs for s < t as an increment of X.

Exercise 17.2. Suppose that
{
Xt : Ω → S := Rd

}
t∈T is a stochastic process

with independent increments and let Bt := BXt for all t ∈ T. Show, for all
0 ≤ s < t, that (Xt −Xs) is independent of BXs and then use this to show
{Xt}t∈T is a Markov process with transition kernels defined by 0 ≤ s ≤ t,

Qs,t (x,A) := E [1A (x+Xt −Xs)] for all A ∈ S and x ∈ Rd. (17.11)

You should verify that {Qs,t}0≤s≤t are indeed Markov transition kernels, i.e.
satisfy the Chapmann-Kolmogorov equations.

Example 17.8 (Random Walks). Suppose that
{
ξn : Ω → S := Rd

}∞
n=0

are in-
dependent random vectors and Xm :=

∑m
k=0 ξk and Bm := σ (ξ0, . . . , ξm) for

each m ∈ T = N0. Then {Xm}m≥0 has independent increments and therefore
has the Markov property with Markov transition kernels being given by

Qs,t (x, f) = E [f (x+Xt −Xs)]

= E

f
x+

∑
s<k≤t

ξk


or in other words,

Qs,t (x, ·) = LawP

x+
∑
s<k≤t

ξk

 .

The one step transition kernels are determined by

(Qn,n+1f) (x) = E [f (x+ ξn+1)] for n ∈ N0.

Exercise 17.3. Let us now suppose that {ξn : Ω → S}∞n=0 are independent
random functions where (S,S) is a general a measurable space, Bn :=
σ (ξ0, ξ1, . . . , ξn) for n ≥ 0, un : S × S → S are measurable functions for n ≥ 1,
and Xn : Ω → S for n ∈ N0 are defined by X0 = ξ0 and then inductively for
n ≥ 1 by

Xn+1 = un+1 (Xn, ξn+1) for n ≥ 0.

Convince yourself that for 0 ≤ m < n there is a measurable function, ϕn,m :
Sn−m+1 → S determined by the {uk} such that Xn = ϕn,m (Xm, ξm+1, . . . , ξn) .
(You need not write the proof of this assertion in your solution.) In particular,

Xn = ϕn,0 (ξ0, . . . , ξn) is Bn/S – measurable so that X = {Xn}n≥0 is adapted.
Show {Xn}n≥0 is a Markov process with transition kernels,

Qm,n (x, ·) = LawP (ϕn,m (x, ξm+1, . . . , ξn)) for all 0 ≤ m ≤ n

where (by definition) Qm,m (x, ·) = δx (·) . Please explicitly verify that
{Qm,n}0≤m≤n are Markov transition kernels, i.e. satisfy the Chapmann-
Kolmogorov equations.

Remark 17.9. Suppose that T = N0 and {Qm,n : 0 ≤ m ≤ n} are Markov tran-
sition kernels on S × S. Since

Qm,n = Qm,m+1Qm+1,m+2 . . . Qn−1,n, (17.12)

it follows that the Qm,n are uniquely determined by knowing the one step tran-
sition kernels, {Qn,n+1}∞n=0 . Conversely if {Qn,n+1}∞n=0 are arbitrarily given
probability kernels on S × S and Qm,n are defined as in Eq. (17.12), then the
resulting {Qm,n : 0 ≤ m ≤ n} are Markov transition kernels on S×S. Moreover
if S is a countable set, then we may let

qm,n (x, y) := Qm,n (x, {y}) = P (Xn = y|Xm = x) for all x, y ∈ S (17.13)

so that
Qm,n (x,A) =

∑
y∈A

qm,n (x, y) .

In this case it is easily checked that

qm,n (x, y)

=
∑

xi∈S:m<i<n

qm,m+1 (x, xm+1) qm+1,m+2 (xm+1, xm+2) . . . qn−1,n (xn−1, y) .

(17.14)

The reader should observe that this is simply matrix multiplication!

Exercise 17.4 (Polya’s Urn). Suppose that an urn contains r red balls and
g green balls. At each time (t ∈ T = N0) we draw a ball out, then replace it and
add c more balls of the color drawn. It is reasonable to model this as a Markov
process with S := N0×N0 and Xn := (rn, gn) ∈ S being the number of red and
green balls respectively in the earn at time n. Find

qn,n+1 ((r, g) , (r′, g′)) = P (Xn+1 = (r′, g′) |Xn = (r, g))

for this model.
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Theorem 17.10 (Finite Dimensional Distributions). Suppose that X =
{Xt}t≥0 is a Markov process with Markov transition kernels {Qs,t}0≤s≤t . Fur-
ther let ν := LawP (X0) , then for all 0 = t0 < t1 < t2 < · · · < tn we have

LawP (Xt0 , Xt1 , . . . , Xtn) (dx0, dx1, . . . , dxn) = dν (x0)
n∏
i=1

Qti−1,ti (xi−1, dxi)

(17.15)
or equivalently,

E [f (Xt0 , Xt1 , . . . , Xtn)] =
∫
Sn+1

f (x0, x1, . . . , xn) dν (x0)
n∏
i=1

Qti−1,ti (xi−1, dxi)

(17.16)
for all f ∈ S⊗(n+1)

b .

Proof. Because of the multiplicative system Theorem 8.2, it suffices to prove
Eq. (17.16) for functions of the form f (x1, . . . , xn) =

∏n
i=0 fi (xi) where fi ∈ Sb.

The proof is now easily completed by induction on n. It is true for n = 0 by
definition of ν. Now assume it is true for some n−1 ≥ 0. We then have, making
use of the inductive hypothesis, that

E [f (Xt0 , Xt1 , . . . , Xtn)]

= EEBtn−1

[
n∏
i=0

fi (Xti)

]

= E

[
Qtn−1,tn

(
Xtn−1 , fn

)
·
n−1∏
i=0

fi (Xti)

]

=
∫
Sn
Qtn−1,tn (xn−1, fn) ·

n−1∏
i=0

fi (xi) dν (x0)
n−1∏
i=1

Qti−1,ti (xi−1, dxi)

=
∫
Sn

[∫
S

Qtn−1,tn (xn−1, dxn) fn (xn)
]
·
n−1∏
i=0

fi (xi) dν (x0)
n−1∏
i=1

Qti−1,ti (xi−1, dxi)

=
∫
Sn+1

f (x0, x1, . . . , xn) dν (x0)
n∏
i=1

Qti−1,ti (xi−1, dxi)

as desired.

Theorem 17.11. Suppose that {Qs,t}0≤s≤t are Markov transition kernels on
a standard Borel space, (S,S) . Let Ω := ST , Xt : Ω → S be the projection
map, Xt (ω) = ω (t) and Bt = BXt = σ (Xs : s ≤ t) for all t ∈ T and B :=
S⊗T = σ (Xt : t ∈ T ) . Then to each probability measure, ν, on (S,S) there
exists a unique probability measure Pν on (Ω,B) such that 1) LawPν (X0) = ν

and 2) {Xt}t≥0 is a Markov process having {Qs,t}0≤s≤t as its Markov transition
kernels.

Proof. This is mainly an exercise in applying Kolmogorov’s extension Theo-
rem 17.53 as described in the appendix to this chapter. I will only briefly sketch
the proof here.

For each Λ = {0 = t0 < t1 < t2 < · · · < tn} ⊂ T, let PΛ be the measure on(
Sn+1,S⊗(n+1)

)
defined by

dPΛ (x0, x1, . . . , xn) = dν (x0)
n∏
i=1

Qti−1,ti (xi−1, dxi) .

Using the Chapman-Kolmogorov equations one shows that the {PΛ}Λ⊂fT (Λ ⊂f
T denotes a finite subset of T ) are consistently defined measures as described
in the statement of Theorem 17.53. Therefore it follows by an application of
that theorem that there exists a unique measure Pν on (Ω,B) such that

LawPν (X|Λ) = PΛ for all Λ ⊂f T. (17.17)

In light of Theorem 17.10, in order to finish the proof we need only show
that {Xt}t≥0 is a Markov process having {Qs,t}0≤s≤t as its Markov transition
kernels. Since if this is this case it finite dimensional distributions must be given
as in Eq. (17.17) and therefore Pν is uniquely determined. So let us now verify
the desired Markov property.

Again let Λ = {0 = t0 < t1 < t2 < · · · < tn} ⊂ T with tn−1 = s < t = tn
and suppose that f (x0, . . . , xn) = h (x0, . . . , xn−1) g (xn) with h ∈ S⊗nb and
f ∈ Sb. By the definition of Pν we then have (writing Eν for EPν ),

Eν
[
h
(
Xt0 , Xt1 , . . . , Xtn−1

)
g (Xt)

]
=
∫
Sn+1

h (x0, x1, . . . , xn−1) g (xn) dν (x0)
n∏
i=1

Qti−1,ti (xi−1, dxi)

=
∫
Sn
h (x0, x1, . . . , xn−1)Qtn−1,tn (xn−1, g) dν (x0)

n−1∏
i=1

Qti−1,ti (xi−1, dxi)

= Eν
[
h
(
Xt0 , Xt1 , . . . , Xtn−1

)
Qtn−1,tn

(
Xtn−1 , g

)]
= Eν

[
h
(
Xt0 , Xt1 , . . . , Xtn−1

)
Qs,t (Xs, g)

]
It then follows by an application of the multiplicative system theorem that

Eν [Hg (Xt)] = Eν [HQs,t (Xs, g)] for all H ∈ (Bs)b

and therefore that
Eν [g (Xt) |Bs] = Qs,t (Xs, g) a.s.
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We are now going to specialize to the more manageable class of “time ho-
mogeneous” Markov processes.

Definition 17.12. We say that a collection of Markov transition kernels,
{Qs,t}0≤s≤t are time homogeneous if Qs,t = Q0,t−s for all 0 ≤ s ≤ t. In
this case we usually let Qt := Q0,t−s. The condition that Qs,s (x, ·) = δx now
reduces to Q0 (x, ·) = δx and the Chapmann-Kolmogorov equations reduce to

QsQt = Qs+t for all s, t ≥ 0, (17.18)

i.e. ∫
S

Qs (x, dy)Qt (y,A) = Qs+t (x,A) for all s, t ≥ 0, x ∈ S, and A ∈ S.

(17.19)
A collection of operators {Qt}t≥0 with Q0 = Id satisfying Eq. (17.18) is called
a one parameter semi-group.

Definition 17.13. A Markov process is time homogeneous if it has time
homogeneous Markov transition kernels. In this case we will have,

E [f (Xt) |Bs] = Qt−s (Xs, f) = (Qt−sf) (Xs) a.s. (17.20)

for all 0 ≤ s ≤ t and f ∈ Sb.

Theorem 17.14 (The time homogeneous Markov property). Suppose
that (S,S) is a measurable space, Qt : S × S → [0, 1] are time homoge-
neous Markov transition kernels,

(
Ω,B, {Bt}t≥0

)
is a filtered measure space,

{Xt : Ω → S}t≥0 are adapted functions, and for each x ∈ S there exists a prob-
ability measure, Px on (Ω,B) such that;

1. X0 (ω) = x for Px – a.e. ω and
2. {Xt}tε0 is a time homogeneous Markov process with transition kernels
{Qt}t≥0 relative to Px.

Let us further suppose that P is any probability measure on (Ω,B) such that
{Xt}t≥0 is a time homogeneous Markov process with transition kernels being
{Qt} . Then for all F ∈ S⊗Tb and t ≥ 0 we have that S 3 x→ ExF (X) is S/BR
– measurable and

EP [F (Xt+·) |Bt] = EP [F (Xt+·) |Xt] = EXt [F (X)] P – a.s. (17.21)

Warning: In this equation EXt does not denote Eσ(Xt) = E [·|Xt] but
instead1 it means the composition of Xt with the function S 3 x→ Ex [F (X)] ∈
R. In more detail we are saying,

EP [F (Xt+·) |Bt] (ω) = EXt(ω) [F (X)]

=
∫
Ω

F (X (ω′)) PXt(ω) (dω′) .

Proof. Let νt = LawP (Xt) . If g ∈ Sb, f ∈ S⊗(n+1)
b , and F (X) :=

f (Xt0 , . . . , Xtn) , then

EP [g (Xt)F (Xt+·)] = EP [g (Xt) f (Xt0+t, . . . , Xtn+t)]

=
∫
g (x0) f (x0, . . . , xn) dνt (x0)

n∏
j=1

Qtj−tj−1 (xj−1, dxj)

=
∫
dνt (x0) g (x0) Ex0f (Xt0 , . . . , Xtn)

=
∫
dνt (x0) g (x0) Ex0F (X) = Ex [g (Xt) EXtF (X)] .

An application of the multiplicative systems Theorem 8.2 shows this equation
is valid for all F ∈ S⊗Tb and this tells us that

EP [F (Xt+·) |Xt] = EXtF (X) Px – a.s.

for all F ∈ S⊗Tb .

Now suppose that G ∈ (Bt)b and F ∈ S⊗Tb . As F (Xt+·) ∈ (Ft)b it follows
by Theorem 17.4 that

EP [G · F (Xt+·) |Xt] = EP [G|Xt] · EP [F (Xt+·) |Xt] a.s.

Thus we may conclude that

EP [G · F (Xt+·)] = EP [EP [G|Xt] · EP [F (Xt+·) |Xt]]
= EP [EP [G|Xt] · EXtF (X)]
= EP [EP [EXtF (X) ·G|Xt]] = EP [EXt [F (X)] ·G] .

This being valid for all G ∈ (Bt)b is equivalent to Eq. (17.21).

1 Unfortunately we now have a lot of different meanings for Eξ depending on what ξ
happens to be. So if ξ = P is a measure then EP stands for expectation relative to
P. If ξ = G is a σ – algebra it stands for conditional expectation relative to G and
a given probability measure which not indicated in the notation. Finally if x ∈ S
we are writing Ex for EPx .
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Remark 17.15. Admittedly Theorem 17.14 is a bit hard to parse on first reading.
Therefore it is useful to rephrase what it says in the case that the state space,
S, is finite or countable and x ∈ S and t > 0 are such that P (Xt = x) > 0.
Under these additional hypothesis we may combine Theorems 17.4 and 17.14
to find {Xs}s≤t and {Xs}s≥t are P (·|Xt = x) – independent and moreover,

LawP (·|Xt=x) (Xt+·) = LawPx (X·) . (17.22)

Last assertion simply states that given Xt = x the process, X, after time t
behaves just like the process starting afresh from x.

17.2 Discrete Time Homogeneous Markov Processes

The proof of the following easy lemma is left to the reader.

Lemma 17.16. If Qn : S × S → [0, 1] for n ∈ N0 are time homogeneous
Markov kernels then Qn = Qn where Q := Q1 and Q0 := I. Conversely if Q is
a probability kernel on S × S then Qn := Qn for n ∈ N0 are time homogeneous
Markov kernels.

Example 17.17 (Random Walks Revisited). Suppose that ξ0 : Ω → S := Rd is
independent of

{
ξn : Ω → S := Rd

}∞
n=1

which are now assumed to be i.i.d. If
Xm =

∑m
k=0 ξk is as in Example 17.8, then {Xm}m≥0 is a time homogeneous

Markov process with

Qm (x, ·) = LawP (Xm −X0)

and the one step transition kernel, Q = Q1, is given by

Qf (x) = Q (x, f) = E [f (x+ ξ1)] =
∫
S

f (x+ y) dρ (y)

where ρ := LawP (ξ1) . For example if d = 1 and P (ξi = 1) = p and
P (ξi = −1) = q := 1 − p for some 0 ≤ p ≤ 1, then we may take S = Z
and we then have

Qf (x) = Q (x, f) = pf (x+ 1) + qf (x− 1) .

Example 17.18 (Ehrenfest Urn Model). Let a beaker filled with a particle fluid
mixture be divided into two parts A and B by a semipermeable membrane. Let
Xn = (# of particles in A) which we assume evolves by choosing a particle at
random from A ∪ B and then replacing this particle in the opposite bin from
which it was found. Modeling {Xn} as a Markov process we find,

P (Xn+1 = j | Xn = i) =


0 if j /∈ {i− 1, i+ 1}
i
N if j = i− 1
N−i
N if j = i+ 1

=: q (i, j)

As these probabilities do not depend on n, {Xn} is a time homogeneous Markov
chain.

Exercise 17.5. Consider a rat in a maze consisting of 7 rooms which is laid
out as in the following figure.  1 2 3

4 5 6
7


In this figure rooms are connected by either vertical or horizontal adjacent
passages only, so that 1 is connected to 2 and 4 but not to 5 and 7 is only
connected to 4. At each time t ∈ N0 the rat moves from her current room to
one of the adjacent rooms with equal probability (the rat always changes rooms
at each time step). Find the one step 7 × 7 transition matrix, q, with entries
given by q (i, j) := P (Xn+1 = j|Xn = i) , where Xn denotes the room the rat
is in at time n.

Solution to Exercise (17.5). The rat moves to an adjacent room from near-
est neighbor locations probability being 1/D where D is the number of doors in
the room where the rat is currently located. The transition matrix is therefore,

q =

1 2 3 4 5 6 7

0 1/2 0 1/2 0 0 0
1/3 0 1/3 0 1/3 0 0
0 1/2 0 0 0 1/2 0

1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0
0 0 0 1 0 0 0



1
2
3
4
5
6
7

. (17.23)

and the corresponding jump diagram is given in Figure 17.1.

Exercise 17.6 (2 - step MC). Consider the following simple (i.e. no-brainer)
two state “game” consisting of moving between two sites labeled 1 and 2. At
each site you find a coin with sides labeled 1 and 2. The probability of flipping a
2 at site 1 is a ∈ (0, 1) and a 1 at site 2 is b ∈ (0, 1). If you are at site i at time n,
then you flip the coin at this site and move or stay at the current site as indicated
by coin toss. We summarize this scheme by the “jump diagram” of Figure 17.2.
It is reasonable to suppose that your location, Xn, at time n is modeled by a
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Fig. 17.1. The jump diagram for our rat in the maze.

GFED@ABC11−a
22

a
++ GFED@ABC2

b

kk 1−b
ll

Fig. 17.2. The generic jump diagram for a two state Markov chain.

Markov process with state space, S = {1, 2} . Explain (briefly) why this is a
time homogeneous chain and find the one step transition probabilities,

q (i, j) = P (Xn+1 = j|Xn = i) for i, j ∈ S.

Use your result and basic linear (matrix) algebra to compute,
limn→∞ P (Xn = 1) . Your answer should be independent of the possible
starting distributions, ν = (ν1, ν2) for X0 where νi := P (X0 = i) .

17.3 Continuous time homogeneous Markov processes

An analogous (to Lemma 17.16) “infinitesimal description” of time homoge-
neous Markov kernels in the continuous time case can involve a considerable
number of technicalities. Nevertheless, in this section we are going to ignore
these difficulties in order to give a general impression of how the story goes. We
will cover more precisely the missing details later.

So let {Qt}t∈R+
be time homogeneous collection of Markov transition ker-

nels. We define the infinitesimal generator of {Qt}t≥0 by,

Af :=
d

dt
|0+Qtf = lim

t↓0

Qtf − f
t

. (17.24)

For now we make the (often unreasonable assumption) that the limit in Eq.
(17.24) holds for all f ∈ Sb. This assumption is OK when S is a finite or

sometimes even a countable state space. For more complicated states spaces we
will have to restrict the set of f ∈ Sb that we consider when computing Af by
Eq. ( 17.24). You should get a feeling for this issue by working through Exercise
17.8 which involves “Brownian motion.”

Since we are assuming d
dt |0+Qtf exists we must also have limt↓0Qtf = f.

More generally for t, h > 0, using the semi-group property, we have

Qt+h −Qt = (Qh − I)Qt = Qt (Qh − I) (17.25)

and therefore,

Qt+hf −Qtf = (Qh − I)Qtf → 0 as h ↓ 0

so that Qtf is right continuous. Similarly,

Qt−h −Qt = − (Qh − I)Qt−h = −Qt−h (Qh − I) (17.26)

and

|Qt−hf −Qtf | = |Qt−h (Qh − I) f | ≤ |Qt−h |(Qh − I) f || ≤ sup
S
|(Qh − I) f |

which will tend to zero as h ↓ 0 provided Qhf → f uniformly (another fantasy
in general). With this as justification we will assume that t→ Qtf is continuous
in t.

Taking Eq. (17.25) divided by h and Eq. (17.26) divided by −h and then
letting h ↓ 0 implies, (

d

dt

)
+

Qtf = AQtf = QtAf

and (
d

dt

)
−
Qt = AQt = QtA.

where
(
d
dt

)
+

and
(
d
dt

)
− denote the right and left derivatives at t. So in principle

we can expect that {Qt}t≥0 is uniquely determined by its infinitesimal generator
A by solving the differential equation,

d

dt
Qt = AQt = QtA with Q0 = Id. (17.27)

Assuming all of this works out as sketched, it is now reasonable to denote Qt
by etA. Let us now give a few examples to illustrate the discussion above.

Example 17.19. Suppose that S = {1, 2, . . . , n} and Qt is a Markov-semi-group
with infinitesimal generator, A, so that d

dtQt = AQt = QtA. By assumption
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238 17 The Markov Property

Qt (i, j) ≥ 0 for all i, j ∈ S and
∑n
j=1Qt (i, j) = 1 for all i ∈ S. We may write

this last condition as Qt1 = 1 for all t ≥ 0 where 1 denotes the vector in Rn
with all entries being 1. Differentiating Qt1 = 1 at t = 0 shows that A1 = 0,
i.e.

∑n
j=1Aij = 0 for all i ∈ S. Since

Aij = lim
t↓0

Qt (i, j)− δij
t

if i 6= j we will have,

Aij = lim
t↓0

Qt (i, j)
t

≥ 0.

Thus we have shown the infinitesimal generator, A, of Qt must satisfy Aij ≥ 0
for all i 6= j and

∑n
j=1Aij = 0 for all i ∈ S. You are asked to prove the converse

in Exercise 17.7.

Exercise 17.7. Suppose that S = {1, 2, . . . , n} and A is a matrix such that
Aij ≥ 0 for i 6= j and

∑n
j=1Aij = 0 for all i. Show

Qt = etA :=
∞∑
n=0

tn

n!
An (17.28)

is a time homogeneous Markov kernel.
Hints: 1. To show Qt (i, j) ≥ 0 for all t ≥ 0 and i, j ∈ S, write Qt =

e−tλet(λI+A) where λ > 0 is chosen so that λI + A has only non-negative
entries. 2. To show

∑
j∈S Qt (i, j) = 1, compute d

dtQt1.

Example 17.20 (Poisson Process). By Exercise 17.2, it follows that Poisson pro-
cess, {Nt ∈ S := N0}t≥0 with intensity λ has the Markov property. For all
0 ≤ s ≤ t we have,

P (Nt = y|Ns = x) = P (Ns +Nt −Ns = y|Ns = x)
= P (Ns +Nt −Ns = y|Ns = x)
= P (Nt −Ns = y − x|Ns = x)

= 1y≥x
(λ (t− s))y−x

(y − x)!
e−λ(t−s) =: qt−s (x, y) .

With this notation it follows that

P (f (Nt) |Ns) = (Qt−sf) (Ns)

where

Qtf (x) =
∑
y∈S

qt (x, y) f (y)

=
∑
y∈S

1y≥x
(λt)y−x

(y − x)!
e−λtf (y)

=
∞∑
n=0

(λt)n

n!
e−λtf (x+ n) . (17.29)

In particular {Nt}t≥0 is a time homogeneous Markov process. It is easy (but
technically unnecessary) to directly verify the semi-group property;

(qtqs) (x, z) :=
∑
y∈S

qt (x, y) qs (y, z) = qs+t (x, z) .

This can be done using the binomial theorem as follows;∑
y∈S

qt (x, y) qs (y, z) =
∑
z∈S

1y≥x
(λt)y−x

(y − x)!
e−λt · 1z≥y

(λs)z−y

(z − y)!
e−λs

=
∞∑
n=0

(λt)n

n!
e−λt · 1z≥x+n

(λs)z−x−n

(z − x− n)!
e−λs

= 1z≥xe−λ(t+s)
z−x∑
n=0

(λt)n

n!
(λs)z−x−n

(z − x− n)!

= 1z≥xe−λ(t+s) (λ (t+ s))z−x

(z − x)!
= qs+t (x, z) .

To identify infinitesimal generator, A = d
dt |0+Qt, in this example observe

that

d

dt
Qtf (x) =

d

dt

[
e−λt

∞∑
n=0

(λt)n

n!
f (x+ n)

]

= −λQtf (x) + λe−λt
∞∑
n=0

n (λt)n−1

n!
f (x+ n)

= −λQtf (x) + λe−λt
∞∑
n=0

(λt)n

n!
f (x+ n+ 1)

= −λQtf (x) + λ (Qtf) (x+ 1)
= Qt [λf (·+ 1)− λf (·)] (x)

and hence
Af (x) = λ (f (x+ 1)− f (x)) .
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17.3 Continuous time homogeneous Markov processes 239

Finally let us try to solve Eq. (17.27) in order to recover Qt from A. Formally
we can hope that Qt = etA where etA is given as its power series expansion. To
simplify the computation it convenient to write A = λ (T − I) where If = f
and Tf = f (·+ 1) . Since I and T commute we further expect

etA = eλt(T−I) = e−λtIeλtT = e−λteλtT

where (
eλtT f

)
(x) =

∞∑
n=0

(λt)n

n!
(Tnf) (x)

=
∞∑
n=0

(λt)n

n!
f (x+ n) .

Putting this all together we find(
etAf

)
(x) = e−λt

∞∑
n=0

(λt)n

n!
f (x+ n)

which is indeed in agreement with Qtf (x) as we saw in Eq. (17.29).

Definition 17.21 (Brownian Motion). Let
(
Ω,B, {Bt}t∈R+

, P
)

be a fil-
tered probability space. A real valued adapted process, {Xt : Ω → S = R}t∈R+

,
is called a Brownian motion if;

1. {Xt}t∈R+
has independent increments,

2. for 0 ≤ s < t, Xt −Xs
d= N (0, t− s) , i.e. Xt −Xs is a normal mean zero

random variable with variance (t− s) ,
3. t→ Xt (ω) is continuous for all ω ∈ Ω.

Exercise 17.8 (Brownian Motion). Assuming a Brownian motion {Bt}t≥0

exists as described in Definition 17.21 show;

1. The process is a time homogeneous Markov process with transition kernels
given by;

Qt (x, dy) = qt (x, y) dy (17.30)

where
qt (x, y) =

1√
2πt

e−
1
2t |y−x|

2
. (17.31)

2. Show by direct computation that QtQs = Qt+s for all s, t > 0.2 Hint:
one of the many ways to do this it to use basic facts you have already

2 Once this is done the existence of a process {Bt}t≥0 satisfying items 1. and 2. of
Definition 17.21 (but not the path continuity property in item 3.) is a consequence
of Theorem 17.11. To get the path continuity requires more work which will be
done later.

proved about sums of independent Gaussian random variables along with
the identity,

(Qtf) (x) = E
[
f
(
x+
√
tZ
)]
,

where Z d= N (0, 1) .
3. Show by direct computation that qt (x, y) satisfies the heat equation,

d

dt
qt (x, y) =

1
2
d2

dx2
qt (x, y) =

1
2
d2

dy2
qt (x, y) for t > 0.

4. Suppose that f : R→ R is a twice continuously differentiable function with
compact support. Show

d

dt
Qtf = AQtf = QtAf for all t > 0,

where
Af (x) =

1
2
f ′′ (x) .

Modulo technical details, Exercise 17.8 shows that A = 1
2
d2

dx2 is the infinites-
imal generator of Brownian motion, i.e. of Qt in Eqs. (17.30) and (17.31). The
technical details we have ignored involve the proper function spaces in which to
carry out these computations along with a proper description of the domain of
the operator A. We will have to postpone these somewhat delicate issues until
later. By the way it is no longer necessarily a good idea to try to recover Qt
as
∑∞
n=0

tn

n!A
n in this example since in order for

∑∞
n=0

tn

n!A
nf to make sense

one needs to assume that f is a least C∞ and even this will not guarantee
convergence of the sum.

A Lévy process is a generalization of this type a process. A Lévy process
is a process with independent stationary increments which has right continuous
paths.

Example 17.22. If {Nt}t≥0 is a Poisson process and {Bt}t≥0 is a Brownian mo-
tion which is independent of {Nt}t≥0 , then Xt = Bt + Nt is a Lévy process,
i.e. has independent stationary increments and is right continuous. The process
X is a time homogeneous Markov process with Markov transition kernels given
by;
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(Qtf) (x) = Ef (x+Nt +Bt) =
∫

R

1√
2πt

e−
1
2t |y|

2
E [f (x+ y +Nt)] dy

=
e−λt√

2πt

∞∑
n=0

∫
R
e−

1
2t |y|

2 (λt)n

n!
f (x+ y + n) dy

=
e−λt√

2πt

∞∑
n=0

∫
R
e−

1
2t |y−n|

2 (λt)n

n!
f (x+ y) dy

=
∫

R
qt (x, y) f (y) dy

where

qt (x, y) =
e−λt√

2πt

∞∑
n=0

(λt)n

n!
e−

1
2t |y−n|

2
.

The infinitesimal generator, A = d
dt |0+Qt of this process satisfies,

(Af) (x) =
1
2
f ′′ (x) + λ (f (x+ 1)− f (x))

at least for all f ∈ C2
c (R) . This example will be significantly generalized in

Theorem 17.27 below.

In order to continue with giving examples in the continuous time case we
will need a simple measure theoretic result.

Lemma 17.23. If Ω is a set, Ω0 ⊂ Ω, and B0 is a σ – algebra on Ω0, then
B̃0 := {A ⊂ Ω : A ∩Ω0 ∈ B0} is a σ – algebra on Ω. Moreover, f : Ω → R is
B̃0 – measurable iff f |Ω0 is B0 measurable.

Proof. It is clear that ∅, Ω ∈ B̃0 and that B̃0 is closed under countable unions
since An ∈ B̃0 iff An ∩ Ω0 ∈ B0 which implies [∪An] ∩ Ω0 = ∪ [An ∩Ω0] ∈ B0

and this implies that [∪An] ∈ B̃0. Lastly if A ∈ B̃0 then A ∩ Ω0 ∈ B̃0 implies
that

Ac ∩Ω0 = Ω0 \A = Ω0 \ [A ∩Ω0] ∈ B0

and therefore A ∈ B̃0.
For the second assertion, let us observe that for W ∈ BR we have

f−1 (W ) ∩Ω0 = f |−1
Ω0

(W )

so that f−1 (W ) ∈ B̃0 iff f−1 (W ) ∩ Ω0 ∈ B0 iff f |−1
Ω0

(W ) ∈ B0. It now clearly
follows that f : Ω → R is B̃0 – measurable iff f |Ω0 is B0 measurable.

Definition 17.24. Suppose that Ω =
∑∞
n=0Ωn and Bn is a σ – algebra on

Ωn for all n. Then we let ⊕∞n=0Bn =: B be the σ – algebra on Ω such that
A ⊂ Ω is measurable iff A∩Ωn ∈ Bn for all n. That is to say B = ∩∞n=0B̃n with
B̃n = {A ⊂ Ω : A ∩Ωn ∈ Bn} .

From Lemma 17.23 it follows that f : Ω → R is ⊕∞n=0Bn – measurable iff
f−1 (W ) ∈ B̃n for all n iff f |−1

Ωn
(W ) ∈ Bn for all n iff f |Ωn is Bn – measurable

for all n. We in fact do not really use any properties of Ωn for these statements
it is not even necessary for n to run over a countable index set!

Theorem 17.25. Suppose that
(
Ω,
{
B̂n
}
n∈N0

,B, P, {Yn : Ω → S}n∈N0

)
is a

time homogeneous Markov chain with one step transition kernel, Q̂. Further
suppose that {Nt}t≥0 is a Poisson process with parameter λ which is independent
of B̂∞ := ∨nB̂n. Let Bt be the σ – algebra on Ω such that

[Bt]Nt=n :=
[
σ
(
Ns : s ≤ t & B̂n

)]
Nt=n

.

To be more explicit, A ⊂ Ω is in Bt iff

A ∩ {Nt = n} ∈ σ
(
Ns : s ≤ t & B̂n

)
for all n ∈ N0.

Finally let Xt := YNt for t ∈ R+. Then {Bt}t∈R+
is a filtration, {Xt}t≥0 is

adapted to this filtration and is time homogeneous Markov process with transi-
tion semi-group given by

Qt = e−λt
∞∑
n=0

(λt)n

n!
Q̂n = e−λteλtQ̂ = etλ(Q̂−I).

Proof. Let us begin by showing that Bt is increasing. If 0 ≤ s < t and
A ∈ Bs then A ∩ {Ns = m} ∈ σ

(
Nr : r ≤ s & B̂m

)
therefore, for n ≥ m, we

have

A ∩ {Ns = m} ∩ {Nt = n} ∈ σ
(
Nr : r ≤ t & B̂m

)
⊂ σ

(
Nr : r ≤ t & B̂n

)
and therefore,

A ∩ {Nt = n} = ∪m≤n [A ∩ {Ns = m} ∩ {Nt = n}] ∈ σ
(
Nr : r ≤ t & B̂n

)
for all n ∈ N0. Thus we have shown A ∈ Bt and therefore Bs ⊂ Bt for all s ≤ t.
Since Xt|Nt=n = Yn|Nt=n is σ

(
Nr : r ≤ t & B̂n

)
– measurable for all n ∈ N0,

it follows by Lemma 17.23 that Xt is Bt – measurable.
We now need to show that Markov property. To this end let t ≥ s, f ∈ Sb

and g ∈ (Bs)b . Then for each n ∈ N0, we have g|Ns=n ∈ σ
(
Nr : r ≤ s & B̂n

)
and therefore,
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E [f (Xt) g] =
∞∑

m,n=0

E [f (Xt) · g : Ns = n, Nt −Ns = m]

=
∞∑

m,n=0

E [f (Yn+m) 1Nt−Ns=m · g · 1Ns=n]

=
∞∑

m,n=0

P (Nt −Ns = m) E [f (Yn+m) · g · 1Ns=n]

=
∞∑

m,n=0

e−λ(t−s) (λ (t− s))m

m!
E
[(
Q̂mf

)
(Yn) · g · 1Ns=n

]
=
∞∑
n=0

E [(Qt−sf) (Yn) · g · 1Ns=n] = E [(Qt−sf) (YNs) · g]

= E [(Qt−sf) (Xs) · g] .

This shows that

E [f (Xt) |Bs] = (Qt−sf) (Xs) P – a.s.

which completes the proof.

Corollary 17.26. Suppose that S is countable or finite and a : S×S → R is a
function such that a (x, y) ≥ 0 for all x 6= y, and there exists λ <∞ such that

ax :=
∑
y 6=x

a (x, y) ≤ λ for all x ∈ S.

Let us now define a (x, x) = −ax and A : Sb → Sb by

Af (x) :=
∑
y∈S

a (x, y) f (y) =
∑
y 6=x

a (x, y) [f (y)− f (x)] for all x ∈ S.

Then;

1. The functions, q̂ : S × S → [0, 1] defined by

q̂ (x, y) :=
{
λ−1a (x, y) if x 6= y
1− λ−1ax if x = y

are the matrix elements of a one step Markov transition kernel, Q̂, i.e.
Q̂ : Sb → Sb is defined by

Q̂f (x) =
∑
y∈S

q (x, y) f (y) .

In this operator theoretic notation we have A = λ
(
Q̂− I

)
.

2. If {Yn}∞n=0 is a time homogeneous Markov chain with one step transition
kernel, Q̂, and {Nt}t≥0 is an independent Poisson process with intensity
λ, then Xt := YNt is a time homogeneous Markov process with transition
kernels,

Qt = etA = e−tλetλQ̂.

In particular, A is the infinitesimal generator of a Markov transition semi-
group.

Notice that

0 ≤ etλQ̂ (x, y) =
∞∑
n=0

(tλ)n

n!
Q̂n (x, y)

and ∑
y∈S

etλQ̂ (x, y) =
∑
y∈S

∞∑
n=0

(tλ)n

n!
Q̂n (x, y)

=
∞∑
n=0

(tλ)n

n!

∑
y∈S

Q̂n (x, y) =
∞∑
n=0

(tλ)n

n!
1 = etλ

so that Qt (x, y) ≥ 0 for all x, y and
∑
y∈S Qt (x, y) = 1 for all x ∈ S as must

be the case.
The compound Poisson process in the next theorem gives another example

of a Lévy process an example of the construction in Theorem 17.25. (The reader
should compare the following result with Theorem 23.32 below.)

Theorem 17.27 (Compound Poisson Process). Suppose that {Zi}∞i=1 are
i.i.d. random vectors in Rd and {Nt}t≥0 be an independent Poisson process with
intensity λ. Further let Z0 : Ω → Rd be independent of {Nt}t≥0 and the {Zi}∞i=1

and then define, for t ∈ R+,

Bt = ⊕∞n=0 [σ (Ns : s ≤ t, Z0, . . . , Zn)]
{Nt=n}

and Xt := SNt where Sn := Z0 +Z1 + · · ·+Zn. Then {Bt}t≥0 is a filtration (i.e.
it is increasing), {Xt}t≥0 is a Bt – adapted process such that for all 0 ≤ s < t,
Xt − Xs is independent of Bs. The increments are stationary and therefore
{Xt}t≥0 is a Lévy process. The time homogeneous transition kernel is given by

(Qtf) (x) = E [f (x+ Z1 + · · ·+ ZNt)]

=
∞∑
n=0

(λt)n

n!
e−λtE [f (x+ Z1 + · · ·+ Zn)] .

If we define
(
Q̂f
)

(x) := E [f (x+ Z1)] , the above equation may be written as,
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Qt = e−λt
∞∑
n=0

(λt)n

n!
Q̂n = eλt(Q̂−I).

Proof. Let us begin by showing that Bt is increasing. First observe that

[σ (Ns : s ≤ t, Z0, . . . , Zn)]
{Nt=n}

= {A ⊂ {Nt = n} : A ∈ σ (Ns : s ≤ t, Z0, . . . , Zn)} .

If 0 ≤ s < t and A ∈ Bs then A ∩ {Ns = m} ∈ σ (Nr : r ≤ s, Z0, . . . , Zm)
therefore, for n ≥ m, we have

A∩{Ns = m}∩{Nt = n} ∈ σ (Nr : r ≤ t, Z0, . . . , Zm) ⊂ σ (Nr : r ≤ t, Z0, . . . , Zn)

and we may conclude that

A ∩ {Nt = n} = ∪m≤n [A ∩ {Ns = m} ∩ {Nt = n}] ∈ σ (Nr : r ≤ t, Z0, . . . , Zn)

for all n ∈ N0. Thus we have shown A ∈ Bt and therefore Bs ⊂ Bt for all s ≤ t.
Since

Xt|Nt=n = [Z0 + Z1 + · · ·+ Zn] |Nt=n
is [σ (Ns : s ≤ t, Z0, . . . , Zn)]{Nt=n} – measurable for all n ∈ N0, it follows by
Lemma 17.23 that Xt is Bt – measurable.

We now show that Xt −Xs is independent of Bs for all t ≥ s. To this end,
let f ∈ (BRd)b and g ∈ (Bs)b . Then for each n ∈ N0, we have

g|Ns=n = Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
while

(Xt −Xs) |Ns=n = Zn+1 + · · ·+ ZNt .

Therefore we have,

E [f (Xt −Xs) · g] =
∞∑

m,n=0

E [f (Xt −Xs) · g : Ns = n, Nt −Ns = m]

and if we let am,n be the summand on the right side of this equation we have,

am,n = E
[
f (Zn+1 + · · ·+ Zn+m) ·Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
: Ns = n, Nt −Ns = m

]
= E

[
f (Zn+1 + · · ·+ Zn+m) 1Nt−Ns=m ·Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
= E [f (Zn+1 + · · ·+ Zn+m) 1Nt−Ns=m] · E

[
Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
= e−λ(t−s) (λ (t− s))m

m!
E [f (Z1 + · · ·+ Zm)] · E

[
Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
.

Therefore it follows that

E [f (Xt −Xs) · g] =
∞∑

m,n=0

am,n =
∞∑
n=0

∞∑
m=0

am,n

= (Qt−sf) (0) ·
∞∑
n=0

E
[
Gn

(
{Nr}r≤s , Z0, . . . , Zn

)
1Ns=n

]
= (Qt−sf) (0) · E [g]

from which it follows that Xt −Xs is independent of Bs and

E [f (Xt −Xs)] = (Qt−sf) (0) .

(This equation shows that the distribution of the increments is stationary.) We
now know by Exercise 17.2 that {Xt} is a Markov process and the transition
kernel is given by

(Qt−sf) (x) = E [f (x+Xt −Xs)] = (Qt−sf (x+ ·)) (0)

as described above.

17.4 First Step Analysis and Hitting Probabilities

In this section we suppose that T = N0,
(
Ω,B, {Bt}t∈T

)
is a filtered measures

space, Xt : Ω → S is a Bt/S – measurable function for all t ∈ T, Q : S × S →
[0, 1] is a Markov-transition kernel, and for each x ∈ S there exists a probability,
Px, on (Ω,B) such that Px (X0 = x) = 1 and {Xt}t≥0 is a time homogenous
Markov process with Q as its one step Markov transition kernel. To shorten
notation we will write Ex for the expectation relative to the measure Px.

Definition 17.28 (Hitting times). For B ∈ S, let

TB (X) := min {n ≥ 0 : Xn ∈ B}

with the convention that min ∅ = ∞. We call TB (X) = TB (X0, X1, . . . ) the
first hitting time of B by X = {Xn}n .

Notation 17.29 For A ∈ S, let QA : A×SA → [0, 1] be the restriction of Q to
A, so that QA (x,C) := Q (x,C) for all x ∈ A and C ∈ SA. As with probability
kernels we may identify QA with an operator from (SA)b to itself via,

(QAf) (x) =
∫
A

Q (x, dy) f (y) for all x ∈ A and f ∈ (SA)b .
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Theorem 17.30. Let n denote a non-negative integer. If h : B → R is mea-
surable and either bounded or non-negative, then

Ex [h (Xn) : TB = n] =
(
Qn−1
A Q [1Bh]

)
(x)

and

Ex [h (XTB ) : TB <∞] =

( ∞∑
n=0

QnAQ [1Bh]

)
(x) . (17.32)

If g : A→ R+ is a measurable function, then for all x ∈ A and n ∈ N0,

Ex [g (Xn) 1n<TB ] = (QnAg) (x) .

In particular we have

Ex

[ ∑
n<TB

g (Xn)

]
=
∞∑
n=0

(QnAg) (x) =: u (x) , (17.33)

where by convention,
∑
n<TB

g (Xn) = 0 when TB = 0.

Proof. Let x ∈ A. In computing each of these quantities we will use;

{TB > n} = {Xi ∈ A for 0 ≤ i ≤ n} and
{TB = n} = {Xi ∈ A for 0 ≤ i ≤ n− 1} ∩ {Xn ∈ B} .

From the second identity above it follows that for

Ex [h (Xn) : TB = n] = Ex
[
h (Xn) : (X1, . . . , Xn−1) ∈ An−1, Xn ∈ B

]
=
∞∑
n=1

∫
An−1×B

n∏
j=1

Q (xj−1, dxj)h (xn)

=
(
Qn−1
A Q [1Bh]

)
(x)

and therefore

Ex [h (XTB ) : TB <∞] =
∞∑
n=1

Ex [h (Xn) : TB = n]

=
∞∑
n=1

Qn−1
A Q [1Bh] =

∞∑
n=0

QnAQ [1Bh] .

Similarly,

Ex [g (Xn) 1n<TB ] =
∫
An

Q (x, dx1)Q (x1, dx2) . . . Q (xn−1, dxn) g (xn)

= (QnAg) (x)

and therefore,

Ex

[ ∞∑
n=0

g (Xn) 1n<TB

]
=
∞∑
n=0

Ex [g (Xn) 1n<TB ]

=
∞∑
n=0

(QnAg) (x) .

In practice it is not so easy to sum the series in Eqs. (17.32) and (17.33).
Thus we would like to have another way to compute these quantities. Since∑∞
n=0Q

n
A is a geometric series, we expect that

∞∑
n=0

QnA = (I −QA)−1

which is basically correct at least when (I −QA) is invertible. This suggests
that if u (x) = Ex [h (XTB ) : TB <∞] , then (see Eq. (17.32))

u = QAu+Q [1Bh] on A, (17.34)

and if u (x) = Ex
[∑

n<TB
g (Xn)

]
, then (see Eq. (17.33))

u = QAu+ g on A. (17.35)

That these equations are valid is the content of Corollaries 17.32 and 17.33
below which we will prove using the “first step” analysis in the next theorem.
We will give another direct proof in Theorem 17.38 below as well.

Theorem 17.31 (First step analysis). Let us keep the assumptions in The-
orem 17.14 and add the further assumption that T = N0. Then for all F ∈ S⊗N

b

or F : SN0 → [0,∞] measurable;

Ex [F (X0, X1, . . . )] =
∫
S

Q (x, dy) EyF (x,X0, X1, . . . ) . (17.36)

This equation can be iterated to show more generally that

Ex [F (X0, X1, . . . )] =
∫
Sn

n∏
j=1

Q (xj−1, dxj) Exn [F (x0, x1, . . . , xn−1, X0, X1, . . . )]

(17.37)
where x0 := x.

Proof. Since X0 (ω) = x for Px – a.e. ω, we have F (X0, X1, . . . ) =
F (x,X1, X2, . . . ) a.s. Therefore by Theorem 17.14 we know that
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Ex [F (X0, X1, . . . ) |B1] = Ex [F (x,X1, X2, . . . ) |B1] = EX1F (x,X0, X1, . . . ) .

Taking expectations of this equation shows,

Ex [F (X0, X1, . . . )] = Ex [EX1F (x,X0, X1, . . . )]

=
∫
S

Q (x, dy) EyF (x,X0, X1, . . . ) .

Corollary 17.32. Suppose that B ∈ S, A := Bc ∈ S, h : B → R is a measur-
able function which is either bounded or non-negative, and

u (x) := Ex [h (XTB ) : TB <∞] for x ∈ A.

Then u : A→ R satisfies Eq. (17.34), i.e. u = QAu+Q [1Bh] on A or in more
detail

u (x) =
∫
A

Q (x, dy)u (y) +
∫
B

Q (x, dy)h (y) for all x ∈ A.

In particular, when h ≡ 1, u (x) = Px (TB <∞) is a solution to the equation,

u = QAu+Q1B on A. (17.38)

Proof. To shorten the notation we will use the convention that h (XTB ) = 0
if TB =∞ so that we may simply write u (x) := Ex [h (XTB )] . Let

F (X0, X1, . . . ) = h
(
XTB(X)

)
= h

(
XTB(X)

)
1TB(X)<∞,

then for x ∈ A we have F (x,X0, X1, . . . ) = F (X0, X1, . . . ) . Therefore by the
first step analysis (Theorem 17.31) we learn

u (x) = Exh
(
XTB(X)

)
= ExF (x,X1, . . . ) =

∫
S

Q (x, dy) EyF (x,X0, X1, . . . )

=
∫
S

Q (x, dy) EyF (X0, X1, . . . ) =
∫
S

Q (x, dy) Ey
[
h
(
XTB(X)

)]
=
∫
A

Q (x, dy) Ey
[
h
(
XTB(X)

)]
+
∫
B

Q (x, dy)h (y)

=
∫
A

Q (x, dy)u (y) +
∫
B

Q (x, dy)h (y)

= (QAu) (x) + (Q1B) (x) .

Corollary 17.33. Suppose that B ∈ S, A := Bc ∈ S, g : A → [0,∞] is
a measurable function. Further let u (x) := Ex

[∑
n<TB

g (Xn)
]
. Then u (x)

satisfies Eq. (17.35), i.e. u = QAu+ g on A or in more detail,

u (x) =
∫
A

Q (x, dy)u (y) + g (x) for all x ∈ A.

In particular if we take g ≡ 1 in this equation we learn that

ExTB =
∫
A

Q (x, dy) EyTB + 1 for all x ∈ A.

Proof. Let F (X0, X1, . . . ) =
∑
n<TB(X0,X1,... )

g (Xn) be the sum of the
values of g along the chain before its first exit from A, i.e. entrance into B.
With this interpretation in mind, if x ∈ A, it is easy to see that

F (x,X0, X1, . . . ) =
{

g (x) if X0 ∈ B
g (x) + F (X0, X1, . . . ) if X0 ∈ A

= g (x) + 1X0∈A · F (X0, X1, . . . ) .

Therefore by the first step analysis (Theorem 17.31) it follows that

u (x) = ExF (X0, X1, . . . ) =
∫
S

Q (x, dy) EyF (x,X0, X1, . . . )

=
∫
S

Q (x, dy) Ey [g (x) + 1X0∈A · F (X0, X1, . . . )]

= g (x) +
∫
A

Q (x, dy) Ey [F (X0, X1, . . . )]

= g (x) +
∫
A

Q (x, dy)u (y) .

The problem with Corollaries 17.32 and 17.33 is that the solutions to Eqs.
(17.34) and (17.35) may not be unique as we will see in the next examples.
Theorem 17.38 below will explain when these ambiguities may occur and how
to deal with them when they do.

Example 17.34 (Biased random walks I). Let p ∈ (1/2, 1) and consider the bi-
ased random walk {Sn}n≥0 on the S = Z where Sn = X0 + X1 + · · · + Xn,

{Xi}∞i=1 are i.i.d. with P (Xi = 1) = p ∈ (0, 1) and P (Xi = −1) = q := 1 − p,
and X0 = x for some x ∈ Z. Let B := {0} and u (x) := Px (TB <∞) . Clearly
u (0) = 0 and by the first step analysis,

u (x) = pu (x+ 1) + qu (x− 1) for x 6= 0. (17.39)
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From Exercise 17.10 below, we know that the general solution to Eq. (17.39) is
of the form

u (x) = aλx+ + bλx−

where λ± are the roots for the characteristic polynomial, pλ2−λ+ q = 0. since
constants solve Eq. (17.39) we know that one root is 1 as is easily verified. The
other root3 is q/p. Thus the general solution is of the form, w (x) = a+b (q/p)x .
In all case we are going to choose a and b so that 0 = u (0) = w (0) (i.e. a+b = 0)
so that w (x) = a + (1− a) (q/p)x . For x > 0 we choose a = a+ so that
w+ (x) := a+ + (1− a+) (q/p)x satisfies w+ (1) = u (1) and for x < 0 we choose
a = a− so that w− (x) := a− + (1− a−) (q/p)x satisfies w− (−1) = u (−1) .
With these choice we will have u (x) = w+ (x) for x ≥ 0 and u (x) = w− (x) for
x ≤ 0 – see Exercise 17.10 and Remark 17.36. Observe that

u (1) = a+ + (1− a+) (q/p) =⇒ a+ =
u (1)− (q/p)

1− (q/p)

and

u (−1) = a− + (1− a−) (p/q) =⇒ a− =
(p/q)− u (−1)

(p/q)− 1
.

Case 1. x < 0 : As x→ −∞, we will have |u (x)| → ∞ unless a− = 1. Thus
we must take a− = 1 and we have shown,

Px (T0 <∞) = w− (x) = 1 for all x < 0.

Case 2. x > 0 : For n ∈ N0, let Tn = min {m : Xm = n} be the first time
X hits n. By the MCT we have,

Px (T0 <∞) = lim
n→∞

Px (T0 < Tn) .

So we will now try to compute u (x) = Px (T0 < Tn). By the first step analysis
(take B = {0, n} and h (0) = 1 and h (n) = 0 in Corollary 17.32) we will
still have that u (x) satisfies Eq. (17.39) for 0 < x < n but now the boundary
conditions are u (0) = 1 and u (n) = 0. Accordingly u (x) for 0 ≤ x ≤ n is still
of the form given in Eq. (17.39) but we may now determine a = an using the
boundary condition

0 = u (n) = a+ (1− a) (q/p)n = (q/p)n + a (1− (q/p)n)

from which it follows that
3 Indeed,

p

(
q

p

)2

− q

p
+ q =

q

p
[q − 1 + p] = 0.

an =
(q/p)n

(q/p)n − 1
→ 0 as n→∞.

Thus we have shown

Px (T0 < Tn) =
(q/p)n

(q/p)n − 1
+
(

1− (q/p)n

(q/p)n − 1

)
(q/p)x

=
(q/p)n − (q/p)x

(q/p)n − 1

=
(q/p)x − (q/p)n

1− (q/p)n
→ (q/p)x as n→∞

and therefore, since Tn ↑ ∞ Px – a.s. as n ↑ ∞,

Px (T0 <∞) = (q/p)x for all x > 0.

Example 17.35 (Biased random walks II). Continue the notation in Example
17.34. Let us now try to compute ExT0. Since Px (T0 =∞) > 0 for x > 0 we
already know that ExT0 = ∞ for all x > 0. Nevertheless we will deduce this
fact again here.

Letting u (x) = ExT0 it follows by the first step analysis that, for x 6= 0,

u (x) = p [1 + u (x+ 1)] + q [1 + u (x− 1)]
= pu (x+ 1) + qu (x− 1) + 1 (17.40)

with u (0) = 0. Notice u (x) =∞ is a solution to this equation while if u (a) <∞
for some a 6= 0 then Eq. (17.40) implies that u (x) < ∞ for all x 6= 0 with the
same sign as a.

A particular solution to this equation may be found by trying u (x) = αx
to learn,

αx = pα (x+ 1) + qα (x− 1) + 1 = αx+ α (p− q) + 1

which is valid for all x provided α = (q − p)−1
. The general finite solution to

Eq. (17.40) is therefore,

u (x) = (q − p)−1
x+ a+ b (q/p)x . (17.41)

Using the boundary condition, u (0) = 0 allows us to conclude that a + b = 0
and therefore,

u (x) = ua (x) = (q − p)−1
x+ a [1− (q/p)x] . (17.42)

Notice that ua (x)→ −∞ as x→ +∞ no matter how a is chosen and therefore
we must conclude that the desired solution to Eq. (17.40) is u (x) =∞ for x > 0
as we already mentioned.
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The question now is for x < 0. Is it again the case that u (x) = ∞ or is
u (x) = ua (x) for some a ∈ R. Since limx→∞ ua (x) = −∞ unless a ≤ 0, we
may restrict our attention to a ≤ 0. To work out which a ≤ 0 is correct observe
by MCT that

ExT0 = lim
n→−∞

Ex [Tn ∧ T0] = lim
n→−∞

Ex
[
T{n,0}

]
.

So let n ∈ Z with n < 0 be fixed for the moment. By item 8. of Theorem
17.38 we may conclude that u (x) := Ex

[
T{n,0}

]
< ∞ for all n ≤ x ≤ 0.

Then by the first step analysis, u (x) satisfies Eq. (17.40) for n < x < 0 and has
boundary conditions u (n) = 0 = u (0) . Using the boundary condition u (n) = 0
to determine a = an in Eq. (17.42) implies,

0 = ua (n) = (q − p)−1
n+ a [1− (q/p)n]

so that
a = an =

n

(1− (q/p)n) (p− q)
→ 0 as n→ −∞.

Thus we conclude that

ExT0 = lim
n→−∞

Ex [Tn ∧ T0] = lim
n→−∞

uan (x)

=
x

q − p
=
|x|
p− q

for x < 0.

Remark 17.36 (More on the boundary conditions). If we were to use Corollary
17.33 directly to derive Eq. (17.40) in the case that u (x) := Ex

[
T{n,0}

]
< ∞

we for all 0 ≤ x ≤ n. we would find, for x 6= 0, that

u (x) =
∑

y/∈{n,0}

q (x, y)u (y) + 1

which implies that u (x) satisfies Eq. (17.40) for n < x < 0 provided u (n) and
u (0) are taken to be equal to zero. Let us again choose a and b

w (x) := (q − p)−1
x+ a+ b (q/p)x

satisfies w (0) = 0 and w (−1) = u (−1) . Then both w and u satisfy Eq. (17.40)
for n < x ≤ 0 and agree at 0 and −1 and therefore are equal4 for n ≤ x ≤ 0
and in particular 0 = u (n) = w (n) . Thus correct boundary conditions on w in
order for w = u are w (0) = w (n) = 0 as we have used above.
4 Observe from Eq. (17.40) we have for x 6= 0 that,

u (x− 1) = q−1 [u (x)− pu (x+ 1)− 1] .

From this equation it follows easily that u (x) for x ≤ 0 is determined by its values
at x = 0 and x = −1.

Definition 17.37. Suppose (A,A) is a measurable space. A sub-probability
kernel on (A,A) is a function ρ : A ×A → [0, 1] such that ρ (·, C) is A/BR –
measurable for all C ∈ A and ρ (x, ·) : A → [0, 1] is a measure for all x ∈ A.

As with probability kernels we will identify ρ with the linear map, ρ : Ab →
Ab given by

(ρf) (x) = ρ (x, f) =
∫
A

f (y) ρ (x, dy) .

Of course we have in mind that A = SA and ρ = QA. In the following lemma
let ‖g‖∞ := supx∈A |g (x)| for all g ∈ Ab.

Theorem 17.38. Let ρ be a sub-probability kernel on a measurable space (A,A)
and define un (x) := (ρn1) (x) for all x ∈ A and n ∈ N0. Then;

1. un is a decreasing sequence so that u := limn→∞ un exists and is in Ab.
(When ρ = QA, un (x) = Px (TB > n) ↓ u (x) = P (TB =∞) as n→∞.)

2. The function u satisfies ρu = u.
3. If w ∈ Ab and ρw = w then |w| ≤ ‖w‖∞ u. In particular the equation,
ρw = w, has a non-zero solution w ∈ Ab iff u 6= 0.

4. If u = 0 and g ∈ Ab, then there is at most one w ∈ Ab such that w = ρw+g.
5. Let

U :=
∞∑
n=0

un =
∞∑
n=0

ρn1 : A→ [0,∞] (17.43)

and suppose that U (x) <∞ for all x ∈ A. Then for each g ∈ Sb,

w =
∞∑
n=0

ρng (17.44)

is absolutely convergent,
|w| ≤ ‖g‖∞ U, (17.45)

ρ (x, |w|) < ∞ for all x ∈ A, and w solves w = ρw + g. Moreover if v also
solves v = ρv + g and |v| ≤ CU for some C <∞ then v = w.
Observe that when ρ = QA,

U (x) =
∞∑
n=0

Px (TB > n) =
∞∑
n=0

Ex (1TB>n) = Ex

( ∞∑
n=0

1TB>n

)
= Ex [TB ] .

6. If g : A→ [0,∞] is any measurable function then

w :=
∞∑
n=0

ρng : A→ [0,∞]

is a solution to w = ρw + g. (It may be that w ≡ ∞ though!) Moreover if
v : A → [0,∞] satisfies v = ρv + g then w ≤ v. Thus w is the minimal
non-negative solution to v = ρv + g.
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7. If there exists α < 1 such that u ≤ α on A then u = 0. (When ρ = QA, this
state that Px (TB =∞) ≤ α for all x ∈ A implies Px (TA =∞) = 0 for all
x ∈ A.)

8. If there exists an α < 1 and an n ∈ N such that un = ρn1 ≤ α on A, then
there exists C <∞ such that

uk (x) =
(
ρk1
)

(x) ≤ Cβk for all x ∈ A and k ∈ N0

where β := α1/n < 1. In particular, U ≤ C (1− β)−1 and u = 0 under this
assumption.
(When ρ = QA this assertion states; if Px (TB > n) ≤ α for all α ∈ A, then
Px (TB > k) ≤ Cβk and ExTB ≤ C (1− β)−1 for all k ∈ N0.)

Proof. We will prove each item in turn.

1. First observe that u1 (x) = ρ (x,A) ≤ 1 = u0 (x) and therefore,

un+1 = ρn+11 = ρnu1 ≤ ρn1 = un.

We now let u := limn→∞ un so that u : A→ [0, 1] .
2. Using DCT we may let n→∞ in the identity, ρun = un+1 in order to show
ρu = u.

3. If w ∈ Ab with ρw = w, then

|w| = |ρnw| ≤ ρn |w| ≤ ‖w‖∞ ρn1 = ‖w‖∞ · un.

Letting n→∞ shows that |w| ≤ ‖w‖∞ u.
4. If wi ∈ Ab solves wi = ρwi + g for i = 1, 2 then w := w2 − w1 satisfies
w = ρw and therefore |w| ≤ Cu = 0.

5. Let U :=
∑∞
n=0 un =

∑∞
n=0 ρ

n1 : A → [0,∞] and suppose U (x) < ∞ for
all x ∈ A. Then un (x)→ 0 as n→∞ and so bounded solutions to ρu = u
are necessarily zero. Moreover we have, for all k ∈ N0, that

ρkU =
∞∑
n=0

ρkun =
∞∑
n=0

un+k =
∞∑
n=k

un ≤ U. (17.46)

Since the tails of convergent series tend to zero it follows that limk→∞ ρkU =
0.
Now if g ∈ Sb, we have

∞∑
n=0

|ρng| ≤
∞∑
n=0

ρn |g| ≤
∞∑
n=0

ρn ‖g‖∞ = ‖g‖∞ · U <∞ (17.47)

and therefore
∑∞
n=0 ρ

ng is absolutely convergent. Making use of Eqs. (17.46)
and (17.47) we see that

∞∑
n=1

ρ |ρng| ≤ ‖g‖∞ · ρU ≤ ‖g‖∞ U <∞

and therefore (using DCT),

w =
∞∑
n=0

ρng = g +
∞∑
n=1

ρng

= g + ρ

∞∑
n=1

ρn−1g = g + ρw,

i.e. w solves w = g + ρw.
If v : A → R is measurable such that |v| ≤ CU and v = g + ρv, then
y := w − v solves y = ρy with |y| ≤ (C + ‖g‖∞)U. It follows that

|y| = |ρny| ≤ (C + ‖g‖∞) ρnU → 0 as n→∞,

i.e. 0 = y = w − v.
6. If g ≥ 0 we may always define w by Eq. (17.44) allowing for w (x) =∞ for

some or even all x ∈ A. As in the proof of the previous item (with DCT
being replaced by MCT), it follows that w = ρw + g. If v ≥ 0 also solves
v = g + ρv, then

v = g + ρ (g + ρv) = g + ρg + ρ2v

and more generally by induction we have

v =
n∑
k=0

ρkg + ρn+1v ≥
n∑
k=0

ρkg.

Letting n→∞ in this last equation shows that v ≥ w.
7. If u ≤ α < 1 on A, then by item 3. with w = u we find that

u ≤ ‖u‖∞ · u ≤ αu

which clearly implies u = 0.
8. If un ≤ α < 1, then for any m ∈ N we have,

un+m = ρmun ≤ αρm1 = αum.

Taking m = kn in this inequality shows, u(k+1)n ≤ αukn. Thus a simple
induction argument shows ukn ≤ αk for all k ∈ N0. For general l ∈ N0 we
write l = kn+ r with 0 ≤ r < n. We then have,

ul = ukn+r ≤ ukn ≤ αk = α
l−r
n = Cαl/n

where C = α−
n−1
n .
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248 17 The Markov Property

Corollary 17.39. If h : B → [0,∞] is measurable, then u (x) :=
Ex [h (XTB ) : TB <∞] is the unique minimal non-negative solution to Eq.
(17.34) while if g : A→ [0,∞] is measurable, then u (x) = Ex

[∑
n<TB

g (Xn)
]

is the unique minimal non-negative solution to Eq. (17.35).

Exercise 17.9. Keeping the notation of Example 17.34 and 17.35. Use Corol-
lary 17.39 to show again that Px (TB <∞) = (q/p)x for all x > 0 and
ExT0 = x/ (q − p) for x < 0. You should do so without making use of the
extraneous hitting times, Tn for n 6= 0.

Corollary 17.40. If Px (TB =∞) = 0 for all x ∈ A and h : B → R is a
bounded measurable function, then u (x) := Ex [h (XTB )] is the unique solution
to Eq. (17.34).

Corollary 17.41. Suppose now that A = Bc is a finite subset of S and there
exists an α ∈ (0, 1) such that Px (TB =∞) ≤ α for all x ∈ A. Then there exists
C <∞ and β ∈ (0, 1) such that Px (TB > n) ≤ Cβn.

Proof. We know that

lim
n→∞

Px (TB > n) = Px (TB =∞) ≤ α for all x ∈ A.

Therefore if α̃ ∈ (α, 1) , using the fact that A is a finite set, there exists an
n sufficiently large such that Px (TB > n) ≤ α̃ for all x ∈ A. The result now
follows from item 8. of Theorem 17.38.

17.5 Finite state space chains

In this subsection I would like to write out the above theorems in the special
case where S is a finite set. In this case we will let q (x, y) := Q (x, {y}) so that

(Qf) (x) =
∑
y∈S

q (x, y) f (y) .

Thus if we view f : S → R as a column vector and Q to be the matrix with
q (x, y) in the xth – row and yth – column, then Qf is simply matrix multiplica-
tion. As above we now suppose that S is partitioned into two nonempty subsets
B and A = Bc. We further assume that Px (TB <∞) > 0 for all x ∈ A, i.e.
it is possible with positive probability for the chain {Xn}∞n=0 to visit B when
started from any point in A. Because of Corollary 17.41 we know that in fact
there exists C <∞ and β ∈ (0, 1) such that Px (TB > n) ≤ Cβn for all n ∈ N0.
In particular it follows that ExTB <∞ and Px (TB <∞) = 1 for all x ∈ A.

If we let QA = QA,A be the matrix with entries, QA = (q (x, y))x,y∈A
and I be the corresponding identity matrix, then (QA − I)−1 exits according
to Theorem 17.38. Let us further let R = QA,B be the matrix with entries,
(q (x, y))x∈A and y∈B . Thus Q decomposes as

Q =

A B[
QA R
∗ ∗

]
A
B
.

To summarize, QA is Q with the rows and columns indexed by B deleted and R
is the Q – matrix with the columns indexed by A deleted and rows indexed by
B being deleted. Given a function h : B → R let (Rh) (x) =

∑
y∈B q (x, y)h (y)

for all x ∈ A which again may be thought of as matrix multiplication.

Theorem 17.42. Let us continue to use the notation and assumptions as de-
scribed above. If h : B → R and g : A → R are given functions, then for all
x ∈ A we have;

Ex [h (XTB )] =
[
(I −QA)−1

Rh
]

(x) and

Ex

[ ∑
n<TB

g (Xn)

]
=
[
(I −QA)−1

g
]

(x) .

Remark 17.43. Here is a story to go along with the above scenario. Suppose
that g (x) is the toll you have to pay for visiting a site x ∈ A while h (y)
is the amount of prize money you get when landing on a point in B. Then
Ex
[∑

0≤n<T g(Xn)
]

is the expected toll you have to pay before your first exit
from A while Ex [h (XT )] is your expected winnings upon exiting B.

Here are some typical choices for h and g.

1. If y ∈ B and h = δy, then

Px (XTB = y) =
[
(I −QA)−1

Rδy

]
(x) =

[
(I −QA)−1

R
]
x,y

.

2. If y ∈ A and g = δy, then∑
n<TB

g (Xn) =
∑
n<TB

δy (Xn) = # visits to before hitting B

and hence

Ex (# visits to before hitting B) =
[
(I −QA)−1

δy

]
(x)

= (I −QA)−1
xy .
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17.5 Finite state space chains 249

3. If g = 1, i.e. g (y) = 1 for all y ∈ A, then
∑
n<TB

g (Xn) = TB and we find,

ExTB =
[
(I −QA)−1 1

]
x

=
∑
y∈A

(I −QA)−1
xy ,

where ExTB is the expected hitting time of B when starting from x.

Example 17.44. Let us continue the rat in the maze Exercise 17.5 and now
suppose that room 3 contains food while room 7 contains a mouse trap. 1 2 3 (food)

4 5 6
7 (trap)

 .
We would like to compute the probability that the rat reaches the food before
he is trapped. To answer this question we let A = {1, 2, 4, 5, 6} , B = {3, 7} ,
and T := TB be the first hitting time of B. Then deleting the 3 and 7 rows of
q in Eq. (17.23) leaves the matrix,

1 2 3 4 5 6 7
0 1/2 0 1/2 0 0 0

1/3 0 1/3 0 1/3 0 0
1/3 0 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 0 1/2 0 1/2 0 0


1
2
4
5
6

.

Deleting the 3 and 7 columns from this matrix gives

QA =

1 2 4 5 6
0 1/2 1/2 0 0

1/3 0 0 1/3 0
1/3 0 0 1/3 0
0 1/3 1/3 0 1/3
0 0 0 1/2 0


1
2
4
5
6

and deleting the 1, 2, 4, 5, and 6 columns gives

R = QA,B =

3 7
0 0

1/3 0
0 1/3
0 0

1/2 0


1
2
4
5
6

.

Therefore,

I −QA =


1 − 1

2 −
1
2 0 0

− 1
3 1 0 − 1

3 0
− 1

3 0 1 − 1
3 0

0 − 1
3 −

1
3 1 − 1

3
0 0 0 − 1

2 1

 ,
and using a computer algebra package we find

(I −QA)−1 =

1 2 4 5 6
11
6

5
4

5
4 1 1

3
5
6

7
4

3
4 1 1

3
5
6

3
4

7
4 1 1

3
2
3 1 1 2 2

3
1
3

1
2

1
2 1 4

3


1
2
4
5
6

.

In particular we may conclude,
E1T
E2T
E4T
E5T
E6T

 = (I −QA)−1 1 =


17
3
14
3
14
3
16
3
11
3

 ,
and


P1 (XT = 3) P1 (XT = 7)
P2 (XT = 3) P2 (XT = 3)
P4 (XT = 3) P4 (XT = 3)
P5 (XT = 3) P5 (XT = 3)
P6 (XT = 3) P6 (XT = 7)

 = (I −QA)−1
R =

3 7
7
12

5
12

3
4

1
4

5
12

7
12

2
3

1
3

5
6

1
6


1
2
4
5
6

.

.

Since the event of hitting 3 before 7 is the same as the event {XT = 3} , the
desired hitting probabilities are

P1 (XT = 3)
P2 (XT = 3)
P4 (XT = 3)
P5 (XT = 3)
P6 (XT = 3)

 =


7
12
3
4
5
12
2
3
5
6

 .
We can also derive these hitting probabilities from scratch using the first

step analysis. In order to do this let

hi = Pi (XT = 3) = Pi (Xn hits 3 (food) before 7(trapped)) .
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250 17 The Markov Property

By the first step analysis we will have,

hi =
∑
j

Pi (XT = 3|X1 = j)Pi (X1 = j)

=
∑
j

q (i, j)Pi (XT = 3|X1 = j)

=
∑
j

q (i, j)Pj (XT = 3)

=
∑
j

q (i, j)hj

where h3 = 1 and h7 = 0. Looking at the jump diagram (Figure 17.3) we easily

GFED@ABC1

1/2

��

1/2
++ GFED@ABC2

1/3
,,

1/3

��

1/3

kk
WVUTPQRS3

food

1/2

��

1/2

kk

GFED@ABC4

1/3

SS

1/3

��

1/3
++ GFED@ABC5

1/3

kk

1/3
++

1/3

SS

GFED@ABC6

1/2

RR

1/2

kk

WVUTPQRS7
trap

1

SS

Fig. 17.3. The jump diagram for our proverbial rat in the maze.

find

h1 =
1
2

(h2 + h4)

h2 =
1
3

(h1 + h3 + h5) =
1
3

(h1 + 1 + h5)

h4 =
1
3

(h1 + h5 + h7) =
1
3

(h1 + h5)

h5 =
1
3

(h2 + h4 + h6)

h6 =
1
2

(h3 + h5) =
1
2

(1 + h5)

and the solutions to these equations are (as seen before) given by

[
h1 =

7
12
, h2 =

3
4
, h4 =

5
12
, h5 =

2
3
, h6 =

5
6

]
. (17.48)

Similarly, if

ki := Pi (XT = 7) = Pi (Xn is trapped before dinner) ,

we need only use the above equations with h replaced by k and now taking
k3 = 0 and k7 = 1 to find,

k1 =
1
2

(k2 + k4)

k2 =
1
3

(k1 + k5)

k4 =
1
3

(k1 + k5 + 1)

k5 =
1
3

(k2 + k4 + k6)

k6 =
1
2
k5

and then solve to find,[
k1 =

5
12
, k2 =

1
4
, k4 =

7
12
, k5 =

1
3
, k6 =

1
6

]
. (17.49)

Notice that the sum of the hitting probabilities in Eqs. (17.48) and (17.49) add
up to 1 as they should.

17.5.1 Invariant distributions and return times

For this subsection suppose that S = {1, 2, . . . , n} and Qij is a Markov matrix.
To each state i ∈ S, let

τi := min{n ≥ 1 : Xn = i} (17.50)

be the first passage time of the chain to site i.

Proposition 17.45. The Markov matrix Q has an invariant distribution.

Proof. If 1 :=
[
1 1 . . . 1

]tr
, then Q1 = 1 from which it follows that

0 = det (Q− I) = det
(
Qtr − I

)
.

Therefore there exists a non-zero row vector ν such that Qtrνtr = νtr or equiv-
alently that νQ = ν. At this point we would be done if we knew that νi ≥ 0 for
all i – but we don’t. So let πi := |νi| and observe that
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πi = |νi| =

∣∣∣∣∣
n∑
k=1

νkQki

∣∣∣∣∣ ≤
n∑
k=1

|νk|Qki ≤
n∑
k=1

πkQki.

We now claim that in fact π = πQ. If this were not the case we would have
πi <

∑n
k=1 πkQki for some i and therefore

0 <
n∑
i=1

πi <

n∑
i=1

n∑
k=1

πkQki =
n∑
k=1

n∑
i=1

πkQki =
n∑
k=1

πk

which is a contradiction. So all that is left to do is normalize πi so
∑n
i=1 πi = 1

and we are done.
We are now going to assume that Q is irreducible which means that for all

i 6= j there exists n ∈ N such that Qnij > 0. Alternatively put this implies that
Pi (Tj <∞) = Pi (τj <∞) > 0 for all i 6= j. By Corollary 17.41 we know that
Ei [τj ] = EiTj < ∞ for all i 6= j and it is not too hard to see that Eiτi < ∞
also holds. The fact that Eiτi < ∞ for all i ∈ S will come out of the proof of
the next proposition as well.

Proposition 17.46. If Q is irreducible, then there is precisely one invariant
distribution, π, which is given by πi = 1/ (Eiτi) > 0 for all i ∈ S.

Proof. We begin by using the first step analysis to write equations for Ei [τj ]
as follows:

Ei [τj ] =
n∑
k=1

Ei [τj |X1 = k]Qik =
∑
k 6=j

Ei [τj |X1 = k]Qik +Qij1

=
∑
k 6=j

(Ek [τj ] + 1)Qik +Qij1 =
∑
k 6=j

Ek [τj ]Qik + 1.

and therefore,
Ei [τj ] =

∑
k 6=j

QikEk [τj ] + 1. (17.51)

Now suppose that π is any invariant distribution for Q, then multiplying Eq.
(17.51) by πi and summing on i shows

n∑
i=1

πiEi [τj ] =
n∑
i=1

πi
∑
k 6=j

QikEk [τj ] +
n∑
i=1

πi1

=
∑
k 6=j

πkEk [τj ] + 1.

Since
∑
k 6=j πkEk [τj ] <∞ we may cancel it from both sides of this equation in

order to learn πjEj [τj ] = 1.

We may use Eq. (17.51) to compute Ei [τj ] in examples. To do this, fix j and
set vi := Eiτj . Then Eq. (17.51) states that v = Q(j)v + 1 where Q(j) denotes
Q with the jth – column replaced by all zeros. Thus we have

(Eiτj)ni=1 =
(
I −Q(j)

)−1

1, (17.52)

i.e. E1τj
...

Enτj

 =
(
I −Q(j)

)−1

1
...
1

 . (17.53)

17.5.2 Some worked examples

Example 17.47. Let S = {1, 2} and Q =
[

0 1
1 0

]
with jump diagram in Figure

17.4. In this case Q2n = I while Q2n+1 = Q and therefore limn→∞Qn does not

?>=<89:;1

1
))?>=<89:;2

1

ii

Fig. 17.4. A non-random chain.

exist. On the other hand it is easy to see that the invariant distribution, π, for
Q is π =

[
1/2 1/2

]
and, moreover,

Q+Q2 + · · ·+QN

N
→ 1

2

[
1 1
1 1

]
=
[
π
π

]
.

Let us compute [
E1τ1
E2τ1

]
=
([

1 0
0 1

]
−
[

0 1
0 0

])−1 [ 1
1

]
=
[

2
1

]
and [

E1τ2
E2τ2

]
=
([

1 0
0 1

]
−
[

0 0
1 0

])−1 [ 1
1

]
=
[

1
2

]
so that indeed, π1 = 1/E1τ1 and π2 = 1/E2τ2. Of course τ1 = 2 (P1 -a.s.) and
τ2 = 2 (P2 -a.s.) so that it is obvious that E1τ1 = E2τ2 = 2.

Example 17.48. Again let S = {1, 2} and Q =
[

1
0

0
1

]
with jump diagram in

Figure 17.5. In this case the chain is not irreducible and every π = [a b] with
a+ b = 1 and a, b ≥ 0 is an invariant distribution.
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?>=<89:;11
66

?>=<89:;2 1
hh

Fig. 17.5. A simple non-irreducible chain.

Example 17.49. Suppose that S = {1, 2, 3} , and

Q =

1 2 3 0 1 0
1/2 0 1/2
1 0 0

1
2
3

has the jump graph given by 17.6. Notice that Q2
11 > 0 and Q3

11 > 0 that Q is

GFED@ABC1

1
,, GFED@ABC2

1
2yy

1
2

ll

GFED@ABC3

1

YY

Fig. 17.6. A simple 3 state jump diagram.

“aperiodic.” We now find the invariant distribution,

Nul (Q− I)tr = Nul

−1 1
2 1

1 −1 0
0 1

2 −1

 = R

2
2
1

 .
Therefore the invariant distribution is given by

π =
1
5
[

2 2 1
]
.

Let us now observe that

Q2 =

 1
2 0 1

2
1
2

1
2 0

0 1 0


Q3 =

 0 1 0
1/2 0 1/2
1 0 0

3

=

 1
2

1
2 0

1
4

1
2

1
4

1
2 0 1

2


Q20 =

 409
1024

205
512

205
1024

205
512

409
1024

205
1024

205
512

205
512

51
256

 =

0.399 41 0.400 39 0.200 20
0.400 39 0.399 41 0.200 20
0.400 39 0.400 39 0.199 22

 .

Let us also compute E2τ3 via,E1τ3
E2τ3
E3τ3

 =

1 0 0
0 1 0
0 0 1

−
 0 1 0

1/2 0 0
1 0 0

−1 1
1
1

 =

4
3
5


so that

1
E3τ3

=
1
5

= π3.

Example 17.50. The transition matrix,

Q =

1 2 31/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

1
2
3

is represented by the jump diagram in Figure 17.7. This chain is aperiodic. We

GFED@ABC1
1
4

��

1
2

## GFED@ABC2
1
2

��

1
2oo

GFED@ABC3

1
3

YY

1
3

EE

Fig. 17.7. In the above diagram there are jumps from 1 to 1 with probability 1/4
and jumps from 3 to 3 with probability 1/3 which are not explicitly shown but must
be inferred by conservation of probability.

find the invariant distribution as,

Nul (Q− I)tr = Nul

1/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

−
1 0 0

0 1 0
0 0 1

tr

= Nul

− 3
4

1
2

1
3

1
2 −1 1

3
1
4

1
2 −

2
3

 = R

 1
5
6
1

 = R

6
5
6


π =

1
17
[

6 5 6
]

=
[

0.352 94 0.294 12 0.352 94
]
.
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In this case

Q10 =

1/4 1/2 1/4
1/2 0 1/2
1/3 1/3 1/3

10

=

0.352 98 0.294 04 0.352 98
0.352 89 0.294 23 0.352 89
0.352 95 0.294 1 0.352 95

 .
Let us also computeE1τ2

E2τ2
E3τ2

 =

1 0 0
0 1 0
0 0 1

−
1/4 0 1/4

1/2 0 1/2
1/3 0 1/3

−1 1
1
1

 =

 11
5
17
5
13
5


so that

1/E2τ2 = 5/17 = π2.

Example 17.51. Consider the following Markov matrix,

Q =

1 2 3 4
1/4 1/4 1/4 1/4
1/4 0 0 3/4
1/2 1/2 0 0
0 1/4 3/4 0


1
2
3
4

with jump diagram in Figure 17.8. Since this matrix is doubly stochastic (i.e

GFED@ABC1
1
4

��

1
4 //

1
4

��
//

//
//

//
//

//
//

//
/

GFED@ABC2
3
4

��

1
4

{{

GFED@ABC4

3
4

EE

1
4

��GFED@ABC3

1
2

LL

1
2

RR

Fig. 17.8. The jump diagram for Q.

∑4
i=1Qij = 1 for all j as well as

∑4
j=1Qij = 1 for all i), it is easy to check that

π = 1
4

[
1 1 1 1

]
. Let us compute E3τ3 as follows


E1τ3
E2τ3
E3τ3
E4τ3

 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1/4 1/4 0 1/4
1/4 0 0 3/4
1/2 1/2 0 0
0 1/4 0 0



−1 

1
1
1
1



=


50
17
52
17
4
30
17


so that E3τ3 = 4 = 1/π4 as it should be. Similarly,

E1τ2
E2τ2
E3τ2
E4τ2

 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−


1/4 0 1/4 1/4
1/4 0 0 3/4
1/2 0 0 0
0 0 3/4 0



−1 

1
1
1
1



=


54
17
4
44
17
50
17


and again E2τ2 = 4 = 1/π2.

17.5.3 Exercises

Exercise 17.10 (2nd order recurrence relations). Let a, b, c be real num-
bers with a 6= 0 6= c, α, β ∈ Z∪{±∞} with α < β, and suppose
{u (x) : x ∈ [α, β] ∩ Z} solves the second order homogeneous recurrence rela-
tion:

au (x+ 1) + bu (x) + cu (x− 1) = 0 (17.54)

for α < x < β. Show:

1. for any λ ∈ C,
aλx+1 + bλx + cλx−1 = λx−1p (λ) (17.55)

where p (λ) = aλ2 + bλ + c is the characteristic polynomial associated
to Eq. (17.54).
Let λ± = −b±

√
b2−4ac

2a be the roots of p (λ) and suppose for the moment that
b2− 4ac 6= 0. From Eq. (17.54) it follows that for any choice of A± ∈ R, the
function,

w (x) := A+λ
x
+ +A−λ

x
−,

solves Eq. (17.54) for all x ∈ Z.
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2. Show there is a unique choice of constants, A± ∈ R, such that the function
u (x) is given by

u (x) := A+λ
x
+ +A−λ

x
− for all α ≤ x ≤ β.

3. Now suppose that b2 = 4ac and λ0 := −b/ (2a) is the double root of p (λ) .
Show for any choice of A0 and A1 in R that

w (x) := (A0 +A1x)λx0

solves Eq. (17.54) for all x ∈ Z. Hint: Differentiate Eq. (17.55) with respect
to λ and then set λ = λ0.

4. Again show that any function u solving Eq. (17.54) is of the form u (x) =
(A0 +A1x)λx0 for α ≤ x ≤ β for some unique choice of constants A0, A1 ∈
R.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {Xn}∞n=0 be
the Markov chain with values in Z with transition probabilities given by

P (Xn+1 = x± 1|Xn = x) = 1/2 for all n ∈ N0 and x ∈ Z.

Further let a, b ∈ Z with a < 0 < b and

Ta,b := min {n : Xn ∈ {a, b}} and Tb := inf {n : Xn = b} .

We know by Corollary5 17.41 that E0 [Ta,b] < ∞ from which it follows that
P (Ta,b <∞) = 1 for all a < 0 < b.

Exercise 17.11. Let wx := Px
(
XTa,b = b

)
:= P

(
XTa,b = b|X0 = x

)
.

1. Use first step analysis to show for a < x < b that

wx =
1
2

(wx+1 + wx−1) (17.56)

provided we define wa = 0 and wb = 1.
2. Use the results of Exercise 17.10 to show

Px
(
XTa,b = b

)
= wx =

1
b− a

(x− a) . (17.57)

3. Let

Tb :=
{

min {n : Xn = b} if {Xn} hits b
∞ otherwise

be the first time {Xn} hits b. Explain why,
{
XTa,b = b

}
⊂ {Tb <∞} and

use this along with Eq. (17.57) to conclude6 that Px (Tb <∞) = 1 for all
x < b. (By symmetry this result holds true for all x ∈ Z.)

5 Apply this corollary to finite walk in [a, b] ∩ Z.
6 The fact that Pj (Tb <∞) = 1 is also follows from Example 10.51 above.

Exercise 17.12. The goal of this exercise is to give a second proof of the fact
that Px (Tb <∞) = 1. Here is the outline:

1. Let wx := Px (Tb <∞) . Again use first step analysis to show that wx
satisfies Eq. (17.56) for all x with wb = 1.

2. Use Exercise 17.10 to show that there is a constant, c, such that

wx = c (x− b) + 1 for all x ∈ Z.

3. Explain why c must be zero to again show that Px (Tb <∞) = 1 for all
x ∈ Z.

Exercise 17.13. Let T = Ta,b and ux := ExT := E [T |X0 = x] .

1. Use first step analysis to show for a < x < b that

ux =
1
2

(ux+1 + ux−1) + 1 (17.58)

with the convention that ua = 0 = ub.
2. Show that

ux = A0 +A1x− x2 (17.59)

solves Eq. (17.58) for any choice of constants A0 and A1.
3. Choose A0 and A1 so that ux satisfies the boundary conditions, ua = 0 = ub.

Use this to conclude that

ExTa,b = −ab+ (b+ a)x− x2 = −a (b− x) + bx− x2. (17.60)

Remark 17.52. Notice that Ta,b ↑ Tb = inf {n : Xn = b} as a ↓ −∞, and so
passing to the limit as a ↓ −∞ in Eq. (17.60) shows

ExTb =∞ for all x < b.

Combining the last couple of exercises together shows that {Xn} is “null -
recurrent.”

Exercise 17.14. Let T = Tb. The goal of this exercise is to give a second
proof of the fact and ux := ExT = ∞ for all x 6= b. Here is the outline. Let
ux := ExT ∈ [0,∞] = [0,∞) ∪ {∞} .

1. Note that ub = 0 and, by a first step analysis, that ux satisfies Eq. (17.58)
for all x 6= b – allowing for the possibility that some of the ux may be
infinite.

2. Argue, using Eq. (17.58), that if ux < ∞ for some x < b then uy < ∞ for
all y < b. Similarly, if ux <∞ for some x > b then uy <∞ for all y > b.

3. If ux <∞ for all x > b then ux must be of the form in Eq. (17.59) for some
A0 and A1 in R such that ub = 0. However, this would imply, ux = ExT →
−∞ as x → ∞ which is impossible since ExT ≥ 0 for all x. Thus we must
conclude that ExT = ux = ∞ for all x > b. (A similar argument works if
we assume that ux <∞ for all x < b.)
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17.6 Appendix: Kolmogorov’s extension theorem II

The Kolmogorov extension Theorem 9.46 generalizes to the case where N is
replaced by an arbitrary index set, T. Let us set up the notation for this theorem.
Let T be an arbitrary index set, {(St,St)}t∈T be a collection of standard Borel
spaces, S =

∏
t∈T St, S := ⊗t∈TSt, and for Λ ⊂ T let(

SΛ :=
∏
t∈Λ

St,SΛ := ⊗t∈ΛSt

)
and XΛ : S → SΛ be the projection map, XΛ (x) := x|Λ. If Λ ⊂ Λ′ ⊂ T, also
let XΛ,Λ′ : SΛ′ → SΛ be the projection map, XΛ,Λ′ (x) := x|Λ for all x ∈ SΛ′ .

Theorem 17.53 (Kolmogorov). For each Λ ⊂f T (i.e. Λ ⊂ T and # (Λ) <
∞), let µΛ be a probability measure on (SΛ,SΛ) . We further suppose {µΛ}Λ⊂fT
satisfy the following compatibility relations;

µΛ′ ◦X−1
Λ,Λ′ = µΛ for all Λ ⊂ Λ′ ⊂f T. (17.61)

Then there exists a unique probability measure, P, on (S,S) such that P ◦X−1
Λ =

µΛ for all Λ ⊂f T.

Proof. (For slight variation on the proof of this theorem given here, see
Exercise 17.16.) Let

A := ∪Λ⊂fTX
−1
Λ (SΛ)

and for A = X−1
Λ (A′) ∈ A, let P (A) := µΛ (A′) . The compatibility conditions

in Eq. (17.61) imply P is a well defined finitely additive measure on the algebra,
A. We now complete the proof by showing P is continuous on A.

To this end, suppose An := X−1
Λn

(A′n) ∈ A with An ↓ ∅ as n → ∞. Let
Λ := ∪∞n=1Λn – a countable subset of T. Owing to Theorem 9.46, there is a
unique probability measure, PΛ, on (SΛ,SΛ) such that PΛ

(
X−1
Γ (A)

)
= µΓ (A)

for all Γ ⊂f Λ and A ∈ SΓ . Hence if we let Ãn := X−1
Λ,Λn

(An) , we then have

P (An) = µΛn (A′n) = PΛ

(
Ãn

)
with Ãn ↓ ∅ as n→∞. Since PΛ is a measure, we may conclude

lim
n→∞

P (An) = lim
n→∞

PΛ

(
Ãn

)
= 0.

Exercise 17.15. Let us write Λ ⊂c T to mean Λ ⊂ T and Λ is at most count-
able. Show

S = ∪Λ⊂cTX−1
Λ (SΛ) . (17.62)

Hint: Verify Eq. (17.62) by showing S0 := ∪Λ⊂cTX−1
Λ (SΛ) is a σ – algebra.

Exercise 17.16. For each Λ ⊂ T, let S ′Λ := X−1
Λ (SΛ) = σ (Xi : i ∈ Λ) ⊂ S.

Show;

1. if U, V ⊂ T then S ′U ∩ S ′V = S ′U∩V .
2. By Theorem 9.46, if U, V ⊂c T, there exists unique probability measures,
PU and PV on S ′U and S ′V respectively such that PU ◦ X−1

Λ = µΛ for all
Λ ⊂f U and PV ◦X−1

Λ = µΛ for all Λ ⊂f V. Show PU = PV on S ′U ∩ S ′V .
Hence for any A ∈ S we may define P (A) := PU (A) provided A ∈ S ′U .

3. Show P defined in the previous item is a countably additive measure on S.

17.7 Removing the standard Borel restriction

Theorem 17.54. Let {(Sn,Sn)}n∈N0 be a collection of measurable spaces, S =∏∞
n=0 Sn and S := ⊗∞n=0Sn. Moreover for each n ∈ N0 let Sn := S0 × · · · × Sn

and Sn := S0 ⊗ · · · ⊗ Sn. We further suppose that µ0 is a given probability
measure on (S0,S0) and Tn : Sn−1 × Sn → [0, 1] for n = 1, 2, . . . are give
probability kernels on Sn−1 × Sn. Finally let µn be the probability measure on
(Sn,Sn) defined inductively by,

µn (dx0, . . . , dxn) = µn−1 (dx0, . . . , dxn−1)Tn (x0, . . . , xn−1, dxn) ∀ n ∈ N.
(17.63)

Then there exists a unique probability measure, P on (S,S) such that

P (f) =
∫
Sn
Fdµn

whenever f (x) = F (x0, . . . , xn) for some F ∈ (Sn)b .

Remark 17.55 (Heuristic proof). Before giving the formal proof of this theorem
let me indicate the main ideas. Let Xi : S → Si be the projection maps and
Bn := σ (X0, . . . , Xn) . If P exists, then

P [F (X0, . . . , Xn+1) |Bn] = Tn (X0, . . . , Xn;F (X0, . . . , Xn, ·))
= (TF (X0, . . . , Xn, ·)) (X0, . . . , Xn) .

Indeed,

E [Tn (X0, . . . , Xn;F (X0, . . . , Xn, ·))G (X0, . . . , Xn)]

=
∫
Tn (x0, . . . , xn, dxn+1)F (x0, . . . , xn, xn+1)G (x0, . . . , xn) dµn (x0, . . . , xn)

=
∫
F (x0, . . . , xn, xn+1)G (x0, . . . , xn) dµn+1 (x0, . . . , xn, xn+1)

= E [F (X0, . . . , Xn+1)G (X0, . . . , Xn)] .
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Now suppose that fn = Fn (X0, . . . , Xn) is a decreasing sequence of func-
tions such that limn→∞ P (fn) =: ε > 0. Letting f∞ := limn→∞ fn we would
have fn ≥ f∞ for all n and therefore fn ≥ E [f∞|Bn] := f̄n. We also use

f̄n (X0, X1, . . . , Xn)
= E [f∞|Bn] = E [E [f∞|Bn+1] |Bn]

= E
[
f̄n+1|Bn

]
=
∫
f̄n+1 (X0, X1, . . . , xn+1)Tn+1 (X0, . . . , Xn, dxn+1)

and P
(
f̄n
)

= P (f∞) = limm→∞ P (fm) = ε > 0 (we only use the case where
n = 0 here). Since P

(
f̄0 (X0)

)
= ε > 0, there exists x0 ∈ S0 such that

ε ≤ f̄0 (x0) = E
[
f̄1|B0

]
=
∫
f̄1 (x0, x1)T1 (x0, dx1)

and so similarly there exists x1 ∈ S1 such that

ε ≤ f̄1 (x0, x1) =
∫
f̄2 (x0, x1, x2)T2 (x0, x1, dx2) .

Again it follows that there must exists an x2 ∈ S2 such that ε ≤ f̄2 (x0, x1, x2) .
We continue on this way to find and x ∈ S such that

fn (x) ≥ f̄n (x0, . . . , xn) ≥ ε for all n.

Thus if P (fn) ↓ ε > 0 then limn→∞ fn (x) ≥ ε 6= 0 as desired.

Proof. Now onto the formal proof. Let S denote the space of finitely
based bounded cylinder functions on S, i.e. functions of the form f (x) =
F (x0, . . . , xn) with F ∈ Snb . For such an f we define

I (f) := Pn (F ) .

It is easy to check that I is a well defined positive linear functional on S.
Now suppose that 0 ≤ fn ∈ S are forms a decreasing sequence of functions

such that limn→∞ I (fn) = ε > 0. We wish to show that limn→∞ fn (x) 6= 0
for every x ∈ S. By assumption, fn (x) = Fn (x0, . . . , xNn) for some Nn ∈ N of
which we may assume N0 < N1 < N2 < . . . . Moreover if N0 = 2 < N1 = 5 <
N2 = 7 < . . . , we may replace (f0, f1, . . . ) by

(g0, g1, g2, . . . ) = (1, 1, f0, f0, f0, f1, f1, f2, . . . ) .

Noting that limn→∞ gn = limn→∞ fn, limn→∞ I (gn) = I (fn) , and gn (x) =
Gn (x0, . . . , xn) for some Gn ∈ Snb , we may now assume that fn (x) =
Fn (x0, . . . , xn) with Fn ∈ Snb .

For any k ≤ n let

F kn (x0, . . . , xk) :=
∫
· · ·
∫
Fn (x0, . . . , xn)

n−1∏
l=k

Tl (x0, . . . , xl, dxl+1)

which is an explicit version of Pn [Fn (x0, . . . , xn) |x0, . . . , xk]“=”E [fn|Bk] (x) .
By construction of the measures Pn it follows that

PkF
k
n = PnFn = I (fn) for all k ≤ n. (17.64)

Since

Fn (x0, . . . , xn) = fn (x) ≤ fn+1 (x) = Fn+1 (x0, . . . , xn, xn+1) ,

it follows that

F kn (x0, . . . , xk) =
∫
Fn (x0, . . . , xn)

n∏
l=k

Tl (x0, . . . , xl, dxl+1)

≤
∫
Fn+1 (x0, . . . , xn, xn+1)

n∏
l=k

Tl (x0, . . . , xl, dxl+1)

= F kn+1 (x0, . . . , xk) .

Thus we may define F k (x0, . . . , xk) :=↓ limn→∞ F kn (x0, . . . , xk) which is for-
mally equal to E [f |Bk] (x) . Hence we expect that

F k (x0, . . . , xk) =
∫
F k+1 (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1) (17.65)

by the tower property for conditional expectations. This is indeed that case
since, ∫

F k+1 (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1)

= lim
n→∞

∫
F k+1
n (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1)

while∫
F k+1
n (x0, . . . , xk, xk+1)Tk (x0, . . . , xk, dxk+1)

=
∫ [∫

· · ·
∫
Fn (x0, . . . , xn)

n∏
l=k+1

Tl (x0, . . . , xl, dxl+1)

]
Tk (x0, . . . , xk, dxk+1)

=
∫
· · ·
∫
Fn (x0, . . . , xn)

n∏
l=k

Tl (x0, . . . , xl, dxl+1)

= F kn (x0, . . . , xk) .
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We may now pass to the limit as n→∞ in Eq. (17.64) to find

Pk
(
F k
)

= ε > 0 for all k.

For k = 0 it follows that F 0 (x0) ≥ ε > 0 for some x0 ∈ S0 for otherwise
P0 (F0) < ε. But

ε ≤ F 0 (x0) =
∫
F 1 (x0, x1)T1 (x0, dx1)

and so there exists x1 such that

ε ≤ F 1 (x0, x1) =
∫
F 2 (x0, x1, x2)T2 (x0, x1, dx2)

and hence there exists x2 such that ε ≤ F 2 (x0, x1, x2) , etc. etc. Thus in the
end we find an x = (x0, x1, . . . ) ∈ S such that F k (x0, . . . , xn) ≥ ε for all k.
Finally recall that

F kn (x0, . . . , xk) ≥ F k (x0, . . . , xk) ≥ ε for all k ≤ n.

Taking k = n then implies,

fn (x) = Fnn (x0, . . . , xn) ≥ Fn (x0, . . . , xn) ≥ ε for all n.

Therefore we have constructed a x ∈ S such that f (x) = limn→∞ fn (x) ≥ ε >
0.

We may now use the Caratheodory extension theorem to show that P
extends to a countably additive measure on (S,S) . Indeed suppose An ∈
A (Xi : i ∈ N0) . If An ↓ ∅ then 1An ↓ 0 and by what we have just proved,

P (An) = P (1An) ↓ 0 as n→∞.

Corollary 17.56 (Infinite Product Measures). Let {(Sn,Sn, µn)}n∈N0 be
a collection of measurable spaces, then there exists P on (S,S) such that

P (f) = P (f) =
∫
Sn
F (x0, . . . , xn) dν0 (x0) . . . dνn (xn)

whenever f (x) = F (x0, . . . , xn) for some F ∈ (Sn)b .

Proof. Let µ0 = ν0 and

Tn (x0, . . . , xn−1, dxn+1) = vn (dxn) .

Then in this case we will have

µn (dx0, . . . , dxn) = dν0 (x0) dν1 (dx1) . . . νn (dxn)

as desired.
Proof. Let µ0 = ν and

Tn (x0, . . . , xn−1, dxn+1) = Qn (xn−1, dxn) .

Then in this case we will have

µn (dx0, . . . , dxn) = dν (x0)Q1 (x0, dx1) . . . Qn (xn−1, dxn)

as desired.

17.8 *Appendix: More Probability Kernel Constructions

Lemma 17.57. Suppose that (X,M) , (Y,F) , and (Z,B) are measurable spaces
and Q : X ×F → [0, 1] and R : Y ×B → [0, 1] are probability kernels. Then for
every bounded measurable function, F : (Y × Z,F ⊗ B)→ (R,BR) , the map

y →
∫
Z

R (y, dz)F (y, z)

is measurable. Moreover, if we define P (x;A) for A ∈ F ⊗ B and x ∈ X by

P (x,A) =
∫
Y

Q (x, dy)
∫
Z

R (y, dz) 1A (y, z) ,

then P : X ×F ⊗ B → [0, 1] is a probability kernel such that

P (x, F ) =
∫
Y

Q (x, dy)
∫
Z

R (y, dz)F (y, z)

for all bounded measurable functions, F : (Y × Z,F ⊗ B) → (R,BR) . We will
denote the kernel P by Q⊗R and write

(Q⊗R) (x, dy, dz) = Q (x, dy)R (y, dz) .

Moreover if S (z, dw) is another probability kernel, then ((Q⊗R)⊗ S) =
(Q⊗ (R⊗ S)) .

Proof. A routine exercise in using the multiplicative systems theorem. To
verify the last assertion it suffices to consider the kernels on sets of the form
A×B × C in which case,
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(Q⊗ (R⊗ S)) (x,A×B × C)

=
∫
Y

Q (x, dy)
∫
Z×W

RS (y, dz, dw) 1A×B×C (y, z, w)

=
∫
Y

Q (x, dy) 1A (y)
∫
Z×W

RS (y;B × C)

=
∫
Y

Q (x, dy) 1A (y)
∫
Z×W

R (y, dz)S (z, dw) 1B×C (z, w)

=
∫
Y

Q (x, dy) 1A (y)
∫
Z

R (y, dz)S (z, C) 1B (z)

while

((Q⊗R)⊗ S) (x,A×B × C)

=
∫
Y×Z

QR (x, dy, dz)
∫
Z×W

S (z, dw) 1A×B×C (y, z, w)

=
∫
Y×Z

QR (x, dy, dz) 1A×B (y, z)S (z, C)

=
∫
Y

Q (x, dy)
∫
Z

R (y, dz) 1A×B (y, z)S (z, C)

=
∫
Y

Q (x, dy) 1A (y)
∫
Z

R (y, dz)S (z, C) 1B (z) .

Corollary 17.58. Keeping the notation in Lemma 17.57, let QR be the proba-
bility kernel given by QR (x, dz) =

∫
Y
Q (x, dy)R (y, dz) so that

QR (x;B) = Q⊗R (x;Y ×B) .

Then we have Q (RS) = (QR)S.

Proof. Let C ∈ BW , then

Q (RS) (x;C) = Q⊗ (RS) (x;Y × C) =
∫
Y

Q (x, dy) (RS) (y;C)

=
∫
Y

Q (x, dy) (R⊗ S) (y;Z × C) = [Q⊗ (R⊗ S)] (Y × Z × C) .

Similarly one shows that

(QR)S (x;C) = [(Q⊗R)⊗ S] (Y × Z × C)

and then the result follows from Lemma 17.57.



18

(Sub and Super) Martingales

Let us start with a reminder of a few key notions that were already intro-
duced in Chapter 17. As usual we will let (S,S) denote a measurable space
called state space. (Often in this chapter we will take (S,S) = (R,BR) .) As
in Chapter 17, we will fix a filtered probability space,

(
Ω,B, {Bn}n∈N0

, P
)
,

i.e. Bn ⊂ Bn+1 ⊂ B for all n = 0, 1, 2 . . . . We further define

B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) ⊂ B. (18.1)

Also recall that a sequence of random functions, Yn : Ω → S for n ∈ N0, are
said to be adapted to the filtration if Yn is Bn/S – measurable for all n.

Definition 18.1. Let X := {Xn}∞n=0 is a be an adapted sequence of integrable
random variables. Then;

1. X is a {Bn}∞n=0 – martingale if E [Xn+1|Bn] = Xn a.s. for all n ∈ N0.
2. X is a {Bn}∞n=0 – submartingale if E [Xn+1|Bn] ≥ Xn a.s. for all n ∈ N0.
3. X is a {Bn}∞n=0 – supermartingale if E [Xn+1|Bn] ≤ Xn a.s. for all
n ∈ N0.

It is often fruitful to view Xn as your earnings at time n while playing some
game of chance. In this interpretation, your expected earnings at time n + 1
given the history of the game up to time n is the same, greater than, less than
your earnings at time n if X = {Xn}∞n=0 is a martingale, submartingale or
supermartingale respectively. In this interpretation, martingales are fair games,
submartingales are games which are favorable to the gambler (unfavorable to the
casino), and supermartingales are games which are unfavorable to the gambler
(favorable to the casino), see Example 18.4.

By induction one shows that X is a supermartingale, martingale, or sub-
martingale iff

E [Xm|Bn]
≤
=
≥
Xn a.s for all m ≥ n, (18.2)

to be read from top to bottom respectively. This last equation may also be
expressed as

E [Xm|Bn]
≤
=
≥
Xm∧n a.s for all m,n ∈ N0. (18.3)

The reader should also note that E [Xn] is decreasing, constant, or increasing
respectively. The next lemma shows that we may shrink the filtration, {Bn}∞n=0 ,

within limits and still have X retain the property of being a supermartingale,
martingale, or submartingale.

Lemma 18.2 (Shrinking the filtration). Suppose that X is a {Bn}∞n=0 –
supermartingale, martingale, submartingale respectively and {B′n}

∞
n=0 is another

filtration such that σ (X0, . . . , Xn) ⊂ B′n ⊂ Bn for all n. Then X is a {B′n}
∞
n=0

– supermartingale, martingale, submartingale respectively.

Proof. Since {Xn}∞n=0 is adapted to {Bn}∞n=0 and σ (X0, . . . , Xn) ⊂ B′n ⊂
Bn, for all n,

EB′nXn+1 = EB′nEBnXn+1

≤
=
≥

EB′nXn = Xn,

when X is a {Bn}∞n=0 – supermartingale, martingale, submartingale respectively
– read from top to bottom.

Enlarging the filtration is another matter all together. In what follows we
will simply say X is a supermartingale, martingale, submartingale if it is a
{Bn}∞n=0 – supermartingale, martingale, submartingale.

18.1 (Sub and Super) Martingale Examples

Example 18.3. Suppose that {Zn}∞n=0 are independent integrable random vari-
ables such that EZn = 0 for all n ≥ 1. Then Sn :=

∑n
k=0 Zk is a martingale

relative to the filtration, BZn := σ (Z0, . . . , Zn) . Indeed,

E [Sn+1 − Sn|Bn] = E [Zn+1|Bn] = EZn+1 = 0.

This same computation also shows that {Sn}n≥0 is a submartingale if EZn ≥ 0
and supermartingale if EZn ≤ 0 for all n.

Exercise 18.1. Construct an example of a martingale, {Mn}∞n=0 such that
E |Mn| → ∞ as n→∞.

Example 18.4 (Setting the odds). Let S be a finite set (think of the outcomes
of a spinner, or dice, or a roulette wheel) and p : S → (0, 1) be a probability
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function1. Let {Zn}∞n=1 be random functions with values in S such that p (s) :=
P (Zn = s) for all s ∈ S. (Zn represents the outcome of the nth – game.) Also
let α : S → [0,∞) be the house’s payoff function, i.e. for each dollar you (the
gambler) bets on s ∈ S, the house will pay α (s) dollars back if s is rolled.
Further let W : Ω → W be measurable function into some other measure
space, (W,F) which is to represent your random (or not so random) “whims.”.
We now assume that Zn is independent of (W,Z1, . . . , Zn−1) for each n, i.e.
the dice are not influenced by the previous plays or your whims. If we let
Bn := σ (W,Z1, . . . , Zn) with B0 = σ (W0) , then we are assuming the Zn is
independent of Bn−1 for each n ∈ N.

As a gambler, you are allowed to choose before the nth – game is played, the
amounts

(
{Cn (s)}s∈S

)
that you want to bet on each of the possible outcomes

of the nth – game. Assuming the you are not clairvoyant (i.e. can not see the
future), these amounts may be random but must be Bn−1 – measurable, that is
Cn (s) = Cn (W,Z1, . . . , Zn−1, s) , i.e. {Cn (s)}∞n=1 is “previsible” process (see
Definition 18.5 below). Thus if X0 denotes your initial wealth (assumed to be
a non-random quantity) and Xn denotes your wealth just after the nth – game
is played, then

Xn −Xn−1 = −
∑
s∈S

Cn (s) + Cn (Zn)α (Zn)

where −
∑
s∈S Cn (s) is your total bet on the nth – game and Cn (Zn)α (Zn)

represents the house’s payoff to you for the nth – game. Therefore it follows
that

Xn = X0 +
n∑
k=1

[
−
∑
s∈S

Ck (s) + Cn (Zk)α (Zk)

]
,

Xn is Bn – measurable for each n, and

EBn−1 [Xn −Xn−1] = −
∑
s∈S

Cn (s) + EBn−1 [Cn (Zn)α (Zn)]

= −
∑
s∈S

Cn (s) +
∑
s∈S

Cn (s)α (s) p (s)

=
∑
s∈S

Cn (s) (α (s) p (s)− 1) .

Thus it follows, that no matter the choice of the betting “strategy,”
{Cn (s) : s ∈ S}∞n=1 , we will have

1 To be concrete, take S = {2, . . . , 12} representing the possible values for the sums
of the upward pointing faces of two dice. Assuming the dice are independent and
fair then determines p : S → (0, 1) . For example p (2) = p (12) = 1/36, p (3) =
p (11) = 1/18, p (7) = 1/6, etc.

EBn−1 [Xn −Xn−1] =

≥ 0 if α (·) p (·) ≥ 1
= 0 if α (·) p (·) = 1
≤ 0 if α (·) p (·) ≤ 1

,

that is {Xn}n≥0 is a sub-martingale, martingale, or supermartingale depending
on whether α · p ≥ 1, α · p = 1, or α · p ≤ 1.

Moral: If the Casino wants to be guaranteed to make money on average, it
had better choose α : S → [0,∞) such that α (s) < 1/p (s) for all s ∈ S. In this
case the expected earnings of the gambler will be decreasing which means the
expected earnings of the Casino will be increasing.

Definition 18.5. We say {Cn : Ω → S}∞n=1 is predictable or previsible if
each Cn is Bn−1/S – measurable for all n ∈ N.

A typical example is when {Xn : Ω → S}∞n=0 is a sequence of measurable
functions on a probability space (Ω,B, P ) and Bn := σ (X0, . . . , Xn) . An ap-
plication of Lemma 14.1 shows that a sequence of random variables, {Yn}∞n=0 ,
is adapted to the filtration iff there are S⊗(n+1)/BR – measurable functions,
fn : Sn+1 → R, such that Yn = fn (X0, . . . , Xn) for all n ∈ N0 and a se-
quence of random variables, {Zn}∞n=1 , is predictable iff there exists, there are
measurable functions, fn : Rn → R such that Zn = fn (X0, . . . , Xn−1) for all
n ∈ N.

Example 18.6. Suppose that (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space
and X ∈ L1 (Ω,B, P ) . Then Xn := E [X|Bn] is a martingale. Indeed, by the
tower property of conditional expectations,

E [Xn+1|Bn] = E [E [X|Bn+1] |Bn] = E [X|Bn] = Xn a.s.

Example 18.7. Suppose that Ω = [0, 1] , B = B[0,1], and P = m – Lebesgue

measure. Let Pn =
{(

k
2n ,

k+1
2n

]}2n−1

k=1
∪
{[

0, 1
2n

]}
and Bn := σ (Pn) for each

n ∈ N. Then Mn := 2n1(0,2−n] for n ∈ N is a martingale (Exercise 18.2) such
that E |Mn| = 1 for all n. However, there is no X ∈ L1 (Ω,B, P ) such that
Mn = E [X|Bn] . To verify this last assertion, suppose such an X existed. Let .
We would then have for 2n > k > 0 and any m > n, that

E
[
X :

(
k

2n
,
k + 1

2n

]]
= E

[
EBmX :

(
k

2n
,
k + 1

2n

]]
= E

[
Mm :

(
k

2n
,
k + 1

2n

]]
= 0.

Using E [X : A] = 0 for all A in the π – system, Q :=
∪∞n=1

{(
k
2n ,

k+1
2n

]
: 0 < k < 2n

}
, an application of the π – λ theorem shows

E [X : A] = 0 for all A ∈ σ (Q) = B. Therefore X = 0 a.s. by Proposition 7.22.
But this is impossible since 1 = EMn = EX.
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Moral: not all L1 – bounded martingales are of the form in example 18.6.
Proposition 18.8 shows what is missing from this martingale in order for it to be
of the form in Example 18.6. See the comments after Example 18.11 for another
example of an L1 – bounded martingale which is not of the form in example
18.6.

Exercise 18.2. Show that Mn := 2n1(0,2−n] for n ∈ N as defined in Example
18.7 is a martingale.

Proposition 18.8. Suppose 1 ≤ p < ∞ and X ∈ Lp (Ω,B, P ) . Then the col-
lection of random variables, Γ := {E [X|G] : G ⊂ B} is a bounded subset of
Lp (Ω,B, P ) which is also uniformly integrable.

Proof. Since EG is a contraction on all Lp – spaces it follows that Γ is
bounded in Lp with

sup
G⊂B
‖E [X|G]‖p ≤ ‖X‖p .

For the p > 1 the uniform integrability of Γ follows directly from Lemma 12.48.
We now concentrate on the p = 1 case. Recall that |EGX| ≤ EG |X| a.s. and

therefore,

E [|EGX| : |EGX| ≥ a] ≤ E [|X| : |EGX| ≥ a] for all a > 0.

But by Chebyshev’s inequality,

P (|EGX| ≥ a) ≤ 1
a

E |EGX| ≤
1
a

E |X| .

Since {|X|} is uniformly integrable, it follows from Proposition 12.42 that, by
choosing a sufficiently large, E [|X| : |EGX| ≥ a] is as small as we please uni-
formly in G ⊂ B and therefore,

lim
a→∞

sup
G⊂B

E [|EGX| : |EGX| ≥ a] = 0.

Example 18.9. This example generalizes Example 18.7. Suppose
(Ω,B, {Bn}∞n=0 , P ) is a filtered probability space and Q is another probability
measure on (Ω,B) . Let us assume that Q|Bn � P |Bn for all n, which by the
Raydon-Nikodym Theorem 15.8, implies there exists 0 ≤ Xn ∈ L1 (Ω,Bn, P )
with EXn = 1 such that dQ|Bn = XndP |Bn , or equivalently put, for any
B ∈ Bn we have

Q (B) =
∫
B

XndP = E [Xn : B] .

Since B ∈ Bn ⊂ Bn+1, we also have E [Xn+1 : B] = Q (B) = E [Xn : B] for
all B ∈ Bn and hence E [Xn+1|Bn] = Xn a.s., i.e. X = {Xn}∞n=0 is a positive
martingale.

Example 18.7 is of this form with Q = δ0. Notice that δ0|Bn � m|Bn for all
n <∞ while δ0 ⊥ m on B[0,1] = B∞. See Section 19.3 for more in the direction
of this example.

Lemma 18.10. Let X := {Xn}∞n=0 be an adapted process of integrable random
variables on a filtered probability space, (Ω,B, {Bn}∞n=0 , P ) and let dn := Xn −
Xn−1 with X−1 := EX0. Then X is a martingale (respectively submartingale
or supermartingale) iff E [dn+1|Bn] = 0 (E [dn+1|Bn] ≥ 0 or E [dn+1|Bn] ≤ 0
respectively) for all n ∈ N0.

Conversely if {dn}∞n=1 is an adapted sequence of integrable random vari-
ables and X0 is a B0 -measurable integrable random variable. Then Xn =
X0 +

∑n
j=1 dj is a martingale (respectively submartingale or supermartingale)

iff E [dn+1|Bn] = 0 (E [dn+1|Bn] ≥ 0 or E [dn+1|Bn] ≤ 0 respectively) for all
n ∈ N.

Proof. We prove the assertions for martingales only, the other all being
similar. Clearly X is a martingale iff

0 = E [Xn+1|Bn]−Xn = E [Xn+1 −Xn|Bn] = E [dn+1|Bn] .

The second assertion is an easy consequence of the first assertion.

Example 18.11. Suppose that {Zn}∞n=0 is a sequence of independent integrable
random variables, Xn = Z0 . . . Zn, and Bn := σ (Z0, · · · , Zn) . (Observe that
E |Xn| =

∏n
k=0 E |Zk| <∞.) Since

E [Xn+1|Bn] = E [XnZn+1|Bn] = XnE [Zn+1|Bn] = Xn · E [Zn+1] a.s.,

it follows that {Xn}∞n=0 is a martingale if EZn = 1. If we further assume,
for all n, that Zn ≥ 0 so that Xn ≥ 0, then {Xn}∞n=0 is a supermartingale
(submartingale) provided EZn ≤ 1 (EZn ≥ 1) for all n.

Let us specialize the above example even more by taking Zn
d= p+U where

p ≥ 0 and U is the uniform distribution on [0, 1] . In this case we have by the
strong law of large numbers that

1
n

lnXn =
1
n

n∑
k=0

lnZk → E [ln (p+ U)] a.s.

An elementary computation shows
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Fig. 18.1. The graph of E [ln (p+ U)] as a function of p. This function has a zero at
p = pc ∼= 0.542 21.

E [ln (p+ U)] =
∫ 1

0

ln (p+ x) dx =
∫ p+1

p

ln (p+ x) dx

= (x lnx− x)x=p+1
x=p = (p+ 1) ln (p+ 1)− p ln p− 1

Hence we may conclude that

Xn → lim
n→∞

exp (nE [ln (p+ U)]) =

 0 if p < pc
? if p = pc
∞ if p > pc

a.s.

Notice that EZn = p + 1/2 and therefore Xn is a martingale precisely when
p = 1/2 and is a sub-martingale for p > 1/2. So for 1/2 < p < pc, {Xn}∞n=1 is
a positive sub-martingale, EXn = (p+ 1/2)n+1 → ∞ yet limn→∞Xn = 0 a.s.
Have a look at the excel file (Product positive-(sub)martingales.xls) in order to
construct sample paths for the {Xn}∞n=0 .

Proposition 18.12. Suppose that X = {Xn}∞n=0 is a martingale and ϕ is a
convex function such that ϕ (Xn) ∈ L1 for all n. Then ϕ (X) = {ϕ (Xn)}∞n=0

is a submartingale. If ϕ is also assumed to be increasing, it suffices to assume
that X is a submartingale in order to conclude that ϕ (X) is a submartingale.
(For example if X is a positive submartingale, p ∈ (1,∞) , and EXp

n < ∞ for
all n, then Xp := {Xp

n}
∞
n=0 is another positive submartingale.

Proof. When X is a martingale, by the conditional Jensen’s inequality
14.25,

ϕ (Xn) = ϕ (EBnXn+1) ≤ EBn [ϕ (Xn+1)]

which shows ϕ (X) is a submartingale. Similarly, if X is a submartingale and ϕ
is convex and increasing, then ϕ preserves the inequality, Xn ≤ EBnXn+1, and
hence

ϕ (Xn) ≤ ϕ (EBnXn+1) ≤ EBn [ϕ (Xn+1)]

so again ϕ (X) is a submartingale.

Proposition 18.13 (Markov Chains and Martingales). Suppose that(
Ω,B, {B}n∈N0

, {Xn : Ω → S}n≥0 , Q, P
)

is a time homogeneous Markov chain
and f : N0×S → R be measurable function which is either non-negative or sat-
isfies E [|f (n,Xn)|] < ∞ for all n and let Zn := f (n,Xn) . Then {Zn}∞n=0 is
a (sub-martingale) martingale if (Qf (n+ 1, ·) ≤ f (n·)) Qf (n+ 1, ·) = f (n, ·)
for all n ≥ 0. In particular if f : S → R is a function such that (Qf ≤ f)
Qf = f then Zn = f (Xn) is a (sub-martingale) martingale. (Also see Exercise
18.5 below.)

Proof. Using the Markov property and the definition of Q, we have

E [Zn+1|Bn] = E [f (n+ 1, Xn+1) |Bn] = [Qf (n+ 1, ·)] (Xn) .

The latter expression is (less than or equal) equal to Zn if
(Qf (n+ 1, ·) ≤ f (n·)) Qf (n+ 1, ·) = f (n, ·) for all n ≥ 0.

One way to find solutions to the equation Qf (n+ 1, ·) = f (n, ·) at least for
a finite number of n is to let g : S → R be an arbitrary function and T ∈ N be
given and then define

f (n, y) :=
(
QT−ng

)
(y) for 0 ≤ n ≤ T.

Then Qf (n+ 1, ·) = Q
(
QT−n−1g

)
= QT−ng = f (n, ·) and we will have that

Zn = f (n,Xn) =
(
QT−ng

)
(Xn)

is a Martingale for 0 ≤ n ≤ T. If f (n, ·) satisfies Qf (n+ 1, ·) = f (n, ·) for all
n then we must have, with f0 := f (0, ·) ,

f (n, ·) = Q−nf0

where Q−1g denotes a function h solving Qh = g. In general Q is not invertible
and hence there may be no solution to Qh = g or there might be many solutions.

In special cases one can often make sense of these expressions as you
will see Exercise 18.5. In this exercise we will continue the notation in Ex-
ercise 17.34 where S = Z, Sn = X0 + X1 + · · · + Xn, where {Xi}∞i=1 are
i.i.d. with P (Xi = 1) = p ∈ (0, 1) and P (Xi = −1) = q := 1 − p, and X0

is S –valued random variable independent of {Xi}∞i=1 . Recall that {Sn}∞n=0

is a time homogeneous Markov chain with transition kernel determined by
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Qf (x) = pf (x+ 1) + qf (x− 1) . As we have seen if f (x) = a + b (q/p)x ,
then Qf = f and therefore

Mn = a+ b (q/p)Sn

is a Martingale for all a, b ∈ R.
Now suppose that λ 6= 0 and observe that Qλx =

(
pλ+ qλ−1

)
λx. Thus

it follows that we may set Q−1λx =
(
pλ+ qλ−1

)−1
λx and therefore conclude

that
f (n, x) := Q−nλx =

(
pλ+ qλ−1

)−n
λx

satisfies Qf (n+ 1, ·) = f (n, ·) . So if we suppose that X0 is a bounded so
that Sn is bounded for all n, we will have

{
Mn =

(
pλ+ qλ−1

)−n
λSn

}
n≥0

is a

martingale for all λ 6= 0.

Exercise 18.3. For θ ∈ R let

fθ (n, x) := Q−neθx =
(
peθ + qe−θ

)−n
eθx

so that Qfθ (n+ 1, ·) = fθ (n, ·) for all θ ∈ R. Compute;

1. f (k)
θ (n, x) :=

(
d
dθ

)k
fθ (n, x) for k = 1, 2.

2. Use your results to show,

M (1)
n := Sn − n (p− q)

and

M (2)
n := (Sn − n (p− q))2 − 4npq

are martingales.

(If you are ambitious you might also find M
(3)
n .)

Remark 18.14. If {Mn (θ)}∞n=0 is a martingale depending differentiability on a
parameter θ ∈ R. Then for all A ∈ Bn,

E
[
d

dθ
Mn+1 (θ) : A

]
=

d

dθ
E [Mn+1 (θ) : A] =

d

dθ
E [Mn (θ) : A] = E

[
d

dθ
Mn (θ) : A

]
provided it is permissible to interchange d

dθ with the expectations in this equa-
tion. Thus under “suitable” hypothesis, we will have

{
d
dθMn (θ)

}
n≥0

is another
martingale.

18.2 Decompositions

Notation 18.15 Given a sequence {Zk}∞k=0 , let ∆kZ := Zk − Zk−1 for k =
1, 2, . . . .

Lemma 18.16 (Doob Decomposition). Each adapted sequence, {Zn}∞n=0 ,
of integrable random variables has a unique decomposition,

Zn = Mn +An (18.4)

where {Mn}∞n=0 is a martingale and An is a predictable process such that A0 =
0. Moreover this decomposition is given by A0 = 0,

An :=
n∑
k=1

EBk−1 [∆kZ] for n ≥ 1 (18.5)

and

Mn = Zn −An = Zn −
n∑
k=1

EBk−1 [∆kZ] (18.6)

= Z0 +
n∑
k=1

(
Zk − EBk−1Zk

)
. (18.7)

In particular, {Zn}∞n=0 is a submartingale (supermartingale) iff An is increasing
(decreasing) almost surely.

Proof. Assuming Zn has a decomposition as in Eq. (18.4), then

EBn [∆n+1Z] = EBn [∆n+1M +∆n+1A] = ∆n+1A (18.8)

wherein we have used M is a martingale and A is predictable so that
EBn [∆n+1M ] = 0 and EBn [∆n+1A] = ∆n+1A. Hence we must define, for
m ≥ 1,

An :=
n∑
k=1

∆kA =
n∑
k=1

EBk−1 [∆kZ]

which is a predictable process. This proves the uniqueness of the decomposition
and the validity of Eq. (18.5).

For existence, from Eq. (18.5) it follows that

EBn [∆n+1Z] = ∆n+1A = EBn [∆n+1A] .

Hence, if we define Mn := Zn −An, then

EBn [∆n+1M ] = EBn [∆n+1Z −∆n+1A] = 0
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and hence {Mn}∞n=0 is a martingale. Moreover, Eq. (18.7) follows from Eq.
(18.6) since,

Mn = Z0 +
n∑
k=1

(
∆kZ − EBk−1 [∆kZ]

)
and

∆kZ − EBk−1 [∆kZ] = Zk − Zk−1 − EBk−1 [Zk − Zk−1]

= Zk − Zk−1 −
(
EBk−1Zk − Zk−1

)
= Zk − EBk−1Zk.

Remark 18.17. Suppose that X = {Xn}∞n=0 is a submartingale and Xn = Mn+
An is it Doob decomposition. Then A∞ =↑ limn→∞An exists a.s.,

EAn = E [Xn −Mn] = EXn − EM0 = E [Xn −X0] (18.9)

and hence by MCT,
EA∞ =↑ lim

n→∞
E [Xn −X0] . (18.10)

Hence if limn→∞ E [Xn −X0] = supn E [Xn −X0] <∞, then EA∞ <∞ and so
by DCT, An → A∞ in L1 (Ω,B, P ) . In particular if supn E |Xn| <∞, we may
conclude that {Xn}∞n=0 is L1 (Ω,B, P ) convergent iff {Mn}∞n=0 is L1 (Ω,B, P )
convergent. (We will see below in Corollary 18.54 that X∞ := limn→∞Xn

and M∞ := limn→∞Mn exist almost surely under the assumption that
supn E |Xn| <∞.)

Example 18.18. Suppose that N = {Nn}∞n=0 is a square integrable martingale,
i.e. EN2

n < ∞ for all n. Then from Proposition 18.12, X :=
{
Xn = N2

n

}∞
n=0

is
a positive submartingale. In this case

EBk−1∆kX = EBk−1

(
N2
k −N2

k−1

)
= EBk−1 [(Nk −Nk−1) (Nk +Nk−1)]

= EBk−1 [(Nk −Nk−1) (Nk −Nk−1)]

= EBk−1 (Nk −Nk−1)2

wherein the second to last equality we have used

EBk−1 [(Nk −Nk−1)Nk−1] = Nk−1EBk−1 (Nk −Nk−1) = 0 a.s.

in order to change (Nk +Nk−1) to (Nk −Nk−1) . Hence the increasing pre-
dictable process, An, in the Doob decomposition may be written as

An =
∑
k≤n

EBk−1∆kX =
∑
k≤n

EBk−1 (∆kN)2
. (18.11)

Exercise 18.4 (Very similar to above example?). Suppose {Mn}∞n=0 is a
square integrable martingale. Show;

1. E
[
M2
n+1 −M2

n|Bn
]

= E
[
(Mn+1 −Mn)2 |Bn

]
. Conclude from this that the

Doob decomposition of M2
n is of the form,

M2
n = Nn +An

where
An :=

∑
1≤k≤n

E
[
(Mk −Mk−1)2 |Bk−1

]
.

2. If we further assume that Mk −Mk−1 is independent of Bk−1 for all k =
1, 2, . . . , explain why,

An =
∑

1≤k≤n

E (Mk −Mk−1)2
.

The next exercise shows how to characterize Markov processes via martin-
gales.

Exercise 18.5 (Martingale problem I). Suppose that {Xn}∞n=0 is an (S,S)
– valued adapted process on some filtered probability space

(
Ω,B, {Bn}n∈N0

, P
)

and Q is a probability kernel on S. To each f : S → R which is bounded and
measurable, let

Mf
n := f (Xn)−

∑
k<n

(Qf (Xk)− f (Xk)) = f (Xn)−
∑
k<n

((Q− I) f) (Xk) .

Show;

1. If {Xn}n≥0 is a time homogeneous Markov chain with transition kernel, Q,
then

{
Mf
n

}
n≥0

is a martingale for each f ∈ Sb.
2. Conversely if

{
Mf
n

}
n≥0

is a martingale for each f ∈ Sb, then {Xn}n≥0 is a
time homogeneous Markov chain with transition kernel, Q.

Remark 18.19. If X is a real valued random variable, then X = X+ − X−,
|X| = X+ +X−, X+ ≤ |X| = 2X+ −X, so that

EX+ ≤ E |X| = 2EX+ − EX.

Hence if {Xn}∞n=0 is a submartingale then

EX+
n ≤ E |Xn| = 2EX+

n − EXn ≤ 2EX+
n − EX0

from which it follows that
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sup
n

EX+
n ≤ sup

n
E |Xn| ≤ 2 sup

n
EX+

n − EX0. (18.12)

In particular, an integrable submartingale {Xn}∞n=0 is L1 (P ) bounded iff
{X+

n }
∞
n=0 is L1 (P ) bounded.

Theorem 18.20 (Krickeberg Decomposition). Suppose that X is an in-
tegrable submartingale such that C := supn E [X+

n ] < ∞ or equivalently
supn E |Xn| <∞, see Eq. (18.12). Then

Mn :=↑ lim
p→∞

E
[
X+
p |Bn

]
exists a.s.,

M = {Mn}∞n=0 is a positive martingale, Y = {Yn}∞n=0 with Yn := Xn −Mn is
a positive supermartingale, and hence Xn = Mn−Yn. So X can be decomposed
into the difference of a positive martingale and a positive supermartingale.

Proof. From Proposition 18.12 we know thatX+ = {X+
n } is a still a positive

submartingale. Therefore for each n ∈ N, and p ≥ n,

EBn
[
X+
p+1

]
= EBnEBp

[
X+
p+1

]
≥ EBnX+

p a.s.

Therefore EBnX+
p is increasing in p for p ≥ n and therefore, Mn :=

limp→∞ EBn
[
X+
p

]
exists in [0,∞] . By Fatou’s lemma, we know that

EMn ≤ lim inf
p→∞

E
[
EBn

[
X+
p

]]
≤ lim inf

p→∞
E
[
X+
p

]
= C <∞

which shows M is integrable. By cMCT and the tower property of conditional
expectation,

EBnMn+1 = EBn lim
p→∞

EBn+1

[
X+
p

]
= lim
p→∞

EBnEBn+1

[
X+
p

]
= lim
p→∞

EBn
[
X+
p

]
= Mn a.s.,

which shows M = {Mn} is a martingale.
We now define Yn := Mn − Xn. Using the submartingale property of X+

implies,

Yn = Mn −Xn = lim
p→∞

EBn
[
X+
p

]
−Xn = lim

p→∞
EBn

[
X+
p

]
−X+

n +X−n

= lim
p→∞

EBn
[
X+
p −X+

n

]
+X−n ≥ 0 a.s..

Moreover,

E [Yn+1|Bn] = E [Mn+1 −Xn+1|Bn] = Mn − E [Xn+1|Bn] ≥Mn −Xn = Yn

wherein we have use M is a martingale in the second equality and X is sub-
martingale the last inequality.

18.3 Stopping Times

Definition 18.21. Again let {Bn}∞n=0 be a filtration on (Ω,B) and assume that
B = B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) . A function, τ : Ω → N̄ := N ∪ {0,∞} is
said to be a stopping time if {τ ≤ n} ∈ Bn for all n ∈ N̄. Equivalently put,
τ : Ω → N̄ is a stopping time iff the process, n→ 1τ≤n is adapted.

Lemma 18.22. Let {Bn}∞n=0 be a filtration on (Ω,B) and τ : Ω → N̄ be a
function. Then the following are equivalent;

1. τ is a stopping time.
2. {τ ≤ n} ∈ Bn for all n ∈ N0.
3. {τ > n} = {τ ≥ n+ 1} ∈ Bn for all n ∈ N0.
4. {τ = n} ∈ Bn for all n ∈ N0.

Moreover if any of these conditions hold for n ∈ N0 then they also hold for
n =∞.

Proof. (1.⇐⇒ 2.) Observe that if {τ ≤ n} ∈ Bn for all n ∈ N0, then
{τ <∞} = ∪∞n=1 {τ ≤ n} ∈ B∞ and therefore {τ =∞} = {τ <∞}c ∈ B∞
and hence {τ ≤ ∞} = {τ <∞}∪{τ =∞} ∈ B∞. Hence in order to check that
τ is a stopping time, it suffices to show {τ ≤ n} ∈ Bn for all n ∈ N0.

The equivalence of 2., 3., and 4. follows from the identities

{τ > n}c = {τ ≤ n} ,
{τ = n} = {τ ≤ n} \ {τ ≤ n− 1} , and
{τ ≤ n} = ∪nk=0 {τ = k}

from which we conclude that 2. =⇒ 3. =⇒ 4. =⇒ 1.
Clearly any constant function, τ : Ω → N̄, is a stopping time. The reader

should also observe that if Bn = σ (X0, . . . , Xn) , then τ : Ω → N̄ is a stopping
time iff, for each n ∈ N0 there exists a measurable function, fn : Rn+1 → R
such that 1{τ=n} = fn (X0, . . . , Xn) . In other words, if τ (ω) = n and ω′ is any
other point in Ω such that Xk (ω) = Xk (ω′) for k ≤ n then τ (ω′) = n. Here is
another common example of a stopping time.

Example 18.23 (Hitting times). Let (S,S) be a state space, X :=
{Xn : Ω → S}∞n=0 be an adapted process on the filtered space, (Ω,B, {Bn}∞n=0)
and A ∈ S. Then the first hitting time of A,

τ := inf {n ∈ N0 : Xn ∈ A} ,

(with convention that inf ∅ =∞) is a stopping time. To see this, observe that

{τ = n} = {X0 ∈ Ac, . . . , Xn−1 ∈ Ac, Xn ∈ A} ∈ σ (X0, . . . , Xn) ⊂ Bn.
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More generally if σ is a stopping time, then the first hitting time after σ,

τ := inf {k ≥ σ : Xk ∈ A} ,

is also a stopping time. Indeed,

{τ = n} = {σ ≤ n} ∩ {Xσ /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}
= ∪0≤k≤n {σ = k} ∩ {Xk /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A}

which is in Bn for all n. Here we use the convention that

{Xk /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A} = {Xn ∈ A} if k = n.

On the other hand the last hitting time, τ = sup {n ∈ N0 : Xn ∈ A} , of a
set A is typically not a stopping time. Indeed, in this case

{τ = n} = {Xn ∈ A,Xn+1 /∈ A,Xn+2 /∈ A, . . . } ∈ σ (Xn, Xn+1, . . . )

which typically will not be in Bn.

Proposition 18.24 (New Stopping Times from Old). Let (Ω,B, {Bn}∞n=0)
be a filtered measure space and suppose σ, τ, and {τn}∞n=1 are all stopping times.
Then

1. τ ∧ σ, τ ∨ σ, τ + σ are all stopping times.
2. If τk ↑ τ∞ or τk ↓ τ∞, then τ∞ is a stopping time.
3. In general, supk τk = limk→∞max {τ1, . . . , τk} and infk τk =

limk→∞min {τ1, . . . , τk} are also stopping times.

Proof.

1. Since {τ ∧ σ > n} = {τ > n} ∩ {σ > n} ∈ Bn, {τ ∨ σ ≤ n} = {τ ≤ n} ∩
{σ ≤ n} ∈ Bn for all n, and

{τ + σ = n} = ∪nk=0 {τ = k, σ = n− k} ∈ Bn

for all n, τ ∧ σ, τ ∨ σ, τ + σ are all stopping times.
2. If τk ↑ τ∞, then {τ∞ ≤ n} = ∩k {τk ≤ n} ∈ Bn and so τ∞ is a stopping

time. Similarly, if τk ↓ τ∞, then {τ∞ > n} = ∩k {τk > n} ∈ Bn and so τ∞
is a stopping time. (Recall that {τ∞ > n} = {τ∞ ≥ n+ 1} .)

3. This follows from items 1. and 2.

Lemma 18.25. If τ is a stopping time, then the processes, fn := 1{τ≤n}, and
fn := 1{τ=n} are adapted and fn := 1{τ<n} is predictable. Moreover, if σ and
τ are two stopping times, then fn := 1σ<n≤τ is predictable.

Proof. These are all trivial to prove. For example, if fn := 1σ<n≤τ , then fn
is Bn−1 measurable since,

{σ < n ≤ τ} = {σ < n} ∩ {n ≤ τ} = {σ < n} ∩ {τ < n}c ∈ Bn−1.

Notation 18.26 (Stochastic intervals) If σ, τ : Ω → N̄, let

(σ, τ ] :=
{

(ω, n) ∈ Ω × N̄ : σ (ω) < n ≤ τ (ω)
}

and we will write 1(σ,τ ] for the process, 1σ<n≤τ .

Our next goal is to define the “stopped” σ – algebra, Bτ . To motivate the
upcoming definition, suppose Xn : Ω → R are given functions for all n ∈ N0,
Bn := σ (X0, . . . , Xn) , and τ : Ω → N0 is a B· – stopping time. Recalling that
a function Y : Ω → R is Bn measurable iff Y (ω) = fn (X0 (ω) , . . . Xn (ω)) for
some measurable function, fn : Rn+1 → R, it is reasonable to suggest that Y
is Bτ measurable iff Y (ω) = fτ(ω)

(
X0 (ω) , . . . Xτ(ω) (ω)

)
, where fn : Rn+1 →

R are measurable random variables. If this is the case, then we would have
1τ=nY = fn (X0, . . . , Xn) is Bn – measurable for all n. Hence we should define
A ⊂ Ω to be in Bτ iff 1A is Bτ measurable iff 1τ=n1A is Bn measurable for all
n which happens iff {τ = n} ∩A ∈ Bn for all n.

Definition 18.27 (Stopped σ – algebra). Given a stopping time τ on a
filtered measure space (Ω,B, {Bn}∞n=0) with B∞ := ∨∞n=0Bn := σ (∪∞n=0Bn) , let

Bτ := {A ⊂ Ω : {τ = n} ∩A ∈ Bn for all n ≤ ∞} . (18.13)

Lemma 18.28. Suppose σ and τ are stopping times.

1. A set, A ⊂ Ω is in Bτ iff A ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞.
2. Bτ is a sub-σ-algebra of B∞.
3. If σ ≤ τ, then Bσ ⊂ Bτ .

Proof. 1. Since

A ∩ {τ ≤ n} = ∪k≤n [A ∩ {τ ≤ k}] and
A ∩ {τ = n} = [A ∩ {τ ≤ n}] \ [A ∩ {τ ≤ n− 1}] ,

it easily follows that A ⊂ Ω is in Bτ iff A ∩ {τ ≤ n} ∈ Bn for all n ≤ ∞.
2. Since Ω ∩ {τ ≤ n} = {τ ≤ n} ∈ Bn for all n, it follows that Ω ∈ Bτ . If

A ∈ Bτ , then, for all n ∈ N0,

Ac ∩ {τ ≤ n} = {τ ≤ n} \A = {τ ≤ n} \ [A ∩ {τ ≤ n}] ∈ Bn.

This shows Ac ∈ Bτ . Similarly if {Ak}∞k=1 ⊂ Bτ , then
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{τ ≤ n} ∩ (∩∞k=1Ak) = ∩∞k=1 ({τ ≤ n} ∩Ak) ∈ Bn

and hence ∩∞k=1Ak ∈ Bτ . This completes the proof the Bτ is a σ – algebra. Since
A = A ∩ {τ ≤ ∞} , it also follows that Bτ ⊂ B∞.

3. Now suppose that σ ≤ τ and A ∈ Bσ. Since A∩{σ ≤ n} and {τ ≤ n} are
in Bn for all n ≤ ∞, we find

A ∩ {τ ≤ n} = [A ∩ {σ ≤ n}] ∩ {τ ≤ n} ∈ Bn ∀ n ≤ ∞

which shows A ∈ Bτ .

Proposition 18.29 (Bτ – measurable random variables). Let
(Ω,B, {Bn}∞n=0) be a filtered measure space. Let τ be a stopping time
and Z : Ω → R be a function. Then the following are equivalent;

1. Z is Bτ – measurable,
2. 1{τ≤n}Z is Bn – measurable for all n ≤ ∞,
3. 1{τ=n}Z is Bn – measurable for all n ≤ ∞.
4. There exists, Yn : Ω → R which are Bn – measurable for all n ≤ ∞ such

that
Z = Yτ =

∑
n∈N̄

1{τ=n}Yn.

Proof. 1. =⇒ 2. By definition, if A ∈ Bτ , then 1{τ≤n}1A = 1{τ≤n}∩A
is Bn – measurable for all n ≤ ∞. Consequently any simple Bτ – measurable
function, Z, satisfies 1{τ≤n}Z is Bn – measurable for all n. So by the usual
limiting argument (Theorem 6.39), it follows that 1{τ≤n}Z is Bn – measurable
for all n for any Bτ – measurable function, Z.

2. =⇒ 3. This property follows from the identity,

1{τ=n}Z = 1{τ≤n}Z − 1{τ<n}Z.

3. =⇒ 4. Simply take Yn = 1{τ=n}Z.
4. =⇒ 1. Since Z =

∑
n∈N̄ 1{τ=n}Yn, it suffices to show 1{τ=n}Yn is Bτ –

measurable if Yn is Bn – measurable. Further, by the usual limiting arguments
using Theorem 6.39, it suffices to assume that Yn = 1A for some A ∈ Bn. In
this case 1{τ=n}Yn = 1A∩{τ=n}. Hence we must show A ∩ {τ = n} ∈ Bτ which
indeed is true because

A ∩ {τ = n} ∩ {τ = k} =
{

∅ ∈ Bk if k 6= n
A ∩ {τ = n} ∈ Bk if k = n

.

Alternatively proof for 1. =⇒ 2. If Z is Bτ measurable, then {Z ∈ B}∩
{τ ≤ n} ∈ Bn for all n ≤ ∞ and B ∈ BR. Hence if B ∈ BR with 0 /∈ B, then{

1{τ≤n}Z ∈ B
}

= {Z ∈ B} ∩ {τ ≤ n} ∈ Bn for all n

and similarly,{
1{τ≤n}Z = 0

}c =
{

1{τ≤n}Z 6= 0
}

= {Z 6= 0} ∩ {τ ≤ n} ∈ Bn for all n.

From these two observations, it follows that
{

1{τ≤n}Z ∈ B
}
∈ Bn for all B ∈ BR

and therefore, 1{τ≤n}Z is Bn – measurable.

Exercise 18.6. Suppose τ is a stopping time, (S,S) is a measurable space,
and Z : Ω → S is a function. Show that Z is Bτ/S measurable iff Z|{τ=n} is
(Bn){τ=n} /S – measurable for all n ∈ N0.

Lemma 18.30 (Bσ – conditioning). Suppose σ is a stopping time and Z ∈
L1 (Ω,B, P ) or Z ≥ 0, then

E [Z|Bσ] =
∑
n≤∞

1σ=nE [Z|Bn] = Yσ (18.14)

where
Yn := E [Z|Bn] for all n ∈ N̄. (18.15)

Proof. By Proposition 18.29, Yσ is Bσ – measurable. Moreover if Z is inte-
grable, then∑

n≤∞

E
[
1{σ=n} |Yn|

]
=
∑
n≤∞

E1{σ=n} |E [Z|Bn]|

≤
∑
n≤∞

E
[
1{σ=n}E [|Z| |Bn]

]
=
∑
n≤∞

E
[
E
[
1{σ=n} |Z| |Bn

]]
=
∑
n≤∞

E
[
1{σ=n} |Z|

]
= E |Z| <∞ (18.16)

and therefore

E |Yσ| = E

∣∣∣∣∣∣
∑
n≤∞

[
1{σ=n}Yn

]∣∣∣∣∣∣
≤
∑
n≤∞

E
[
1{σ=n} |Yn|

]
≤ E |Z| <∞.

Furthermore if A ∈ Bσ, then
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E [Z : A] =
∑
n≤∞

E [Z : A ∩ {σ = n}] =
∑
n≤∞

E [Yn : A ∩ {σ = n}]

=
∑
n≤∞

E
[
1{σ=n}Yn : A

]
= E

∑
n≤∞

1{σ=n}Yn : A


= E [Yσ : A] ,

wherein the interchange of the sum and the expectation in the second to last
equality is justified by the estimate in 18.16 or by the fact that everything in
sight is positive when Z ≥ 0.

Exercise 18.7. Suppose σ and τ are two stopping times. Show;

1. {σ < τ} , {σ = τ} , and {σ ≤ τ} are all in Bσ ∩ Bτ ,
2. Bσ∧τ = Bσ ∩ Bτ ,
3. Bσ∨τ = Bσ ∨ Bτ := σ (Bσ ∪ Bτ ) , and
4. Bσ = Bσ∧τ on C where C is any one of the following three sets; {σ ≤ τ} ,
{σ < τ} , or {σ = τ} .

For sake of completeness (as it will be needed in the next exercise), let me
check for you directly that {σ ≤ τ} ∈ Bσ∧τ . This will be the case iff {σ ≤ τ} ∩
{σ ∧ τ = n} ∈ Bn for all n ∈ N0. This is however true since,

{σ ≤ τ} ∩ {σ ∧ τ = n} = {σ ≤ τ} ∩ {σ = n} = {n ≤ τ} ∩ {σ = n} ∈ Bn.

Similarly one shows that {σ < τ} , {τ ≤ σ} , {τ < σ} , and {σ = τ} are in Bσ∧τ .

Theorem 18.31 (Tower Property II). Let X ∈ L1 (Ω,B, P ) or X : Ω →
[0,∞] be a B – measurable function. Then given any two stopping times, σ and
τ, show

EBσEBτX = EBτEBσX = EBσ∧τX. (18.17)

Proof. As usual it suffices to consider the case where X ≥ 0 and this case
there will be now convergence issues to worry about.

First Proof. Notice that

1τ≤σEBτ =
∑
n≤∞

1τ≤σ1τ=nEBn = 1τ≤σ
∑
n≤∞

1τ∧σ=nEBn = 1τ≤σEBσ∧τ

and similarly,

1τ<σEBτ =
∑
n≤∞

1τ<σ1τ=nEBn = 1τ<σ
∑
n≤∞

1τ∧σ=nEBn = 1τ<σEBσ∧τ .

Using these remarks and the fact that {τ ≤ σ} and {τ > σ} are both in Bσ∧τ =
Bσ ∩ Bτ we find;

EBσEBτ = EBσ (1τ≤σ + 1τ>σ) EBτ = EBσ1τ≤σEBτ∧σ + 1τ>σEBσEBτ
= 1τ≤σEBσEBτ∧σ + 1τ>σEBσ∧τEBτ
= 1τ≤σEBτ∧σ + 1τ>σEBσ∧τ= EBσ∧τ .

Second Proof. In this proof we are going to make use of the localization
Lemma 14.23. Since Bσ∧τ ⊂ Bσ, it follows by item 4. of Exercise 18.7 that
Bσ = Bσ∧τ on {σ ≤ τ} and on {σ < τ} . We will actually use the first statement
in the form, Bτ = Bσ∧τ on {τ ≤ σ} . From Lemma 18.30, we have

1τ≤σEBτ = 1τ≤σEBτ∧σ and
1τ>σEBσ = 1τ>σEBσ∧τ .

Using these relations and the basic properties of conditional expectation we
arrive at,

EBσEBτX = EBσEBτ [1τ≤σX + 1τ>σX]
= EBσ [1τ≤σEBτX] + 1τ>σEBσEBτX
= EBσ [1τ≤σEBτ∧σX] + 1τ>σEBσ∧τEBτX
= 1τ≤σEBσ [EBτ∧σX] + 1τ>σEBσ∧τX
= 1τ≤σEBτ∧σX + 1τ>σEBσ∧τX = EBσ∧τX a.s.

Exercise 18.8. Show, by example, that it is not necessarily true that

EG1EG2 = EG1∧G2

for arbitrary G1 and G2 – sub-sigma algebras of B.
Hint: it suffices to take (Ω,B, P ) with Ω = {1, 2, 3} , B = 2Ω , and P ({j}) =

1
3 for j = 1, 2, 3.

Exercise 18.9 (Geometry of commuting projections). Suppose that H is
a Hilbert space and Hi ⊂ H for i = 1, 2 are two closed subspaces. Let Pi = PHi
denote orthogonal projection onto Hi and P = PM be orthogonal projection
onto M := H1 ∩H2. Show;

1. Suppose there exists M0 ⊂ H1 ∩ H2 such that M1 ⊥ M2 where Mi =

{h ∈ Hi : h ⊥M0} so that H1 = M0

⊥
⊕ M1 and H2 = M0

⊥
⊕ M2. Then

M0 = H1 ∩H2 and P1P2 = P = P2P1.
2. If P1P2 = P2P1, then P1P2 = P = P2P1. Moreover if we let M0 = H1 ∩H2

and Mi be as above, then M1 ⊥M2.
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Solution to Exercise (18.9). 1. The assumptions imply that Pi = PM0 +PMi

for i = 1, 2. Moreover since M1 ⊥M2 and Mi ⊥M0 for i = 1, 2, it follows that
PM0PMi = PMiPM0 = 0 and PM1PM2 = 0 = PM2PM1 . Therefore,

P1P2 = (PM0 + PM1) (PM0 + PM2) = P 2
M0

= PM0

and similarly P2P1 = PM0 . Finally since P1P2 (H) ⊃ P1P2 (M) = M it follows
that M ⊂ PM0 (H) = M0 ⊂M and so M = M0.

2. Let Q := P1P2 = P2P1 and notice that Qh ∈ H1 and Qh ∈ H2 for
all h ∈ H, i.e. Q (H) ⊂ M, Q|M = IM and so Q (H) = M, and that Q∗ =
(P1P2)∗ = P ∗2 P

∗
1 = P2P1 = Q. Therefore it follows that Q = PM as claimed.

We now let Mi = {h ∈ Hi : h ⊥M0} where M0 = M = H1 ∩ H2. Then
Mi = (I − PM )Hi and for hi ∈ Hi we have, using PM = P1P2,

((I − PM )h1, (I − PM )h2) = (h1, (I − PM )h2)
= (h1, h2)− (h1, P1P2h2)
= (h1, h2)− (P1h1, P2h2) = (h1, h2)− (h1, h2) = 0.

Hence it follows that M1 ⊥M2.
Alternative proof. Let Pi be orthogonal projection onto Hi, P0 be or-

thogonal projection onto H0 := H1 ∩H2, and Qi be orthogonal projection onto
Mi. Then Pi = P0 +Qi for i = 1, 2. Indeed, we P0Qi = QiP0 = 0 so that

(P0 +Qi)
2 = P 2

0 +Q2
i = P0 +Qi

and (P0 +Qi)
2 = P0 +Qi which shows that P0 +Qi is an orthogonal projection.

Moreover it is easy to check that Ran (P0 +Qi) = Hi so that Pi = P0 +Qi as
claimed. Having said this we have in general that

P1P2 = (P0 +Q1) (P0 +Q2) = P0 +Q1Q2

and similarly that P2P1 = P0 +Q2Q1 from which it follows that P1P2 = P2P1

iff Q1Q2 = Q2Q1. Lastly if Q1Q2 = Q2Q1 then for all x ∈ H we will have

Q1Q2x = Q2Q1x ∈M1 ∩M2 = {0}

which shows that Q1Q2 = Q2Q1 = 0. Thus we have shown that Q1Q2 = Q2Q1

iff Q1Q2 = 0 = Q2Q1 which happens iff M1 ⊥M2.

Exercise 18.10. Let σ and τ be stopping times and apply the results of Ex-
ercise 18.9 with M0 := L2 (Ω,Bσ∧τ , P ) , H1 := L2 (Ω,Bσ, P ) , and H2 =
L2 (Ω,Bτ , P ) to give another proof of Theorem 18.31.

Solution to Exercise (18.9). In order to apply Exercise 18.9, we need to
show if X ∈ H1 and Y ∈ H2 are both orthogonal to M0 then X ⊥ Y, i.e.

E [XY ] = 0. In order to compute this last expectation, let X̄n := E [X|Bn] and
Ȳn := E [Y |Bn] for all n ≤ ∞ so that (by Lemma 18.30)

X = E [X|Bσ] =
∑
n≤∞

1σ=nE [X|Bn] =
∑
n≤∞

1σ=nX̄n = X̄σ

and similarly Y = Ȳτ . We then have,

XY = X̄σȲτ = X̄σȲτ (1σ≤τ + 1σ>τ ) = 1σ≤τ X̄σȲτ + X̄σȲτ1σ>τ
=
(
1σ≤τ X̄σ∧τ

)
Ȳτ + X̄σ

(
Ȳσ∧τ1σ>τ

)
=
(
1σ≤τ X̄σ∧τ

)
Y +X

(
Ȳσ∧τ1σ>τ

)
.

Since
(
1σ≤τ X̄σ∧τ

)
and

(
Ȳσ∧τ1σ>τ

)
are both in M0 = L2 (Ω,Bσ∧τ , P ) (notice

that L2 (P ) 3 X̄σ∧τ = E [X|Bσ∧τ ] by Lemma 18.30 again) and both X and Y
are orthogonal to M0 by assumption, we may conclude

E [XY ] = E
[(

1σ≤τ X̄σ∧τ
)
Y
]

+ E
[
X
(
Ȳσ∧τ1σ>τ

)]
= 0 + 0 = 0.

Having checked the hypothesis of item 1. of Exercise 18.9 we may conclude
that

EBσEBτ = EBτEBσ = EBσ∧τ
on L2 (Ω,B, P ) . This then extends to L1 (Ω,B, P ) by the standard limiting
arguments we used in constructing conditional expectations.

18.4 Stochastic Integrals and Optional Stopping

Notation 18.32 Suppose that {cn}∞n=1 and {xn}∞n=0 are two sequences of num-
bers, let c · ∆x = {(c ·∆x)n}n∈N0

denote the sequence of numbers defined by
(c ·∆x)0 = 0 and

(c ·∆x)n =
n∑
j=1

cj (xj − xj−1) =
n∑
j=1

cj∆jx for n ≥ 1.

(For convenience of notation later we will interpret
∑0
j=1 cj∆jx = 0.)

For a gambling interpretation of (c ·∆x)n , let xj represent the price of
a stock at time j. Suppose that you, the investor, then buys cj−1 shares at
time j − 1 and then sells these shares back at time j. With this interpretation,
cj−1∆jx represents your profit (or loss if negative) in the time interval from
j − 1 to j and (c ·∆x)n represents your profit (or loss) from time 0 to time n.
By the way, if you want to buy 5 shares of the stock at time n = 3 and then
sell them all at time 9, you would take ck = 5 · 13<k≤9 so that
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(c ·∆x)9 = 5 ·
∑

3<k≤9

∆kx = 5 · (x9 − x3)

would represent your profit (loss) for this transaction. The next example for-
malizes this notion.

Example 18.33. Suppose that 0 ≤ σ ≤ τ where σ, τ ∈ N̄0 and let cn := 1σ<n≤τ .
Then

(c ·∆x)n =
n∑
j=1

1σ<j≤τ (xj − xj−1) =
∞∑
j=1

1σ<j≤τ∧n (xj − xj−1)

=
∞∑
j=1

1σ∧n<j≤τ∧n (xj − xj−1) = xτ∧n − xσ∧n.

More generally if σ, τ ∈ N̄0 are arbitrary and cn := 1σ<n≤τ we will have cn :=
1σ∧τ<n≤τ and therefore

(c ·∆x)n = xτ∧n − xσ∧τ∧n.

Proposition 18.34 (The Discrete Stochastic Integral). Let X = {Xn}∞n=0

be an adapted integrable process, i.e. E |Xn| < ∞ for all n. If X is a martin-
gale and {Cn}∞n=1 is a predictable sequence of bounded random variables, then
{(C ·∆X)n}

∞
n=1

is still a martingale. If X := {Xn}∞n=0 is a submartingale (su-
permartingale) (necessarily real valued) and Cn ≥ 0, then {(C ·∆X)n}

∞
n=1

is a
submartingale (supermartingale).

Conversely if X is an adapted process of integrable functions such that
E [(C ·∆X)n] = 0 for all bounded predictable processes, {Cn}∞n=1 , then X is
a martingale. Similarly if X is real valued adapted process such that

E [(C ·∆X)n]
≤
=
≥

0 (18.18)

for all n and for all bounded, non-negative predictable processes, C, then X is
a supermartingale, martingale, or submartingale respectively. (In other words,
X is a sub-martingale if no matter what your (non-negative) betting strategy is
you will make money on average.)

Proof. For any adapted process X, we have

E
[
(C ·∆X)n+1 |Bn

]
= E [(C ·∆X)n + Cn+1 (Xn+1 −Xn) |Bn]

= (C ·∆X)n + Cn+1E [(Xn+1 −Xn) |Bn] . (18.19)

The first assertions easily follow from this identity.

Now suppose that X is an adapted process of integrable functions such
that E [(C ·∆X)n] = 0 for all bounded predictable processes, {Cn}∞n=1 . Taking
expectations of Eq. (18.19) then allows us to conclude that

E [Cn+1E [(Xn+1 −Xn) |Bn]] = 0

for all bounded Bn – measurable random variables, Cn+1. Taking Cn+1 :=
sgn(E [(Xn+1 −Xn) |Bn]) shows |E [(Xn+1 −Xn) |Bn]| = 0 a.s. and hence X is
a martingale. Similarly, if for all non-negative, predictable C, Eq. (18.18) holds
for all n ≥ 1, and Cn ≥ 0, then taking A ∈ Bn and Ck = δk,n+11A in Eq. (18.12)
allows us to conclude that

E [Xn+1 −Xn : A] = E
[
(C ·∆X)n+1

] ≤
=
≥

0,

i.e. X is a supermartingale, martingale, or submartingale respectively.

Example 18.35. Suppose that {Xn}∞n=0 are mean zero independent integrable
random variables and fk : Rk → R are bounded measurable functions for k ∈ N.
Then {Yn}∞n=0 , defined by Y0 = 0 and

Yn :=
n∑
k=1

fk (X0, . . . , Xk−1) (Xk −Xk−1) for n ∈ N, (18.20)

is a martingale sequence relative to
{
BXn
}
n≥0

.

Notation 18.36 Given an adapted process, X, and a stopping time τ, let
Xτ
n := Xτ∧n. We call Xτ := {Xτ

n}
∞
n=0 the process X stopped by τ.

Observe that

|Xτ
n | = |Xτ∧n| =

∣∣∣∣∣∣
∑

0≤k≤n

1τ=kXk

∣∣∣∣∣∣ ≤
∑

0≤k≤n

1τ=k |Xk| ≤
∑

0≤k≤n

|Xk| ,

so that Xτ
n ∈ L1 (P ) for all n provided Xn ∈ L1 (P ) for all n.

Example 18.37. Suppose that X = {Xn}∞n=0 is a supermartingale, martingale,
or submartingale, with E |Xn| < ∞ and let σ and τ be stopping times. Then
for any A ∈ Bσ, the process Cn := 1A · 1σ<n≤τ is predictable since for all n ∈ N
we have

A ∩ {σ < n ≤ τ} = (A ∩ {σ < n}) ∩ {n ≤ τ}
= (A ∩ {σ ≤ n− 1}) ∩ {τ ≤ n− 1}c ∈ Bn−1.
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Therefore by Proposition 18.34, {(C ·∆X)n}
∞
n=0

is a supermartingale, martin-
gale, or submartingale respectively where

(C ·∆X)n =
n∑
k=1

1A · 1σ<k≤τ∆kX = 1A ·
n∑
k=1

1σ∧τ<k≤τ∆kX

=
∞∑
k=1

1A · 1σ∧τ∧n<k≤τ∧n∆kX = 1A (Xτ
n −Xσ∧τ

n ) .

Theorem 18.38 (Optional stopping theorem). Suppose X = {Xn}∞n=0 is
a supermartingale, martingale, or submartingale with either E |Xn| <∞ for all
n or Xn ≥ 0 for all n. Then for every stopping time, τ, Xτ is a {Bn}∞n=0 –
supermartingale, martingale, or submartingale respectively.

Proof. When E |Xn| < ∞ for all n ≥ 0 we may take σ = 0 and
A = Ω in Example 18.37 in order to learn that {Xτ

n −X0}∞n=0 is a su-
permartingale, martingale, or submartingale respectively and therefore so is
{Xτ

n = X0 +Xτ
n −X0}∞n=0 . When Xn is only non-negative we have to give a

different proof which does not involve any subtractions (which might be unde-
fined).

For the second proof we simply observe that 1τ≤nXτ =
∑n
k=0 1τ=kXk is Bn

measurable, {τ > n} ∈ Bn, and

Xτ∧(n+1) = 1τ≤nXτ + 1τ>nXn+1.

Therefore

EBn
[
Xτ

(n+1)

]
= EBn

[
Xτ∧(n+1)

]
=1τ≤nXτ + 1τ>nEBnXn+1{
≤
=
≥

}
1τ≤nXτ + 1τ>nXn = Xτ∧n,

where the top, middle, bottom (in)equality holds depending on whether X is a
supermartingale, martingale, or submartingale respectively. (This second proof
works for both cases at once. For another proof see Remark 18.40.)

Theorem 18.39 (Optional sampling theorem I). Suppose that σ and τ are
two stopping times and τ is bounded, i.e. there exists N ∈ N such that τ ≤ N <
∞ a.s. If X = {Xn}∞n=0 is a supermartingale, martingale, or submartingale,
with either E |Xn| <∞ of Xn ≥ 0 for all 0 ≤ n ≤ N, then

E [Xτ |Bσ]
≤
=
≥
Xσ∧τ a.s. (18.21)

respectively2 from top to bottom.
2 This is the natural generalization of Eq. (18.3) to the stopping time setting.

Proof. First suppose that E |Xn| <∞ for 0 ≤ n ≤ N and let A ∈ Bσ. From
Example 18.37 we know that 1A (Xτ

n −Xσ∧τ
n ) is a supermartingale, martingale,

or submartingale respectively and in particular for all n ∈ N0 we have

E [1A (Xτ
n −Xσ∧τ

n )]
≤
=
≥

0 respectively.

Taking n = N in this equation using σ∧τ ≤ τ ≤ N then implies, for all A ∈ Bσ,
that

E [(Xτ −Xσ∧τ ) : A]
≤
=
≥

0 respectively

and this is equivalent to Eq. (18.21).
When we only assume that Xn ≥ 0 for all n we again have to give a different

proof which avoids subtractions which may be undefined. One way to do this
is to use Theorem 18.38 in order to conclude that Xτ is a supermartingale,
martingale, or submartingale respectively and in particular that

E [Xτ |Bn] = E [Xτ
N |Bn]

≤
=
≥
Xτ
n∧N for all n ≤ ∞.

Combining this result with Lemma 18.30 then implies

E [Xτ |Bσ] =
∑
n≤∞

1σ=nE [Xτ |Bn]
≤
=
≥

∑
n≤∞

1σ=nX
τ
n∧N = Xτ

σ∧N = Xσ∧τ . (18.22)

(This second proof again covers both cases at once!)

Exercise 18.11. Give another proof of Theorem 18.39 when E |Xn| < ∞ by
using the tower property in Theorem 18.31 along with the Doob decomposition
of Lemma 18.16.

Solution to Exercise (18.11). First suppose X is a martingale in which case
Xn = EBnXN for all n ≤ N and hence by Lemma 18.16

Xτ =
∑
n≤N

1τ=nXn =
∑
n≤N

1τ=nEBnXN =
∑
n≤∞

1τ=nEBnXN = EBτXN .

Therefore, by Theorem 18.31

EBσXτ = EBσEBτXN = EBσ∧τXN = Xσ∧τ .

Now suppose that X is a submartingale. By the Doob decomposition of
Lemma 18.16, Xn = Mn +An where M is a martingale and A is an increasing
predictable process. In this case we have
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EBσXτ = EBσMτ + EBσAτ = Mσ∧τ + EBσAτ
≥Mσ∧τ + EBσAσ∧τ = Mσ∧τ +Aσ∧τ = Xσ∧τ .

The supermartingale case follows from the submartingale result just proved
applied to −X.

Exercise 18.12. Give yet another (full) proof of Theorem 18.39 using the fol-
lowing outline;

1. Show by induction on n starting with n = N that

E [Xτ |Bn]
≤
=
≥
Xτ∧n a.s. for all 0 ≤ n ≤ N. (18.23)

2. Observe the above inequality holds as an equality for n > N as well.
3. Combine this result with Lemma 18.16 to complete the proof.

This argument makes it clear why we must at least initially assume that
τ ≤ N for some N ∈ N. To relax this restriction will require a limiting argument
which will be the topic of Section 18.8 below.

Solution to Exercise (18.12). To keep the notation manageable I will give
the proof in the case that {Xn} is a submartingale. Since τ ≤ N everywhere,
Xτ is Bτ ⊂ BN measurable, it follows that Eq. (18.23) holds for all n ≥ N. Now
consider n = N − 1. Using

Xτ = 1τ=NXN + 1τ≤N−1Xτ

where {τ = N} = {τ ≤ N − 1}c ∈ BN−1 and 1τ≤N−1Xτ is BN−1 – measurable,
we learn,

E [Xτ |BN−1] = 1τ=NE [XN |BN−1] + 1τ≤N−1Xτ

≥ 1τ=NXN−1 + 1τ≤N−1Xτ = Xτ∧(N−1).

Applying this same argument with τ replaced by τ ∧ (N − k) ≤ N − k shows

E
[
Xτ∧(N−k)|BN−k−1

]
≥ Xτ∧(N−k)∧(N−k−1) = Xτ∧(N−k−1)

for any 0 ≤ k ≤ N − 1. Combining these observations with the tower property
of conditional expectations allows us to conclude that

E [Xτ |BN−k] ≥ Xτ∧(N−k).

For example,

E [Xτ |BN−3] = E [E [Xτ |BN−1] |BN−3]

≥ E
[
Xτ∧(N−1)|BN−3

]
= E

[
E
[
Xτ∧(N−1)|BN−2

]
|BN−3

]
≥ E

[
Xτ∧(N−2)|BN−3

]
≥ Xτ∧(N−3).

Thus we have now verified Eq. (18.23) for all n ∈ N̄0.
We now combine this result with Lemma 18.16 to learn,

E [Xτ |Bσ] =
∑
n≤∞

1σ=nE [Xτ |Bn] ≥
∑
n≤∞

1σ=nXτ∧n = Xτ∧σ.

Remark 18.40. Theorem 18.39 can be used to give a simple proof of the Optional
stopping Theorem 18.38. For example, if X = {Xn}∞n=0 is a submartingale and
τ is a stopping time, then

EBnXτ∧(n+1) ≥ X[τ∧(n+1)]∧n = Xτ∧n,

i.e. Xτ is a submartingale.

18.5 Submartingale Maximal Inequalities

Notation 18.41 (Running Maximum) If X = {Xn}∞n=0 is a sequence of
(extended) real numbers, we let

X∗N := max {X0, . . . , XN} . (18.24)

Proposition 18.42 (Maximal Inequalities of Bernstein and Lévy). Let
{Xn} be a submartingale on a filtered probability space, (Ω,B, {Bn}∞n=0 , P ) .
Then3 for any a ≥ 0 and N ∈ N,

aP (X∗N ≥ a) ≤ E [XN : X∗N ≥ a] ≤ E
[
X+
N

]
, (18.25)

aP

(
min
n≤N

Xn ≤ −a
)
≤ E

[
XN : min

k≤N
Xk > −a

]
− E [X0] (18.26)

≤ E
[
X+
N

]
− E [X0] , (18.27)

and
aP (X∗N ≥ a) ≤ 2E

[
X+
N

]
− E [X0] . (18.28)

3 The first inequality is the most important.
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Proof. Let τ := inf {n : Xn ≥ a} and observe that

X∗N ≥ Xτ ≥ a on {τ ≤ N} = {X∗N ≥ a} . (18.29)

Since {τ ≤ N} ∈ Bτ∧N , it follows by the optional sampling Theorem 18.39 that

E [Xτ : τ ≤ N ] = E [Xτ∧N : τ ≤ N ] ≤ E [XN : τ ≤ N ]

which combined with Eq. (18.29) implies,

a · P (X∗N ≥ a) = a · P (τ ≤ N) ≤ E [Xτ : τ ≤ N ] ≤ E [XN : X∗N ≥ a] ,

i.e. Eq. (18.25) holds.
More generally if X is any integrable process and τ is the random time

defined by, τ := inf {n : Xn ≥ a} we still have Eq. (18.29) and

aP (X∗N ≥ a) = E [a : τ ≤ N ] ≤ E [Xτ : τ ≤ N ] (18.30)
= E [XN : τ ≤ N ]− E [XN −Xτ : τ ≤ N ]
= E [XN : τ ≤ N ]− E [XN −Xτ∧N ] . (18.31)

Let me emphasize again that in deriving Eq. (18.31), we have not used any
special properties (not even adaptedness) of X. If X is now assumed to be a
submartingale, by the optional sampling Theorem 18.39, EBτ∧NXN ≥ Xτ∧N
and in particular E [XN −Xτ∧N ] ≥ 0. Combining this observation with Eq.
(18.31) and Eq. (18.29) again gives Eq. (18.25).

Secondly we may apply Eq. (18.31) with Xn replaced by −Xn to find

aP

(
min
n≤N

Xn ≤ −a
)

= aP

(
−min
n≤N

Xn ≥ a
)

= aP

(
max
n≤N

(−Xn) ≥ a
)

≤ −E [XN : τ ≤ N ] + E [XN −Xτ∧N ] (18.32)

where now,
τ := inf {n : −Xn ≥ a} = inf {n : Xn ≤ −a} .

By the optional sampling Theorem 18.39, E [Xτ∧N −X0] ≥ 0 and adding this
to right side of Eq. (18.32) gives the estimate

aP

(
min
n≤N

Xn ≤ −a
)
≤ −E [XN : τ ≤ N ] + E [XN −Xτ∧N ] + E [Xτ∧N −X0]

≤ E [XN −X0]− E [XN : τ ≤ N ]
= E [XN : τ > N ]− E [X0]

= E
[
XN : min

k≤N
Xk > −a

]
− E [X0]

which proves Eq. (18.26) and hence Eq. (18.27). Adding Eqs. (18.25) and (18.27)
gives the estimate in Eq. (18.28).

Remark 18.43. It is of course possible to give a direct proof of Proposition 18.42.
For example,

E
[
XN : max

n≤N
Xn ≥ a

]
=

N∑
k=1

E [XN : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

≥
N∑
k=1

E [Xk : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

≥
N∑
k=1

E [a : X1 < a, . . . ,Xk−1 < a,Xk ≥ a]

= aP

(
max
n≤N

Xn ≥ a
)

which proves Eq. (18.25).

Corollary 18.44. Suppose that {Yn}∞n=1 is a non-negative supermartingale,
a > 0 and N ∈ N, then

aP

(
max
n≤N

Yn ≥ a
)
≤ E [Y0 ∧ a]− E

[
YN : max

n≤N
Yn < a

]
≤ E [Y0 ∧ a] . (18.33)

Proof. Let Xn := −Yn in Eq. (18.26) to learn

aP

(
min
n≤N

(−Yn) ≤ −a
)
≤ E

[
−YN : min

n≤N
(−Yn) > −a

]
+ E [Y0]

or equivalently that

aP

(
max
n≤N

Yn ≥ a
)
≤ E [Y0]− E

[
YN : max

n≤N
Yn < a

]
≤ E [Y0] . (18.34)

Since ϕa (x) := a ∧ x is concave and nondecreasing, it follows by Jensen’s
inequality that

E [ϕa (Yn) |Bm] ≤ ϕa (E [Yn|Bm]) ≤ ϕa (Yn) for all m ≤ n.

In this way we see that ϕa (Yn) = Yn ∧a is a supermartingale as well. Applying
Eq. (18.34) with Yn replaced by Yn ∧ a proves Eq. (18.33).

Lemma 18.45. Suppose that X and Y are two non-negative random variables
such that P (Y ≥ y) ≤ 1

yE [X : Y ≥ y] for all y > 0. Then for all p ∈ (1,∞) ,

EY p ≤
(

p

p− 1

)p
EXp. (18.35)
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Proof. We will begin by proving Eq. (18.35) under the additional assump-
tion that Y ∈ Lp (Ω,B, P ) . Since

EY p = pE
∫ ∞

0

1y≤Y · yp−1dy = p

∫ ∞
0

E [1y≤Y ] · yp−1dy

= p

∫ ∞
0

P (Y ≥ y) · yp−1dy ≤ p
∫ ∞

0

1
y

E [X : Y ≥ y] · yp−1dy

= pE
∫ ∞

0

X1y≤Y · yp−2dy =
p

p− 1
E
[
XY p−1

]
.

Now apply Hölder’s inequality, with q = p (p− 1)−1
, to find

E
[
XY p−1

]
≤ ‖X‖p ·

∥∥Y p−1
∥∥
q

= ‖X‖p · [E |Y |
p]1/q .

Combining thew two inequalities shows and solving for ‖Y ‖p shows ‖Y ‖p ≤
p
p−1 ‖X‖p which proves Eq. (18.35) under the additional restriction of Y being
in Lp (Ω,B, P ) .

To remove the integrability restriction on Y, for M > 0 let Z := Y ∧M and
observe that

P (Z ≥ y) = P (Y ≥ y) ≤ 1
y

E [X : Y ≥ y] =
1
y

E [X : Z ≥ y] if y ≤M

while
P (Z ≥ y) = 0 =

1
y

E [X : Z ≥ y] if y > M.

Since Z is bounded, the special case just proved shows

E [(Y ∧M)p] = EZp ≤
(

p

p− 1

)p
EXp.

We may now use the MCT to pass to the limit, M ↑ ∞, and hence conclude
that Eq. (18.35) holds in general.

Corollary 18.46 (Doob’s Inequality). If X = {Xn}∞n=0 be a non-negative
submartingale and 1 < p <∞, then

EX∗pN ≤
(

p

p− 1

)p
EXp

N . (18.36)

Proof. Equation 18.36 follows by applying Lemma 18.45 with the aid of
Proposition 18.42.

Corollary 18.47 (Doob’s Inequality). If {Mn}∞n=0 is a martingale and 1 <
p <∞, then for all a > 0,

P
(
|M |∗N ≥ a

)
≤ 1
a

E [|M |N : M∗N ≥ a] ≤ 1
a

E [|MN |] (18.37)

and

E |M |∗pN ≤
(

p

p− 1

)p
E |MN |p . (18.38)

Proof. By the conditional Jensen’s inequality, it follows that Xn := |Mn|
is a submartingale. Hence Eq. (18.37) follows from Eq. (18.25) and Eq. (18.38)
follows from Eq. (18.36).

Example 18.48. Let {Xn} be a sequence of independent integrable random
variables with mean zero, S0 = 0, Sn := X1 + · · · + Xn for n ∈ N, and
|S|∗n = maxj≤n |Sj | . Since {Sn}∞n=0 is a martingale, by cJensen’s inequality,
{|Sn|p}

∞
n=1 is a (possibly extended) submartingale for any p ∈ [1,∞). There-

fore an application of Eq. (18.25) of Proposition 18.42 show

P
(
|S|∗N ≥ α

)
= P

(
|S|∗pN ≥ α

p
)
≤ 1
αp

E [|SN |p : S∗N ≥ α] .

(When p = 2, this is Kolmogorov’s inequality in Theorem 20.42 below.) From
Corollary 18.47 we also know that

E |S|∗pN ≤
(

p

p− 1

)p
E |SN |p .

In particular when p = 2, this inequality becomes,

E |S|∗2N ≤ 4 · E |SN |2 = 4 ·
N∑
n=1

E |Xn|2 .

18.6 Submartingale Upcrossing Inequality and
Convergence Theorems

The main results of this section are consequences of the following example and
lemma which say that the optimal strategy for betting on a sub-martingale is
to go “all in.” Any other strategy, including buy low and sell high, will not fare
better (on average) than going all in.

Example 18.49. Suppose that {Xn}∞n=0 represents the value of a stock which is
known to be a sub-martingale. At time n − 1 you are allowed buy Cn ∈ [0, 1]

Page: 274 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



18.6 Submartingale Upcrossing Inequality and Convergence Theorems 275

shares of the stock which you will then sell at time n. Your net gain (loss) in
this transaction is CnXn − CnXn−1 = Cn∆nX and your wealth at time n will
be

Wn = W0 +
n∑
k=1

Ck∆kX.

The next lemma asserts that the way to maximize your expected gain is to
choose Ck = 1 for all k, i.e. buy the maximum amount of stock you can at each
stage. We will refer to this as the all in strategy..

Lemma 18.50 (“All In”). If {Xn}∞n=0 is a sub-martingale and {Ck}∞k=1 is a
previsible process with values in [0, 1] , then

E

(
n∑
k=1

Ck∆kX

)
≤ E [Xn −X0]

with equality when Ck = 1 for all k, i.e. the optimal strategy is to go all in.

Proof. Notice that {1− Ck}∞k=1 is a previsible non-negative process and
therefore by Proposition 18.34,

E

(
n∑
k=1

(1− Ck)∆kX

)
≥ 0.

Since

Xn −X0 =
n∑
k=1

∆kX =
n∑
k=1

Ck∆kX +
n∑
k=1

(1− Ck)∆kX,

it follows that

E [Xn −X0] = E

(
n∑
k=1

Ck∆kX

)
+E

(
n∑
k=1

(1− Ck)∆kX

)
≥ E

(
n∑
k=1

Ck∆kX

)
.

We are now going to apply Lemma 18.50 to the time honored gambling strat-
egy of buying low and selling high in order to prove the important “upcross-
ing” inequality of Doob, see Theorem 18.51. To be more precise, suppose that
{Xn}∞n=0 is a sub-martingale representing a stock price and −∞ < a < b <∞
are given numbers. The (sub-optimal) strategy we wish to employ is to buy the
stock when it first drops below a and then sell the first time it rises above b
and then repeat this strategy over and over again.

Given a function, N0 3 n→ Xn ∈ R and −∞ < a < b <∞, let

τ0 = 0, τ1 = inf {n ≥ τ0 : Xn ≤ a}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn ≤ a}

...
τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn ≤ a} (18.39)

...

with the usual convention that inf ∅ = ∞ in the definitions above, see Figures
18.2 and 18.3.

Fig. 18.2. A sample path or the positive part of a random walk with level crossing
of a = 1 and b = 2 being marked off.

In terms of these stopping time our betting strategy may be describe as,

Cn =
∞∑
k=1

1τ2k−1<n≤τ2k for n ∈ N, (18.40)
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see Figure 18.3 for a more intuitive description of {Cn}∞n=1 .

Fig. 18.3. In this figure we are taking a = 0.85 and b = 1.20. There are two up-
crossings and we imaging buying below0.85 and selling above 1.20. The graph of Cn
is given in blue in the above figure.

Observe that τn+1 ≥ τn + 1 for all n ≥ 1 and hence τn ≥ n− 1 for all n ≥ 1.
Further, for each N ∈ N̄ let

UXN (a, b) = max {k : τ2k ≤ N} (18.41)

be the number of upcrossings of X across [a, b] in the time interval, [0, N ] .
In Figure 18.3 you will notice that there are two upcrossings and at the end

we are holding a stock for a loss of no more than (a−XN )+ . In this example
X0 = 0.90 and we do not purchase a stock until time 1, i.e. Cn = 1 for the first
time at n = 2. On the other hand if X0 < a, then on the first upcrossing we
would be guaranteed to make at least

b−X0 = b− a+ a−X0 = b− a+ (a−X0)+ .

With these observations in mind, if there is at least one upcrossing, then

WN :=
N∑
k=1

Ck∆kX ≥ (b− a)UXN (a, b) + (a−X0)+ − (a−XN )+ (18.42)

= (b− a)UXN (a, b) + (X0 − a)− − (XN − a)− . (18.43)

In words the inequality in Eq. (18.43) states that our net gain in buying at
or below a and selling at or above b is at least equal to (b− a) times the number
of times we buy low and sell high plus a possible bonus for buying below a at
time 0 and a penalty for holding the stock below a at the end of the day. The
key inequality in Eq. (18.43) may also be verified when no upcrossings occur.
Here are the three case to consider.

1. If Xn > a for all 0 ≤ n ≤ N, then Cn = 0 for all n so WN = 0 while
(X0 − a)− − (XN − a)− = 0− 0 = 0 as well.

2. If X0 ≤ a and Xn < b for all 0 ≤ n ≤ N, then Cn = 1 for all n so that

WN = XN −X0 = (XN − a)− (X0 − a)
= (XN − a) + (X0 − a)− ≥ − (XN − a)− + (X0 − a)− .

3. If X0 > a, but τ1 ≤ N and Xn < b for all 0 ≤ n ≤ N, then

WN = XN −Xτ1 ≥ XN − a ≥ − (XN − a)− = − (XN − a)− + (X0 − a)− .

Theorem 18.51 (Doob’s Upcrossing Inequality). If {Xn}∞n=0 is a sub-
martingale and −∞ < a < b <∞, then for all N ∈ N,

E
[
UXN (a, b)

]
≤ 1
b− a

[
E (XN − a)+ − E (X0 − a)+

]
.

Proof. First Proof. Let {Ck}∞k=1 be the buy low sell high strategy defined
in Eq. (18.40). Taking expectations of the inequality in Eq. (18.43) making use
of Lemma 18.50 implies,

E [XN − a− (X0 − a)] = E [XN −X0] ≥ E [(C ·∆X)N ]

≥ (b− a) EUXN (a, b) + E (X0 − a)− − E (XN − a)− .

The result follows from this inequality and the fact that (Xn − a) =
(Xn − a)+ − (Xn − a)− .

Remark 18.52 (*Second Proof). Here is a variant on the above proof which may
safely be skipped. We first suppose that Xn ≥ 0, a = 0 and b > 0. Let

τ0 = 0, τ1 = inf {n ≥ τ0 : Xn = 0}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn = 0}

...
τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn = 0}

...
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a sequence of stopping times. Suppose that N is given and we choose k such
that 2k > N. Then we know that τ2k ≥ N. Thus if we let τ ′n := τn ∧ N, we
know that τ ′n = N for all n ≥ 2k. Therefore,

XN −X0 =
2k∑
n=1

(
Xτ ′n
−Xτ ′

n−1

)
=

k∑
n=1

(
Xτ ′2n

−Xτ ′2n−1

)
+

k∑
n=1

(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ bUXN (0, b) +

k∑
n=1

(
Xτ ′2n−1

−Xτ ′2n−2

)
, (18.44)

wherein we have used Xτ ′2n
− Xτ ′2n−1

≥ b if there were an upcrossing in the
interval

[
τ ′2n−1, τ

′
2n

]
and Xτ ′2n

−Xτ ′2n−1
≥ 0 otherwise,4 see Figure 18.4. Taking

expectations of Eq. (18.44) implies

EXN − EX0 ≥ bEUXN (0, b) +
k∑

n=1

E
(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ bEUXN (0, b)

wherein we have used the optional sampling theorem to guarantee,

E
(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ 0.

If X is a general submartingale and −∞ < a < b < ∞, we know by
cJensen’s inequality (with ϕ (x) = (x− a)+ which is convex and increasing)
that (Xn − a)+ is still a sub-martingale and moreover

UXN (a, b) = U (X−a)+ (0, b− a)

and therefore

(b− a) E
[
UXN (a, b)

]
= (b− a) E

[
U (X−a)+ (0, b− a)

]
≤ E (XN − a)+ − E (X0 − a)+ .

The second proof is now complete, nevertheless it is worth contemplating a
bit how is that E

(
Xτ ′2n−1

−Xτ ′2n−2

)
≥ 0 given that are strategy being employed

is now to buy high and sell low. On {τ2n−1 ≤ N} , Xτ2n−1−Xτ2n−2 ≤ 0−b = −b
and therefore,
4 If τ2n−1 ≥ N, then Xτ ′2n − Xτ ′2n−1

= XN − XN = 0, while if τ2n−1 < N, Xτ ′2n −
Xτ ′2n−1

= Xτ ′2n − 0 ≥ 0.

0 ≤E
(
Xτ ′2n−1

−Xτ ′2n−2

)
= E

(
Xτ2n−1 −Xτ2n−2 : τ2n−1 ≤ N

)
+ E

(
Xτ ′2n−1

−Xτ ′2n−2
: τ2n−1 > N

)
≤− bP (τ2n−1 ≤ N) + E

(
XN −Xτ ′2n−2

: τ2n−1 > N
)
.

Therefore we must have

E
(
XN −Xτ2n−2∧N : τ2n−1 > N

)
≥ bP (τ2n−1 ≤ N)

so that XN must be sufficiently large sufficiently often on the set where τ2n−1 >
N.

Fig. 18.4. A sample path of a positive submartingale along with stopping times
τ2j−1 and τ2j which are the successive hitting times of 0 and 2 respectively. If we
take N = 70 in this case, then observe that Notice that Xτ8∧70 − Xτ7∧70 ≥ 2 while
Xτ10∧70 −Xτ9∧70 = 0

Lemma 18.53. Suppose X = {Xn}∞n=0 is a sequence of extended real numbers
such that UX∞ (a, b) < ∞ for all a, b ∈ Q with a < b. Then X∞ := limn→∞Xn

exists in R̄.

Page: 277 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



278 18 (Sub and Super) Martingales

Proof. If limn→∞Xn does not exists in R̄, then there would exists a, b ∈ Q
such that

lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

and for this choice of a and b, we must have Xn < a and Xn > b infinitely
often. Therefore, UX∞ (a, b) =∞.

Corollary 18.54. Suppose {Xn}∞n=0 is an integrable submartingale such that
supn EX+

n < ∞ (or equivalently C := supn E |Xn| < ∞, see Remark 18.19),
then X∞ := limn→∞Xn exists in R a.s. and X∞ ∈ L1 (Ω,B, P ) . Moreover
{Xn}n∈N̄0

is a submartingale (that is we also have Xn ≤ E [X∞|Bn] a.s. for all
n), iff {X+

n }
∞
n=1 is uniformly integrable.

Proof. For any −∞ < a < b <∞, by Doob’s upcrossing inequality (Theo-
rem 18.51) and the MCT,

E
[
UX∞ (a, b)

]
≤ 1
b− a

[
sup
N

E (XN − a)+ − E (X0 − a)+

]
<∞

where
UX∞ (a, b) := lim

N→∞
UXN (a, b)

is the total number of upcrossings of X across [a, b].5 In particular it follows
that

Ω0 := ∩
{
UX∞ (a, b) <∞ : a, b ∈ Q with a < b

}
has probability one. Hence by Lemma 18.53, for ω ∈ Ω0 we have X∞ (ω) :=
limn→∞Xn (ω) exists in R̄. By Fatou’s lemma we know that

E [|X∞|] = E
[
lim inf
n→∞

|Xn|
]
≤ lim inf

n→∞
E [|Xn|] ≤ C <∞ (18.45)

and therefore that X∞ ∈ R a.s.
Since (as we have already shown) X+

n → X+
∞ a.s., if {X+

n }
∞
n=1 is uniformly

integrable, then X+
n → X+

∞ in L1 (P ) by Vitalli’s convergence Theorem 12.44.
Therefore for A ∈ Bn we have by Fatou’s lemma that

E [Xn1A] ≤ lim sup
m→∞

E [Xm1A] = lim sup
m→∞

(
E
[
X+
m1A

]
− E

[
X−m1A

])
= E

[
X+
∞1A

]
− lim inf

m→∞
E
[
X−m1A

]
≤ E

[
X+
∞1A

]
− E

[
lim inf
m→∞

X−m1A
]

= E
[
X+
∞1A

]
− E

[
X−∞1A

]
= E [X∞1A] .

Since A ∈ Bn was arbitrary we may conclude that Xn ≤ E [X∞|Bn] a.s. for n.
5 Notice that (XN − a)+ ≤ |XN − a| ≤ |XN |+a so that supN E (XN − a)+ ≤ C+a <
∞.

Conversely if we suppose that Xn ≤ E [X∞|Bn] a.s. for n, then by cJensen’s
inequality (with ϕ (x) = x ∨ 0 being an increaing convex function),

X+
n ≤ (E [X∞|Bn])+ ≤ E

[
X+
∞|Bn

]
a.s. for all n

and therefore {X+
n }
∞
n=1 is uniformly integrable by Proposition 18.8 and Exercise

12.5.
Second Proof. We may also give another proof of the first assertion based

on the Krickeberg decomposition Theorem 18.20 and the supermartingale con-
vergence Corollary 18.63 below. Indeed, by the Krickeberg decomposition The-
orem 18.20, Xn = Mn−Yn where M is a positive martingale and Y is a positive
supermartingale. Hence by two applications of Corollary 18.63 we may conclude
that

X∞ = lim
n→∞

Xn = lim
n→∞

Mn − lim
n→∞

Yn

exists in R almost surely.

Remark 18.55. If {Xn}∞n=0 is a submartingale such that {X+
n }
∞
n=0 is uniformly

integrable, it does not necessarily follows that {Xn}∞n=0 is uniformly integrable.
Indeed, let Xn = −Mn where Mn is the non-uniformly integrable martingale
in Example 18.7. Then Xn is a negative (sub)martingale and hence X+

n ≡ 0 is
uniformly integrable but {Xn}∞n=0 is not uniformly integrable. This also shows
that assuming the positive part of a martingale is uniformly integrable is not
sufficient to show the martingale itself is uniformly integrable. Keep in mind in
this example that limn→∞Xn = 0 a.s. while EXn = 1 for all n and so clearly
limn→∞ EXn = 1 6= 0 = E [limn→∞Xn] in this case.

Notation 18.56 Given a probability space, (Ω,B, P ) and A,B ∈ B, we say
A = B a.s. iff P (A4B) = 0 or equivalently iff 1A = 1B a.s.

Corollary 18.57 (Localizing Corollary 18.54). Suppose M = {Mn}∞n=0 is
a martingale and c <∞ such that ∆nM ≤ c a.s. for all n. Then{

lim
n→∞

Mn exists in R
}

=
{

sup
n
Mn <∞

}
a.s.

Proof. Let τa := inf {n : Mn ≥ a} for all a ∈ N. Then by the optional
stopping theorem, n→Mτa

n is still a martingale. Since Mτa
n ≤ a+ c,6 it follows

that E (Mτa
n )+ ≤ a + c < ∞ for all n. Hence we may apply Corollary 18.54 to

conclude, limn→∞Mτa
n = Mτa

∞ exists in R almost surely. Therefore n→ Mn is
convergent in R almost surely on the set

∪a {Mτa = M} =
{

sup
n
Mn <∞

}
.

Conversely if n→Mn is convergent in R, then supnMn <∞.
6 If n < τa then Mn < a and if n ≥ τa then Mτa

n = Mτa ≤Mτa−1 + c < a+ c.
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Corollary 18.58. Suppose M = {Mn}∞n=0 is a martingale, and c < ∞ such
that |∆nM | ≤ c a.s. for all n. Let

C :=
{

lim
n→∞

Mn exists in R
}

and

D :=
{

lim sup
n→∞

Mn =∞ and lim inf
n→∞

Mn = −∞
}
.

Then, P (C ∪D) = 1. (In words, either limn→∞Mn exists in R or {Mn}∞n=1 is
“wildly” oscillating as n→∞.)

Proof. Since both M and −M satisfy the hypothesis of Corollary 18.57, we
may conclude that (almost surely),

C =
{

sup
n
Mn <∞

}
=
{

inf
n
Mn > −∞

}
a.s.

and hence almost surely,

Cc =
{

sup
n
Mn =∞

}
=
{

inf
n
Mn = −∞

}
=
{

sup
n
Mn =∞

}
∩
{

inf
n
Mn = −∞

}
= D.

Corollary 18.59. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space
and An ∈ Bn for all n. Then{∑

n

1An =∞

}
= {An i.o.} =

{∑
n

E [1An |Bn−1] =∞

}
a.s. (18.46)

Proof. Let ∆nM := 1An − E [1An |Bn−1] so that E [∆nM |Bn−1] = 0 for all
n. Thus if

Mn :=
∑
k≤n

∆nM =
∑
k≤n

(1An − E [1An |Bn−1]) ,

then M is a martingale with |∆nM | ≤ 1 for all n. Let C and C be as in Corollary
18.58. Since {An i.o.} = {

∑
n 1An =∞} , it follows that

{An i.o.} =

{∑
n

E [1An |Bn−1] =∞

}
a.s. on C.

Moreover, on {supnMn =∞} we must have
∑
n 1An = ∞ and on

{infnMn = −∞} that
∑
n E [1An |Bn−1] =∞ and so

∑
n

1An =∞ and
∑
n

E [1An |Bn−1] =∞ a.s. on D.

Thus it follows that Eq. (18.46) holds on C ∪D a.s. which completes the proof
since Ω = C ∪D a.s..

See Durrett [15, Chapter 4.3] for more in this direction.

18.7 *Supermartingale inequalities

As the optional sampling theorem was our basic tool for deriving submartingale
inequalities, the following optional switching lemma will be our basic tool for
deriving positive supermartingale inequalities.

Lemma 18.60 (Optional switching lemma). Suppose that X and Y are
two supermartingales and τ is a stopping time such that Xτ ≥ Yτ on {τ <∞} .
Then

Zn = 1n<τXn + 1n≥τYn =
{
Xn if n < τ
Yn if n ≥ τ

is again a supermartingale. (In short we can switch from X to Y at time, τ,
provided Y ≤ X at the switching time, τ.) This lemma is valid if Xn, Yn ∈
L1 (Ω,Bn, P ) for all n or if both Xn, Yn ≥ 0 for all n. In the latter case, we
should be using the extended notion of conditional expectations.

Proof. We begin by observing,

Zn+1 = 1n+1<τXn+1 + 1n+1≥τYn+1

= 1n+1<τXn+1 + 1n≥τYn+1 + 1τ=n+1Yn+1

≤ 1n+1<τXn+1 + 1n≥τYn+1 + 1τ=n+1Xn+1

= 1n<τXn+1 + 1n≥τYn+1.

Since {n < τ} and {n ≥ τ} are Bn – measurable, it now follows from the super-
martingale property of X and Y that

EBnZn+1 ≤ EBn [1n<τXn+1 + 1n≥τYn+1]
= 1n<τEBn [Xn+1] + 1n≥τEBn [Yn+1]
≤ 1n<τXn + 1n≥τYn = Zn.
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18.7.1 Maximal Inequalities

Theorem 18.61 (Supermartingale maximal inequality). Let X be a pos-
itive supermartingale (in the extended sense) and a ∈ B0 with a ≥ 0, then

aP

[
sup
n
Xn ≥ a|B0

]
≤ a ∧X0 (18.47)

and moreover

P

[
sup
n
Xn =∞|B0

]
= 0 on {X0 <∞} . (18.48)

In particular if X0 <∞ a.s. then supnXn <∞ a.s.

Proof. Proof. Simply apply Corollary 18.44 with Yn = ((2a) ∧Xn) · 1A
where A ∈ B0 to find

aE
(
P

[
sup
n
Xn ≥ a|B0

]
: A
)

= aP

[
sup
n
Xn ≥ a : A

]
≤ E [a ∧X0 : A] .

Since this holds for all A ∈ B0, Eq. (18.47) follows.
Second Proof. Let τ := inf {n : Xn ≥ a} which is a stopping time since,

{τ ≤ n} = {Xn ≥ a} ∈ Bn for all n.

Since Xτ ≥ a on {τ <∞} and Yn := a is a supermartingale, it follows by the
switching Lemma 18.60 that

Zn := 1n<τXn + a1n≥τ

is a supermartingale (in the extended sense). In particular it follows

aP (τ ≤ n|B0) = EB0 [a1n≥τ ] ≤ EB0Zn ≤ Z0,

and
Z0 = 10<τ X0 + a1τ=0 = 1X0<aX0 + 1X0≥aa = a ∧X0.

Therefore, using the cMCT,

aP

[
sup
n
Xn ≥ a|B0

]
= aP [τ <∞|B0] = lim

n→∞
aP (τ ≤ n|B0)

≤ Z0 = a ∧X0

which proves Eq. (18.47).
For the last assertion, take a > 0 to be constant in Eq. (18.47) and then use

the cDCT to let a ↑ ∞ to conclude

P

[
sup
n
Xn =∞|B0

]
= lim
a↑∞

P

[
sup
n
Xn ≥ a|B0

]
≤ lim
a↑∞

1 ∧ X0

a
= 1X0=∞.

Multiplying this equation by 1X0<∞ and then taking expectations implies

E
[
1supnXn=∞1X0<∞

]
= E [1X0=∞1X0<∞] = 0

which implies 1supnXn=∞1X0<∞ = 0 a.s., i.e. supnXn <∞ a.s. on {X0 <∞} .

18.7.2 The upcrossing inequality and convergence result

Theorem 18.62 (Dubin’s Upcrossing Inequality). Suppose X = {Xn}∞n=0

is a positive supermartingale and 0 < a < b <∞. Then

P
(
UX∞ (a, b) ≥ k|B0

)
≤
(a
b

)k (
1 ∧ X0

a

)
, for k ≥ 1 (18.49)

and U∞ (a, b) <∞ a.s. and in fact

E
[
UX∞ (a, b)

]
≤ 1
b/a− 1

=
a

b− a
<∞.

Proof. Since
UXN (a, b) = U

X/a
N (1, b/a) ,

it suffices to consider the case where a = 1 and b > 1. Let τn be the stopping
times defined in Eq. (18.39) with a = 1 and b > 1, i.e.

τ0 = 0, τ1 = inf {n ≥ τ0 : Xn ≤ 1}
τ2 = inf {n ≥ τ1 : Xn ≥ b} , τ3 := inf {n ≥ τ2 : Xn ≤ 1}

...
τ2k = inf {n ≥ τ2k−1 : Xn ≥ b} , τ2k+1 := inf {n ≥ τ2k : Xn ≤ 1} ,

...

see Figure 18.2.
Let k ≥ 1 and use the switching Lemma 18.60 repeatedly to define a new

positive supermatingale Yn = Y
(k)
n (see Exercise 18.13 below) as follows,

Y (k)
n = 1n<τ1 + 1τ1≤n<τ2Xn

+ b1τ2≤n<τ3 + bXn1τ3≤n<τ4
+ b21τ4≤n<τ5 + b2Xn1τ5≤n<τ6
...

+ bk−11τ2k−2≤n<τ2k−1 + bk−1Xn1τ2k−1≤n<τ2k

+ bk1τ2k≤n. (18.50)
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Since E [Yn|B0] ≤ Y0 a.s., Yn ≥ bk1τ2k≤n, and

Y0 = 10<τ1 + 1τ1=0X0 = 1X0>1 + 1X0≤1X0 = 1 ∧X0,

we may infer that

bkP (τ2k ≤ n|B0) = E
[
bk1τ2k≤n|B0

]
≤ E [Yn|B0] ≤ 1 ∧X0 a.s.

Using cMCT, we may now let n→∞ to conclude

P
(
UX (1, b) ≥ k|B0

)
≤ P (τ2k <∞|B0) ≤ 1

bk
(1 ∧X0) a.s.

which is Eq. (18.49). Using cDCT, we may let k ↑ ∞ in this equation to discover
P
(
UX∞ (1, b) =∞|B0

)
= 0 a.s. and in particular, UX∞ (1, b) < ∞ a.s. In fact we

have

E
[
UX∞ (1, b)

]
=
∞∑
k=1

P
(
UX∞ (1, b) ≥ k

)
≤
∞∑
k=1

E
[

1
bk

(1 ∧X0)
]

=
1
b

1
1− 1/b

E [(1 ∧X0)] ≤ 1
b− 1

<∞.

Exercise 18.13. In this exercise you are asked to fill in the details showing Yn
in Eq. (18.50) is still a supermartingale. To do this, define Y (k)

n via Eq. (18.50)
and then show (making use of the switching Lemma 18.60 twice) Y (k+1)

n is a
supermartingale under the assumption that Y (k)

n is a supermartingale. Finish
off the induction argument by observing that the constant process, Un := 1 and
Vn = 0 are supermartingales such that Uτ1 = 1 ≥ 0 = Vτ1 on {τ1 <∞} , and
therefore by the switching Lemma 18.60,

Y (1)
n = 10≤n<τ1Un + 1τ1≤nVn = 10≤n<τ1

is also a supermartingale.

Corollary 18.63 (Positive Supermartingale convergence). Suppose X =
{Xn}∞n=0 is a positive supermartingale (possibly in the extended sense), then
X∞ = limn→∞Xn exists a.s. and we have

E [X∞|Bn] ≤ Xn for all n ∈ N̄. (18.51)

In particular,
EX∞ ≤ EXn ≤ EX0 for all n <∞. (18.52)

Proof. The set,

Ω0 := ∩
{
UX∞ (a, b) <∞ : a, b ∈ Q with a < b

}
,

has full measure (P (Ω0) = 1) by Dubin’s upcrossing inequality in Theorem
18.62. So by Lemma 18.53, for ω ∈ Ω0 we have X∞ (ω) := limn→∞Xn (ω)
exists7 in [0,∞] . For definiteness, let X∞ = 0 on Ωc0. Equation (18.51) is now
a consequence of cFatou;

E [X∞|Bn] = E
[

lim
m→∞

Xm|Bn
]
≤ lim inf

m→∞
E [Xm|Bn] ≤ lim inf

m→∞
Xn = Xn a.s.

The supermartingale property guarantees that EXn ≤ EX0 for all n <∞ while
taking expectations of Eq. (18.51) implies EX∞ ≤ EXn.

Theorem 18.64 (Optional sampling II – Positive supermartingales).
Suppose that X = {Xn}∞n=0 is a positive supermartingale, X∞ := limn→∞Xn

(which exists a.s. by Corollary 18.63), and σ and τ are arbitrary stopping
times. Then Xτ

n := Xτ∧n is a positive {Bn}∞n=0 – super martingale, Xτ
∞ =

limn→∞Xτ
τ∧n, and

E [Xτ |Bσ] ≤ Xσ∧τ a.s. (18.53)

Moreover, if EX0 <∞, then E [Xτ ] = E [Xτ
∞] <∞.

Proof. We already know that Xτ is a positive supermatingale by optional
stopping Theorem 18.38. Hence an application of Corollary 18.63 implies that
limn→∞Xτ

n = limn→∞Xτ∧n is convergent and

E
[

lim
n→∞

Xτ
n |Bm

]
≤ Xτ

m = Xτ∧m for all m <∞. (18.54)

On the set {τ <∞} , limn→∞Xτ∧n = Xτ and on the set {τ =∞} ,
limn→∞Xτ∧n = limn→∞Xn = X∞ = Xτ a.s. Therefore it follows that
limn→∞Xτ

n = Xτ and Eq. (18.54) may be expressed as

E [Xτ |Bm] ≤ Xτ∧m for all m <∞. (18.55)

An application of Lemma 18.30 now implies

E [Xτ |Bσ] =
∑
m≤∞

1σ=mE [Xτ |Bm] ≤
∑
m≤∞

1σ=mXτ∧m = Xτ∧σ a.s.

7 If EX0 <∞, this may also be deduced by applying Corollary 18.54 to {−Xn}∞n=0 .
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18.8 Martingale Closure and Regularity Results

We are now going to give a couple of theorems which have already been alluded
to in Exercises 13.6, 14.7, and 14.8.

Theorem 18.65. Let M := {Mn}∞n=0 be an L1 – bounded martingale, i.e. C :=
supn E |Mn| < ∞ and let M∞ := limn→∞Mn which exists a.s. and satisfies,
E |M∞| <∞ by Corollary 18.54. Then the following are equivalent;

1. There exists X ∈ L1 (Ω,B, P ) such that Mn = E [X|Bn] for all n.
2. {Mn}∞n=0 is uniformly integrable.
3. Mn →M∞ in L1 (Ω,B, P ) .

Moreover, if any of the above equivalent conditions hold we may take X =
M∞, i.e. Mn = E [M∞|Bn] .

Proof. 1. =⇒ 2. This was already proved in Proposition 18.8.
2. =⇒ 3. The knowledge that M∞ := limn→∞Mn exists a.s. along with the

assumed uniform integrability implies L1 – convergence by Vitali convergence
Theorem 12.44.

3. =⇒ 1. If Mn → M∞ in L1 (Ω,B, P ) , then by the martingale property
and the L1 (P ) – continuity of conditional expectation we find,

Mn = E [Mm|Bn]→ E [M∞|Bn] as m→∞,

and thus, Mn = E [M∞|Bn] a.s.

Definition 18.66. A martingale satisfying any and all of the equivalent state-
ments in Theorem 18.65 is said to be regular.

Theorem 18.67. Suppose 1 < p <∞ and M := {Mn}∞n=0 is an Lp – bounded
martingale. Then Mn → M∞ almost surely and in Lp. In particular, {Mn} is
a regular martingale.

Proof. The almost sure convergence follows from Corollary 18.54. So, be-
cause of Corollary 12.47, to finish the proof it suffices to show {|Mn|p}

∞
n=0 is

uniformly integrable. But by Doob’s inequality, Corollary 18.47, and the MCT,
we find

E
[
sup
k
|Mk|p

]
≤
(

p

p− 1

)p
sup
k

E [|Mk|p] <∞.

As |Mn|p ≤ supk |Mk|p ∈ L1 (P ) for all n ∈ N, it follows by Example 12.39 and
Exercise 12.5 that {|Mn|p}

∞
n=0 is uniformly integrable.

Theorem 18.68 (Optional sampling III – regular martingales). Suppose
that M = {Mn}∞n=0 is a regular martingale, σ and τ are arbitrary stopping
times. Define M∞ := limn→∞Mn which exists a.s.. Then M∞ ∈ L1 (P ) ,

Mτ = E [M∞|Bτ ] , E |Mτ | ≤ E |M∞| <∞ (18.56)

and
E [Mτ |Bσ] = Mσ∧τ a.s. (18.57)

Proof. By Theorem 18.65, M∞ ∈ L1 (Ω,B, P ) and Mn := EBnM∞ a.s. for
all n ≤ ∞. By Lemma 18.30,

EBτM∞ =
∑
n≤∞

1τ=nEBnM∞ =
∑
n≤∞

1τ=nMn = Mτ .

Hence we have |Mτ | = |EBτM∞| ≤ EBτ |M∞| a.s. and E |Mτ | ≤ E |M∞| < ∞.
An application of Theorem 18.31 now concludes the proof;

EBσMτ = EBσEBτM∞ = EBσ∧τM∞ = Mσ∧τ .

Definition 18.69. Let M = {Mn}∞n=0 be a martingale. We say that τ is a
regular stopping time for M if Mτ is a regular martingale.

Example 18.70. Every bounded martingale is regular. More generally if τ is a
stopping time such that Mτ is bounded, then τ is a regular stopping time for
M.

Remark 18.71. If τ is regular for M, then limn→∞Mτ
n := Mτ

∞ exists a.s. and in
L1 (P ) and hence

lim
n→∞

Mn = Mτ
∞ a.s. on {τ =∞} . (18.58)

Thus if τ is regular for M, we may define Mτ as, Mτ := Mτ
∞ = limn→∞Mn∧τ

and we will have
Mτ∧n = Mτ

n = EBnMτ (18.59)

and
E |Mτ | = lim

n→∞
E |Mτ

n | ≤ sup
n

E |Mτ
n | <∞.

Theorem 18.72. Suppose M = {Mn}∞n=0 is a martingale and σ, τ, are stopping
times such that τ is a regular stopping time for M. Then

EBσMτ = Mτ∧σ, (18.60)

and if σ ≤ τ a.s. then
Mσ
n = EBn [EBσMτ ] (18.61)

and σ is regular for M.
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Proof. By assumption, Mτ = limn→∞Mn∧τ exists almost surely and in
L1 (P ) and Mτ

n = E [Mτ |Bn] for n ≤ ∞.
1. Equation (18.60) is a consequence of;

EBσMτ =
∑
n≤∞

1σ=nEBnMτ =
∑
n≤∞

1σ=nM
τ
n = Mσ∧τ .

2. Applying EBσ to Eq. (18.59) using the optional sampling Theorem 18.39
and the tower property of conditional expectation (see Theorem 18.31) shows

Mσ
n = Mσ∧n = EBσMτ∧n = EBσEBnMτ = EBn [EBσMτ ] .

The regularity of Mσ now follows by item 1. of Theorem 18.65.

Proposition 18.73. Suppose that M is a martingale and τ is a stopping time.
Then the τ is regular for M iff;

1. E [|Mτ | : τ <∞] <∞ and
2. {Mn1n<τ}∞n=0 is a uniformly integrable sequence of random variables.

Moreover, condition 1. is automatically satisfied if M is L1 – bounded, i.e.
if C := supn E |Mn| <∞.

Proof. ( =⇒ ) If τ is regular for M, Mτ ∈ L1 (P ) and Mτ
n = EBnMτ so that

Mn = EBnMτ a.s. on {n ≤ τ} . In particular it follows that

E [|Mτ | : τ <∞] ≤ E |Mτ | <∞

and
|Mn1n<τ | = |EBnMτ1n<τ | ≤ EBn |Mτ | a.s.

from which it follows that {Mn1n<τ}∞n=0 is uniformly integrable.
(⇐= ) Our goal is to show {Mτ

n}
∞
n=0 is uniformly integrable. We begin with

the identity;

E [|Mτ
n | : |Mτ

n | ≥ a] =E [|Mτ
n | : |Mτ

n | ≥ a, τ ≤ n]
+ E [|Mτ

n | : |Mτ
n | ≥ a, n < τ ] .

Since

E [|Mτ
n | : |Mτ

n | ≥ a, τ ≤ n] = E [|Mτ | : |Mτ | ≥ a, τ ≤ n]
≤ E [|Mτ1τ<∞| : |Mτ1τ<∞| ≥ a] ,

if follows (by assumption 1. that E [|Mτ1τ<∞|] <∞) that

lim
a→∞

sup
n

E [|Mτ
n | : |Mτ

n | ≥ a, τ ≤ n] = 0.

Moreover for any a > 0,

sup
n

E [|Mτ
n | : |Mτ

n | ≥ a, n < τ ] = sup
n

E [|Mτ
n1n<τ | : |Mτ

n1n<τ | ≥ a]

at the latter term goes to zero as a → ∞ by assumption 2. Hence we have
shown,

lim
a→∞

sup
n

E [|Mτ
n | : |Mτ

n | ≥ a] = 0

as desired.
Now to prove the last assertion. If C := supn E |Mn| <∞, the (by Corollary

18.54) M∞ := limn→∞Mn a.s. and E |M∞| <∞. Therefore,

E [|Mτ | : τ <∞] ≤ E |Mτ | = E
[

lim
n→∞

|Mτ∧n|
]

≤ lim inf
n→∞

E |Mτ∧n| ≤ lim inf
n→∞

E |Mn| <∞

wherein we have used Fatou’s lemma, the optional sampling theorem to conclude
Mτ∧n = EBτ∧nMn, cJensen to conclude |Mτ∧n| ≤ EBτ∧n |Mn| , and the tower
property of conditional expectation to conclude E |Mτ∧n| ≤ E |Mn| .

Corollary 18.74. Suppose that M is an L1 – bounded martingale and J ∈ BR
is a bounded set, then τ = inf {n : Mn /∈ J} is a regular stopping time for M.

Proof. According to Proposition 18.73, it suffices to show {Mn1n<τ}∞n=0

is a uniformly integrable sequence of random variables. However, if we choose
A < ∞ such that J ⊂ [−A,A] , since Mn1n<τ ∈ J we have |Mn1n<τ | ≤ A
which is sufficient to complete the proof.

18.9 Backwards (Reverse) Submartingales

In this section we will consider submartingales indexed by Z− :=
{. . . ,−n,−n+ 1, . . . ,−2,−1, 0} . So again we assume that we have an
increasing filtration, {Bn : n ≤ 0} , i.e. · · · ⊂ B−2 ⊂ B−1 ⊂ B0 ⊂ B. As
usual, we say an adapted process {Xn}n≤0 is a submartingale (martingale)
provided E [Xm −Xn|Bn] ≥ 0 (= 0) for all m ≥ n. Observe that EXm ≥ EXn

for m ≥ n, so that EX−n decreases as n increases. Also observe that(
X−n, X−(n−1), . . . , X−1, X0

)
is a “finite string” submartingale relative to the

filtration, B−n ⊂ B−(n−1) ⊂ · · · ⊂ B−1 ⊂ B0.
It turns out that backwards submartingales are even better behaved than

forward submartingales. In order to understand why, consider the case where
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Fig. 18.5. A sample path of a backwards martingale on [−100, 0] indicating the
down crossings of X0, X−1, . . . , X−100 and the upcrossings of X−100, X−99, . . . , X0.
The total number of each is the same.

{Mn}n≤0 is a backwards martingale. We then have, E [Mn|Bm] = Mm∧n for all
m,n ≤ 0. Taking n = 0 in this equation implies that Mm = E [M0|Bm] and
so the only backwards martingales are of the form Mm = E [M0|Bm] for some
M0 ∈ L1 (P ) . We have seen in Example 18.7 that this need not be the case for
forward martingales.

Theorem 18.75 (Backwards (or reverse) submartingale convergence).
Let {Bn : n ≤ 0} be a reverse filtration, {Xn}n≤0 is a backwards submartingale.
Then X−∞ = limn→−∞Xn exists a.s. in {−∞} ∪ R and X+

−∞ ∈ L1 (Ω,B, P ) .
If we further assume that

C := lim
n→−∞

EXn = inf
n≤0

EXn > −∞, (18.62)

then 1) Xn = Mn+An where {Mn}−∞<n≤0 is a martingale, {An}−∞<n≤0 is a
predictable process such that A−∞ = limn→−∞An = 0, 2) {Xn}n≤0 is uniformly
integrability, 3) X−∞ ∈ L1 (Ω,B, P ) , and 4) limn→−∞ E |Xn −X−∞| = 0.

Proof. The number of downcrossings of
(
X0, X−1, . . . , X−(n−1), X−n

)
across [a, b] , (denoted by Dn (a, b)) is equal to the number of upcross-
ings,

(
X−n, X−(n−1), . . . , X−1, X0

)
across [a, b] , see Figure 18.5. Since(

X−n, X−(n−1), . . . , X−1, X0

)
is a B−n ⊂ B−(n−1) ⊂ · · · ⊂ B−1 ⊂ B0 sub-

martingale, we may apply Doob’s upcrossing inequality (Theorem 18.51) to
find;

(b− a) E [Dn (a, b)] ≤ E (X0 − a)+ − E (X−n − a)+

≤ E (X0 − a)+ <∞. (18.63)

Letting D∞ (a, b) :=↑ limn→∞Dn (a, b) be the total number of downcrossing of
(X0, X−1, . . . , X−n, . . . ) , using the MCT to pass to the limit in Eq. (18.63), we
have

(b− a) E [D∞ (a, b)] ≤ E (X0 − a)+ <∞.

In particular it follows that D∞ (a, b) <∞ a.s. for all a < b.
As in the proof of Corollary 18.54 (making use of the obvious downcrossing

analogue of Lemma 18.53), it follows that X−∞ := limn→−∞Xn exists in R̄
a.s. At the end of the proof, we will show that X−∞ takes values in {−∞} ∪R
almost surely, i.e. X−∞ <∞ a.s.

Now suppose that C > −∞. We begin by computing the Doob decom-
position of Xn as Xn = Mn + An with An being predictable, increasing and
satisfying, A−∞ = limn→−∞An = 0. If such an A is to exist, following Lemma
18.16, we should define

An =
∑
k≤n

E [∆kX|Bk−1] .

This is a well defined increasing predictable process since the submartingale
property implies E [∆kX|Bk−1] ≥ 0. Moreover we have

EA0 =
∑
k≤0

E [E [∆kX|Bk−1]] =
∑
k≤0

E [∆kX]

= lim
N→∞

(EX0 − EX−N ) = EX0 − inf
n≤0

EXn = EX0 − C <∞.

As 0 ≤ An ≤ A∗n = A0 ∈ L1 (P ) , it follows that {An}n≤0 is uniformly integrable
Moreover if we define Mn := Xn −An, then

E [∆nM |Bn−1] = E [∆nX −∆nA|Bn−1] = E [∆nX|Bn−1]−∆nA = 0 a.s.

Thus M is a martingale and therefore, Mn = E [M0|Bn] with M0 = X0 −
A0 ∈ L1 (P ) . An application of Proposition 18.8 implies {Mn}n≤0 is uniformly
integrable and henceXn = Mn+An is uniformly integrable as well. (See Remark

Page: 284 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



18.9 Backwards (Reverse) Submartingales 285

18.76 for an alternate proof of the uniform integrability of X.) Therefore X−∞ ∈
L1 (Ω,B, P ) and Xn → X−∞ in L1 (Ω,B, P ) as n→∞.

To finish the proof we must show, without assumptions on C > −∞, we
must show X+

−∞ ∈ L1 (Ω,B, P ) which will also imply P (X−∞ =∞) = 0. To
prove this, notice that X+

−∞ = limn→−∞X+
n and that by Jensen’s inequality,

{X+
n }
∞
n=1 is a non-negative backwards submartingale. Since inf EX+

n ≥ 0 >
−∞, it follows by what we have just proved that X+

−∞ ∈ L1 (Ω,B, P ) .

Remark 18.76 (*Not necessary to read.). Let us give a direct proof of the fact
that X is uniformly integrable if C > −∞. We begin with Jensen’s inequality;

E |Xn| = 2EX+
n − EXn ≤ 2EX+

0 − EXn ≤ 2EX+
0 − C = K <∞, (18.64)

which shows that {Xn}∞n=1 is L1 - bounded. For uniform integrability we will
use the following identity;

E [|X| : |X| ≥ λ] = E [X : X ≥ λ]− E [X : X ≤ −λ]
= E [X : X ≥ λ]− (EX−E [X : X > −λ])
= E [X : X ≥ λ] + E [X : X > −λ]− EX.

Taking X = Xn and k ≥ n, we find

E [|Xn| : |Xn| ≥ λ] =E [Xn : Xn ≥ λ] + E [Xn : Xn > −λ]− EXn

≤E [Xk : Xn ≥ λ] + E [Xk : Xn > −λ]
− EXk + (EXk − EXn)

=E [Xk : Xn ≥ λ]− E [Xk : Xn ≤ −λ] + (EXk − EXn)
=E [|Xk| : |Xn| ≥ λ] + (EXk − EXn) .

Given ε > 0 we may choose k = kε < 0 such that if n ≤ k, 0 ≤ EXk −EXn ≤ ε
and hence

lim sup
λ↑∞

sup
n≤k

E [|Xn| : |Xn| ≥ λ] ≤ lim sup
λ↑∞

E [|Xk| : |Xn| ≥ λ] + ε ≤ ε

wherein we have used Eq. (18.64), Chebyschev’s inequality to conclude
P (|Xn| ≥ λ) ≤ K/λ and then the uniform integrability of the singleton set,
{|Xk|} ⊂ L1 (Ω,B, P ) . From this it now easily follows that {Xn}n≤0 is a uni-
formly integrable.

Corollary 18.77. Suppose 1 ≤ p <∞ and Xn = Mn in Theorem 18.75, where
Mn is an Lp – bounded martingale on −N∪{0} . Then M−∞ := limn→∞Mn ex-
ists a.s. and in Lp (P ) . Moreover M−∞ = E [M0|B−∞] , where B−∞ = ∩n≤0Bn.

Proof. Since Mn = E [M0|Bn] for all n, it follows by cJensen that |Mn|p ≤
E [|M0|p |Bn] for all n. By Proposition 18.8, {E [|M0|p |Bn]}n≤0 is uniformly
integrable and so is {|Mn|p}n≤0 . By Theorem 18.75, Mn → M−∞ a.s.. Hence
we may now apply Corollary 12.47 to see that Mn →M−∞ in Lp (P ) .

Example 18.78 (Kolmogorov’s SLLN). In this example we are going to give
another proof of the strong law of large numbers in Theorem 16.10, also
see Theorem 20.30 below for a third proof. Let {Xn}∞n=1 be i.i.d. random
variables such that EXn = 0 and let S0 = 0, Sn := X1 + · · · + Xn and
B−n = σ (Sn, Sn+1, Sn+2, . . . ) so that Sn is B−n measurable for all n ≥ 0.

1. For any permutation σ of the set {1, 2, . . . , n} ,

(X1, . . . , Xn, Sn, Sn+1, Sn+2, . . . )
d= (Xσ1, . . . , Xσn, Sn, Sn+1, Sn+2, . . . )

and in particular

(Xj , Sn, Sn+1, Sn+2, . . . )
d= (X1, Sn, Sn+1, Sn+2, . . . ) for all j ≤ n.

2. By Exercise 14.5 we may conclude that

E [Xj |B−n] = E [X1|B−n] a.s. for all j ≤ n. (18.65)

To see this directly notice that if σ is any permutation of N leaving
{n+ 1, n+ 2, . . . } fixed, then

E [g (X1, . . . , Xn) · f (Sn, Sn+1, . . . )] = E [g (Xσ1, . . . , Xσn) · f (Sn, Sn+1, . . . )]

for all bounded measurable f and g such that g (X1, . . . , Xn) ∈ L1 (P ) .
From this equation it follows that

E [g (X1, . . . , Xn) |B−n] = E [g (Xσ1, . . . , Xσn) |B−n] a.s.

and then taking g (x1, . . . , xn) = x1 give the desired result.
3. Summing Eq. (18.65) over j = 1, 2, . . . , n gives,

Sn = E [Sn|Sn, Sn+1, Sn+2, . . . ] = nE [X1|Sn, Sn+1, Sn+2, . . . ]

from which it follows that

M−n :=
Sn
n

:= E [X1|Sn, Sn+1, Sn+2, . . . ] (18.66)

and hence
{
M−n = 1

nSn
}

is a backwards martingale.
4. By Theorem 18.75 we know;

lim
n→∞

Sn
n

= lim
n→−∞

M−n =: M−∞ exists a.s. and in L1 (P ) .

5. Since M−∞ = limn→∞
Sn
n is a {σ (X1, . . . , Xn)}∞n=1 – tail random variable

it follows by Corollary 10.47 (basically by Kolmogorov’s zero one law of
Proposition 10.46) that limn→∞

Sn
n = c a.s. for some constant c.

6. Since Sn
n → c in L1 (P ) we may conclude that

c = lim
n→∞

E
Sn
n

= EX1.

Thus we have given another proof of Kolmogorov’s strong law of large num-
bers.
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18.10 Some More Martingale Exercises

(The next four problems were taken directly from
http://math.nyu.edu/˜sheff/martingalenote.pdf.)

Exercise 18.14. Suppose Harriet has 7 dollars. Her plan is to make one dollar
bets on fair coin tosses until her wealth reaches either 0 or 50, and then to go
home. What is the expected amount of money that Harriet will have when she
goes home? What is the probability that she will have 50 when she goes home?

Exercise 18.15. Consider a contract that at time N will be worth either 100
or 0. Let Sn be its price at time 0 ≤ n ≤ N . If Sn is a martingale, and S0 = 47,
then what is the probability that the contract will be worth 100 at time N?

Exercise 18.16. Pedro plans to buy the contract in the previous problem at
time 0 and sell it the first time T at which the price goes above 55 or below 15.
What is the expected value of ST ? You may assume that the value, Sn, of the
contract is bounded – there is only a finite amount of money in the world up
to time N. Also note, by assumption, T ≤ N.

Exercise 18.17. Suppose SN is with probability one either 100 or 0 and that
S0 = 50. Suppose further there is at least a 60% probability that the price will
at some point dip to below 40 and then subsequently rise to above 60 before
time N . Prove that Sn cannot be a martingale. (I don’t know if this problem
is correct! but if we modify the 40 to a 30 the buy low sell high strategy will
show that {Sn} is not a martingale.)

Exercise 18.18. Let (Mn)∞n=0 be a martingale with M0 = 0 and E[M2
n] < ∞

for all n. Show that for all λ > 0,

P

(
max

1≤m≤n
Mm ≥ λ

)
≤ E[M2

n]
E[M2

n] + λ2
.

Hints: First show that for any c > 0 that
{
Xn := (Mn + c)2

}∞
n=0

is a
submartingale and then observe,{

max
1≤m≤n

Mm ≥ λ
}
⊂
{

max
1≤m≤n

Xn ≥ (λ+ c)2

}
.

Now use Doob’ Maximal inequality (Proposition 18.42) to estimate the proba-
bility of the last set and then choose c so as to optimize the resulting estimate
you get for P (max1≤m≤nMm ≥ λ) . (Notice that this result applies to −Mn as
well so it also holds that;

P

(
min

1≤m≤n
Mm ≤ −λ

)
≤ E[M2

n]
E[M2

n] + λ2
for all λ > 0.

Exercise 18.19. Let {Zn}∞n=1 be independent random variables, S0 = 0 and
Sn := Z1 + · · · + Zn, and fn (λ) := E

[
eiλZn

]
. Suppose EeiλSn =

∏N
n=1 fn (λ)

converges to a continuous function, F (λ) , as N → ∞. Show for each λ ∈ R
that

P
(

lim
n→∞

eiλSn exists
)

= 1. (18.67)

Hints:

1. Show it is enough to find an ε > 0 such that Eq. (18.67) holds for |λ| ≤ ε.
2. Choose ε > 0 such that |F (λ)− 1| < 1/2 for |λ| ≤ ε. For |λ| ≤ ε, show
Mn (λ) := eiλSn

EeiλSn is a bounded complex8 martingale relative to the filtra-
tion, Bn = σ (Z1, . . . , Zn) .

Lemma 18.79 (Protter [47, See the lemma on p. 22.]). Let {xn}∞n=1 ⊂ R
such that

{
eiuxn

}∞
n=1

is convergent for Lebesgue almost every u ∈ R. Then
limn→∞ xn exists in R.

Proof. Let U be a uniform random variable with values in [0, 1] . By as-
sumption, for any t ∈ R, limn→∞ eitUxn exists a.s. Thus if nk and mk are any
increasing sequences we have

lim
k→∞

eitUxnk = lim
n→∞

eitUxn = lim
k→∞

eitUxmk a.s.

and therefore,

eit(Uxnk−Uxmk) =
eitUxnk

eitUxmk
→ 1 a.s. as k →∞.

Hence by DCT it follows that

E
[
eit(Uxnk−Uxmk)

]
→ 1 as k →∞

and therefore
(xnk − xmk) · U = Uxnk − Uxmk → 0

in distribution and hence in probability. But his can only happen if
(xnk − xmk)→ 0 as k →∞. As {nk} and {mk} were arbitrary, this suffices to
show {xn} is a Cauchy sequence.

Exercise 18.20 (Continuation of Exercise 18.19 – See Doob [13, Chap-
ter VII.5]). Let {Zn}∞n=1 be independent random variables. Use Exercise 18.19
an Lemma 18.79 to prove the series,

∑∞
n=1 Zn, converges in R a.s. iff

∏N
n=1 fn (λ)

converges to a continuous function, F (λ) as N →∞. Conclude from this that∑∞
n=1 Zn is a.s. convergent iff

∑∞
n=1 Zn is convergent in distribution.

8 Please use the obvious generalization of a martingale for complex valued processes.
It will be useful to observe that the real and imaginary parts of a complex martin-
gales are real martingales.
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18.10.1 More Random Walk Exercises

For the next four exercises, let {Zn}∞n=1 be a sequence of Bernoulli random
variables with P (Zn = ±1) = 1

2 and let S0 = 0 and Sn := Z1 + · · ·+Zn. Then
S becomes a martingale relative to the filtration, Bn := σ (Z1, . . . , Zn) with
B0 := {∅, Ω} – of course Sn is the (fair) simple random walk on Z. For any
a ∈ Z, let

σa := inf {n : Sn = a} .

Exercise 18.21. For a < 0 < b with a, b ∈ Z, let τ = σa ∧ σb. Explain why τ
is regular for S. Use this to show P (τ =∞) = 0. Hint: make use of Remark
18.71 and the fact that |Sn − Sn−1| = |Zn| = 1 for all n.

Exercise 18.22. In this exercise, you are asked to use the central limit Theorem
10.31 to prove again that P (τ =∞) = 0, Exercise 18.21. Hints: Use the central
limit theorem to show

1√
2π

∫
R
f (x) e−x

2/2dx ≥ f (0)P (τ =∞) (18.68)

for all f ∈ C3 (R→ [0,∞)) with M := supx∈R
∣∣f (3) (x)

∣∣ <∞. Use this inequal-
ity to conclude that P (τ =∞) = 0.

Exercise 18.23. Show

P (σb < σa) =
|a|

b+ |a|
(18.69)

and use this to conclude P (σb <∞) = 1, i.e. every b ∈ N is almost surely visited
by Sn. (This last result also follows by the Hewitt-Savage Zero-One Law, see
Example 10.51 where it is shown b is visited infinitely often.)

Hint: Using properties of martingales and Exercise 18.21, compute
limn→∞ E [Sσa∧σbn ] in two different ways.

Exercise 18.24. Let τ := σa ∧ σb. In this problem you are asked to show
E [τ ] = |a| b with the aid of the following outline.

1. Use Exercise 18.4 above to conclude Nn := S2
n − n is a martingale.

2. Now show
0 = EN0 = ENτ∧n = ES2

τ∧n − E [τ ∧ n] . (18.70)

3. Now use DCT and MCT along with Exercise 18.23 to compute the limit as
n→∞ in Eq. (18.70) to find

E [σa ∧ σb] = E [τ ] = b |a| . (18.71)

4. By considering the limit, a→ −∞ in Eq. (18.71), show E [σb] =∞.

For the next group of exercise we are now going to suppose that
P (Zn = 1) = p > 1

2 and P (Zn = −1) = q = 1 − p < 1
2 . As before let

Bn = σ (Z1, . . . , Zn) , S0 = 0 and Sn = Z1 + · · · + Zn for n ∈ N. Let us
review the method above and what you did in Exercise 17.10 above.

In order to follow the procedures above, we start by looking for a function,
ϕ, such that ϕ (Sn) is a martingale. Such a function must satisfy,

ϕ (Sn) = EBnϕ (Sn+1) = ϕ (Sn + 1) p+ ϕ (Sn − 1) q,

and this then leads us to try to solve the following difference equation for ϕ;

ϕ (x) = pϕ (x+ 1) + qϕ (x− 1) for all x ∈ Z. (18.72)

Similar to the theory of second order ODE’s this equation has two linearly
independent solutions which could be found by solving Eq. (18.72) with initial
conditions, ϕ (0) = 1 and ϕ (1) = 0 and then with ϕ (0) = 0 and ϕ (1) =
0 for example. Rather than doing this, motivated by second order constant
coefficient ODE’s, let us try to find solutions of the form ϕ (x) = λx with λ
to be determined. Doing so leads to the equation, λx = pλx+1 + qλx−1, or
equivalently to the characteristic equation,

pλ2 − λ+ q = 0.

The solutions to this equation are

λ =
1±
√

1− 4pq
2p

=
1±

√
1− 4p (1− p)

2p

=
1±

√
4p2 − 4p+ 1

2p
=

1±
√

(2p− 1)2

2p
= {1, (1− p) /p} = {1, q/p} .

The most general solution to Eq. (18.72) is then given by

ϕ (x) = A+B (q/p)x .

Below we will take A = 0 and B = 1. As before let σa = inf {n ≥ 0 : Sn = a} .

Exercise 18.25. Let a < 0 < b and τ := σa ∧ σb.

1. Apply the method in Exercise 18.21 with Sn replaced by Mn := (q/p)Sn to
show P (τ =∞) = 0.

2. Now use the method in Exercise 18.23 to show

P (σa < σb) =
(q/p)b − 1

(q/p)b − (q/p)a
. (18.73)
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288 18 (Sub and Super) Martingales

3. By letting a→ −∞ in Eq. (18.73), conclude P (σb =∞) = 0.
4. By letting b→∞ in Eq. (18.73), conclude P (σa <∞) = (q/p)|a| .

Exercise 18.26. Verify,

Mn := Sn − n (p− q)

and
Nn := M2

n − σ2n

are martingales, where σ2 = 1 − (p− q)2
. (This should be simple; see either

Exercise 18.4 or Exercise 18.3.)

Exercise 18.27. Using exercise 18.26, show

E (σa ∧ σb) =

b [1− (q/p)a] + a
[
(q/p)b − 1

]
(q/p)b − (q/p)a

 (p− q)−1
. (18.74)

By considering the limit of this equation as a→ −∞, show

E [σb] =
b

p− q

and by considering the limit as b→∞, show E [σa] =∞.

18.11 Appendix: Some Alternate Proofs

This section may be safely omitted (for now).

Proof. Alternate proof of Theorem 18.39. Let A ∈ Bσ. Then

E [Xτ −Xσ : A] = E

[
N−1∑
k=0

1σ≤k<τ∆k+1X : A

]

=
N∑
k=1

E [∆kX : A ∩ {σ ≤ k < τ}] .

Since A ∈ Bσ, A ∩ {σ ≤ k} ∈ Bk and since {k < τ} = {τ ≤ k}c ∈ Bk, it follows
that A ∩ {σ ≤ k < τ} ∈ Bk. Hence we know that

E [∆k+1X : A ∩ {σ ≤ k < τ}]
≤
=
≥

0 respectively.

and hence that

E [Xτ −Xσ : A]
≤
=
≥

0 respectively.

Since this true for all A ∈ Bσ, Eq. (18.21) follows.

Lemma 18.80. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space, 1 ≤
p < ∞, and let B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) . Then ∪∞n=1L

p (Ω,Bn, P ) is
dense in Lp (Ω,B∞, P ) .

Proof. Let Mn := Lp (Ω,Bn, P ) , then Mn is an increasing sequence of
closed subspaces of M∞ = Lp (Ω,B∞, P ) . Further let A be the algebra of func-
tions consisting of those f ∈ ∪∞n=1Mn such that f is bounded. As a consequence
of the density Theorem 12.27, we know that A and hence ∪∞n=1Mn is dense in
M∞ = Lp (Ω,B∞, P ) . This completes the proof. However for the readers con-
venience let us quickly review the proof of Theorem 12.27 in this context.

Let H denote those bounded B∞ – measurable functions, f : Ω → R, for
which there exists {ϕn}∞n=1 ⊂ A such that limn→∞ ‖f − ϕn‖Lp(P ) = 0. A rou-
tine check shows H is a subspace of the bounded B∞ –measurable R – valued
functions on Ω, 1 ∈ H, A ⊂ H and H is closed under bounded convergence. To
verify the latter assertion, suppose fn ∈ H and fn → f boundedly. Then, by the
dominated (or bounded) convergence theorem, limn→∞ ‖(f − fn)‖Lp(P ) = 0.9

We may now choose ϕn ∈ A such that ‖ϕn − fn‖Lp(P ) ≤
1
n then

lim sup
n→∞

‖f − ϕn‖Lp(P ) ≤ lim sup
n→∞

‖(f − fn)‖Lp(P )

+ lim sup
n→∞

‖fn − ϕn‖Lp(P ) = 0,

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem 8.16, now shows

H contains all bounded σ (A) = B∞ – measurable functions on Ω. Since for any
f ∈ Lp (Ω,B, P ) , f1|f |≤n ∈ H there exists ϕn ∈ A such that ‖fn − ϕn‖p ≤ n−1.
Using the DCT we know that fn → f in Lp and therefore by Minikowski’s
inequality it follows that ϕn → f in Lp.

Theorem 18.81. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space,
1 ≤ p < ∞, and let B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) . Then for every
X ∈ Lp (Ω,B, P ) , Xn = E [X|Bn] is a martingale and Xn → X∞ := E [X|B∞]
in Lp (Ω,B∞, P ) as n→∞.

Proof. We have already seen in Example 18.6 that Xn = E [X|Bn] is always
a martingale. Since conditional expectation is a contraction on Lp it follows that
E |Xn|p ≤ E |X|p < ∞ for all n ∈ N∪{∞} . So to finish the proof we need to
show Xn → X∞ in Lp (Ω,B, P ) as n→∞.

Let Mn := Lp (Ω,Bn, P ) and M∞ = Lp (Ω,B∞, P ) . If X ∈ ∪∞n=1Mn, then
Xn = X for all sufficiently large n and for n =∞. Now suppose that X ∈M∞
and Y ∈ ∪∞n=1Mn. Then

9 It is at this point that the proof would break down if p =∞.
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‖EB∞X − EBnX‖p ≤ ‖EB∞X − EB∞Y ‖p + ‖EB∞Y − EBnY ‖p + ‖EBnY − EBnX‖p
≤ 2 ‖X − Y ‖p + ‖EB∞Y − EBnY ‖p

and hence
lim sup
n→∞

‖EB∞X − EBnX‖p ≤ 2 ‖X − Y ‖p .

Using the density Lemma 18.80 we may choose Y ∈ ∪∞n=1Mn as close to X ∈
M∞ as we please and therefore it follows that lim supn→∞ ‖EB∞X − EBnX‖p =
0.

For general X ∈ Lp (Ω,B, P ) it suffices to observe that X∞ := E [X|B∞] ∈
Lp (Ω,B∞, P ) and by the tower property of conditional expectations,

E [X∞|Bn] = E [E [X|B∞] |Bn] = E [X|Bn] = Xn.

So again Xn → X∞ in Lp as desired.
We are now ready to prove the converse of Theorem 18.81.

Theorem 18.82. Suppose (Ω,B, {Bn}∞n=0 , P ) is a filtered probability space,
1 ≤ p < ∞, B∞ := ∨∞n=1Bn := σ (∪∞n=1Bn) , and {Xn}∞n=1 ⊂ Lp (Ω,B, P )
is a martingale. Further assume that supn ‖Xn‖p < ∞ and that {Xn}∞n=1 is
uniformly integrable if p = 1. Then there exists X∞ ∈ Lp (Ω,B∞, P ) such that
Xn := E [X∞|B∞] . Moreover by Theorem 18.81 we know that Xn → X∞ in
Lp (Ω,B∞, P ) as n→∞ and hence X∞ is uniquely determined by {Xn}∞n=1 .

Proof. By Theorems 13.20 and 13.22 exists X∞ ∈ Lp (Ω,B∞, P ) and a
subsequence, Yk = Xnksuch that

lim
k→∞

E [Ykh] = E [X∞h] for all h ∈ Lq (Ω,B∞, P )

where q := p (p− 1)−1
. Using the martingale property, if h ∈ (Bn)b for some n,

it follows that E [Ykh] = E [Xnh] for all large k and therefore that

E [X∞h] = E [Xnh] for all h ∈ (Bn)b .

This implies that Xn = E [X∞|Bn] as desired.

Theorem 18.83 (Almost sure convergence). Suppose (Ω,B, {Bn}∞n=0 , P )
is a filtered probability space, 1 ≤ p < ∞, and let B∞ := ∨∞n=1Bn :=
σ (∪∞n=1Bn) . Then for every X ∈ L1 (Ω,B, P ) , the martingale, Xn = E [X|Bn] ,
converges almost surely to X∞ := E [X|B∞] .

Before starting the proof, recall from Proposition 1.5, if {an}∞n=1 and
{bn}∞n=1 are two bounded sequences, then

lim sup
n→∞

(an + bn)− lim inf
n→∞

(an + bn)

≤ lim sup
n→∞

an + lim sup
n→∞

bn −
(

lim inf
n→∞

an + lim inf
n→∞

bn

)
= lim sup

n→∞
an − lim inf

n→∞
an + lim sup

n→∞
bn − lim inf

n→∞
bn. (18.75)

Proof. Since

Xn = E [X|Bn] = E [E [X|B∞] |Bn] = E [X∞|Bn] ,

there is no loss in generality in assuming X = X∞. If X ∈Mn := L1 (Ω,Bn, P ) ,
then Xm = X∞ a.s. for all m ≥ n and hence Xm → X∞ a.s. Therefore the
theorem is valid for any X in the dense (by Lemma 18.80) subspace ∪∞n=1Mn

of L1 (Ω,B∞, P ) .
For general X ∈ L1 (Ω,B∞, P ) , let Yj ∈ ∪Mn such that Yj → X ∈

L1 (Ω,B∞, P ) and let Yj,n := E [Yj |Bn] and Xn := E [X|Bn] . We know that
Yj,n → Yj,∞ a.s. for each j ∈ N and our goal is to show Xn → X∞ a.s. By
Doob’s inequality in Corollary 18.47 and the L1 - contraction property of con-
ditional expectation we know that

P (X∗N ≥ a) ≤ 1
a

E |XN | ≤
1
a

E |X|

and so passing to the limit as N →∞ we learn that

P

(
sup
n
|Xn| ≥ a

)
≤ 1
a

E |X| for all a > 0. (18.76)

Letting a ↑ ∞ then shows P (supn |Xn| =∞) = 0 and hence supn |Xn| < ∞
a.s. Hence we may use Eq. (18.75) with an = Xn − Yj,n and bn := Yj,n to find

D = lim sup
n→∞

Xn − lim inf
n→∞

Xn

≤ lim sup
n→∞

an − lim inf
n→∞

an + lim sup
n→∞

bn − lim inf
n→∞

bn

= lim sup
n→∞

an − lim inf
n→∞

an ≤ 2 sup
n
|an|

= 2 sup
n
|Xn − Yj,n| ,

wherein we have used lim supn→∞ bn− lim infn→∞ bn = 0 a.s. since Yj,n → Yj,∞
a.s.

We now apply Doob’s inequality one more time, i.e. use Eq. (18.76) with
Xn being replaced by Xn − Yj,n and X by X − Yj , to conclude,

P (D ≥ a) ≤ P
(

sup
n
|Xn − Yj,n| ≥

a

2

)
≤ 2
a

E |X − Yj | → 0 as j →∞.
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Since a > 0 is arbitrary here, it follows that D = 0 a.s., i.e. lim supn→∞Xn =
lim infn→∞Xn and hence limn→∞Xn exists in R almost surely. Since we already
know that Xn → X∞ in L1 (Ω,B, P ) , we may conclude that limn→∞Xn = X∞
a.s.

Alternative proof – see Stroock [62, Corollary 5.2.7]. Let H denote those
X ∈ L1 (Ω,Bn, P ) such that Xn := E [X|Bn] → X∞ a.s. As we saw above H
contains the dense subspace ∪∞n=1Mn. It is also easy to see that H is a linear
space. Thus it suffices to show that H is closed in L1 (P ) . To prove this let
X(k) ∈ H with X(k) → X in L1 (P ) and let X(k)

n := E
[
X(k)|Bn

]
. Then by the

maximal inequality in Eq. (18.76),

P

(
sup
n

∣∣∣Xn −X(k)
n

∣∣∣ ≥ a) ≤ 1
a

E
∣∣∣X −X(k)

∣∣∣ for all a > 0 and k ∈ N.

Therefore,

P

(
sup
n≥N
|X −Xn| ≥ 3a

)
≤ P

(∣∣∣X −X(k)
∣∣∣ ≥ a)+ P

(
sup
n≥N

∣∣∣X(k) −X(k)
n

∣∣∣ ≥ a)
+ P

(
sup
n≥N

∣∣∣X(k)
n −Xn

∣∣∣ ≥ a)
≤ 2
a

E
∣∣∣X −X(k)

∣∣∣+ P

(
sup
n≥N

∣∣∣X(k) −X(k)
n

∣∣∣ ≥ a)
and hence

lim sup
N→∞

P

(
sup
n≥N
|X −Xn| ≥ 3a

)
≤ 2
a

E
∣∣∣X −X(k)

∣∣∣→ 0 as k →∞.

Thus we have shown

lim sup
N→∞

P

(
sup
n≥N
|X −Xn| ≥ 3a

)
= 0 for all a > 0.

Since {
lim sup
n→∞

|X −Xn| ≥ 3a
}
⊂
{

sup
n≥N
|X −Xn| ≥ 3a

}
for all N,

it follows that

P

(
lim sup
n→∞

|X −Xn| ≥ 3a
)

= 0 for all a > 0

and therefore lim supn→∞ |X −Xn| = 0 (P a.s.) which shows that X ∈ H.
(This proof works equally as well in the case that X is a Banach valued random
variable. One only needs to replace the absolute values in the proof by the
Banach norm.)
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Some Martingale Examples and Applications

Exercise 19.1. Let Sn be the total assets of an insurance company in year
n ∈ N0. Assume S0 > 0 is a constant and that for all n ≥ 1 that Sn =
Sn−1 + ξn, where ξn = c− Zn and {Zn}∞n=1 are i.i.d. random variables having
the normal distribution with mean µ < c and variance σ2. (The number c is
to be interpreted as the yearly premium.) Let R = {Sn ≤ 0 for some n} be the
event that the company eventually becomes bankrupt, i.e. is Ruined. Show

P (Ruin) = P (R) ≤ e−2(c−µ)S0/σ
2
.

Solution to Exercise (19.1). Let us first find λ such that 1 = E
[
eλξn

]
. To

do this let N be a standard normal random variable in which case,

1 set= E
[
eλξn

]
= E

[
eλ(c−µ−σN)

]
= eλ(c−µ)e(σ

2λ2)/2,

leads to the equation for λ;

σ2

2
λ2 + λ (c− µ) = 0.

Hence we should take λ = −2 (c− µ) /σ2 – the other solution, λ = 0, is unin-
teresting. Since E

[
eλξn

]
= 1, we know from Example 18.11 that

Yn := exp (λSn) = eλS0

n∏
j=1

eλξj

is a non-negative Bn = σ(Z1, . . . , Zn) – martingale. By the super-martingale
or the sub-martingale convergence theorem (see Corollaries 18.63 and 18.54), it
follows that limn→∞ Yn = Y∞ exists a.s. Thus if τ is any stopping time we will
have;

EYτ = E lim
n→∞

Yτ∧n ≤ lim inf
n→∞

EYτ∧n = EY0 = eλS0

as follows from Fatou’s Lemma and the optional sampling Theorem 18.39. If
τ = inf{n : Sn ≤ 0} is the time of the companies ruin, we have Sτ ≤ 0 on
R = {τ <∞} and because λ < 0 and Sτ ≤ 0 on R, it follows that Yτ = eλSτ ≥ 1
on R. This leads to the desired estimate;

P (R) ≤ E [Yτ : τ <∞] ≤ EYτ ≤ eλS0 = e−2(c−µ)S0/σ
2
.

Observe that by the strong law of large numbers that limn→∞
Sn
n = Eξ1 =

c − µ > 0 a.s. Thus for large n we have Sn ∼ n (c− µ) → ∞ as n → ∞.
The question we have addressed is what happens to the Sn for intermediate
values – in particular what is the likely hood that Sn makes a sufficiently “large
deviation” from the “typical” value of n (c− µ) in order for the company to go
bankrupt.

19.1 A Polya Urn Model

In this section we are going to analyze the long run behavior of the Polya urn
Markov process which was introduced in Exercise 17.4. Recall that if the urn
contains r red balls and g green balls at a given time we draw one of these balls
at random and replace it and add c more balls of the same color drawn. Let
(rn, gn) be the number of red and green balls in the earn at time n. Then we
have

P ((rn+1, gn) = (r + c, g) | (rn, gn) = (r, g)) =
r

r + g
and

P ((rn+1, gn) = (r, g + c) | (rn, gn) = (r, g)) =
g

r + g
.

Let us observe that rn+gn = r0 +g0 +nc and hence if we let Xn be the fraction
of green balls in the urn at time n,

Xn :=
gn

rn + gn
,

then
Xn :=

gn
rn + gn

=
gn

r0 + g0 + nc
.

We now claim that {Xn}∞n=0 is a martingale relative to

Bn := σ ((rk, gk) : k ≤ n) = σ (Xk : k ≤ n) .

Indeed,
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E [Xn+1|Bn] = E [Xn+1|Xn]

=
rn

rn + gn
· gn
rn + gn + c

+
gn

rn + gn
· gn + c

rn + gn + c

=
gn

rn + gn
· rn + gn + c

rn + gn + c
= Xn.

Since Xn ≥ 0 and EXn = EX0 <∞ for all n it follows by Corollary 18.54 that
X∞ := limn→∞Xn exists a.s. The distribution of X∞ is described in the next
theorem.

Theorem 19.1. Let γ := g/c and ρ := r/c and µ := LawP (X∞) . Then µ is
the beta distribution on [0, 1] with parameters, γ, ρ, i.e.

dµ (x) =
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

xγ−1 (1− x)ρ−1
dx for x ∈ [0, 1] . (19.1)

Proof. We will begin by computing the distribution of Xn. As an example,
the probability of drawing 3 greens and then 2 reds is

g

r + g
· g + c

r + g + c
· g + 2c
r + g + 2c

· r

r + g + 3c
· r + c

r + g + 4c
.

More generally, the probability of first drawing m greens and then n−m reds
is

g · (g + c) · · · · · (g + (n− 1) c) · r · (r + c) · · · · · (r + (n−m− 1) c)
(r + g) · (r + g + c) · · · · · (r + g + (n− 1) c)

.

Since this is the same probability for any of the
(
n
m

)
– ways of drawing m greens

and n−m reds in n draws we have

P (Draw m – greens)

=
(
n

m

)
g · (g + c) · · · · · (g + (m− 1) c) · r · (r + c) · · · · · (r + (n−m− 1) c)

(r + g) · (r + g + c) · · · · · (r + g + (n− 1) c)

=
(
n

m

)
γ · (γ + 1) · · · · · (γ + (m− 1)) · ρ · (ρ+ 1) · · · · · (ρ+ (n−m− 1))

(ρ+ γ) · (ρ+ γ + 1) · · · · · (ρ+ γ + (n− 1))
.

(19.2)

Before going to the general case let us warm up with the special case, g = r =
c = 1. In this case Eq. (19.2) becomes,

P (Draw m – greens) =
(
n

m

)
1 · 2 · · · · ·m · 1 · 2 · · · · · (n−m)

2 · 3 · · · · · (n+ 1)
=

1
n+ 1

.

On the set, {Draw m – greens} , we have Xn = 1+m
2+n and hence it follows that

for any f ∈ C ([0, 1]) that

E [f (Xn)] =
n∑

m=0

f

(
m+ 1
n+ 2

)
· P (Draw m – greens)

=
n∑

m=0

f

(
m+ 1
n+ 2

)
1

n+ 1
.

Therefore

E [f (X)] = lim
n→∞

E [f (Xn)] =
∫ 1

0

f (x) dx (19.3)

and hence we may conclude that X∞ has the uniform distribution on [0, 1] .
For the general case, recall from Example 7.50 that n! = Γ (n+1), Γ (t+ 1) =

tΓ (t) , and therefore for m ∈ N,

Γ (x+m) = (x+m− 1) (x+m− 2) . . . (x+ 1)xΓ (x) . (19.4)

Also recall Stirling’s formula in Eq. (7.53) (also see Theorem 7.60) that

Γ (x) =
√

2πxx−1/2e−x [1 + r (x)] (19.5)

where |r (x)| → 0 as x → ∞. To finish the proof we will follow the strategy of
the proof of Eq. (19.3) using Stirling’s formula to estimate the expression for
P (Draw m – greens) in Eq. (19.2).

On the set, {Draw m – greens} , we have

Xn =
g +mc

r + g + nc
=

γ +m

ρ+ γ + n
=: xm,

where ρ := r/c and γ := g/c. For later notice that ∆mx = γ
ρ+γ+n .

Using this notation we may rewrite Eq. (19.2) as

P (Draw m – greens)

=
(
n

m

) Γ (γ+m)
Γ (γ) · Γ (ρ+n−m)

Γ (ρ)

Γ (ρ+γ+n)
Γ (ρ+γ)

=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· Γ (n+ 1)
Γ (m+ 1)Γ (n−m+ 1)

Γ (γ +m)Γ (ρ+ n−m)
Γ (ρ+ γ + n)

. (19.6)

Now by Stirling’s formula,

Γ (γ +m)
Γ (m+ 1)

=
(γ +m)γ+m−1/2

e−(γ+m) [1 + r (γ +m)]

(1 +m)m+1−1/2
e−(m+1) [1 + r (1 +m)]

= (γ +m)γ−1 ·
(
γ +m

m+ 1

)m+1/2

e−(γ−1) 1 + r (γ +m)
1 + r (m+ 1)

.

= (γ +m)γ−1 ·
(

1 + γ/m

1 + 1/m

)m+1/2

e−(γ−1) 1 + r (γ +m)
1 + r (m+ 1)
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19.2 Galton Watson Branching Process 293

We will keep m fairly large, so that(
1 + γ/m

1 + 1/m

)m+1/2

= exp
(

(m+ 1/2) ln
(

1 + γ/m

1 + 1/m

))
∼= exp ((m+ 1/2) (γ/m− 1/m)) ∼= eγ−1.

Hence we have
Γ (γ +m)
Γ (m+ 1)

� (γ +m)γ−1
.

Similarly, keeping n−m fairly large, we also have

Γ (ρ+ n−m)
Γ (n−m+ 1)

� (ρ+ n−m)ρ−1 and

Γ (ρ+ γ + n)
Γ (n+ 1)

� (ρ+ γ + n)ρ+γ−1
.

Combining these estimates with Eq. (19.6) gives,

P (Draw m – greens)

� Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· (γ +m)γ−1 · (ρ+ n−m)ρ−1

(ρ+ γ + n)ρ+γ−1

=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

·

(
γ+m
ρ+γ+n

)γ−1

·
(
ρ+n−m
ρ+γ+n

)ρ−1

(ρ+ γ + n)ρ+γ−1

=
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· (xm)γ−1 · (1− xm)ρ−1
∆mx.

Therefore, for any f ∈ C ([0, 1]) , it follows that

E [f (X∞)] = lim
n→∞

E [f (Xn)]

= lim
n→∞

n∑
m=0

f (xm)
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

· (xm)γ−1 · (1− xm)ρ−1
∆mx

=
∫ 1

0

f (x)
Γ (ρ+ γ)
Γ (ρ)Γ (γ)

xγ−1 (1− x)ρ−1
dx.

19.2 Galton Watson Branching Process

This section is taken from [15, p. 245 –249]. Let {ξni : i, n ≥ 1} be a sequence
of i.i.d. non-negative integer valued random variables. Suppose that Zn is the

number of people in the nth – generation and ξn+1
1 , . . . , ξn+1

Zn
are the number of

off spring of the Zn people of generation n. Then

Zn+1 = ξn+1
1 + · · ·+ ξn+1

Zn

=
∞∑
k=1

(
ξn+1
1 + · · ·+ ξn+1

k

)
1Zn=k. (19.7)

represents the number of people present in generation, n+ 1. We complete the
description of the process, Zn by setting Z0 = 1 and Zn+1 = 0 if Zn = 0, i.e. once
the population dies out it remains extinct forever after. The process {Zn}n≥0 is
called a Galton-Watson Branching process, see Figure 19.1. To understand

Fig. 19.1. A possible realization of a Galton Watson “tree.”

Zn a bit better observe that Z1 = ξ1
1 , Z2 = ξ2

1 + · · ·+ ξ3
ξ11
, Z3 = ξ3

1 + · · ·+ ξ3
Z2
,

etc. The sample path in Figure 19.1 corresponds to

ξ1
1 = 3,

ξ2
1 = 2, ξ2

2 = 0, ξ2
3 = 3,

ξ3
1 = ξ3

2 = ξ3
3 = ξ3

4 = 0, ξ3
5 = 4, and

ξ4
1 = ξ4

2 = ξ4
3 = ξ4

4 = 0.

We will use later the intuitive fact that the different branches of the Galton-
Watson tree evolve independently of one another – you will be asked to make
this precise Exercise 19.4.
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294 19 Some Martingale Examples and Applications

Let ξ d= ξmi , pk := P (ξ = k) be the off-spring distribution,

µ := Eξ =
∞∑
k=0

kpk,

which we assume to be finite.
Let B0 = {∅, Ω} and

Bn := σ (ξmi : i ≥ 1 and 1 ≤ m ≤ n) .

Making use of Eq. (19.7) and the independence of
{
ξn+1
i

}∞
i=1

from Bn we find

E [Zn+1|Bn] = E

[ ∞∑
k=1

(
ξn+1
1 + · · ·+ ξn+1

k

)
1Zn=k|Bn

]

=
∞∑
k=1

1Zn=kE
[(
ξn+1
1 + · · ·+ ξn+1

k

)
|Bn
]

=
∞∑
k=1

1Zn=k · kµ = µZn. (19.8)

So we have shown, Mn := Zn/µ
n is a positive martingale and since M0 =

Z0/µ
0 = 1 it follows that

1 = EM0 = EMn =
EZn
µn

=⇒ EZn = µn <∞. (19.9)

Theorem 19.2. If µ < 1, then, almost surely, Zn = 0 for a.a. n.

Proof. When µ < 1, we have

E
∞∑
n=0

Zn =
∞∑
n=0

µn =
1

1− µ
<∞

and therefore
∑∞
n=0 Zn <∞ a.s. As Zn ∈ N0 for all n, this can only happen if

Zn = 0 for almost all n a.s.

Theorem 19.3. If µ = 1 and P (ξmi = 1) < 1,1 then again, almost surely,
Zn = 0 for a.a. n.

Proof. In this case {Zn}∞n=1 is a martingale which, being positive, is L1 –
bounded. Therefore, limn→∞ Zn =: Z∞ exists. Because Zn is integer valued, it
must happen that Zn = Z∞ a.a. If k ∈ N, Since
1 The assumption here is equivalent to p0 > 0 and µ = 1.

{Z∞ = k} = {Zn = k a.a. n} = ∪∞N=1 {Zn = k for all n ≥ N} ,

we have
P (Z∞ = k) = lim

N→∞
P (Zn = k for all n ≥ N) .

However,

P (Zn = k for all n ≥ N) = P (ξn1 + · · ·+ ξnk = k for all n ≥ N)
= [P (ξn1 + · · ·+ ξnk = k)]∞ = 0,

because, P (ξn1 + · · ·+ ξnk = k) < 1. Indeed, since p1 = P (ξ = 1) < 1 and
µ = 1 it follows that pl = P (ξ = l) > 0 for some l > 1 and therefore
if P (ξn1 + · · ·+ ξnk = kl) > 0 which then implies P (ξn1 + · · ·+ ξnk = k) < 1.
Therefore we have shown P (Z∞ = k) = 0 for all k > 0 and therefore, Z∞ = 0
a.s. and hence almost surely, Zn = 0 for a.a. n.

Remark 19.4. By the way, the branching process, {Zn}∞n=0 with µ = 1 and
P (ξ = 1) < 1 gives a nice example of a non regular martingale. Indeed, if Z
were regular, we would have

Zn = E
[

lim
m→∞

Zm|Bn
]

= E [0|Bn] = 0

which is clearly false.

We now wish to consider the case where µ := E [ξmi ] > 1. Let ξ d= ξmi and
for λ ∈ C with |λ| ≤ 1 we let

ϕ (λ) := E
[
λξ
]

=
∑
k≥0

pkλ
k.

Notice that ϕ (1) = 1 and for λ = s ∈ (−1, 1) we have

ϕ′ (s) =
∑
k≥0

kpks
k−1 and ϕ′′ (s) =

∑
k≥0

k (k − 1) pksk−2 ≥ 0

with

lim
s↑1

ϕ′ (s) =
∑
k≥0

kpk = E [ξ] =: µ and

lim
s↑1

ϕ′′ (s) =
∑
k≥0

k (k − 1) pk = E [ξ (ξ − 1)] .

Therefore ϕ is convex with ϕ (0) = p0, ϕ (1) = 1 and ϕ′ (1) = µ.

Lemma 19.5. If µ = ϕ′ (1) > 1, there exists a unique ρ < 1 so that ϕ (ρ) = ρ.
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19.2 Galton Watson Branching Process 295

Fig. 19.2. Figure associated to ϕ (s) = 1
8

(
1 + 3s+ 3s2 + s3

)
which is relevant for

Exercise 3.13 of Durrett on p. 249. In this case ρ ∼= 0.236 07.

Proof. See Figure 19.2 below.

Theorem 19.6 (See Durrett [15], p. 247-248.). If µ > 1, then

P ({Zn = 0 for some n}) = ρ.

Proof. Since {Zm = 0} ⊂ {Zm+1 = 0} , it follows that {Zm = 0} ↑
{Zn = 0 for some n} and therefore if

θm := P (Zm = 0) ,

then
P ({Zn = 0 for some n}) = lim

m→∞
θm.

We now show; θm = ϕ (θm−1) . To see this, conditioned on the set {Z1 = k} ,
Zm = 0 iff all k – families die out in the remaining m−1 time units. Since each
family evolves independently, the probability2 of this event is θkm−1. Combining
this with, P ({Z1 = k}) = P

(
ξ1
1 = k

)
= pk, allows us to conclude,

θm = P (Zm = 0) =
∞∑
k=0

P (Zm = 0, Z1 = k)

=
∞∑
k=0

P (Zm = 0|Z1 = k)P (Z1 = k) =
∞∑
k=0

pkθ
k
m−1 = ϕ (θm−1) .

It is now easy to see that θm ↑ ρ as m ↑ ∞, again see Figure 19.3.
2 This argument is made precise with the aid of Exercise 19.4.

Fig. 19.3. The graphical interpretation of θm = ϕ (θm−1) starting with θ0 = 0.

Let S = N0, {Yi}∞i=1 be i.i.d. S – valued random variables such that Y d= ξni
(i.e. P (Yi = l) = pl for l ∈ N0), and for f : S → C bounded or non-negative let
Qf (0) = f (0) and

Qf (k) := E [f (Y1 + · · ·+ Yk)] for all k ≥ 1.

Notice that
Qf (k) =

∑
l∈S

f (l) p∗kl

where
p∗kl := P (Y1 + · · ·+ Yk = l) =

∑
l1+···+lk=l

pl1 . . . plk

with the convention that p∗0n = δ0,n. As above, for λ ∈ C with |λ| ≤ 1 we let

ϕ (λ) := E
[
λY1
]

=
∑
k≥0

pkλ
k

be the moment generating function of for the Yi.
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296 19 Some Martingale Examples and Applications

Exercise 19.2. Let Bn := BZn = σ (Z0, . . . , Zn) so that (Ω,B,Bn, P ) is a fil-
tered probability space. Show that {Zn}∞n=0 is a time homogeneous Markov
process with one step transition kernel being Q. In particular verify that

P (Zn = j|Zn−1 = k) = p∗kj for all j, k ∈ S and n ≥ 1

and
E
[
λZn |Bn−1

]
= ϕ (λ)Zn−1 a.s. (19.10)

for all λ ∈ C with |λ| ≤ 1.

Exercise 19.3. In the notation used in this section (Section 19.2), show for all
n ∈ N and λi ∈ C with |λi| ≤ 1 that

E

 n∏
j=1

λZii

 = ϕ (λ1ϕ (. . . λn−2ϕ (λn−1ϕ (λn)))) .

For example you should show,

E
[
λZ1

1 λZ2
2 λZ3

3

]
= ϕ (λ1ϕ (λ2ϕ (λ3)))

and
E
[
λZ1

1 λZ2
2 λZ3

3 λZ4
4

]
= ϕ (λ1ϕ (λ2ϕ (λ3ϕ (λ4)))) .

Exercise 19.4. Suppose that n ≥ 2 and f : Nn−1
0 → C is a bounded function

or a non-negative function. Show for all k ≥ 1 that

E [f (Z2, . . . , Zn) |Z1 = k] = E

[
f

(
k∑
l=1

(
Zl1, . . . , Z

l
n−1

))]
(19.11)

where
{
Zln
}∞
n=0

for 1 ≤ l ≤ k are i.i.d. Galton-Watson Branching processes

such that
{
Zln
}∞
n=0

d= {Zn}∞.n=0 for each l.
Suggestion: it suffices to prove Eq. (19.11) for f of the form,

f (k2, . . . , kn) =
n∏
j=2

λkii . (19.12)

19.3 Kakutani’s Theorem

For broad generalizations of the results in this section, see [24, Chapter IV.]
or [25].

Proposition 19.7. Suppose that µ and ν are σ – finite positive measures on
(X,M), ν = νa + νs is the Lebesgue decomposition of ν relative to µ, and
ρ : X → [0,∞) is a measurable function such that dνa = ρdµ so that

dν = dνa + dνs = ρdµ+ dνs.

If g : X → [0,∞) is another measurable function such that gdµ ≤ dν, (i.e.∫
B
gdµ ≤ ν (B) for all B ∈M), then g ≤ ρ, µ – a.e.

Proof. Let A ∈ M be chosen so that µ (Ac) = 0 and νs (A) = 0. Then, for
all B ∈M,∫

B

gdµ =
∫
B∩A

gdµ ≤ ν (B ∩A) =
∫
B∩A

ρdµ =
∫
B

ρdµ.

So by the comparison Lemma 7.24, g ≤ ρ.

Example 19.8. This example generalizes Example 18.9. Suppose
(Ω,B, {Bn}∞n=0 , P ) is a filtered probability space and Q is any another
probability measure on (Ω,B) . By the Raydon-Nikodym Theorem 15.8, for
each n ∈ N̄ we may write

dQ|Bn = XndP |Bn + dRn (19.13)

where Rn is a measure on (Ω,Bn) which is singular relative to P |Bn and 0 ≤
Xn ∈ L1 (Ω,Bn, P ) . In this case the most we can say in general is that X :=
{Xn}n≤∞ is a positive supermartingale. To verify this assertion, for B ∈ Bn
and n ≤ m ≤ ∞, we have

Q (B) = E [Xm : B] +Rm (B) ≥ E [Xm : B] = E [EBn (Xm) : B]

from which it follows that EBn (Xm) · dP |Bn ≤ dQ|Bn . So according to Propo-
sition 19.7,

EBn (Xm) ≤ Xn (P – a.s.) for all n ≤ m ≤ ∞. (19.14)

Proposition 19.9. Keeping the assumptions and notation used in Example
19.8, then limn→∞Xn = X∞ a.s. and in particular the Lebesgue decomposi-
tion of Q|B∞ relative to P |B∞ may be written as

dQ|B∞ =
(

lim
n→∞

Xn

)
· dP |B∞ + dR∞. (19.15)

Proof. By Example 19.8, we know that {Xn}n≤∞ is a positive supermartin-
gale and by letting m =∞ in Eq. (19.14), we know

EBnX∞ ≤ Xn a.s. (19.16)
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19.3 Kakutani’s Theorem 297

By the supermartingale convergence Corollary 18.63 or by the submartingale
convergence Corollary 18.54 applied to −Xn we know that Y := limn→∞Xn

exists almost surely. To finish the proof it suffices to show that Y = X∞ a.s.
where X∞ is defined so that Eq. (19.13) holds for n =∞.

From the regular martingale convergence Theorem 18.65 we also know that
limn→∞ EBnX∞ = X∞ a.s. as well. So passing to the limit in Eq. (19.16) implies
X∞ ≤ Y a.s. To prove the reverse inequality, Y ≤ X∞ a.s., let B ∈ Bm and
n ≥ m. Then

Q (B) = E [Xn : B] +Rn (B) ≥ E [Xn : B]

and so by Fatou’s lemma,

E [Y : B] = E
[
lim inf
n→∞

Xn : B
]
≤ lim inf

n→∞
E [Xn : B] ≤ Q (B) . (19.17)

Since m ∈ N was arbitrary, we have proved E [Y : B] ≤ Q (B) for all B in
the algebra, A := ∪m∈NBm. As a consequence of the regularity Theorem 5.44
or of the monotone class Lemma 5.52, or of Theorem3 5.27, it follows that
E [Y : B] ≤ Q (B) for all B ∈ σ (A) = B∞. An application of Proposition 19.7
then implies Y ≤ X∞ a.s.

Theorem 19.10. (Ω,B, {Bn}∞n=0 , P ) be a filtered probability space and Q be
a probability measure on (Ω,B) such that Q|Bn � P |Bn for all n ∈ N. Let
Mn := dQ|Bn

dP |Bn
be a version of the Raydon-Nikodym derivative of Q|Bn relative to

P |Bn , see Theorem 15.8. Recall from Example 18.9 that {Mn}∞n=1 is a positive
martingale and let M∞ = limn→∞Mn which exists a.s. Then the following are
equivalent;

1. Q|B∞ � P |B∞,
2. EPM∞ = 1,
3. Mn →M∞ in L1 (P ) , and
4. {Mn}∞n=1 is uniformly integrable.

Proof. Recall from Proposition 19.9 (where Xn is now Mn) that in general,

dQ|B∞ = M∞ · dP |B∞ + dR∞ (19.18)

where R∞ is singular relative to P |B∞ . Therefore, Q|B∞ � P |B∞ iff R∞ = 0
which happens iff R∞ (Ω) = 0, i.e. iff
3 This theorem implies that for B ∈ B,

E [X0 : B] = inf {E [X0 : A] : A ∈ Aσ} and

Q (B) = inf {Q (A) : A ∈ Aσ}

and since, by MCT, E [X0 : A] ≤ Q (A) for all A ∈ Aσ it follows that Eq. (19.17)
holds for all B ∈ B.

1 = Q (Ω) =
∫
Ω

M∞ · dP |B∞ = EPM∞.

This proves the equivalence of items 1. and 2. If item 2. holds, then Mn →M∞
by the DCT, Corollary 12.9, with gn = fn = Mn and g = f = M∞ and so item
3. holds. The implication of 3. =⇒ 2. is easy and the equivalence of items 3.
and 4. follows from Theorem 12.44 for simply see Theorem 18.65.

Remark 19.11. Recall from Exercise 10.7, that if 0 < an ≤ 1,
∏∞
n=1 an > 0 iff∑∞

n=1 (1− an) <∞. Indeed,
∏∞
n=1 an > 0 iff

−∞ < ln

( ∞∏
n=1

an

)
=
∞∑
n=1

ln an =
∞∑
n=1

ln (1− (1− an))

and
∑∞
n=1 ln (1− (1− an)) > −∞ iff

∑∞
n=1 (1− an) < ∞. Recall that

ln (1− (1− an)) ∼= (1− an) for an near 1.

Theorem 19.12 (Kakutani’s Theorem). Let {Xn}∞n=1 be independent non-
negative random variables with EXn = 1 for all n. Further, let M0 = 1 and
Mn := X1 · X2 · · · · · Xn – a martingale relative to the filtration, Bn :=
σ (X1, . . . , Xn) as was shown in Example 18.11. According to Corollary 18.63,
M∞ := limn→∞Mn exists a.s. and EM∞ ≤ 1. The following statements are
equivalent;

1. EM∞ = 1,
2. Mn →M∞ in L1 (Ω,B, P ) ,
3. {Mn}∞n=1 is uniformly integrable,
4.
∏∞
n=1 E

(√
Xn

)
> 0,

5.
∑∞
n=1

(
1− E

(√
Xn

))
<∞.

Moreover, if any one, and hence all of the above statements, fails to hold,
then P (M∞ = 0) = 1.

Proof. If an := E
(√
Xn

)
, then 0 < an and a2

n ≤ EXn = 1 with equality iff
Xn = 1 a.s. So Remark 19.11 gives the equivalence of items 4. and 5.

The equivalence of items 1., 2. and 3. follow by the same techniques used in
the proof of Theorem 19.10 above. We will now complete the proof by showing
4. =⇒ 3. and not(4.) =⇒ P (M∞ = 0) = 1 which clearly implies not(1.) .
For both pars of the argument, let N0 = 1 and Nn be the martingale (again see
Example 18.11) defined by

Nn :=
n∏
k=1

√
Xk

ak
=
√
Mn∏n

k=1 ak
. (19.19)
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Further observe that, in all cases, N∞ = limn→∞Nn exists in [0,∞) µ – a.s.,
see Corollary 18.54 or Corollary 18.63.

4. =⇒ 3. Since

N2
n =

n∏
k=1

Xk

a2
k

=
Mn

(
∏n
k=1 ak)2 ,

E
[
N2
n

]
=

EMn

(
∏n
k=1 ak)2 =

1

(
∏n
k=1 ak)2 ≤

1

(
∏∞
k=1 ak)2 <∞,

and hence {Nn}∞n=1 is bounded in L2. Therefore, using

Mn =

(
n∏
k=1

ak

)2

N2
n ≤ N2

n (19.20)

and Doob’s inequality in Corollary 18.47, we find

E
[
sup
n
Mn

]
= E

[
sup
n
N2
n

]
≤ 4 sup

n
E
[
N2
n

]
<∞. (19.21)

Equation Eq. (19.21) certainly implies {Mn}∞n=1 is uniformly integrable, see
Proposition 12.42.

Not(4.) =⇒ P (M∞ = 0) = 1. If

∞∏
n=1

E
(√

Xn

)
= lim
n→∞

n∏
k=1

ak = 0,

we may pass to the limit in Eq. (19.20) to find

M∞ = lim
n→∞

Mn = lim
n→∞

( n∏
k=1

ak

)2

·N2
n

 = 0 ·
(

lim
n→∞

Nn

)2

= 0 a.s..

Lemma 19.13. Given two probability measures, µ and ν on a measurable space,

(Ω,B) , there exists a a positive measure ρ such that dρ :=
√

dµ
dλ ·

dν
dλdλ, where

λ is any other σ – finite measure on (Ω,B) such that µ � λ and ν � λ. We
will write

√
dµ · dν for dρ in the future.

Proof. The main point is to show that ρ is well defined. So suppose λ1 and
λ2 are two σ – finite measures such that µ� λi and ν � λi for i = 1, 2. Further
let λ := λ1 + λ2 so that λi � λ for i = 1, 2. Observe that

dλ1 =
dλ1

dλ
dλ,

dµ =
dµ

dλ1
dλ1 =

dµ

dλ1

dλ1

dλ
dλ, and

dν =
dν

dλ1
dλ1 =

dν

dλ1

dλ1

dλ
dλ.

So √
dµ

dλ
· dν
dλ
dλ =

√
dµ

dλ1

dλ1

dλ
· dν
dλ1

dλ1

dλ
dλ

=
√

dµ

dλ1
· dν
dλ1

dλ1

dλ
dλ =

√
dµ

dλ1
· dν
dλ1

dλ1

and by symmetry, √
dµ

dλ
· dν
dλ
dλ =

√
dµ

dλ2
· dν
dλ2

dλ2.

This shows √
dµ

dλ2
· dν
dλ2

dλ2 =
√

dµ

dλ1
· dν
dλ1

dλ1

and hence dρ =
√
dµ · dν is well defined.

Definition 19.14. Two probability measures, µ and ν on a measure space,
(Ω,B) are said to be equivalent (written µ ∼ ν) if µ � ν and ν � µ, i.e.
if µ and ν are absolutely continuous relative to one another. The Hellinger
integral of µ and ν is defined as

H (µ, ν) :=
∫
Ω

√
dµ · dν =

∫
Ω

√
dµ

dλ
· dν
dλ
dλ (19.22)

where λ is any measure (for example λ = 1
2 (µ+ ν) would work) on (Ω,B) such

that there exists, dµdλ and dν
dλ in L1 (Ω,B, λ) such that dµ = dµ

dλdλ and dν = dν
dλdλ.

Lemma 19.13 guarantees that H (µ, ν) is well defined.

Proposition 19.15. The Hellinger integral, H (µ, ν) , of two probability mea-
sures, µ and ν, is well defined. Moreover H (µ, ν) satisfies;

1. 0 ≤ H (µ, ν) ≤ 1,
2. H (µ, ν) = 1 iff µ = ν,
3. H (µ, ν) = 0 iff µ ⊥ ν, and
4. If µ ∼ ν or more generally if ν � µ, then H (µ, ν) > 0.
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Furthermore4,

H (µ, ν) = inf

{
n∑
i=1

√
µ (Ai) ν (Ai) : Ω =

n∑
i=1

Ai and n ∈ N

}
. (19.23)

Proof. Items 1. and 2. are both an easy consequence of the Schwarz in-
equality and its converse. For item 3., if H (µ, ν) = 0, then dµ

dλ ·
dv
dλ = 0, λ – a.e..

Therefore, if we let

A :=
{
dµ

dλ
6= 0
}
,

then dµ
dλ = 1A dµdλ – λ –a.e. and dv

dλ1Ac = dv
dλ – λ – a.e. Hence it follows that

µ (Ac) = 0 and ν (A) = 0 and hence µ ⊥ ν.
If ν ∼ µ and in particular, v � µ, then

H (µ, ν) =
∫
Ω

√
dν

dµ

dµ

dµ
dµ =

∫
Ω

√
dν

dµ
dµ.

For sake of contradiction, if H (µ, ν) = 0 then
√

dν
dµ = 0 and hence dν

dµ = 0, µ –
a.e. The later would imply ν = 0 which is impossible. Therefore, H (µ, ν) > 0
if ν � µ. The last statement is left to the reader as Exercise 19.6.

Exercise 19.5. Find a counter example to the statement that H (µ, ν) > 0
implies ν � µ.

Exercise 19.6. Prove Eq. (19.23).

Corollary 19.16 (Kakutani [27]). Let Ω = RN, Yn (ω) = ωn for all ω ∈ Ω
and n ∈ N, and B := B∞ = σ (Yn : n ∈ N) be the product σ – algebra on Ω.
Further, let µ := ⊗∞n=1µn and ν := ⊗∞n=1νn be product measures on (Ω,B∞)
associated to two sequences of probability measures, {µn}∞n=1 and {νn}∞n=1 on
(R,BR) , see Theorem 10.58 (take µ := P ◦(Y1, Y2, . . . )

−1). Let us further assume
that νn � µn for all n so that

0 < H (µn, νn) =
∫

R

√
dνn
dµm

dµn ≤ 1.

Then precisely one of the two cases below hold;

1.
∑∞
n=1 (1−H (µn, νn)) < ∞ which happens iff

∏∞
n=1H (µn, νn) > 0 which

happens iff ν � µ
or

4 This statement and its proof may be safely omitted.

2.
∑∞
n=1 (1−H (µn, νn)) = ∞ which happens iff

∏∞
n=1H (µn, νn) = 0 which

happens iff µ ⊥ ν.

In case 1. where ν � µ we have

dν

dµ
=
∞∏
n=1

dνn
dµn

(Yn) µ-a.s. (19.24)

and in all cases we have

H (µ, ν) =
∞∏
n=1

H (µn, νn) .

Proof. Let P = µ, Q = ν, Bn := σ (Y1, . . . , Yn) , Xn := dνn
dµn

(Yn) , and

Mn := X1 . . . Xn =
dν1

dµ1
(Y1) . . .

dνn
dµn

(Yn) .

If f : Rn → R is a bounded measurable function, then

Eν (f (Y1, . . . , Yn)) =
∫

Rn
f (y1, . . . , yn) dν1 (y1) . . . dνn (yn)

=
∫

Rn
f (y1, . . . , yn)

dν1

dµ1
(y1) . . .

dνn
dµn

(yn) dµ1 (y1) . . . dµn (yn)

= Eµ
[
f (Y1, . . . , Yn)

dν1

dµ1
(Y1) . . .

dνn
dµn

(Yn)
]

= Eµ [f (Y1, . . . , Yn)Mn]

from which it follows that

dν|Bn = Mndµ|Bn .

Hence by Theorem 19.10, M∞ := limn→∞Mn exists a.s. and the Lebesgue
decomposition of ν is given by

dν = M∞dµ+ dR∞

where R∞ ⊥ µ. Moreover ν � µ iff R∞ = 0 which happens iff EM∞ = 1 and
ν ⊥ µ iff R∞ = ν which happens iff M∞ = 0. From Theorem 19.12,

EµM∞ = 1 iff 0 <
∞∏
n=1

Eµ
(√

Xn

)
=
∞∏
n=1

∫
R

√
dνn
dµn

dµn =
∞∏
n=1

H (µn, νn)

and in this case
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dν = M∞dµ =

( ∞∏
k=1

Xk

)
· dµ =

( ∞∏
n=1

dνn
dµn

(Yn)

)
· dµ.

On the other hand, if

∞∏
n=1

Eµ
(√

Xn

)
=
∞∏
n=1

H (µn, νn) = 0,

Theorem 19.12 implies M∞ = 0, µ – a.s. in which case Theorem 19.10 implies
ν = R∞ and so ν ⊥ µ.

(The rest of the argument may be safely omitted.) For the last assertion,
if
∏∞
n=1H (µn, νn) = 0 then µ ⊥ ν and hence H (µ, ν) = 0. Conversely if∏∞

n=1H (µn, νn) > 0, then Mn →M∞ in L1 (µ) and therefore

Eµ
[∣∣∣√Mn −

√
M∞

∣∣∣2] ≤ Eµ
[∣∣∣√Mn −

√
M∞

∣∣∣ · ∣∣∣√Mn +
√
M∞

∣∣∣]
= Eµ [|Mn −M∞|]→ 0 as n→∞.

Since dν = M∞dµ in this case, it follows that

H (µ, ν) = Eµ
[√

M∞

]
= lim
n→∞

Eµ
[√

Mn

]
= lim
n→∞

n∏
k=1

H (µk, νk) =
∞∏
k=1

H (µk, νk) .

Example 19.17. Suppose that νn = δ1 for all n and µn =
(
1− p2

n

)
δ0 + p2

nδ1
with pn ∈ (0, 1) . Then νn � µn with

dνn
dµn

= 1{1}p−2
n

and
H (µn, νn) =

∫
R

√
1{1}p−2

n dµn =
√
p−2
n · p2

n = pn.

So in this case ν � µ iff
∑∞
n=1 (1− pn) <∞. Observe that µ is never absolutely

continuous relative to ν.

On the other hand; if we further assume in Corollary 19.16 that µn ∼ νn,
then either; µ ∼ ν or µ ⊥ ν depending on whether

∏∞
n=1H (µn, νn) > 0 or∏∞

n=1H (µn, νn) = 0 respectively.
In the next group of problems you will be given probability measures, µn

and νn on R and you will be asked to decide if µ := ⊗∞n=1µn and ν := ⊗∞n=1νn
are equivalent. For the solutions of these problems you will want to make use
of the following Gaussian integral formula;

∫
R

exp
(
−a

2
x2 + bx

)
dx =

∫
R

exp

(
−a

2

(
x− b

a

)2

+
b2

2a

)
dx

= e
b2
2a

∫
R

exp
(
−a

2
x2
)
dx =

√
2π
a
e
b2
2a

which is valid for all a > 0 and b ∈ R.

Exercise 19.7 (A Discrete Cameron-Martin Theorem). Suppose t > 0,
{an} ⊂ R, dµn (x) = 1√

2πt
e−x

2/2tdx and dνn (x) = 1√
2πt

e−(x+an)2/2tdx . Show
µ ∼ ν iff

∑∞
k=1 a

2
k <∞.

Exercise 19.8. Suppose s, t > 0, {an} ⊂ R, dµn (x) = 1√
2πt

e−x
2/2tdx and

dνn (x) = 1√
2πs

e−(x+an)2/2sdx. Show µ ⊥ ν if s 6= t.

Exercise 19.9. Suppose {tn} ⊂ (0,∞) , dµn (x) = 1√
2π
e−x

2/2dx and dνn (x) =
1√

2πtn
e−x

2/2tndx. If
∑∞
n=1 (tn − 1)2

<∞ then µ ∼ ν.
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Part IV

(Weak) Convergence of Random Sums





20

Random Sums

As usual let (Ω,B, P ) be a probability space. The general theme of this
chapter is to consider arrays of random variables, {Xn

k }
n
k=1 , for each n ∈ N.

We are going to look for conditions under which limn→∞
∑n
k=1X

n
k exists almost

surely or in Lp for some 0 ≤ p <∞. Typically we will start with a sequence of
random variables, {Xk}∞k=1 and consider the convergence of

Sn =
X1 + · · ·+Xn

bn
− an

for appropriate choices of sequence of numbers, {an} and {bn} . This fits into
our general scheme by taking Xn

k = Xn
k /bn − an/n.

20.1 Weak Laws of Large Numbers

Theorem 20.1 (An L2 – Weak Law of Large Numbers). Let {Xn}∞n=1 be
a sequence of uncorrelated square integrable random variables, µn = EXn and
σ2
n = Var (Xn) . If there exists an increasing positive sequence, {an} and µ ∈ R

such that

lim
n→∞

1
an

n∑
j=1

µj = µ and lim
n→∞

1
a2
n

n∑
j=1

σ2
j = 0,

then Sn
an
→ µ in L2 (P ) (and hence also in probability).

Exercise 20.1. Prove Theorem 20.1.

Example 20.2. Suppose that {Xk}∞k=1 ⊂ L2 (P ) are uncorrelated identically dis-
tributed random variables. Then

Sn
n

L2(P )→ µ = EX1 as n→∞.

To see this, simply apply Theorem 20.1 with an = n. More generally if bn ↑ ∞
such that limn→∞

(
n/b2n

)
= 0, then

Var
(
Sn
bn

)
=

1
b2n
· nVar (X1)→ 0 as n→∞

and therefore
(Sn − nµ) /bn → 0 in L2 (P ) .

Note well: since L2 (P ) convergence implies Lp (P ) – convergence for
0 ≤ p ≤ 2, where by L0 (P ) – convergence we mean convergence in prob-
ability. The remainder of this chapter is mostly devoted to proving a.s. conver-
gence for the quantities in Theorem 12.25 and Proposition 20.10 under various
assumptions. These results will be described in the next section.

Theorem 20.3 (Weak Law of Large Numbers). Suppose that {Xn}∞n=1 is
a sequence of independent random variables. Let and

Sn :=
n∑
j=1

Xj and an :=
n∑
k=1

E (Xk : |Xk| ≤ n) .

If

lim
n→∞

n∑
k=1

P (|Xk| > n) = 0 and (20.1)

lim
n→∞

1
n2

n∑
k=1

E
(
X2
k : |Xk| ≤ n

)
= 0, (20.2)

then
Sn − an

n

P→ 0.

Proof. A key ingredient in this proof and proofs of other versions of the
law of large numbers is to introduce truncations of the {Xk} . In this case we
consider

S′n :=
n∑
k=1

Xk1|Xk|≤n.

Since {Sn 6= Sn′} ⊂ ∪nk=1 {|Xk| > n} ,

P

(∣∣∣∣Sn − ann
− S′n − an

n

∣∣∣∣ > ε

)
= P

(∣∣∣∣Sn − S′nn

∣∣∣∣ > ε

)
≤ P (Sn 6= Sn′) ≤

n∑
k=1

P (|Xk| > n)→ 0 as n→∞.
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Hence it suffices to show S′n−an
n

P→ 0 as n→∞ and for this it suffices to show,
S′n−an
n

L2(P )→ 0 as n→∞.
Observe that ES′n = an and therefore,

E

([
S′n − an

n

]2
)

=
1
n2

Var (S′n) =
1
n2

n∑
k=1

Var
(
Xk1|Xk|≤n

)
≤ 1
n2

n∑
k=1

E
(
X2
k1|Xk|≤n

)
→ 0 as n→∞,

wherein we have used Var (Y ) = EY 2 − (EY )2 ≤ EY 2 in the last inequality.
We are now going to use this result to prove Feller’s weak law of large

numbers which will be valid with an assumption which is weaker than first
moments existing.

Remark 20.4. If X ∈ L1 (P ) , Chebyschev’s inequality along with the dominated
convergence theorem implies

τ (x) := xP (|X| ≥ x) ≤ E [|X| : |X| ≥ x]→ 0 as x→∞.

If X is a random variable such that τ (x) = xP (|X| ≥ x) → 0 as x → ∞, we
say that X is in “weak L1.”

Exercise 20.2. Let Ω = (0, 1], B = B(0,1] be the Borel σ – algebra, P = m be
Lebesgue measure on (Ω,B) , and X (y) := (y |ln y|)−1 · 1y≤1/2 for y ∈ Ω. Show
that X /∈ L1 (P ) yet limx→∞ xP (|X| ≥ x) = 0.

Lemma 20.5. Let X be a random variable such that τ (x) := xP (|X| ≥ x)→ 0
as x→∞, then

lim
n→∞

1
n

E
[
|X|2 : |X| ≤ n

]
= 0. (20.3)

Proof. To prove this we observe that

E
[
|X|2 : |X| ≤ n

]
= E

[
2
∫

10≤x≤|X|≤nxdx

]
= 2

∫
P (0 ≤ x ≤ |X| ≤ n)xdx

≤ 2
∫ n

0

xP (|X| ≥ x) dx = 2
∫ n

0

τ (x) dx

so that
1
n

E
[
|X|2 : |X| ≤ n

]
=

2
n

∫ n

0

τ (x) dx.

It is now easy to check (we leave it to the reader) that

lim
n→∞

1
n

∫ n

0

τ (x) dx = 0.

Corollary 20.6 (Feller’s WLLN). If {Xn}∞n=1 are i.i.d. and τ (x) :=
xP (|X1| > x) → 0 as x → ∞, then the hypothesis of Theorem 20.3 are sat-
isfied so that

Sn
n
− E (X1 : |X1| ≤ n) P→ 0.

Proof. Since
n∑
k=1

P (|Xk| > n) = nP (|X1| > n) = τ (n)→ 0 as n→∞,

Eq. (20.1) is satisfied. Equation (20.2) follows from Lemma 20.5 and the identity,

1
n2

n∑
k=1

E
(
X2
k : |Xk| ≤ n

)
=

1
n

E
[
|X1|2 : |X1| ≤ n

]
.

As a direct corollary of Feller’s WLLN and Remark 20.4 we get Khintchin’s
weak law of large numbers.

Corollary 20.7 (Khintchin’s WLLN). If {Xn}∞n=1 are i.i.d. L1 (P ) – ran-

dom variables, then 1
nSn

P→ µ = EX1. This convergence holds in L1 (P ) as well
since

{
1
nSn

}∞
n=1

is uniformly integrable under these hypothesis.

This result is also clearly a consequence of Komogorov’s strong law of large
numbers.

20.1.1 A WLLN Example

Theorem 20.8 (Shannon’s Theorem). Let {Xi}∞i=1 be a sequence of i.i.d.
random variables with values in {1, 2, . . . , r} ⊂ N, p (k) := P (Xi = k) > 0 for
1 ≤ k ≤ r, and

H (p) := −E [ln p (X1)] = −
r∑

k=1

p (k) ln p (k)

be the entropy of p = {pk}rk=1 . If we define πn (ω) := p (X1 (ω)) . . . p (Xn (ω)) to
be the “probability of the realization” (X1 (ω) , . . . , Xn (ω)) , then for all ε > 0,

P
(
e−n(H(p)+ε) ≤ πn ≤ e−n(H(p)−ε)

)
→ 1 as n→∞.

Thus the probability, πn, that the random sample {X1, . . . , Xn} should occur
is approximately e−nH(p) with high probability. The number H (p) is called the
entropy of the distribution, {p (k)}rk=1 .
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Proof. Since {ln p (Xi)}∞i=1 are i.i.d. it follows by the Weal law of large
numbers that

− 1
n

lnπn = − 1
n

n∑
i=1

ln p (Xi)
P→ −E [ln p (X1)] = −

r∑
k=1

p (k) ln p (k) =: H (p) ,

i.e. for every ε > 0,

lim
n→∞

P

(∣∣∣∣H (p)− 1
n

lnπn

∣∣∣∣ > ε

)
= 0.

Since{∣∣∣∣H (p) +
1
n

lnπn

∣∣∣∣ > ε

}
=
{
H (p) +

1
n

lnπn > ε

}
∪
{
H (p) +

1
n

lnπn < −ε
}

=
{

1
n

lnπn > −H (p) + ε

}
∪
{

1
n

lnπn < −H (p)− ε
}

=
{
πn > en(−H(p)+ε)

}
∪
{
πn < en(−H(p)−ε)

}
it follows that{∣∣∣∣H (p)− 1

n
lnπn

∣∣∣∣ > ε

}c
=
{
πn ≤ en(−H(p)+ε)

}
∩
{
πn ≥ en(−H(p)−ε)

}
=
{
e−n(H(p)+ε) ≤ πn ≤ e−n(H(p)−ε)

}
,

and therefore

P
(
e−n(H(p)+ε) ≤ πn ≤ e−n(H(p)−ε)

)
→ 1 as n→∞.

For our next example, let {Xn}∞n=1 be i.i.d. random variables with com-
mon distribution function, F (x) := P (Xn ≤ x) . For x ∈ R let Fn (x) be the
empirical distribution function defined by,

Fn (x) :=
1
n

n∑
j=1

1Xj≤x =

 1
n

n∑
j=1

δXj

 ((−∞, x]) .

Since E1Xj≤x = F (x) and
{

1Xj≤x
}∞
j=1

are Bernoulli random variables, the

weak law of large numbers implies Fn (x) P→ F (x) as n → ∞. As usual, for
p ∈ (0, 1) let

F← (p) := inf {x : F (x) ≥ p}

and recall that F← (p) ≤ x iff F (x) ≥ p. Let us notice that

F←n (p) = inf {x : Fn (x) ≥ p} = inf

x :
n∑
j=1

1Xj≤x ≥ np


= inf {x : # {j ≤ n : Xj ≤ x} ≥ np} .

Recall from Definition 11.10 that the order statistic of (X1, . . . , Xn) is the
finite sequence,

(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)
, where

(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)
denotes

(X1, . . . , Xn) arranged in increasing order with possible repetitions. It follows
from the formula in Definition 11.10 that X(n)

k are all random variables for
k ≤ n but it will be useful to give another proof. Indeed, X(n)

k ≤ x iff
# {j ≤ n : Xj ≤ x} ≥ k iff

∑n
j=1 1Xj≤x ≥ k, i.e.

{
X

(n)
k ≤ x

}
=


n∑
j=1

1Xj≤x ≥ k

 ∈ B.
Moreover, if we let dxe = min {n ∈ Z : n ≥ x} , the reader may easily check that
F←n (p) = X

(n)
dnpe.

Proposition 20.9. Keeping the notation above. Suppose that p ∈ (0, 1) is a
point where

F (F← (p)− ε) < p < F (F← (p) + ε) for all ε > 0

then X
(n)
dnpe = F←n (p) P→ F← (p) as n → ∞. Thus we can recover, with high

probability, the pth – quantile of the distribution F by observing {Xi}ni=1 .

Proof. Let ε > 0. Then

{F←n (p)− F← (p) > ε}c = {F←n (p) ≤ ε+ F← (p)} = {F←n (p) ≤ ε+ F← (p)}
= {Fn (ε+ F← (p)) ≥ p}

so that

{F←n (p)− F← (p) > ε} = {Fn (F← (p) + ε) < p}
= {Fn (ε+ F← (p))− F (ε+ F← (p)) < p− F (F← (p) + ε)} .

Letting δε := F (F← (p) + ε)− p > 0, we have, as n→∞, that

P ({F←n (p)− F← (p) > ε}) = P (Fn (ε+ F← (p))− F (ε+ F← (p)) < −δε)→ 0.

Similarly, let δε := p− F (F← (p)− ε) > 0 and observe that

{F← (p)− F←n (p) ≥ ε} = {F←n (p) ≤ F← (p)− ε} = {Fn (F← (p)− ε) ≥ p}
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and hence,

P (F← (p)− F←n (p) ≥ ε)
= P (Fn (F← (p)− ε)− F (F← (p)− ε) ≥ p− F (F← (p)− ε))
= P (Fn (F← (p)− ε)− F (F← (p)− ε) ≥ δε)→ 0 as n→∞.

Thus we have shown that X(n)
dnpe

P→ F← (p) as n→∞.

20.2 Kolmogorov’s Convergence Criteria

Proposition 20.10 (L2 - Convergence of Random Sums). Suppose that
{Yk}∞k=1 ⊂ L2 (P ) are uncorrelated. If

∑∞
k=1 Var (Yk) <∞ then

∞∑
k=1

(Yk − µk) converges in L2 (P ) .

where µk := EYk.

Proof. Letting Sn :=
∑n
k=1 (Yk − µk) , it suffices by the completeness of

L2 (P ) (see Theorem 12.25) to show ‖Sn − Sm‖2 → 0 as m,n→∞. Supposing
n > m, we have

‖Sn − Sm‖22 = E

(
n∑

k=m+1

(Yk − µk)

)2

=
n∑

k=m+1

Var (Yk) =
n∑

k=m+1

σ2
k → 0 as m,n→∞.

Theorem 20.11 (Kolmogorov’s Convergence Criteria). Suppose
that {Yn}∞n=1 are independent square integrable random variables. If∑∞
j=1 Var (Yj) < ∞, then

∑∞
j=1 (Yj − EYj) converges a.s. In particular if∑∞

j=1 Var (Yj) < ∞ and
∑∞
j=1 EYj is convergent, then

∑∞
j=1 Yj converges a.s.

and in L2 (P ) .

Proof. This is a special case of Theorem 18.67. Indeed, let Sn :=∑n
j=1 (Yj − EYj) with S0 = 0. Then {Sn}∞n=0 is a martingale relative to the

filtration, Bn = σ (S0, . . . Sn) . By assumption we have

ES2
n =

n∑
j=1

Var (Yj) ≤
∞∑
j=1

Var (Yj) <∞

so that {Sn}∞n=0 is bounded in L2 (P ) . Therefore by Theorem 18.67,∑∞
j=1 (Yj − EYj) = limn→∞ Sn exists a.s. and in L2 (P ) .
Another way to prove this is to appeal Proposition 20.10 above and Lévy’s

Theorem 20.46 below. As second method is to make use of Kolmogorov’s in-
equality and we will give this proof below.

Example 20.12 (Brownian Motion). Let {Nn}∞n=1 be i.i.d. standard normal ran-
dom variable, i.e.

P (Nn ∈ A) =
∫
A

1√
2π
e−x

2/2dx for all A ∈ BR.

Let {ωn}∞n=1 ⊂ R, {an}∞n=1 ⊂ R, and t ∈ R, then

∞∑
n=1

anNn sinωnt converges a.s.

provided
∑∞
n=1 a

2
n <∞. This is a simple consequence of Kolmogorov’s conver-

gence criteria, Theorem 20.11, and the facts that E [anNn sinωnt] = 0 and

Var (anNn sinωnt) = a2
n sin2 ωnt ≤ a2

n.

As a special case, if we take ωn = (2n− 1) π2 and an =
√

2
π(2n−1) , then it follows

that

Bt :=
2
√

2
π

∑
k=1,3,5,...

Nk
k

sin
(
k
π

2
t
)

(20.4)

is a.s. convergent for all t ∈ R. The factor 2
√

2
πk has been determined by requiring,

∫ 1

0

[
d

dt

2
√

2
πk

sin (kπt)

]2

dt = 1

as seen by,∫ 1

0

[
d

dt
sin
(
kπ

2
t

)]2

dt =
k2π2

22

∫ 1

0

[
cos
(
kπ

2
t

)]2

dt

=
k2π2

22

2
kπ

[
kπ

4
t+

1
4

sin kπt
]1

0

=
k2π2

23
.

Fact: Wiener in 1923 showed the series in Eq. (20.4) is in fact almost surely
uniformly convergent. Given this, the process, t → Bt is almost surely contin-
uous. The process {Bt : 0 ≤ t ≤ 1} is Brownian Motion.

Page: 306 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31
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Kolmogorov’s convergence criteria becomes a powerful tool when combined
with the following real variable lemma.

Lemma 20.13 (Kronecker’s Lemma). Suppose that {xk} ⊂ R and {ak} ⊂
(0,∞) are sequences such that ak ↑ ∞ and

∑∞
k=1

xk
ak

is convergent in R. Then

lim
n→∞

1
an

n∑
k=1

xk = 0.

Proof. Before going to the proof, let us warm-up by proving the following
continuous version of the lemma. Let a (s) ∈ (0,∞) and x (s) ∈ R be continuous
functions such that a (s) ↑ ∞ as s→∞ and

∫∞
1

x(s)
a(s)ds exists. We are going to

show
lim
n→∞

1
a (n)

∫ n

1

x (s) ds = 0.

Let X (s) :=
∫ s

0
x (u) du and

r (s) :=
∫ ∞
s

X ′ (u)
a (u)

du =
∫ ∞
s

x (u)
a (u)

du.

Then by assumption, r (s)→ 0 as s→ 0 and X ′ (s) = −a (s) r′ (s) . Integrating
this equation shows

X (s)−X (s0) = −
∫ s

s0

a (u) r′ (u) du = −a (u) r (u) |su=s0 +
∫ s

s0

r (u) a′ (u) du.

Dividing this equation by a (s) and then letting s→∞ gives

lim sup
s→∞

|X (s)|
a (s)

= lim sup
s→∞

[
a (s0) r (s0)− a (s) r (s)

a (s)
+

1
a (s)

∫ s

s0

r (u) a′ (u) du
]

≤ lim sup
s→∞

[
−r (s) +

1
a (s)

∫ s

s0

|r (u)| a′ (u) du
]

≤ lim sup
s→∞

[
a (s)− a (s0)

a (s)
sup
u≥s0

|r (u)|
]

= sup
u≥s0

|r (u)| → 0 as s0 →∞.

With this as warm-up, we go to the discrete case.
Let

Sk :=
k∑
j=1

xj and rk :=
∞∑
j=k

xj
aj
,

so that rk → 0 as k →∞ by assumption. Since xk = ak (rk − rk+1) , we find

Sn
an

=
1
an

n∑
k=1

ak (rk − rk+1) =
1
an

[
n∑
k=1

akrk −
n+1∑
k=2

ak−1rk

]

=
1
an

[
a1r1 − anrn+1 +

n∑
k=2

(ak − ak−1) rk

]
. (summation by parts)

Using the fact that ak − ak−1 ≥ 0 for all k ≥ 2, and

lim
n→∞

1
an

m∑
k=2

(ak − ak−1) |rk| = 0

for any m ∈ N; we may conclude

lim sup
n→∞

∣∣∣∣Snan
∣∣∣∣ ≤ lim sup

n→∞

1
an

[
n∑
k=2

(ak − ak−1) |rk|

]

= lim sup
n→∞

1
an

[
n∑

k=m

(ak − ak−1) |rk|

]

≤ sup
k≥m
|rk| · lim sup

n→∞

1
an

[
n∑

k=m

(ak − ak−1)

]

= sup
k≥m
|rk| · lim sup

n→∞

1
an

[an − am−1] = sup
k≥m
|rk| .

This completes the proof since supk≥m |rk| → 0 as m→∞.
(See Kallenberg for a better proof.)

Corollary 20.14. Let {Xn} be a sequence of independent square integrable ran-
dom variables and bn be a sequence such that bn ↑ ∞. If

∞∑
k=1

Var (Xk)
b2k

<∞

then
Sn − ESn

bn
→ 0 a.s. and in L2 (P ) .

Proof. By Kolmogorov’s convergence criteria, Theorem 20.11,

∞∑
k=1

Xk − EXk

bk
is convergent a.s. and in L2 (P ) .

Therefore an application of Kronecker’s Lemma 20.13 implies
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0 = lim
n→∞

1
bn

n∑
k=1

(Xk − EXk) = lim
n→∞

Sn − ESn
bn

a.s.

Similarly by Kronecker’s Lemma 20.13 we know that

0 = lim
n→∞

1
b2n

n∑
k=1

Var (Xk) = lim
n→∞

E
(
Sn − ESn

bn

)2

which gives the L2 (P ) – convergence statement as well.
As an immediate corollary we have the following corollary.

Corollary 20.15 (L2 – SSLN). Let {Xn} be a sequence of independent ran-
dom variables such that σ2 = EX2

n <∞ and µ = EXn are independent of n. As
above let Sn =

∑n
k=1Xk. If {bn}∞n=1 ⊂ (0,∞) is a sequence such that bn ↑ ∞

and
∑∞
n=1

1
b2n
<∞, then

1
bn

(Sn − nµ)→ 0 a.s. and in L2 (P ) (20.5)

We may rewrite Eq. (20.5) as

Sn = nµ+ o (1) bn or
Sn
n

= µ+ o (1)
bn
n
.

Example 20.16. For example, we could take bn = n or bn = np for an p > 1/2,
or bn = n1/2 (lnn)1/2+ε for any ε > 0. The idea here is that

∞∑
n=2

1(
n1/2 (lnn)1/2+ε

)2 =
∞∑
n=2

1
n (lnn)1+2ε

which may be analyzed by comparison with the integral∫ ∞
2

1
x ln1+2ε x

dx =
∫ ∞

ln 2

1
eyy1+2ε

eydy =
∫ ∞

ln 2

1
y1+2ε

dy <∞,

wherein we have made the change of variables, y = lnx. When bn =
n1/2 (lnn)1/2+ε we may conclude that

Sn
n

= µ+ o (1)
(lnn)1/2+ε

n1/2
,

i.e. the fluctuations of Sn
n about the mean, µ, have order smaller than

n−1/2 (lnn)1/2+ε
.

Fact 20.17 (Missing Reference) Under the hypothesis in Corollary 20.15,

lim
n→∞

Sn − nµ
n1/2 (ln lnn)1/2

=
√

2σ a.s.

We end this section with another example of using Kolmogorov’s conver-
gence criteria in conjunction with Kronecker’s Lemma 20.13.

Lemma 20.18. Let {Xn}∞n=1 be independent square integrable random vari-
ables such that ESn ↑ ∞ as n→∞. Then

∞∑
n=1

Var
(
Xn

ESn

)
=
∞∑
n=1

Var (Xn)
(ESn)2 <∞ =⇒ Sn

ESn
→ 1 a.s.

Proof. Kolmogorov’s convergence criteria, Theorem 20.11 we know that

∞∑
n=1

Xn − EXn

ESn
is a.s. convergent.

It then follows by Kronecker’s Lemma 20.13 that

0 = lim
n→∞

1
ESn

n∑
i=1

(Xn − EXn) = lim
n→∞

Sn
ESn

− 1 a.s.

Example 20.19. Suppose that {Xn}∞n=1 are i.i.d. square integrable random vari-
ables with µ := EXn > 0 and σ2 := Var (Xn) < ∞. Since ESn = µn ↑ ∞
and

∞∑
n=1

Var (Xn)
(ESn)2 =

∞∑
n=1

σ2

µ2n2
<∞,

we may conclude that limn→∞
Sn
µn = 1 a.s., i.e. Sn/n → µ a.s. as we already

know.

We now assume that {Xn}∞n=1 are i.i.d. random variables with a continuous
distribution function and let Aj denote the event when Xj is a record, i.e.

Aj := {Xj > max {X1, X2, . . . , Xk−1}} .

Recall from Renyi Theorem 10.21 that {Aj}∞j=1 are independent and P (Aj) = 1
j

for all j.

Proposition 20.20. Keeping the preceding notation and let Sn :=
∑n
j=1 1Aj

denote the number of records in the first n observations. Then limn→∞
Sn
lnn = 1

a.s.
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Proof. In this case

ESn =
n∑
j=1

E1Aj =
n∑
j=1

1
j
∼
∫ n

1

1
x
dx = lnn ↑ ∞

and
Var (1An) = E12

An − (E1An)2 =
1
n
− 1
n2

=
n− 1
n2

so by that

∞∑
n=1

Var
(

1An
ESn

)
=
∞∑
n=1

(
1
n
− 1
n2

)
1(∑n

j=1
1
j

)2

≤
∞∑
n=1

1(∑n
j=1

1
j

)2

1
n

/ 1 +
∫ ∞

2

1
ln2 x

1
x
dx = 1 +

∫ ∞
ln 2

1
y2
dy <∞.

Therefore by Lemma 20.18 we may conclude that limn→∞
Sn

ESn = 1 a.s.
So to finish the proof it only remains to show

lim
n→∞

ESn
lnn

lim
n→∞

∑n
j=1

1
j

lnn
= 1. (20.6)

To see this write

ln (n+ 1) =
∫ n+1

1

1
x
dx =

n∑
j=1

∫ j+1

j

1
x
dx

=
n∑
j=1

∫ j+1

j

(
1
x
− 1
j

)
dx+

n∑
j=1

1
j

= ρn +
n∑
j=1

1
j

(20.7)

where

|ρn| =
n∑
j=1

∣∣∣∣ln j + 1
j
− 1
j

∣∣∣∣ =
n∑
j=1

∣∣∣∣ln (1 + 1/j)− 1
j

∣∣∣∣ ∼ n∑
j=1

1
j2

and hence we conclude that limn→∞ ρn < ∞. So dividing Eq. (20.7) by lnn
and letting n→∞ gives the desired limit in Eq. (20.6).

20.3 The Strong Law of Large Numbers Revisited

Definition 20.21. Two sequences, {Xn} and {X ′n} , of random variables are
tail equivalent if

E

[ ∞∑
n=1

1Xn 6=X′n

]
=
∞∑
n=1

P (Xn 6= X ′n) <∞.

Proposition 20.22. Suppose {Xn} and {X ′n} are tail equivalent. Then

1.
∑

(Xn −X ′n) converges a.s.
2. The sum

∑
Xn is convergent a.s. iff the sum

∑
X ′n is convergent a.s. More

generally we have

P
({∑

Xn is convergent
}
4
{∑

X ′n is convergent
})

= 1

3. If there exists a random variable, X, and a sequence an ↑ ∞ such that

lim
n→∞

1
an

n∑
k=1

Xk = X a.s

then

lim
n→∞

1
an

n∑
k=1

X ′k = X a.s

Proof. If {Xn} and {X ′n} are tail equivalent, we know by the first Borel -
Cantelli Lemma 7.14 that P (Xn = X ′n for a.a. n) = 1. The proposition is an
easy consequence of this observation.

Remark 20.23. In what follows we will typically have a sequence, {Xn}∞n=1 , of
independent random variables and X ′n = fn (Xn) for some “cutoff” functions,
fn : R → R. In this case the collection of sets, {An := {Xn 6= X ′n}}

∞
n=1 are

independent and so by the Borel zero one law (Lemma 10.37) we will have

P (Xn 6= X ′n i.o. n) = 0 ⇐⇒
∞∑
n=1

P (Xn 6= X ′n) <∞.

So in this case {Xn} and {X ′n} are tail equivalent iff P (Xn 6= X ′n a.a. n) = 1.
For example if {kn}∞n=1 ⊂ (0,∞) and X ′n := Xn · 1|Xn|≤kn then the following
are equivalent;

1. P (|Xn| ≤ kn a.a. n) = 1,
2. P (|Xn| > kn i.o. n) = 0,
3.
∑∞
n=1 P (Xn 6= X ′n) =

∑∞
n=1 P (|Xn| > kn) <∞,
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4. {Xn} and {X ′n} are tail equivalent.

Lemma 20.24. Suppose that X : Ω → R is a random variable, then

E |X|p =
∫ ∞

0

psp−1P (|X| ≥ s) ds =
∫ ∞

0

psp−1P (|X| > s) ds.

Proof. By the fundamental theorem of calculus,

|X|p =
∫ |X|

0

psp−1ds = p

∫ ∞
0

1s≤|X| · sp−1ds = p

∫ ∞
0

1s<|X| · sp−1ds.

Taking expectations of this identity along with an application of Tonelli’s the-
orem completes the proof.

Lemma 20.25. If X is a random variable and ε > 0, then

∞∑
n=1

P (|X| ≥ nε) ≤ 1
ε

E |X| ≤
∞∑
n=0

P (|X| ≥ nε) . (20.8)

Proof. First observe that for all y ≥ 0 we have,

∞∑
n=1

1n≤y ≤ y ≤
∞∑
n=1

1n≤y + 1 =
∞∑
n=0

1n≤y. (20.9)

Taking y = |X| /ε in Eq. (20.9) and then take expectations gives the estimate
in Eq. (20.8).

Proposition 20.26. Suppose that {Xn}∞n=1 are i.i.d. random variables, then
the following are equivalent:

1. E |X1| <∞.
2. There exists ε > 0 such that

∑∞
n=1 P (|X1| ≥ εn) <∞.

3. For all ε > 0,
∑∞
n=1 P (|X1| ≥ εn) <∞.

4. limn→∞
|Xn|
n = 0 a.s.

Proof. The equivalence of items 1., 2., and 3. easily follows from Lemma
20.25. So to finish the proof it suffices to show 3. is equivalent to 4. To this end
we start by noting that limn→∞

|Xn|
n = 0 a.s. iff

0 = P

(
|Xn|
n
≥ ε i.o.

)
= P (|Xn| ≥ nε i.o.) for all ε > 0. (20.10)

Because {|Xn| ≥ nε}∞n=1 are independent sets, the Borel zero-one law
(Lemma 10.37) shows the statement in Eq. (20.10) is equivalent to∑∞
n=1 P (|Xn| ≥ nε) <∞ for all ε > 0.

Corollary 20.27. Suppose that {Xn}∞n=1 are i.i.d. random variables such that
1
nSn → c ∈ R a.s., then Xn ∈ L1 (P ) and µ := EXn = c.

Proof. If 1
nSn → c a.s. then εn := Sn+1

n+1 −
Sn
n → 0 a.s. and therefore,

Xn+1

n+ 1
=
Sn+1

n+ 1
− Sn
n+ 1

= εn + Sn

[
1
n
− 1
n+ 1

]
= εn +

1
(n+ 1)

Sn
n
→ 0 + 0 · c = 0.

Hence an application of Proposition 20.26 shows Xn ∈ L1 (P ) . Moreover by
Exercise 12.6,

{
1
nSn

}∞
n=1

is a uniformly integrable sequenced and therefore,

µ = E
[

1
n
Sn

]
→ E

[
lim
n→∞

1
n
Sn

]
= E [c] = c.

Lemma 20.28. For all x ≥ 0,

ϕ (x) :=
∞∑
n=1

1
n2

1x≤n =
∑
n≥x

1
n2
≤ 2 ·min

(
1
x
, 1
)
.

Proof. The proof will be by comparison with the integral,
∫∞
a

1
t2 dt = 1/a.

For example,
∞∑
n=1

1
n2
≤ 1 +

∫ ∞
1

1
t2
dt = 1 + 1 = 2

and so ∑
n≥x

1
n2
≤
∞∑
n=1

1
n2
≤ 2 ≤ 2

x
for 0 < x ≤ 1.

Similarly, for x > 1,∑
n≥x

1
n2
≤ 1
x2

+
∫ ∞
x

1
t2
dt =

1
x2

+
1
x

=
1
x

(
1 +

1
x

)
≤ 2
x
,

see Figure 20.1 below.

Lemma 20.29. Suppose that X : Ω → R is a random variable, then

∞∑
n=1

1
n2

E
[
|X|2 : 1|X|≤n

]
≤ 2E |X| .
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Fig. 20.1. Estimating
∑
n≥x 1/n2 with an integral.

Proof. This is a simple application of Lemma 20.28;

∞∑
n=1

1
n2

E
[
|X|2 : 1|X|≤n

]
= E

[
|X|2

∞∑
n=1

1
n2

1|X|≤n

]
= E

[
|X|2 ϕ (|X|)

]
≤ 2E

[
|X|2

(
1
|X|
∧ 1
)]
≤ 2E |X| .

With this as preparation we are now in a position to give another proof of
the Kolmogorov’s strong law of large numbers which has already appeared in
Theorem 16.10 and Example 18.78.

Theorem 20.30 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {Xn}∞n=1 are i.i.d. random variables and let Sn := X1 + · · · + Xn.
Then there exists µ ∈ R such that 1

nSn → µ a.s. iff Xn is integrable and in
which case EXn = µ.

Proof. The implication, 1
nSn → µ a.s. implies Xn ∈ L1 (P ) and EXn = µ

has already been proved in Corollary 20.27. So let us now assume Xn ∈ L1 (P )
and let µ := EXn.

Let X ′n := Xn1|Xn|≤n. By Lemma 20.25,

∞∑
n=1

P (X ′n 6= Xn) =
∞∑
n=1

P (|Xn| > n) =
∞∑
n=1

P (|X1| > n) ≤ E |X1| <∞,

and hence {Xn} and {X ′n} are tail equivalent. Therefore, by Proposition 20.22,
it suffices to show limn→∞

1
nS
′

n = µ a.s. where S′n := X ′1 + · · · + X ′n. But by
Lemma 20.29,

∞∑
n=1

Var (X ′n)
n2

≤
∞∑
n=1

E |X ′n|
2

n2
=
∞∑
n=1

E
[
|Xn|2 1|Xn|≤n

]
n2

=
∞∑
n=1

E
[
|X1|2 1|X1|≤n

]
n2

≤ 2E |X1| <∞. (20.11)

Therefore by Kolmogorov’s convergence criteria, Theorem 20.11,

∞∑
n=1

X ′n − EX ′n
n

is almost surely convergent.

Kronecker’s Lemma 20.13 then implies

lim
n→∞

1
n

n∑
k=1

(X ′k − EX ′k) = 0 a.s.

So to finish the proof, it only remains to observe

lim
n→∞

1
n

n∑
k=1

EX ′k = lim
n→∞

1
n

n∑
k=1

E
[
Xk1|Xk|≤k

]
= lim
n→∞

1
n

n∑
k=1

E
[
X11|X1|≤k

]
= µ.

Here we have used the dominated convergence theorem to see that ak :=
E
[
X11|X1|≤k

]
→ µ as k → ∞ from which it is easy (and standard) to check

that limn→∞
1
n

∑n
k=1 ak = µ.

Remark 20.31. If E |X1| =∞ but EX−1 <∞, then 1
nSn →∞ a.s. To prove this,

for M > 0 let XM
n := Xn ∧M and SMn :=

∑n
i=1X

M
i . It follows from Theorem

20.30 that 1
nS

M
n → µM := EXM

1 a.s.. Since Sn ≥ SMn , we may conclude that

lim inf
n→∞

Sn
n
≥ lim inf

n→∞

1
n
SMn = µM a.s.

Since µM → ∞ as M → ∞, it follows that lim infn→∞ Sn
n = ∞ a.s. and hence

that limn→∞
Sn
n =∞ a.s.

Exercise 20.3 (Resnik 7.9). Let {Xn}∞n=1 be i.i.d. with E |X1| < ∞ and
EX1 = 0. Following the ideas in the proof of Theorem 20.30, show for any
bounded sequence {cn}∞n=1 of real numbers that

lim
n→∞

1
n

n∑
k=1

ckXk = 0 a.s.
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20.3.1 Strong Law of Large Number Examples

Example 20.32 (Renewal Theory). Let {Xi}∞i=1 be i.i.d. non-negative integrable
random variables such that P (Xi > 0) > 0. Think of the Xi as the life time
of bulb number i, µ := EXi is the mean life time of each bulb, and Tn :=
X1 + · · ·+Xn is the time that the nth – bulb burns out. (We assume the bulbs
are replaced immediately on burning out.) By convention, we set T0 = 0.

Let
Nt := sup {n ≥ 0 : Tn ≤ t}

denote the number of bulbs which have burned out up to time t. Since EXi <∞,
Xi <∞ a.s. and therefore Tn <∞ a.s. for all n. From this observation it follows
that Nt ↑ ∞ on the set, Ω1 := ∩∞i=1 {Xi <∞} – a subset of Ω with full measure.

It is reasonable to guess that Nt ∼ t/µ and indeed we will show;

lim
t↑∞

1
t
Nt =

1
µ

a.s. (20.12)

To prove Eq. (20.12), by the SSLN, if Ω0 :=
{

limn→∞
1
nTn = µ

}
then P (Ω0) =

1. From the definition of Nt, TNt ≤ t < TNt+1 and so

TNt
Nt
≤ t

Nt
<
TNt+1

Nt
.

For ω ∈ Ω0 ∩Ω1 we have

µ = lim
t→∞

TNt(ω) (ω)
Nt (ω)

≤ lim inf
t→∞

t

Nt (ω)

≤ lim sup
t→∞

t

Nt (ω)
≤ lim
t→∞

[
TNt(ω)+1 (ω)
Nt (ω) + 1

Nt (ω) + 1
Nt (ω)

]
= µ.

Example 20.33 (Renewal Theory II). Let {Xi}∞i=1 be i.i.d. and {Yi}∞i=1 be i.i.d.
non-negative integrable random variables with {Xi}∞i=1 being independent of
the {Yi}∞i=1 and let µ = EX1 and ν = EY1. Again assume that P (Xi > 0) > 0.
We will interpret Yi to be the amount of time the ith – bulb remains out after
burning out before it is replaced by bulb number i+1. Let Rt be the amount of
time that we have a working bulb in the time interval [0, t] . We are now going
to show

lim
t↑∞

1
t
Rt =

EX1

EX1 + EY1
=

µ

µ+ ν
.

To prove this, let Tn :=
∑n
i=1 (Xi + Yi) be the time that the nth – bulb is

replaced and
Nt := sup {n ≥ 0 : Tn ≤ t}

denote the number of bulbs which have burned out up to time n. By Example
20.32 we know that

lim
t↑∞

1
t
Nt =

1
µ+ ν

a.s., i.e. Nt =
1

µ+ ν
t+ o (t) a.s.

Let us now set R̃t =
∑Nt
i=1Xi and observe that

R̃t ≤ Rt ≤ R̃t +XNt+1.

By Proposition 20.26 we know that Xn/n→ 0 a.s. and therefore,

lim
t↑∞

XNt+1

t
= lim
t↑∞

[
XNt+1

Nt + 1
· Nt + 1

t

]
= 0 · 1

µ+ ν
= 0 a.s.

Thus it follows that limt↑∞
1
tRt = limt↑∞

1
t R̃t a.s. and the latter limit may be

computed using the strong law of large numbers;

1
t
R̃t =

1
t

Nt∑
i=1

Xi =
Nt
t
· 1
Nt

Nt∑
i=1

Xi →
1

µ+ ν
· µ a.s.

Theorem 20.34 (Glivenko-Cantelli Theorem). Suppose that {Xn}∞n=1 are
i.i.d. random variables and F (x) := P (Xi ≤ x) . Further let µn := 1

n

∑n
i=1 δXi

be the empirical distribution with empirical distribution function,

Fn (x) := µn ((−∞, x]) =
1
n

n∑
i=1

1Xi≤x.

Then
lim
n→∞

sup
x∈R
|Fn (x)− F (x)| = 0 a.s.

Proof. Since {1Xi≤x}
∞
i=1 are i.i.d random variables with E1Xi≤x =

P (Xi ≤ x) = F (x) , it follows by the strong law of large numbers that

lim
n→∞

Fn (x) = F (x) a.s. for all x ∈ R. (20.13)

Our goal is to now show that this convergence is uniform.1 To do this we will
use another application of the strong law of large numbers applied to {1Xi<x}
in order to conclude that, for all x ∈ R,
1 Observation. If F is continuous then, by what we have just shown, there is a set
Ω0 ⊂ Ω such that P (Ω0) = 1 and on Ω0, Fn (r) → F (r) for all r ∈ Q. Moreover
on Ω0, if x ∈ R and r ≤ x ≤ s with r, s ∈ Q, we have

F (r) = lim
n→∞

Fn (r) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ lim
n→∞

Fn (s) = F (s) .
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lim
n→∞

Fn (x−) = F (x−) a.s. for all x ∈ R. (20.14)

Keep in mind that the exceptional set of probability zero depend on x.
Given k ∈ N, let Λk :=

{
i
k : i = 1, 2, . . . , k − 1

}
and let xi :=

inf {x : F (x) ≥ i/k} for i = 1, 2, . . . , k − 1, see Figure 20.2. Let us fur-

Fig. 20.2. Constructing the sequence of points {xi}ki=0 .

ther set xk = ∞ and x0 = −∞ and let Ωk denote the subset of Ω of full
measure where Eqs. (20.13) and (20.14) hold for x ∈ {xi : 1 ≤ i ≤ k − 1} . For
ω ∈ Ωk we may find N (ω) ∈ N (N is random) so that

|Fn (xi)− F (xi)| < 1/k and |Fn (xi−)− F (xi−)| < 1/k

for n ≥ N (ω) , 1 ≤ i ≤ k − 1, and ω ∈ Ωk with P (Ωk) = 1.
Observe that it is possible that xi = xi+1 for some of the i. This can occur

when F has jumps of size greater than 1/k,2 see Figure 20.2. Now suppose i has
been chosen so that xi−1 < xi and let x ∈ (xi−1, xi) .We then have for ω ∈ Ωk
and n ≥ N (ω) that

Fn (x) ≤ Fn (xi−) ≤ F (xi−) + 1/k ≤ F (x) + 2/k

We may now let s ↓ x and r ↑ x to conclude, on Ω0, on

F (x) ≤ lim inf
n→∞

Fn (x) ≤ lim sup
n→∞

Fn (x) ≤ F (x) for all x ∈ R,

i.e. on Ω0, limn→∞ Fn (x) = F (x) . Thus, in this special case we have shown that
off a fixed null set independent of x that limn→∞ Fn (x) = F (x) for all x ∈ R.

2 In fact if F (x) = δ0 ((−∞, x]) = 1x≥0, then x1 = · · · = xk−1 = 0 for all k.

and

Fn (x) ≥ Fn (xi−1) ≥ F (xi−1)− 1/k ≥ F (xi−)− 2/k ≥ F (x)− 2/k.

From this it follows on Ωk that |F (x)− Fn (x)| ≤ 2/k for n ≥ N and therefore,

sup
x∈R
|F (x)− Fn (x)| ≤ 2/k.

Hence it follows on Ω0 := ∩∞k=1Ωk (a set with P (Ω0) = 1) that

lim
n→∞

sup
x∈R
|Fn (x)− F (x)| = 0.

20.4 Kolmogorov’s Three Series Theorem

The next theorem generalizes Theorem 20.11 by giving necessary and sufficient
conditions for a random series of independent random variables to converge.

Theorem 20.35 (Kolmogorov’s Three Series Theorem). Suppose that
{Xn}∞n=1 are independent random variables. Then the random series,

∑∞
n=1Xn,

is almost surely convergent in R iff there exists c > 0 such that

1.
∑∞
n=1 P (|Xn| > c) <∞,

2.
∑∞
n=1 Var

(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞
n=1 E

(
Xn1|Xn|≤c

)
converges.

Moreover, if the three series above converge for some c > 0 then they con-
verge for all values of c > 0.

Remark 20.36. We have seen another necessary and sufficient condition in Ex-
ercise 18.20, namely

∑∞
n=1Xn, is almost surely convergent in R iff

∑∞
n=1Xn

is convergent in distribution. We will also see below that
∑∞
n=1Xn, is almost

surely convergent in R iff
∑∞
n=1Xn, is convergent in probability, see Lévy’s

Theorem 20.46 below.

Proof. Proof of sufficiency. Suppose the three series converge for some
c > 0. If we let X ′n := Xn1|Xn|≤c, then

∞∑
n=1

P (X ′n 6= Xn) =
∞∑
n=1

P (|Xn| > c) <∞.

Hence {Xn} and {X ′n} are tail equivalent and so it suffices to show
∑∞
n=1X

′
n

is almost surely convergent. However, by the convergence of the second series
we learn
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∞∑
n=1

Var (X ′n) =
∞∑
n=1

Var
(
Xn1|Xn|≤c

)
<∞

and so by Kolmogorov’s convergence criteria, Theorem 20.11,

∞∑
n=1

(X ′n − EX ′n) is almost surely convergent.

Finally, the third series guarantees that
∑∞
n=1 EX ′n =

∑∞
n=1 E

(
Xn1|Xn|≤c

)
is

convergent, therefore we may conclude
∑∞
n=1X

′
n is convergent.

The necessity proof will be completed after the next two lemmas. Another
proof of necessity may be found in Chapter 23, see Theorem 23.8.

Lemma 20.37. Suppose that {Yn}∞n=1 are independent random variables such
that there exists c < ∞ such that |Yn| ≤ c < ∞ a.s. and further assume
EYn = 0. If

∑∞
n=1 Yn is almost surely convergent then

∑∞
n=1 EY 2

n < ∞. More
precisely the following estimate holds,

∞∑
j=1

EY 2
j ≤

(λ+ c)2

P (supn |Sn| ≤ λ)
for all λ > 0, (20.15)

where as usual, Sn :=
∑n
j=1 Yj .

Remark 20.38. It follows from Eq. (20.15) that if P (supn |Sn| <∞) > 0, then∑∞
j=1 EY 2

j < ∞ and hence by Kolmogorov’s convergence criteria (Theorem
20.11),

∑∞
j=1 Yj = limn→∞ Sn exists a.s. and in particular, P (supn |Sn| <∞) =

1. This also follows from the fact that supn |Sn| <∞ is a tail event and hence
P (supn |Sn| <∞) is either 0 or 1 and as P (supn |Sn| <∞) > 0 we must have
P (supn |Sn| <∞) = 1.

Proof. We will begin by proving that for every N ∈ N and λ > 0 we have

E
[
S2
N

]
≤ (λ+ c)2

P
(
supn≤N |Sn| ≤ λ

) ≤ (λ+ c)2

P (supn |Sn| ≤ λ)
. (20.16)

To prove Eq. (20.16), let τ be the stopping time,

τ = τλ := inf {n ≥ 1 : |Sn| > λ}

where inf ∅ =∞. Then

E
[
S2
N

]
= E

[
S2
N : τ ≤ N

]
+ E

[
S2
N : τ > N

]
≤ E

[
S2
N : τ ≤ N

]
+ λ2P [τ > N ]

and

E
[
S2
N : τ ≤ N

]
=

N∑
j=1

E
[
S2
N : τ = j

]
=

N∑
j=1

E
[
|Sj + SN − Sj |2 : τ = j

]

=
N∑
j=1

E
[
S2
j + 2Sj (SN − Sj) + (SN − Sj)2 : τ = j

]

=
N∑
j=1

E
[
S2
j : τ = j

]
+

N∑
j=1

E
[
(SN − Sj)2

]
P [τ = j]

≤
N∑
j=1

E
[
(Sj−1 + Yj)

2 : τ = j
]

+ E
[
S2
N

] N∑
j=1

P [τ = j]

≤
N∑
j=1

E
[
(λ+ c)2 : τ = j

]
+ E

[
S2
N

]
P [τ ≤ N ]

=
[
(λ+ c)2 + E

[
S2
N

]]
P [τ ≤ N ] .

Combining the previous two estimates gives;

E
[
S2
N

]
≤
[
(λ+ c)2 + E

[
S2
N

]]
P [τ ≤ N ] + λ2P [τ > N ]

≤
[
(λ+ c)2 + E

[
S2
N

]]
P [τ ≤ N ] + (λ+ c)2

P [τ > N ]

= (λ+ c)2 + P [τ ≤ N ] · E
[
S2
N

]
,

form which Eq. (20.16) follows upon noting that

{τ ≤ N} =
{

sup
n≤N
|Sn| > λ

}
=
{

sup
n≤N
|Sn| ≤ λ

}c
.

Since Sn is convergent a.s., it follows that P (supn |Sn| <∞) = 1 and there-
fore,

lim
λ↑∞

P

(
sup
n
|Sn| ≤ λ

)
= 1.

Hence for λ sufficiently large, P (supn |Sn| ≤ λ) > 0 and we learn from Eq.
(20.16) that

∞∑
j=1

EY 2
j = lim

N→∞
E
[
S2
N

]
≤ (λ+ c)2

P (supn |Sn| ≤ λ)
<∞.
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Lemma 20.39. Suppose that {Yn}∞n=1 are independent random variables such
that there exists c <∞ such that |Yn| ≤ c a.s. for all n. If

∑∞
n=1 Yn converges

in R a.s. then
∑∞
n=1 EYn converges as well.

Proof. Let (Ω0,B0, P0) be the probability space that {Yn}∞n=1 is defined on
and let

Ω := Ω0 ×Ω0, B := B0 ⊗ B0, and P := P0 ⊗ P0.

Further let Y ′n (ω1, ω2) := Yn (ω1) and Y ′′n (ω1, ω2) := Yn (ω2) and

Zn (ω1, ω2) := Y ′n (ω1, ω2)− Y ′′n (ω1, ω2) = Yn (ω1)− Yn (ω2) .

Then |Zn| ≤ 2c a.s., EZn = 0, and

∞∑
n=1

Zn (ω1, ω2) =
∞∑
n=1

Yn (ω1)−
∞∑
n=1

Yn (ω2) exists

for P a.e. (ω1, ω2) . Hence it follows from Lemma 20.37 that

∞ >

∞∑
n=1

EZ2
n =

∞∑
n=1

Var (Zn) =
∞∑
n=1

Var (Y ′n − Y ′′n )

=
∞∑
n=1

[Var (Y ′n) + Var (Y ′′n )] = 2
∞∑
n=1

Var (Yn) .

Thus by Kolmogorov’s convergence theorem, it follows that
∑∞
n=1 (Yn − EYn) is

convergent. Since
∑∞
n=1 Yn is a.s. convergent, we may conclude that

∑∞
n=1 EYn

is also convergent.
We are now ready to complete the proof of Theorem 20.35.
Proof of Theorem 20.35. Our goal is to show if {Xn}∞n=1 are independent

random variables such that
∑∞
n=1Xn, is almost surely convergent then for all

c > 0 the following three series converge;

1.
∑∞
n=1 P (|Xn| > c) <∞,

2.
∑∞
n=1 Var

(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞
n=1 E

(
Xn1|Xn|≤c

)
converges.

Since
∑∞
n=1Xn is almost surely convergent, it follows that limn→∞Xn = 0

a.s. and hence for every c > 0, P ({|Xn| ≥ c i.o.}) = 0. According the Borel zero
one law (Lemma 10.37) this implies for every c > 0 that

∑∞
n=1 P (|Xn| > c) <

∞. Given this, we now know that {Xn} and
{
Xc
n := Xn1|Xn|≤c

}
are tail equiv-

alent for all c > 0 and in particular
∑∞
n=1X

c
n is almost surely convergent for

all c > 0. So according to Lemma 20.39 (with Yn = Xc
n),

∞∑
n=1

EXc
n =

∞∑
n=1

E
(
Xn1|Xn|≤c

)
converges.

Letting Yn := Xc
n −EXc

n, we may now conclude that
∑∞
n=1 Yn is almost surely

convergent. Since {Yn} is uniformly bounded and EYn = 0 for all n, an appli-
cation of Lemma 20.37 allows us to conclude

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
=
∞∑
n=1

EY 2
n <∞.

Exercise 20.4 (Two Series Theorem – Resnik 7.15). Prove that the three
series theorem reduces to a two series theorem when the random variables are
positive. That is, if Xn ≥ 0 are independent, then

∑
nXn < ∞ a.s. iff for any

c > 0 we have ∑
n

P (Xn > c) <∞ and (20.17)∑
n

E[Xn1Xn≤c] <∞, (20.18)

that is it is unnecessary to verify the convergence of the second series in Theorem
20.35 involving the variances.

20.4.1 Examples

Lemma 20.40. Suppose that {Yn}∞n=1 are independent square integrable ran-

dom variables such that Yn
d= N

(
µn, σ

2
n

)
. Then

∑∞
j=1 Yj converges a.s. iff∑∞

j=1 σ
2
j <∞ and

∑∞
j=1 µj converges.

Proof. The implication “⇐=” is true without the assumption that the Yn
are normal random variables as pointed out in Theorem 20.11. To prove the
converse directions we will make use of the Kolmogorov’s three series Theorem
20.35. Namely, if

∑∞
j=1 Yj converges a.s. then the three series in Theorem 20.35

converge for all c > 0.
1. Since Yn

d= σnN + µn, we have for any c > 0 that

∞ >

∞∑
n=1

P (|σnN + µn| > c) . (20.19)

If limn→∞ µn 6= 0 then there is a c > 0 such that either µn ≥ 2c for infinitely
many n or µn ≤ −2c for infinitely many n. It then follows that either {N > 0} ⊂
{|σnN + µn| > c} n i.o. or {N < 0} ⊂ {|σnN + µn| > c} n i.o. In either case
we would have P (|σnN + µn| > c) ≥ 1/2 i.o. which would violate Eq. (20.19)
and so we may concluded that limn→∞ µn = 0. Similarly if limn→∞ σn 6= 0,
then there exists α <∞ such that

Page: 315 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



316 20 Random Sums

{N ≥ α} ⊂ {|σnN + µn| > 1} n i.o.

which would imply P (|σnN + µn| > 1) ≥ P (N ≥ α) > 0 for infinitely many n.
This again violate Eq. (20.19) and thus we may conclude that limn→∞ µn =
limn→∞ σn = 0.

2. Let χn := 1|σnN+µn|≤c ∈ {0, 1} . The convergence of the second series for
all c > 0 implies

∞ >

∞∑
n=1

Var
(
Yn1|Yn|≤c

)
=
∞∑
n=1

Var ([σnN + µn]χn) . (20.20)

If we can show
Var ([σnN + µn]χn) ≥ 1

2
σ2
n for large n, (20.21)

it would then follow from Eq. (20.20) that
∑∞
n=1 σ

2
n <∞. We may now use Kol-

mogorov’s convergence criteria (Theorem 20.11) to infer that
∑∞
n=1 (Yn − µn)

is almost surely convergent which then implies that
∑∞
n=1 µn is convergent as

µn = Yn − (Yn − µn) and
∑∞
n=1 Yn and

∑∞
n=1 (Yn − µn) are both convergent

a.s. So to finish the proof we need to prove the estimate in Eq. (20.21).
Let αn := Var (Nχn) and βn := P (χn = 1) so that Var (χn) = βn (1− βn)

and

εn := Cov (Nχn, χn) = E [Nχn · χn]− E [Nχn] E [χn] = E [Nχn] (1− βn) .

Therefore, using Var (σX + µY ) = σ2 Var (X) + µ2 Var (Y ) + 2σµCov (X,Y ) ,
we find

Var ([σnN + µn]χn) = Var (σnNχn + µnχn)

= σ2
nαn + µ2

nβn (1− βn) + 2σnµnεn.

Making use of the estimate, 2ab ≤ a2 + b2 valid for all a, b ≥ 0, it follows that

Var ([σnN + µn]χn) ≥ σ2
nαn + µ2

nβn (1− βn)− 2 |εn|σn |µn|
≥ σ2

n (αn − |εn|) + µ2
n (βn (1− βn)− |εn|)

= σ2
n (αn − |εn|) + (1− βn) (βn − |E [Nχn]|)µ2

n.

This estimate along with the observations that 1 − βn ≥ 0, limn→∞ αn =
limn→∞ βn = 1, limn→∞ E [Nχn] = 0 (use DCT) and limn→∞ εn = 0 easily
implies Eq. (20.21).

An alternative proof that
∑∞
n=1 µn is convergent using the the third

series in Theorem 20.35. For all c > 0 the third series implies

∞∑
n=1

E
(
[σnN + µn] 1|σnN+µn|≤c

)
is convergent, i.e.

∞∑
n=1

[σnδn + µnβn] is convergent.

where δn := E
(
N · 1|σnN+µn|≤c

)
and βn := E

(
1|σnN+µn|≤c

)
.With a little effort

one can show,

δn ∼ e−k/σ
2
n and 1− βn ∼ e−k/σ

2
n for large n.

Since e−k/σ
2
n ≤ Cσ2

n for large n, it follows that
∑∞
n=1 |σnδn| ≤ C

∑∞
n=1 σ

3
n <∞

so that
∑∞
n=1 µnβn is convergent. Moreover,

∞∑
n=1

|µn (βn − 1)| ≤ C
∞∑
n=1

|µn|σ2
n <∞

and hence
∞∑
n=1

µn =
∞∑
n=1

µnβn −
∞∑
n=1

µn (βn − 1)

must also be convergent.

Example 20.41. As another simple application of Theorem 20.35, let us use it
to give a proof of Theorem 20.11. We will apply Theorem 20.35 with Xn :=
Yn −EYn. We need to then check the three series in the statement of Theorem
20.35 converge. For the first series we have by the Markov inequality,

∞∑
n=1

P (|Xn| > c) ≤
∞∑
n=1

1
c2

E |Xn|2 =
1
c2

∞∑
n=1

Var (Yn) <∞.

For the second series, observe that

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
≤
∞∑
n=1

E
[(
Xn1|Xn|≤c

)2] ≤ ∞∑
n=1

E
[
X2
n

]
=
∞∑
n=1

Var (Yn) <∞

and we estimate the third series as;

∞∑
n=1

∣∣E (Xn1|Xn|≤c
)∣∣ ≤ ∞∑

n=1

E
(

1
c
|Xn|2 1|Xn|≤c

)
≤ 1
c

∞∑
n=1

Var (Yn) <∞.
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Theorem 20.42 (Kolmogorov’s Inequality). Let {Xn} be a sequence of
independent random variables with mean zero, Sn := X1 + · · · + Xn, and
S∗n = maxj≤n |Sj | . Then for any α > 0 we have

P (S∗N ≥ α) ≤ 1
α2

E
[
S2
N : S∗N ≥ α

]
. (20.22)

Proof. First proof. As {Sn}∞n=1 is a martingale relative to the filtration,
Bn = σ (S1, . . . , Sn) , the inequality in Eq. (20.22) is a special case of Proposition
18.42 with Xn = S2

n, also see Example 18.48.
*Second direct proof. Let τ = inf {j : |Sj | ≥ α} with the infimum of the

empty set being taken to be equal to ∞. Observe that

{τ = j} = {|S1| < α, . . . , |Sj−1| < α, |Sj | ≥ α} ∈ σ (X1, . . . , Xj) .

Now

E
[
S2
N : |S∗N | > α

]
= E

[
S2
N : τ ≤ N

]
=

N∑
j=1

E
[
S2
N : τ = j

]
=

N∑
j=1

E
[
(Sj + SN − Sj)2 : τ = j

]

=
N∑
j=1

E
[
S2
j + (SN − Sj)2 + 2Sj (SN − Sj) : τ = j

]
(∗)
=

N∑
j=1

E
[
S2
j + (SN − Sj)2 : τ = j

]

≥
N∑
j=1

E
[
S2
j : τ = j

]
≥ α2

N∑
j=1

P [τ = j] = α2P (|S∗N | > α) .

The equality, (∗) , is a consequence of the observations: 1) 1τ=jSj is
σ (X1, . . . , Xj) – measurable, 2) (Sn − Sj) is σ (Xj+1, . . . , Xn) – measurable
and hence 1τ=jSj and (Sn − Sj) are independent, and so 3)

E [Sj (SN − Sj) : τ = j] = E [Sj1τ=j (SN − Sj)]
= E [Sj1τ=j ] · E [SN − Sj ] = E [Sj1τ=j ] · 0 = 0.

Remark 20.43 (Another proof of Theorem 20.11). Suppose that {Yj}∞j=1 are
independent random variables such that

∑∞
j=1 Var (Yj) < ∞ and let Sn :=∑n

j=1Xj whereXj := Yj−EYj . According to Kolmogorov’s inequality, Theorem
20.42, for all M < N,

P

(
max

M≤j≤N
|Sj − SM | ≥ α

)
≤ 1
α2

E
[
(SN − SM )2

]
=

1
α2

N∑
j=M+1

E
[
X2
j

]
=

1
α2

N∑
j=M+1

Var (Xj) .

Letting N →∞ in this inequality shows, with QM := supj≥M |Sj − SM | ,

P (QM ≥ α) ≤ 1
α2

∞∑
j=M+1

Var (Xj) .

Since

δM := sup
j,k≥M

|Sj − Sk| ≤ sup
j,k≥M

[|Sj − SM |+ |SM − Sk|] ≤ 2QM

we may further conclude,

P (δM ≥ 2α) ≤ 1
α2

∞∑
j=M+1

Var (Xj)→ 0 as M →∞,

i.e. δM
P→ 0 as M → ∞. Since δM is decreasing in M, it follows that

limM→∞ δM =: δ exists and because δM
P→ 0 we may concluded that δ = 0

a.s. Thus we have shown

lim
m,n→∞

|Sn − Sm| = 0 a.s.

and therefore {Sn}∞n=1 is almost surely Cauchy and hence almost surely conver-
gent. This gives a second proof of Kolmogorov’s convergence criteria in Theorem
20.11.

Corollary 20.44 (L2 – SSLN). Let {Xn} be a sequence of independent ran-
dom variables with mean zero, and σ2 = EX2

n < ∞. Letting Sn =
∑n
k=1Xk

and p > 1/2, we have
1
np
Sn → 0 a.s.

If {Yn} is a sequence of independent random variables EYn = µ and σ2 =
Var (Xn) <∞, then for any β ∈ (0, 1/2) ,
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1
n

n∑
k=1

Yk − µ = O

(
1
nβ

)
.

Proof. (The proof of this Corollary may be skipped as it has already been
proved, see Corollary 20.15.) From Theorem 20.42, we have for every ε > 0 that

P

(
S∗N
Np
≥ ε
)

= P (S∗N ≥ εNp) ≤ 1
ε2N2p

E
[
S2
N

]
=

1
ε2N2p

CN =
C

ε2N (2p−1)
.

Hence if we suppose that Nn = nα with α (2p− 1) > 1, then we have

∞∑
n=1

P

(
S∗Nn
Np
n
≥ ε
)
≤
∞∑
n=1

C

ε2nα(2p−1)
<∞

and so by the first Borel – Cantelli lemma we have

P

({
S∗Nn
Np
n
≥ ε for n i.o.

})
= 0.

From this it follows that limn→∞
S∗Nn
Npn

= 0 a.s.
To finish the proof, for m ∈ N, we may choose n = n (m) such that

nα = Nn ≤ m < Nn+1 = (n+ 1)α .

Since
S∗Nn(m)

Np
n(m)+1

≤ S∗m
mp
≤
S∗Nn(m)+1

Np
n(m)

and
Nn+1/Nn → 1 as n→∞,

it follows that

0 = lim
m→∞

S∗Nn(m)

Np
n(m)

= lim
m→∞

S∗Nn(m)

Np
n(m)+1

≤ lim
m→∞

S∗m
mp

≤ lim
m→∞

S∗Nn(m)+1

Np
n(m)

= lim
m→∞

S∗Nn(m)+1

Np
n(m)+1

= 0 a.s.

That is limm→∞
S∗m
mp = 0 a.s.

We are going to give three more maximal inequalities before ending this
section. In all case we will start with {Xn}∞n=1 a sequence of (possibly with
values in a separable Banach space, Y ) random variables and we will let Sn :=∑
k≤nXk and S∗n := maxk≤n ‖Sk‖ . If τ is any BXn – stopping time and f ≥ 0,

then

E [f (Sn − Sτ ) : τ ≤ n] =
n∑
k=1

E [f (Sn − Sk) : τ = k] =
n∑
k=1

E [f (Sn − Sk)]·P (τ = k) .

(20.23)

Theorem 20.45 (Skorohod’s Inequality). Suppose that {Xn}∞n=1 are inde-
pendent real or Banach valued random variables. Then for all α > 0 we have

P (‖SN‖ ≥ α) ≥ (1− cN (α))P (S∗N ≥ 2α) and (20.24)
P (‖SN‖ > α) ≥ (1− cN (α))P (S∗N > 2α) (20.25)

where
cN (α) := max

1≤k≤N
P (‖SN − Sk‖ > α) .

Proof. We only prove Eq. (20.24) since the proof of Eq. (20.25) is similar
and in fact can be deduced from Eq. (20.24) by a simple limiting argument. If
τ = inf {n : ‖Sn‖ ≥ 2α} , then {τ ≤ N} = {S∗N ≥ 2α} we have

‖SN‖ = ‖Sτ + SN − Sτ‖ ≥ ‖Sτ‖ − ‖SN − Sτ‖
≥ 2α− ‖SN − Sτ‖ .

From this it follows that

{τ ≤ N & ‖SN − Sτ‖ ≤ α} ⊂ {‖SN‖ ≥ α}

and therefore,

P (‖SN‖ ≥ α) ≥ P (τ ≤ N & ‖SN − Sτ‖ ≤ α)

=
N∑
k=1

P (τ = k) · P (‖SN − Sk‖ ≤ α)

≥ min
1≤k≤N

P (‖SN − Sk‖ ≤ α) ·
N∑
k=1

P (τ = k)

= cN (α) · P (S∗N ≥ 2α) .

As an application of Theorem 20.45 we have the following convergence result.

Theorem 20.46 (Lévy’s Theorem). Suppose that {Xn}∞n=1 are i.i.d. random
variables then

∑∞
n=1Xn converges in probability iff

∑∞
n=1Xn converges a.s.

Proof. Let Sn :=
∑n
k=1Xk. Since almost sure convergence implies conver-

gence in probability, it suffices to show; if Sn is convergent in probability then Sn
is almost surely convergent. Given M ∈ M, let QM := supn≥M |Sn − SM | and
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for M < N, let QM,N := supM≤n≤N |Sn − SM | . Given ε ∈ (0, 1) , by assump-
tion, there exists M = M (ε) ∈ N such that maxM≤j≤N P (|SN − Sj | > ε) < ε
for all N ≥M. An application of Skorohod’s inequality, then shows

P (QM,N ≥ 2ε) ≤ P (|SN − SM | > ε)
(1−maxM≤j≤N P (|SN − Sj | > ε))

≤ ε

1− ε
.

Since QM,N ↑ QM as N →∞, we may conclude

P (QM ≥ 2ε) ≤ ε

1− ε
.

Since,

δM := sup
m,n≥M

|Sn − Sm| ≤ sup
m,n≥M

[|Sn − SM |+ |SM − Sm|] = 2QM

we may further conclude, P (δM > 4ε) ≤ ε
1−ε and since ε > 0 is arbitrary, it

follows that δM
P→ 0 as M → ∞. Moreover, since δM is decreasing in M, it

follows that limM→∞ δM =: δ exists and because δM
P→ 0 we may concluded

that δ = 0 a.s. Thus we have shown

lim
m,n→∞

|Sn − Sm| = 0 a.s.

and therefore {Sn}∞n=1 is almost surely Cauchy and hence almost surely con-
vergent.

Remark 20.47 (Yet another proof of Theorem 20.11). Suppose that {Yj}∞j=1

are independent random variables such that
∑∞
j=1 Var (Yj) < ∞. By Propo-

sition 20.10, the sum,
∑∞
j=1 (Yj − EYj) , is L2 (P ) convergent and hence con-

vergent in probability. An application of Lévy’s Theorem 20.46 then shows∑∞
j=1 (Yj − EYj) is almost surely convergent which gives another proof of Kol-

mogorov’s convergence criteria in Theorem 20.11.

The next maximal inequality will be useful later in proving the “functional
central limit theorem.” It is actually a simple corollary of Skorohod’s inequality
(Theorem 20.45) along with Chebyshev’s inequality.

Corollary 20.48 (Ottaviani’s maximal ineqaulity). Suppose that {Xn}∞n=1

are independent real or Banach valued square integrable random variables. Then
for all α > 0 we have

P (‖SN‖ ≥ α) ≥
(

1− 1
α2

max
1≤k≤N

E ‖SN − Sk‖2
)
P (S∗N ≥ 2α)

and in particular if α2 > max1≤k≤N E ‖SN − Sk‖2 , then

P (S∗N ≥ 2α) ≤
(

1− 1
α2

max
1≤k≤N

E ‖SN − Sk‖2
)−1

P (‖SN‖ ≥ α) .

If we further assume that {Xn} are real (or Hilbert valued) mean zero random
variables, then

P (S∗N ≥ 2α) ≤
(

1− 1
α2

E ‖SN −X1‖2
)−1

P (‖SN‖ ≥ α) . (20.26)

Proof. The first and second inequalities follow by Chebyshev’s inequality
and Skorohod’s Theorem 20.45. When the {Xn} are real or Hilbert valued mean
zero square integrable random variables, we have

max
1≤k≤N

E ‖SN − Sk‖2 = max
1≤k≤N

N∑
j=k+1

E ‖Xj‖2 =
N∑
j=2

E ‖Xj‖2 = ‖SN −X1‖2 .

Corollary 20.49. Suppose λ > 1 and {Xn}∞n=1 are independent real square
integrable random variables with EXn = 0 and Var (Xn) = 1 for all n. Then

P
(
S∗n ≥ 2λ

√
n
)
≤
(

1− 1
λ2

)−1

· P
(
|Sn| ≥ λ

√
n
)

and if we further assume that {Xn}∞n=1 are i.i.d., then

lim
n→∞

P
(
S∗n ≥ 2λ

√
n
)
≤
√

2
π

(
1− 1

λ2

)−1 1
λ
e−λ

2/2.

Proof. The first inequality follows from Eq. (20.26) of Corollary 20.48 with
α = λ

√
n. For the second inequality we use the central limit theorem to conclude

that

P
(
|Sn| ≥ λ

√
n
)

= P

(
|Sn|√
n
≥ λ

)
→ P (|Z| ≥ λ)

where Z is a standard normal random variable. We then estimate P (|Z| ≥ λ)
using the Gaussian tail estimates in Lemma 7.59.

We can significantly improve on Corollary 20.48 if we further assume that
Xn is symmetric for n in which case the following reflection principle holds.

Theorem 20.50. Suppose that {Xn}∞n=1 are independent real or Banach

valued random variables such that Xn
d= −Xn for all n and τ is any{

BXn = σ (X1, . . . , Xn)
}∞
n=1

stopping time. If we set
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Sτn := 1n≤τSn − 1n>τ (Sn − Sτ )

= 1n≤τSn − 1n>τ
∑

τ<k≤n

Xk,

then ({Sn}∞n=1 , τ) and ({Sτn}
∞
n=1 , τ) have the same distribution. (Notice Sτn =

Sn for n ≤ τ and Sτn is Sn “reflected about Sτ” for n > τ.)

Proof. Let N ∈ N be given and f : SN → R be a bounded measurable
function. Then, for all k ≤ N we have,

E [f (Sτ1 , . . . , S
τ
N ) : τ = k]

= E [f (S1, . . . , Sk, (Sk −Xk+1) , . . . , (Sk −Xk+1 − · · · −XN )) : τ = k]
= E [f (S1, . . . , Sk, (Sk +Xk+1) , . . . , (Sk +Xk+1 + · · ·+XN )) : τ = k]
= E [f (S1, . . . , SN ) : τ = k] ,
=

wherein we have used (Xk+1, . . . , XN ) d= − (Xk+1, . . . , XN ) , (Xk+1, . . . , XN ) is
independent of BXk , and {τ = k} and (S1, . . . , Sk) are BXk – measurable. This
completes the proof since on {τ =∞} , {Sn}∞n=1 = {Sτn}

∞
n=1 .

In order to exploit this principle we will need to combine it with the following
simple geometric reflection property for Banach spaces; if r > 0 and x, y ∈
Y (Y is a normed space) such that ‖x‖ ≥ r while ‖x− y‖ < r, then ‖x+ y‖ > r.
This is easy to believe (draw the picture for Y = R2) and it is also easy to prove;

‖x+ y‖ = ‖2x− (x− y)‖
≥ ‖2x‖ − ‖x− y‖
≥ 2r − ‖x− y‖ > 2r − r = r.

Proposition 20.51 (Reflection Principle). Suppose that {Xn}∞n=1 are in-

dependent real or Banach valued random variables such that Xn
d= −Xn for all

n. Then

P (S∗N ≥ r) ≤ P (‖SN‖ ≥ r) + P (‖SN‖ > r) ≤ 2P (‖SN‖ ≥ r) . (20.27)

Proof. Let τ := inf {n : ‖Sn‖ ≥ r} (a
{
BXn
}∞
n=1

– stopping time), then

P (S∗N ≥ r) = P (S∗N ≥ r, ‖SN‖ ≥ r) + P (S∗N ≥ r, ‖SN‖ < r)
= P (‖SN‖ ≥ r) + P (τ ≤ N, ‖SN‖ < r).

Moreover by the reflection principle (Theorem 20.50),

P (τ ≤ N, ‖SN‖ < r) = P (τ ≤ N, ‖SτN‖ < r)
= P (τ ≤ N, ‖Sτ − (SN − Sτ )‖ < r) .

If ‖Sτ‖ ≥ r and ‖Sτ − (SN − Sτ )‖ < r, then by the geometric reflection prop-
erty, ‖SN‖ = ‖Sτ + (SN − Sτ )‖ > r and therefore

P (τ ≤ N, ‖Sτ − (SN − Sτ )‖ < r) ≥ P (τ ≤ N, ‖SN‖ > r) = P (‖SN‖ > r) .

Combining this inequality with the first displayed inequality in the proof easily
gives the result.

Exercise 20.5 (Simple Random Walk Reflection principle ). Let
{Xn}∞n=1 be i.i.d Bernoulli random variables with P (Xn = ±1) = 1

2 for all
n and let Sn :=

∑
k≤nXk be the standard simple random walk on Z. Show for

every r ∈ N that

P

(
max
k≤n

Sk ≥ r
)

= P (Sn ≥ r) + P (Sn > r) .
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Weak Convergence Results

In this chapter we will discuss a couple of different ways to decide weather
two probability measures on (R,BR) are “close” to one another. This will arise
later as follows. Suppose {Yn}∞n=1 is a sequence of random variables and Y is
another random variable (possibly defined on a different probability space). We
would like to understand when, for large n, Yn and Y have nearly the “same”
distribution, i.e. when is µn := Law (Yn) close to µ = Law (Y ) for large n.

We will often be the case that Yn = X1 + · · · + Xn where {Xi}ni=1 are
independent random variables. For this reason it will be useful to record the
procedure for computing the law of Yn in terms of the laws of the {Xi}ni=1 . So
before going to the main theme of this chapter let us pause to introduce the
relevant notion of the convolution of probability measures on Rn.

21.1 Convolutions

Definition 21.1. Let µ and ν be two probability measure on (Rn,BRn) . The
convolution of µ and ν, denoted µ ∗ ν, is the measure, P ◦ (X + Y )−1 where
{X,Y } are two independent random vectors such that P ◦ X−1 = µ and P ◦
Y −1 = ν.

Of course we may give a more direct definition of the convolution of µ and
ν by observing for A ∈ BRn that

(µ ∗ ν) (A) = P (X + Y ∈ A)

=
∫

Rn
dµ (x)

∫
Rn
dν (y) 1A (x+ y) (21.1)

=
∫

Rn
ν (A− x) dµ (x) (21.2)

=
∫

Rn
µ (A− x) dν (x) . (21.3)

This may also be expressed as,

(µ ∗ ν) (A) =
∫

Rn×Rn
1A (x+ y) dµ (x) dν (y) =

∫
Rn×Rn

1A (x+ y) d (µ⊗ ν) (x, y) .

(21.4)

Exercise 21.1. Let µ, ν, and γ be three probability measure on (Rn,BRn) .
Show;

1. µ ∗ ν = ν ∗ µ.
2. µ ∗ (ν ∗ γ) = (µ ∗ ν) ∗ γ. (So it is now safe to write µ ∗ ν ∗ γ for either side

of this equation.)
3. (µ ∗ δx) (A) = µ (A− x) for all x ∈ Rn where δx (A) := 1A (x) for all A ∈
BRn and in particular µ ∗ δ0 = µ.

As a consequence of item 2. of this exercise, if {Yi}ni=1 are independent
random vectors in Rn with µi = Law (Yi) , then

Law (Y1 + · · ·+ Yn) = µ1 ∗ µ2 ∗ · · · ∗ µn. (21.5)

Solution to Exercise (21.1). 1. The first item follows from Eq. (21.4).
2.For the second we have,

[µ ∗ (ν ∗ γ)] (A) =
∫

Rn
(ν ∗ γ) (A− x) dµ (x)

=
∫

Rn
dµ (x)

∫
Rn
dν (y) γ (A− x− y)

=
∫

Rn
dµ (x)

∫
Rn
dν (y)

∫
Rn
dγ (z) 1A−x−y (z)

=
∫

Rn
dµ (x)

∫
Rn
dν (y)

∫
Rn
dγ (z) 1A (x+ y + z)

=
∫

[Rn]3
1A (x+ y + z) d (µ⊗ ν ⊗ γ) (x, y, z) .

Similarly one shows [(µ ∗ ν) ∗ γ] (A) satisfies the same formula.
3. For the last item,

(µ ∗ δx) (A) =
∫

Rn
δx (A− y) dµ (y) =

∫
Rn

1x∈A−ydµ (y)

=
∫

Rn
1x+y∈Adµ (y) =

∫
Rn

1y∈A−xdµ (y) = µ (A− x) .
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Remark 21.2. Suppose that dµ (x) = u (x) dx where u (x) ≥ 0 and∫
Rn u (x) dx = 1. Then using the translation invariance of Lebesgue mea-

sure and Tonelli’s theorem, we have

µ ∗ ν (f) =
∫

Rn×Rn
f (x+ y)u (x) dxdν (y) =

∫
Rn×Rn

f (x)u (x− y) dxdν (y)

from which it follows that

d (µ ∗ ν) (x) =
[∫

Rn
u (x− y) dν (y)

]
dx.

If we further assume that dν (x) = v (x) dx, then we have

d (µ ∗ ν) (x) =
[∫

Rn
u (x− y) v (y) dy

]
dx.

To simplify notation we write,

u ∗ v (x) =
∫

Rn
u (x− y) v (y) dy =

∫
Rn
v (x− y)u (y) dy.

Example 21.3. Suppose that n = 1, dµ (x) = 1[0,1] (x) dx and dν (x) =
1[−1,0] (x) dx so that ν (A) = µ (−A) . In this case

d (µ ∗ ν) (x) =
(
1[0,1] ∗ 1[−1,0]

)
(x) dx

where (
1[0,1] ∗ 1[−1,0]

)
(x) =

∫
R

1[−1,0] (x− y) 1[0,1] (y) dy

=
∫

R
1[0,1] (y − x) 1[0,1] (y) dy

=
∫

R
1[0,1]+x (y) 1[0,1] (y) dy

= m ([0, 1] ∩ (x+ [0, 1])) = (1− |x|)+ .

21.2 Total Variation Distance

Definition 21.4. Let µ and ν be two probability measure on a measurable space,
(Ω,B) . The total variation distance, dTV (µ, ν) , is defined as

dTV (µ, ν) := sup
A∈B
|µ (A)− ν (A)| , (21.6)

i.e. dTV (µ, ν) is simply the supremum norm of µ− ν as a function on B.

Notation 21.5 Suppose that X and Y are random variables, let

dTV (X,Y ) := dTV (µX , µY ) = sup
A∈BR

|P (X ∈ A)− P (Y ∈ A)| ,

where µX = P ◦X−1 and µY = P ◦ Y −1.

Example 21.6. For x ∈ Rn, let δx (A) := 1A (x) for all A ∈ BRn . Then one easily
shows that dTV (δx, δy) = 1x 6=y. Thus if x 6= y, in this metric δx and δy are
one unit apart no matter how close x and y are in Rn. (This is not always a
desirable feature and because of this will introduce shortly another notion of
closeness for measures.)

Exercise 21.2. Let P1 denote the set of probability measures on (Ω,B) . Show
dTV is a complete metric on P1.

Exercise 21.3. Suppose that µ, ν, and γ are probability measures on
(Rn,BRn) . Show dTV (µ ∗ ν, µ ∗ γ) ≤ dTV (ν, γ) . Use this fact along with
Exercise 21.2 to show,

dTV (µ1 ∗ µ2 ∗ · · · ∗ µn, ν1 ∗ ν2 ∗ · · · ∗ νn) ≤
n∑
i=1

dTV (µi, νi)

for all choices probability measures, µi and νi on (Rn,BRn) .

Remark 21.7. The function, λ : B → R defined by, λ (A) := µ (A)− ν (A) for all
A ∈ B, is an example of a “signed measure.” For signed measures, one usually
defines

‖λ‖TV := sup

{
n∑
i=1

|λ (Ai)| : n ∈ N and partitions, {Ai}ni=1 ⊂ B of Ω

}
.

You are asked to show in Exercise 21.4 below, that when λ = µ−ν, dTV (µ, ν) =
1
2 ‖µ− ν‖TV .

Lemma 21.8 (Scheffé’s Lemma). Suppose that m is another positive mea-
sure on (Ω,B) such that there exists measurable functions, f, g : Ω → [0,∞),
such that dµ = fdm and dν = gdm.1 Then

dTV (µ, ν) =
1
2

∫
Ω

|f − g| dm.

Moreover, if {µn}∞n=1 is a sequence of probability measure of the form, dµn =
fndm with fn : Ω → [0,∞), and fn → g, m - a.e., then dTV (µn, ν) → 0 as
n→∞.
1 Fact: it is always possible to do this by taking m = µ+ ν for example.
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Proof. Let λ = µ− ν and h := f − g : Ω → R so that dλ = hdm. Since

λ (Ω) = µ (Ω)− ν (Ω) = 1− 1 = 0,

if A ∈ B we have
λ (A) + λ (Ac) = λ (Ω) = 0.

In particular this shows |λ (A)| = |λ (Ac)| and therefore,

|λ (A)| = 1
2

[|λ (A)|+ |λ (Ac)|] =
1
2

[∣∣∣∣∫
A

hdm

∣∣∣∣+
∣∣∣∣∫
Ac
hdm

∣∣∣∣] (21.7)

≤ 1
2

[∫
A

|h| dm+
∫
Ac
|h| dm

]
=

1
2

∫
Ω

|h| dm.

This shows
dTV (µ, ν) = sup

A∈B
|λ (A)| ≤ 1

2

∫
Ω

|h| dm.

To prove the converse inequality, simply take A = {h > 0} (note Ac = {h ≤ 0})
in Eq. (21.7) to find

|λ (A)| = 1
2

[∫
A

hdm−
∫
Ac
hdm

]
=

1
2

[∫
A

|h| dm+
∫
Ac
|h| dm

]
=

1
2

∫
Ω

|h| dm.

For the second assertion, observe that |fn − g| → 0 m – a.e., |fn − g| ≤
Gn := fn + g ∈ L1 (m) , Gn → G := 2g a.e. and

∫
Ω
Gndm = 2 → 2 =

∫
Ω
Gdm

and n→∞. Therefore, by the dominated convergence theorem 7.27,

lim
n→∞

dTV (µn, ν) =
1
2

lim
n→∞

∫
Ω

|fn − g| dm = 0.

For a concrete application of Scheffé’s Lemma 21.8, see Proposition 21.49
below.

Corollary 21.9. Let ‖h‖∞ := supω∈Ω |h (ω)| when h : Ω → R is a bounded
random variable. Continuing the notation in Scheffé’s lemma above, we have

dTV (µ, ν) =
1
2

sup
{∣∣∣∣∫

Ω

hdµ−
∫
Ω

hdν

∣∣∣∣ : ‖h‖∞ ≤ 1
}
. (21.8)

Consequently, ∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣ ≤ 2dTV (µ, ν) · ‖h‖∞ (21.9)

and in particular, for all bounded and measurable functions, h : Ω → R,

lim
n→∞

dTV (µn, ν) = 0 =⇒ lim
n→∞

∫
Ω

hdµn =
∫
Ω

hdν. (21.10)

Proof. We begin by observing that∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣ =
∣∣∣∣∫
Ω

h (f − g) dm
∣∣∣∣ ≤ ∫

Ω

|h| |f − g| dm

≤ ‖h‖∞
∫
Ω

|f − g| dm = 2dTV (µ, ν) ‖h‖∞ .

Moreover, from the proof of Scheffé’s Lemma 21.8, we have

dTV (µ, ν) =
1
2

∣∣∣∣∫
Ω

hdµ−
∫
Ω

hdν

∣∣∣∣
when h := 1f>g − 1f≤g. These two equations prove Eqs. (21.8) and (21.9) and
the latter implies Eq. (21.10).

Exercise 21.4. Under the hypothesis of Scheffé’s Lemma 21.8, show

‖µ− ν‖TV =
∫
Ω

|f − g| dm = 2dTV (µ, ν) .

Exercise 21.5. Suppose that Ω is a (at most) countable set, B := 2Ω , and
{µn}∞n=0 are probability measures on (Ω,B) . Show

dTV (µn, µ0) =
1
2

∑
ω∈Ω
|µn ({ω})− µ0 ({ω})|

and limn→∞ dTV (µn, µ0) = 0 iff limn→∞ µn ({ω}) = µ0 ({ω}) for all ω ∈ Ω.

Exercise 21.6. Let µp ({1}) = p and µp ({0}) = 1 − p and νλ ({n}) := e−λ λ
n

n!
for all n ∈ N0.

1. Find dTV (µp, µq) for all 0 ≤ p, q ≤ 1.
2. Show dTV (µp, νp) = p (1− e−p) for all 0 ≤ p ≤ 1. From this estimate and

the estimate,

1− e−p =
∫ p

0

e−xdx ≤
∫ p

0

1dx = p, (21.11)

it follows that dTV (µp, νp) ≤ p2 for all 0 ≤ p ≤ 1.
3. Show

dTV (νλ, νγ) ≤ |λ− γ| e|λ−γ| for all λ, γ ∈ R+.

I got this estimate with the aid of the fundamental theorem of calculus along
with crude estimates on each term in the infinite series for dTV (νλ, νγ) .
Andy Parrish got a much better estimate, namely that

dTV (νλ, νγ) ≤ |λ− γ| for all λ, γ ∈ R+! (21.12)
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The next theorem should be compared with Exercise 7.6 which may
be stated as follows. If {Zi}ni=1 are i.i.d. Bernoulli random variables with
P (Zi = 1) = p = O (1/n) and S = Z1 + · · · + Zn, then P (S = k) ∼=
P (Poisson (pn) = k) which is valid for k � n.

Theorem 21.10 (Law of rare events). Let {Zi}ni=1 be independent Bernoulli
random variables with P (Zi = 1) = pi ∈ (0, 1) and P (Zi = 0) = 1 − pi, S :=
Z1 + · · ·+ Zn, a := p1 + · · ·+ pn, and X d= Poi (a) . Then for any2 A ∈ BR we
have

|P (S ∈ A)− P (X ∈ A)| ≤
n∑
i=1

p2
i , (21.13)

or in short,

dTV

(
n∑
i=1

Zi, X

)
≤

n∑
i=1

p2
i .

(Of course this estimate has no content unless
∑n
i=1 p

2
i < 1.)

Proof. Let {Xi}ni=1 be independent random variables with Xi
d= Pois (pi)

for each i. It then follows from Exercises 21.3 and 21.6 that,

dTV

(
n∑
i=1

Zi,

n∑
i=1

Xi

)
≤

n∑
i=1

dTV (Zi, Xi) =
n∑
i=1

pi
(
1− e−pi

)
≤

n∑
i=1

p2
i .

The reader should compare the proof of this theorem with the proof of the
central limit theorem in Theorem 10.33. For another less quantitative Poisson
limit theorem, see Theorem 23.12.

For the next result we will suppose that (Y,M, µ) is a finite measure space
with the following properties;

1. {y} ∈ M and µ ({y}) = 0 for all y ∈ Y,
2. to any A ∈ M and ε > 0, there exists a finite partition {An}N=N(ε)

n=1 ⊂ M
of A such that µ (An) ≤ ε for all n.

In what follows below we will write F (A) = o (µ (A)) provided there exits
an increasing function, δ : R+ → R+, such that δ (x) → 0 as x → 0 and
|F (A)| ≤ µ (A) δ (µ (A)) for all A ∈M.

Proposition 21.11 (Why Poisson). Suppose (Y,M, µ) is finite measure
space with the properties given above and {N (A) : A ∈M} is a collection of
N0 – valued random variables with the following properties;
2 Actually, since S and X are N0 – valued, we may as well assume that A ⊂ N0.

1. If {Aj}nj=1 ⊂ M are disjoint, then {N (Ai)}ni=1 are independent random
variables and

N

(
n∑
i=1

Ai

)
=

n∑
i=1

N (Ai) a.s.

2. P (N (A) ≥ 2) = o (µ (A)) .
3. |P (N (A) ≥ 1)− µ (A)| = o (µ (A)) .

Then N (A) d= Poi (µ (A)) for all A ∈ M and in particular EN (A) = µ (A)
for all A ∈M.

Proof. Let A ∈M and ε > 0 be given. Choose a partition {Aεi}
N
i=1 ⊂M of

A such that µ (Aεi ) ≤ ε for all i. Let Zi := 1N(Aεi )≥1 and S :=
∑N
i=1 Zi. Using

N (A) =
N∑
i=1

N (Aεi )

and Lemma 21.12, we have

|P (N (A) = k)− P (S = k)| ≤ P (N (A) 6= S) ≤
N∑
i=1

P (Zi 6= N (Aεi )) .

Since {Zi 6= N (Aεi )} = {N (Aεi ) ≥ 2} and P (N (Aεi ) ≥ 2) = o (µ (Aεi )) , it fol-
lows that

|P (N (A) = k)− P (S = k)| ≤
N∑
i=1

µ (Aεi ) δ (µ (Aεi ))

≤
N∑
i=1

µ (Aεi ) δ (ε) = δ (ε)µ (A) . (21.14)

On the other hand, {Zi}Ni=1 are independent Bernoulli random variables with

P (Zi = 1) = P (N (Aεi ) ≥ 1) ,

and aε =
∑N
i=1 P (N (Aεi ) ≥ 1) . Then by the Law of rare events Theorem 21.10,∣∣∣∣P (S = k)− akε

k!
e−aε

∣∣∣∣ ≤ N∑
i=1

[P (N (Aεi ) ≥ 1)]2 ≤
N∑
i=1

[µ (Aεi ) + o (µ (Aεi ))]
2

≤
N∑
i=1

µ (Aεi )
2 (1 + δ′ (ε))2 = (1 + δ′ (ε))2

εµ (A) .

(21.15)
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Combining Eqs. (21.14) and (21.15) shows∣∣∣∣P (N (A) = k)− akε
k!
e−aε

∣∣∣∣ ≤ [δ (ε) + (1 + δ′ (ε))2
ε
]
µ (A) (21.16)

where aε satisfies

|aε − µ (A)| =

∣∣∣∣∣
N∑
i=1

[P (N (Aεi ) ≥ 1)− µ (Aεi )]

∣∣∣∣∣
≤

N∑
i=1

|[P (N (Aεi ) ≥ 1)− µ (Aεi )]| ≤
N∑
i=1

o (µ (Aεi ))

≤
N∑
i=1

µ (Aεi ) |δ′ (µ (Aεi ))| ≤ µ (A) δ′ (ε) .

Hence we may let ε ↓ 0 in Eq. (21.16) to find

P (N (A) = k) =
(µ (A))k

k!
e−µ(A).

See [47, p. 13-16.] for another variant of this theorem in the case that Ω =
R+. See Theorem 11.11 and Exercises 11.6 – 11.8 for concrete constructions of
Poisson processes.

21.3 A Coupling Estimate

Lemma 21.12 (Coupling Estimates). Suppose X and Y are any random
variables on a probability space, (Ω,B, P ) and A ∈ BR. Then

|P (X ∈ A)− P (Y ∈ A)| ≤ P ({X ∈ A} 4 {Y ∈ A}) ≤ P (X 6= Y ) . (21.17)

Proof. The proof is simply;

|P (X ∈ A)− P (Y ∈ A)| = |E [1A (X)− 1A (Y )]|
≤ E |1A (X)− 1A (Y )| = E1{X∈A}4{Y ∈A}
≤ E1X 6=Y = P (X 6= Y ) .

Pushing the above proof a little more we have, if {Ai} is a partition of Ω,
then

∑
i

|P (X ∈ Ai)− P (Y ∈ Ai)| =
∑
i

|E [1Ai (X)− 1Ai (Y )]|

≤
∑
i

E |1Ai (X)− 1Ai (Y )|

≤ E [1X 6=Y : X ∈ Ai or Y ∈ Ai]
≤ E [1X 6=Y : X ∈ Ai] + E [1X 6=Y : Y ∈ Ai]
= 2P (X 6= Y ) .

This shows
‖X∗P − Y∗P‖TV ≤ 2P (X 6= Y ) .

This is really not more general than Eq. (21.17) since the Hahn decomposition
theorem we know that in fact the signed measure, µ := X∗P − Y∗P, has total
variation given by

‖µ‖TV = µ (Ω+)− µ (Ω−)

where Ω = Ω+

∑
Ω− with Ω+ being a positive set and Ω− being a negative

set. Moreover, since µ (Ω) = 0 we must in fact have µ (Ω+) = −µ (Ω−) so that

‖X∗P − Y∗P‖TV = ‖µ‖TV = 2µ (Ω+) = 2 |P (X ∈ Ω+)− P (Y ∈ Ω+)|
≤ 2P (X 6= Y ) .

Here is perhaps a better way to view the above lemma. Suppose that we
are given two probability measures, µ, ν, on (R,BR) (or any other measurable
space, (S,BS)). We would like to estimate ‖µ− ν‖TV . The lemma states that
if X,Y are random variables (vectors) on some probability space such that
LawP (X) = µ and LawP (Y ) = ν, then

‖µ− ν‖TV ≤ 2P (X 6= Y ) .

Suppose that we let ρ := LawP (X,Y ) on (S × S,BS ⊗ BS), πi : S × S → S be
the projection maps for i = 1, 2, then (π1)∗ ρ = µ, (π2)∗ ρ = v, and

‖µ− ν‖TV ≤ 2P (X 6= Y ) = 2ρ (π1 6= π2) = 2ρ
(
S2 \∆

)
where ∆ = {(s, s) : s ∈ S} is the diagonal in S2. Thus finding a coupling
amounts to fining a probability measure, ρ, on

(
S2,BS ⊗ BS

)
whose marginals

are µ and ν respectively. Then we will have the coupling estimate,

‖µ− ν‖TV ≤ 2ρ
(
S2 \∆

)
.

As an example of how to use Lemma 21.12 let us give a coupling proof of
Theorem 21.10.

Proof. (A coupling proof of Theorem 21.10.) We are going to construct a
coupling for S∗P and X∗P. Finding such a coupling amounts to representing
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X and S on the same probability space. We are going to do this by building
all random variables in site out of {Ui}ni=1 , where the {Ui}ni=1 are i.i.d. random
variables distributed uniformly on [0, 1] .

If we define,
Zi := 1(1−pi,1] (Ui) = 11−pi<Ui≤1,

then {Zi}ni=1 are independent Bernoulli random variables with P (Zi = 1) = pi.
We are now also going to construct out of the {Ui}ni=1 , a sequence of indepen-
dent Poisson random variables, {Xi}ni=1 with Xi = Poi (pi) . To do this define

αi (k) := P (Poi (pi) ≤ k) = e−pi
k∑
j=0

pji
j!

with the convention that αi (−1) = 0. Notice that

e−pi ≤ αi (k) ≤ αi (k + 1) ≤ 1 for all k ∈ N0

and for pi small, we have

αi (0) = e−pi ∼= 1− pi
αi (1) = e−pi (1 + pi) ∼= 1− p2

i .

If we define (see Figure 21.1) by

Xi :=
∞∑
k=0

k1αi(k−1)<Ui≤αi(k),

then Xi = Poi (pi) since

P (Xi = k) = P (αi (k − 1) < Ui ≤ αi (k))

= αi (k)− αi (k − 1) = e−pi
pki
k!
.

It is also clear that {Xi}ni=1 are independent and hence by Lemma 11.1, it

follows that X :=
∑n
i=1Xi

d= Poi (a) .
An application of Lemma 21.12 now shows

|P (S ∈ A)− P (X ∈ A)| ≤ P (S 6= X)

and since {S 6= X} ⊂ ∪ni=1 {Xi 6= Zi} , we may conclude

|P (S ∈ A)− P (X ∈ A)| ≤
n∑
i=1

P (Xi 6= Zi) .

Fig. 21.1. Plots of Xi and Zi as functions of Ui.

As is easily seen from Figure 21.1,

P (Xi 6= Zi) = [αi (0)− (1− pi)] + 1− αi (1)

=
[
e−pi − (1− pi)

]
+ 1− e−pi (1 + pi)

= pi
(
1− e−pi

)
≤ p2

i

where we have used the estimate in Eq. (21.11) for the last inequality.

21.4 Weak Convergence

Recall that to each right continuous increasing function, F : R → R there
is a unique measure, µF , on BR such that µF ((a, b]) = F (b) − F (a) for all
−∞ < a ≤ b <∞. To simplify notation in this section we will now write F (A)
for µF (A) for all A ∈ BR and in particular F ((a, b]) := F (b) − F (a) for all
−∞ < a ≤ b <∞.

Example 21.13. Suppose that P
(
Xn = i

n

)
= 1

n for i ∈ {1, 2, . . . , n} so that
Xn is a discrete “approximation” to the uniform distribution, i.e. to U where
P (U ∈ A) = m (A ∩ [0, 1]) for all A ∈ BR. If we let An =

{
i
n : i = 1, 2, . . . , n

}
,

then P (Xn ∈ An) = 1 while P (U ∈ An) = 0. Therefore, it follows that
dTV (Xn, U) = 1 for all n.3

3 More generally, if µ and ν are two probability measure on (R,BR) such that
µ ({x}) = 0 for all x ∈ R while ν concentrates on a countable set, then dTF (µ, ν) =
1.
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Nevertheless we would like Xn to be close to U in distribution. Let us observe
that if we let Fn (y) := P (Xn ≤ y) and F (y) := P (U ≤ y) , then

Fn (y) = P (Xn ≤ y) =
1
n

#
{
i ∈ {1, 2, . . . , n} :

i

n
≤ y
}

and
F (y) := P (U ≤ y) = (y ∧ 1) ∨ 0.

From these formula, it easily follows that F (y) = limn→∞ Fn (y) for all y ∈ R,
see Figure 21.2. This suggest that we should say that Xn converges in distribu-

Fig. 21.2. The plot of F5 in blue and F is black on [0, 1] .

tion to X iff P (Xn ≤ y)→ P (X ≤ y) for all y ∈ R. However, the next simple
example shows this definition is also too restrictive.

Example 21.14. Suppose that P (Xn = 1/n) = 1 for all n and P (X0 = 0) = 1.
Then it is reasonable to insist that Xn converges of X0 in distribution. However,
Fn (y) = 1y≥1/n → 1y≥0 = F0 (y) for all y ∈ R except for y = 0. Observe that
y is the only point of discontinuity of F0.

Notation 21.15 Let (X, d) be a metric space, f : X → R be a function. The
set of x ∈ X where f is continuous (discontinuous) at x will be denoted by C (f)
(D (f)).

Remark 21.16. If F : R → [0, 1] is a non-decreasing function, then C (F ) is
at most countable. To see this, suppose that ε > 0 is given and let Cε :=

{y ∈ R : F (y+)− F (y−) ≥ ε} . If y < y′ with y, y′ ∈ Cε, then F (y+) < F (y′−)
and (F (y−) , F (y+)) and (F (y′−) , F (y′+)) are disjoint intervals of length
greater that ε. Hence it follows that

1 = m ([0, 1]) ≥
∑
y∈Cε

m ((F (y−) , F (y+))) ≥ ε ·# (Cε)

and hence that # (Cε) ≤ ε−1 < ∞. Therefore C := ∪∞k=1C1/k is at most count-
able.

Definition 21.17. Let {F, Fn : n = 1, 2, . . . } be a collection of right continuous
non-increasing functions from R to [0, 1] . Then

1. Fn converges to F vaguely and write, Fn
v→ F, iff Fn ((a, b]) → F ((a, b])

for all a, b ∈ C (F ) .
2. Fn converges to F weakly and write, Fn

w→ F, iff Fn (x) → F (x) for all
x ∈ C (F ) .

3. We say F is proper, if F is a distribution function of a probability measure,
i.e. if F (∞) = 1 and F (−∞) = 0.

Example 21.18. If Xn and U are as in Example 21.13 and Fn (y) := P (Xn ≤ y)
and F (y) := P (Y ≤ y) , then Fn

v→ F and Fn
w→ F.

Lemma 21.19. Let {F, Fn : n = 1, 2, . . . } be a collection of proper distribution
functions. Then Fn

v→ F iff Fn
w→ F. In the case where Fn and F are proper

and Fn
w→ F, we will write Fn =⇒ F.

Proof. If Fn
w→ F, then Fn ((a, b]) = Fn (b) − Fn (a) → F (b) − F (a) =

F ((a, b]) for all a, b ∈ C (F ) and therefore Fn
v→ F. So now suppose Fn

v→ F
and let a < x with a, x ∈ C (F ) . Then

F (x) = F (a) + lim
n→∞

[Fn (x)− Fn (a)] ≤ F (a) + lim inf
n→∞

Fn (x) .

Letting a ↓ −∞, using the fact that F is proper, implies

F (x) ≤ lim inf
n→∞

Fn (x) .

Likewise,

F (x)−F (a) = lim
n→∞

[Fn (x)− Fn (a)] ≥ lim sup
n→∞

[Fn (x)− 1] = lim sup
n→∞

Fn (x)−1

which upon letting a ↑ ∞, (so F (a) ↑ 1) allows us to conclude,

F (x) ≥ lim sup
n→∞

Fn (x) .
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Definition 21.20. A sequence of random variables, {Xn}∞n=1 is said to con-
verge weakly or to converge in distribution to a random variable X (writ-
ten Xn =⇒ X) iff Fn (y) := P (Xn ≤ y) =⇒ F (y) := P (X ≤ y) .

Example 21.21 (Central Limit Theorem). The central limit theorem (see The-
orems 7.62, Corollary 10.35, and Theorem 22.23) states; if {Xn}∞n=1 are i.i.d.
L2 (P ) random variables with µ := EX1 and σ2 = Var (X1) , then

Sn − nµ√
n

=⇒ N (0, σ) d= σN (0, 1) .

Written out explicitly we find

lim
n→∞

P

(
a <

Sn − nµ
σ
√
n
≤ b
)

= P (a < N (0, 1) ≤ b)

=
1√
2π

∫ b

a

e−
1
2x

2
dx

or equivalently put

lim
n→∞

P
(
nµ+ σ

√
na < Sn ≤ nµ+ σ

√
nb
)

=
1√
2π

∫ b

a

e−
1
2x

2
dx.

More intuitively, we have

Sn
d∼= nµ+

√
nσN (0, 1) d= N

(
nµ, nσ2

)
.

Example 21.22. Suppose that P (Xn = n) = 1 for all n, then Fn (y) = 1y≥n →
0 = F (y) as n → ∞. Notice that F is not a distribution function because all
of the mass went off to +∞. Similarly, if we suppose, P (Xn = ±n) = 1

2 for all
n, then Fn = 1

21[−n,n) + 1[n,∞) → 1
2 = F (y) as n → ∞. Again, F is not a

distribution function on R since half the mass went to −∞ while the other half
went to +∞.

Example 21.23. Suppose X is a non-zero random variables such that X d= −X,
then Xn := (−1)nX d= X for all n and therefore, Xn =⇒ X as n → ∞. On
the other hand, Xn does not converge to X almost surely or in probability.

Lemma 21.24. Suppose X is a random variable, {cn}∞n=1 ⊂ R, and Xn =
X + cn. If c := limn→∞ cn exists, then Xn =⇒ X + c.

Proof. Let F (x) := P (X ≤ x) and

Fn (x) := P (Xn ≤ x) = P (X + cn ≤ x) = F (x− cn) .

Clearly, if cn → c as n → ∞, then for all x ∈ C (F (· − c)) we have Fn (x) →
F (x− c) . Since F (x− c) = P (X + c ≤ x) , we see that Xn =⇒ X + c.
Observe that Fn (x)→ F (x− c) only for x ∈ C (F (· − c)) but this is sufficient
to assert Xn =⇒ X + c.

Fig. 21.3. The functions Y and Y + associated to F.

Lemma 21.25. Suppose {Xn}∞n=1 is a sequence of random variables on a com-

mon probability space and c ∈ R. Then Xn =⇒ c iff Xn
P→ c.

Proof. Recall that Xn
P→ c iff for all ε > 0, P (|Xn − c| > ε)→ 0. Since

{|Xn − c| > ε} = {Xn > c+ ε} ∪ {Xn < c− ε}

it follows Xn
P→ c iff P (Xn > x)→ 0 for all x > c and P (Xn < x)→ 0 for all

x < c. These conditions are also equivalent to P (Xn ≤ x)→ 1 for all x > c and
P (Xn ≤ x) ≤ P (Xn < x′)→ 0 for all x < c (where x < x′ < c). So Xn

P→ c iff

lim
n→∞

P (Xn ≤ x) =
{

0 if x < c
1 if x > c

= F (x)

where F (x) = P (c ≤ x) = 1x≥c. Since C (F ) = R\{c} , we have shown Xn
P→ c

iff Xn =⇒ c.

Notation 21.26 Given a proper distribution function, F : R→ [0, 1] , let Y =
F← : (0, 1)→ R be the function defined by

Y (x) = F← (x) = sup {y ∈ R : F (y) < x} .

Similarly, let
Y + (x) := inf {y ∈ R : F (y) > x} .

We will need the following simple observations about Y and Y + which are
easily understood from Figure 21.3.
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1. Y (x) ≤ Y + (x) and Y (x) < Y + (x) iff x is the height of a “flat spot” of F.
2. The set,

E :=
{
x ∈ (0, 1) : Y (x) < Y + (x)

}
, (21.18)

of flat spot heights is at most countable. This is because,
{(Y (x) , Y + (x))}x∈E is a collection of pairwise disjoint intervals which is
necessarily countable. (Each such interval contains a rational number.)

3. The following inequality holds,

F (Y (x)−) ≤ x ≤ F (Y (x)) for all x ∈ (0, 1) . (21.19)

Indeed, if y > Y (x) , then F (y) ≥ x and by right continuity of F it follows
that F (Y (x)) ≥ x. Similarly, if y < Y (x) , then F (y) < x and hence
F (Y (x)−) ≤ x.

4. {x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . To prove this assertion first
suppose that Y (x) ≤ y0, then according to Eq. (21.19) we have x ≤
F (Y (x)) ≤ F (y0) , i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely, if x ∈ (0, 1)
and x ≤ F (y0) , then Y (x) ≤ y0 by definition of Y.

5. As a consequence of item 4. we see that Y is B(0,1)/BR – measurable and
m ◦ Y −1 = F, where m is Lebesgue measure on

(
(0, 1) ,B(0,1)

)
.

Theorem 21.27 (Baby Skorohod Theorem). Suppose that {Fn}∞n=0 is a
collection of distribution functions such that Fn =⇒ F0. Then there ex-
ists a probability space, (Ω,B, P ) and random variables, {Yn}∞n=1 such that
P (Yn ≤ y) = Fn (y) for all n ∈ N∪{∞} and limn→∞ Yn = Y a.s..

Proof. We will take Ω := (0, 1) , B = B(0,1), and P = m – Lebesgue measure
on Ω and let Yn := F←n and Y := F←0 as in Notation 21.26. Because of the
above comments, P (Yn ≤ y) = Fn (y) and P (Y ≤ y) = F0 (y) for all y ∈ R. So
in order to finish the proof it suffices to show, Yn (x) → Y (x) for all x /∈ E,
where E is the countable null set defined as in Eq. (21.18).

We now suppose x /∈ E. If y ∈ C (F0) with y < Y (x) , we have
limn→∞ Fn (y) = F0 (y) < x and in particular, Fn (y) < x for almost all n.
This implies that Yn (x) ≥ y for a.a. n and hence that lim infn→∞ Yn (x) ≥ y.
Letting y ↑ Y (x) with y ∈ C (F0) then implies

lim inf
n→∞

Yn (x) ≥ Y (x) .

Similarly, for x /∈ E and y ∈ C (F0) with Y (x) = Y + (x) < y, we have
limn→∞ Fn (y) = F0 (y) > x and in particular, Fn (y) > x for almost all n.
This implies that Yn (x) ≤ y for a.a. n and hence that lim supn→∞ Yn (x) ≤ y.
Letting y ↓ Y (x) with y ∈ C (F0) then implies

lim sup
n→∞

Yn (x) ≤ Y (x) .

Hence we have shown, for x /∈ E, that

lim sup
n→∞

Yn (x) ≤ Y (x) ≤ lim inf
n→∞

Yn (x)

which shows

lim
n→∞

F←n (x) = lim
n→∞

Yn (x) = Y (x) = F← (x) for all x /∈ E. (21.20)

In preparation for the full version of Skorohod’s Theorem 21.57 it will be
useful to record a special case of Theorem 21.27 which has both a stronger
hypothesis and a stronger conclusion.

Theorem 21.28 (Prenatal Skorohod Theorem). Suppose S =
{1, 2, . . . ,m} ⊂ R and {µn}∞n=1 is a sequence of probabilities on S such
that µn =⇒ µ for some probability µ on S. Let P := µ⊗m on Ω := S× (0, 1],
Y (i, θ) = i for all (i, θ) ∈ Ω. Then there exists Yn : Ω → S such that
LawP (Yn) = µn for all n and Yn (i, θ) = i if θ ≤ µn (i) /µ (i) where we take
0/0 = 1 in this expression. In particular, limn→∞ Yn (i, θ) = Y (i, θ) a.s.

Proof. The main point is to show for any probability measure, ν, on S
there exists Yν : Ω → S such that Yν (i, θ) = i when θ ≤ ν (i) /µ (i) and
LawP (Yν) = ν. If we can do this then we need only take Yn = Yµn for all n to
complete the proof.

In the proof to follow we will use the simple observation that for any a ∈
(0, 1) and αi ≥ 0 with

∑m
i=1 αi = 1, then there exists a partition, {Ji}mi=1 of

(a, 1] such that m (Ji) = αim ((a, 1]) = αi (1− a) – simply take Ji = (ai−1, ai]
where a0 = a and ai =

(∑
j≤i αi

)
a for 1 ≤ i ≤ m.

Let ν be any probability on S and let

Ai := {i} ×
(

0,
ν (i)
µ (i)

∧ 1
]

and

C = Ω \

(
m∑
i=1

Ai

)
=

m∑
i=1

{i} ×
(
ν (i)
µ (i)

∧ 1, 1
]

and observe that

P (Ai) = µ (i) ·
(
ν (i)
µ (i)

∧ 1
)

= ν (i) ∧ µ (i) .

Using the observation in the previous paragraph we may write {k} ×(
ν(k)
µ(k) ∧ 1, 1

]
=
∑m
i=1 Ck,i with
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P (Ck,i) = αi · P
(
{k} ×

(
ν (k)
µ (k)

∧ 1, 1
])

.

The sets Ci :=
∑m
k=1 Ck,i then form a partition of C such that P (Ci) = αiP (C)

for all i.
We now define

Yν (i, θ) :=
m∑
i=1

i1Ai∪Ci

so that Yν = i on Ai and in particular Yν (i, θ) = i when θ ≤ v (i) /µ (i) .
To finish the proof we need only choose the {αi}mi=1 so that P (Yν = i) = ν (i)

for all i, i.e. we must require,

ν (i) = P (Yν = i) = P (Ai ∪ Ci) = P (Ai) + αiP (C)
= ν (i) ∧ µ (i) + αiP (C) (21.21)

and therefore we must define

αi = (ν (i)− ν (i) ∧ µ (i)) /P (C) ≥ 0.

To see this is an admissible choice (i.e.
∑m
i=1 αi = 1) notice that

P (C) =
∑
i

[µ (i)− ν (i) ∧ µ (i)]

=
∑

ν(i)<µ(i)

(µ (i)− ν (i)) =
∑

µ(i)≤ν(i)

(ν (i)− µ (i)) , (21.22)

wherein we have used the fact that∑
i∈S

(µ (i)− ν (i)) = 1− 1 = 0.

Making use of these identities we find,∑
i∈S

αi =
1

P (C)

∑
µ(i)≤ν(i)

(ν (i)− µ (i)) = 1.

The next theorem summarizes a number of useful equivalent characteriza-
tions of weak convergence. (The reader should compare Theorem 21.29 with
Corollary 21.9.) In this theorem we will write BC (R) for the bounded continu-
ous functions, f : R→ R (or f : R→ C) and Cc (R) for those f ∈ C (R) which
have compact support, i.e. f (x) ≡ 0 if |x| is sufficiently large.

Theorem 21.29. Suppose that {µn}∞n=0 is a sequence of probability measures
on (R,BR) and for each n, let Fn (y) := µn ((−∞, y]) be the (proper) distribution
function associated to µn. Then the following are equivalent.

1. For all f ∈ BC (R) , ∫
R
fdµn →

∫
R
fdµ0 as n→∞. (21.23)

2. Eq. (21.23) holds for all f ∈ BC (R) which are uniformly continuous.
3. Eq. (21.23) holds for all f ∈ Cc (R) .
4. Fn =⇒ F.
5. There exists a probability space (Ω,B, P ) and random variables, Yn, on this

space such that P ◦ Y −1
n = µn for all n and Yn → Y0 a.s.

Proof. Clearly 1. =⇒ 2. =⇒ 3. and 5. =⇒ 1. by the dominated
convergence theorem. Indeed, we have∫

R
fdµn = E [f (Yn)] D.C.T.→ E [f (Y )] =

∫
R
fdµ0

for all f ∈ BC (R) . Therefore it suffices to prove 3. =⇒ 4. and 4. =⇒ 5.
The proof of 4. =⇒ 5. will be the content of Skorohod’s Theorem 21.27 below.
Given Skorohod’s Theorem, we will now complete the proof.

(3. =⇒ 4.) Let −∞ < a < b < ∞ with a, b ∈ C (F0) and for ε > 0, let
fε (x) ≥ 1(a,b] and gε (x) ≤ 1(a,b] be the functions in Cc (R) pictured in Figure
21.4. Then

lim sup
n→∞

µn ((a, b]) ≤ lim sup
n→∞

∫
R
fεdµn =

∫
R
fεdµ0 (21.24)

and
lim inf
n→∞

µn ((a, b]) ≥ lim inf
n→∞

∫
R
gεdµn =

∫
R
gεdµ0. (21.25)

Since fε → 1[a,b] and gε → 1(a,b) as ε ↓ 0, we may use the dominated convergence
theorem to pass to the limit as ε ↓ 0 in Eqs. (21.24) and (21.25) to conclude,

lim sup
n→∞

µn ((a, b]) ≤ µ0 ([a, b]) = µ0 ((a, b])

and
lim inf
n→∞

µn ((a, b]) ≥ µ0 ((a, b)) = µ0 ((a, b]) ,

where the second equality in each of the equations holds because a and b are
points of continuity of F0. Hence we have shown that limn→∞ µn ((a, b]) exists
and is equal to µ0 ((a, b]) .

Example 21.30. Suppose that {µn}∞n=1 and µ are measures on (R,BR) such that
limn→∞ dTV (µn, µ) = 0, then µn =⇒ µ. To prove this simply observe that for
f ∈ BC (R) we have by Corollary 21.9 that

|µ (f)− µn (f)| ≤ 2 ‖f‖u dTV (µn, µ)→ 0 as n→∞.
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Fig. 21.4. The picture definition of the trapezoidal functions, fε and gε.

Corollary 21.31. Suppose that {Xn}∞n=0 is a sequence of random variables,

such that Xn
P→ X0, then Xn =⇒ X0. (Recall that Example 21.23 shows the

converse is in general false.)

Proof. Let g ∈ BC (R) , then by Corollary 12.12, g (Xn) P→ g (X0) and since
g is bounded, we may apply the dominated convergence theorem (see Corollary
12.9) to conclude that E [g (Xn)]→ E [g (X0)] .

We end this section with a few more equivalent characterizations of weak
convergence. The combination of Theorem 21.29 and 21.32 is often called the

Portmanteau4 Theorem. A review of the notions of closure, interior, and bound-
ary of a set A which are used in the next theorem may be bound in Subsection
21.9.1 below.

Theorem 21.32 (The Baby Portmanteau Theorem). Suppose {Fn}∞n=0

are proper distribution functions. (Recall that we are denoting µFn (A) simply
by Fn (A) for all A ∈ BR.) Then the following are equivalent.

1. Fn =⇒ F0.
2. lim infn→∞ Fn (U) ≥ F0 (U) for open subsets, U ⊂ R.
3. lim supn→∞ Fn (C) ≤ F0 (C) for all closed subsets, C ⊂ R.
4. limn→∞ Fn (A) = F0 (A) for all A ∈ BR such that F0 (bd (A)) = 0.

Proof. (1. =⇒ 2.) By Skorohod’s Theorem 21.27 we may choose random
variables, Yn, such that P (Yn ≤ y) = Fn (y) for all y ∈ R and n ∈ N and
Yn → Y0 a.s. as n→∞. Since U is open, it follows that

1U (Y ) ≤ lim inf
n→∞

1U (Yn) a.s.

and so by Fatou’s lemma,

F (U) = P (Y ∈ U) = E [1U (Y )]
≤ lim inf

n→∞
E [1U (Yn)] = lim inf

n→∞
P (Yn ∈ U) = lim inf

n→∞
Fn (U) .

(2. ⇐⇒ 3.) This follows from the observations: 1) C ⊂ R is closed iff
U := Cc is open, 2) F (U) = 1 − F (C) , and 3) lim infn→∞ (−Fn (C)) =
− lim supn→∞ Fn (C) .

(2. and 3. ⇐⇒ 4.) If F0 (bd (A)) = 0, then Ao ⊂ A ⊂ Ā with F0

(
Ā \Ao

)
=

F0 (bd (A)) = 0. Therefore

F0 (A) = F0 (Ao) ≤ lim inf
n→∞

Fn (Ao) ≤ lim sup
n→∞

Fn
(
Ā
)
≤ F0

(
Ā
)

= F0 (A) .

(4. =⇒ 1.) Let a, b ∈ C (F0) and take A := (a, b]. Then F0 (bd (A)) =
F0 ({a, b}) = 0 and therefore, limn→∞ Fn ((a, b]) = F0 ((a, b]) , i.e. Fn =⇒ F0.

Exercise 21.7. Suppose that F is a continuous proper distribution function.
Show,

1. F : R→ [0, 1] is uniformly continuous.

4 Portmanteua: 1) A new word formed by joining two others and combining their
meanings, or 2) A large travelling bag made of stiff leather.

Page: 331 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



332 21 Weak Convergence Results

2. If {Fn}∞n=1 is a sequence of distribution functions converging weakly to F,
then Fn converges to F uniformly on R, i.e.

lim
n→∞

sup
x∈R
|F (x)− Fn (x)| = 0.

In particular, it follows that

sup
a<b
|µF ((a, b])− µFn ((a, b])| = sup

a<b
|F (b)− F (a)− (Fn (b)− Fn (a))|

≤ sup
b
|F (b)− Fn (b)|+ sup

a
|Fn (a)− Fn (a)|

→ 0 as n→∞.

Hints for part 2. Given ε > 0, show that there exists, −∞ = α0 < α1 <
· · · < αn = ∞, such that |F (αi+1)− F (αi)| ≤ ε for all i. Now show, for
x ∈ [αi, αi+1), that

|F (x)− Fn (x)| ≤ (F (αi+1)− F (αi))+|F (αi)− Fn (αi)|+(Fn (αi+1)− Fn (αi)) .

Most of the results above generalize to the case where R is replaced by
a complete separable metric space as described in Section 21.9 below. The
definition of weak convergence in this generality is as follows.

Definition 21.33 (Weak convergence). Let (S, ρ) be a metric space. A se-
quence of probability measures {µn}∞n=1 is said to converge weakly to a prob-
ability µ if limn→∞ µn(f) = µ(f) for every f ∈ BC(S).5 We will write this
convergence as µn =⇒ µ or µn

w→ µ as n→∞.

As a warm up to these general results and compactness results to come, let
us consider in more detail the case where S = Rd.

Proposition 21.34. Suppose that {µn}∞n=1 ∪ {µ} are probability measures on(
S := Rd,B = BRd

)
such that µ (f) = limn→∞ µn (f) for all f ∈ C∞c (S) then

limn→∞ µn (f) = µ (f) for all f ∈ Cc (S) .

Proof. Let ρ ∈ C∞c (S) such that 0 ≤ ρ ≤ 1C1 and
∫
S
ρ (z) dz = 1. For

f ∈ Cc (S) and ε > 0, let

fε (x) :=
∫
S

f (x+ εz) ρ (z) dz. (21.26)

It then follows that
5 This is actually “weak-* convergence” when viewing µn ∈ BC(S)∗.

Mε := max
x
|f (x)− fε (x)| = max

x

∣∣∣∣∫
S

[f (x)− f (x+ εz)] ρ (z) dz
∣∣∣∣

≤ max
x

∫
S

|f (x)− f (x+ εz)| ρ (z) dz

≤ max
x

max
|z|≤ε

|f (x)− f (x+ z)|

where the latter expression goes to zero as ε ↓ 0 by the uniform continuity of f.
Thus we have shown that fε → f uniformly in x as ε ↓ 0. Making the change
of variables y = x+ εz in Eq. (21.26) shows

fε (x) :=
1
εd

∫
S

f (y) ρ
(
y − x
ε

)
dy

from which it follows that fε is smooth. Using this information we find,

lim sup
n→∞

|µ (f)− µn (f)|

≤ lim sup
n→∞

[|µ (f)− µ (fε)|+ |µ (fε)− µn (fε)|+ |µn (fε)− µn (f)|]

≤ 2Mε → 0 as ε ↓ 0.

Theorem 21.35. Suppose that {µn}∞n=1 ∪ {µ} are probability measures on(
S := Rd,B = BRd

)
(or some other locally compact Hausdorff space) such that

µ (f) = limn→∞ µn (f) for all f ∈ Cc (S) , then;

1. For all ε > 0 there exists a compact set Kε ⊂ S such that µ (Kε) ≥ 1 − ε
and µn (Kε) ≥ 1− ε for all n ∈ N.

2. If f ∈ BC (S) , then limn→∞ µn (f) = µ (f) .

Proof. For all R > 0 let CR := {x ∈ S : |x| ≤ R} and then choose ϕR ∈
Cc (S) such that ϕR = 1 on CR/2 and 0 ≤ ϕR ≤ 1CR .

1. With this notation it follows that

µn (CR) ≥ µn (ϕR)→ µ (ϕR) ≥ µ
(
CR/2

)
.

Choose R so large that µn (CR) ≥ µ
(
CR/2

)
≥ 1− ε/2. Then for n ≥ Nε we

will have µn (CR) ≥ 1− ε for all n ≥ Nε. By increasing R more if necessary
we may also assume that µn (CR) ≥ 1− ε for all n < Nε. Taking Kε := CR
for this R completes the proof of item 1.

2. Let f ∈ BC (S) and for R > 0 let fR := ϕR · f ∈ Cc (S) . Then
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lim sup
n→∞

|µ (f)− µn (f)|

≤ lim sup
n→∞

[|µ (f)− µ (fR)|+ |µ (f)− µn (fR)|+ |µn (fR)− µn (f)|]

= |µ (f)− µ (fR)|+ lim sup
n→∞

|µn (fR)− µn (f)| . (21.27)

By the dominated convergence theorem, limR→∞ |µ (f)− µ (fR)| = 0. For
the second term if M = maxx∈S |f (x)| we will have

sup
n
|µn (fR)− µn (f)| ≤ sup

n
µn (|fR − f |)

≤M · sup
n
µn (ϕR 6= 1) ≤M · sup

n
µn
(
S \ CR/2

)
.

However, by item 1. it follows that limR→∞ supn µn
(
S \ CR/2

)
= 0. There-

fore letting R→∞ in Eq. (21.27) show that lim supn→∞ |µ (f)− µn (f)| =
0.

21.5 “Derived” Weak Convergence

Lemma 21.36. Let (X, d) be a metric space, f : X → R be a function, and
D (f) be the set of x ∈ X where f is discontinuous at x. Then D (f) is a Borel
measurable subset of X.

Proof. For x ∈ X and δ > 0, let Bx (δ) = {y ∈ X : d (x, y) < δ} . Given
δ > 0, let fδ : X → R∪{∞} be defined by,

fδ (x) := sup
y∈Bx(δ)

f (y) .

We will begin by showing fδ is lower semi-continuous, i.e.
{
fδ ≤ a

}
is closed

(or equivalently
{
fδ > a

}
is open) for all a ∈ R. Indeed, if fδ (x) > a, then

there exists y ∈ Bx (δ) such that f (y) > a. Since this y is in Bx′ (δ) whenever
d (x, x′) < δ−d (x, y) (because then, d (x′, y) ≤ d (x, y)+d (x, x′) < δ) it follows
that fδ (x′) > a for all x′ ∈ Bx (δ − d (x, y)) . This shows

{
fδ > a

}
is open in

X.
We similarly define fδ : X → R∪{−∞} by

fδ (x) := inf
y∈Bx(δ)

f (y) .

Since fδ = − (−f)δ , it follows that

{fδ ≥ a} =
{

(−f)δ ≤ −a
}

is closed for all a ∈ R, i.e. fδ is upper semi-continuous. Moreover, fδ ≤ f ≤
fδ for all δ > 0 and fδ ↓ f0 and fδ ↑ f0 as δ ↓ 0, where f0 ≤ f ≤ f0 and
f0 : X → R∪{−∞} and f0 : X → R∪{∞} are measurable functions. The
proof is now complete since it is easy to see that

D (f) =
{
f0 > f0

}
=
{
f0 − f0 6= 0

}
∈ BX .

Remark 21.37. Suppose that xn → x with x ∈ C (f) := D (f)c . Then f (xn)→
f (x) as n→∞.

Theorem 21.38 (Continuous Mapping Theorem). Let f : R→ R be a
Borel measurable function. If Xn =⇒ X0 and P (X0 ∈ D (f)) = 0, then
f (Xn) =⇒ f (X0) . If in addition, f is bounded, limn→∞ Ef (Xn) = Ef (X0) .
(This result generalizes easily to the case where f : S → T is a Borel mea-
surable function between metric spaces and Xn, X0 are not S – valued random
functions.)

Proof. Let {Yn}∞n=0 be random variables on some probability space as in
Theorem 21.27. For g ∈ BC (R) we observe that D (g ◦ f) ⊂ D (f) and there-
fore,

P (Y0 ∈ D (g ◦ f)) ≤ P (Y0 ∈ D (f)) = P (X0 ∈ D (f)) = 0.

Hence it follows that g◦f ◦Yn → g◦f ◦Y0 a.s. So an application of the dominated
convergence theorem (see Corollary 12.9) implies

E [g (f (Xn))] = E [g (f (Yn))]→ E [g (f (Y0))] = E [g (f (X0))] . (21.28)

This proves the first assertion. For the second assertion we take g (x) =
(x ∧M) ∨ (−M) in Eq. (21.28) where M is a bound on |f | .

Theorem 21.39 (Slutzky’s Theorem). Suppose that Xn =⇒ X ∈ Rm and
Yn

P→ c ∈ Rn where c ∈ Rn is constant. Assuming all random vectors are on the
same probability space we will have (Xn, Yn) =⇒ (X, c) – see Definition 21.33.
In particular if m = n, by taking f (x, y) = g (x+ y) and f (x, y) = h (x · y)
with g ∈ BC (Rn) and h ∈ BC (R) , we learn Xn + Yn =⇒ X + c and
Xn · Yn =⇒ X · c respectively. (The first part of this theorem generalizes to
metric spaces as well.)

Proof. According to Theorem 21.35 it suffices to show for

lim
n→∞

E [f (Xn, Yn)] = E [f (X, c)] (21.29)
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for all f ∈ BC (Rm×n) which are uniformly continuous or even only f ∈
C (cRm×n) . For a uniformly continuous function we have for every ε > 0 a
δ := δ (ε) > 0 such that

|f (x, y)− f (x′, y′)| ≤ ε if ‖(x, y)− (x′, y′)‖ ≤ δ.

Then

|E [f (Xn, Yn)− f (Xn, c)]| ≤ E [|f (Xn, Yn)− f (Xn, c)| : ‖Yn − c‖ ≤ δ]
+ E [|f (Xn, Yn)− f (Xn, c)| : ‖Yn − c‖ > δ]
≤ ε+ 2MP (‖Yn − c‖ > δ)→ ε as n→∞,

where M = sup |f | . Since, Xn =⇒ X, we know E [f (Xn, c)] → E [f (X, c)]
and hence we have shown,

lim sup
n→∞

|E [f (Xn, Yn)− f (X, c)]|

≤ lim sup
n→∞

|E [f (Xn, Yn)− f (Xn, c)]|+ lim sup
n→∞

|E [f (Xn, c)− f (X, c)]| ≤ ε.

As ε > 0 was arbitrary this proves Eq. (21.29).

Theorem 21.40 (δ – method). Suppose that {Xn}∞n=1 are random variables,
b ∈ R, an ∈ R\ {0} with limn→∞ an = 0, and

Yn :=
Xn − b
an

=⇒ Z.

If g : R→ R be a measurable function which is differentiable at b, then

g (Xn)− g (b)
an

=⇒ g′ (b)Z.

Proof. Informally we have Xn = anYn + b
d∼= anZ + b and therefore

g (Xn)− g (b)
an

d∼=
g (anZ + b)− g (b)

anZ
Z → g′ (b)Z as n→∞.

We now make the proof rigorous.
By Skorohod’s Theorem 21.27 we may assume that {Yn}∞n=1 and Z are on the

same probability space and that Yn → Z a.s. and we may take Xn := anYn + b.
By the definition of the derivative of g at b, we have

g (b+∆)− g (b) = g′ (b)∆+ ε (∆)∆

where ε (∆)→ 0 as ∆→ 0. Taking ∆ = anYn in this equation shows

g (Xn)− g (b)
an

=
g (anYn + b)− g (b)

an

=
g′ (b) anYn + ε (anYn) anYn

an
→ g′ (b)Z a.s.

Example 21.41. Suppose that {Un}∞n=1 are i.i.d. random variables which are

uniformly distributed on [0, 1] and let Yn :=
∏n
j=1 U

1
n
j . Our goal is to find an

and bn such that Yn−bn
an

is weakly convergent to a non-constant random variable.
To this end, let

Xn := lnYn =
1
n

n∑
j=1

lnUj .

By the strong law of large numbers,

lim
n→∞

Xn
a.s.= E [lnU1] =

∫ 1

0

lnxdx = [x lnx− x]10 = −1

and therefore, limn→∞ Yn
a.s.= e−1.

Let us further observe that

E
[
ln2 U1

]
=
∫ 1

0

ln2 xdx = 2

so that Var (lnU1) = 2− (−1)2 = 1. Hence by the central limit theorem,

Xn − (−1)
1√
n

=
√
n (Xn + 1) =⇒ N (0, 1) .

Therefore the δ – method implies,

g (Xn)− g (−1)
1√
n

=⇒ g′ (−1)N (0, 1) .

Taking g (x) := ex using g (Xn) = eXn = Yn, then implies

Yn − e−1

1√
n

=⇒ e−1N (0, 1) d= N
(
0, e−2

)
.

Hence we have shown,

√
n

 n∏
j=1

U
1
n
j − e

−1

 =⇒ N
(
0, e−2

)
.
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Exercise 21.8. Given a function, f : X → R and a point x ∈ X, let

lim inf
y→x

f (y) := lim
ε↓0

inf
y∈B′x(δ)

f (y) and (21.30)

lim sup
y→x

f (y) := lim
ε↓0

sup
y∈B′x(δ)

f (y) , (21.31)

where
B′x (δ) := {y ∈ X : 0 < d (x, y) < δ} .

Show f is lower (upper) semi-continuous iff lim infy→x f (y) ≥ f (x)(
lim supy→x f (y) ≤ f (x)

)
for all x ∈ X.

Solution to Exercise (21.8). Suppose Eq. (21.30) holds, a ∈ R, and x ∈ X
such that f (x) > a. Since,

lim
ε↓0

inf
y∈B′x(δ)

f (y) = lim inf
y→x

f (y) ≥ f (x) > a,

it follows that infy∈B′x(δ) f (y) > a for some δ > 0. Hence we may conclude that
Bx (δ) ⊂ {f > a} which shows {f > a} is open.

Conversely, suppose now that {f > a} is open for all a ∈ R. Given x ∈ X and
a < f (x) , there exists δ > 0 such that Bx (δ) ⊂ {f > a} . Hence it follows that
lim infy→x f (y) ≥ a and then letting a ↑ f (x) then implies lim infy→x f (y) ≥
f (x) .

21.6 Convergence of Types

Given a sequence of random variables {Xn}∞n=1 we often look for centerings
{bn}∞n=1 ⊂ R and scalings {an > 0}∞n=1 such that there exists a non-constant
random variable Y such that

Xn − bn
an

=⇒ Y. (21.32)

Assuming this can be done it is reasonable to ask how unique are the centering,
scaling parameters, and the limiting distribution Y. To answer this question
let us suppose there exists another collection of centerings {βn}∞n=1 ⊂ R and
scalings {αn > 0}∞n=1 along with a non-constant random variable Z such that
Thus if

Xn − βn
αn

=⇒ Z. (21.33)

Working informally we expect that

Xn

d∼= αnZ + βn

and putting this expression back into Eq. (21.33) leads us to expect;

αn
an
Z +

βn − bn
an

=
αnZ + βn − bn

an
=⇒ Y.

It is reasonable to expect that this can only happen if the limits

A = lim
n→∞

αn
an
∈ (0,∞) and B := lim

n→∞

βn − bn
an

(21.34)

exist and
Y

d= AZ +B. (21.35)

Notice that A > 0 as both Y and Z are assumed to be non-constant. That these
results are correct is the content of Theorem 21.45 below.

Let us now explain how to choose the {an} and the {bn} . Let Fn (x) :=
P (Xn ≤ x) , then Eq. (21.32) states,

Fn (any + bn) = P (Xn ≤ any + bn) = P

(
Xn − bn
an

≤ y
)

=⇒ P (Y ≤ y) .

Taking y = 0 and y = 1 in this equation leads us to expect,

lim
n→∞

Fn (bn) = P (Y ≤ 0) = γ1 ∈ (0, 1) and

lim
n→∞

Fn (an + bn) = P (Y ≤ 1) = γ2 ∈ (0, 1) .

In fact there is nothing so special about 0 and 1 in these equation for if Y d=
AZ +B we will have Z = A−1 (Y −B) and so

P (Y ≤ 0) = P (AZ +B ≤ 0) = P (Z ≤ −B/A) and
P (Y ≤ 1) = P (AZ +B ≤ 1) = P (Z ≤ (1−B) /A) .

Definition 21.42. Two random variables, Y and Z, are said to be of the same
type if there exists constants, A > 0 and B ∈ R such that Eq. (21.35) holds.
Alternatively put, if U (y) := P (Y ≤ y) and V (z) := P (Z ≤ z) , then U and V
should satisfy,

V (z) = P (Z ≤ z) = P (Y ≤ Az +B) = U (Az +B)

for all z ∈ R.

Remark 21.43. Suppose that Y d= AZ + B and Y and Z are square integrable
random variables. Then

EY = A · EZ +B and Var (Y ) = A2 Var (Z)
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from which it follows that A2 = Var (Y ) /Var (Z) and B = EY − A · EZ. In
particular, given Y ∈ L2 (P ) there is a unique Z of the same type such that
EZ = 0 and Var (Z) = 1. On these grounds it is often reasonable to try to
choose {bn} and {an > 0} so that X̄n := a−1

n (Xn − bn) has mean zero and
variance one.

We will need the following elementary observation for the proof of Theorem
21.45.

Lemma 21.44. If Y is non-constant (a.s.) random variable and U (y) :=
P (Y ≤ y) , then U← (γ1) < U← (γ2) for all γ1 sufficiently close to 0 and γ2

sufficiently close to 1 – see Notation 21.26 for the meaning of U←.

Proof. Observe that Y is constant iff U (y) = 1y≥c for some c ∈ R, i.e.
iff U only takes on the values, {0, 1} . So since Y is not constant, there exists
y ∈ R such that 0 < U (y) < 1. Hence if γ2 > U (y) then U← (γ2) ≥ y and
if γ1 < U (y) then U← (γ1) ≤ y. Moreover, if we suppose that γ1 is not the
height of a flat spot of U, then in fact, U← (γ1) < U← (γ2) . This inequality
then remains valid as γ1 decreases and γ2 increases.

Theorem 21.45 (Convergence of Types). Suppose {Xn}∞n=1 is a sequence
of random variables and an, αn ∈ (0,∞) , bn, βn ∈ R are constants and Y and
Z are non-constant random variables. Then

1. if both Eq. (21.32) and Eq. (21.33) hold then the limits, in Eq. (21.34) exists
and Y d= AZ +B and in particular Y and Z are of the same type.

2. If the limits in Eq. (21.34) hold then either of the convergences in Eqs.
(21.32) or (21.33) implies the others with Z and Y related by Eq. (21.35).

3. If there are some constants, an > 0 and bn ∈ R and a non-constant random
variable Y, such that Eq. (21.32) holds, then Eq. (21.33) holds using αn and
βn of the form,

αn := F←n (γ2)− F←n (γ1) and βn := F←n (γ1) (21.36)

for some 0 < γ1 < γ2 < 1. If the Fn are invertible functions, Eq. (21.36)
may be written as

Fn (βn) = γ1 and Fn (αn + βn) = γ2. (21.37)

Proof. (2) Assume the limits in Eq. (21.34) hold. If Eq. (21.32) is satisfied,
then by Slutsky’s Theorem 13.22,

Xn − βn
αn

=
Xn − bn + bn − βn

an

an
αn

=
Xn − bn
an

an
αn
− βn − bn

an

an
αn

=⇒ A−1 (Y −B) =: Z

Similarly, if Eq. (21.33) is satisfied, then

Xn − bn
an

=
Xn − βn
αn

αn
an

+
βn − bn
an

=⇒ AZ +B =: Y.

(1) If Fn (y) := P (Xn ≤ y) , then

P

(
Xn − bn
an

≤ y
)

= Fn (any + bn) and P

(
Xn − βn
αn

≤ y
)

= Fn (αny + βn) .

By assumption we have

Fn (any + bn) =⇒ U (y) and Fn (αny + βn) =⇒ V (y) .

If w := sup {y : Fn (any + bn) < x} , then anw + bn = F←n (x) and hence

sup {y : Fn (any + bn) < x} =
F←n (x)− bn

an
.

Similarly,

sup {y : Fn (αny + βn) < x} =
F←n (x)− βn

αn
.

With these identities, it now follows from the proof of Skorohod’s Theorem
21.27 (see Eq. (21.20)) that there exists an at most countable subset, Λ, of
(0, 1) such that,

F←n (x)− bn
an

= sup {y : Fn (any + bn) < x} → U← (x) and

F←n (x)− βn
αn

= sup {y : Fn (αny + βn) < x} → V← (x)

for all x /∈ Λ. Since Y and Z are not constants a.s., we can choose, by Lemma
21.44, γ1 < γ2 not in Λ such that U← (γ1) < U← (γ2) and V← (γ1) < V← (γ2) .
In particular it follows that

F←n (γ2)− F←n (γ1)
an

=
F←n (γ2)− bn

an
− F←n (γ1)− bn

an
→ U← (γ2)− U← (γ1) > 0 (21.38)

and similarly

F←n (γ2)− F←n (γ1)
αn

→ V← (γ2)− V← (γ1) > 0.

Taking ratios of the last two displayed equations shows,
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αn
an
→ A :=

U← (γ2)− U← (γ1)
V← (γ2)− V← (γ1)

∈ (0,∞) .

Moreover,

F←n (γ1)− bn
an

→ U← (γ1) and (21.39)

F←n (γ1)− βn
an

=
F←n (γ1)− βn

αn

αn
an
→ AV← (γ1)

and therefore,

βn − bn
an

=
F←n (γ1)− βn

an
− F←n (γ1)− bn

an
→ AV← (γ1)− U← (γ1) := B.

(3) Now suppose that we define αn := F←n (γ2) − F←n (γ1) and βn :=
F←n (γ1) , then according to Eqs. (21.38) and (21.39)we have

αn/an → U← (γ2)− U← (γ1) ∈ (0, 1) and
βn − bn
an

→ U← (γ1) as n→∞.

Thus we may always center and scale the {Xn} using αn and βn of the form
described in Eq. (21.36).

21.7 Weak Convergence Examples

Example 21.46. Suppose that {Xn}∞n=1 are i.i.d. exp (λ) – random variables, i.e.
Xn ≥ 0 a.s. and P (Xn ≥ x) = e−λx for all x ≥ 0. In this case

F (x) := P (X1 ≤ x) = 1− e−λ(x∨0) =
(
1− e−λx

)
+
.

Consider Mn := max (X1, . . . , Xn) . We have, for x ≥ 0 and cn ∈ (0,∞) that

Fn (x) := P (Mn ≤ x) = P
(
∩nj=1 {Xj ≤ x}

)
=

n∏
j=1

P (Xj ≤ x) = [F (x)]n =
(
1− e−λx

)n
.

We now wish to find an > 0 and bn ∈ R such that Mn−bn
an

=⇒ Y.
1. To this end we note that

P

(
Mn − bn

an
≤ x

)
= P (Mn ≤ anx+ bn)

= Fn (anx+ bn) = [F (anx+ bn)]n .

If we demand (c.f. Eq. (21.37) above)

P

(
Mn − bn

an
≤ 0
)

= Fn (bn) = [F (bn)]n → γ1 ∈ (0, 1) ,

then bn →∞ and we find

ln γ1 ∼ n lnF (bn) = n ln
(
1− e−λbn

)
∼ −ne−λbn .

From this it follows that bn ∼ λ−1 lnn. Given this, we now try to find an by
requiring,

P

(
Mn − bn

an
≤ 1
)

= Fn (an + bn) = [F (an + bn)]n → γ2 ∈ (0, 1) .

However, by what we have done above, this requires an + bn ∼ λ−1 lnn. Hence
we may as well take an to be constant and for simplicity we take an = 1.

2. We now compute

lim
n→∞

P
(
Mn − λ−1 lnn ≤ x

)
= lim
n→∞

(
1− e−λ(x+λ−1 lnn)

)n
= lim
n→∞

(
1− e−λx

n

)n
= exp

(
−e−λx

)
.

The function F (x) = exp
(
−e−λx

)
is the CDF for a “Gumbel distribution.”

Thus letting Y be a random variable with this distribution (i.e. P (Y ≤ x) =
exp

(
−e−λx

)
) we have shown Mn − 1

λ lnn =⇒ Y as n→∞.

Example 21.47. For p ∈ (0, 1) , let Xp denote the number of trials to get
success in a sequence of independent trials with success probability p. Then
P (Xp > n) = (1− p)n and therefore for x > 0,

P (pXp > x) = P

(
Xp >

x

p

)
= (1− p)[

x
p ] = e[

x
p ] ln(1−p)

∼ e−p[
x
p ] → e−x as p→ 0.

Therefore pXp =⇒ T where T d= exp (1) , i.e. P (T > x) = e−x for x ≥ 0 or
alternatively, P (T ≤ y) = 1− e−y∨0.

Remarks on this example. Let us see in a couple of ways where the
appropriate centering and scaling of the Xp come from in this example. For
this let q = 1− p, then P (Xp = n) = (1− p)n−1

p = qn−1p for n ∈ N. Also let

Fp (x) = P (Xp ≤ x) = P (Xp ≤ [x]) = 1− q[x]

where [x] :=
∑∞
n=1 n · 1[n,n+1).
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Method 1. Our goal is to choose ap > 0 and bp ∈ R such that
limp ↓0 Fp (apx+ bp) exists. As above, we first demand (taking x = 0) that

lim
p ↓0

Fp (bp) = γ1 ∈ (0, 1) .

Since, γ1 ∼ Fp (bp) ∼ 1− qbp we require, qbp ∼ 1− γ1 and hence, c ∼ bp ln q =
bp ln (1− p) ∼ −bpp. This suggests that we take bp = 1/p say. Having done this,
we would like to choose ap such that

F0 (x) := lim
p ↓0

Fp (apx+ bp) exists.

Since,
F0 (x) ∼ Fp (apx+ bp) ∼ 1− qapx+bp

this requires that

(1− p)apx+bp = qapx+bp ∼ 1− F0 (x)

and hence that

ln (1− F0 (x)) = (apx+ bp) ln q ∼ (apx+ bp) (−p) = −papx− 1.

From this (setting x = 1) we see that pap ∼ c > 0. Hence we might take
ap = 1/p as well. We then have

Fp (apx+ bp) = Fp
(
p−1x+ p−1

)
= 1− (1− p)[p

−1(x+1)]

which is equal to 0 if x ≤ −1, and for x > −1 we find

(1− p)[p
−1(x+1)] = exp

([
p−1 (x+ 1)

]
ln (1− p)

)
→ exp (− (x+ 1)) .

Hence we have shown,

lim
p ↓0

Fp (apx+ bp) = [1− exp (− (x+ 1))] 1x≥−1

Xp − 1/p
1/p

= pXp − 1 =⇒ T − 1

or again that pXp =⇒ T.
Method 2. (Center and scale using the first moment and the variance of

Xp.) The generating function is given by

f (z) := E
[
zXp

]
=
∞∑
n=1

znqn−1p =
pz

1− qz
.

Observe that f (z) is well defined for |z| < 1
q and that f (1) = 1, reflecting the

fact that P (Xp ∈ N) = 1, i.e. a success must occur almost surely. Moreover, we
have

f ′ (z) = E
[
Xpz

Xp−1
]
, f ′′ (z) = E

[
Xp (Xp − 1) zXp−2

]
, . . .

f (k) (z) = E
[
Xp (Xp − 1) . . . (Xp − k + 1) zXp−k

]
and in particular,

E [Xp (Xp − 1) . . . (Xp − k + 1)] = f (k) (1) =
(
d

dz

)k
|z=1

pz

1− qz
.

Since
d

dz

pz

1− qz
=
p (1− qz) + qpz

(1− qz)2 =
p

(1− qz)2

and
d2

dz2

pz

1− qz
= 2

pq

(1− qz)3

it follows that

µp := EXp =
p

(1− q)2 =
1
p

and

E [Xp (Xp − 1)] = 2
pq

(1− q)3 =
2q
p2
.

Therefore,

σ2
p = Var (Xp) = EX2

p − (EXp)
2 =

2q
p2

+
1
p
−
(

1
p

)2

=
2q + p− 1

p2
=

q

p2
=

1− p
p2

.

Thus, if we had used µp and σp to center and scale Xp we would have considered,

Xp − 1
p

√
1−p
p

=
pXp − 1√

1− p
=⇒ T − 1

instead.

Theorem 21.48 (This is already done in Theorem 7.62). Let {Xn}∞n=1 be
i.i.d. random variables such that P (Xn = ±1) = 1/2 and let Sn := X1+· · ·+Xn

– the position of a drunk after n steps. Observe that |Sn| is an odd integer if n
is odd and an even integer if n is even. Then Sm√

m
=⇒ N (0, 1) as m→∞.
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Proof. (Sketch of the proof.) We start by observing that S2n = 2k iff

# {i ≤ 2n : Xi = 1} = n+ k while
# {i ≤ 2n : Xi = −1} = 2n− (n+ k) = n− k

and therefore,

P (S2n = 2k) =
(

2n
n+ k

)(
1
2

)2n

=
(2n)!

(n+ k)! · (n− k)!

(
1
2

)2n

.

Recall Stirling’s formula states,

n! ∼ nne−n
√

2πn as n→∞

and therefore,

P (S2n = 2k)

∼ (2n)2n
e−2n

√
4πn

(n+ k)n+k
e−(n+k)

√
2π (n+ k) · (n− k)n−k e−(n−k)

√
2π (n− k)

(
1
2

)2n

=
√

n

π (n+ k) (n− k)

(
1 +

k

n

)−(n+k)

·
(

1− k

n

)−(n−k)

=
1√
πn

√
1(

1 + k
n

) (
1− k

n

) (1− k2

n2

)−n
·
(

1 +
k

n

)−k
·
(

1− k

n

)k
=

1√
πn

(
1− k2

n2

)−n
·
(

1 +
k

n

)−k−1/2

·
(

1− k

n

)k−1/2

.

So if we let x := 2k/
√

2n, i.e. k = x
√
n/2 and k/n = x√

2n
, we have

P

(
S2n√

2n
= x

)

∼ 1√
πn

(
1− x2

2n

)−n
·
(

1 +
x√
2n

)−x√n/2−1/2

·
(

1− x√
2n

)x√n/2−1/2

∼ 1√
πn

ex
2/2 · e

x√
2n

(
−x
√
n/2−1/2

)
· e−

x√
2n

(
x
√
n/2−1/2

)
∼ 1√

πn
e−x

2/2,

wherein we have repeatedly used

(1 + an)bn = ebn ln(1+an) ∼ ebnan when an → 0.

We now compute

P

(
a ≤ S2n√

2n
≤ b
)

=
∑
a≤x≤b

P

(
S2n√

2n
= x

)
=

1√
2π

∑
a≤x≤b

e−x
2/2 2√

2n
(21.40)

where the sum is over x of the form, x = 2k√
2n

with k ∈ {0,±1, . . . ,±n} . Since
2√
2n

is the increment of x as k increases by 1, we see the latter expression in
Eq. (21.40) is the Riemann sum approximation to

1√
2π

∫ b

a

e−x
2/2dx.

This proves S2n√
2n

=⇒ N (0, 1) . Since

S2n+1√
2n+ 1

=
S2n +X2n+1√

2n+ 1
=

S2n√
2n

1√
1 + 1

2n

+
X2n+1√
2n+ 1

,

it follows directly (or see Slutsky’s Theorem 21.32) that S2n+1√
2n+1

=⇒ N (0, 1)
as well.

Proposition 21.49. Suppose that {Un}∞n=1 are i.i.d. random variables which
are uniformly distributed in (0, 1) . Let U(k,n) denote the position of the kth –
largest number from the list, {U1, U2, . . . , Un} . Further let k (n) be chosen so
that limn→∞ k (n) =∞ while limn→∞

k(n)
n = 0 and let

Xn :=
U(k(n),n) − k (n) /n

√
k(n)

n

.

Then dTV (Xn, N (0, 1))→ 0 as n→∞.

Proof. (Sketch only. See Resnick, Proposition 8.2.1 for more details.) Ob-
serve that, for x ∈ (0, 1) , that

P
(
U(k,n) ≤ x

)
= P

(
n∑
i=1

Xi ≥ k

)
=

n∑
l=k

(
n

l

)
xl (1− x)n−l .

From this it follows that ρn (x) := 1(0,1) (x) d
dxP

(
U(k,n) ≤ x

)
is the probability

density for U(k,n). It now turns out that ρn (x) is a Beta distribution,
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ρn (x) =
(
n

k

)
k · xk−1 (1− x)n−k .

Giving a direct computation of this result is not so illuminating. So let us go
another route. To do this we are going to estimate, P

(
U(k,n) ∈ (x, x+∆]

)
, for

∆ ∈ (0, 1) . Observe that if U(k,n) ∈ (x, x+∆], then there must be at least one
Ui ∈ (x, x + ∆], for otherwise, U(k,n) ≤ x + ∆ would imply U(k,n) ≤ x as well
and hence U(k,n) /∈ (x, x+∆]. Let

Ωi := {Ui ∈ (x, x+∆] and Uj /∈ (x, x+∆] for j 6= i} .

Since

P (Ui, Uj ∈ (x, x+∆] for some i 6= j with i, j ≤ n) ≤
∑
i<j≤n

P (Ui, Uj ∈ (x, x+∆])

≤ n2 − n
2

∆2,

we see that

P
(
U(k,n) ∈ (x, x+∆]

)
=

n∑
i=1

P
(
U(k,n) ∈ (x, x+∆], Ωi

)
+O

(
∆2
)

= nP
(
U(k,n) ∈ (x, x+∆], Ω1

)
+O

(
∆2
)
.

Now on the set, Ω1; U(k,n) ∈ (x, x+∆] iff there are exactly k− 1 of U2, . . . , Un
in [0, x] and n− k of these in [x+∆, 1] . This leads to the conclusion that

P
(
U(k,n) ∈ (x, x+∆]

)
= n

(
n− 1
k − 1

)
xk−1 (1− (x+∆))n−k∆+O

(
∆2
)

and therefore,

ρn (x) = lim
∆↓0

P
(
U(k,n) ∈ (x, x+∆]

)
∆

=
n!

(k − 1)! · (n− k)!
xk−1 (1− x)n−k .

By Stirling’s formula,

n!
(k − 1)! · (n− k)!

∼ nne−n
√

2πn

(k − 1)(k−1)
e−(k−1)

√
2π (k − 1) (n− k)(n−k)

e−(n−k)
√

2π (n− k)

=
√
ne−1

√
2π

1(
k−1
n

)(k−1)
√

k−1
n

(
n−k
n

)(n−k)
√

n−k
n

=
√
ne−1

√
2π

1(
k−1
n

)(k−1/2) (
1− k

n

)(n−k+1/2)
.

Since (
k − 1
n

)(k−1/2)

=
(
k

n

)(k−1/2)

·
(
k − 1
k

)(k−1/2)

=
(
k

n

)(k−1/2)

·
(

1− 1
k

)(k−1/2)

∼ e−1

(
k

n

)(k−1/2)

we arrive at

n!
(k − 1)! · (n− k)!

∼
√
n√
2π

1(
k
n

)(k−1/2) (
1− k

n

)(n−k+1/2)
.

By the change of variables formula, with

x =
u− k (n) /n√

k(n)

n

on noting the du =
√
k(n)

n dx, x = −
√
k (n) at u = 0, and

x =
1− k (n) /n√

k(n)

n

=
n− k (n)√

k (n)

=
n√
k (n)

(
1− k (n)

n

)
=
√
n

√
n

k (n)

(
1− k (n)

n

)
=: bn,

E [F (Xn)] =
∫ 1

0

ρn (u)F

u− k (n) /n√
k(n)

n

 du

=
∫ bn

−
√
k(n)

√
k (n)
n

ρn

(√
k (n)
n

x+ k (n) /n

)
F (x) du.

Using this information, it is then shown in Resnick that√
k (n)
n

ρn

(√
k (n)
n

x+ k (n) /n

)
→ e−x

2/2

√
2π

which upon an application of Scheffé’s Lemma 21.8 completes the proof.
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Remark 21.50. It is possible to understand the normalization constants in the
definition of Xn by computing the mean and the variance of U(n,k). After some
computations (see Chapter ??), one arrives at

EU(k,n) =
∫ 1

0

n!
(k − 1)! · (n− k)!

xk−1 (1− x)n−k xdx

=
k

n+ 1
∼ k

n
,

EU2
(k,n) =

∫ 1

0

n!
(k − 1)! · (n− k)!

xk−1 (1− x)n−k x2dx

=
(k + 1) k

(n+ 2) (n+ 1)
and

Var
(
U(k,n)

)
=

(k + 1) k
(n+ 2) (n+ 1)

− k2

(n+ 1)2

=
k

n+ 1

[
k + 1
n+ 2

− k

n+ 1

]
=

k

n+ 1

[
n− k + 1

(n+ 2) (n+ 1)

]
∼ k

n2
.

21.8 Compactness and tightness of measures on (R,BR)

Suppose that Λ ⊂ R is a dense set and F and F̃ are two right continuous
functions. If F = F̃ on Λ, then F = F̃ on R. Indeed, for x ∈ R we have

F (x) = lim
Λ3λ↓x

F (λ) = lim
Λ3λ↓x

F̃ (λ) = F̃ (x) .

Lemma 21.51. If G : Λ→ R is a non-decreasing function, then

F (x) := G+ (x) := inf {G (λ) : x < λ ∈ Λ} (21.41)

is a non-decreasing right continuous function.

Proof. To show F is right continuous, let x ∈ R and λ ∈ Λ such that λ > x.
Then for any y ∈ (x, λ) ,

F (x) ≤ F (y) = G+ (y) ≤ G (λ)

and therefore,
F (x) ≤ F (x+) := lim

y↓x
F (y) ≤ G (λ) .

Since λ > x with λ ∈ Λ is arbitrary, we may conclude, F (x) ≤ F (x+) ≤
G+ (x) = F (x) , i.e. F (x+) = F (x) .

Proposition 21.52. Suppose that {Fn}∞n=1 is a sequence of distribution func-
tions and Λ ⊂ R is a dense set such that G (λ) := limn→∞ Fn (λ) ∈ [0, 1] exists
for all λ ∈ Λ. If, for all x ∈ R, we define F = G+ as in Eq. (21.41), then
Fn (x) → F (x) for all x ∈ C (F ) . (Note well; as we have already seen, it is
possible that F (∞) < 1 and F (−∞) > 0 so that F need not be a distribution
function for a measure on (R,BR) .)

Proof. Suppose that x, y ∈ R with x < y and and s, t ∈ Λ are chosen so
that x < s < y < t. Then passing to the limit in the inequality,

Fn (s) ≤ Fn (y) ≤ Fn (t)

implies

F (x) = G+ (x) ≤ G (s) ≤ lim inf
n→∞

Fn (y) ≤ lim sup
n→∞

Fn (y) ≤ G (t) .

Taking the infimum over t ∈ Λ ∩ (y,∞) and then letting x ∈ R tend up to y,
we may conclude

F (y−) ≤ lim inf
n→∞

Fn (y) ≤ lim sup
n→∞

Fn (y) ≤ F (y) for all y ∈ R.

This completes the proof, since F (y−) = F (y) for y ∈ C (F ) .
The next theorem deals with weak convergence of measures on

(
R̄,BR̄

)
. So

as not have to introduce any new machinery, the reader should identify R̄ with
[−1, 1] ⊂ R via the map,

[−1, 1] 3 x→ tan
(π

2
x
)
∈ R̄.

Hence a probability measure on
(
R̄,BR̄

)
may be identified with a probability

measure on (R,BR) which is supported on [−1, 1] . Using this identification, we
see that a −∞ should only be considered a point of continuity of a distribution
function, F : R̄ → [0, 1] iff and only if F (−∞) = 0. On the other hand, ∞ is
always a point of continuity.

Theorem 21.53 (Helly’s Selection Theorem). Every sequence of probabil-
ity measures, {µn}∞n=1 , on

(
R̄,BR̄

)
has a sub-sequence which is weakly conver-

gent to a probability measure, µ0 on
(
R̄,BR̄

)
.

Proof. Using the identification described above, rather than viewing µn as
probability measures on

(
R̄,BR̄

)
, we may view them as probability measures

on (R,BR) which are supported on [−1, 1] , i.e. µn ([−1, 1]) = 1. As usual, let

Fn (x) := µn ((−∞, x]) = µn ((−∞, x] ∩ [−1, 1]) .
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Since {Fn (x)}∞n=1 ⊂ [0, 1] and [0, 1] is compact, for each x ∈ R we may find
a convergence subsequence of {Fn (x)}∞n=1 . Hence by Cantor’s diagonalization
argument we may find a subsequence, {Gk := Fnk}

∞
k=1 of the {Fn}∞n=1 such

that G (x) := limk→∞Gk (x) exists for all x ∈ Λ := Q.
Letting F (x) := G (x+) as in Eq. (21.41), it follows from Lemma 21.51 and

Proposition 21.52 that Gk = Fnk =⇒ F0. Moreover, since Gk (x) = 0 for all
x ∈ Q∩ (−∞,−1) and Gk (x) = 1 for all x ∈ Q ∩ [1,∞). Therefore, F0 (x) = 1
for all x ≥ 1 and F0 (x) = 0 for all x < −1 and the corresponding measure, µ0

is supported on [−1, 1] . Hence µ0 may now be transferred back to a measure
on
(
R̄,BR̄

)
.

Example 21.54. Here are there simple examples showing that probabilities may
indeed transfer to the points at ±∞; 1) δ−n =⇒ δ−∞, 2) δn =⇒ δ∞ and 3)
1
2 (δn + δ−n) =⇒ 1

2 (δ∞ + δ−∞) .

The next question we would like to address is when is the limiting measure,
µ0 on

(
R̄,BR̄

)
concentrated on R. The following notion of tightness is the key

to answering this question.

Definition 21.55. A collection of probability measures, Γ, on (R,BR) is tight
iff for every ε > 0 there exists Mε <∞ such that

inf
µ∈Γ

µ ([−Mε,Mε]) ≥ 1− ε. (21.42)

We further say that a collection of random variables, {Xλ : λ ∈ Λ} is tight
iff the collection probability measures,

{
P ◦X−1

λ : λ ∈ Λ
}

is tight. Equivalently
put, {Xλ : λ ∈ Λ} is tight iff

lim
M→∞

sup
λ∈Λ

P (|Xλ| ≥M) = 0. (21.43)

Observe that the definition of uniform integrability (see Definition 12.38) is
considerably stronger than the notion of tightness. It is also worth observing
that if α > 0 and C := supλ∈Λ E |Xλ|α <∞, then by Chebyschev’s inequality,

sup
λ
P (|Xλ| ≥M) ≤ sup

λ

[
1
Mα

E |Xλ|α
]
≤ C

Mα
→ 0 as M →∞

and therefore {Xλ : λ ∈ Λ} is tight.

Theorem 21.56. Let Γ := {µn}∞n=1 be a sequence of probability measures on
(R,BR) . Then Γ is tight, iff every subsequently limit measure, µ0, on

(
R̄,BR̄

)
is supported on R. In particular if Γ is tight, there is a weakly convergent sub-
sequence of Γ converging to a probability measure on (R,BR) . (This is greatly
generalized in Prokhorov’s Theorem 21.61 below.)

Proof. Suppose that µnk =⇒ µ0 with µ0 being a probability measure on(
R̄,BR̄

)
. As usual, let F0 (x) := µ0 ([−∞, x]) . If Γ is tight and ε > 0 is given,

we may find Mε <∞ such that Mε,−Mε ∈ C (F0) and µn ([−Mε,Mε]) ≥ 1− ε
for all n. Hence it follows that

µ0 ([−Mε,Mε]) = lim
k→∞

µnk ([−Mε,Mε]) ≥ 1− ε

and by letting ε ↓ 0 we conclude that µ0 (R) = limε↓0 µ0 ([−Mε,Mε]) = 1.
Conversely, suppose there is a subsequence {µnk}

∞
k=1 such that µnk =⇒ µ0

with µ0 being a probability measure on
(
R̄,BR̄

)
such that µ0 (R) < 1. In this

case ε0 := µ0 ({−∞,∞}) > 0 and hence for all M <∞ we have

µ0 ([−M,M ]) ≤ µ0

(
R̄
)
− µ0 ({−∞,∞}) = 1− ε0.

By choosing M so that −M and M are points of continuity of F0, it then follows
that

lim
k→∞

µnk ([−M,M ]) = µ0 ([−M,M ]) ≤ 1− ε0.

Therefore,
inf
n∈N

µn (([−M,M ])) ≤ 1− ε0 for all M <∞

and {µn}∞n=1 is not tight.

21.9 Metric Space Extensions

The goal of this section is to extend the notions of weak convergence when R
is replace by a metric space (S, ρ) . Standard references for the material here
are [6] and [44] – also see [18] and [31]. Let us now state the main theorems of
this section.

Theorem 21.57 (Skorohod Theorem). Let (S, ρ) be a separable metric
space and {µn}∞n=0 be probability measures on (S,BS) such that µn =⇒ µ0 as
n → ∞. Then there exists a probability space, (Ω,B, P ) and measurable func-
tions, Yn : Ω → S, such that µn = P ◦ Y −1

n for all n ∈ N0 := N∪{0} and
limn→∞ Yn = Y a.s.

Definition 21.58. Let (S, τ) be a topological space, B := σ (τ) be the Borel σ
– algebra, and µ be a probability measure on (S,B) . We say that A ∈ B is a
continuity set for µ provided µ (bd (A)) = 0. Notice that this is equivalent to
saying that µ (A◦) = µ (A) = µ

(
Ā
)
.

Proposition 21.59 (The Portmanteau Theorem). Suppose that S is a
complete separable metric space and {µn} ∪ {µ} are probability measure on
(S,B := BS) . Then the following are equivalent:
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1. µn =⇒ µ as n→∞, i.e. µn (f)→ µ (f) for all f ∈ BC(S).
2. µn(f)→ µ(f) for every f ∈ BC(S) which is uniformly continuous.
3. lim sup

n→∞
µn(F ) ≤ µ(F ) for all F @ S.

4. lim infn→∞ µn(G) ≥ µ(G) for all G ⊂o S.
5. limn→∞ µn(A) = µ(A) for all A ∈ B such that µ(bd (A)) = 0.

Definition 21.60. Let S be a topological space. A collection of probability mea-
sures Λ on (S,BS) is said to be tight if for every ε > 0 there exists a compact
set Kε ∈ BS such that µ(Kε) ≥ 1− ε for all µ ∈ Λ.

Theorem 21.61 (Prokhorov’s Theorem). Suppose S is a separable metriz-
able space and Λ = {µn}∞n=1 is a tight sequence of probability measures on
BS . Then there exists a subsequence {µnk}

∞
k=1 which is weakly convergent to a

probability measure µ on BS .
Conversely, if we further assume that (S, ρ) is a complete and Λ is a se-

quentially compact subset of the probability measures on (S,BS) with the weak
topology, then Λ is tight. (The converse direction is not so important for us.)

The rest of this section is devoted to the proofs of these results. (These
proofs may safely be skipped on first reading.)

21.9.1 A point set topology review

Before getting down to business let me recall a few basic point set topology
results which we will need. Recall that if (S, τ) is a topological space that
Ā ⊂ S, the closure of A, is defined by

Ā := ∩{C : A ⊂ C @ S} and A◦ := ∪{V : τ 3 V ⊂ A}

and the interior of A is defined by

A◦ = ∪{V : τ 3 V ⊂ A} .

Thus Ā is the smallest closed set containing A and A◦ is the largest open set
contained in A. The relationship between the interior and closure operations is;

(A◦)c = ∩{V c : τ 3 V ⊂ A}
= ∩{C : Ac ⊂ C @ S} = Ac.

Finally recall that the topological boundary of a set A ⊂ S is defined by
bd (A) := Ā \A◦ which may also be expressed as

bd (A) = Ā ∩ (A◦)c = Ā ∩Ac (= bd (Ac)) .

In the case of a metric space we may describe Ā and bd (A) as

Ā = {x ∈ S : ∃ {xn} ⊂ A 3 x = lim
n→∞

xn} and

bd (A) = {x ∈ S : ∃ {xn} ⊂ A and {yn} ⊂ Ac 3 lim
n→∞

yn = x = lim
n→∞

xn}.

So the boundary of A consists of those points in S which are arbitrarily close to
points inside of A and outside of A. In the metric space case of most interest,
the next lemma is easily proved using this characterization.

Lemma 21.62. For any subsets, A and B, of S we have bd (A ∩B) ⊂ bd (A)∪
bd (B) , bd (A \B) ⊂ bd (A) ∪ bd (B) , and bd (A ∪B) ⊂ bd (A) ∪ bd (B) .

Proof. We begin by observing that A◦ ∩B◦ ⊂ A ∩B ⊂ Ā ∩ B̄ from which
it follows that

A◦ ∩B◦ ⊂ [A ∩B]◦ ⊂ A ∩B ⊂ A ∩B ⊂ Ā ∩ B̄

and hence,
bd (A ∩B) ⊂

[
Ā ∩ B̄

]
\ [A◦ ∩B◦] .

Combining this inclusion with[
Ā ∩ B̄

]
\ [A◦ ∩B◦] =

[
Ā ∩ B̄

]
∩ [A◦ ∩B◦]c =

[
Ā ∩ B̄

]
∩ [(A◦)c ∪ (B◦)c]

=
[
Ā ∩ B̄ ∩ (A◦)c

]
∪
[
Ā ∩ B̄ ∩ (B◦)c

]
⊂
[
Ā ∩ (A◦)c

]
∪
[
B̄ ∩ (B◦)c

]
= bd (A) ∪ bd (B)

completes the proof of the first assertion. The second and third assertions are
easy consequence of the first because;

bd (A \B) = bd (A ∩Bc) ⊂ bd (A) ∪ bd (Bc) = bd (A) ∪ bd (B)

and

bd (A ∪B) = bd ([A ∪B]c) = bd (Ac ∩Bc)
⊂ bd (Ac) ∪ bd (Bc) = bd (A) ∪ bd (B) .

21.9.2 Proof of Skorohod’s Theorem 21.57

Lemma 21.63. Let (S, ρ) be a separable metric space, B be the Borel σ – algebra
on S, and µ be a probability measure on B. Then for every ε > 0 there exists a
countable partition, {Bn}∞n=1 , of S such that Bn ∈ B, diam (Bn) ≤ ε and Bn
is a µ – continuity set (i.e. µ (bd (Bn)) = 0) for all n.

Page: 343 job: prob macro: svmonob.cls date/time: 28-Apr-2010/13:31



344 21 Weak Convergence Results

Proof. For x ∈ S and r ≥ 0 let S (x, r) := {y ∈ S : ρ (x, y) = r} . For any
finite subset, Γ ⊂ [0,∞), we have

∑
r∈Γ S (x, r) ⊂ S and therefore,∑

r∈Γ
µ (S (x, r)) ≤ µ (S) = 1.

As Γ ⊂f [0,∞) was arbitrary we may conclude that
∑
r≥0 µ (S (x, r)) ≤ 1 <∞

and therefore the set Qx := {r ≥ 0 : µ (S (x, r)) > 0} is at most countable.
If B (x, r) := {y ∈ S : ρ (x, y) < r} and C (x, r) := {y ∈ S : ρ (x, y) ≤ r} are

the open and closed r – balls about x respectively, we have S (x, r) = C (x, r) \
B (x, r) . As

bd (B (x, r)) = B (x, r) \B (x, r) ⊂ C (x, r) \B (x, r) = S (x, r) ,

it follows that B (x, r) is a µ – continuity set for all r /∈ Qx. With these prepa-
rations in hand we are now ready to complete the proof.

Let {xn}∞n=1 be a countable dense subset of S and let Q := ∪∞n=1Qxn – a
countable subset of [0,∞). Choose r ∈ [0,∞) \ Q such that r ≤ ε/2 and then
define

Bn := B (xn, r) \ [B (x1, r) ∪ · · · ∪B (xn−1, r)] .

It is clear that {Bn}∞n=1 ⊂ B is a partition of S with diam (Bn) ≤ 2r ≤ ε.
Moreover, we know that

bd (Bn) ⊂ bd (B (xn, r)) ∪ bd (B (x1, r) ∪ · · · ∪B (xn−1, r))
⊂ ∪nk=1 bd (B (xk, r)) ⊂ ∪nk=1S (xk, r)

and therefore as r /∈ Q we have

µ (bd (Bn)) ≤
n∑
k=1

µ (S (xk, r)) = 0

so that Bn is a µ – continuity set for each n ∈ N.
We are now ready to prove Skorohod’s Theorem 21.57.
Proof. (of Skorohod’s Theorem 21.57) We will be following the proof in

Kallenberg [28, Theorem 4.30 on page 79.]. In this proof we will be using an
auxiliary probability space (Ω0,B0, P0) supporting the collection of indepen-
dent random variables that we will be using the the proof.6 The final probabil-
ity space will then be given by (Ω,B, P ) = (Ω0 × S,B0 ⊗ BS , P0 ⊗ µ) and the
random variable Y will be defined by Y (ω, x) := x for all (ω, x) ∈ Ω. Let us
now start the formal proof.
6 An examination of the proof will show that Ω0 can be taken to be (0, 1) × SN

equipped with a well chosen infinite product measure.

Given p ∈ N, use Lemma 21.63 to construct a partition, {Bn}∞n=1 , of S such
that diam (Bn) < 2−p and µ (bd (Bn)) = 0 for all n. Choose m sufficiently large
so that µ

(∑∞
n=m+1Bn

)
< 2−p and let B0 :=

∑∞
n=m+1Bn so that {Bk}mk=0 is

a partition of S. Now define

κ :=
m∑
k=0

k1Bk (Y ) =
m∑
k=0

k1Y ∈Bk

and let Θ be a random variable on Ω which is independent of Y and has
the uniform distribution on [0, 1] . For each n ∈ N, use the Prenatal Skoro-
hod Theorem 21.28 in order to choose κ̃n : (0, 1) × {0, . . . ,m} → {0, . . . ,m}
such that κ̃n (θ, k) = k when θ ≤ µn (Bk) /µ (Bk) and Lawm×{µ(Bk)}mk=0

(κn) =
{µn (Bk)}mk=0 . Now let κn := κ̃ (Θ, κ) so that P (κn = k) = µn (Bk) for all
n ∈ N and 0 ≤ k ≤ m and κn = k when Θ ≤ µn (Bκ) /µ (Bκ) . Since
µ (bd (Bk)) = 0 for all k it follows that limn→∞ κn = κ, P – a.s.

Now choose ξkn independent of everything such that P
(
ξkn ∈ A

)
= µn (A|Bk)

for all n and 0 ≤ k ≤ n. Then define

Y pn := ξκn(θ,κ)
n =

m∑
k=0

1κn(θ,κ)=k · ξkn.

Notice that

P (Y pn ∈ A) =
m∑
k=0

P
(
ξkn ∈ A & κn (θ, κ) = k

)
=

m∑
k=0

µn (A|Bk)µn (Bk) =
m∑
k=0

µn (A ∩Bk) = µn (A) .

Also notice that {
ρ (Y pn , Y ) > 2−p

}
⊂ {Y ∈ B0} ∪ {κ 6= κn}

and since κn → κ a.s. it follows that

0 = P (κn 6= κ i.o. n) = lim
N→∞

P (∪n≥N {κn 6= κ})

and so there exists np <∞ such that

P
(
∪n≥np

{
ρ (Y pn , Y ) > 2−p

})
< 2−p.

To finish the proof, construct {Y pn }
∞
n=1 and np ∈ N as above for each p ∈ N.

By replacing np by
∑p
i=1 ni if necessary, we may assume that n1 < n2 < n3 <

. . . . As
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p

P
(
∪n≥np

{
ρ (Y pn , Y ) > 2−p

})
<
∑
p

2−p <∞

it follows from the first Borel Cantelli lemma that

P
([
∪n≥np

{
ρ (Y pn , Y ) > 2−p

}]
i.o. p

)
= 0

or equivalently,

1 = P
([
∩n≥np

{
ρ (Y pn , Y ) ≤ 2−p

}]
a.a. p

)
.

So off a null set, N, for and therefore off a null set, N, ρ (Y pn , Y ) ≤ 2−p for all
n ≥ np and a.a. p. We now define

Yn := Y pn for np ≤ n < np+1 and p ∈ N.

Then by construction we have Law (Yn) = µn for all n and ρ (Yn, Y )→ 0 a.s.

21.9.3 Proof of Proposition – The Portmanteau Theorem 21.59

Proof. (of Proposition 21.59.) 1. =⇒ 2. is obvious.
For 2. =⇒ 3., let

ϕ(t) :=

 1 if t ≤ 0
1− t if 0 ≤ t ≤ 1

0 if t ≥ 1
(21.44)

and let fn(x) := ϕ(nρ(x, F )). Then fn ∈ BC(S, [0, 1]) is uniformly continuous,
0 ≤ 1F ≤ fn for all n and fn ↓ 1F as n → ∞. Passing to the limit n → ∞ in
the equation

0 ≤ µn(F ) ≤ µn(fm)

gives
0 ≤ lim sup

n→∞
µn(F ) ≤ µ(fm)

and then letting m→∞ in this inequality implies item 3.
3. ⇐⇒ 4. Assuming item 3., let F = Gc, then

1− lim inf
n→∞

µn(G) = lim sup
n→∞

(1− µn(G)) = lim sup
n→∞

µn(Gc)

≤ µ(Gc) = 1− µ(G)

which implies 4. Similarly 4. =⇒ 3.
3. ⇐⇒ 5. Recall that bd (A) = Ā \ Ao, so if µ(bd (A)) = 0 and 3. (and

hence also 4. holds) we have

lim sup
n→∞

µn(A) ≤ lim sup
n→∞

µn(Ā) ≤ µ(Ā) = µ(A) and

lim inf
n→∞

µn(A) ≥ lim inf
n→∞

µn(Ao) ≥ µ(Ao) = µ(A)

from which it follows that limn→∞ µn(A) = µ(A). Conversely, let F @ S and
set Fδ := {x ∈ S : ρ(x, F ) ≤ δ} . Then

bd (Fδ) ⊂ Fδ \ {x ∈ S : ρ(x, F ) < δ} = Aδ

where Aδ := {x ∈ S : ρ(x, F ) = δ} . Since {Aδ}δ>0 are all disjoint, we must have∑
δ>0

µ(Aδ) ≤ µ(S) ≤ 1

and in particular the set Λ := {δ > 0 : µ(Aδ) > 0} is at most countable. Let
δn /∈ Λ be chosen so that δn ↓ 0 as n→∞, then

µ(Fδm) = lim
n→∞

µn(Fδm) ≥ lim sup
n→∞

µn(F ).

Let m→∞ in this equation to conclude µ(F ) ≥ lim supn→∞ µn(F ) as desired.
To finish the proof it suffices to show 5. =⇒ 1. which is easily done using

Skorohod’s Theorem 21.57 just as was done in the proof of Theorem 21.29. For
those not wanting to use Skorohod’s theorem we also provide a direct proof
that 3. =⇒ 1.

Alternate finish to the proof (3. =⇒ 1.) . By an affine change of vari-
ables it suffices to consider f ∈ C(S, (0, 1)) in which case we have

k∑
i=1

(i− 1)
k

1{ (i−1)
k ≤f< i

k

} ≤ f ≤ k∑
i=1

i

k
1{ (i−1)

k ≤f< i
k

}. (21.45)

Let Fi :=
{
i
k ≤ f

}
and notice that Fk = ∅. Then for any probability µ,

k∑
i=1

(i− 1)
k

[µ(Fi−1)− µ(Fi)] ≤ µ(f) ≤
k∑
i=1

i

k
[µ(Fi−1)− µ(Fi)] . (21.46)

Since
k∑
i=1

(i− 1)
k

[µ(Fi−1)− µ(Fi)]

=
k∑
i=1

(i− 1)
k

µ(Fi−1)−
k∑
i=1

(i− 1)
k

µ(Fi)

=
k−1∑
i=1

i

k
µ(Fi)−

k∑
i=1

i− 1
k

µ(Fi) =
1
k

k−1∑
i=1

µ(Fi)
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and

k∑
i=1

i

k
[µ(Fi−1)− µ(Fi)]

=
k∑
i=1

i− 1
k

[µ(Fi−1)− µ(Fi)] +
k∑
i=1

1
k

[µ(Fi−1)− µ(Fi)]

=
k−1∑
i=1

µ(Fi) +
1
k
,

Eq. (21.46) becomes,

1
k

k−1∑
i=1

µ(Fi) ≤ µ(f) ≤ 1
k

k−1∑
i=1

µ(Fi) + 1/k.

Using this equation with µ = µn and then with µ = µ we find

lim sup
n→∞

µn(f) ≤ lim sup
n→∞

[
1
k

k−1∑
i=1

µn(Fi) + 1/k

]

≤ 1
k

k−1∑
i=1

µ(Fi) + 1/k ≤ µ(f) + 1/k.

Since k is arbitrary, lim supn→∞ µn(f) ≤ µ(f). Replacing f by 1 − f in
this inequality also gives lim infn→∞ µn(f) ≥ µ(f) and hence we have shown
limn→∞ µn(f) = µ(f) as claimed.

21.9.4 Proof of Prokhorov’s compactness Theorem 21.61

The following proof relies on results not proved in these notes up to this point.
The missing results may be found by searching for “Riesz-Markov Theorem” in
the notes at

http://www.math.ucsd.edu/˜bdriver/240A-C-03-04/240 lecture notes.htm.

Proof. (of Prokhorov’s compactness Theorem 21.61) First suppose that S
is compact. In this case C(S) is a Banach space which is separable by the
Stone – Weirstrass theorem, see Exercise ?? in the analysis notes. By the Riesz
theorem, Corollary ?? of the analysis notes, we know that C(S)∗ is in one to
one correspondence with the complex measures on (S,BS). We have also seen
that C(S)∗ is metrizable and the unit ball in C(S)∗ is weak - * compact, see
Theorem ?? of the analysis notes. Hence there exists a subsequence {µnk}

∞
k=1

which is weak -* convergent to a probability measure µ on S. Alternatively, use
the cantor’s diagonalization procedure on a countable dense set Γ ⊂ C(S) so
find {µnk}

∞
k=1 such that Λ(f) := limk→∞ µnk(f) exists for all f ∈ Γ. Then for

g ∈ C(S) and f ∈ Γ, we have

|µnk(g)− µnl(g)| ≤ |µnk(g)− µnk(f)|+ |µnk(f)− µnl(f)|
+ |µnl(f)− µnl(g)|

≤ 2 ‖g − f‖∞ + |µnk(f)− µnl(f)|

which shows
lim sup
n→∞

|µnk(g)− µnl(g)| ≤ 2 ‖g − f‖∞ .

Letting f ∈ Λ tend to g in C(S) shows lim supn→∞ |µnk(g)− µnl(g)| = 0 and
hence Λ(g) := limk→∞ µnk(g) for all g ∈ C(S). It is now clear that Λ(g) ≥ 0
for all g ≥ 0 so that Λ is a positive linear functional on S and thus there is a
probability measure µ such that Λ(g) = µ(g).

General case. By Theorem 9.59 we may assume that S is a subset of a
compact metric space which we will denote by S̄. We now extend µn to S̄ by
setting µ̄n(A) := µ̄n(A∩S) for all A ∈ BS̄ . By what we have just proved, there
is a subsequence {µ̄′k := µ̄nk}

∞
k=1 such that µ̄′k converges weakly to a probability

measure µ̄ on S̄. The main thing we now have to prove is that “µ̄(S) = 1,” this
is where the tightness assumption is going to be used. Given ε > 0, let Kε ⊂ S
be a compact set such that µ̄n(Kε) ≥ 1− ε for all n. Since Kε is compact in S
it is compact in S̄ as well and in particular a closed subset of S̄. Therefore by
Proposition 21.59

µ̄(Kε) ≥ lim sup
k→∞

µ̄
′

k(Kε) = 1− ε.

Since ε > 0 is arbitrary, this shows with S0 := ∪∞n=1K1/n satisfies µ̄(S0) = 1.
Because S0 ∈ BS ∩ BS̄ , we may view µ̄ as a measure on BS by letting µ(A) :=
µ̄(A∩S0) for all A ∈ BS . Given a closed subset F ⊂ S, choose F̃ @ S̄ such that
F = F̃ ∩ S. Then

lim sup
k→∞

µ′k(F ) = lim sup
k→∞

µ̄′k(F̃ ) ≤ µ̄(F̃ ) = µ̄(F̃ ∩ S0) = µ(F ),

which shows µ′k =⇒ µ.
Converse direction. Suppose now that (S, ρ) is complete and Λ is a se-

quentially compact subset of the probability measures on (S,BS) . We first will
prove if {Gn}∞n=1 is a sequence of open subsets of S such that Gn ↑ S, then

c := sup
n

inf
µ∈Λ

µ (Gn) = lim
n→∞

inf
µ∈Λ

µ (Gn) = 1.

Suppose for sake of contradiction that c < 1 and let c′ ∈ (c, 1) . By our assump-
tion we have infµ∈Λ µ (Gn) ≤ c for all n therefore there exists µn ∈ Λ such that
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µn (Gn) ≤ c′ for all n ∈ N. By passing to a subsequence of {n} and correspond-
ing subsequence {G′n} of the {Gn} , we may assume that νn := µkn =⇒ µ for
some probability measure µ on S and νn (G′n) ≤ c′ for all n where G′n ↑ S as
n ↑ ∞. For fixed N ∈ N we have νn (G′N ) ≤ νn (G′n) ≤ c′ for n ≥ N. Passing to
the limit as n→∞ in these inequalities then implies

µ (G′N ) ≤ lim inf
n→∞

νn (G′N ) ≤ c′ < 1.

However this is absurd since µ (G′N ) ↑ 1 as N → ∞ since µ is a probability
measure on S and G′N ↑ S as N ↑ ∞.

We may now finish the proof as follows. Let ε > 0 be given and let
{xk}∞k=1 be a countable dense subset of S. For each m ∈ N the open sets
Gn := ∪nk=1B

(
xk,

1
m

)
↑ S and so by the above claim there exists nm such

Vm := Gnm satisfies infk µk (Vm) ≥ 1− ε2−m. We now let A := ∩mVm so that
µk (A) ≥ 1− ε for all k. As A is totally bounded and S is complete, Kε := Ā is
the desired compact subset of S such that µk (Kε) ≥ 1− ε for all k.





22

Characteristic Functions (Fourier Transform)

Notation 22.1 Given a measure µ on a measurable space, (Ω,B) and a func-
tion, f ∈ L1 (µ) , we will often write µ (f) for

∫
Ω
fdµ.

Let us recall Definition 8.10 here.

Definition 22.2. Given a probability measure, µ on (Rn,BRn) , let

µ̂ (λ) :=
∫

Rn
eiλ·xdµ (x)

be the Fourier transform or characteristic function of µ. If X =
(X1, . . . , Xn) : Ω → Rn is a random vector on some probability space (Ω,B, P ) ,
then we let f (λ) := fX (λ) := E

[
eiλ·X

]
. Of course, if µ := P ◦ X−1, then

fX (λ) = µ̂ (λ) .

From Corollary 8.11 that we know if µ and ν are two probability measures
on (Rn,BRn) such that µ̂ = ν̂ then µ = ν – i.e. the Fourier transform map
is injective. In this chapter we are going to, among other things, characterize
those functions which are characteristic functions and we will also construct an
inversion formula.

22.1 Basic Properties of the Characteristic Function

Definition 22.3. A function f : Rn → C is said to be positive definite, iff
f (−λ) = f (λ) for all λ ∈ Rn and for all m ∈ N, {λj}mj=1 ⊂ Rn the matrix,(
{f (λj − λk)}mj,.k=1

)
is non-negative. More explicitly we require,

m∑
j,k=1

f (λj − λk) ξj ξ̄k ≥ 0 for all (ξ1, . . . , ξm) ∈ Cm.

Notation 22.4 For l ∈ N∪{0} , let Cl (Rn,C) denote the vector space of func-
tions, f : Rn → C which are l - time continuously differentiable. More explicitly,
if ∂j := ∂

∂xj
, then f ∈ Cl (Rn,C) iff the partial derivatives, ∂j1 . . . ∂jkf, exist

and are continuous for k = 1, 2, . . . , l and all j1, . . . , jk ∈ {1, 2, . . . , n} .

Proposition 22.5 (Basic Properties of µ̂). Let µ and ν be two probability
measures on (Rn,BRn) , then;

1. µ̂ (0) = 1, and |µ̂ (λ)| ≤ 1 for all λ.
2. µ̂ (λ) is continuous.
3. µ̂ (λ) = µ̂ (−λ) for all λ ∈ Rn and in particular, µ̂ is real valued iff µ is

symmetric, i.e. iff µ (−A) = µ (A) for all A ∈ BRn . (If µ = P ◦ X−1 for
some random vector X, then µ is symmetric iff X

d= −X.)
4. µ̂ is a positive definite function. (For the converse of this result, see

Bochner’s Theorem 22.38 below.)
5. If

∫
Rn ‖x‖

l
dµ (x) <∞, then µ̂ ∈ Cl (Rn,C) and

∂j1 . . . ∂jm µ̂ (λ) =
∫

Rn
(ixj1 . . . ixjm) eiλ·xdµ (x) for all m ≤ l.

6. If X and Y are independent random vectors then

fX+Y (λ) = fX (λ) fY (λ) for all λ ∈ Rn.

This may be alternatively expressed as

µ̂ ∗ ν (λ) = µ̂ (λ) ν̂ (λ) for all λ ∈ Rn.

7. If a ∈ R, b ∈ Rn, and X : Ω → Rn is a random vector, then

faX+b (λ) = eiλ·bfX (aλ) .

Proof. The proof of items 1., 2., 6., and 7. are elementary and will be left
to the reader. It also easy to see that µ̂ (λ) = µ̂ (−λ) and µ̂ (λ) = µ̂ (−λ) if µ is
symmetric. Therefore if µ is symmetric, then µ̂ (λ) is real. Conversely if µ̂ (λ)
is real then

µ̂ (λ) = µ̂ (−λ) =
∫

Rn
eiλ·xdν (x) = ν̂ (λ)

where ν (A) := µ (−A) . The uniqueness Corollary 8.11 then implies µ = ν, i.e.
µ is symmetric. This proves item 3.

Item 5. follows by induction using Corollary 7.30. For item 4. let m ∈ N,
{λj}mj=1 ⊂ Rn and (ξ1, . . . , ξm) ∈ Cm. Then
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m∑
j,k=1

µ̂ (λj − λk) ξj ξ̄k =
∫

Rn

m∑
j,k=1

ei(λj−λk)·xξj ξ̄kdµ (x)

=
∫

Rn

m∑
j,k=1

eiλj ·xξjeiλk·xξkdµ (x)

=
∫

Rn

∣∣∣∣∣∣
m∑
j=1

eiλj ·xξj

∣∣∣∣∣∣
2

dµ (x) ≥ 0.

Example 22.6 (Example 21.3 continued.). Let dµ (x) = 1[0,1] (x) dx and ν (A) =
µ (−A) . Then

µ̂ (λ) =
∫ 1

0

eiλxdx =
eiλ − 1
iλ

,

ν̂ (λ) = µ̂ (−λ) = µ̂ (λ) =
e−iλ − 1
−iλ

, and

µ̂ ∗ ν (λ) = µ̂ (λ) ν̂ (λ) = |µ̂ (λ)|2 =
∣∣∣∣eiλ − 1

iλ

∣∣∣∣2 =
2
λ2

[1− cosλ] .

According to example 21.3 we also have d (µ ∗ ν) (x) = (1− |x|)+ dx and so
directly we find

µ̂ ∗ ν (λ) =
∫

R
eiλx (1− |x|)+ dx =

∫
R

cos (λx) (1− |x|)+ dx

= 2
∫ 1

0

(1− x) cosλx dx = 2
∫ 1

0

(1− x) d
sinλx
λ

= −2
∫ 1

0

d (1− x)
sinλx
λ

= 2
∫ 1

0

sinλx
λ

dx = 2
− cosλx
λ2

|x=1
x=0

= 2
1− cosλ

λ2
.

For the most part we are now going to stick to the one dimensional case, i.e.
X will be a random variable and µ will be a probability measure on (R,BR) .
The following Lemma is a special case of item 4. of Proposition 22.5.

Lemma 22.7. Suppose n ∈ N and X is random variables such that E [|X|n] <
∞. If µ = P ◦ X−1 is the distribution of X, then µ̂ (λ) := E

[
eiλX

]
is Cn –

differentiable and

µ̂(l) (λ) = E
[
(iX)l eiλX

]
=
∫

R
(ix)l eiλxdµ (x) for l = 0, 1, 2, . . . , n.

In particular it follows that

E
[
X l
]

=
µ̂(l) (0)
il

.

The following theorem is a partial converse to this lemma. Hence the combi-
nation of Lemma 22.7 and Theorem 22.8 (see also Corollary 22.31 below) shows
that there is a correspondence between the number of moments of X and the
differentiability of fX .

Theorem 22.8. Let X be a random variable, m ∈ {0, 1, 2, . . . } , f (λ) =
E
[
eiλX

]
. If f ∈ C2m (R,C) such that g := f (2m) is differentiable in a neigh-

borhood of 0 and g′′ (0) = f (2m+2) (0) exists. Then E
[
X2m+2

]
< ∞ and

f ∈ C2m+2 (R,C) .

Proof. This will be proved by induction on m. We start with m = 0 in
which case we automatically we know by Proposition 22.5 or Lemma 22.7 that
f ∈ C (R,C)). Since

u (λ) := Re f (λ) = E [cos (λX)] ,

it follows that u is an even function of λ and hence u′ = Re f ′ is an odd function
of λ and in particular, u′ (0) = 0. By the mean value theorem, to each λ > 0
with λ near 0, there exists 0 < cλ < λ such that

u (λ)− u (0)
λ

= u′ (cλ) = u′ (cλ)− u′ (0) .

Therefore,

u (0)− u (λ)
λcλ

= −u
′ (cλ)− u′ (0)

cλ
→ −u′′ (0) as λ ↓ 0.

Since

E
[

1− cos (λX)
λ2

]
≤ E

[
1− cos (λX)

λcλ

]
=
u (0)− u (λ)

λcλ

and limλ↓0
1−cos(λX)

λ2 = 1
2X

2, we may apply Fatou’s lemma to conclude,

1
2

E
[
X2
]
≤ lim inf

λ↓0
E
[

1− cos (λX)
λ2

]
≤ −u′′ (0) <∞.

An application of Lemma 22.7 then implies that f ∈ C2 (R,C) .
For the general induction step we assume the truth of the theorem at level

m in which case we know by Lemma 22.7 that

f (2m) (λ) = (−1)m E
[
X2meiλX

]
=: (−1)m g (λ) .
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By assumption we know that g is differentiable in a neighborhood of 0 and that
g′′ (0) exists. We now proceed exactly as before but now with u := Re g. So for
each λ > 0 near 0, there exists cλ ∈ (0, λ) such that

u (0)− u (λ)
λcλ

→ −u′′ (0) as λ ↓ 0

and

E
[
X2m 1− cos (λX)

λ2

]
≤ E

[
X2m 1− cos (λX)

λcλ

]
=
u (0)− u (λ)

λcλ
.

Another use of Fatou’s lemma gives,

1
2

E
[
X2m+2

]
= lim inf

λ↓0
E
[
X2m 1− cos (λX)

λ2

]
≤ −u′′ (0) <∞

from which Lemma 22.7 may be used to show f ∈ C2m+2 (R,C) . This completes
the induction argument.

22.2 Examples

Example 22.9. If −∞ < a < b <∞ and dµ (x) = 1
b−a1[a,b] (x) dx then

µ̂ (λ) =
1

b− a

∫ b

a

eiλxdx =
eiλb − eiλa

iλ (b− a)
.

If a = −c and b = c with c > 0, then

µ̂ (λ) =
sinλc
λc

.

Observe that
µ̂ (λ) = 1− 1

3!
λ2c2 + . . .

and therefore, µ̂′ (0) = 0 and µ̂′′ (0) = − 1
3c

2 and hence it follows that∫
R
xdµ (x) = 0 and

∫
R
x2dµ (x) =

1
3
c2.

Example 22.10. Suppose Z is a Poisson random variable with mean a > 0, i.e.
P (Z = n) = e−a a

n

n! . Then

fZ (λ) = E
[
eiλZ

]
= e−a

∞∑
n=0

eiλn
an

n!
= e−a

∞∑
n=0

(
aeiλ

)n
n!

= exp
(
a
(
eiλ − 1

))
.

Differentiating this result gives,

f ′Z (λ) = iaeiλ exp
(
a
(
eiλ − 1

))
and

f ′′Z (λ) =
(
−a2ei2λ − aeiλ

)
exp

(
a
(
eiλ − 1

))
from which we conclude,

EZ =
1
i
f ′Z (0) = a and EZ2 = −f ′′Z (0) = a2 + a.

Therefore, EZ = a = Var (Z) .

Example 22.11. Suppose T is a positive random variable such that
P (T ≥ t+ s|T ≥ s) = P (T ≥ t) for all s, t ≥ 0, or equivalently

P (T ≥ t+ s) = P (T ≥ t)P (T ≥ s) for all s, t ≥ 0,

then P (T ≥ t) = e−at for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
FT (t) := P (T ≤ t) = 1 − e−a(t∨0). Since FT (t) is piecewise differentiable, the
law of T, µ := P ◦ T−1, has a density,

dµ (t) = F ′T (t) dt = ae−at1t≥0dt.

Therefore,

E
[
eiaT

]
=
∫ ∞

0

ae−ateiλtdt =
a

a− iλ
= µ̂ (λ) .

Since
µ̂′ (λ) = i

a

(a− iλ)2 and µ̂′′ (λ) = −2
a

(a− iλ)3

it follows that

ET =
µ̂′ (0)
i

= a−1 and ET 2 =
µ̂′′ (0)
i2

=
2
a2

and hence Var (T ) = 2
a2 −

(
1
a

)2 = a−2.

Proposition 22.12. If dµ (x) := 1√
2π
e−x

2/2dx, then µ̂ (λ) = e−λ
2/2. In partic-

ular we have ∫
R
xdµ (x) = 0 and

∫
R
x2dµ (x) = 1.

Proof. Differentiating the formula,

µ̂ (λ) =
1√
2π

∫
R
e−x

2/2eiλxdx,
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for µ̂ with respect to λ and then integrating by parts implies,

µ̂′ (λ) =
1√
2π

∫
R
ixe−x

2/2eiλxdx

=
i√
2π

∫
R

[
− d

dx
e−x

2/2

]
eiλxdx

=
i√
2π

∫
R
e−x

2/2 d

dx
eiλxdx = −λµ̂ (λ) .

Solving this equation of µ̂ (λ) then implies

µ̂ (λ) = e−λ
2/2µ̂ (0) = e−λ

2/2µ (R) = e−λ
2/2.

Example 22.13. If µ is a probability measure on (R,BR) and n ∈ N, then µ̂n is
the characteristic function of the probability measure, namely the measure

µ∗n :=
n times︷ ︸︸ ︷

µ ∗ · · · ∗ µ. (22.1)

Alternatively put, if {Xk}nk=1 are i.i.d. random variables with µ = P ◦ X−1
k ,

then
fX1+···+Xn (λ) = fnX1

(λ) .

Example 22.14. Suppose that {µn}∞n=0 are probability measure on (R,BR) and
{pn}∞n=0 ⊂ [0, 1] such that

∑∞
n=0 pn = 1. Then

∑∞
n=0 pnµ̂n is the characteristic

function of the probability measure,

µ :=
∞∑
n=0

pnµn.

Here is a more interesting interpretation of µ. Let {Xn}∞n=0∪{T} be independent
random variables with P ◦X−1

n = µn and P (T = n) = pn for all n ∈ N0. Then
µ (A) = P (XT ∈ A) , where XT (ω) := XT (ω) (ω) . Indeed,

µ (A) = P (XT ∈ A) =
∞∑
n=0

P (XT ∈ A, T = n) =
∞∑
n=0

P (Xn ∈ A, T = n)

=
∞∑
n=0

P (Xn ∈ A, T = n) =
∞∑
n=0

pnµn (A) .

Let us also observe that

µ̂ (λ) = E
[
eiλXT

]
=
∞∑
n=0

E
[
eiλXT : T = n

]
=
∞∑
n=0

E
[
eiλXn : T = n

]
=
∞∑
n=0

E
[
eiλXn

]
P (T = n) =

∞∑
n=0

pnµ̂n (λ) .

Example 22.15. If µ is a probability measure on (R,BR) then
∑∞
n=0 pnµ̂

n is the
characteristic function of a probability measure, ν, on (R,BR) . In this case,
ν =

∑∞
n=0 pnµ

∗n where µ∗n is defined in Eq. (22.1). As an explicit example, if
a > 0 and pn = an

n! e
−a, then

∞∑
n=0

pnµ̂
n =

∞∑
n=0

an

n!
e−aµ̂n = e−aeaµ̂ = ea(µ̂−1)

is the characteristic function of a probability measure. In other words,

fXT (λ) = E
[
eiλXT

]
= exp (a (fX1 (λ)− 1)) .

22.3 Continuity Theorem

Lemma 22.16 (Tail Estimate). Let X : (Ω,B, P )→ R be a random variable
and fX (λ) := E

[
eiλX

]
be its characteristic function. Then for a > 0,

P (|X| ≥ a) ≤ a

2

∫ 2/a

−2/a

(1− fX (λ)) dλ =
a

2

∫ 2/a

−2/a

(1− Re fX (λ)) dλ (22.2)

Proof. Recall that the Fourier transform of the uniform distribution on
[−c, c] is sinλc

λc and hence

1
2c

∫ c

−c
fX (λ) dλ =

1
2c

∫ c

−c
E
[
eiλX

]
dλ = E

[
sin cX
cX

]
.

Therefore,
1
2c

∫ c

−c
(1− fX (λ)) dλ = 1− E

[
sin cX
cX

]
= E [Yc] (22.3)

where
Yc := 1− sin cX

cX
.

Notice that Yc ≥ 0 (see Eq. (22.36)) and moreover, Yc ≥ 1/2 if |cX| ≥ 2. Hence
we may conclude

E [Yc] ≥ E [Yc : |cX| ≥ 2] ≥ E
[

1
2

: |cX| ≥ 2
]

=
1
2
P (|X| ≥ 2/c) .
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Combining this estimate with Eq. (22.3) shows,

1
2c

∫ c

−c
(1− fX (λ)) dλ ≥ 1

2
P (|X| ≥ 2/c) .

Taking a = 2/c in this estimate proves Eq. (22.2).

Theorem 22.17 (Continuity Theorem). Suppose that {µn}∞n=1

is a sequence of probability measure on (R,BR) and suppose that
f (λ) := limn→∞ µ̂n (λ) exists for all λ ∈ R. If f is continuous at λ = 0, then
f is the characteristic function of a unique probability measure, µ, on BR and
µn =⇒ µ as n→∞.

Proof. By the continuity of f at λ = 0, for ever ε > 0 we may choose aε
sufficiently large so that

1
2
aε

∫ 2/aε

−2/aε

(1− Re f (λ)) dλ ≤ ε/2.

According to Lemma 22.16 and the DCT,

µn ({x : |x| ≥ aε}) ≤
1
2
aε

∫ 2/aε

−2/aε

(1− Re µ̂n (λ)) dλ

→ 1
2
aε

∫ 2/aε

−2/aε

(1− Re f (λ)) dλ ≤ ε/2 as n→∞.

Hence µn ({x : |x| ≥ aε}) ≤ ε for all sufficiently large n, say n ≥ N. By increas-
ing aε if necessary we can assure that µn ({x : |x| ≥ aε}) ≤ ε for all n and hence
Γ := {µn}∞n=1 is tight.

By Theorem 21.56, we may find a subsequence, {µnk}
∞
k=1 and a probability

measure µ on BR such that µnk =⇒ µ as k →∞. Since x→ eiλx is a bounded
and continuous function, it follows that

µ̂ (λ) = lim
k→∞

µ̂nk (λ) = f (λ) for all λ ∈ R,

that is f is the characteristic function of a probability measure, µ.
We now claim that µn =⇒ µ as n → ∞. If not, we could find a bounded

continuous function, g, such that limn→∞ µn (g) 6= µ (g) or equivalently, there
would exists ε > 0 and a subsequence {µ′k := µnk} such that

|µ (g)− µ′k (g)| ≥ ε for all k ∈ N.

However by Theorem 21.56 again, there is a further subsequence, µ′′l = µ′kl
of µ′k such that µ′′l =⇒ ν for some probability measure ν. Since ν̂ (λ) =

liml→∞ µ̂′′l (λ) = f (λ) = µ̂ (λ) , it follows that µ = ν. This leads to a contradic-
tion since,

ε ≤ lim
l→∞

|µ (g)− µ′′l (g)| = |µ (g)− ν (g)| = 0.

Remark 22.18. One could also use Proposition 22.35 and Bochner’s Theorem
22.38 below to conclude; if f (λ) := limn→∞ µ̂n (λ) exists and is continuous
at 0, then f is the characteristic function of a probability measure. Indeed,
the condition of a function being positive definite is preserved under taking
pointwise limits.

Exercise 22.1. Suppose now X : (Ω,B, P ) → Rd is a random vector and
fX (λ) := E

[
eiλ·X

]
is its characteristic function. Show for a > 0,

P (|X|∞ ≥ a) ≤2
(a

4

)d ∫
[−2/a,2/a]d

(1− fX (λ)) dλ

= 2
(a

4

)d ∫
[−2/a,2/a]d

(1− Re fX (λ)) dλ (22.4)

where |X|∞ = maxi |Xi| and dλ = dλ1, . . . , dλd.

Solution to Exercise (22.1). Working as above, we have(
1
2c

)d ∫
[−c,c]d

(
1− eiλ·X

)
dλ = 1−

d∏
j=1

sin cXj

cXj
=: Yc, (22.5)

where as before, Yc ≥ 0 and Yc ≥ 1/2 if c |Xj | ≥ 2 for some j, i.e. if c |X|∞ ≥ 2.
Therefore taking expectations of Eq. (22.5) implies,(

1
2c

)d ∫
[−c,c]d

(1− fX (λ)) dλ = E [Yc] ≥ E [Yc : |X|∞ ≥ 2/c]

≥ E
[

1
2

: |X|∞ ≥ 2/c
]

=
1
2
P (|X|∞ ≥ 2/c) .

Taking c = 2/a in this expression implies Eq. (22.4).

Lemma 22.19. Suppose that {µk}∞n=1 is a sequence of probability measures
on Rn with the property that for all ε > 0 there exists Mε < ∞ such that
µk (Rn \ [−Mε,Mε]

n) ≤ ε for all k. Then the sequence of functions {µ̂k}∞k=1 is
equicontinuous on Rn.

Proof. Let ε > 0 be given and choose Mε as described above. Let λ, h ∈ Rn,
then
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354 22 Characteristic Functions (Fourier Transform)

|µ̂k (λ+ h)− µ̂k (λ)| ≤
∫

Rn

∣∣∣eix·(λ+h) − eix·λ
∣∣∣ dµk (x)

=
∫

Rn

∣∣eix·h − 1
∣∣ dµk (x)

≤ 2ε+ sup
x∈[−Mε,Mε]

n

∣∣eix·h − 1
∣∣ .

Therefore it follows that

lim sup
h→0

sup
λ∈Rn

|µ̂k (λ+ h)− µ̂k (λ)| ≤ 2ε

and as ε > 0 was arbitrary the result follows.

Corollary 22.20 (Uniform Convergence). If µn =⇒ µ as n → ∞ then
µ̂n (λ)→ µ̂ (λ) uniformly on compact subsets of R (Rn).

Proof. This is a consequence of Theorem 22.17, Lemma 22.19, and the
Arzela - Ascoli theorem. For completeness here is a sketch of the proof.

Let K be a compact subset of R (Rn) and ε > 0 be given. Applying Lemma
22.19 to {µ} ∪ {µ̂n} we know that there exists δ > 0 such that

sup
λ
|µ̂n (λ+ h)− µ̂n (λ)| ≤ ε and sup

λ
|µ̂ (λ+ h)− µ̂ (λ)| ≤ ε (22.6)

whenever ‖h‖ ≤ δ. Let F ⊂ K be a finite set such that K ⊂ ∪ξ∈FB (ξ, δ) . Since
we already know that µ̂n → µ̂ pointwise we will have

lim
n→∞

max
ξ∈F
|µ̂n (ξ)− µ̂ (ξ)| = 0.

Since every point λ ∈ K is within δ of a point in F we may use Eq. (22.6) to
conclude that

sup
λ∈K
|µ̂n (λ)− µ̂ (λ)| ≤ 2ε+ max

ξ∈F
|µ̂n (ξ)− µ̂ (ξ)|

and therefore, lim supn→∞ supλ∈K |µ̂n (λ)− µ̂ (λ)| ≤ 2ε. As ε > 0 was arbitrary
the result follows.

The following lemma will be needed before giving our first applications of
the continuity theorem.

Lemma 22.21. Suppose that {zn}∞n=1 ⊂ C satisfies, limn→∞ nzn = ξ ∈ C,
then

lim
n→∞

(1 + zn)n = eξ.

Proof. Since nzn → ξ, it follows that zn ∼ ξ
n → 0 as n→∞ and therefore

by Lemma 22.40 below, (1 + zn) = eln(1+zn) and

ln (1 + zn) = zn +O
(
z2
n

)
= zn +O

(
1
n2

)
.

Therefore,

(1 + zn)n =
[
eln(1+zn)

]n
= en ln(1+zn) = en(zn+O( 1

n2 )) → eξ as n→∞.

Proposition 22.22 (Weak Law of Large Numbers revisited). Suppose
that {Xn}∞n=1 are i.i.d. integrable random variables. Then Sn

n

P→ EX1 =: µ.

Proof. Let f (λ) := fX1 (λ) = E
[
eiλX1

]
. Then by Taylor’s theorem, f (λ) =

1 + iµλ+ o (λ) . Since,

fSn
n

(λ) =
[
f

(
λ

n

)]n
=
[
1 + iµ

λ

n
+ o

(
1
n

)]n
it follows from Lemma 22.21 that

lim
n→∞

fSn
n

(λ) = eiµλ

which is the characteristic function of the constant random variable, µ. By the
continuity Theorem 22.17, it follows that Sn

n =⇒ µ and since µ is constant we

may apply Lemma 21.25 to conclude Sn
n

P→ µ.
We are now ready to continue are investigation of central limit theorems

that was begun with Theorem 10.33 above.

Theorem 22.23 (The Basic Central Limit Theorem). Suppose that
{Xn}∞n=1 are i.i.d. square integrable random variables such that EX1 = 0 and
EX2

1 = 1. Then Sn√
n

=⇒ N (0, 1) .

Proof. By Theorem 22.17 and Proposition 22.12, it suffices to show

lim
n→∞

E
[
e
iλ Sn√

n

]
= e−λ

2/2 for all λ ∈ R.

Letting f (λ) := E
[
eiλX1

]
, we have by Taylor’s theorem (see Eq. (22.32) and

(22.35)) that

f (λ) = 1− 1
2

(1 + ε (λ))λ2 (22.7)

where ε (λ)→ 0 as λ→ 0. Therefore,
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f Sn√
n

(λ) = E
[
e
iλ Sn√

n

]
=
[
f

(
λ√
n

)]n
=
[
1− 1

2

(
1 + ε

(
λ√
n

))
λ2

n

]n
→ e−λ

2/2,

wherein we have used Lemma 22.21 with

zn = −1
2

(
1 + ε

(
λ√
n

))
λ2

n
.

Alternative proof. This proof uses Lemma 23.6 below as follows;∣∣∣f Sn√
n

(λ)− e−λ
2/2
∣∣∣ =

∣∣∣∣[f ( λ√
n

)]n
−
[
e−λ

2/2n
]n∣∣∣∣

≤ n
∣∣∣∣f ( λ√

n

)
− e−λ

2/2n

∣∣∣∣
= n

∣∣∣∣1− 1
2

(
1 + ε

(
λ√
n

))
λ2

n
−
(

1− λ2

2n
+O

(
1
n2

))∣∣∣∣
→ 0 as n→∞.

Corollary 22.24. If {Xn}∞n=1 are i.i.d. square integrable random variables such
that EX1 = 0 and EX2

1 = 1, then

sup
λ∈R

∣∣∣∣P ( Sn√n ≤ y
)
− P (N (0, 1) ≤ y)

∣∣∣∣→ 0 as n→∞. (22.8)

Proof. This is a direct consequence of Theorem 22.23 and Exercise 21.7.
Berry (1941) and Essen̂ (1942) showed there exists a constant, C <∞, such

that; if ρ3 := E |X1|3 <∞, then

sup
λ∈R

∣∣∣∣P ( Sn√n ≤ y
)
− P (N (0, 1) ≤ y)

∣∣∣∣ ≤ C ( ρσ)3

/
√
n.

In particular the rate of convergence is n−1/2. The exact value of the best
constant C is still unknown but it is known to be less than 1. We will not prove
this theorem here. However we have seen a hint that such a result should be
true in Theorem 10.33 above.

Remark 22.25 (Why normal?). It is now a reasonable question to ask “why” is
the limiting random variable normal in Theorem 22.23. One way to understand
this is, if under the assumptions of Theorem 22.23, we know Sn√

n
=⇒ L where

L is some random variable with EL = 0 and EL2 = 1, then

S2n√
2n

=
1√
2

(∑2n
k=1, k oddXj√

n
+

∑2n
k=1, k evenXj√

n

)
(22.9)

=⇒ 1√
2

(L1 + L2)

where L1
d= L

d= L2 and L1 and L2 are independent. To rigorously understand
this, using characteristic functions we would conclude from Eq. (22.9) that

f S2n√
2n

(λ) = f Sn√
n

(
λ√
2

)
f Sn√

n

(
λ√
2

)
.

Passing to the limit in this equation then shows, with f (λ) = limn→∞ f Sn√
n

(λ) =

fL (λ) , that

f (λ) =
[
f

(
λ√
2

)]2

.

Iterating this equation then shows

f (λ) =

[
f

(
λ(√
2
)n
)]2n

=

1− 1
2

(
λ(√
2
)n
)2(

1 + ε

(
λ(√
2
)n
))2n

.

An application of Lemma 22.21 then shows

f (λ) = lim
n→∞

1− 1
2

(
λ(√
2
)n
)2(

1 + ε

(
λ(√
2
)n
))2n

= e−
1
2λ

2
= fN(0,1) (λ) .

That is we must have L d= N (0, 1) .

22.4 A Fourier Transform Inversion Formula

Corollary 8.11 guarantees the injectivity of the Fourier transform on the space
of probability measures. Our next goal is to find an inversion formula for the
Fourier transform. To motivate the construction below, let us first recall a few
facts about Fourier series. To keep our exposition as simple as possible, we now
restrict ourselves to the one dimensional case.

For L > 0, let eLn (x) := e−i
n
Lx and let

(f, g)L :=
1

2πL

∫ πL

−πL
f (x) ḡ (x) dx
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for f, g ∈ L2 ([−πL, πL] , dx) . Then it is well known (and fairly elementary
to prove) that

{
eLn : n ∈ Z

}
is an orthonormal basis for L2 ([−πL, πL] , dx) . In

particular, if f ∈ Cc (R) with supp(f) ⊂ [−πL, πL] , then for x ∈ [−πL, πL] ,

f (x) =
∑
n∈Z

(
f, eLn

)
L
eLn (x) =

1
2πL

∑
n∈Z

(∫ πL

−πL
f (y) ei

n
Lydy

)
e−i

n
Lx

=
1

2πL

∑
n∈Z

f̂
(n
L

)
e−i

n
Lx (22.10)

where
f̂ (λ) =

∫ ∞
−∞

f (y) eiλydy.

Letting L→∞ in Eq. (22.10) then suggests that

1
2πL

∑
n∈Z

f̂
(n
L

)
e−i

n
Lx → 1

2π

∫ ∞
−∞

f̂ (λ) e−iλxdλ

and we are lead to expect,

f (x) =
1

2π

∫ ∞
−∞

f̂ (λ) e−iλxdλ.

Hence if we now think that f (x) is a probability density and let dµ (x) :=
f (x) dx so that µ̂ (λ) = f̂ (λ) , we should expect

µ ([a, b]) =
∫ b

a

f (x) dx =
∫ b

a

[
1

2π

∫ ∞
−∞

µ̂ (λ) e−iλxdλ
]
dx

=
1

2π

∫ ∞
−∞

µ̂ (λ)

(∫ b

a

e−iλxdx

)
dλ

=
1

2π

∫ ∞
−∞

µ̂ (λ)
(
e−iλa − e−iλb

iλ

)
dλ

= lim
c→∞

1
2π

∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ.

This should provide some motivation for Theorem 22.27 below. The following
lemma is needed in the proof of the inversion Theorem 22.27 below.

Lemma 22.26. For c > 0, let

S (c) :=
1

2π

∫ c

−c

sinλ
λ

dλ. (22.11)

Then S (c)→ π boundedly as c→∞ and∫ c

−c

sinλy
λ

dλ = sgn(y)S (c |y|) for all y ∈ R. (22.12)

where

sgn(y) =

 1 if y > 0
−1 if y < 0
0 if y = 0

.

Proof. The first assertion has already been dealt with in Example 9.11. We
will repeat the argument here for the reader’s convenience. By symmetry and
Fubini’s theorem,

S (c) =
1
π

∫ c

0

sinλ
λ

dλ =
1
π

∫ c

0

sinλ
(∫ ∞

0

e−λtdt

)
dλ

=
1
π

∫ ∞
0

dt

∫ c

0

dλ sinλe−λt

=
1
2

+
1
π

∫ ∞
0

1
1 + t2

e−tc [− cos c− t sin c] dt, (22.13)

wherein we have used∫ c

0

dλ sinλe−λt = Im
∫ c

0

dλeiλe−λt = Im
∫ c

0

dλe(i−t)λ

= Im
(
e(i−t)c − 1

(i− t)

)
=

1
1 + t2

Im
([
e(i−t)c − 1

]
(−i− t)

)
=

1
1 + t2

(
e−tc [− cos c− t sin c] + 1

)
and

1
π

∫ ∞
0

1
1 + t2

dt =
1
2
.

The the integral in Eq. (22.13) tends to as c→∞ by the dominated convergence
theorem. The second assertion in Eq. (22.12) is a consequence of the change of
variables, z = λy.

Theorem 22.27 (Fourier Inversion Formula). If µ is a probability measure
on (R,BR) and −∞ < a < b <∞, then

lim
c→∞

1
2π

∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ = µ ((a, b)) +

1
2

(µ ({a}) + µ ({b})) .
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Proof. By Fubini’s theorem and Lemma 22.26,

I (c) :=
∫ c

−c
µ̂ (λ)

(
e−iλa − e−iλb

iλ

)
dλ

=
∫ c

−c

(∫
R
eiλxdµ (x)

)(
e−iλa − e−iλb

iλ

)
dλ

=
∫

R
dµ (x)

∫ c

−c
dλeiλx

(
e−iλa − e−iλb

iλ

)
=
∫

R
dµ (x)

∫ c

−c
dλ

(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
.

Since

Im
(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
= −

(
cos (λ (a− x))− cos (λ (b− x))

λ

)
is an odd function of λ it follows that

I (c) =
∫

R
dµ (x)

∫ c

−c
dλRe

(
e−iλ(a−x) − e−iλ(b−x)

iλ

)
=
∫

R
dµ (x)

∫ c

−c
dλ

(
sinλ (x− a)− sinλ (x− b)

λ

)
= 2π

∫
R
dµ (x) [sgn(x− a)S (c |x− a|)− sgn(x− b)S (c |x− b|)] .

Now letting c→∞ in this expression (using the DCT) shows

lim
c→∞

1
2π
I (c) =

1
2

∫
R
dµ (x) [sgn(x− a)− sgn(x− b)]

=
1
2

∫
R
dµ (x)

[
2 · 1(a,b) (x) + 1{a} (x) + 1{b} (x)

]
= µ ((a, b)) +

1
2

[µ ({a}) + µ ({b})] .

Corollary 22.28. Suppose that µ is a probability measure on (R,BR) such that
µ̂ ∈ L1 (m) , then dµ = ρdm where ρ is a continuous density on R.

Proof. The function,

ρ (x) :=
1

2π

∫
R
µ̂ (λ) e−iλxdλ,

is continuous by the dominated convergence theorem. Moreover,

∫ b

a

ρ (x) dx =
1

2π

∫ b

a

dx

∫
R
dλµ̂ (λ) e−iλx

=
1

2π

∫
R
dλµ̂ (λ)

∫ b

a

dxe−iλx

=
1

2π

∫
R
dλµ̂ (λ)

[
e−iλa − e−iλb

iλ

]
=

1
2π

lim
c→∞

∫ c

−c
µ̂ (λ)

[
e−iλa − e−iλb

iλ

]
dλ

= µ ((a, b)) +
1
2

[µ ({a}) + µ ({b})] .

Letting a ↑ b over a ∈ R such that µ ({a}) = 0 in this identity shows µ ({b}) = 0
for all b ∈ R. Therefore we have shown

µ ((a, b]) =
∫ b

a

ρ (x) dx for all −∞ < a < b <∞.

Using one of the multiplicative systems theorems, it is now easy to verify that
µ (A) =

∫
A
ρ (x) dx for all A ∈ BR or

∫
R hdµ =

∫
R hρdµ for all bounded mea-

surable functions h : R→ R. This then implies that ρ ≥ 0, m – a.e., and the
dµ = ρdm.

Example 22.29. Recall from Example 22.6 that∫
R
eiλx (1− |x|)+ dx = 2

1− cosλ
λ2

.

Hence it follows1 from Corollary 22.28 that

(1− |x|)+ =
1
π

∫
R

1− cosλ
λ2

e−iλxdλ. (22.14)

Corollary 22.30. For all random variables, X, we have

E |X| = 1
π

∫
R

1− Re fX (λ)
λ2

dλ. (22.15)

Proof. Evaluating Eq. (22.14) at x = 0 implies

1 =
1
π

∫ ∞
−∞

1− cosλ
λ2

dλ.

Making the change of variables, λ→Mλ, in the above integral then shows
1 This identity could also be verified directly using residue calculus techniques from

complex variables.
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358 22 Characteristic Functions (Fourier Transform)

M =
1
π

∫
R

1− cos (λM)
λ2

dλ.

Now let M = |X| in this expression and then take expectations to find

E |X| = 1
π

∫
R

E
1− cosλX

λ2
dλ =

1
π

∫
R

1− Re fX (λ)
λ2

dλ.

Suppose that we did not know the value of c :=
∫∞
−∞

1−cosλ
λ2 dλ is π, we could

still proceed as above to learn

E |X| = 1
c

∫
R

1− Re fX (λ)
λ2

dλ.

We could then evaluate c by making a judicious choice of X. For example if
X

d= N (0, 1) , we would have on one hand

E |X| = 1√
2π

∫
R
|x| e−x

2/2dx =
2√
2π

∫ ∞
0

xe−x
2/2dx =

√
2
π
.

On the other hand, fX (λ) = e−λ
2/2 and so√

2
π

= −1
c

∫
R

(
1− e−λ

2/2
)
d
(
λ−1

)
=

1
c

∫
R
d
(

1− e−λ
2/2
) (
λ−1

)
=

1
c

∫
R
e−λ

2/2dλ =
√

2π
c

from which it follows, again, that c = π.

Corollary 22.31. Suppose X is a random variable and there exists ε > 0
such that u (λ) := Re fX (λ) = E [cosλX] is continuously differentiable for
λ ∈ (−2ε, 2ε) . If we further assume that∫ ε

0

|u′ (λ)|
λ

dλ <∞, (22.16)

then E |X| <∞ and fX ∈ C1 (R,C) . (Since u is even, u′ is odd and u′ (0) = 0.
Hence if u′ (λ) were α – Hölder continuous for some α > 0, then Eq. (22.16)
would hold.)

Proof. According to Eq. (22.15)

π · E |X| =
∫

R

1− u (λ)
λ2

dλ =
∫
|λ|≤ε

1− u (λ)
λ2

dλ+
∫
|λ|>ε

1− u (λ)
λ2

dλ.

Since 0 ≤ 1 − u (λ) ≤ 2 and 2/λ2 is integrable for |λ| > ε, to show E |X| < ∞
we must show,

∞ >

∫
|λ|≤ε

1− u (λ)
λ2

dλ = lim
δ↓0

∫
δ≤|λ|≤ε

1− u (λ)
λ2

dλ.

By an integration by parts we find∫
δ≤|λ|≤ε

1− u (λ)
λ2

dλ =
∫
δ≤|λ|≤ε

(1− u (λ)) d
(
−λ−1

)
=
u (λ)− 1

λ
|εδ +

u (λ)− 1
λ

|−δ−ε −
∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ

= −
∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε)− 1

ε
− u (−ε)− 1

−ε

+
u (−δ)− 1
−δ

− u (δ)− 1
δ

.

→ − lim
δ↓0

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε) + u (−ε)

ε
+ u′ (0)− u′ (0)

≤
∫
|λ|≤ε

|u′ (λ)|
|λ|

dλ+
u (ε) + u (−ε)

ε

= 2
∫ ε

0

|u′ (λ)|
λ

dλ+
u (ε) + u (−ε)

ε
<∞.

Passing the limit as δ ↓ 0 using the fact that u′ (λ) is an odd function, we learn∫
|λ|≤ε

1− u (λ)
λ2

dλ = lim
δ↓0

∫
δ≤|λ|≤ε

λ−1u′ (λ) dλ+
u (ε) + u (−ε)

ε

≤ 2
∫ ε

0

|u′ (λ)|
λ

dλ+
u (ε) + u (−ε)

ε
<∞.

22.5 Exercises

Exercise 22.2. For x, λ ∈ R, let (also see Eq. (22.19))

ϕ (λ, x) :=


eiλx−1−iλx

x2 if x 6= 0

− 1
2λ

2 if x = 0.
(22.17)

Let {xk}nk=1 ⊂ R \ {0} , {Zk}nk=1 ∪ {N} be independent random variables with

N
d= N (0, 1) and Zk being Poisson random variables with mean ak > 0, i.e.
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22.5 Exercises 359

P (Zk = n) = e−ak
ank
n! for n = 0, 1, 2 . . . . With Y :=

∑n
k=1 xk (Zk − ak) + αN,

show

fY (λ) := E
[
eiλY

]
= exp

(∫
R
ϕ (λ, x) dν (x)

)
where ν is the discrete measure on (R,BR) given by

ν = α2δ0 +
n∑
k=1

akx
2
kδxk . (22.18)

It is easy to see that ϕ (λ, 0) = limx→0 ϕ (λ, x) . In fact by Taylor’s theorem
with integral remainder we have

ϕ (λ, x) = −1
2
λ2

∫ 1

0

eitλxdν (t) (22.19)

where dν (t) = 2 (1− t) dt is a probability measure on [0, 1] . From this formula
it is clear that ϕ is a smooth function of (λ, x) .

Exercise 22.3. To each finite and compactly supported measure, ν, on (R,BR)
show there exists a sequence {νn}∞n=1 of finitely supported finite measures on
(R,BR) such that νn =⇒ ν. Here we say ν is compactly supported if there
exists M <∞ such that ν ({x : |x| ≥M}) = 0 and we say ν is finitely supported
if there exists a finite subset, Λ ⊂ R such that ν (R \ Λ) = 0.

Exercise 22.4. Show that if ν is a finite measure on (R,BR) , then

f (λ) := exp
(∫

R
ϕ (λ, x) dν (x)

)
(22.20)

is the characteristic function of a probability measure on (R,BR) . Here is an
outline to follow. (You may find the calculus estimates in Section 22.7 to be of
help.)

1. Show f (λ) is continuous.
2. Now suppose that ν is compactly supported. Show, using Exercises 22.2,

22.3, and the continuity Theorem 22.17 that exp
(∫

R ϕ (λ, x) dν (x)
)

is the
characteristic function of a probability measure on (R,BR) .

3. For the general case, approximate ν by a sequence of finite measures with
compact support as in item 2.

Exercise 22.5 (Exercise 2.3 in [63]). Let µ be the probability measure on
(R,BR) , such that µ ({n}) = p (n) = c 1

n2 ln|n|1|n|≥2 with c chosen so that∑
n∈Z p (n) = 1. Show that µ̂ ∈ C1 (R,C) even though

∫
R |x| dµ (x) =∞. To do

this show,

g (t) :
∑
n≥2

1− cosnt
n2 lnn

is continuously differentiable.

Exercise 22.6 (Polya’s Criterion [5, Problem 26.3 on p. 305.] and [15,
p. 104-107.]). Suppose ϕ (λ) is a non-negative symmetric continuous function
such that ϕ (0) = 1, ϕ (λ) is non-increasing and convex for λ ≥ 0. Show ϕ (λ) =
ν̂ (λ) for some probability measure, ν, on (R,BR) .

Fig. 22.1. Here is a piecewise linear convex function. We will assume that dn > 0 for
all n and that ϕ (λ) = 0 for λ sufficiently large. This last restriction may be removed
later by a limiting argument.

Solution to Exercise (22.6). Because of the continuity theorem and some
simple limiting arguments, it suffices to prove the result for a function ϕ as
pictured in Figure 22.1. From Example 22.29, we know that (1− |λ|)+ = µ̂ (λ)
where µ is the probability measure,

dµ (x) :=
1
π

1− cosx
x2

dx.

For a > 0, let µa (A) = µ (aA) in which case µa (f) = µ
(
f
(
a−1·

))
for all

bounded measurable f and in particular, µ̂a (λ) = µ̂
(
a−1λ

)
. To finish the

proof it suffices to show that ϕ (λ) may be expressed as

ϕ (λ) =
∞∑
n=1

pnµ̂an (λ) =
∞∑
n=1

pn

(
1−

∣∣∣∣ λan
∣∣∣∣)

+

(22.21)
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360 22 Characteristic Functions (Fourier Transform)

for some an > 0 and pn ≥ 0 such that
∑∞
n=1 pn = 1. Indeed, if this is the case

we may take, ν :=
∑∞
n=1 pnµan .

It is pretty clear that we should take an = d1 + · · ·+ dn for all n ∈ N. Since
we are assuming ϕ (λ) = 0 for large λ, there is a first index, N ∈ N, such that

0 = ϕ (aN ) = 1−
N∑
n=1

dnsn. (22.22)

Notice that sn = 0 for all n > N.
Since

ϕ′ (λ) = −
∞∑
n=k

pn
1
an

when ak−1 < λ < ak

we must require,

sk =
∞∑
n=k

pn
1
an

for all k

which then implies pk 1
ak

= sk − sk+1 or equivalently that

pk = ak (sk − sk+1) . (22.23)

Since ϕ is convex, we know that −sk ≤ −sk+1 or sk ≥ sk+1 for all k and
therefore pk ≥ 0 and pk = 0 for all k > N. Moreover,

∞∑
k=1

pk =
∞∑
k=1

ak (sk − sk+1) =
∞∑
k=1

aksk −
∞∑
k=2

ak−1sk

= a1s1 +
∞∑
k=2

sk (ak − ak−1) = d1s1 +
∞∑
k=2

skdk

=
∞∑
k=1

skdk = 1

where the last equality follows from Eq. (22.22). Working backwards with pk

defined as in Eq. (22.23) it is now easily shown that d
dλ

∑∞
n=1 pn

(
1−

∣∣∣ λan ∣∣∣)+
=

ϕ′ (λ) for λ /∈ {a1, a2, . . . } and since both functions are equal to 1 at λ = 0 we
may conclude that Eq. (22.21) is indeed valid.

22.6 Appendix: Bochner’s Theorem

Definition 22.32. A function f ∈ C(Rn,C) is said to have rapid decay or
rapid decrease if

sup
x∈Rn

(1 + |x|)N |f(x)| <∞ for N = 1, 2, . . . .

Equivalently, for each N ∈ N there exists constants CN <∞ such that |f(x)| ≤
CN (1 + |x|)−N for all x ∈ Rn. A function f ∈ C(Rn,C) is said to have (at
most) polynomial growth if there exists N <∞ such

sup (1 + |x|)−N |f(x)| <∞,

i.e. there exists N ∈ N and C < ∞ such that |f(x)| ≤ C(1 + |x|)N for all
x ∈ Rn.

Definition 22.33 (Schwartz Test Functions). Let S denote the space of
functions f ∈ C∞(Rn) such that f and all of its partial derivatives have rapid
decay and let

‖f‖N,α = sup
x∈Rn

∣∣(1 + |x|)N∂αf(x)
∣∣

so that
S =

{
f ∈ C∞(Rn) : ‖f‖N,α <∞ for all N and α

}
.

Also let P denote those functions g ∈ C∞(Rn) such that g and all of its deriva-
tives have at most polynomial growth, i.e. g ∈ C∞(Rn) is in P iff for all multi-
indices α, there exists Nα <∞ such

sup (1 + |x|)−Nα |∂αg(x)| <∞.

(Notice that any polynomial function on Rn is in P.)

Definition 22.34. A function χ : Rn → C is said to be positive (semi)
definite iff the matrices A := {χ(ξk − ξj)}mk,j=1 are positive definite for all
m ∈ N and {ξj}mj=1 ⊂ Rn.

Proposition 22.35. Suppose that χ : Rn → C is said to be positive definite
with χ (0) = 1. If χ is continuous at 0 then in fact χ is uniformly continuous
on all of Rn.

Proof. Taking ξ1 = x, ξ2 = y and ξ3 = 0 in Definition 22.34 we conclude
that

A :=

 1 χ (x− y) χ (x)
χ (y − x) 1 χ (y)
χ (−x) χ (−y) 1

 =

 1 χ (x− y) χ (x)
χ̄ (x− y) 1 χ (y)
χ̄ (x) χ̄ (y) 1


is positive definite. In particular,

0 ≤ detA = 1 + χ (x− y)χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)

− |χ (x)|2 − |χ (y)|2 − |χ (x− y)|2 .
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22.6 Appendix: Bochner’s Theorem 361

Combining this inequality with the identity,

|χ (x)− χ (y)|2 = |χ (x)|2 + |χ (y)|2 − χ (x) χ̄ (y)− χ (y) χ̄ (x) ,

gives

0 ≤ 1− |χ (x− y)|2 + χ (x− y)χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)

−
{
|χ (x)− χ (y)|2 + χ (x) χ̄ (y) + χ (y) χ̄ (x)

}
= 1− |χ (x− y)|2 − |χ (x)− χ (y)|2

+ χ (x− y)χ (y) χ̄ (x)− χ (y) χ̄ (x) + χ (x) χ̄ (x− y) χ̄ (y)− χ (x) χ̄ (y)

= 1− |χ (x− y)|2 − |χ (x)− χ (y)|2 + 2 Re ((χ (x− y)− 1)χ (y) χ̄ (x))

≤ 1− |χ (x− y)|2 − |χ (x)− χ (y)|2 + 2 |χ (x− y)− 1| .

Hence we have

|χ (x)− χ (y)|2 ≤ 1− |χ (x− y)|2 + 2 |χ (x− y)− 1|
= (1− |χ (x− y)|) (1 + |χ (x− y)|) + 2 |χ (x− y)− 1|
≤ 4 |1− χ (x− y)|

which completes the proof.

Lemma 22.36. If χ ∈ C(Rn,C) is a positive definite function, then

1. χ(0) ≥ 0.
2. χ(−ξ) = χ(ξ) for all ξ ∈ Rn.
3. |χ(ξ)| ≤ χ(0) for all ξ ∈ Rn.
4. For all f ∈ S(Rd), ∫

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη ≥ 0. (22.24)

Proof. Taking m = 1 and ξ1 = 0 we learn χ(0) |λ|2 ≥ 0 for all λ ∈ C which
proves item 1. Taking m = 2, ξ1 = ξ and ξ2 = η, the matrix

A :=
[

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

]
is positive definite from which we conclude χ(ξ − η) = χ(η − ξ) (since A = A∗

by definition) and

0 ≤ det
[

χ(0) χ(ξ − η)
χ(η − ξ) χ(0)

]
= |χ(0)|2 − |χ(ξ − η)|2 .

and hence |χ(ξ)| ≤ χ(0) for all ξ. This proves items 2. and 3. Item 4. follows by
approximating the integral in Eq. (22.24) by Riemann sums,∫

Rn×Rn
χ(ξ − η)f(ξ)f(η)dξdη

= lim
ε↓0

ε−2n
∑

ξ,η∈(εZn)∩[−ε−1,ε−1]n

χ(ξ − η)f(ξ)f(η) ≥ 0.

The details are left to the reader.

Lemma 22.37. If µ is a finite positive measure on BRn , then χ := µ̂ ∈
C(Rn,C) is a positive definite function.

Proof. The dominated convergence theorem implies µ̂ ∈ C(Rn,C). Since µ
is a positive measure (and hence real),

µ̂(−ξ) =
∫

Rn
eiξ·xdµ(x) =

∫
Rn
e−iξ·xdµ(x) = µ̂(−ξ).

From this it follows that for any m ∈ N and {ξj}mj=1 ⊂ Rn, the matrix A :=
{µ̂(ξk − ξj)}mk,j=1 is self-adjoint. Moreover if λ ∈ Cm,

m∑
k,j=1

µ̂(ξk − ξj)λkλ̄j =
∫

Rn

m∑
k,j=1

e−i(ξk−ξj)·xλkλ̄jdµ(x)

=
∫

Rn

m∑
k,j=1

e−iξk·xλke−iξj ·xλjdµ(x)

=
∫

Rn

∣∣∣∣∣
m∑
k=1

e−iξk·xλk

∣∣∣∣∣
2

dµ(x) ≥ 0

showing A is positive definite.

Theorem 22.38 (Bochner’s Theorem). Suppose χ ∈ C(Rn,C) is positive
definite function, then there exists a unique positive measure µ on BRn such
that χ = µ̂.

Proof. If χ(ξ) = µ̂(ξ), then for f ∈ S we would have∫
Rn
fdµ =

∫
Rn

(f∨)ˆ
dµ =

∫
Rn
f∨(ξ)µ̂(ξ)dξ.

This suggests that we define

I(f) :=
∫

Rn
χ(ξ)f∨(ξ)dξ for all f ∈ S.
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We will now show I is positive in the sense if f ∈ S and f ≥ 0 then I(f) ≥ 0.
For general f ∈ S we have

I(|f |2) =
∫

Rn
χ(ξ)

(
|f |2

)∨
(ξ)dξ =

∫
Rn
χ(ξ)

(
f∨Ff̄∨

)
(ξ)dξ

=
∫

Rn
χ(ξ)f∨(ξ − η)f̄∨(η)dηdξ =

∫
Rn
χ(ξ)f∨(ξ − η)f∨(−η)dηdξ

=
∫

Rn
χ(ξ − η)f∨(ξ)f∨(η)dηdξ ≥ 0. (22.25)

For t > 0 let pt(x) := t−n/2e−|x|
2/2t ∈ S and define

It (x) := IFpt(x) := I(pt(x− ·)) = I(
∣∣∣√pt(x− ·)∣∣∣2)

which is non-negative by Eq. (22.25) and the fact that
√
pt(x− ·) ∈ S. Using

[pt(x− ·)]∨ (ξ) =
∫

Rn
pt(x− y)eiy·ξdy =

∫
Rn
pt(y)ei(y+x)·ξdy

= eix·ξp∨t (ξ) = eix·ξe−t|ξ|
2/2,

〈It, ψ〉 =
∫

Rn
I(pt(x− ·))ψ(x)dx

=
∫

Rn

(∫
Rn
χ(ξ) [pt(x− ·)]∨ (ξ)ψ(x)dξ

)
dx

=
∫

Rn

(∫
Rn
χ(ξ)eix·ξe−t|ξ|

2/2ψ(x)dξ
)

dx

=
∫

Rn
χ(ξ)ψ∨(ξ)e−t|ξ|

2/2dξ

which coupled with the dominated convergence theorem shows

〈IFpt, ψ〉 →
∫

Rn
χ(ξ)ψ∨(ξ)dξ = I(ψ) as t ↓ 0.

Hence if ψ ≥ 0, then I(ψ) = limt↓0〈It, ψ〉 ≥ 0.
Let K ⊂ R be a compact set and ψ ∈ Cc(R, [0,∞)) be a function such that

ψ = 1 on K. If f ∈ C∞c (R,R) is a smooth function with supp(f) ⊂ K, then
0 ≤ ‖f‖∞ ψ − f ∈ S and hence

0 ≤ 〈I, ‖f‖∞ ψ − f〉 = ‖f‖∞ 〈I, ψ〉 − 〈I, f〉

and therefore 〈I, f〉 ≤ ‖f‖∞ 〈I, ψ〉. Replacing f by −f implies, −〈I, f〉 ≤
‖f‖∞ 〈I, ψ〉 and hence we have proved

|〈I, f〉| ≤ C(supp(f)) ‖f‖∞ (22.26)

for all f ∈ DRn := C∞c (Rn,R) where C(K) is a finite constant for each compact
subset of Rn. Because of the estimate in Eq. (22.26), it follows that I|DRn has a
unique extension I to Cc(Rn,R) still satisfying the estimates in Eq. (22.26) and
moreover this extension is still positive. So by the Riesz – Markov Theorem ??,
there exists a unique Radon – measure µ on Rn such that such that 〈I, f〉 = µ(f)
for all f ∈ Cc(Rn,R).

To finish the proof we must show µ̂(η) = χ(η) for all η ∈ Rn given

µ(f) =
∫

Rn
χ(ξ)f∨(ξ)dξ for all f ∈ C∞c (Rn,R). (22.27)

Let f ∈ C∞c (Rn,R+) be a radial function such f(0) = 1 and f(x) is decreasing
as |x| increases. Let fε(x) := f(εx), then by Theorem ??,

F−1
[
e−iηxfε(x)

]
(ξ) = ε−nf∨(

ξ − η
ε

)

and therefore, from Eq. (22.27),∫
Rn
e−iηxfε(x)dµ(x) =

∫
Rn
χ(ξ)ε−nf∨(

ξ − η
ε

)dξ. (22.28)

Because
∫

Rn f
∨(ξ)dξ = Ff∨(0) = f(0) = 1, we may apply the approximate δ

– function Theorem 22.39 below to Eq. (22.28) to find∫
Rn
e−iηxfε(x)dµ(x)→ χ(η) as ε ↓ 0. (22.29)

On the the other hand, when η = 0, the monotone convergence theorem implies
µ(fε) ↑ µ(1) = µ(Rn) and therefore µ(Rn) = µ(1) = χ(0) < ∞. Now knowing
the µ is a finite measure we may use the dominated convergence theorem to
concluded

µ(e−iηxfε(x))→ µ(e−iηx) = µ̂(η) as ε ↓ 0

for all η. Combining this equation with Eq. (22.29) shows µ̂(η) = χ(η) for all
η ∈ Rn.

Theorem 22.39 (Approximate δ – functions). Let p ∈ [1,∞], ϕ ∈ L1(Rd),
a :=

∫
Rd ϕ(x)dx, and for t > 0 let ϕt(x) = t−dϕ(x/t). Then

1. If f ∈ Lp with p <∞ then ϕt ∗ f → af in Lp as t ↓ 0.
2. If f ∈ BC(Rd) and f is uniformly continuous then ‖ϕt ∗ f − af‖∞ → 0 as
t ↓ 0.

3. If f ∈ L∞ and f is continuous on U ⊂o Rd then ϕt ∗ f → af uniformly on
compact subsets of U as t ↓ 0.
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Proof. Making the change of variables y = tz implies

ϕt ∗ f(x) =
∫

Rd
f(x− y)ϕt(y)dy =

∫
Rd
f(x− tz)ϕ(z)dz

so that

ϕt ∗ f(x)− af(x) =
∫

Rd
[f(x− tz)− f(x)]ϕ(z)dz

=
∫

Rd
[τtzf(x)− f(x)]ϕ(z)dz. (22.30)

Hence by Minkowski’s inequality for integrals (Theorem ?? of the analysis
notes), Proposition ?? and the dominated convergence theorem,

‖ϕt ∗ f − af‖p ≤
∫

Rd
‖τtzf − f‖p |ϕ(z)| dz → 0 as t ↓ 0.

Item 2. is proved similarly. Indeed, form Eq. (22.30)

‖ϕt ∗ f − af‖∞ ≤
∫

Rd
‖τtzf − f‖∞ |ϕ(z)| dz

which again tends to zero by the dominated convergence theorem because
limt↓0 ‖τtzf − f‖∞ = 0 uniformly in z by the uniform continuity of f.

Item 3. Let BR = B(0, R) be a large ball in Rd and K @@ U, then

sup
x∈K
|ϕt ∗ f(x)− af(x)|

≤
∣∣∣∣∫
BR

[f(x− tz)− f(x)]ϕ(z)dz
∣∣∣∣+

∣∣∣∣∣
∫
Bc
R

[f(x− tz)− f(x)]ϕ(z)dz

∣∣∣∣∣
≤
∫
BR

|ϕ(z)| dz · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
Bc
R

|ϕ(z)| dz

≤ ‖ϕ‖1 · sup
x∈K,z∈BR

|f(x− tz)− f(x)|+ 2 ‖f‖∞
∫
|z|>R

|ϕ(z)| dz

so that using the uniform continuity of f on compact subsets of U,

lim sup
t↓0

sup
x∈K
|ϕt ∗ f(x)− af(x)| ≤ 2 ‖f‖∞

∫
|z|>R

|ϕ(z)| dz → 0 as R→∞.

22.7 Appendix: Some Calculus Estimates

We end this section by gathering together a number of calculus estimates that
we will need in the future.

1. Taylor’s theorem with integral remainder states, if f ∈ Ck (R) and z,∆ ∈ R
or f be holomorphic in a neighborhood of z ∈ C and ∆ ∈ C be sufficiently
small so that f (z + t∆) is defined for t ∈ [0, 1] , then

f (z +∆) =
k−1∑
n=0

f (n) (z)
∆n

n!
+∆krk (z,∆) (22.31)

=
k−1∑
n=0

f (n) (z)
∆n

n!
+∆k

[
1
k!
f (k) (z) + ε (z,∆)

]
(22.32)

where

rk (z,∆) =
1

(k − 1)!

∫ 1

0

f (k) (z + t∆) (1− t)k−1
dt (22.33)

=
1
k!
f (k) (z) + ε (z,∆) (22.34)

and

ε (z,∆) =
1

(k − 1)!

∫ 1

0

[
f (k) (z + t∆)− f (k) (z)

]
(1− t)k−1

dt→ 0 as ∆→ 0.

(22.35)
To prove this, use integration by parts to show,

rk (z,∆) =
1
k!

∫ 1

0

f (k) (z + t∆)
(
− d

dt

)
(1− t)k dt

= − 1
k!

[
f (k) (z + t∆) (1− t)k

]t=1

t=0
+
∆

k!

∫ 1

0

f (k+1) (z + t∆) (1− t)k dt

=
1
k!
f (k) (z) +∆rk+1 (z,∆) ,

i.e.
∆krk (z,∆) =

1
k!
f (k) (z)∆k +∆k+1rk+1 (z,∆) .

The result now follows by induction.
2. For y ∈ R, sin y = y

∫ 1

0
cos (ty) dt and hence

|sin y| ≤ |y| . (22.36)
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3. For y ∈ R we have

cos y = 1 + y2

∫ 1

0

− cos (ty) (1− t) dt ≥ 1 + y2

∫ 1

0

− (1− t) dt = 1− y2

2
.

Equivalently put2,

g (y) := cos y − 1 + y2/2 ≥ 0 for all y ∈ R. (22.37)

4. Since

|ez − 1− z| =
∣∣∣∣z2

∫ 1

0

etz (1− t) dt
∣∣∣∣ ≤ |z|2 ∫ 1

0

etRe z (1− t) dt,

if Re z ≤ 0, then
|ez − 1− z| ≤ |z|2 /2 (22.38)

and if Re z > 0 then

|ez − 1− z| ≤ eRe z |z|2 /2.

Combining these into one estimate gives,

|ez − 1− z| ≤ e0∨Re z · |z|
2

2
. (22.39)

5. Since eiy − 1 = iy
∫ 1

0
eitydt,

∣∣eiy − 1
∣∣ ≤ |y| and hence∣∣eiy − 1

∣∣ ≤ 2 ∧ |y| for all y ∈ R. (22.40)

Lemma 22.40. For z = reiθ with −π < θ < π and r > 0, let ln z = ln r + iθ.
Then ln : C \ (−∞, 0] → C is a holomorphic function such that eln z = z3 and
if |z| < 1 then

|ln (1 + z)− z| ≤ |z|2 1
2 (1− |z|)2 for |z| < 1. (22.41)

2 Alternatively,

|sin y| =
∣∣∣∣∫ y

0

cosxdx

∣∣∣∣ ≤ ∣∣∣∣∫ y

0

|cosx| dx
∣∣∣∣ ≤ |y|

and for y ≥ 0 we have,

cos y − 1 =

∫ y

0

− sinxdx ≥
∫ y

0

−xdx = −y2/2.

This last inequality may also be proved as a simple calculus exercise following from;
g (±∞) =∞ and g′ (y) = 0 iff sin y = y which happens iff y = 0.

3 For the purposes of this lemma it suffices to define ln (1 + z) = −
∑∞
n=1 (−z)n /n

and to then observe: 1)

Proof. Clearly eln z = z and ln z is continuous. Therefore by the inverse
function theorem for holomorphic functions, ln z is holomorphic and

z
d

dz
ln z = eln z d

dz
ln z = 1.

Therefore, d
dz ln z = 1

z and d2

dz2 ln z = − 1
z2 . So by Taylor’s theorem,

ln (1 + z) = z − z2

∫ 1

0

1
(1 + tz)2 (1− t) dt. (22.42)

If t ≥ 0 and |z| < 1, then∣∣∣∣ 1
(1 + tz)

∣∣∣∣ ≤ ∞∑
n=0

|tz|n =
1

1− t |z|
≤ 1

1− |z|
.

and therefore, ∣∣∣∣∣
∫ 1

0

1
(1 + tz)2 (1− t) dt

∣∣∣∣∣ ≤ 1
2 (1− |z|)2 . (22.43)

Eq. (22.41) is now a consequence of Eq. (22.42) and Eq. (22.43).

Lemma 22.41. For all y ∈ R and n ∈ N∪{0} ,∣∣∣∣∣eiy −
n∑
k=0

(iy)k

k!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
(22.44)

and in particular, ∣∣∣∣eiy − (1 + iy − y2

2!

)∣∣∣∣ ≤ y2 ∧ |y|
3

3!
. (22.45)

More generally for all n ∈ N we have∣∣∣∣∣eiy −
n∑
k=0

(iy)k

k!

∣∣∣∣∣ ≤ |y|n+1

(n+ 1)!
∧ 2 |y|n

n!
. (22.46)

d

dz
ln (1 + z) =

∞∑
n=0

(−z)n =
1

1 + z
,

and 2) the functions 1 + z and eln(1+z) both solve

f ′ (z) =
1

1 + z
f (z) with f (0) = 1

and therefore eln(1+z) = 1 + z.
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Proof. By Taylor’s theorem (see Eq. (22.31) with f (y) = eiy, x = 0 and
∆ = y) we have∣∣∣∣∣eiy −

n∑
k=0

(iy)k

k!

∣∣∣∣∣ =
∣∣∣∣yn+1

n!

∫ 1

0

in+1eity (1− t)n dt
∣∣∣∣

≤ |y|
n+1

n!

∫ 1

0

(1− t)n dt =
|y|n+1

(n+ 1)!

which is Eq. (22.44). Using Eq. (22.44) with n = 1 implies∣∣∣∣eiy − (1 + iy − y2

2!

)∣∣∣∣ ≤ ∣∣eiy − (1 + iy)
∣∣+
∣∣∣∣y2

2

∣∣∣∣
≤
∣∣∣∣y2

2

∣∣∣∣+
∣∣∣∣y2

2

∣∣∣∣ = y2

and using Eq. (22.44) with n = 2 implies∣∣∣∣eiy − (1 + iy − y2

2!

)∣∣∣∣ ≤ |y|33!
.

Combining the last two inequalities completes the proof of Eq. (22.45). Equation
(22.46) is proved similarly and hence will be omitted.

Lemma 22.42. If X is a square integrable random variable, then

f (λ) := E
[
eiλX

]
= 1 + iλEX − λ2

2!
E
[
X2
]

+ r (λ)

where

r (λ) := λ2E

[
X2 ∧ |λ| |X|

3

3!

]
= λ2ε (λ)

and

ε (λ) := E

[
X2 ∧ |λ| |X|

3

3!

]
→ 0 as λ→ 0. (22.47)

Proof. Using Eq. (22.45) with y = λX and taking expectations implies,∣∣∣∣f (λ)−
(

1 + iλEX − λ2

2!
E
[
X2
])∣∣∣∣ ≤ E

∣∣∣∣eiλX − (1 + iλX − λ2X
2

2!

)∣∣∣∣
≤ λ2E

[
X2 ∧ |λ| |X|

3

3!

]
=: λ2ε (λ) .

The DCT, with X2 ∈ L1 (P ) being the dominating function, allows us to con-
clude that limε→0 ε (λ) = 0.





23

Weak Convergence of Random Sums

Throughout this chapter, we will assume the following standing notation
unless otherwise stated. For each n ∈ N, let {Xn,k}nk=1 be independent random
variables and let

Sn :=
n∑
k=1

Xn,k. (23.1)

Also let
fnk (λ) := E

[
eiλXn,k

]
(23.2)

denote the characteristic function of Xn,k.

Assumption 2 Until further notice we are going to assume E [Xn,k] = 0,

σ2
n,k = E

[
X2
n,k

]
<∞, and Var (Sn) =

∑n
k=1 σ

2
n,k = 1.

Example 23.1. Suppose {Xn}∞n=1 are mean zero square integrable random vari-
ables with σ2

k = Var (Xk) . If we let s2
n :=

∑n
k=1 Var (Xk) =

∑n
k=1 σ

2
k,

σ2
n,k := σ2

k/s
2
n, and Xn,k := Xk/sn, then {Xn,k}nk=1 satisfy the above hypothesis

and Sn = 1
sn

∑n
k=1Xk.

Our main interest in this chapter is to consider the limiting behavior of Sn
as n→∞. In order to do this, it will be useful to put conditions on the {Xn,k}
such that no one term dominates sum defining the sum defining Sn in Eq. (23.1)
in the limit as n→∞.

Definition 23.2. Let {Xn,k} be as above.

1. {Xn,k} satisfies the Lindeberg Condition (LC) iff

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
= 0 for all t > 0. (23.3)

(The (LC) condition is really a condition about small t.)
2. {Xn,k} satisfies condition (M) if

Dn := max
{
σ2
n,k : k ≤ n

}
→ 0 as n→∞. (23.4)

3. {Xn,k} is uniformly asymptotic negligibility (UAN) if for all ε > 0,

lim
n→∞

max
k≤n

P (|Xn,k| > ε) = 0. (23.5)

Clearly it suffices to test the Lindeberg condition for small t only. Each of
these conditions imposes constraints on the size of the tails of the {Xn,k} , see
Lemma 23.5 below where it is shown (LC) =⇒ (M) =⇒ (UAN) . Condition
(M) asserts that all of the terms in the sum

∑n
k=1 σ

2
n,k = Var (Sn) = 1 are

small so that no one term is contributing by itself.

Remark 23.3. The reader should observe that in order for condition (M) to hold
in the setup in Example 23.1 it is necessary that limn→∞ s2

n =∞.

Lemma 23.4. Let us continue the notation in Example 23.1. Then
{Xn,k := Xk/sn} satisfies (LC) if either of two conditions hold;

1. {Xn}∞n=1 are i.i.d.
2. The {Xn}∞n=1 satisfy Liapunov condition; there exists some α > 2 such

that

lim
n→∞

∑n
k=1 E |Xk|α

sαn
= 0. (23.6)

More generally, if {Xn,k} satisfies the Liapunov condition,

lim
n→∞

n∑
k=1

E
[
X2
n,kϕ (|Xn,k|)

]
= 0

where ϕ : [0,∞) → [0,∞) is a non-decreasing function such that ϕ (t) > 0 for
all t > 0, then {Xn,k} satisfies (LC) .

Proof. 1. If {Xn}∞n=1 are i.i.d., then sn =
√
nσ where σ2 = EX2

1 and

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
=

1
s2
n

n∑
k=1

E
[
X2
k : |Xk| > snt

]
(23.7)

=
1
nσ2

n∑
k=1

E
[
X2

1 : |X1| >
√
nσt
]

=
1
σ2

E
[
X2

1 : |X1| >
√
nσt
]

which, by DCT, tends to zero as n→∞.
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2. Assuming Eq. (23.6), then for any t > 0,
n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
≤

n∑
k=1

E

[
X2
n,k

∣∣∣∣Xn,k

t

∣∣∣∣α−2

: |Xn,k| > t

]

≤ 1
tα−2

n∑
k=1

E [|Xn,k|α] =
1

tα−2sαn

n∑
k=1

E |Xk|α → 0.

For the last assertion, working as above we have
n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
≤

n∑
k=1

E
[
X2
n,k

ϕ (|Xn,k|)
ϕ (t)

: |Xn,k| > t

]

≤ 1
ϕ (t)

n∑
k=1

E
[
X2
n,kϕ (|Xn,k|)

]
→ 0

as n→∞.

Lemma 23.5. Let {Xn,k : 1 ≤ k ≤ n <∞} be as above, then (LC) =⇒
(M) =⇒ (UAN) .

Proof. For k ≤ n,

σ2
n,k = E

[
X2
n,k

]
= E

[
X2
n,k1|Xn,k|≤t

]
+ E

[
X2
n,k1|Xn,k|>t

]
≤ t2 + E

[
X2
n,k1|Xn,k|>t

]
≤ t2 +

n∑
m=1

E
[
X2
n,m1|Xn,m|>t

]
and therefore using (LC) we find

lim
n→∞

max
k≤n

σ2
n,k ≤ t2 for all t > 0.

This clearly implies (M) holds. The assertion that (M) implies (UAN) follows
by Chebyschev’s inequality,

max
k≤n

P (|Xn,k| > ε) ≤ max
k≤n

1
ε2

E
[
|Xn,k|2 : |Xn,k| > ε

]
≤ 1
ε2

n∑
k=1

E
[
|Xn,k|2 : |Xn,k| > ε

]
→ 0.

In fact the same argument shows that (M) implies
n∑
k=1

P (|Xn,k| > ε) ≤ 1
ε2

n∑
k=1

E
[
|Xn,k|2 : |Xn,k| > ε

]
→ 0.

We will need the following lemma for our subsequent applications of the
continuity theorem.

Lemma 23.6. Suppose that ai, bi ∈ C with |ai| , |bi| ≤ 1 for i = 1, 2, . . . , n.
Then ∣∣∣∣∣

n∏
i=1

ai −
n∏
i=1

bi

∣∣∣∣∣ ≤
n∑
i=1

|ai − bi| .

Proof. Let a :=
∏n−1
i=1 ai and b :=

∏n−1
i=1 bi and observe that |a| , |b| ≤ 1 and

that

|ana− bnb| ≤ |ana− anb|+ |anb− bnb|
= |an| |a− b|+ |an − bn| |b|
≤ |a− b|+ |an − bn| .

The proof is now easily completed by induction on n.

Theorem 23.7 (Lindeberg-Feller CLT (I)). Suppose {Xn,k} satisfies
(LC) , then

Sn =⇒ N (0, 1) . (23.8)

(See Theorem 23.11 for a converse to this theorem.)

To prove this theorem we must show

E
[
eiλSn

]
→ e−λ

2/2 as n→∞. (23.9)

Before starting the formal proof, let me give an informal explanation for Eq.
(23.9). Using

fnk (λ) ∼ 1− λ2

2
σ2
nk,

we might expect

E
[
eiλSn

]
=

n∏
k=1

fnk (λ) = e
∑n

k=1
ln fnk(λ)

= e
∑n

k=1
ln(1+fnk(λ)−1)

(A)∼ e
∑n

k=1
(fnk(λ)−1)

(
=

n∏
k=1

e(fnk(λ)−1)

)
(B)∼ e

∑n

k=1
−λ2

2 σ
2
nk = e−

λ2
2 .

The question then becomes under what conditions are these approximations
valid. It turns out that approximation (A), namely that

lim
n→∞

∣∣∣∣∣
n∏
k=1

fnk (λ)− exp

(
n∑
k=1

(fnk (λ)− 1)

)∣∣∣∣∣ = 0, (23.10)
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is valid if condition (M) holds, see Lemma 23.9 below. It is shown in the estimate
Eq. (23.11) below that the approximation (B) is valid, i.e.

lim
n→∞

n∑
k=1

(fnk (λ)− 1) = −1
2
λ2,

if (LC) is satisfied. These observations would then constitute a proof of Theorem
23.7. The proof given below of Theorem 23.7 will not quite follow this route
and will not use Lemma 23.9 directly. However, this lemma will be used in the
proofs of Theorems 23.11 and 23.14.

Proof. Now on to the formal proof of Theorem 23.7. Since

E
[
eiλSn

]
=

n∏
k=1

fnk (λ) and e−λ
2/2 =

n∏
k=1

e−λ
2σ2
n,k/2,

we may use Lemma 23.6 to conclude,∣∣∣E [eiλSn]− e−λ2/2
∣∣∣ ≤ n∑

k=1

∣∣∣fnk (λ)− e−λ
2σ2
n,k/2

∣∣∣ =
n∑
k=1

(An,k +Bn,k)

where

An,k :=

∣∣∣∣∣fnk (λ)−

[
1−

λ2σ2
n,k

2

]∣∣∣∣∣ and

Bn,k :=

∣∣∣∣∣
[

1−
λ2σ2

n,k

2

]
− e−λ

2σ2
n,k/2

∣∣∣∣∣ .
Now, using Lemma 22.42,

An,k =
∣∣∣∣E [eiλXn,k − 1 +

λ2

2
X2
n,k

]∣∣∣∣ ≤ E
∣∣∣∣eiλXn,k − 1 +

λ2

2
X2
n,k

∣∣∣∣
≤ λ2E

[
X2
n,k ∧

|λ| |Xn,k|3

3!

]

≤ λ2E

[
X2
n,k ∧

|λ| |Xn,k|3

3!
: |Xn,k| ≤ ε

]
+ λ2E

[
X2
n,k ∧

|λ| |Xn,k|3

3!
: |Xn,k| > ε

]

≤ λ2E

[
|λ| |Xn,k|3

3!
: |Xn,k| ≤ ε

]
+ λ2E

[
X2
n,k : |Xn,k| > ε

]
≤ λ2

3!
|λ| ε · E

[
|Xn,k|2 : |Xn,k| ≤ ε

]
+ λ2E

[
X2
n,k : |Xn,k| > ε

]
=
|λ|3 ε

6
σ2
n,k + λ2E

[
X2
n,k : |Xn,k| > ε

]
.

From this estimate and (LC) it follows that

lim sup
n→∞

n∑
k=1

An,k ≤ lim sup
n→∞

(
λ3ε

6
+ λ2

n∑
k=1

E
[
X2
n,k : |Xn,k| > ε

])
=
λ3ε

6
(23.11)

and since ε > 0 is arbitrary, we may conclude that lim supn→∞
∑n
k=1An,k = 0.

To estimate
∑n
k=1Bn,k, we use the estimate, |e−u − 1 + u| ≤ u2/2 valid for

u ≥ 0 (see Eq. 22.38 with z = −u). With this estimate we find,

n∑
k=1

Bn,k =
n∑
k=1

∣∣∣∣∣
[

1−
λ2σ2

n,k

2

]
− e−λ

2σ2
n,k/2

∣∣∣∣∣
≤

n∑
k=1

1
2

[
λ2σ2

n,k

2

]2

=
λ4

8

n∑
k=1

σ4
n,k

≤ λ4

8
max
k≤n

σ2
n,k

n∑
k=1

σ2
n,k =

λ4

8
max
k≤n

σ2
n,k → 0,

wherein we have used (M) (which is implied by (LC)) in taking the limit as
n→∞.

As an application of Theorem 23.7 we can give half of the proof of Theorem
20.35.

Theorem 23.8 (Converse assertion in Theorem 20.35). If {Xn}∞n=1 are
independent random variables and the random series,

∑∞
n=1Xn, is almost surely

convergent, then for all c > 0 the following three series converge;

1.
∑∞
n=1 P (|Xn| > c) <∞,

2.
∑∞
n=1 Var

(
Xn1|Xn|≤c

)
<∞, and

3.
∑∞
n=1 E

(
Xn1|Xn|≤c

)
converges.

Proof. Since
∑∞
n=1Xn is almost surely convergent, it follows that

limn→∞Xn = 0 a.s. and hence for every c > 0, P ({|Xn| ≥ c i.o.}) = 0. Ac-
cording the Borel zero one law (Lemma 10.37) this implies for every c > 0 that∑∞
n=1 P (|Xn| > c) <∞. Since Xn → 0 a.s., {Xn} and

{
Xc
n := Xn1|Xn|≤c

}
are

tail equivalent for all c > 0. In particular
∑∞
n=1X

c
n is almost surely convergent

for all c > 0.
Fix c > 0, let Yn := Xc

n − E [Xc
n] and let

s2
n = Var (Y1 + · · ·+ Yn) =

n∑
k=1

Var (Yk) =
n∑
k=1

Var (Xc
k) =

n∑
k=1

Var
(
Xk1|Xk|≤c

)
.

For the sake of contradictions, suppose s2
n → ∞ as n → ∞. Since |Yk| ≤ 2c, it

follows that
∑n
k=1 E

[
Y 2
k 1|Yk|>snt

]
= 0 for all sufficiently large n and hence
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370 23 Weak Convergence of Random Sums

lim
n→∞

1
s2
n

n∑
k=1

E
[
Y 2
k 1|Yk|>snt

]
= 0,

i.e. {Yn,k := Yk/sn}∞n=1 satisfies (LC) – see Examples 23.1 and Remark 23.3.
So by the central limit Theorem 23.7, it follows that

1
s2
n

n∑
k=1

(Xc
n − E [Xc

n]) =
1
s2
n

n∑
k=1

Yk =⇒ N (0, 1) .

On the other hand we know

lim
n→∞

1
s2
n

n∑
k=1

Xc
n =

∑∞
k=1X

c
k

limn→∞ s2
n

= 0 a.s.

and so by Slutsky’s theorem,

1
s2
n

n∑
k=1

E [Xc
n] =

1
s2
n

n∑
k=1

Xc
n −

1
s2
n

n∑
k=1

Yk =⇒ N (0, 1) .

But it is not possible for constant (i.e. non-random) variables, cn :=
1
s2n

∑n
k=1 E [Xc

n] , to converge to a non-degenerate limit. (Think about this ei-
ther in terms of characteristic functions or in terms of distribution functions.)
Thus we must conclude that

∞∑
n=1

Var
(
Xn1|Xn|≤c

)
=
∞∑
n=1

Var (Xc
n) = lim

n→∞
s2
n <∞.

An application of Kolmogorov’s convergence criteria (Theorem 20.11) im-
plies that

∞∑
n=1

(Xc
n − E [Xc

n]) is convergent a.s.

Since we already know that
∑∞
n=1X

c
n is convergent almost surely we may now

conclude
∑∞
n=1 E

(
Xn1|Xn|≤c

)
is convergent.

Let us now turn to the converse of Theorem 23.7, see Theorem 23.11 below.

Lemma 23.9. Suppose that {Xn,k} satisfies property (M) , i.e. Dn :=
maxk≤n σ2

n,k → 0. If we define,

ϕn,k (λ) := fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
,

then;

1. limn→∞maxk≤n |ϕn,k (λ)| = 0 and

2. fSn (λ)−
∏n
k=1 e

ϕn,k(λ) → 0 as n→∞, where

fSn (λ) = E
[
eiλSn

]
=

n∏
k=1

fn,k (λ) .

Proof. For the first item we estimate,∣∣EeiλX − 1
∣∣ ≤ E

∣∣eiλX − 1
∣∣ ≤ E [2 ∧ |λX|]

= E [2 ∧ |λX| : |X| ≥ ε] + E [2 ∧ |λX| : |X| < ε]

≤ 2P [|X| ≥ ε] + |λ| ε ≤ 2
ε2

E |X|2 + |λ| ε

Replacing X by Xn,k and in the above inequality shows

|ϕn,k (λ)| = |fn,k (λ)− 1| ≤ 2
ε2

E |Xn,k|2 + |λ| ε =
2σ2

n,k

ε2
+ |λ| ε.

Therefore,

lim sup
n→∞

max
k≤n
|ϕn,k (λ)| ≤ lim sup

n→∞

[
2Dn

ε2
+ |λ| ε

]
= |λ| ε→ 0 as ε ↓ 0.

For the second item, observe that Reϕn,k (λ) = Re fn,k (λ) − 1 ≤ 0 and
hence ∣∣∣eϕn,k(λ)

∣∣∣ = eReϕn,k(λ) ≤ e0 = 1

and hence we have from Lemma 23.6 and the estimate (22.38),∣∣∣∣∣
n∏
k=1

fn,k (λ)−
n∏
k=1

eϕn,k(λ)

∣∣∣∣∣ ≤
n∑
k=1

∣∣∣fn,k (λ)− eϕn,k(λ)
∣∣∣

=
n∑
k=1

∣∣∣eϕn,k(λ) − 1− ϕn,k (λ)
∣∣∣

≤ 1
2

n∑
k=1

|ϕn,k (λ)|2

≤ 1
2

max
k≤n
|ϕn,k (λ)| ·

n∑
k=1

|ϕn,k (λ)| .

Moreover since EXn,k = 0, the estimate in Eq. (22.38) implies
n∑
k=1

|ϕn,k (λ)| =
n∑
k=1

∣∣E [eiλXn,k − 1− iλXn,k

]∣∣
≤

n∑
k=1

∣∣∣∣E [1
2
|λXn,k|2

]∣∣∣∣ ≤ λ2

2

n∑
k=1

σ2
n,k =

λ2

2
.
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23.1 Infinitely Divisible Distributions 371

Thus we have shown,∣∣∣∣∣
n∏
k=1

fn,k (λ)−
n∏
k=1

eϕn,k(λ)

∣∣∣∣∣ ≤ λ2

4
max
k≤n
|ϕn,k (λ)|

and the latter expression tends to zero by item 1.

Lemma 23.10. Let X be a random variable such that EX2 <∞ and EX = 0.
Further let f (λ) := E

[
eiλX

]
and u (λ) := Re (f (λ)− 1) . Then for all c > 0,

u (λ) +
λ2

2
E
[
X2
]
≥ E

[
X2

[
λ2

2
− 2
c2

]
: |X| > c

]
(23.12)

or equivalently

E
[
cosλX − 1 +

λ2

2
X2

]
≥ E

[
X2

[
λ2

2
− 2
c2

]
: |X| > c

]
. (23.13)

In particular if we choose |λ| ≥
√

6/ |c| , then

E
[
cosλX − 1 +

λ2

2
X2

]
≥ 1
c2

E
[
X2 : |X| > c

]
. (23.14)

Proof. For all λ ∈ R, we have (see Eq. (22.37)) cosλX − 1 + λ2

2 X
2 ≥ 0 and

cosλX − 1 ≥ −2. Therefore,

u (λ) +
λ2

2
E
[
X2
]

= E
[
cosλX − 1 +

λ2

2
X2

]
≥ E

[
cosλX − 1 +

λ2

2
X2 : |X| > c

]
≥ E

[
−2 +

λ2

2
X2 : |X| > c

]
≥ E

[
−2
|X|2

c2
+
λ2

2
X2 : |X| > c

]

which gives Eq. (23.12).

Theorem 23.11 (Lindeberg-Feller CLT (II)). Suppose {Xn,k} satisfies
(M) and also the central limit theorem in Eq. (23.8) holds, then {Xn,k} satisfies
(LC) . So under condition (M) , Sn converges to a normal random variable iff
(LC) holds.

Proof. By assumption we have

lim
n→∞

max
k≤n

σ2
n,k = 0 and lim

n→∞

n∏
k=1

fn,k (λ) = e−λ
2/2.

The second inequality combined with Lemma 23.9 implies,

lim
n→∞

e
∑n

k=1
ϕn,k(λ) = lim

n→∞

n∏
k=1

eϕn,k(λ) = e−λ
2/2.

Taking the modulus of this equation then implies,

lim
n→∞

e
∑n

k=1
Reϕn,k(λ) = lim

n→∞

∣∣∣e∑n

k=1
ϕn,k(λ)

∣∣∣ = e−λ
2/2

from which we may conclude

lim
n→∞

n∑
k=1

Reϕn,k (λ) = −λ2/2.

We may write this last limit as

lim
n→∞

n∑
k=1

E
[
cos (λXn,k)− 1 +

λ2

2
X2
n,k

]
= 0

which by Lemma 23.10 implies

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > c

]
= 0

for all c > 0 which is (LC) .

23.1 Infinitely Divisible Distributions

In this section we are going to investigate the possible limiting distributions of
the {Sn}∞n=1 when we relax the Lindeberg condition. Let us begin with a simple
example of the Poisson limit theorem.

Theorem 23.12 (A Poisson Limit Theorem). For each n ∈ N, let
{Yn,k}nk=1 be independent Bernoulli random variables with P (Yn,k = 1) = pn,k
and P (Yn,k = 0) = qn,k := 1− pn,k. Suppose;

1. limn→∞
∑n
k=1 pn,k = a ∈ (0,∞) and
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372 23 Weak Convergence of Random Sums

2. limn→∞max1≤k≤n pn,k = 0. (So no one term is dominating the sums in
item 1.)

Then Sn =
∑n
k=1 Yn,k =⇒ Z where Z is a Poisson random variable with

mean a. (See [15, Section 2.6] for more on this theorem.)

Proof. We will give two proofs of this theorem. The first proof relies on the
law of rare events in Theorem 21.10 while the second uses Fourier transform
methods.

First proof. Let Zn
d= Poi (

∑n
k=1 pn,k) , then by Theorem 21.10, we know

that

dTV (Zn, Sn) ≤
n∑
k=1

p2
n,k ≤ max

1≤k≤n
pn,k ·

n∑
k=1

pn,k.

From the assumptions it follows that limn→∞ dTV (Zn, Sn) = 0 and from
part 3. of Exercise 21.6 we know that limn→∞ dTV (Zn, Z) = 0. Therefore,
limn→∞ dTV (Z, Sn) = 0.

Second proof. Recall from Example 22.10 that for any a > 0,

E
[
eiλZ

]
= exp

(
a
(
eiλ − 1

))
.

Since
E
[
eiλYn,k

]
= eiλpn,k + (1− pn,k) = 1 + pn,k

(
eiλ − 1

)
,

it follows that

E
[
eiλSn

]
=

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]
.

Since 1 + pn,k
(
eiλ − 1

)
lies on the line segment joining 1 to eiλ, it follows (see

Figure 23.1) that ∣∣1 + pn,k
(
eiλ − 1

)∣∣ ≤ 1.

Hence we may apply Lemma 23.6 to find∣∣∣∣∣
n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣
≤

n∑
k=1

∣∣exp
(
pn,k

(
eiλ − 1

))
−
[
1 + pn,k

(
eiλ − 1

)]∣∣
=

n∑
k=1

|exp (zn,k)− [1 + zn,k]|

where
zn,k = pn,k

(
eiλ − 1

)
.

Fig. 23.1. Simple circle geometry reflecting the convexity of the disk.

Since Re zn,k = pn,k (cosλ− 1) ≤ 0, we may use the calculus estimate in Eq.
(22.38) to conclude,∣∣∣∣∣

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣
≤ 1

2

n∑
k=1

|zn,k|2 ≤
1
2

max
1≤k≤n

|zn,k|
n∑
k=1

|zn,k|

≤ 2 max
1≤k≤n

pn,k

n∑
k=1

pn,k.

Using the assumptions, we may conclude∣∣∣∣∣
n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
−

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]∣∣∣∣∣→ 0 as n→∞.

Since
n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
= exp

(
n∑
k=1

pn,k
(
eiλ − 1

))
→ exp

(
a
(
eiλ − 1

))
,

we have shown

lim
n→∞

E
[
eiλSn

]
= lim
n→∞

n∏
k=1

[
1 + pn,k

(
eiλ − 1

)]
= lim
n→∞

n∏
k=1

exp
(
pn,k

(
eiλ − 1

))
= exp

(
a
(
eiλ − 1

))
.

The result now follows by an application of the continuity Theorem 22.17.
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23.1 Infinitely Divisible Distributions 373

Remark 23.13. Keeping the notation in Theorem 23.12, we have

E [Yn,k] = pn,k and Var (Yn,k) = pn,k (1− pn,k)

and

s2
n :=

n∑
k=1

Var (Yn,k) =
n∑
k=1

pn,k (1− pn,k) .

Under the assumptions of Theorem 23.12, we see that s2
n → a as n → ∞. Let

us now center and normalize the Yn,k by setting;

Xn,k :=
Yn,k − pn,k

sn

so that
σ2
n,k := Var (Xn,k) =

1
s2
n

Var (Yn,k) =
1
s2
n

pn,k (1− pn,k) ,

E [Xn,k] = 0, Var (
∑n
k=1Xn,k) = 1, and the {Xn,k} satisfy condition (M) . On

the other hand for small t and large n we have

E
[
X2
n,k : |Xn,k| > t

]
= E

[
X2
n,k :

∣∣∣∣Yn,k − pn,ksn

∣∣∣∣ > t

]
= E

[
X2
n,k : |Yn,k − pn,k| > snt

]
≥ E

[
X2
n,k : |Yn,k − pn,k| > 2at

]
= E

[
X2
n,k : Yn,k = 1

]
= pn,k

(
1− pn,k
sn

)2

from which it follows that

lim
n→∞

n∑
k=1

E
[
X2
n,k : |Xn,k| > t

]
= lim
n→∞

n∑
k=1

pn,k

(
1− pn,k
sn

)2

= a.

Therefore {Xn,k} do not satisfy (LC) . Nevertheless we have by Theorem 23.12
along with Slutzky’s Theorem 21.39 that

n∑
k=1

Xn,k =
∑n
k=1 Yn,k −

∑n
k=1 pn,k

sn
=⇒ Z − a

a

where Z is a Poisson random variable with mean a. Notice that the limit is not
a normal random variable in agreement with Theorem 23.11.

In the next theorem we are going to characterize the possible limiting dis-
tributions of sequences {Sn}∞n=1 when we relax the Lindeberg condition (LC)
to condition (M) . Recall from Exercise 22.4 that for any finite measure ν on

(R,BR) , there exists a (necessarily unique) probability measure µ on (R,BR)
such that

µ̂ (λ) = exp
(∫

R

eiλx − 1− iλx
x2

dν (x)
)
.

Theorem 23.14 (Limits under (M)). Suppose {Xn,k}nk=1 satisfy property
(M) and the normalizations in Assumption 2. If Sn :=

∑n
k=1Xn,k =⇒ L for

some random variable L, then Then

fL (λ) := E
[
eiλL

]
= exp

(∫
R

eiλx − 1− iλx
x2

dν (x)
)

for some finite positive measure, ν, on (R,BR) with ν (R) ≤ 1.

Proof. As before, let fn,k (λ) = E
[
eiλXn,k

]
and ϕn,k (λ) := fn,k (λ)− 1. By

the continuity theorem we are assuming

lim
n→∞

fSn (λ) = lim
n→∞

n∏
k=1

fn,k (λ) = f (λ)

where f (λ) is continuous at λ = 0. We are also assuming property (M) , i.e.

lim
n→∞

max
k≤n

σ2
n,k = 0.

Under condition (M) , we expect fn,k (λ) ∼= 1 for n large. Therefore we expect

fn,k (λ) = eln fn,k(λ) = eln[1+(fn,k(λ)−1)] ∼= e(fn,k(λ)−1)

and hence that

E
[
eiλSn

]
=

n∏
k=1

fn,k (λ) ∼=
n∏
k=1

e(fn,k(λ)−1) = exp

(
n∑
k=1

(fn,k (λ)− 1)

)
. (23.15)

This is in fact correct, since Lemma 23.9 indeed implies

lim
n→∞

[
E
[
eiλSn

]
− exp

(
n∑
k=1

(fn,k (λ)− 1)

)]
= 0. (23.16)

Since E [Xn,k] = 0,

fn,k (λ)− 1 = E
[
eiλXn,k − 1

]
= E

[
eiλXn,k − 1− iλXn,k

]
=
∫

R

(
eiλx − 1− iλx

)
dµn,k (x)
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where µn,k := P ◦X−1
n,k is the law of Xn,k. Therefore we have

exp

(
n∑
k=1

(fn,k (λ)− 1)

)
= exp

(
n∑
k=1

∫
R

(
eiλx − 1− iλx

)
dµn,k (x)

)

= exp

(∫
R

(
eiλx − 1− iλx

) n∑
k=1

dµn,k (x)

)

= exp
(∫

R

(
eiλx − 1− iλx

)
dν∗n (x)

)
(23.17)

where ν∗n :=
∑n
k=1 µn,k. Let us further observe that∫

R
x2dν∗n (x) =

n∑
k=1

∫
R
x2dµn,k (x) =

n∑
k=1

σ2
n,k = 1.

Hence if we define dνn (x) := x2dν∗n (x) , then νn is a probability measure and
we have from Eqs. (23.16) and Eq. (23.17) that∣∣∣∣fSn (λ)− exp

(∫
R

eiλx − 1− iλx
x2

dνn (x)
)∣∣∣∣→ 0. (23.18)

Let

ϕ (λ, x) :=
eiλx − 1− iλx

x2
= −λ

2

2

∫ 1

0

eitλx2 (1− t) dt (23.19)

(the second equality is from Taylor’s theorem) and extend ϕ (λ, ·) to R̄ by
setting ϕ (λ,±∞) = 0. Then {ϕ (λ, ·)}λ∈R ⊂ C

(
R̄
)

and therefore by Helly’s
selection Theorem 21.53 there is a probability measure ν̄ on

(
R̄,BR̄

)
and a

subsequence, {nl} of {n} such that νnl (ϕ (λ, ·))→ ν̄ (ϕ (λ, ·)) for all λ ∈ R (in
fact νnl (h)→ ν̄ (h) for all h ∈ C

(
R̄
)
). Combining this with Eq. (23.18) allows

us to conclude,

fL (λ) = lim
l→∞

E
[
eiλSnl

]
= lim
l→∞

exp
(∫

R

(
eiλx − 1− iλx

)
dν∗nl (x)

)
= lim
l→∞

exp
(∫

R
ϕ (λ, x) dνnl (x)

)
= exp

(∫
R̄
ϕ (λ, x) dν̄ (x)

)
= exp

(∫
R
ϕ (λ, x) dν (x)

)
where ν := ν̄|BR . The last equality follows from the fact that ϕ (λ,±∞) = 0.
The measure ν now satisfies, ν (R) = ν̄ (R) ≤ ν̄

(
R̄
)

= 1.
We are now going to drop the assumption that Var (Sn) = 1 for all n and

replace it with the following property.

Definition 23.15. We say that {Xn,k}nk=1 has bounded variation (BV ) iff

sup
n

Var (Sn) = sup
n

n∑
k=1

σ2
n,k <∞. (23.20)

Corollary 23.16 (Limits under (BV )). Suppose {Xn,k}nk=1 are independent
mean zero random variables for each n which satisfy properties (M) and (BV ) .
If Sn :=

∑n
k=1Xn,k =⇒ L for some random variable L, then

fL (λ) = exp
(∫

R

eiλx − 1− iλx
x2

dν (x)
)

(23.21)

where ν – is a finite positive measure on (R,BR) .

Proof. Let s2
n := Var (Sn) . If limn→∞ sn = 0, then Sn → 0 in L2 and

hence weakly, therefore Eq. (23.21) holds with ν ≡ 0. So let us now suppose
limn→∞ sn 6= 0. Since {sn}∞n=1 is bounded, we may by passing to a subsequence
if necessary, assume limn→∞ sn = s > 0. By replacing Xn,k by Xn,k/sn and
hence Sn by Sn/sn, we then know by Slutzky’s Theorem 21.39 that Sn/sn =⇒
L/s. Hence by an application of Theorem 23.14, we may conclude

fL (λ/s) = fL/s (λ) = exp
(∫

R

eiλx − 1− iλx
x2

dν (x)
)

where ν – is a finite positive measure on (R,BR) such that ν (R) ≤ 1. Letting
λ→ sλ in this expression then implies

fL (λ) = exp
(∫

R

eiλsx − 1− iλsx
x2

dν (x)
)

= exp

(∫
R

eiλsx − 1− iλsx
(sx)2 s2dν (x)

)

= exp
(∫

R

eiλx − 1− iλx
x2

dνs (x)
)

where νs is the finite measure on (R,BR) defined by

νs (A) := s2ν
(
s−1A

)
for all A ∈ BR.

From Eq. (23.19) we see that ϕ (λ, x) :=
(
eiλx − 1− iλx

)
/x2 is a smooth

function of (λ, x) . Moreover,

d

dλ
ϕ (λ, x) =

ixeiλx − ix
x2

= i
eiλx − 1

x
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and
d2

dλ2
ϕ (λ, x) = i

ixeiλx

x
= −eiλx.

Using these remarks and the fact that ν (R) <∞, it is easy to see that

f ′L (λ) =
(∫

R
i
eiλx − 1

x
dνs (x)

)
fL (λ)

and

f ′′L (λ) =

(∫
R
−eiλxdνs (x) +

[(∫
R
i
eiλx − 1

x
dνs (x)

)2
])

fL (λ)

and in particular, f ′L (0) = 0 and f ′′L (0) = −νs (R) . Therefore by Theorem 22.8
the probability measure µ on (R,BR) such that µ̂ (λ) = fL (λ) has mean zero
and variance, νs (R) < ∞. This later condition reflects the (BV ) assumption
that we made.

Definition 23.17. A probability distribution, µ, on (R,BR) is infinitely di-
visible iff for all n ∈ N there exists i.i.d. nondegenerate random variables,
{Xn,k}nk=1 , such that Xn,1+· · ·+Xn,n

d= µ. This can be formulated in the follow-
ing two equivalent ways. For all n ∈ N there should exists a non-degenerate prob-
ability measure, µn, on (R,BR) such that µ∗nn = µ. For all n ∈ N, µ̂ (λ) = [g (λ)]n

for some non-constant characteristic function, g.

Theorem 23.18. The following class of symmetric distributions on (R,BR)
are equal;

1. C1 – all possible limiting distributions under properties (M) and (BV ) .
2. C2 – all distributions with characteristic functions of the form given in

Corollary 23.16.
3. C3 – all infinitely divisible distributions with mean zero and finite variance.

Proof. The inclusion, C1 ⊂ C2, is the content of Corollary 23.16. For C2 ⊂
C3, observe that if

µ̂ (λ) = exp
(∫

R

eiλx − 1− iλx
x2

dν (x)
)

then µ̂ (λ) = [µ̂n (λ)]n where µn is the unique probability measure on (R,BR)
such that

µ̂n (λ) = exp
(∫

R

eiλx − 1− iλx
x2

1
n
dν (x)

)
.

For C3 ⊂ C1, simply define {Xn,k}nk=1 to be i.i.d with E
[
eiλXn,k

]
= µ̂n (λ) . In

this case Sn =
∑n
k=1Xn,k

d= µ.

The following two theorem, whose proof may be found in Kallenberg [28,
Chapter 15], gives a general answer to what are the possible limits of i.i.d. row
sums of triangular arrays of random variables.

Theorem 23.19. Suppose that µ is a probability measure on (R,BR)
and Law (X) = µ. Then µ is infinitely divisible iff there exits an array,
{Xn,k : 1 ≤ k ≤ mn} with {Xn,k}mnk=1 being i.i.d. such that

∑mn
k=1Xn,k =⇒ X

and mn ↑ ∞ as n→∞.

Moreover the characteristic function of an infinitely divisible distribution
has to have a very special form.

Theorem 23.20 (Lévy Kintchine formula). A probability measure µ on
(R,BR) is infinitely divisible iff µ̂ (λ) = eiψ(λ) where

ψ (λ) = iλb− 1
2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν (x) (23.22)

for some b ∈ R, a ≥ 0, and some measure ν on R \ {0} such that∫
R\{0}

(
x2 ∧ 1

)
dν (x) <∞. (23.23)

We will give the easy direction of this proof after the next example.

Example 23.21 (Following Theorem 17.27). Suppose that {Zn}∞n=1 are i.i.d. ran-

dom variables and Nα
d= Poi (α) and Y

d= σN (0, 1) + µ are chosen so that
{Zn}∞n=1 ∪ {Nα, Y } are all independent, then S := Y +

∑
n≤Nα Zn is infinitely

divisible. Indeed we have

fS (λ) = E
[
eiλS

]
= E

[
eiλY

]
· E
[
e
iλ
∑

k≤Nα
Zk

]
= E

[
eiλY

]
·
∞∑
k=0

E
[
e
iλ
∑

k≤Nα
Zk |Nα = n

]
P (Nα = n)

= E
[
eiλY

]
·
∞∑
n=0

E
[
eiλ(Z1+···+Zn)

]
P (Nα = n)

= exp
(
−1

2
σ2λ2 + iλµ

) ∞∑
n=0

e−α
αn

n!
µ̂ (λ)n

= exp
(
−1

2
σ2λ2 + iλµ+ α (µ̂ (λ)− 1)

)
= eψ(λ)
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where
ψ (λ) = −1

2
σ2λ2 + iµλ+

∫
R

(
eiλx − 1

)
dν (x)

and dν (x) := αdµ (x) is an arbitrary finite measure on R. It is interesting
to note that if Xα :=

∑
n≤Nα Zn and m ∈ N then the law of the sum of m

independent copies of Xα/m is the law of Xα. This explicitly shows that Xα is
infinitely divisible.

Proof. (Easy part (⇐=) of the proof of Theorem 23.20). Notice that if the
measure ν in appearing in Eq. (23.22) is a finite measure then

ψ (λ) = iλb′ − 1
2
aλ2 +

∫
R

(
eiλx − 1

)
dν (x)

where
b′ = b−

∫
|x|≤1

xdν (x) .

Thus we may use Example 23.21 in order to construct a random variable with
distribution given by µ.

For general ν satisfying Eq. (23.23) let, for ε > 0, dνε (x) := 1|x|≥εdν (x) – a
finite measure on R. Thus by Example 23.21 there exits a probability measure,
µ, on (R,BR) such that µ̂ε = eψε where

ψε (λ) := iλb− 1
2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
1|x|≥εdν (x) .

As eiλx − 1− iλx · 1|x|≤1 is bounded and less than C (λ)x2 for |x| ≤ 1, we may
use DCT to show ψε (λ) → ψ (λ) . Furthermore the DCT also shows ψ (λ) is
continuous and therefore eψ(λ) is continuous. Thus we have shown that µε → eψ

where the limit is continuous and therefore by the continuity Theorem 22.17,
there exists a probability measure µ on (R,BR) such that µ̂ = eψ.

For more information about Poisson processes and Lévy processes; see Prot-
ter [47, Chapter I], [9, Chapter 9.5], and [19, Chapter XVII.2, p. 558-] for ana-
lytic proofs. Also see http://www.math.uconn.edu/˜bass/scdp.pdf, [28, Chap-
ter 15], and [1].

23.2 Stable Distributions

Definition 23.22. A non-degenerate distribution µ = Law (X) on R is stable
if whenever X1 and X2 are independent copies of X, then for all a, b ∈ R there
exists c, d ∈ R such that aX1 + bX2

d= cX + d with some constants c and d.

Example 23.23. Any Gaussian random variable is stable. Indeed if X d= σN +µ
where σ > 0 and µ ∈ R and N = N (0, 1) , then Xi = σNi + µ where N1 and
N2 are independent with Ni

d= N we will have aX1 + bX2 is Gaussian mean
(a+ b)µ and variance

(
a2 + b2

)
σ2 so that

aX1 + bX2
d=
√

(a2 + b2)σN + (a+ b)µ
d=
√

(a2 + b2) (X − µ) + (a+ b)µ

=
√

(a2 + b2)X +
(
a+ b−

√
(a2 + b2)

)
µ.

Example 23.24. Poisson random variables are not stable. For suppose that Z =
Pois (ρ) and Z1

d= Z2
d= Z, then Z1 +Z2

d= Pois (2ρ) . If we could find a, b such
that

Pois (2ρ) d= Z1 + Z2
d= aZ + b

we would have

e−2ρ (2ρ)n

n!
= P (aZ + b = n) = P

(
Z =

n− b
a

)
for all n.

In particular this implies that n−b
a = kn ∈ N0 for all n ∈ N0 and the map

n → kn must be invertible so as probabilities are conserved. This can only be
the case if a = 1 and b = 0 and we would conclude that Z d= Pois (2ρ) which is
absurd.

Lemma 23.25. Suppose that {Xi}ni=1 are i.i.d. random variables such that
X1 + · · ·+Xn = c a.s., then Xi = c/n a.s.

Proof. Let f (λ) := EeiλX1 , then

eiλc = E
[
eiλ(X1+···+Xn)|X1

]
= eiλX1f (λ) a.s.

from which it follows that f (λ) = eiλ(c−X1) a.s. and in particular for an ω where
this equality holds we find, f (λ) = eiλ(c−X1(ω)) = eiλc

′
. By uniqueness of the

Fourier transform it follows that X1 = c′ a.s. and therefore c = X1 + · · ·+Xn =
nc′ a.s., i.e. c′ = c/n.

Lemma 23.26. If µ is a stable distribution then it is infinitely divisible.

Proof. Let {Xn}Nn=1 be i.i.d. random variables with Law (Xn) = µ =
Law (X) . As µ is stable we know that

X1 + · · ·+XN
d= aX + b. (23.24)
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As µ is non-degenerate, it follows from Lemma 23.25 that a 6= 0, Therefore form
Eq. (23.24) we find,

X
d=

N∑
i=1

1
a

(Xi − b/N)

and this shows that X is infinitely divisible.
The converse of this lemma is not true as is seen by considering Poisson

random variables, see Example 23.24. The following characterization of the
stable law may be found in [9, Chapter 9.9]. For a whole book about stable
laws and their properties see Samorodnitsky and Taqqu [57].

Theorem 23.27. A probability measure µ on R is a stable distribution iff µ is
Gaussian or µ̂ (λ) = eψ(λ) where

ψ (λ) = iλb+
∫

R

(
eiλx − 1− iλx

1 + x2

)
m11x>0 −m21x<0

|x|1+α dx

for some constants, 0 < α < 2, mi ≥ 0 and b ∈ R.

To get some feeling for this theorem. Let us consider the case of a stable
random variableX which is also assumed to be symmetric. In this case ifX1, X2

are independent copies of X and a, b ∈ R and c = c (a1, a2) and d = d (a1, a2)
are then chosen so that aX1 + bX2

d= cX+d, we must have that d = 0 and may
take c > 0 by the symmetry assumption. Letting f (λ) = E

[
eiλX

]
we may now

conclude that

f (aλ) · f (bλ) = E
[
eiλ(aX1+bX2)

]
= E

[
eiλcX

]
= f (cλ) .

It turns out the solution to these functional equation are of the form f (λ) =
e−k|λ|

α

. If f (λ) is of this form then

f (aλ) · f (bλ) = exp (−k (|a|α + |b|α) |λ|α) = f (cλ)

where c = (|a|α + |b|α)1/α
. Moreover it turns out the f is a characteristic

function when 0 < α ≤ 2. The case α = 2 is the Gaussian case, then case α = 1
is the Cauchy distribution, for example if

dµ (x) =
1

π (1 + x2)
dx then µ̂ (λ) = e−|λ|.

For α ≤ 1 we find that we have

f ′ (λ) = −k |λ|α−1
f (λ) ≤ 0 and

f ′′ (λ) =
[
k2 |λ|2α−2 − k (α− 1) |λ|α−2

]
f (λ) ≥ 0

so that f is a decreasing convex symmetric function for λ ≥ 0. Therefore by
Polya’s criteria of Exercise 22.6 it follows that e−k|λ|

α

is the characteristic func-
tion of a probability measure for 0 ≤ α ≤ 1. The full proof is not definitely not
given here.

23.3 *Lévy exponent and Lévy Process facts – Very
Preliminary!!

We would like to characterize all processes with independent stationary in-
crements with values in R or more generally Rd. We begin with some more
examples.

Proposition 23.28. For every finite measure ν, the function

f (λ) := exp
(∫

R

eiλx − 1− iλx
x2

dν (x)
)

is the characteristic function of a probability measure, µ = µν , on (R,BR) . The
convention here is that

eiλx − 1− iλx
x2

|x=0 := lim
x→0

eiλx − 1− iλx
x2

= −1
2
λ2.

Proof. This is the content of Exercise 22.4

1. If {Xt}t≥0 is a right continuous process with stationary and independent
increments, then let ft (λ) := E

[
eiλ(Xt+σ−Xσ)

]
for any σ ≥ 0. It then follows

that

ft+s (λ) = E
[
eiλ(Xt+s−X0)

]
= E

[
eiλ(Xt+s−Xt+Xt−X0)

]
= E

[
eiλ(Xt+s−Xt)

]
· E
[
eiλ(Xt−X0)

]
= fs (λ) · ft (λ) .

The right continuity of Xt now insures that ft is also right continuous.
The only solution to the above functional equation is therefore of the form,
ft (λ) = etψ(λ) for some function ψ (λ) . Since

etReψ(λ) = |ft (λ)| ≤ 1

it follows that Reψ (λ) ≤ 0. Let λ ∈ R be fixed and define h (t) := ft (λ) ,
then h is right continuous, h (0) = 1, and h (t+ s) = h (t)h (s) . Let ln be a
branch of the logarithm defined near 1 such that ln 1 = 0. Then there exists
ε such that for all t ≤ ε we have g (t) := lnh (t) is well defined and g (t)
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satisfies, g (t+ s) = g (t) + g (s) for all 0 ≤ s, t ≤ ε. We now set gε (t) :=
g (εt) and then gε (s+ t) = gε (s)+gε (t) for all 0 ≤ s, t ≤ 1 and is still right
continuous. As usual it now follows that gε (1) = gε (n · 1/n) = n · gε (1/n)
for all n and therefore for all 0 ≤ k ≤ n, we have gε (k/n) = k

ngε (1) . Using
the right continuity of gε it now follows that gε (t) = tgε (1) for all 0 ≤ t < 1.
Thus we have shown g (εt) = tg (ε) for 0 ≤ t < 1 and therefore if we set
θ := g (ε) /ε we have shown g (t) = tθ for t ∈ [0, ε) that is ,

h (t) = etθ for 0 ≤ t < ε.

This formula is now seen to be correct for all t ≥ 0. Indeed if t = kε/2 + τ
with 0 ≤ τ < ε/2, then

h (t) = h (ε/2)k h (τ) =
[
eθε/2

]k
eτθ = eθ[kε/2+τ ] = etθ.

Thus we have shown that ft (λ) = etψ(λ) for some function ψ (λ) . Let us
further observe that

ψ (λ) = lim
t↓0

ft (λ)− 1
t

from which it follows that ψ must be measurable. Furthermore,

ψ (−λ) = lim
t↓0

ft (−λ)− 1
t

= lim
t↓0

ft (λ)− 1
t

= ψ (λ).

We are going to show more.
2. Let {zi}ni=1 ⊂ C such that

∑n
i=1 zi = 1 and {λi}ni=1 ⊂ R, then

n∑
i,j=1

ψ (λi − λj) ziz̄j = lim
t↓0

n∑
i,j=1

ft (λi − λj)− 1
t

ziz̄j

= lim
t↓0

1
t

n∑
i,j=1

ft (λi − λj) ziz̄j

while for any {zi}ni=1 ⊂ C we have

n∑
i,j=1

ft (λi − λj) ziz̄j =
n∑

i,j=1

E
[
ei(λi−λj)Xt

]
ziz̄j

=
n∑

i,j=1

E
[
eiλiXtzi · e−iλjXt z̄j

]

= E

 n∑
i=1

eiλiXtzi ·
n∑
j=1

e−iλjXt z̄j


= E

∣∣∣∣∣
n∑
i=1

eiλiXtzi

∣∣∣∣∣
2
 ≥ 0.

Therefore it follows that when
∑n
i=1 zi = 1 then

∑n
i,j=1 ψ (λi − λj) ziz̄j ≥ 0.

We say the ψ is conditionally positive definite in this case.
3. The Schoenberg correspondence says (see [1, Theorem 1.1.13]) that if ψ

is continuous at zero, ψ (−λ) = ψ (λ) and ψ is conditionally positive defi-
nite, then etψ(λ) is a characteristic function. We will prove this below using
Bochner’s Theorem 22.38.

4. But first some examples;
a) Let ψ (λ) = iλa−bλ2 with a ∈ R and b ≥ 0.Then ψ (−λ) = −iλa−bλ2 =

ψ (λ) and for
∑n
i=1 zi = 1 we have

n∑
i,j=1

ψ (λi − λj) ziz̄j =
n∑

i,j=1

[
−i (λi − λj) a− b (λi − λj)2

]
ziz̄j .

Noting that

n∑
i,j=1

λiziz̄j =
n∑
i=1

λizi

n∑
j=1

z̄j =
n∑
i=1

λizi · 0 = 0

and similarly that
∑n
i,j=1

[
λ2
i

]
ziz̄j = 0, it follows that

n∑
i,j=1

ψ (λi − λj) ziz̄j =
n∑

i,j=1

[
−b (−2λiλj)

2
]
ziz̄j

= 2b

∣∣∣∣∣∣
n∑

i,j=1

λizi

∣∣∣∣∣∣
2

≥ 0.

b) Suppose that {Zi}∞i=1 are i.i.d. random variables and {N} is an inde-
pendent Poisson process with intensity λ. Let X := Z1 + · · · + ZN ,
then
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fX (λ) = E
[
eiλX

]
=
∞∑
n=0

E
[
eiλX : N = n

]
=
∞∑
n=0

E
[
eiλ[Z1+···+Zn] : N = n

]
= e−λ

∞∑
n=0

λn

n!
[fZ1 (λ)]n = exp (λ (fZ1 (λ)− 1)) .

So in this case ψ (λ) = fZ1 (λ) − 1 and we know by the theory above
that ψ (λ) is conditionally positive definite.

Lemma 23.29. Suppose that {Aij}di,j=1 ⊂ C is a matrix such that A∗ = A

and A ≥ 0. Then for all n ∈ N0, the matrix with entries
(
Anij
)n
i,j=1

is positive
semi-definite.

Proof. Since Aij = (Aej , ei) where (v, w) :=
∑d
j=1 vjw̄j is the standard

inner product on Cd, it follows that

Anij =
(
A⊗ne⊗nj , e⊗ni

)
and therefore,

d∑
i,j=1

Anij z̄izj =
d∑

i,j=1

(
A⊗ne⊗nj , e⊗ni

)
z̄izj =

(
A⊗nψ,ψ

)
where ψ :=

∑d
j=1 zje

⊗n
j ∈

(
Cd
)⊗n

. So it suffices to show A⊗n ≥ 0. To do this

let {ui}di=1 be an O.N. basis for Cd such that Aui = λiui for all i. Since A ≥ 0
we know that λi ≥ 0 and therefore

A⊗n (ui1 ⊗ · · · ⊗ uid) = (λi1 . . . λid) (ui1 ⊗ · · · ⊗ uid)

where (λi1 . . . λid) ≥ 0. This shows that A⊗n is unitarily equivalent to a diagonal
matrix with non-negative entries and hence is positive semi-definite.

Proposition 23.30. Suppose that {Aij}di,j=1 ⊂ C is a matrix such that A∗ = A

and A is conditionally positive definite, for example Aij := ψ (λi − λj) as above.
Then the matrix with entries,

(
eAij

)d
i,j=1

is positive definite.

Proof. Let u := (1, . . . , 1)tr ∈ Cd. Let ξ ∈ Cd and write ξ = z + αu where
(z, u) = 0 and α := (ξ, u) /d. Letting B :=

√
A on u⊥ and 0 on C · u, we have

(Aξ, ξ) = (A (z + αu) , z + αu)

= (Az, z) + 2 Re [ᾱ (Az, u)] + |α|2 (Au, u)

= (Az, z) + 2 Re
[
ᾱ
(
B2z, u

)]
+ |α|2 (Au, u)

= (Az, z) + 2 Re [ᾱ (Bz,B∗u)] + |α|2 (Au, u)

≥ (Az, z)− 2 ‖Bz‖ · |α| ‖B∗u‖+ |α|2 (Au, u)

≥ (Az, z)−
[
‖Bz‖2 + |α|2 ‖B∗u‖2

]
+ |α|2 (Au, u)

= |α|2
[
(Au, u)− ‖B∗u‖2

]
.

Since (
u utrξ, ξ

)
= |α|2

(
u utru, u

)
= |α|2 d2,

it follows that((
A+ λu utr

)
ξ, ξ
)
≥ |α|2

[
(Au, u)− ‖B∗u‖2 + λd2

]
≥ 0

provided λd2 ≥ ‖B∗u‖2 − (Au, u) .
We now fix such a λ ∈ R so that (A+ λu utr) ≥ 0. It then follows from

Lemma 23.29 that

eλeAij = eAij+λ = e
(A+λu utr)

ij =
∞∑
n=0

(A+ λu utr)nij
n!

are the matrix entries of a positive definite matrix. Scaling this matrix by e−λ >
0 then gives the result that

(
eAij

)
i,j
≥ 0.

As a consequence it follows that etψ(λ) is a positive definite function when-
ever ψ is conditionally positive definite.

Proposition 23.31. Suppose that {Zi}∞i=1 are i.i.d. random vectors in Rd with
Law (Zi) = µ and {Nt}t≥0 be an independent Poisson process with intensity λ.
Then {Xt := SNt}t≥0 is a Lévy process with E

[
eik·Xt

]
= etψ(k) where

ψ (k) = λ

∫
Rn

(
eik·x − 1

)
dµ (x) = E

[
eik·Z1

]
.

Proof. It has already been shown in Theorem 17.27 that {Xt}t≥0 has sta-
tionary independent increments and being right continuous it is a Lévy process.
It only remains to compute the Fourier transform,

E
[
eik·Xt

]
=
[
Qt
(
x→ eik·x

)]
(0)

=
∞∑
n=0

(λt)n

n!
e−λtE

[
eik·(Z1+···+Zn)

]
=
∞∑
n=0

(λt)n

n!
e−λtµ̂ (k)n

= etλ(µ̂(k)−1) = exp
(
tλ

∫
Rn

(
eik·x − 1

)
dµ (x)

)
.
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More generally, if we let Bt be Brownian motion in Rn with Cov
(
Bit, B

j
t

)
=

Aijt and b ∈ Rn, then assuming B and X above are independent, then Xt =
bt+Bt +Xt is again a Levy process whose Fourier transform is given by,

E
[
eik·Xt

]
= exp

(
ibt+Ak · k + λ

∫
Rn

(
eik·x − 1

)
dµ (x)

)
.

Thus
ψ (λ) = ibt+Ak · k + λ

∫
Rn

(
eik·x − 1

)
dµ (x)

is a Lévy exponent for all choice of b ∈ Rn, all λ > 0, probability measures µ
on Rn, and A ≥ 0.

Lévy proved that in general ψ (k) will be a Lévy exponent iff ψ has the form
given in Eq. (23.25) below.

Theorem 23.32 (Lévy Kintchine formula). If ψ is continuous at zero and
conditionally positive definite, then

ψ (λ) = iλb− 1
2
aλ2 +

∫
R\{0}

(
eiλx − 1− iλx · 1|x|≤1

)
dν (x) (23.25)

for some b ∈ R, a ≥ 0, and some measure ν such that∫
R\{0}

(
x2 ∧ 1

)
dν (x) <∞.
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1. David Applebaum, Lévy processes and stochastic calculus, second ed., Cambridge
Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cam-
bridge, 2009. MR MR2512800

2. Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applica-
tions (New York), Springer-Verlag, New York, 1995. MR MR1329542 (96e:60001)

3. , The Doob-Meyer decomposition revisited, Canad. Math. Bull. 39 (1996),
no. 2, 138–150. MR MR1390349 (97b:60075)

4. , Diffusions and elliptic operators, Probability and its Applications (New
York), Springer-Verlag, New York, 1998. MR MR1483890 (99h:60136)

5. Patrick Billingsley, Probability and measure, third ed., Wiley Series in Probability
and Mathematical Statistics, John Wiley & Sons Inc., New York, 1995, A Wiley-
Interscience Publication. MR MR1324786 (95k:60001)

6. , Convergence of probability measures, second ed., Wiley Series in Prob-
ability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New
York, 1999, A Wiley-Interscience Publication. MR MR1700749 (2000e:60008)
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d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol.
1180, Springer, Berlin, 1986, pp. 265–439. MR MR876085 (88a:60114)


	Part  Homework Problems
	Math 280A Homework Problems Fall 2009
	Homework 1. Due Wednesday, September 30, 2009
	Homework 2. Due Wednesday, October 7, 2009
	Homework 3. Due Wednesday, October 21, 2009
	Homework 4. Due Wednesday, October 28, 2009
	Homework 5. Due Wednesday, November 4, 2009
	Homework 6. Due Wednesday, November 18, 2009
	Homework 7. Due Wednesday, November 25, 2009
	Homework 8. Due Monday, December 7, 2009 by 11:00AM (Put under my office door if I am not in.)

	Math 280B Homework Problems Winter 2010
	Homework 1. Due Wednesday, January 13, 2010
	Homework 2. Due Wednesday, January 20, 2010
	Homework 3. Due Wednesday, January 27, 2010
	Homework 4. Due Wednesday, February 3, 2010
	Homework 5. Due Wednesday, February 10, 2010
	Homework 6. Due Friday, February 19, 2010
	Homework 7. Due Monday, March 1, 2010
	Homework 8. Due Monday, March 8, 2010
	Homework 9. (Not) Due Monday, March 15, 2010

	Math 280C Homework Problems Spring 2010
	Homework 1. Due Wednesday, April 7, 2010
	Homework 2. Due Wednesday, April 14, 2010
	Homework 3. Due Wednesday April 21, 2010
	Homework 4. Due Wednesday April 28, 2010
	Homework 5. Due Wednesday May 5, 2010

	Math 286 Homework Problems Spring 2008

	Part I Background Material
	Limsups, Liminfs and Extended Limits
	Basic Probabilistic Notions

	Part II Formal Development
	Preliminaries
	Set Operations
	Exercises
	Algebraic sub-structures of sets

	Finitely Additive Measures / Integration
	Examples of Measures
	Simple Random Variables
	The algebraic structure of simple functions*

	Simple Integration
	Appendix: Bonferroni Inequalities
	Appendix: Riemann Stieljtes integral

	Simple Independence and the Weak Law of Large Numbers
	Complex Weierstrass Approximation Theorem
	Product Measures and Fubini's Theorem

	Simple Conditional Expectation
	Appendix: A Multi-dimensional Weirstrass Approximation Theorem

	Countably Additive Measures
	Overview
	 --  Theorem
	A Density Result*

	Construction of Measures
	Radon Measures on R
	Lebesgue Measure

	A Discrete Kolmogorov's Extension Theorem
	Appendix: Regularity and Uniqueness Results*
	Appendix: Completions of Measure Spaces*
	Appendix Monotone Class Theorems*

	Random Variables
	Measurable Functions
	Factoring Random Variables
	Summary of Measurability Statements
	Distributions / Laws of Random Vectors
	Generating All Distributions from the Uniform Distribution

	Integration Theory
	Integrals of positive functions
	Integrals of Complex Valued Functions
	Square Integrable Random Variables and Correlations
	Some Discrete Distributions

	Integration on R
	Densities and Change of Variables Theorems
	Some Common Continuous Distributions
	Normal (Gaussian) Random Variables

	Stirling's Formula
	Two applications of Stirling's formula

	Comparison of the Lebesgue and the Riemann Integral*
	Measurability on Complete Measure Spaces*
	More Exercises

	Functional Forms of the  --  Theorem
	Multiplicative System Theorems
	Exercises
	A Strengthening of the Multiplicative System Theorem*
	The Bounded Approximation Theorem*

	Multiple and Iterated Integrals
	Iterated Integrals
	Tonelli's Theorem and Product Measure
	Fubini's Theorem
	Fubini's Theorem and Completions*
	Lebesgue Measure on Rd and the Change of Variables Theorem
	The Polar Decomposition of Lebesgue Measure*
	More Spherical Coordinates*
	Gaussian Random Vectors
	Kolmogorov's Extension Theorems 
	Regularity and compactness results
	Kolmogorov's Extension Theorem and Infinite Product Measures

	Appendix: Standard Borel Spaces*
	More Exercises

	Independence
	Basic Properties of Independence
	Examples of Independence
	An Example of Ranks

	Gaussian Random Vectors
	Summing independent random variables
	A Strong Law of Large Numbers
	A Central Limit Theorem 
	The Second Borel-Cantelli Lemma
	Kolmogorov and Hewitt-Savage Zero-One Laws
	Hewitt-Savage Zero-One Law

	Another Construction of Independent Random Variables*

	The Standard Poisson Process
	Poisson Random Variables
	Exponential Random Variables
	Appendix: More properties of Exponential random Variables*

	The Standard Poisson Process
	Poission Process Extras*

	Lp -- spaces
	Modes of Convergence
	Almost Everywhere and Measure Convergence
	Jensen's, Hölder's and Minikowski's Inequalities
	Completeness of Lp -- spaces
	Density Results
	Relationships between different Lp -- spaces
	Summary:

	Uniform Integrability
	Exercises
	Appendix: Convex Functions

	Hilbert Space Basics
	Compactness Results for Lp -- Spaces*
	Exercises

	Conditional Expectation
	Examples
	Additional Properties of Conditional Expectations
	Construction of Regular Conditional Distributions*

	The Radon-Nikodym Theorem
	Some Ergodic Theory

	Part III Stochastic Processes I
	The Markov Property
	Markov Processes
	Discrete Time Homogeneous Markov Processes
	Continuous time homogeneous Markov processes
	First Step Analysis and Hitting Probabilities
	Finite state space chains
	Invariant distributions and return times
	Some worked examples
	Exercises

	Appendix: Kolmogorov's extension theorem II
	Removing the standard Borel restriction
	*Appendix: More Probability Kernel Constructions

	(Sub and Super) Martingales
	(Sub and Super) Martingale Examples
	Decompositions
	Stopping Times
	Stochastic Integrals and Optional Stopping
	Submartingale Maximal Inequalities
	Submartingale Upcrossing Inequality and Convergence Theorems
	*Supermartingale inequalities
	Maximal Inequalities
	The upcrossing inequality and convergence result

	Martingale Closure and Regularity Results
	Backwards (Reverse) Submartingales
	Some More Martingale Exercises
	More Random Walk Exercises

	Appendix: Some Alternate Proofs

	Some Martingale Examples and Applications
	A Polya Urn Model
	Galton Watson Branching Process
	Kakutani's Theorem


	Part IV (Weak) Convergence of Random Sums
	Random Sums
	Weak Laws of Large Numbers
	A WLLN Example

	Kolmogorov's Convergence Criteria
	The Strong Law of Large Numbers Revisited
	Strong Law of Large Number Examples

	Kolmogorov's Three Series Theorem
	Examples

	Maximal Inequalities

	Weak Convergence Results
	Convolutions
	Total Variation Distance
	A Coupling Estimate
	Weak Convergence
	“Derived” Weak Convergence
	Convergence of Types
	Weak Convergence Examples
	Compactness and tightness of measures on ( R,BR) 
	Metric Space Extensions
	A point set topology review
	Proof of Skorohod's Theorem 21.57
	Proof of Proposition -- The Portmanteau Theorem 21.59
	Proof of Prokhorov's compactness Theorem 21.61


	Characteristic Functions (Fourier Transform)
	Basic Properties of the Characteristic Function
	Examples
	Continuity Theorem
	A Fourier Transform Inversion Formula
	Exercises
	Appendix: Bochner's Theorem
	Appendix: Some Calculus Estimates 

	Weak Convergence of Random Sums
	Infinitely Divisible Distributions
	Stable Distributions
	*Lévy exponent and Lévy Process facts -- Very Preliminary!!

	References


