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Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

-3.1 Homework 1. Due Wednesday, September 30, 2009

e Read over Chapter
e Hand in Exercises and

-3.2 Homework 2. Due Wednesday, October 7, 2009

e Look at Resnick, p. 20-27: 9, 12, 17, 19, 27, 30, 36, and Exercise [3.9] from
the lecture notes.

e Hand in Resnick, p. 20-27: 5, 18, 23, 40*, 41, and Exercise from the
lecture notes.
*Notes on Resnick’s #40: (i) B ((0,1]) should be B ([0,1)) in the statement

of this problem, (ii) k is an integer, (iii) r > 2.

-3.3 Homework 3. Due Wednesday, October 21, 2009

e Look at Lecture note Exercises;
e Hand in Resnick, p. 63-70; 7* and 13.

e Hand in Lecture note Exercises: 44 -

*Hint: For #7 you might label the coupons as {1,2,..., N} and let A; be
the event that the collector does not have the it* — coupon after buying n -
boxes of cereal.

-3.4 Homework 4. Due Wednesday, October 28, 2009

Look at Lecture note Exercises;
Look at Resnick, p. 63-70; 5, 14, 16, 19
Hand in Resnick, p. 63-70; 3, 6, 11

Hand in Lecture note Exercises: -

-3.5 Homework 5. Due Wednesday, November 4, 2009

Look at Resnick, p. 85-90: 3, 7, 8, 12, 17, 21

Hand in from Resnick, p. 85-90: 4, 6%, 9, 15, 18**.

*Note: In #6, the random variable X is understood to take values in the
extended real numbers.

** T would write the left side in terms of an expectation.

Look at Lecture note Exercise [6.3] [6.7]

Hand in Lecture note Exercises:

-3.6 Homework 6. Due Wednesday, November 18, 2009

Look at Lecture note Exercise [7.4] [7.9] [7.12] [7.17} [718] and [7-27]

Hand in Lecture note Exercises: [7.5] [7.7} [7-8] [7-11} [7-13] [7.14} [7-16
Look at from Resnik, p. 155-166: 6, 13, 26, 37

Hand in from Resnick,p. 155-166: 7, 38

-3.7 Homework 7. Due Wednesday, November 25, 2009

Look at Lecture note Exercise [0.12] — [9.14]
Look at from Resnick§ 5.10: #18, 19, 20, 22, 31.

Hand in Lecture note Exercises: and
9.9
e Hand in from Resnick § 5.10: #9, 29.

See next page!

-3.8 Homework 8. Due Monday, December 7, 2009 by
11:00AM (Put under my office door if I am not in.)

e Look at Lecture note Exercise [10.1], [10.2] [10.4], [10.5] [T0.7]
e Look at from Resnick § 4.5: 3, 5, 6, 8, 19, 28, 29.
e Look at from Resnick § 5.10: #6, 7, 8, 11, 13, 16, 22, 34




Hand in Lecture note Exercises:

Hand in from Resnick § 4.5: 1, 9%, 11, 18, 25. *Exercisemay be useful
here.

Hand in from Resnick § 5.10: #14, 26.
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Math 280B Homework Problems Winter 2010

-2.1 Homework 1. Due Wednesday, January 13, 2010

e Hand in Lecture note Exercise [T1.1], [T1.2] [I1.3] [TT.4] [I1.5] [T1.6]
e Look at from Resnick § 5.10: #39

-2.2 Homework 2. Due Wednesday, January 20, 2010

e Look at from §6.7: 3, 4, 14, 15(Hint: see Corollary or use |a — b =
2(a—b)* — (a—b)), 16, 17, 19, 24, 27, 30
Look at Lecture note Exercise [2.12]
Hand in from Resnick §6.7: 1a, d, 12, 13, 18 (Also assume EX,, = 0)*, 33.
Hand in lecture note exercises: [12.1] [12:3]

* For Problem 18, please add the missing assumption that the random
variables should have mean zero. (The assertion to prove is false without
this assumption.) With this assumption, Var(X) = E[X?]. Also note that
Cov(X,Y) = 0 is equivalent to E[XY] =EX - EY.

-2.3 Homework 3. Due Wednesday, January 27, 2010

Look at from §6.7:
Look at Lecture note Exercise

e Hand in from Resnick §6.7: 5% 7 (Hint: Observe that X, L5, N (0,1).)
*For one possible proof of #5 it is useful to first show {X,} - are U.L
first.

e Hand in lecture note exercises:
-2.4 Homework 4. Due Wednesday, February 3, 2010
e Look at Resnick Chapter 10: 11

e Hand in lecture note exercises: [10.3] [[4.1], [14.2], [14.3] [I£.4
e Hand in from Resnick §10.17: 2f, 5%, 71T g**

"In part 2b, please explain what convention you are using when the denom-
inator is 0.

*A Poisson process, {N (t)},~ , with parameter \ satisfies (by definition): (i)
N has independent increments, so that N(s) and N(t) — N(s) are independent;
(ii) if 0 < u < v then N(v) — N (u) has the Poisson distribution with parameter
Alv —u).

f For 7a and 7b it is illuminating to find a formula for E [g (X1) | X1 + X2 .

**Hint: use Exercise to first show Cov (Y, f (Y)) <O0.

-2.5 Homework 5. Due Wednesday, February 10, 2010
e Look at the following Exercises from the Lecture Notes: [[2.13] [16.2]

e Do the following Exercises from the Lecture Notes: [12.14] [12.15] [14.5] [14.7]
M43

-2.6 Homework 6. Due Friday, February 19, 2010

e Look at the following Exercises from the Lecture Notes: [17.5] [T7.15} [I7.16
e Do the following Exercises from the Lecture Notes: [I7.1] [17.2] [17.3] [17.4]
17.6, ?7.

-2.7 Homework 7. Due Friday, February 26, 2010

e Do the following Exercises from the Lecture Notes: [17.7] [17.9] [I7.10} [I7.11]
[[7.12 [[7.13}
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Part 1

Background Material






1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+o0}, i.e. it
is R with two new points called oo and —oo. We use the following conventions,
+00-0=0, £c0-a =t if a € R with a > 0, +00-a = Foo if a € R with
a<0,foo+a==x foranya € R, co+ o0 =00 and —oco — o0 = —o0 while
00 — 00 is not defined. A sequence a, € R is said to converge to oo (—oc) if for
all M € R there ezists m € N such that ap, > M (a, < M) for all n > m.

Lemma 1.2. Suppose {a,},—, and {b,},. | are convergent sequences in R,
then:

1. If a, < b, meI a.a. n, then lim,,_, . a,, <lim, _, o b,.
2. If c € R, then lim,, o (cay) = climy, o0 ap.
3. {an + bn},— is convergent and

lim (a, +b,)= lim a, + lim b, (1.1)

n—oo n—oo n—oo

provided the right side is not of the form oo — co.
4. {anby },2, is convergent and

lim (apb,) = lim a, - lim b, (1.2)

provided the right hand side is not of the for £00-0 of 0 (£00).

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l1
lim (ay, + by) = 0 fa=1
—ocoifa>1
while
lim a, + lim b,“="00 — o0.

n—oo n—oo

This shows that the requirement that the right side of Eq. (1.1)) is not of form
00— o0 is necessary in Lemmal[l.2] Similarly by considering the examples a,, = n

)

! Here we use “a.a. n” as an abbreviation for almost all n. So an < b, a.a. n iff there
exists N < oo such that a, < b, for all n > N.

and b, = n~% with a > 0 shows the necessity for assuming right hand side of
Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. . Let a :=lim, . a, and b = lim,,_. o, b,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists N such that b, > M and a,, > a — 1 for all n > N and this implies

ap +by, > M+a—1foralln > N.

Since M is arbitrary it follows that a, + b, — 0o as n — co. The cases where
b = —oo or a = oo are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists N € N such that

la —a,| <eand |b—b,| <eforalln>N.
Therefore,
la+b—(an+bp)|=|a—an+b—by| <|a—a|+1|b—0,| <2

for all n > N. Since € > 0 is arbitrary, it follows that lim,, o (a, + b,) = a+b.

Proof of Eq. (1.2). It will be left to the reader to prove the case where lim a,,
and lim b,, exist in R. I will only consider the case where a = lim,, . a, # 0
and lim,_ . b, = oo here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let @ := min (%, 1). Given any M < oo, there exists
N € N such that a,, > o and b, > M for all n > N and for this choice of N,
anby, > Ma for all n > N. Since o > 0 is fixed and M is arbitrary it follows
that lim, o (anbyp) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if oo € A or A is not bounded from above and inf A = —oo0 if —co € A or A is
not bounded from below. We will also use the conventions that sup () = —co
and inf ) = +o0.

Notation 1.3 Suppose that {x,} -~ C R is a sequence of numbers. Then

liminf 2, = lim inf{zy : k > n} and (1.3)
n—oo n—oo
limsupz, = lim sup{xy: k > n}. (1.4)
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We will also write lim for liminf, .o and lim for limsup .
n—oo
Remark 1.4. Notice that if ap := inf{zy : £k > n} and by := sup{zy : k >
n}, then {ax} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R and
liminf x,, = supinf{zy : k > n} and
n—oo n
lim sup x,, = inf sup{zy, : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {a,}52, and {b,}52, be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,_. a, ezxists in R iff
n—oo

liminf a,, = limsup a,, € R.

n—0oo n— o0

2. There is a subsequence {an, }52, of {an}S2, such that limg o an,
limsup a,,. Similarly, there is a subsequence {an, }32, of {an}52, such that

n—oo
limy o0 ap, = liminf, . ay.
3.
lim sup(a,, + b,) < limsup a,, + limsup b, (1.5)
n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — co.
4. If ap, >0 and b, > 0 for alln € N, then

lim sup(a,by,) < limsup a,, - lim sup by, (1.6)

provided the right hand side of @ is not of the form 0 - oo or oo - 0.
Proof. 1. Since
inf{ag : k > n} <sup{ag : k > n} ¥n,
liminf a,, < limsup a,,.

n—0oo n— oo

Now suppose that liminf,, .. a, = limsupa, = a € R. Then for all ¢ > 0,
n—oo
there is an integer N such that

a—e<inf{ag : k> N} <sup{arp:k >N} <a+e,

Page: 14 job: prob

ie.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limg_ o ax = a. If liminf,, . a, = oo,
then we know for all M € (0,00) there is an integer N such that

M <inf{ay : k > N}

and hence lim,,_~, a, = co. The case where lim sup a,, = —oc0o is handled simi-
n—oo

larly.
Conversely, suppose that lim, ..o a, = A € R exists. If A € R, then for
every € > 0 there exists N(g) € N such that |A — a,| < ¢ for all n > N(e), i.e.

A—e<a, <A+ceforaln>N().
From this we learn that

A — e <liminfa, <limsupa, < A+e¢.

n—oo n—00

Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A4,

n—oo N—00

i.e. that A = liminf, ., a, = limsupa,. If A = oo, then for all M > 0

n—oo

there exists N = N(M) such that a, > M for all n > N. This show that
liminf, .. a, > M and since M is arbitrary it follows that

oo < liminf a,, < limsup a,,.
n—oo n—00

The proof for the case A = —oo is analogous to the A = co case.
2. — 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let a,, = (—1)" and
bp = —an = (—1)"*". Then a, + b, = 0 so that
0= lim (an + b,) = liminf (a, + b,) = limsup (a, + by)
n—oo n—oo n—oo
while
liminf a,, = liminfb,, = —1 and
n—oo n—oo
limsup a,, = limsup b,, = 1.
n—oo n—oo
Thus in this case we have
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lim sup (a,, + b,) < limsup a,, + lim sup b,, and

n—oo n—oo n—oo
liminf (a,, + b,) > liminf a,, + liminf b,,.
n—oo n—oo n—oo

]
We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n € N, {f, (i)};=,
is a sequence in [0,00] such that T limy, o fn (i) = f (i) by which we mean
fn (i) T f (i) as n — oco. Then

Jim, Z I
JKZM%
i=1

We allow for the possibility that these expression may equal to +oo.

Proof. Let M :=1 lim;, o0 Y 50y fn (2). As fi, (¢) < f (i) for all n it follows
that oo fr (i) < Yooy f (i) for all n and therefore passing to the limit shows
M <Y 2, f(i). If N € N we have,

N
2,50 th G —,}LH;Oan EECSWACE

=1

f @), ie

)

=1

3

lim f, (7).
1

1=

Letting N 1 oo in this equation then shows Y .o, f (i) < M which completes
the proof. -

Proposition 1.7 (Tonelli’s theorem for sums). If {axn};,—; C [0,00],

then
oo oo oo oo
Zzakn = Zzakn-

k=1n=1 n=1k=1
Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let Sy (k) := ij:l Akn, then by the MCT (Proposi-
tion ,
hm ZSN

On the other hand,

oo

)= Jim Sy (k)= ) ar.

k=1 k=1n=1
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so that
N oo oo 00
Nlim ZSN lim ZZakn:ZZakn.
e N=oo i =1 n=1k=1

Second Proof. Let
K N N K

M = sup{ZZakn : K,NEN} ZSUP{ZZGML : K,NEN}
k=1n=1

and

Since

oo 0o K o K N
L:ZZ@M :Iggrloozz%n = hmooj\}gnooZZakn

k=1n=1 k=1n=1 k=1n=1
and Zk 1 Z _q Okn < M for all K and N, it follows that L < M. Conversely,
K N K oo 0o 00
PBP SIS 35 SIS 3) I’
k=1n=1 k=1n=1 k=1n=1

and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

oo 00
E E An — M
k=1n=1

By symmetry (or by a similar argument), we also have that > >~ | > 7° | ap, =
M and hence the proof is complete. [
You are asked to prove the next three results in the exercises.

Proposition 1.8 (Fubini for sums). Suppose {arn}y,,—; C R such that

E E lagn| = E E lagn| < 00
k=1n=1 n=1 k=1
Then
oo oo oo oo
DD k=) ) am
k=1n=1 n=1k=1
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16 1 Limsups, Liminfs and Extended Limits

Ezample 1.9 (Counter example). Let {Smn}:,nzl be any sequence of complex

numbers such that lim,, ..o Sy, = 1 for all n and lim,, .o Sy = 0 for all n.
For example, take Syp = Lm>n + +Lm<n. Then define {aij}fC;.:l so that

m n
=1 j=1

Then

ZZaij = lim lim S,,,=0#1= lim lim S,

m—0o00 N—00 n—oo m—0o0

o0 oo
=>_> ai
j=11i=1

i=1 j=1

To find a;j, set Sy = 0if m =0 or n = 0, then

n
Smn — Sm—l,n = § Qmj
Jj=1

and

n — Smn - Smfl,n - (Sm,nfl - Smfl,nfl)
= Smn - Smfl,n - Sm,nfl + Smfl,nfl'
Proposition 1.10 (Fatou’s Lemma for sums). Suppose that for eachn € N,

{hn (i) };=, is any sequence in [0,00], then

- T
Zhnnigfhn(z)_hnn_{nghn(z)

i=1 =1

The next proposition is referred to as the dominated convergence theorem

(DCT for short) for sums.

Proposition 1.11 (DCT for sums). Suppose that for each n € N,

{fn (0)};2, C R is a sequence and {gy (i)};=, is a sequence in [0,00) such that;

1.5°% gn (i) < 00 for all n,

2. f(i) =limp— o0 fn (1) and g (i) := limy, 00 gn (i) exists for each i,
3. 1fu ()| < g (i) Jor all i andn,

4 lim o D77 gn (1) = 3072, 9 (i) < oo

Then -
Jim, > ) Z lin i i Zf
i=1

(Often this proposition is used in the special case where g, = g for all n.)
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Exercise 1.1. Prove Proposwlonu 1.8l Hint: Let o}, := max (ag,,0) and a,, =
max (—agn, 0) and observe that; ag, = a;n — al;n and ‘a,m| + ’akn’ = |agn| -

Now apply Proposition with ay, replaced by a,m and a,,.

Exercise 1.2. Prove Proposition [[.10} Hint: apply the MCT by applying the
monotone convergence theorem with f, (7) := inf,,>p A (7).

Exercise 1.3. Prove Proposition[I.11} Hint: Apply Fatou’s lemma twice. Once
with hy, (1) = gn (1) + fn (i) and once with hy, (1) = gp, (1) — frn (7).
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2

Basic Probabilistic Notions

Definition 2.1. A sample space {2 is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, 1}N and for flipping an infinite number of times,

Q={w=(w1,ws,...) rw; € {0,1}} = {0,1}".
3. If we have a roulette wheel with 38 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 =1{00,0,1,2,...,36}"

for N spins, and
2 ={00,0,1,2,...,36}"

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

2 =Dp:={(z,y) eER*:2” +y* < R}

for one throw,
2 =D¥

for N throws, and
2 =D%

for an infinite number of throws.
5. Suppose we release a perfume particle at location € R? and follow its
motion for all time, 0 <t < oo. In this case, we might take,

2 ={weC(0,0),R*:w(0)=2a}.

Definition 2.3. An event, A, is a subset of 2. Given A C 2 we also define
the indicator function of A by

_JlifweAd
La (@) '_{Oifw¢A'

Ezample 2.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n*" — toss, while w,, = 0 represents a tail on the n'® — toss.

1. A={w € 2 : w3 =1} represents the event that the third toss was a head.

2.A=U2, {w € 2:w; =w;y1 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3.A=nNF_; Up>n {w e 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A =UF_; Np>n {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w (n) € (2 for each n € N,
then try to “define” P (A) by

P(A) = Jim =314 (k) (2.1)
k=1
—Nliinm%#{lgng:w(k)eA}. (2.2)
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That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {w (k)},—; .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we know that B has occurred. Thus we would
like to compute:

. #{k:1<EkE<Nandw, € ANB}
P(A|B)—ngr(1>o #{k:1<k<Nandw, € B} ’

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

%#{k:lgkﬁNandwkeAﬂB}
%#{k:lgkﬁNandwkeB}

_ P(ANB)

~ P(B)

P(AID) = Jim,

Definition 2.5. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,

P(ANB)

PAIB) = =5

There are of course a number of problems with this definition of P in Eq.
including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P(A) €[0,1] for all A C (2.

2. P@)=0and P(2)=1

3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then
laup =14 + 1p so that

N
PAUB) = Jim =3 Lus(w(k) = Jim 3" [1a(w (k) + 1s (@ (k)]
k_le 1 N k=1
= lim 2> s @ (k) + 5 D1 (@ (R))
k=1 k=1
= P(A)+P(B).

4. Countable Additivity. If {A; }Joil are pairwise disjoint events (i.e. 4; N
Aj, = 0 for all j # k), then again, lux 4, = > 5= 1a, and therefore we
might hope that,

Page: 18 job: prob

macro:

P = i &3 o8 = i %S5 0
k=1j5=1
oo 1 N
S0 L0 SN
Jj=1 k=1
) 00 1 N
:ZI\}llnooﬁzlAJ (w (k) (by a leap of faith)
j=1 k=1
:ZP(AJ)

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every w € (2 is equally likely, i.e. P ({w}) = QLN
Assuming this we are then forced to define

P(A)= oo # (4).

Observe that this probability has the following property. Suppose that o €
{0,1}" is a given sequence, then

1 _ 1
P(fw: (wr,. @) = 0}) = g - 2¥F =

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Ezample 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now £2 = {0,1}", then we should define

P{we 2:(w,...,wx) =0}) = — (2.3)

for any k > 1 and o € {0, 1}k. Assuming there exists a probability, P : 27 —
[0,1] such that Eq. holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

Ap ={w e 2 :w, =1} = {heads at time n}
By :=U,>nA, = {at least one heads at time N or later}

and
B = ﬂ?voleN = {An 10} = m]ovo:1 Un>nN A,.

Since
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B]c;]:ﬂnZNA;’;CﬂMZnZNA%:{wE.QZwN:wN+1:“-:wM:O},

we see that

Therefore, P (By) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using By | B, that
P(B)= lim P(By)=1.

N—o0
Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z € C: |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 25 — [0,1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limats.

Proof. We are going to use the fact proved below in Proposition that
the continuity condition on P is equivalent to the ¢ — additivity of P. For z € S
and N C S let

zN:={zne€S:neN}, (2.4)

that is to say ¢’’N is the set N rotated counter clockwise by angle §. By
assumption, we are supposing that

P(zN) = P(N) (2.5)

for all z€ S and N C S.
Let A ‘
Ri={z=e?":tcQ}={z=¢?":1t€[0,1)NQ}

— a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z,w € S are equivalent if z = rw for some
r € R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N C S be the set of these representative
points. Then every point z € S may be uniquely written as z = nr with n € N
and r € R. That is to say

=Y (rN) (2.6)

rER

where ) A, is used to denote the union of pair-wise disjoint sets {A,}. By

Eqgs. and ,
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1=P(S)=>_ P(rN)=>_ P(N). (2.7)

reR reR

We have thus arrived at a contradiction, since the right side of Eq. is either
equal to 0 or to co depending on whether P (N) =0 or P(N) > 0. |

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2. So we are going to only define P on
particular subsets, B C 2. We will developed this below.
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Formal Development






3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in'Y and often write f, for f(n) and express f as {fn}rry. If
X ={1,2,..., N}, we will write YV in place of Y112N}t and denote f € YN
by f = (f1, f2,..., fn) where fr, = f(n).

Notation 3.2 More generally if {X, : « € A} is a collection of non-empty sets,

let X4 = [] Xa and 7o : Xa4 — X, be the canonical projection map defined
acA
by o (z) = zo. If If Xo = X for some fized space X, then we will write || X,
acA
as X4 rather than X 4.

Recall that an element x € X4 is a “choice function,” i.e. an assignment
ZTo = z(a) € X, for each a € A. The axiom of choice states that X4 # 0
provided that X, # ) for each « € A.

Notation 3.3 Given a set X, let 2% denote the power set of X — the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={re X :a(zx)=1} C X.

In this way elements in {0,1}~ are in one to one correspondence with subsets
of X.
For A € 2% let
A =X\A={zeX:z ¢ A}

and more generally if A, B C X let
B\A:={zeB:x¢ A} = Bn A°.

We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\B).
As usual if {A4},,; is an indexed collection of subsets of X we define the union
and the intersection of this collection by
Uaerda ={z€X:3aecl 3 x€ A,} and
NactAa ={zeX:z € A Vael}.

Notation 3.4 We will also write Zael A, for UserAs in the case that
{Aa} e are pairwise disjoint, i.e. Aq N Ag =0 if o # .

Notice that U is closely related to 3 and N is closely related to V. For example
let {A,},2, be a sequence of subsets from X and define

inf A, == Ni>nAgk,
k>n -

sup A, = UanAk,
k>n

limsup A, :={A, l0.} ={z e X :#{n:xe€ A} =}

and
liminf A, := {A, a.a.} :={z € X : 2 € A, for all n sufficiently large}.

n—oo

(One should read {A,, i.0.} as A, infinitely often and {A,, a.a.} as A,, almost
always.) Then © € {A, i.0.} iff

VNeNdn>N>ze€A,
and this may be expressed as

{4, 1.0.} =NXy Up>n An.
Similarly, z € {4,, a.a.} iff

dNeN>3VYn>N, z€ A,
which may be written as

{An a.a.} = U?\?:l ngN An
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Definition 3.5. Given a set A C X, let

_JlifxeA
lA(x)_{OifxgéA

be the indicator function of A.
Lemma 3.6. We have:

(UnAn)c = ﬂnAfw
{A, i.0.}° = {A¢ a.a.},
limsup A, ={z € X :> " 14, (z) =00},

n—oo
liminf, oo Ay = {z € X : 307 14e (z) < 00},
SUPg>n La, (.%') = 1Uk2nAk = 1Supk2n Ag>s
infr>nla, (2) = 1n,2, 4, = Linfys, Acs

liim sup 4,, = limsup 1,4, , and

n— o0 n— o0

© N oA W=

Limint, .o A, = liminf, 14, .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

. If A C X is a subset of a countable set X then A is countable.

. Any infinite subset A C N is in one to one correspondence with N.

. A non-empty set X is countable iff there exists a surjective map, g : N — X.

If X and Y are countable then X XY is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =UP_ Ay, is countable. In short, the countable union of countable sets
1s still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2% is uncountable for any infinite set X.

Grds Lo o~

Proof. 1. If f : X — N is an injective map then so is the restriction, f|4,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1) = min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f : N — A
defined this way is a bijection.
3. If g : N — X is a surjective map, let

f(z) =ming™ ({z}) =min{n € N: f(n) =z}.

Then f: X — N is injective which combined with item
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2. (taking A = f(X)) shows X is countable. Conversely if f : X — N is
injective let 29 € X be a fixed point and define g : N — X by g(n) = f~1(n)
for n € f(X) and g(n) = xg otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put the
elements of N x N into an array of the form

and then “count” these elements by counting the sets {(i,5): 4+ j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f : N—X and g : N =Y are
surjective functions, then the function (f x g) o h : N =X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € N x N.

5. If A = () then A is countable by definition so we may assume A # ().
With out loss of generality we may assume A; # @ and by replacing A,, by
Ay if necessary we may also assume A,, # @ for all m. For each m € N let
am : N — A, be a surjective function and then define f: NxN — U>®_, A, by
flm,n) := a,(n). The function f is surjective and hence so is the composition,
foh:N—UX_ A, where h : N — N x N is the bijection defined above.

6. Let us begin by showing 2N = {O,I}N is uncountable. For sake of
contradiction suppose f : N — {0,1}N is a surjection and write f(n) as
(fi(n), f2(n), f3(n),...). Now define a € {0,1}" by a, := 1 — f,(n). By
construction f,, (n) # a, for all n and so a ¢ f(N). This contradicts the as-
sumption that f is surjective and shows 2V is uncountable. For the general
case, since Y;5 C YX for any subset Yy C Y, if Y;¥ is uncountable then so
is YX. In this way we may assume Y is a two point set which may as well
be Yy = {0,1}. Moreover, since X is an infinite set we may find an injective
map z : N — X and use this to set up an injection, i : 2V — 2X by setting
i(A) := {r, :n €N} C X for all A C N. If 2% were countable we could find
a surjective map f : 2% — N in which case foi : 2¥ — N would be surjec-
tive as well. However this is impossible since we have already seed that 2V is
uncountable. ]

3.2 Exercises

Let f: X — Y be a function and {4;};cr be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (N;jerA;)°¢ = U;er AS.
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Exercise 3.2. Suppose that B C Y, show that B\ (U;cr4;) = Nier(B\ A;).
Exercise 3.3. f =1 (UjerA;) = Uier fH(A).
Exercise 3.4. f 1 (NierA;) = NierfH(A).

Exercise 3.5. Find a counterexample which shows that f(C N D) = f(C) N
f(D) need not hold.

Ezample 3.9. Let X = {a,b,c} and Y = {1,2} and define f(a) = f(b) =1
and f (c) = 2. Then § = f ({a} N {b}) # f ({a}) N f({0}) = {1} and {1,2} =
f{a}?) # f({a})" ={2}.

3.3 Algebraic sub-structures of sets

Definition 3.10. A collection of subsets A of a set X is a m — system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.11. A collection of subsets A of a set X is an algebra (Field)
if

1.0, Xec A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if A1, ..., A, € A then A1U---UA,, € A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 3.12. A collection of subsets B of X is a 0 — algebra (or some-
times called a o — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};0, C B, then U2, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.13. Here are some examples of algebras.

1. B =2%, then Bis a o — algebra.

2. B={0,X} is a o — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, § :=
{0, X,{2,3}} is a not an algebra but is a 7 — system.

Proposition 3.14. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.
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Proof. Simply take

A(€) = n{A : A is an algebra such that & C A}

and

(&) = ﬂ{/\/l : M is a o — algebra such that &€ C M}.

Ezample 3.15. Suppose X = {1,2,3} and £ = {0, X, {1,2},{1,3}}, see Figure
31l Then

(o

Fig. 3.1. A collection of subsets.

AE) =0o(E) =2%.
On the other hand if £ = {{1,2}}, then A(£) = {0, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that & C 2% for i = 1,2. Show that A (&;) = A(&)
it & C A(&) and & C A(&r). Similarly show, o (&) = 0 (&) iff & C o (&)
and & C o (&) . Give a simple example where A (1) = A (E3) while £ # &s.

In this course we will often be interested in the Borel ¢ — algebra on a
topological space.

Definition 3.16 (Borel o — field). The Borel ¢ — algebra, B = Br =
B(R), on R is the smallest o -field containing all of the open subsets of R.
More generally if (X, 7) is a topological space, the Borel o — algebra on X is

Bx :=o0(1) — i.e. the smallest o — algebra containing all open (closed) subsets
of X.
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Exercise 3.7. Verify the Borel o — algebra, Bg, is generated by any of the
following collection of sets:

1. {(a,00):a €R}, 2. {(a,0):a € Q} or 3. {[a,0):acQ}.
Hint: make use of Exercise [3.0]

We will postpone a more in depth study of ¢ — algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 3.17. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F.

Ezample 8.18. Let X be a set and &€ = {A;,...,A,} where Ay,... A4, is a
partition of X. In this case

A(E) = 0(&) = {Uieadi - AC{1,2,...,n}}
where U;e 1 A; := 0 when A = (). Notice that
#(AE)) = #2012 = 2m,

Example 8.19. Suppose that X is a set and that A C 2% is a finite algebra, i.e.
# (A) < oo. For each z € X let

A, =n{AecA:zc A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest set
in A which contains x.

Now suppose that y € X. If v € A, then A, C A, so that A, N A, = A,.
On the other hand, if ¢ A, then z € A, \ A, and therefore A, C A, \ 4,, i.e.
Ay N Ay = 0. Therefore we have shown, either A, N A, =0 or A, N A, = A,.
By reversing the roles of z and y it also follows that either A, N A, = 0 or
Ay N A, = A,. Therefore we may conclude, either A, = A, or A, N A, =0 for
all z,y € X.

Let us now define {Bi}le to be an enumeration of {4}, y . It is a straight-
forward to conclude that

A={UieaB;i : AC{1,2,... k}}.

For example observe that for any A € A, we have A = Uca Ay = Ujea B; where
A:={i:B; C A}.
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Proposition 3.20. Suppose that B C 2% is a o — algebra and B is at most
a countable set. Then there erists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AeF:AcCBj}. (3.1)
In particular B is actually a finite set and # (B) = 2" for some n € N.
Proof. We proceed as in Example [3.19] For each z € X let
A, =nN{AeB:x e A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N A, =0 or A, = A, and therefore F = {4, :x2 € X} C Bisa
(necessarily countable) partition of X for which Eq. holds for all B € B.

Enumerate the elements of F as F = {P,})_, where N € Nor N = co. If
N = oo, then the correspondence

ae{0,1}" 54, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[3.8] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. [

Ezample 3.21 (Countable/Co-countable o — Field). Let X = R and & :=
{{z} : 2 € R}. Then o (€) consists of those subsets, A C R, such that A is
countable or A€ is countable. Similarly, A (€) consists of those subsets, A C R,
such that A is finite or A€ is finite. More generally we have the following exercise.

Exercise 3.8. Let X be a set, I be an infinite index set, and £ = {4;}ics be a
partition of X. Prove the algebra, A (£), and that o — algebra, o (£), generated
by & are given by

A(E) = {UseaA; : A C I with # (A) < oo or # (A°) < oo}

and
(&) ={Uiead; : A C I with A countable or A° countable}

respectively. Here we are using the convention that U;c4A; := @ when A = 0.
In particular if I is countable, then

O'(g) :{UiEAAiZACI}.

Proposition 3.22. Let X be a set and £ C 2%. Let £¢ := {A°: A € £} and
E=EU{X,0}UEC Then

A(E) := {finite unions of finite intersections of elements from E.}.  (3.2)
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Proof. Let A denote the right member of Eq. . From the definition of
an algebra, it is clear that £ C A C A(£). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
Z=J( A
i=1j=1
where A;; € &. Therefore, writing B;; = Af; € &, we find that

N K K
ZC:mUBij: U, (Bijy N Baj, N---N Byjy) € A

wherein we have used the fact that B1;, NBaj,N- - -N By, is a finite intersection
of sets from &.. [ |

Remark 3.23. One might think that in general o(£) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
oo o0
Z=J( A

i=1j=1
with Aij € gc, then

Z7° = U <ﬂ AZ]’@)
(=1

Ji=1,j2=1,..58v=1,...

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe o (&), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition [3.20

Exercise 3.9. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F NV where F is closed and V is open.

Solution to Exercise . In this case 7. is the collection of sets which are
either open or closed. Now if V; C, X and F; C X for each j, then (N, Vi) N
(ﬂ;”:le) is simply a set of the form VNF where V C, X and F C X. Therefore
the result is an immediate consequence of Proposition [3.22

Definition 3.24. A set S C 2X is said to be an semialgebra or elementary
class provided that
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e 0es

o S is closed under finite intersections

o if E €S, then E€ is a finite disjoint union of sets from S. (In particular
X = 0° is a finite disjoint union of elements from S.)

Proposition 3.25. Suppose S C 2% is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S C A C A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that #, X € A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that 4; =3 p, F' € A
where, for i = 1,2,...,n, A; is a finite collection of disjoint sets from S. Then

(s, Y

(Fiyseeis Fp)EAL XX Ay,

(FLNFyn---NF,)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (Ais closed under complementation.) If A = 3" . | F with A being a finite
collection of disjoint sets from S, then A¢ = (., F°. Since, by assumption,
Fee Aforall Fe€ ACS and A is closed under finite intersections by step 1.,
it follows that A€ € A. ]

Ezxample 3.26. Let X = R, then

S:={(a,))NR:a,beR}
={(a,b] : a € [-00,0) and a < b < oo} U {0, R}

is a semi-field. The algebra, A(S), generated by S consists of finite disjoint
unions of sets from S. For example,

A= (0,7]U (27,7 U(11,00) € A(S).
Exercise 3.10. Let A C 2% and B € 2¥ be semi-fields. Show the collection
S:={AxB:Ac Aand B € B}

is also a semi-field.
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Solution to Exercise ((3.10). Clearly 0 =0 x 0 € E = Ax B. Let A; € A
and B; € B, then

ﬁ?zl(Ai X Bl) = ( ?:]A’L-) X (ﬂ?lel) cAxB

showing & is closed under finite intersections. For A x B € &,
(Ax B)"=(A°x B> (A°xB)Y (AxB°)

and by assumption A° = >""" | A; with 4; € Aand B¢ = ;.”:1 B; with B; € B.
Therefore

ACXBc:<iAZ’>X zm:Bl = %n AZ'XBi,
=1 j=1

i=1,j=1

ACxB:iAixB, andAch:iAxBi
j=1

i=1

showing (A x B) may be written as finite disjoint union of elements from S.



4

Finitely Additive Measures / Integration

Definition 4.1. Suppose that £ C 2% is a collection of subsets of X and p :
& — [0,00] is a function. Then

1. p is additive or finitely additive on £ if
WE) =Y ul(E;) (4.1)

whenever E=Y"" | E; € E with E; € € fori=1,2,...,n < oo.

2. p is o — additive (or countable additive) on & if Fq. holds even
when n = 0.

3. p is sub-additive (finitely sub-additive) on & if

SZM(E)

whenever E =] E; € € withn € NU{oo} (n € N).

4. i is a finitely additive measure if € = A is an algebra, 1 (0) =0, and p
18 finitely additive on A.

5. 1 is a premeasure if p is a finitely additive measure which is o — additive
on A.

6. 1 is a measure if u is a premeasure on a o — algebra. Furthermore if
w(X) =1, we say u is a probability measure on X.

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose i is a finitely additive measure on an algebra, A C 2%, A, B € A with
A C Band {A;}_, C A, then :

1. (1 is monotone) p(A) < u(B) if A C B.
2. For A, B € A, the following strong additivity formula holds;

W(AUB) + u(ANB) = p(A) + u(B). (4.2)

3. (u is finitely subbadditive) j((U7_; A;) < 771 u(A;).
4. p is sub-additive on A iff

p(A) < p(Ay) for A= ZA (4.3)

=1

where A € A and {A;};2, C A are pairwise disjoint sets.

5. (w is countably superadditive) If A =>"°, A; with A;, A € A, then

It (Z Ai) > Zu (4;). (4.4)

(See Remark for example where this inequality is strict.)
6. A finitely additive measure, i, is a premeasure iff p is subadditive.

Proof.

1. Since B is the disjoint union of A and (B\ A) and B\ A=BNA°e€ Ait

follows that
w(B) = p(A) + n(B\ A) = u(A).

2. Since

AUB=[A\(ANB)]Y [B\(ANB)]Y ANB,

p(AUB)=p(AUB\ (ANB))+un(ANB)
=n(A\N(ANB))+pu(B\(ANB))+pu(ANB).
Addlng 1 (AN B) to both sides of this equatlon proves Eq. .

3. Let E; = E; \ (B, U---UE;_) so that the E; ’s are pair-wise disjoint and

E=U7 1E Since E; C Ej it follows from the monotonicity of y that

E) =3 n(E;) < Zu(En

4. If A=J2, B; with A € Aand B; € A, then A = >, A; where A; :=

B;\ (B1U...B;_1) € A and By = (. Therefore using the monotonicity of

w and Eq.
<ZM <Z,u

5. Suppose that 4 = Y02, A, w1th A A e .A, then > 1" | A; C A for all n

and so by the monotonicity and finite additivity of p, >~ & | 1 (A;) < p(A).
Letting n — oo in this equation shows pu is superadditive.

6. This is a combination of items 5. and 6.
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4.1 Examples of Measures

Most o — algebras and o -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.
Ezxample 4.3. Suppose that 2 is a finite set, B := 2% and p : 2 — [0,1] is a
function such that

Y o pw) =1

wes?

Then
P(A):=> p(w) forall AC Q2
weA

defines a measure on 2.
Example 4.4. Suppose that X is any set and x € X is a point. For A C X, let

1if z€ A
5'T(A){0ifx¢A.

Then p = §, is a measure on X called the Dirac delta measure at x.

Example 4.5. Suppose B C 2% is a ¢ algebra, i is a measure on B, and A > 0,
then X - p is also a measure on B. Moreover, if J is an index set and {u;}ecs
are all measures on B, then p = »772 | py, i.e.

w(A) = Z,uj(A) for all A € B,
j=1

defines another measure on B. To prove this we must show that p is countably
additive. Suppose that A = >"°, A; with A; € B, then (using Tonelli for sums,

Proposition [1.7]),

(A) =D mi(A) =3 > mi(A)
= : i (Ai) = ZH(AZ)

Ezample 4.6. Suppose that X is a countable set and A : X — [0, 00] is a func-
tion. Let X = {x,},—, be an enumeration of X and then we may define a
measure 4 on 2% by,
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We will now show this measure is independent of our choice of enumeration of
X by showing,

p(A)=> Mz):= sup ¥ Ax)VACX. (4.5)

zeA ACCAxeA

Here we are using the notation, A CC A to indicate that A is a finite subset of
A

To verify Eq. (4.5)), let M :=sup, cca > ,caA(2) and for each N € N let
Ay ={zp:2p, € Aand 1 <n < N}.

Then by definition of p,

) N
n(A) = Z AM@p)0z, (A) = ngnoo Mxn)le,ea
n=1 n=1
= lim Ax) < M.
N—o00
TEAN

On the other hand if A CC A, then

SA@ = Y Aea) = u(4) < u(4)

z€A n: rp€A

from which it follows that M < p (A). This shows that p is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and A : X — [0,00] is any function. In this setting we simply may define
w: 2% — [0, 00] using Eq. . We leave it to the reader to verify that this is
indeed a measure on 2%.

We will construct many more measure in Chapter [5] below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 4.7 (Construction of Finitely Additive Measures). Sup-
pose S C 2% is a semi-algebra (see Definition and A = A(S) is the
algebra generated by S. Then every additive function p: S — [0, 00| such that
(D) =0 extends uniquely to an additive measure (which we still denote by p)

on A.

Proof. Since (by Proposition [3.25) every element A € A is of the form
A = )", E; for a finite collection of E; € S, it is clear that if 1 extends to a
measure then the extension is unique and must be given by
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p(A) =D (B, (4.6)

To prove existence, the main point is to show that p(A) in Eq. (4.6)) is well
defined; i.e. if we also have A =3 F; with F; € S, then we must show

SO u(E) =3 ulF). (4.7)

But E; =}, (E; N F}) and the additivity of 4 on S implies p(E;) = 3, p(E; N
F;) and hence

Don(E) =3 Y BN ) =3 (BN Ey).
Similarly,
ZM(Fj) = ZM(Ei N Fj)

which combined with the previous equation shows that Eq. (4.7) holds. It is
now easy to verify that u extended to A as in Eq. (4.6]) is an additive measure
on A. ]

Proposition 4.8. Let X =R, S be the semi-algebra,
S={(a,))"R: —00 <a<b< oo}, (4.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition[3.25 To each finitely additive probability measures i :
A — [0,00], there is a unique increasing function F : R —[0,1] such that

F(—00) =0, F(c0) =1 and
w((a, b)) NR) = F(b) — F(a) ¥V a < b in R. (4.9)

Conversely, given an increasing function F : R — [0,1] such that F(—o0) = 0,
F(o0) =1 there is a unique finitely additive measure p = pp on A such that
the relation in Eq. @ holds. (Eventually we will only be interested in the case
where F' (—o0) = lim,| o F (a) and F (00) = limpjeo F' (D) .)

Proof. Given a finitely additive probability measure p, let
F(z) = p((—oo,z] NR) for all x € R.
Then F (c0) =1, F (—o0) = 0 and for b > a,

F(b) = F(a) = p((=00,b] NR) — p((—00,a]) = pu((a,b] NR).
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Conversely, suppose F' : R —[0,1] as in the statement of the theorem is
given. Define p on § using the formula in Eq. . The argument will be
completed by showing y is additive on S and hence, by Proposition [£.7] has a
unique extension to a finitely additive measure on A. Suppose that

n

(a, b] = Z(ai, bz]

i=1
By reordering (a;, b;] if necessary, we may assume that
a = aj <b1=a2<b2:a3<-~-<bn_1:an<bn:b.
Therefore, by the telescoping series argument,

u((a,b)VR) = F(b) — F(a) = 3" [F(b) — F(a)] = 3 pl(ai, bl N R).

i=1 i=1

Remark 4.9. Suppose that F': R — R is any non-decreasing function such that
F (R) C R. Then the same methods used in the proof of Proposition shows
that there exists a unique finitely additive measure, 4 = pr, on A = A (S) such
that Eq. holds. If F'(00) > limpje F'(b) and A; = (i,i+ 1] for ¢ € N, then

[e'S) 0 N
ZMF(Ai) ZZ(F(HU—F(Z')) ZJJEHOOZ(F(HU—F(@'))
= Jim (F(N+1) = F (1)) < F (00) = F (1) = (U2, A1),

This shows that strict inequality can hold in Eq. and that pp is not
a premeasure. Similarly one shows pup is not a premeasure if F(—o00) <
limg| oo F'(a) or if F' is not right continuous at some point ¢ € R. Indeed,
in the latter case consider

1 Jr1]
a4+ —].
n+1’ n

(aa+1= (a+

n=1

Working as above we find,
i (a+L a+l] =F(a+1)—F(a+)
— e n+4+1’ n)

while pp ((a,a+ 1]) = F (a + 1) — F (a) . We will eventually show in Chapter [j]
below that pp extends uniquely to a ¢ — additive measure on Bg whenever F'
is increasing, right continuous, and F (£o00) = lim, 1o F ().
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Before constructing o — additive measures (see Chapter [5| below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are allowed to integrate.

4.2 Simple Random Variables

Definition 4.10 (Simple random variables). A function, f : 2 — Y is said
to be simple if f (2) C Y is a finite set. If A C 2 is an algebra, we say that a
simple function f: 2 — Y is measurable if {f =y} = f~1 ({y}) € A for all
y € Y. A measurable simple function, f : 2 — C, is called a stimple random
variable relative to A.

Notation 4.11 Given an algebra, A C 27, let S(A) denote the collection of
stmple random variables from (2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 4.12. Let A C 2? be an algebra, then;

1. S(A) is a sub-algebra of all functions from §2 to C.
2.f: 802 — C,is a A - simple random variable iff there exists a; € C and
A; € A for1 <i<n for somen €N such that

F=Y aila, (4.10)
=1

3. For any function, F : C — C, Fo f € S(A) for all f € S(A). In particular,
Ifl€S(A) if feS(A).

Proof. 1. Let us observe that 1, =1 and 1y = 0 arein S (A) . If f,g € S(A)
and ¢ € C\ {0}, then

{(freg=M= | (f=anfg=thea (4.11)

a,beC:a+cb=X\

and

{fr9g=M= U {=anfg=thea (4.12)

a,beC:a-b=X\
from which it follows that f 4+ cg and f - g are back in S(A).
2. Since S(A) is an algebra, every f of the form in Eq. (4.10)) is in S (A).
Conversely if f € S(A) it follows by definition that f = 3 ¢ ) @l{s=a}
which is of the form in Eq. .
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3.If F:C — C, then
Fof: Z F(Oz)-l{f:a}ES(A).
a€f(£2)

Exercise 4.1 (A — measurable simple functions). As in Example[3.19] let
A C 2% be a finite algebra and {Bj, ..., By} be the partition of X associated to
A. Show that a function, f: X — C, is an A — simple function iff f is constant
on B; for each ¢. Thus any A — simple function is of the form,

k
f= ZailBi (4.13)
i=1

for some «a; € C.

Corollary 4.13. Suppose that A is a finite set and Z : X — A is a function.
Let
A=AZ)=2"2Y ={Z(E):EC A}.

Then A is an algebra and f: X — C is an A — simple function iff f = F o Z
for some function F : A — C.

Proof. For A € A, let
Ay ={Z=X}={zeX:Z(z)=\}.

The {Ax},c, is the partition of X determined by A. Therefore f is an A —
simple function iff f|4, is constant for each A € A. Let us denote this constant
value by F'(A\). As Z =X on Ay, F: A — C is a function such that f = F o Z.

Conversely if F': A — C is a function and f = F o Z, then f = F (\) on Aj,
i.e. fis an A — simple function. ]

4.2.1 The algebraic structure of simple functions*

Definition 4.14. A simple function algebra, S, is a subalgebnﬂ of the
bounded complex functions on X such that 1 € S and each function in S is
a simple function. If S is a simple function algebra, let

AS):={ACX:14€S}.
(It is easily checked that A(S) is a sub-algebra of 2°X.)

! To be more explicit we are assuming that S is a linear subspace of bounded functions
which is closed under pointwise multiplication.
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Lemma 4.15. Suppose thatS is a simple function algebra, f € S anda € f (X)
— the range of f. Then {f =a} € A(S).

Proof. Let {\;},_, be an enumeration of f (X) with Ao = a. Then

= lH(a—m} [I -2

i=1

Moreover, we see that g = 0 on U™, {f = A\;} while g =1 on {f = a}. So we
have shown g = 1;;_,) € S and therefore that {f=a}e A(S). [

Exercise 4.2. Continuing the notation introduced above:

1. Show A(S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 2¥} — S(A) € {simple function algebras on X}

is bijective and the map, S — A(S), is the inverse map.

Solution to Exercise (4.2).

1. Since 0 = 1p,1 = 1x €S, it follows that ) and X arein A (S).If A € A(S),
then 14c =1—14 € S and so A° € A(S). Finally, if A, B € A(S) then
lang =14-1p € S and thus AQBGA(S)

2. If f,g €S(A) and ¢ € F, then

{(f+eg=XN= |J {f=aln{g=b}hecAa

a,beF:a+cb=A

and
{fra=x= | {r=an{g=tphe4
a,beF:a-b=A\
from which it follows that f + cg and f - g are back in S (A).

3. If f: 62 — Cis asimple function such that 1;;_y; € S for all A € C,
then f = > ccAlis=x} € S. Conversely, by Lemma if f €S then
1gy=x) € S for all A € C. Therefore, a simple function, f : X — Cisin §
iff 17—y € S for all A € C. With this preparation, we are now ready to
complete the verification.

First off,
Ac AS(A) <= 1, €S(A) < Ac A
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which shows that A (S (A)) = A. Similarly,
FES(A(S) < {f=Al€A®S)VreC
<~ 1{f=)\} esSvieC
<~ feS

which shows S (A(S)) =S.

4.3 Simple Integration

Definition 4.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A C 2%. For f € S(A) the integral or
expectation, E(f) = Ep(f), is defined by

/ fdP =Y "yP(f (4.14)
yeC
Ezample 4.17. Suppose that A € A, then
Ely =0-P(A°)+1-P(A)=P(A). (4.15)

Remark 4.18. Let us recall that our intuitive notion of P (A) was given as in

Eq. (2.1) by

where w (k) € 2 was the result of the k' “independent” experiment. If we use
this interpretation back in Eq. (4.14)) we arrive at,

N
1
E(f)=) vP(f=9 = vy Jim &> 1wu)—y
yeC yeC k=1
= ngﬂoof Dy Zlf(w(k)) y
yeC k=1
=NlijﬂmNZZf ) L=y
k=1yeC
1 N
ZA}EHOON;JC(W(/@)-

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.
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34 4 Finitely Additive Measures / Integration

Proposition 4.19. The expectation operator, E =Ep : S(A) — C, satisfies:
1. If f € S(A) and A € C, then

E(\f) = AE(f). (4.16)

2.If f,g € S(A), then
E(f +g9) =E(g) + E(f). (4.17)

Items 1. and 2. say that E(-) is a linear functional on S (A).
3 If f= Zj\le Ajla; for some \j € C and some A; € C, then

N
=> NP (4;). (4.18)
j=1

4. E is positive, i.e. E(f) > 0 for all 0 < f € S(A). More generally, if
f,9€S(A) and f < g, then E(f) <E(g).
5. For all f € S(A),
Ef| <E|f]. (4.19)

Proof.
1. If A0, then

=Yy POf=y)=> y P(f=y/N

yeC yeC
=> Xz P(f = AE(f).
zeC

The case A = 0 is trivial.
2. Writing {f = a,g = b} for f~*({a}) Ng=t({b}), then

E(f+9)=> zP(f+g=2)

zeC

:ZzP<Z {fza,g:b}>

zeC a+b=z

=> 2 > P({f=a g=b)

zeC  a+b==z

=3 Y @+ P{f=a g=b})

z€Ca+b==z

=Y (a+b)P({f=a, g=1}).
a,b
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But

Y aP({f=a,g=b}) =) a) P({f=0 g=0}

a,b a b
:ZGP(Ub{f:aa g ="b})
=Y aP({f=a}) =Ef

and similarly,

Y bP({f=a,g=b})=E

a,b

Equation (4.17) is now a consequence of the last three displayed equations.
3. If f= ijl Ajla;, then

N N N
Ef=E [ZAlej] => NEla, =Y M\P(4))
j=1 j=1

j=1

4. If f > 0 then

£)=) aP(f =

a>0
and if f < g, then g — f > 0 so that

E(g)—E(f)=E(g—f)>0.

5. By the triangle inequality,

D AP(f=N)

xeC

<Y P =N =E|f],

AeC

|Ef| =

wherein the last equality we have used Eq. (4.18)) and the fact that |f| =
2onec A=

[ ]
Remark 4.20. If §2 is a finite set and A = 22, then
=3 fw) 1w
wen
and hence
Epf =Y f(w)P{w}).
wes
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Remark 4.21. All of the results in Proposition and Remark remain
valid when P is replaced by a finite measure, p : A — [0,00), i.e. it is enough
to assume p (X) < 0.

Exercise 4.3. Let P is a finitely additive probability measure on an algebra
A C 2% and for A,B € Alet p(A,B) := P(AAB) where AAB = (A\ B) U
(B\ A). Show;

1. p(A,B) =E|14 — 1p]| and then use this (or not) to show
2.p(A,C)<p(A B)+p(B,C) forall A,B,C € A.

Remark: it is now easy to see that p : A x A — [0, 1] satisfies the axioms of
a metric except for the condition that p (A, B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.22 (Chebyshev’s Inequality). Suppose that f € S(A), e > 0, and

p > 0, then
|fI”

Lpize € Srlipize <€ PUAIT

and therefore, see item 4. of Proposition
P >e})=E <E 171" < e PE|f]P
{Ifl > e}) =E [1j2c] < > Ligise| <€ |£1”. (4.20)

Observe that
7= I 1oy

AeC
is a simple random variable and {|f[>=¢e} = >\ {f =A} € A as well.
Therefore, E%hflzs is still a simple random variable.

Lemma 4.23 (Inclusion Exclusion Formula). If A, € A for n =
1,2,..., M such that p (Uﬁ/[:lAn) < 00, then

M
p(UAL AL) =) (-1 > p(An, N NAL).  (4.21)
k=1 1<ni<ng<---<np<M

Proof. This may be proved inductively from Eq. (4.2)). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := UM | A,,.
Since A¢ = (Uﬁ/[:lAn)c =M | A¢, we have
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M M
T—Ia=1a = [[1as =] 0 =14,
n=1 n=1
M
=13 DT Ly lay,
k=1 1<ni<no<---<nip <M
M
=1+ (—1)k Z 1Anlﬁ---ﬁAnk
k=1 1<ni<ng<---<np <M

from which it follows that

M
k+1
o~ =SS e G2)
k=1 1<ni<ng<---<nip <M
Integrating this identity with respect to p gives Eq. (4.21]). ]

Remark 4.24. The following identity holds even when p (UﬂleAn) = 00,

M
pUlA)+ > > p(An, NN A,
k=2 & k even 1<ni<no<---<np <M
M
= > (A, N--NA,) . (4.23)

=1 k odd 1<ni<ng<---<np <M

o

This can be proved by moving every term with a negative sign on the right
side of Eq. (4.22) to the left side and then integrate the resulting identity.

Alternatively, Eq. 1) follows directly from Eq. G) if p (Uﬁ/leAn < 00
and when g (UanlAn) = oo one easily verifies that both sides of Eq. 1} are
infinite.

To better understand Eq. (4.22)), consider the case M = 3 where,
I—1a=(1-14)1—1a,)(1—1a,)

=1- (1141 +1a4, + 1A3)
+ ]-Al ]-Ag + 1A11A3 + ]-A2 ]-A3 - 1A1 1A21A3

so that

la,uasua; =1a, +1a, +1a, — (La;na, + 14,04, + Layna,s) + 1anasna,

Here is an alternate proof of Eq. (4.22). Let w € {2 and by relabeling the
sets {A,} if necessary, we may assume that w € 41N---NA, andw ¢ A1 U
-« U A for some 0 < m < M. (When m = 0, both sides of Eq. (4.22)) are zero
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36 4 Finitely Additive Measures / Integration

and so we will only consider the case where 1 < m < M.) With this notation
we have

M

k
o=yt > L, nend,, (@)
k=1 1<ni<ne<---<npg<M

S

1a,,nna,, (W)

k=1 1<ni<na<--<np<m
_ i it ( )
k=1
—1— 1k1n—k<m>
>ty (]

=1-(1-1)"=1.
This verifies Eq. (4.22) since 1yn 4, (w) = 1.

Ezxample 4.25 (Coincidences). Let {2 be the set of permutations (think of card
shuffling), w: {1,2,...,n} — {1,2,...,n}, and define P (A) := #(A) to be the
uniform distribution (Haar measure) on (2. We wish to compute the probability
of the event, B, that a random permutation fixes some index 7. To do this, let
A; = {w € 2 :w(i) =i} and observe that B = U ; A;. So by the Inclusion
Exclusion Formula, we have

:zn:(_nk*l > P(Ay, N NAy).

k=1 1<i1<i2<ig< - <ip<n
Since
PA,Nn-NA,)=P{weR:w(ir) =1i1,...,w(ix) =ir})
(k!
- n!
and
#{1§i1<i2<i3<--~<ik§n}= (Z),
we find

B= Y0 ()T e

k=1
For large n this gives,

Ezample 4.26 (Expected number of coincidences). Continue the notation in Ex-
ample We now wish to compute the expected number of fixed points of
a random permutation, w, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

X;=1a,

and observe that

N(w):ZX ()

denote the number of fixed points of w. Hence we have

EN:iEXi:iP(Ai):i(n_

i=1

:lem:i:#{i:w(i):i}'

Let us check the above formulas when n = 3. In this case we have

w N{(
123 3
132 1
213 1
231 0
312 0
321 1

and so 4 9
P (3 a fixed point) = §=3 >~ (.67 = 0.632

while

1 1 1 2

k+1
7_1_, -z
2+6 3

Mw

k:l
and 1
]EN:6<3+1+1+0+0+1):1

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (2, A, P) is a finitely additive probability space, so P (§2) =1,
2. Aje Afori=1,2,...,n,
3. N (w) =201 14, (w) =#{i:we A}, and
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4. {Sk}i_, are given by

Sc= Y P n-nAy)

1<) < <ixg<n

= > P (Nieads).

AC{1,2,...,n}>|A|=k
Exercise 4.4. For 1 < k < n, show;
1. (as functions on 2) that
N
()= = ot (429
AC{1,2,...,n}>|A|=k

where by definition

" 0 if k>m
(k) o ifl<k<m . (4.26)
1 k=0

2. Conclude from Eq. (4.25) that for all z € C,

(1+ 2) _1+Zz > La, nna,, (4.27)

1<ii<ig< - <ip<n

provided (1 + 2)° = 1 even when z = —1.
3. Conclude from Eq. (4.25) that Sy, = Ep(}).

Exercise 4.5. Taking expectations of Eq. (4.27) implies,
]E[(l—l—z :|—1+ZS]€Z (4.28)

Show that setting z = —1 in Eq. (4.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out

E {(1 + Z)N} explicitly.

Exercise 4.6. Let 1 < m < n. In this problem you are asked to compute the
probability that there are exactly m — coincidences. Namely you should show,

=3 o (H)a

k=m

n(1)km(k) > P4, N N4y

m . )
k=m 1< << <n
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Hint: differentiate Eq. (4.28) m times with respect to z and then evaluate the

result at z = —1. In order to do this you will find it useful to derive formulas
for;
e () and
J— z)" an a—12".
dz™m ! dzm !

Ezample 4.27. Let us again go back to Example where we computed,

s (o)

Therefore it follows from Exercise [4.6] that

P (3 exactly m fixed points) = P (N = m)

So if n is much bigger than m we may conclude that

>~ ~ ol
m

P (3 exactly m fixed points) '

Let us check our results are consistent with Eq. (4.24);

P (3 a fixed point) = Z P(N =m)

1<m<k<n m
n k
=SS o ()
k=1m=1 m
n k
_ k sl 1
— k- — (-1
S| e (5)-¢ >],€,
- 1
. k
e
k=1
wherein we have used,
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38 4 Finitely Additive Measures / Integration
k
- k
> (-f m( ):(1—1)’“:0.
m
m=0

4.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 4.28. Let n € Ng and 0 < k < n, then

ZZ;H)I (?) = (-1 (n N 1) Ln>0 + Lo (4.29)

Proof. The case n = 0 is trivial. We give two proofs for when n € N.
First proof. Just use induction on k. When k = 0, Eq. (4.29) holds since
1 = 1. The induction step is as follows,

S (5= () ()

k+1
(( D =D (=B = (kD (= 1) (= )
k+1 _
((kjl) (n—1)...(n—k)(n—(k+1))] = (=1)F" (ZJ)

Second proof. Let X = {1,2,...,n} and observe that

k n k
=> (-1 (l) = (-1 (A2 (M) =1)
=0

1=

0
= Y (-pFW (4.30)

A€2X: #(A)<k
Define T : 2X — 2% by

Su{1lif1¢s
T(S)_{S\{{l]]:iflzb”'

Observe that T is a bijection of 2% such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let
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Iy={Ae2¥ :#(A) <kand 1€ Aif #(A) =k},

then T'(I) = I for all 1 < k < n. Since

Z (_1)#(/1) _ Z (_1)#(T(/1)) _ Z _(_1)#(A)

A€y A€Ty, A€ETY,

we see that ZAGFk (—1)#(/1) = 0. Using this observation with Eq. 1' implies
A A k(T — 1
mp= Y ()P4 S (—)FW =04 (-1 ( . )
A€Ty, #(A)=k & 1¢A

Corollary 4.29 (Bonferroni Inequalitites). Let p : A — [0,u(X)] be a
finitely additive finite measure on A C 2%, A, € A forn =1,2,...,M, N :=
224:1 la,, and

Sy = > M(Ailﬁ“-ﬂAik):]Eu[(]Z)]

1<ii <<, <M

Then for 1 <k < M,

Ek: ) S+ (1) E, [(Nk_ 1)} : (4.31)

=1

This leads to the Bonferroni inequalities;

k

<> (-1 8y if k is odd
=1

and

k
1A Z l+1 Sy if k is even.

Proof. By Lemma [1.28]

g(—l)l (le) = (-1)* (Nk_ 1) 1ns0 + Lv—o.

Therefore integrating this equation with respect to p gives,

k

=1
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and therefore,

p(Upli4,) = (N > 0) = p(X) = u(N =0)
k

N -1
)
=1
The Bonferroni inequalities are a simple consequence of Eq. (4.31]) and the fact

that N1 N1
() 0 = m (V) 20

4.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A C 2% be an algebra of sets, and P := p :
A — [0,00) be a finitely additive measure with p (X) < oo. As above let

]Euf::/deu::Z)\u(f:A)erS(A).

AeC

(4.32)

Notation 4.30 For any function, f : X — C let ||f|, = sup,ex |f ().

Further, let S := S (A) denote those functions, f : X — C such that there ezists
fn € S(A) such that lim, .o ||f — full, = 0.

Exercise 4.7. Prove the following statements.

1. For all f €S (A),
B f| < p (X)L, - (4.33)

2.If f € Sand f, € S := S(A) such that lim, .o ||f — fall, = 0, show
lim,, o E,, f, exists. Also show that defining E,, f := lim,, o E, fy, is well
defined, i.e. you must show that lim, . E,f, = lim, . E,g, if g, € S
such that lim, . ||f = gnll,, = 0.

3. Show E,, : S — C is still linear and still satisfies Eq. .

4. Show |f| € Sif f € S and that Eq. is still valid, i.e. [E,f| < E,|f|
for all f €S.

Let us now specialize the above results to the case where X = [0,7] for
some T' < 0o. Let § := {(a,b] : 0 < a <b<T}U{0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 4.31 (Riemann Stieljtes integral). Let F': [0,7] — R be an

increasing function, then;
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1. there exists a unique finitely additive measure, pp, on A := A(S) such that
pr ((a,b)) = F (b) — F(a) for all0<a<b<T and pr ({0}) =0. (In fact
one could allow for pp ({0}) = A for any A > 0, but we would then have to
write (g Tather than pp.)

2. Show C([0,1],C) < S(A). More precisely, suppose m =

{0=tyg <ty < - <tn,=T} is a partition of [0,T] and ¢ = (c1,...,cn) €
[0, 7" with t;—1 < ¢; < t; for each i. Then for f € C([0,1],C), let
fre = F(0)Lioy + D (i) Lty (4.34)

i=1

Show that || f — fx.cll,, is small provided, |r| := max {|t; —t;_1]:i=1,2,...,n}
is small.

3. Using the above results, show

fdur = lim 3 f () (F (t) = F (ti-1))

[0,7]

where the ¢; may be chosen arbitrarily subject to the constraint that t;_1 <
C; é ti.

It is customary to write fOT fdF for f[o ] fdpp. This integral satisfies the

estimates,

fdpr ]Ifldup < |Ifll, (F(T) = F(0)) V f € S(A).

<
[0,T

)

| [0,7]

When F (t) = t,

/Odeszon@)dt,

is the usual Riemann integral.

Exercise 4.8. Let a € (0,7), A > 0, and

macro:

Nifz>a

G(m):A‘1x>f‘:{01fx<a'

1. Explicitly compute f[o ) fdpc for all f € C ([0,1],C).

2.If F(x) =x+ X 1;>, describe f[o 7] fdup for all f € C([0,1],C). Hint:

if F(x) = G(z) + H (z) where G and H are two increasing functions on

[0,T], show
/ fdup = / fdua + / fdps.
[0,7] [0,7] [0,7]
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40 4 Finitely Additive Measures / Integration

Exercise 4.9. Suppose that F, G : [0,T] — R are two increasing functions such
that F(0) = G(0), F(T) = G(T), and F (z) # G (z) for at most countably
many points, z € (0,T) . Show

fdup = / fdug for all f € C([0,1],C). (4.35)
[0,7] [0,7]

Note well, given F' (0) = G (0), pr = pug on Aiff F = G.

One of the points of the previous exercise is to show that Eq. holds
when G (z) := F (z+) — the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps ,see
Remark ?7. So if we only want to integrate continuous functions, we may always
assume that F': [0,7] — R is right continuous.

4.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {ay}ro; C Ay and
{ﬂk}zozl C As where A; and Ay are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent experiments, suppose that one experiment
is the outcome of spinning a roulette wheel and the second is the outcome of
rolling a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice — one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 4.32 (Heuristic). Suppose that {ax}ro; C A1 and {Bx}req C A2 are
the outcomes of repeatedly running two experiments independent of each other
and for x € Ay and y € A,
1
p(x,y) = A}im N#{l <k<N:ap=z and By =y},
. 1
p1 (x) := ngnooﬁ#{l <k<N:ap=z}, and

1
p2(y) = lim —#{l<k<N:G =y} (4.36)
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Then p (z,y) = p1 (z) p2 (y) . In particular this then implies for any h : Ay X
Ay — R we have,

N
1
Eh = lim NZ (g, Ok) = Z h(x,y)p1 (z)p2 (y) -
=1 (z,y)EAL X Ag

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as, {af;}:o:l , where ¢ € N indicates the £t —
run of the experiment. Then we have postulated that, independent of ¢,

p (x,y) - ]\}E»noo N Z l{ae =z and Bx= 'u} lim —= Z 1{0/ —a:} 1{5k =y}

N—oo N

1 <& 1< 1Y
p(x,y) = 7 Zp(r,y) = ZN“E},O N Z Leae—ay - Lpe=yy
k=1

L
=1 =1
N 1 L
:JJE)HOONZZZH [—w} l{ﬁk y}
k=1 =1

Taking the limit of this equation as L — oo and interchanging the order of the
limits (this is faith based) implies,

N L
. 1 . 1
plz,y) = lim ,;1 Lipmyy - Jim —+ ; Lag=a}- (4.37)

Since for fixed k, {o/,;};il is just another run of the first experiment, by our
postulate, we conclude that

1L
lim I ezzl 1{%:3:} =p1 (2) (4.38)

L—oo

independent of the choice of k. Therefore combining Eqs. (4.36]), (4.37)), and
[£-38) implies,

N
1
p(z,y) = N;L{ﬁk y} p1(x) =p2 (y) 1 ().

]
To understand this “Lemma” in another but equivalent way, let X : A; x
Ay — A; and X5 : Ay X Ay — As be the projection maps, X; (z,y) = x and
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Xo (z,y) = y respectively. Further suppose that f: 43 — Rand g: 49 — R
are functions, then using the heuristics Lemma [£.32] implies,

E[f(X1)g(X2)]= >, f@)g@p ()p2(y)

(z,y)EAL X As

= Z f(z)p1(2) - Z 9(y)p2(y) =Ef (X1) - Eg(X2).

TEAN, yEN2

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
— independent experiments. For notational simplicity we will now assume that
N=N=---=A,=A.

Let A be a finite set, n € N, 2 = A™ and X; : 2 — A be defined by
Xi(w)=w; forw e 2 and i =1,2,...,n. We further suppose p: 2 — [0,1] is
a function such that

d pw) =1

wes?
and P :2? —[0,1] is the probability measure defined by
P(A):=) p(w) forall Ac2 (4.39)
w€EA

Exercise 4.10 (Simple Independence 1.). Suppose ¢; : A — [0,1] are
functions such that > . ,q;(\) = 1 for i = 1,2,...,n and now define
p(w) =TI’ ¢ (w;). Show for any functions, f; : A — R that

Ep

11+ (XZ-)] = [1Er(f: (X)) = [[ Eq. f:
i=1 =1 =1

where @; is the measure on A defined by, Q; (v) = >_yc, @ (A) for all v C A.

Exercise 4.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

Ep lH fi (Xz)] = [1Er £ (X)) (4.40)
i=1 i=1

for any functions, f; : A — R, then there exists functions ¢; : A — [0,1] with
> aea i (A) =1, such that p(w) = []i2; ¢ (wi).

Definition 4.33 (Independence). We say simple random wvariables,
X1,..., Xy with values in A on some probability space, (2, A, P) are indepen-
dent (more precisely P — independent) if Eq. holds for all functions,
fi: A—=R.
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Exercise 4.12 (Simple Independence 3.). Let X;,..., X, : 2 — A and
P : 22 — [0,1] be as described before Exercise Show Xji,...,X, are
independent iff

P(X1€A;,...,.X,€A,)=P(X;1€4)...P(X, € 4,) (4.41)

for all choices of A; C A. Also explain why it is enough to restrict the A; to
single point subsets of A.

Exercise 4.13 (A Weak Law of Large Numbers). Suppose that A C R
is a finite set, n € N, 2 = A", p(w) = [, ¢(w;) where ¢ : A — [0,1]
such that >°,.,¢(A) = 1, and let P : 2 — [0,1] be the probability measure
defined as in Eq. (4.39)). Further let X; (w) = w; for i = 1,2,...,n, £ := EX,,
o2 :=E(X; —¢)?, and

1
Sn:ﬁ(X1+~~+Xn).

1. Show, £ = > 34 A q(A) and

=Y (A=%q(N) =D Nq() -&. (4.42)

AeA AeA

2. Show, ES,, = €.

E[(Xi - €) (X; — §)] = di0°.
4. Using S,, — £ may be expressed as, % St (Xs =€), show
1
E (S, —£)* = 502. (4.43)
5. Conclude using Eq. (4.43]) and Remark that
Ly
P (1S, —¢&l>¢) < @U . (4.44)

So for large n, S, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 4.34 (Covariance). Let ({2, 8, P) is a finitely additive probability.
The covariance, Cov (X,Y), of X,Y € S(B) is defined by

Cov(X,Y)=E[(X —€x) (Y — &) =E[XY] - EX -EY

where {x == EX and & :=EY. The variance of X,
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42 4 Finitely Additive Measures / Integration
Var (X) := Cov (X, X) = E [X?] — (EX)”
We say that X andY are uncorrelated if Cov (X,Y) =0, i.e. E[XY] =EX -

EY. More generally we say {Xy},_, C S (B) are uncorrelated iff Cov (X;, X;) =
0 for all i # j.

Remark 4.585. 1. Observe that X and Y are independent iff f (X) and g (V) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
you will see that it suffices to assume that {X;}!_, are uncorrelated rather
than the stronger condition of being independent.

Exercise 4.14 (Bernoulli Random Variables). Let A = {0,1}, X : 4 - R
be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define @ = zd; +
(1 —2)dp, 1e. Q({0}) =1—= and Q ({1}) = x. Verity,
&(x) =EgX =z and
o (x)=FEg (X —2)’=(1—z)z<1/4

Theorem 4.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

pu () = kX_% ()¢ (%) a0
Then
lim sup [f (z) — pn ()| = 0.

n=0 4e0,1]

Proof. Let x € [0,1], A={0,1},¢(0) =1—2,¢q(1) =z, 2= A", and
P ({w}) = g (@1) g (wn) = 22 (1= 2) "2

As above, let S,, = = (X1 4+ ---+ X,,), where X; (w) = w; and observe that

P, (sn = i) = <Z)xk (1—2)"".

Therefore, writing E,, for Ep,, we have

1
n

B [/ (5] = g:f (5) (1) a0 =pu.

0

Hence we find
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lpn (z) = f(z)| = [Eof (Sn) = f (2)] = [Ex [f (Sn) — f (2)]]
S Eg [f (Sn) = f (2)]
=E; [|f (Sn) = f(@)] : [Sn — x| 2 €]
+Eo [[f (Sn) = f ()] |Sh — 2] <g]
<2M - P (|Sp —z| > e)+ 6 (e)

where

M = d
e |f (y)] an

§(¢) :==sup{|f(y) = f(z) : 2,y € [0,1] and |y — 2 <}

is the modulus of continuity of f. Now by the above exercises,

1
Py (|Sn — | >¢) < dne?

(see Figure (4.45)

and hence we may conclude that

— <
e Ipn (z) — f ()] < T

and therefore, that

limsup max |p, () — f (z)| <0 (e).

n—oo 16[0,1] -

This completes the proof, since by uniform continuity of f, d(¢) |0 ase | 0. m

4.4.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem which states that
any continuous 27 — periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem All of the results in this section have
natural generalization to higher dimensions as well , see Theorem ?7.

Theorem 4.37 (Weierstrass Approximation Theorem). Suppose that
K =1[0,1), f € C(K,C), and

p= 3 7 (5L (1) (1) a-ar ot e

k,1=0

Then p, — [ uniformly on K.
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Fig. 4.1. Plots of P, (S, = k/n) versus k/n for n = 100 with z = 1/4 (black), z = 1/2
(red), and = = 5/6 (green).

Proof. We are going to follow the argument given in the proof of Theorem
4.36l By considering the real and imaginary parts of f separately, it suffices
to assume f € C([0,1]*,R). For (z,y) € K and n € N we may choose a
collection of independent Bernoulli sunple random variables {X;,Y;} | such
that P(X; =1) = x and P(Y;=1) = y for all 1 < ¢ < n. Then letting
S, = }L St X and T, := %Z?:l Y;, we have

E[f (Sn, )] Zf( > (n-Sp=kn-Tpn=1)=pn(z,y)

k,1=0

where p,, (z,y) is the polynomial given in Eq. (4.46) wherein the assumed in-
dependence is needed to show,

P(n-Sy=kn T,=1)= (Z) @xk (1—2)" "y (1 —y)""
Thus if M =sup{|f(z,y)|: (z,y) € K}, e >0,

0= = sup {|f (@', ¢") = f(2,)| : (w,9), (,¢) € K and [,y — (,y)| <€},

and
A= {||(Sn7Tn) - (w,y)H > 5}7

we have,
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|f(z,y) = pn(2,9)| =E(f(2,y) — £ ((Sn, T0)))I
<E |f(:c,y) —f ((San))|
=E[|f(z,y) = f (Sn, Tn)| : A]
+E[[f(z,y) — f (Sn, Tp)| : A°]
<2M - P (A) + 6. - P(A°)
< 2M - P (A) +6.. (4.47)

To estimate P (A), observe that if
[[(Sny Tn) — (CC,y)H2 = (Sn — 33>2 + (T — y)2 > €%,

then either,
(Sp —z)? > e%/2 0r (T, —y)° >e2/2

and therefore by sub-additivity and Eq. (4.45)) we know

P(A) < P (|Sy — o] > ¢/v2) + P (T, — y| > £/V?2)
1 1 1

_— = . 4.4
— 2ne? + 2ne?  ne? (4.48)

Using this estimate in Eq. (4.47)) gives,
1

and as right is independent of (z,y) € K we may conclude,

hmsup sup |f (xvy) — Pn (‘ray)| S 65
n— o0 (w’y)eK

which completes the proof since §. | 0 ase | 0 because f is uniformly continuous
on K. [ |

Remark 4.38. We can easily improve our estimate on P (A) in Eq. (4.48) by a
factor of two as follows. As in the proof of Theorem [£.30]

E [ I(Sns Tn) = @ 9)I*| = E[ (S0 —2)° + (T = v)?]

= Var (S,) + Var (T,,)
1
Zr(l— 1—
=-r(l-z)+y(l-y) <
Therefore by Chebyshev’s inequality,

1 2 1
P(4) = P (|50, Ta) = (@) > £) £ SE(50,Ta) = (@.9) < 5.
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44 4 Finitely Additive Measures / Integration

Corollary 4.39. Suppose that K = [a, b] x [c,d] is any compact rectangle in R?.
Then every function, f € C(K,C), may be uniformly approximated by polyno-
mial functions in (z,y) € R%.

Proof. Let F (z,y) := f(a+2(b—a),c+y(d—c)) — a continuous func-
tion of (z,y) € [0,1]>. Given & > 0, we may use Theorem Theorem to find
a polynomial, p (z,y), such that sup, ,ye0.172 [¥ (,y) — p(z,y)| < e. Letting
E=a+xz(b—a)and n:=c+y(d—c), it now follows that

sup ’f(€,n)—p(§_a n_c>’§e

(£.meK b—a’d—c

§—a n—c
b—a’ d—c

Here is a version of the complex Weierstrass approximation theorem.

which completes the proof since p ( ) is a polynomial in (£, 7). ]

Theorem 4.40 (Complex Weierstrass Approximation Theorem).
Suppose that K C C is a compact rectangle. Then there exists poly-
nomials in (z=z+iy,zZ=x—1y), pn(z,zZ) for z € C, such that
SUp.cx |qn(2,2) — f(2)] = 0 as n — oo for every f € C (K,C).

Proof. The mapping (z,y) € R xR — z = z + iy € C is an isomorphism
of vector spaces. Letting Z = = — iy as usual, we have z = # and y = Zz_f.
Therefore under this identification any polynomial p(x,y) on R x R may be

written as a polynomial ¢ in (z, ), namely

(z 2)_ z24+z z—2z2
q\z,z) =p 5 ' 9 .

Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in
(x,y), namely p(z,y) = q(x + iy,x — iy). Hence the result now follows from
Theorem 4.37] [

Example 4.41. Let K = S* = {2 € C: |z| = 1} and A be the set of polynomials
in (z, 2) restricted to S'. Then A is dense in C(S'). To prove this first observe
if f € C(S') then F(z) =|z| f (ﬁ) for z # 0 and F(0) = 0 defines F' € C(C)
such that F|s1 = f. By applying Theorem to F restricted to a compact
rectangle containing S' we may find ¢, (2, %) converging uniformly to F on K

and hence on S'. Since Z on S, we have shown polynomials in z and 2! are
dense in C(S1).

Theorem 4.42 (Density of Trigonometric Polynomials). Any 2w — pe-
riodic continuous function, f : R — C, may be uniformly approximated by a
trigonometric polynomial of the form
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p(x) _ Z a/\eikvw

where A is a finite subset of Z and ay € C for all A € A.

Proof. For z € S!, define F(z) := f(0) where § € R is chosen so that
z =€ Since f is 21 — periodic, F is well defined since if 6 solves e’ = z then
all other solutions are of the form {f + 27n :n € Z}. Since the map 6 — e
is a local homeomorphism, i.e. for any J = (a,b) with b — a < 27, the map
et .= {e?:0 € J} C S* is a homeomorphism, it follows that F(z) =
fo¢ 1(z) for z € J. This shows F is continuous when restricted to .J. Since
such sets cover S!, it follows that F' is continuous.

By Example the polynomials in 2z and z = z~! are dense in C(S%).
Hence for any € > 0 there exists

p(z,2) = Z A2 2"

0<m,n<N
such that |F(z) — p(z,2)| < ¢ for all z € S1. Taking z = €%’ then implies

sup |f(0) —p (eie, e_i9)| <e
0

where
p (61'497 e—z’@) — Z am nei(m,—n)G
0<m,n<N
is the desired trigonometry polynomial. [

4.4.2 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X, A, 1), where X is a set, A C 2% is an algebra, and
A —[0,00] is a finitely additive measure. Let (Y, B,v) be another finitely
additive measure space.

Definition 4.43. Let A® B be the smallest sub-algebra of 2X*Y containing all
sets of the form S .= {Ax B: A€ A and B € B}. As we have seen in Exercise
S is a semi-algebra and therefore A ® B consists of subsets, C C X XY,
which may be written as;

C = ZAZ x B; with A; x B; € S. (449)
i=1
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Theorem 4.44 (Product Measure and Fubini’s Theorem). Assume that
w(X) < oo and v(Y) < oo for simplicity. Then there is a unique finitely
additive measure, p @ v, on A® B such that u®v (A x B) = pu(A)v (B) for all
A€ A and B € B. Moreover if f € S(A® B) then;

1.y — f(x,y) isin S(B) for allx € X and © — f(x,y) is in S(A) for all
yevy.

2.x— [y f(z,y)dv(y) is in S(A) and y — [y f(x,y)dp(x) is in S (B).

3. we have,

/X {/Yf(x,y) dv (y)} dp (z)

:/Xxyf(x,y)d(,u@l/) (z,y)

:/Y{/Xf(x,y)d,u(ac)}dl/(y)-

We will refer to 4 ® v as the product measure of u and v.

Proof. According to Eq. (4.49),

ZleB z,y) ZlA

from which it follows that 1¢ (z,-) € S (B) for each z € X and

/lc(xydy ZIA
Y

It now follows from this equation that z — [, 1¢ (2, y) dv (y) € S (A) and that

/X [/Y 1o (:E,y)du(y)} dp (z) :ZH:M(Ai)V(Bi).

i=1

Similarly one shows that

/Y [/X le (z,y)du (fff)] dv (y) = i,u(Ai)u(Bi).

In particular this shows that we may define
=D n(A
i=1
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and with this definition we have,

/X [/Y 1o (z,y) dz/(y)] dp (z)

=(rov)(C)

:/Y{/ch(x,y)du(x)} dv (y) -

From either of these representations it is easily seen that u ® v is a finitely
additive measure on A ©® B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1¢ with C € A ®
B. Since the general element, f € S(A® B), is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S(A) and S (B) are vector spaces that the theorem is true in general. |

Ezample 4.45. Suppose that f € S(A) and g € S(B). Let f ® g(z,y) =
f(xz)g(y). Since we have,

fog(xy) = (mea )(ngb )

= Z abl{f:a}x{g:b} (‘T7 y)
a,b

it follows that f ® ¢ € S(A® B). Moreover, using Fubini’s Theorem it

follows that
foo foaten= [ sa][[oa]

4.5 Simple Conditional Expectation

In this section, B is a sub-algebra of 2, P : B — [0,1] is a finitely additive
probability measure, and A4 C B is a finite sub-algebra. As in Example for
each w € 2, let A, :=N{A € A:w e A} and recall that either A, = A, or
A,NAy =0 for all w,w’ € 2. In particular there is a partition, {By,..., By},
of €2 such that A, € {By,...,B,} for all w € £2.

Definition 4.46 (Conditional expectation). Let X : 2 — R be a B — simple
random variable, i.e. X € S(B), and

IVRE (14, X] for allw € £, (4.50)
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46 4 Finitely Additive Measures / Integration

where by convention, X (w) = 0 if P(A,) = 0. We will denote X by E[X|A]
for EaX and call it the conditional expectation of X given A. Alternatively we
may write X as

E |l X
—Z B 131, (4.51)

again with the convention that E [131, ]/P( ;) =0 if P(B;) =0.

It should be noted, from Exercise that X = E4X € S(A). Heuristi-
cally, if (w(1),w (2),w(3),...) is the sequence of outcomes of “independently”
running our “experiment” repeatedly, then

X, = Bl ol & Sy L (0 () X (0 ()
P (B;) My o0 & Soney 1a, (@ (0))
o Tl (@ () X (@ ()
Nox o il (@ ()
So to compute X |, “empirically,” we remove all experimental outcomes from
the list, (w(1),w(2),w(3),...) € 2% which are not in B; to form a new

list, (@(1),@(2),@(3),...) € BY. We then compute X|p, using the empirical
formula for the expectation of X relative to the “bar” list, i.e.

N
meg&N;wa>

Exercise 4.15 (Simple conditional expectation). Let X € S(B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

1. (Orthogonal Projection Property 1.) If Z € S(A), then

E[XZ]=E[XZ] =E[E4X - 7] (4.52)
and
(EuZ) (W) = { Z(()‘*’) . Eizg 0. (4.53)

In particular, E4 [E4Z] = E4Z.
This basically says that E 4 is orthogonal projection from S (B) onto S (.A)
relative to the inner product

(f,g9) =E[fg] for all f,g€S(B).

2. (Orthogonal Projection Property 2.) If Y € S (A) satisfies, E[X Z] =
E[YZ] for all Z € S(A), then Y (w) = X (w) whenever P(4,) > 0. In

particular, P (Y #+ X) = 0. Hint: use item 1. to compute E [(X' — Y)2} .
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3. (Best Approximation Property.) For any Y € S(A),
E [(X - X)Q} <E [(X - Y)2] (4.54)

with equality iff X = Y almost surely (a.s. for short), where X =Y a.s. iff
P (X' + Y) = 0. In words, X = E4X is the best (“L?”) approximation to
X by an A — measurable random variable.

4. (Contraction Property.) E |)_(’ < E|X]|. (It is typically not true that
!X' (w)| < |X (w)] for all w.)

5. (Pull Out Property.) If Z € S(A), then

E4[ZX] = ZE4X.

Example 4.47 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Ay = {1,2,...,10} and rolling a die with values in Ay = {1,2,3,4,5,6}. So
the outcome of an experiment is represented by a point, w = (z,y) € 2 =
Ay x Ay, Let X (z,y) =2, Y (2,y) =y, B=2%, and
A=AX)=X"12")={X"1(A):AC A} CB,

so that A is the smallest algebra of subsets of {2 such that {X =z} € A for all
x € Ay. Notice that the partition associated to A is precisely

(X =1}, {X=2},...,

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
produce a sequence of results, w,, = (Zn,yn) foralln e N. If g: 49 — Ris a
function, we have (heuristically) that

N
Zn:l g (Y (w (TL))) ]-X(w(n)):gc
N
Zn:l 1X(UJ(7L))=;E
N
— hm Zn:l g (yn) lrn:z

N
N—oo Zn:l ]‘wn:T

As the {y, } sequence of results are independent of the {x,, } sequence, we should
expect by the usual mantraﬂ that

(X =10}}.

Ealg(Y)](z,y) = lim

N—o0

SV g ()1 =

. n=1 n)le,=z I S\ —

lim S T T Y g(m) =E[g(V)],
n=1 "Tn=2 n=1

2 That is it should not matter which sequence of independent experiments are used
to compute the time averages.
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where M (N) = ZnNzl 1z, =2 and (§1,72,...) = {1 : ly,=z}. (We are also
assuming here that P (X = z) > 0 so that we expect, M (N) ~ P(X =z) N
for N large, in particular M (N) — oo.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced

that E4 [g (Y)] : £2 — R is the constant function;
Ealg (V)] (2,y) =E[g (V)] for all (z,y) € 2. (4.55)

Let us further observe that if f : A; — R is any other function, then f (X) is
an A — simple function and therefore by Eq. (4.55) and Exercise

Elf (XIElgY)]=E[f(X)-ElgM]=E[f(X)-Ealg(¥V)]=E[f(X)-g(Y)].
This observation along with Exercise |4.12| gives another “proof” of Lemma |4.32

Lemma 4.48 (Conditional Expectation and Independence). Let {2 =
Ay x Ay, X, Y, B =29 and A=X""! (2A1), be as in Example above.
Assume that P : B — [0,1] is a probability measure. If X and Y are P -
independent, then Fq. holds.

Proof. From the definitions of conditional expectation and of independence
we have,

Elly—s-g(Y)] _E[lxd]-Elg(Y)]
P (X =ux) P (X =ux)

Ealg (V)] (z,y) = =E[g(Y)].
]
The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

Theorem 4.49 (Independence result summary). Let (2,B,P) be a
finitely additive probability space, A be a finite set, and X,Y : 2 — A be two
B — measurable simple functions, i.e. {X =x} € B and {Y =y} € B for all
z,y € A Further let A= A(X) := A({X =z} :2 € A). Then the following
are equivalent;

1.P(X=2Y=y)=P(X=12)-PY =y) forallz e Aandy € A,

2E[f(X)g(Y)] =E[f (X)]E[g(Y)] for all functions, f : A — R and g :
A — R,

3. Eaxylg(Y)]=E[g(Y)] forallg: A — R, and

4 B If (O] =E[f (X)] for all f - 4— R

We say that X andY are P — independent if any one (and hence all) of the
above conditions holds.






5

Countably Additive Measures

Let A C 2 be an algebra and u : A — [0, 00] be a finitely additive measure.
Recall that p is a premeasure on A if p is ¢ — additive on A. If u is a
premeasure on A and A is a o — algebra (Definition , we say that u is a
measure on ({2, A) and that ({2, 4) is a measurable space.

Definition 5.1. Let (£2,B) be a measurable space. We say that P : B —[0,1] is
a probability measure on (12, B) if P is a measure on B such that P (§2) = 1.
In this case we say that (2,8, P) a probability space.

5.1 Overview

The goal of this chapter is develop methods for proving the existence of proba-
bility measures with desirable properties. The main results of this chapter may
are summarized in the following theorem.

Theorem 5.2. A finitely additive probability measure P on an algebra, A C 29,
extends to o — additive measure on o (A) iff P is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition below. The ex-
istence assertion of the theorem in the content of Theorem ]

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 5.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A C 2. Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is 0 — additive on A.
2. For all A, € A such that A, 1 A€ A, P(A,) 1 P(A).
3. For all A,, € A such that A, | Aec A, P(A,) | P(A).
4. For all A, € A such that A, T 2, P(4,) 1 1.

5. For all A,, € A such that A, | 0, P(A,) | 0.

Proof. We will start by showing 1 <— 2 < 3.

1. = 2. Suppose A,, € A such that 4,, T A € A. Let A}, := A, \ 4,1
with A := (. Then {4} } >~ are disjoint, 4, = Uy_; A} and A = U A].
Therefore,

P(A) =) P(A}) = lim Y P(A) = lim P(Ui_,4}) = lim P(A,).
k=1 k=1

2. = 1.If {4,};2, C A are disjoint and A := U2, A4, € A, then
UN_, A, T A. Therefore,

N—o0

P(A) = lim P(UTJLV_IA”):NhinoozN:P(An)zip(An).

n=1
2. = 3.If A, € Asuch that A4, | A € A, then AS T A° and therefore,

lim (1— P (A,)) = lim P(AS) = P(A%) =1— P(A).

n—oo n—oo

3. = 2.If A, € Asuch that A, T A € A, then A% | A° and therefore we
again have,

lim (1 —P(A,)) = lim P(AS) =P (A°) =1- P(A).
The same proof used for 2. <= 3. shows 4. <= 5 and it is clear that
3. = 5. To finish the proof we will show 5. = 2.
5. = 2.If A,, € A such that A, 1 A € A, then A\ A, | ® and therefore

Jim [P (A) = P(4,)] = lim P(A\A,)=0.

Remark 5.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (£2) = 1 and in fact P (£2) = oo may
be allowed for this equivalence.

Lemma 5.5. If u: A — [0, 00] is a premeasure, then p is countably sub-additive

on A.
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Proof. Suppose that A, € A with U2 A, € A. Let A} := A; and for
n > 2 let A = A, \ (A1 U...4,_1) € A Then U2, A4, = > A and
therefore by the countable additivity and monotonicity of p we have,

p(Unz, A (ZA’> Zu (47,) Si

]

Let us now specialize to the case where 2 = R and A =

A{(a, )] NR: —co<a<b<oo}). In this case we will describe proba-
bility measures, P, on Bg by their “cumulative distribution functions.”

Definition 5.6. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = Fp : R — [0, 1]
given as

F(z):= P ((—o0,x]). (5.1)

Ezxample 5.7. Suppose that
P=p6_1+4+qb + 76
with p,q,7 > 0 and p + ¢ + r = 1. In this case,

0 for xz< -1

p for—-1<z<1
ptgfor 1<zx<m’

1 forr<z<oo

F(z)=

o

I

A plot of F (x) with p=.2, ¢ = .3, and r = .5.

Lemma 5.8. If F = Fp : R —[0,1] 4s a distribution function for a probability
measure, P, on Bg, then:

Page: 50 job: prob

1. F is non-decreasing,
2. F is right continuous,
3. F(—00):=limy—,_oo F (2) =0, and F (00) := lim,; . F (z) = 1.

Proof. The monotonicity of P shows that F (z) in Eq. . is non-
decreasing. For b € R let A,, = (—00,b,] with b,, | b as n — oo. The continuity
of P implies

F(bn) = P((—00,bn]) | p((=00,b]) = F(b).
Since {b,},>, was an arbitrary sequence such that b, | b, we have shown
F (b+) := lim, ), F(y) = F(b). This show that F is right continuous. Similar
arguments show that F (co) =1 and F (—o0) = 0. |

It turns out that Lemma [5.§ has the following important converse.

Theorem 5.9. To each function F : R — [0,1] satisfying properties 1. — 3.. in
Lemmal[5.8 there exists a unique probability measure, Pg, on Br such that

Pr ((a,b]) = F (b) — F (a) for all —oo <a<b< 0.

Proof. The uniqueness assertion is proved in Corollary [5.17) below or see
Exercises and below. The existence portion of the theorem is a special
case of Theorem [£.33] below. m

Ezample 5.10 (Uniform Distribution). The function,

0for <0
F(zx):=qazfor 0<z<1),
lforl<zxz< o0

is the distribution function for a measure, m on Br which is concentrated on
(0,1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem

5.2 m — X Theorem

Recall that a collection, P C 2, is a m — class or m — system if it is closed
under finite intersections. We also need the notion of a A —system.

Definition 5.11 (A — system). A collection of sets, L C 2, is X — class or
A — system if

a. 2L
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Fig. 5.1. The cumulative distribution function for the uniform distribution.

b. If A,B € L and A C B, then B\ A € L. (Closed under proper differences.)
c. If A, € L and A, 1 A, then A € L. (Closed under countable increasing
unions.)

Remark 5.12. If L is a collection of subsets of {2 which is both a A — class and
a 7 — system then L is a o — algebra. Indeed, since A° = 2\ A, we see that
any A - system is closed under complementation. If £ is also a 7 — system, it is
closed under intersections and therefore £ is an algebra. Since L is also closed
under increasing unions, L is a o — algebra.

Lemma 5.13 (Alternate Axioms for a A\ — System*). Suppose that L C 2%
is a collection of subsets 2. Then L is a A — class iff X satisfies the following
postulates:

1.2el

2. A € L implies A® € L. (Closed under complementation.)

3. If {An},, C L are disjoint, then Y .~ | A, € L. (Closed under disjoint
unions.)

Proof. Suppose that L satisfies a. — c¢. above. Clearly then postulates 1. and
2. hold. Suppose that A, B € £ such that AN B =@, then A C B° and

A°NB=B°\A€L.

Taking complements of this result shows AU B € £ as well. So by induction,
By, =Y | A, € L. Since By, T Y07, Ay it follows from postulate c. that
Yo A €L
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Now suppose that £ satisfies postulates 1. — 3. above. Notice that } € £
and by postulate 3., £ is closed under finite disjoint unions. Therefore if A, B €
L with A C B, then B¢ € £ and AN B¢ = () allows us to conclude that
AU B¢ € L. Taking complements of this result shows B\ A = A°NB € L as
well, i.e. postulate b. holds. If A,, € £ with A,, T A, then B,, := A, \ A,,—1 € L
for all n, where by convention Ag = (). Hence it follows by postulate 3 that
U A, =3 B, e L. ]

Theorem 5.14 (Dynkin’s 7 — A Theorem). If L is a A class which contains
a contains a m — class, P, then o(P) C L.

Proof. We start by proving the following assertion; for any element C' € L,
the collection of sets,

LC:={DecL:CnDeL},

is a A\ — system. To prove this claim, observe that: a. 2 € £%, b. if A C B with
A Be £ then ANC, BNC € £ with ANC C BN C and therefore,

(B\A)NC =[BNC]\A=[BNC]\[ANC] € L.

This shows that £¢ is closed under proper differences. c. If A, € £¢ with
A, TA then A,NC e Land A,NCTANC € L, ie. A€ £ Hence we have
verified £ is still a A — system.

For the rest of the proof, we may assume without loss of generality that £
is the smallest A — class containing P — if not just replace £ by the intersection
of all A — classes containing P. Then for C € P we know that £& C L is a A
- class containing P and hence L% = L. Since C' € P was arbitrary, we have
shown, CND € L for all C € P and D € £. We may now conclude that if
C € L, then P C LY C £ and hence again £ = L. Since C € L is arbitrary,
we have shown CND € Lforall C,D € L, i.e. Lis am—system. So by Remark
L is a o algebra. Since o (P) is the smallest o — algebra containing P it
follows that o (P) C L. [

As an immediate corollary, we have the following uniqueness result.

Proposition 5.15. Suppose that P C 2 is a m — system. If P and Q are two
probabz'lz'tgﬂ measures on o (P) such that P = Q on P, then P =Q on o (P).

Proof. Let L:={A€c(P): P(A) =Q(A)}. One easily shows L is a A —
class which contains P by assumption. Indeed, 2 € P C L, if A, B € L with
A C B, then

P(B\A)=P(B)-P(4)=Q(B)-Q(4) =Q(B\4)

! More generally, P and @ could be two measures such that P (£2) = Q () < co.
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52 5 Countably Additive Measures

so that B\ A € L, and if A,, € L with A, T A, then P (A) =1lim, . P (A,) =
lim;, o Q (A4,) = Q (A) which shows A € L. Therefore o (P) C L = o (P) and
the proof is complete. [

Example 5.16. Let (2 := {a,b,c,d} and let p and v be the probability measure
on 29 determined by, p ({z}) = 1 for all z € 2 and v ({a}) = v ({d}) = £ and
v ({b}) = v ({c}) = 3/8. In this example,

L:={Ae2”:P(A)=Q(A)}

is A — system which is not an algebra. Indeed, A = {a,b} and B = {a, ¢} are in
Lbut ANB ¢ L.

Exercise 5.1. Suppose that 1 and v are two measures (not assumed to be
finite) on a measure space, ({2, B) such that p = v on a 7 — system, P. Further
assume B = o (P) and there exists £2,, € P such that; 1) pu(£2,,) = v (£2,,) < o0
for all n and ii) £2,, T 2 as n ] co. Show = v on B.

Hint: Consider the measures, p,(A) = p(ANL2,) and v, (A) =
v(AN{2,).

Solution to Exercise (5.1). Let u,(A4) = p(AN£,) and v, (A) =
v(AN{2,) for all A € B. Then p,, and v, are finite measure such pu, (2) =
v (£2) and p,, = v, on P. Therefore by Proposition ln = Vpn on B. So by
the continuity properties of p and v, it follows that

w(A)= lim p(AN§2,) = lim p, (A) = lim v, (A) = lim v(AN,) =v(4)

n—oo n—oo n—oo n—oo

for all A € B.

Corollary 5.17. A probability measure, P, on (R, Bgr) is uniquely determined
by its cumulative distribution function,

F(z):=P((—o0,x]).

Proof. This follows from Proposition wherein we use the fact that
P :={(—o0,z] : x € R} is a m — system such that Bg = o (P). [

Remark 5.18. Corollary generalizes to R™. Namely a probability measure,
P, on (R™, Bgn) is uniquely determined by its CDF,

F (z):= P((—o0,z]) for all z € R"
where now

(—o00, 2] := (=00, x1] X (—00, ] X + -+ X (—00, Ty].
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5.2.1 A Density Result*

Exercise 5.2 (Density of A in o (A)). Suppose that A C 2 is an algebra,
B :=0(A), and P is a probability measure on B. Let p (A, B) := P(AAB).
The goal of this exercise is to use the m — A theorem to show that A4 is dense in
B relative to the “metric,” p. More precisely you are to show using the following
outline that for every B € B there exists A € A such that that P (A A B) < e.

1. Recall from Exercise [4.3| that p (a,B) = P(AAB) =E |14 — 1p|.
2. Observe; if B =UB; and A = U;A;, then
A\B:UZ [AZ\B] CUl(AZ\BZ) C U;A; A B;
so that
3. We also have
(B2\ B1) \ (A2 \ A1) = B2 N BN (A2 \ A)°
=By N B{N(AyN AS)°
=ByNB{N(A5U Ay)
= [BaN BN AS] U [Bs N Bf N Aq]
C (B2 \ A2) U (41 \ By)
and similarly,
(A2 \ A1)\ (B2 \ B1) C (A2\ B2) U (B1\ A1)
so that

(A2\ A1) & (B2 \ B1) C (B2 \ A2) U (A1 \ B1) U (A2 \ B2) U (B1\ 41)
— (A1 A B U(4s A By).

4. Observe that A, € B and A, T A, then
— P(B\A)+P(A\B)=P(AAB).

5. Let £ be the collection of sets B € B for which the assertion of the theorem
holds. Show £ is a A — system which contains A.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



Solution to Exercise ([5.2]). Since £ contains the 7 — system, .4 it suffices by
the m — A theorem to show L is a A — system. Clearly, {2 € £ since 2 € A C L.
If By C By with B; € £ and € > 0, there exists A; € A such that P (B; A A;) =
Ep|la, — 1p,| < €/2 and therefore,

P((B2\ B1) A (A2 \ A1) < P((A1 A By) U (A2 A By))
< P((A) AB)) + P ((As A By)) < e

Alsoif B,, 1 B with B,, € L, there exists A,, € A such that P (B,, A A,) <e2™"
and therefore,

NE

P([UpBn] A [UnAL) < ST P(B, A A) < e.

1

3
Il

Moreover, if we let B := U, B,, and AN := UﬁleAn, then
P(BAAN) =P (B\AN)+P (AN\B) — P(B\ A)+P(A\ B) = P (B A A)

where A := U, A,. Hence it follows for N large enough that P (B A AN) <e.
Since € > 0 was arbitrary we have shown B € L as desired.

5.3 Construction of Measures

Definition 5.19. Given a collection of subsets, £, of £2, let £, denote the col-
lection of subsets of {2 which are finite or countable unions of sets from E.
Similarly let Es denote the collection of subsets of 2 which are finite or count-
able intersections of sets from €. We also write E,5 = (E5)5 and Eso = (Es), ,
etc.

Lemma 5.20. Suppose that A C 2 is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. As is closed under taking countable intersections and finite unions.

3. {A°:Ac A} = As and {A°: A€ As} = A,.

Proof. By construction A, is closed under countable unions. Moreover if
A=U2 A and B = U2, B; with A;, B; € A, then
ANB=U_1AiNB; € A,

which shows that A, is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3. ]
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Remark 5.21. Let us recall from Proposition [5.3] and Remark [5.4] that a finitely
additive measure p : A — [0, 00] is a premeasure on A iff u (A4,) T p(A) for all
{A,}7, C Asuch that A, 1 A € A. Furthermore if p (£2) < oo, then y is a

n=1

premeasure on A iff 1(A,) | 0 for all {A4,} 7, C A such that A4, | 0.

Proposition 5.22. Given a premeasure, p : A — [0,00], we extend p to A,
by defining
w(B):=sup{u(4): A>AC B}. (5.2)

This function p: A, — [0,00] then satisfies;

1. (Monotonicity) If A, B € A, with A C B then u(A) < u(B).
2. (Continuity) If A, € Aand A, 1 A € Ay, then u(Ay) T 1 (4) asn — .
3. (Strong Additivity) If A, B € A,, then

n(AUB) +p(ANB) = pu(A) + p(B). (5.3)

4. (Sub-Additivity on A,) The function p is sub-additive on A, i.e. if
{A, 3}, C Ay, then

5. (o - Additivity on A,) The function p is countably additive on A,.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.2) which then
implies u (A,) < p(B) for all n. Therefore M := lim,_,o t (An) < u(B). To
prove the reverse inequality, let A 3 A C B. Then by the continuity of u on
A and the fact that 4, N A T A we have pu (4, NA) T u(A4). As p(A,) >
w(A, NA) for all n it then follows that M := lim, oo (A4,) > p(A). As
A € A with A C B was arbitrary we may conclude,

u(B)=sup{n(4): A>ACB}<M.

3. Suppose that A, B € A, and {A,,},~, and {B,}, -, are sequences in A
such that A, T A and B, T B as n — oo. Then passing to the limit as n — oo
in the identity,

1 (AnUBy) +p(An N By) = p(An) + 1 (Bn)

proves Eq. (5.3). In particular, it follows that pu is finitely additive on A, .
4 and 5. Let {A,},”; be any sequence in A, and choose {A,;};-, C A
such that A, ; T A, as i — co. Then we have,

N N oo
p(UAnn) €D p(Ann) <D n(An) <Y u(4n).  (5.5)
n=1 n=1 n=1
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Since A 3 UY A, v T U, A, € A,, we may let N — oo in Eq. (5.5)) to
conclude Eq. (5.4) holds. If we further assume that {A,} -, C A, are pairwise
disjoint, by the finite additivity and monotonicity of y on A,, we have

) N
s T N 0o
HEZI/J(An)f lim n§=1u(An) = Jim g (UnziAn) < p(UR21An)

N—o0

This inequality along with Eq. shows that p is o — additive on A,. [

Suppose j is a finite premeasure on an algebra, A C 22, and A € As N A,.
Since A, A¢ € A, and 2 = AU A€, it follows that pu (£2) = p (A) + p (A€) . From
this observation we may extend p to a function on 45 U A, by defining

p(A) :=p(2)—p(A°) for all A € As. (5.6)

Lemma 5.23. Suppose p is a finite premeasure on an algebra, A C 29, and p
has been extended to As U A, as described in Proposition and Eq. (@

above.

1.If A€ As then p(A) =inf{u(B): AC Be A}.

2. If A€ As and A, € A such that A, | A, then pu(A) =] lim, oo p (4y) .
3. is strongly additive when restricted to As.

4. If A€ As and C € A, such that A C C, then u(C\ A) = u(C) — p(A).

Proof.
1. Since p(B) = p(£2) — p(B€) and A C B iff B¢ C A, it follows that
inf{u(B):AC Be Ay =inf{u(2) — pn(B°) : A> B C A°}
=pn(2) —sup{pu(B): A> B C A}
— () = 1 (4%) = p (4).

2. Similarly, since AS 1 A° € A,, by the definition of y(A) and Proposition
E23] it follows that

p(A) = p(2) = p(A) = p(2) =1 lim p (A7)
=1 lim [p(2) = p(A7)] =1 lim p(A).

3. Suppose A, B € As and A,, B, € A such that A,, | A and B, | B, then
A,UB, | AUB and A, N B, | AN B and therefore,

p(AUB) +pu(ANB) = lim [u(A, U By) + p (A, N By)]

n—oo

= lim [ (4,) + p(Bn)] = p(A) + p(B).

n—oo
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All we really need is the finite additivity of u which can be proved as follows.
Suppose that A, B € Ajs are disjoint, then AN B = () implies A°U B¢ = 2.
So by the strong additivity of u on A, it follows that

1 (82) + p (AN BY) = p(A°) + p (B°)
from which it follows that
p(AUB) = pu(82) — p(A°NB°)

= () = [ (A) + p (B) — ()]
— 1 (A) +u(B).

4. Since A¢,C € A, we may use the strong additivity of u on A, to conclude,
p(A°UC) +p(ANC) = p(A%) +pn(C).

Because 2 = A°UC, and p(A°) = u(§2) — 1 (A), the above equation may
be written as

() +p(C\NA) = p(2) = p(A) + 1 (C)
which finishes the proof.
]

Notation 5.24 (Inner and outer measures) Let p: A — [0,00) be a finite
premeasure extended to A, U As as above. The for any B C {2 let

tx (B) :=sup{u(A): As > AC B} and
p (B):=inf{u(C): BCCeA,}.

We refer to . (B) and p* (B) as the inner and outer content of B respec-
tively.

If B C {2 has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem [5.27] below, this
extension becomes a o — additive measure on a o — algebra of subsets of (2.

Definition 5.25 (Measurable Sets). Suppose p is a finite premeasure on an
algebra A C 2. We say that B C §2 is measurable if ju,. (B) = p* (B). We
will denote the collection of measurable subsets of 2 by B = B(u) and define
i B — [0, 1 (2)] by

i (B) = u« (B) = p* (B) for all B € B. (5.7)
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Remark 5.26. Observe that . (B) = p* (B) iff for all € > 0 there exists A € Aj
and C € A, such that A C B C C and

p(C\A)=p(C)—p(4) <e,

wherein we have used Lemma for the first equality. Moreover we will use
below that if Be€ Band As > AC BC C € A,, then

#(A) < . (B) = i (B) = p* (B) < u (C). (5.8)

Theorem 5.27 (Finite Premeasure Extension Theorem). Suppose p is a
finite premeasure on an algebra A C 2% and i : B := B (u) — [0, 1 (£2)] be as
in Definition[5.25. Then B is a o — algebra on 2 which contains A and fi is a
o — additive measure on B. Moreover, [i is the unique measure on B such that
fila = p.

Proof. It is clear that A C B and that B is closed under complementation.
Now suppose that B; € B for ¢ = 1,2 and € > 0 is given. We may then
choose A; C B; C C; such that 4; € As, C; € Ay, and u(C; \ A;) < ¢ for
i = 1,2. Then with A = A1 U Ay, B = B UBs and C = C7 UC(Cy, we have
As>AcCc Bc C e A,. Since

C\A=(C1\A)U(C2\A) C (C1\ A1) U(C2\ 42),
it follows from the sub-additivity of u that with
p(C\NA) <p(Cr\ A1) +p(Co\ Az) < 2e.

Since € > 0 was arbitrary, we have shown that B € B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a ¢ — algebra it suffices to show
that B =Y ", B, € B whenever {B,} -, is a disjoint sequence in B. To prove
B € B, let ¢ > 0 be given and choose A; C B; C C; such that A; € As, C; € A,,
and p (C; \ A;) < 27" for all 7. Since the {A;};°, are pairwise disjoint we may
use Lemma to show,

i=1

)+ 1 (Ci\ A))

(U Ay) +ZMC\A < (R +Zgz—l

i=1

Passing to the limit, n — oo, in this equation then shows

o0

D pu(C) < p(2)+e < oo (5.9)

i=1
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Let B=U2,B;, C:=U2,C; € A, and forn € Nlet A" :=3""  A; € As.
ThenAgBA"CBCCGAU,C\A”EA and

O\ A" = U, (G \ A™) € ULy (C:\ AD] U [UR11C] € Ao

Therefore, using the sub-additivity of u on A, and the estimate in Eq. (5.9),

p(C\A") < Z (Ci\NA)+ Y p(Cy)

1=n—+1

o0
<e+ Z w(C;) — € as n — oc.
i=n+1

Since € > 0 is arbitrary, it follows that B € B and that

S (A = u(A") < 5 (B) <Xul

Letting n — oo in this equation then shows,

Z (A Z (5.10)

On the other hand, since A; C B; C C;, it follows (see Eq. (5.8]) that

WIEEED SICAES Wle (5.11)

7;\
I/\

As
Zu( Zu ZuC\A <252’:

we may conclude from Egs. ) and ( - ) that
i(B)—-Y (B
i=1

Since € > 0 is arbitrary, we have shown p (B) = >_;, i (B;). This completes
the proof that B is a ¢ - algebra and that i is a measure on B.

Since we really had no choice as to how to extend p, it is to be expected
that the extension is unique. You are asked to supply the details in Exercise
below. ]
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Exercise 5.3. Let u, fi, A, and B := B(u) be as in Theorem Further
suppose that By C 2 is a o — algebra such that A C By C B and v : By —
[0, (£2)] is a 0 — additive measure on By such that v = y on A. Show that
v = [ on By as well. (When By = o (\A) this exercise is of course a consequence
of Proposition It is not necessary to use this information to complete the
exercise. )

Corollary 5.28. Suppose that A C 2% is an algebra and p : By = o (A) —
[0, (2)] is a o — additive measure. Then for every B € o (A) and & > 0;

1. there exists As 3 AC B C C € Ayand € > 0 such that u(C'\ A) < € and
2. there exists A € A such that p (AAB) < e.

Exercise 5.4. Prove corollary by considering 7 where v := u|4. Hint:
you may find Exercise [£.3] useful here.

Theorem 5.29. Suppose that u is a o — finite premeasure on an algebra A.
Then
p(B):=inf{u(C):BCcCeA,} YBeo(A (5.12)

defines a measure on o (A) and this measure is the unique extension of u on A
to a measure on o (A). Recall that

w(C)=sup{p(A): A>ACC}.

Proof. Let {£2,},2, C A be chosen so that u (£2,) < oo for all n and §2,, 1
2 as n — oo and let

pn (A) ==y (AN £2,) for all A e A.

Each p, is a premeasure (as is easily verified) on A and hence by Theorem
each u, has an extension, fi,, to a measure on o (A) . Since the measure [i,, are
increasing, i := lim,,_. [i, is @ measure which extends p.

The proof will be completed by verifying that Eq. (5.12)) holds. Let B €
o(A), By, = 2, N B and ¢ > 0 be given. By Theoﬁle%[@ there exists
Cp, € A, such that By, C C,, C (2, and a(Cy, \ Bi) = fin (Crn \ B) < €27™.
Then C := U_,C,, € A, and

N(C\B)§N<U (Cm\B)> < Zﬂ(cm\B)S Zﬂ(cm\Bm)<E-

m=1 m=1 m=1

Thus
fi(B) < i(C) = i(B) + i(C\ B) < fi (B) +<

which, since & > 0 is arbitrary, shows [ satisfies Eq. (5.12]). The uniqueness of
the extension [ is proved in Exercise [5.11 ]
The following slight reformulation of Theorem [5.29] can be useful.
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Corollary 5.30. Let A be an algebra of sets, {2, },-_, C Ais a given sequence
of sets such that 2, T 2 as m — oo. Let

A ={Ae A: AC (2, for some m € N}.

Notice that Ay is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that 1 : Ay — [0,00) is an additive
set function such that 1 (Ay,) | 0 for any sequence, {An} C Ay such that Ay, | 0
as n — 0o. Then u extends uniquely to a o — finite measure on A.

Proof. Existence. By assumption, g, = pla, : Ag, — [0,00) is a
premeasure on ({2,,, A, ) and hence by Theorem extends to a measure

ey on (2,0 (Ap, ) =DBgn, ). Let fm (B) = pu, (BN§2y,) for all B € B.
Then {fim},._, is an increasing sequence of measure on (£2, B) and hence ji :=
lim,;, oo flm defines a measure on (2, B) such that fi|4, = pu.

Uniqueness. If pq and po are two such extensions, then i (£2,, N B) =
w2 (2, N B) for all B € A and therefore by Proposition or Exercise
we know that pq (2, N B) = pa (2, N B) for all B € B. We may now let
m — 0o to see that in fact py (B) = o (B) for all B € B, i.e. u1 = uo. ]

5.4 Radon Measures on R

We say that a measure, u, on (R, Bg) is a Radon measure if x ([a,b]) < oo
for all —co < a < b < oco. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 5.31. Suppose that S C 2% is a semi-algebra, A = A(S) and
w:A—[0,00] is a finitely additive measure. Then u is a premeasure on A iff
1 1s countably sub-additive on S.

Proof. Clearly if u is a premeasure on A4 then u is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of x on & implies the sub-additivity of u on A.

So suppose A =3 ° A, € A with each A,, € A . By Proposition we

may write A = Z?Zl E; and A, = ZZV:WI E,; with E;, E, ; € S. Intersecting
the identity, A = >"° | A,, with E; implies

00 oo Np
Ej=ANE; =) A,NE; =Y > E,iNE;.

n=1 n=1 i=1

By the assumed sub-additivity of p on S,
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|
Suppose now that u is a Radon measure on (R, Bg) and F' : R — R is chosen

so that
i (b)) = F (o)~ F
For example if p (R) < oo we can take F' () = p ((—o0, z]) while if u (R) = oo

we might take
_ n((02]) ifzx>0
Fz) = {—ﬂu((x,O]) ife <0’

The function F' is uniquely determined modulo translation by a constant.

(a) forall —oo<a<b<oo. (5.13)

Lemma 5.32. If i is a Radon measure on (R,Br) and F : R — R is chosen
so that p((a,b)) = F (b) — F (a), then F is increasing and right continuous.

Proof. The function F' is increasing by the monotonicity of u. To see that
F is right continuous, let b € R and choose a € (—o0,b) and any sequence
{b,}>2, C (b,o0) such that b, | b as n — oo. Since p((a,b1]) < oo and
(a,by] | (a,b] as n — oo, it follows that

bn]) | p((a, b))

Since {bn}zoz1 was an arbitrary sequence such that b, | b, we have shown
limylb F(y) = F(b) u
The key result of this section is the converse to this lemma.

F(b) — F(a) = p((a, — F(b) - F(a).

Theorem 5.33. Suppose F': R — R is a right continuous increasing function.
Then there exists a unique Radon measure, p = pp, on (R, Bgr) such that Eq.

holds.

Proof. Let S := {(a,b]NR: —c0 <a <b< oo}, and A = A(S) consists
of those sets, A C R which may be written as finite disjoint unions of sets
from S as in Example Recall that Bg = 0 (A) = 0 (S). Further define
F(£o00) := lim;— 100 F'(x) and let u = pp be the finitely additive measure
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on (R,.A) described in Proposition and Remark To finish the proof it
suffices by Theorem to show that u is a premeasure on A = A(S) where
S :={(a,))NR: —00 <a<b<oo}. So in light of Proposition to finish
the proof it suffices to show pu is sub-additive on S, i.e. we must show

< u(Ja)
n=1

where J = Y7 | J, with J = (a,b] "R and J,, = (an,b,] N R. Recall from
Proposition [£.2] that the finite additivity of x4 implies

D uldn) < p(J)
n=1

We begin with the special case where —co < a < b < 0o. Our proof will be
by “continuous induction.” The strategy is to show a € A where

A::{ae[a,b] (J N (a,b]) ZuJﬂab}

As b € J, there exists an k such that b € Jj, and hence (ay, bx] = (ax, b] for this
k. It now easily follows that J, C A so that A is not empty. To finish the proof
we are going to show a :=inf A € A and that a = a.

(5.14)

(5.15)

(5.16)

o Ifaé¢ A, there would exist o, € A such that a,, | a, i.e.

w(J N (m, b)) < w(Jn N (g, b]). (5.17)

M8

Il
-

n

Since (N (@, b)) < p(Jn) and 3225 i (Ja) < o (J) < o0 by Eq. (B.19),
we may use the right continuity of F' and the dominated convergence the-
orem for sums in order to pass to the limit as m — oo in Eq. (5.17)) to
learn,

u(JN(a

) < ) pulJn 0 (a,]).

M8

Il
-

n

This shows a € A which is a contradiction to the original assumption that
a¢ A

o Ifa> a,then a e J; = (aj, ] for some . Letting @ = a; < @, we have,
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(01 (@) = (T 0 (s a]) + (I 0 (@,5)
< :U’(Jl N (ava]) + Z ;U'(Jn N (av bD

n=1

= p(Ji 0 (,al) + p (S0 (@) + Y plJn N (@, b))
n#l

— (0 (@b + 3 p(J 0 (@,5)
n#l

i (Jn N (a, b))

This shows o € A and « < a which violates the definition of a. Thus we
must conclude that a = a.

The hard work is now done but we still have to check the cases where
a = —oo or b = co. For example, suppose that b = oo so that

J = (a,00) = i‘]"
n=1

with J,, = (an,b,] NR. Then

o0
Ing = (a, M =J NIy =Y JuN Iy

n=1

and so by what we have already proved,
F(M) = F(a) = pln) € 3l 0 1ap) €3 ()
n=1 n=1

Now let M — oo in this last inequality to find that

o0

((a,00)) = Fo0) = F(a) < 3 (7).

n=1

The other cases where a = —occ and b € R and a = —oo and b = oo are handled
similarly. ]

5.4.1 Lebesgue Measure

If F (x) =« for all x € R, we denote pp by m and call m Lebesgue measure on
(R7 B]R) .
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Theorem 5.34. Lebesgue measure m is invariant under translations, i.e. for
B € Bg and x € R,
m(z + B) = m(B). (5.18)

Lebesgue measure, m, is the unique measure on Bgr such that m((0,1]) =1 and
Eq. holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |\|m(B) (5.19)
where A € R, B € Bg and AB := {A\z : x € B}.

Proof. Let m,(B) := m(x+ B), then one easily shows that m,, is a measure
on Bg such that m,((a,b]) = b — a for all a < b. Therefore, m, = m by
the uniqueness assertion in Exercise [5.11] For the converse, suppose that m is
translation invariant and m((0,1]) = 1. Given n € N, we have

T N )

n n

Therefore,

That is to say
1
0,-])=1/n.
m((0, ) =1/n

Similarly, m((0, £]) = I/n for all I,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an T a, then (an,by,] | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—aq,
i.e. m is Lebesgue measure. To prove Eq. (5.19) we may assume that A # 0

since this case is trivial to prove. Now let my(B) := |A|”' m(AB). It is easily
checked that my is again a measure on Br which satisfies

mx((a, b)) = A7 m (Aa, \b)) = A1 (Ab— Xa) = b —a
if A > 0 and
ma((a,0) = |\ m (b, Aa)) = — A 7P (Ab—Xa) =b—a

if A < 0. Hence my = m. [
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5.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let .S be a finite or countable set (we refer to S as state space),
2 := 8% := SN (think of N as time and (2 as path space)

A, :={Bx2:BCS"} foralln €N,

A= U2 A, and B := o (A). We call the elements, A C {2, the cylinder
subsets of (2. Notice that A C {2 is a cylinder set iff there exists n € N and
B C S™ such that

A=Bx2:={weNR:(w,...,w,) € B}.

Also observe that we may write A as A = B’ x {2 where B’ = B x §¥ ¢ §»t*
for any k£ > 0.

Exercise 5.5. Show;

1. A, is a o0 — algebra for each n € N,

2. A, C A,y for all n, and

3. A C 2? is an algebra of subsets of 2. (In fact, you might show that
A = U2, A, is an algebra whenever {4, } ° is an increasing sequence
of algebras.)

Lemma 5.35 (Baby Tychonov Theorem). Suppose {Cy,},—, C A is a de-
creasing sequence of non-empty cylinder sets. Further assume there ezists
N, € N and B,, cC S™» such that C,, = B,, x 2. (This last assumption is
vacuous when S is a finite set. Recall that we write A CC A to indicate that A
is a finite subset of A.) Then NS, C,, # 0.

Proof. Since C,, .1 C C,, if N,, > N,,,1, we would have B, ; x SNn+1=Nn
B,,. If S is an infinite set this would imply B,, is an infinite set and hence we
must have N, 1 > N, for all n when # (S) = oco. On the other hand, if S is
a finite set, we can always replace B, 1 by B,;1 x S* for some appropriate
k and arrange it so that N1 > N, for all n. So from now we assume that
Nn+1 2 Nn

Case 1. lim,, ., N,, < oo in which case there exists some N € N such that
N,, = N for all large n. Thus for large N, C,, = B,, x 2 with B,, cc SV and
By+1 C B, and hence # (B,,) | as n — co. By assumption, lim,, o # (Bp) # 0
and therefore # (B,,) = k > 0 for all n large. It then follows that there exists
no € N such that B, = B, for all n > ng. Therefore N2 ,C,, = By, x 2 # 0.

Case 2. lim,—o N, = oo0. By assumption, there exists w(n) =
(w1 (n),w2(n),...) € 2 such that w(n) € C, for all n. Moreover, since
w(n) € C, C Cy, for all k < n, it follows that
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(w1 (n), w2 (n),...,wn, (n)) € By for all n >k (5.20)

and as By, is a finite set {w; (n)} —, must be a finite set for all 1 < i < Nj.
As Nj, — 00 as k — oo it follows that {w; (n)},—; is a finite set for all i € N.
Using this observation, we may find, s; € .S and an infinite subset, I3 C N such
that wy (n) = s; for all n € Iy, Similarly, there exists sy € S and an infinite
set, I» C I7, such that wy (n) = so for all n € I'. Continuing this procedure
inductively, there exists (for all j € N) infinite subsets, I; C N and points
sj€Ssuchthat I1 D I3 D I5D ... andw; (n) =s; for all n € Ij.

We are now going to complete the proof by showing s := (s1,89,...) €
N2, C,. By the construction above, for all N € N we have

(wi(n),...,wn (n)) = (s1,...,sn) foralln e I'y.
Taking N = Nj, and n € 'y, with n > k, we learn from Eq. (5.20]) that
($1,---58n,) = (w1 (n),...,wn, (n)) € By.

But this is equivalent to showing s € C}. Since k € N was arbitrary it follows
that s € N2, Cy. ]

Let S := S is S is a finite set and S = S U {oo} if S is an infinite set. Here,
00, is simply another point not in S which we call infinity Let {z,} -, C S
be a sequence, then we way lim,,_,o, z, = oo if for every A CC S, z,, ¢ A for
almost all n and we say that lim, ... x, = s € S if z,, = s for almost all n.
For example this is the usual notion of convergence for S = {% 'n € N} and
S =SU{0} C[0,1], where 0 is playing the role of infinity here. Observe that
either lim,, . x,, = 0o or there exists a finite subset F' C S such that z,, € F
infinitely often. Moreover, there must be some point, s € F' such that z,, = s
infinitely often. Thus if we let {n; < ns < ...} C N be chosen such that =, = s
for all k, then limy_,o Zy, = s. Thus we have shown that every sequence in S
has a convergent subsequence.

Lemma 5.36 (Baby Tychonov Theorem I.). Let 2 := S and {w (n)},,
be a sequence in (2. Then there is a subsequence, {ny},—, of {n},_, such that
limg 0o w (ng) exists in 2 by which we mean, limy_, o w; (ng) exists in S for

all i € N.

Proof. This follows by the usual cantor’s diagonalization argument. Indeed,
let {n,lc}:;l C {n},;2, be chosen so that lim;_.o w1 (n}) = s; € S exists. Then
choose {ni}:il C {n,lc};il so that limy_, oo wo (n%) = 35 € S exists. Continue
on this way to inductively choose

{nllf}i?; = {”E};oﬂ DD {ngc};oﬂ SRR

such that limy_, o w; (n%) = s5; € S. The subsequence, {ni}re, of {n} 2, , may
now be defined by, ny = nf. ]
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60 5 Countably Additive Measures

Corollary 5.37 (Baby Tychonov Theorem II.). Suppose that {F,},~, C
(2 is decreasing sequence of non-empty sets which are closed under taking se-
quential limits, then NS\ F,, # ().

Proof. Since F,, # () there exists w (n) € F), for all n. Using Lemma [5.36]
there exists {ny},—; C {n}r—; such that w := limy_,c w (ng) exits in £2. Since
w(ny) € F, for all k > n, it follows that w € F,, for all n, i.e. w € N2, F), and
hence N2, F,, # 0. [

Example 5.38. Suppose that 1 < Ny < Ny < N3 < ..., F, = K,, x {2 with
K, cC SN» such that {F,}.~, C Risa decreasmg sequence of non-empty sets.
Then N3, F,, # (). To prove this, let F,, := K,, x {2 in which case F,, are non —
empty sets closed under taking limits. T herefore by Corollary [5.37] - N, wEn # 0.
This completes the proof since it is easy to check that NS, F,, = N, F, # 0.

Corollary 5.39. If S is a finite set and {A,},>., C A is a decreasing sequence
of non-empty cylinder sets, then NS, A,, # 0.

Proof. This follows directly from Example [5.3§ since necessarily, A, =
K, x £2, for some K, cC SN». [

Theorem 5.40 (Kolmogorov’s Extension Theorem 1.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A — [0,1], has a unique extension to
a probability measure on B := o (A).

Proof. From Theorem it suffices to show lim,, o P (A,) = 0 whenever
{A,}.2, € Awith A, | 0. However, by Lemma with C,, = A,, A, € A
and A, | ), we must have that A, = 0 for a.a. n and in particular P (4,) =0
for a.a. n. This certainly implies lim,,_,, P (4,) = 0. [

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : o (A) — [0, 1] is a probability
measure and for n € N and (s1,...,s,) € S™, let

P (8155 8n) =P ({w € N w1 =81,...,wn = Sn}). (5.21)
Exercise 5.6 (Consistency Conditions). If p, is defined as above, show:

LY cgpi(s)=1and
2. for all n € N and (s1,...,8,) € S™,

pn(sla-“a E Pn+1 517-- ySny S )
seS

Exercise 5.7 (Converse to . Suppose for each n € N we are given func-
tions, p, : S™ — [0, 1] such that the consistency conditions in Exercise hold.
Then there exists a unique probability measure, P on o (A) such that Eq.
holds for all n € N and (s1,...,s,) € S™.
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Ezample 5.41 (Existence of iid simple R.V.s). Suppose now that ¢ : S — [0,1]
is a function such that ) _¢q(s) = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (s1,...,s,) € S™, we have

PHwe N :wi =81,...,wn=5p}) =q(s1)...q(sn).
This is a special case of Exercise 5.7 with py, (s1,...,8,) :=q(s1)...q(sn).

Theorem 5.42 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A — [0,1] is a finitely additive measure such
that P|a, is a 0 — additive measure for each n € N. Then P extends uniquely
to a probability measure on B := o (A).

Proof. From Theorem it suffice to show; if {A4,,},~, C A is a decreas-
ing sequence of subsets such that ¢ := inf,, P (A4,,) > 0, then N%_, A,, # 0.
You are asked to verify this property of P in the next couple of exercises. =

For the next couple of exercises the hypothesis of Theorem [5.42] are to be
assumed.

Exercise 5.8. Show for each n € N; A € A,,, and € > 0 are given. Show there
exists F' € A, such that FF C A, F = K x 2 with K CcC S™,and P (A\ F) < e.

Exercise 5.9. Let {A4,,},~, C A be a decreasing sequence of subsets such that

= inf,, P (A,,) > 0. Using Exercise choose F,,, = K,, x 2 C A,, with
K,, cC SN+ and P (A,, \ F,) < ¢/2™FL Further define C,,, :== Fy N ---N F,
for each m. Show;

1. Show A, \ Cp,, C (Al \ Fl) U (AQ\FQ) @]
conclude that P (A, \ Cp,) < e/2.

2. Conclude C), is not empty for m.

3. Use Lemma to conclude that @ # NSS_,Cp, CNX_1 Ay,

U (A \ Fin) and use this to

Exercise 5.10. Convince yourself that the results of Exercise [5.6] and [5.7] are
valid when S is a countable set. (See Example [4.6])

In summary, the main result of this section states, to any sequence of
functions, p, : S™ — [0,1], such that ) 3 cgnpn (A) =1and Y g pni1 (A, 5) =
prn (A) for all n and A € S™, there exists a unique probability measure, P, on
B := o (A) such that

P(Bx2)=Y p,(\) VBCS" andneN.
AEB

Ezample 5.43 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S X S — [0, 1] be a Markov kernel, i.e.
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Zp(x,y) =1lforallzeS.
yeS

(5.22)

Also let m: S — [0, 1] be a probability function, i.e. Y
take

zeg T (x) = 1. We now

Q=8N = {w = (s0,51,...

and let X,, : {2 — S be given by

):s; €S}
Xn (80,81,...) = 8y for all n € Ny.
Then there exists a unique probability measure, Py, on o (A) such that

P (Xo=20,.-., Xn =x,) =7 (x0) p(0,21) ... p(Tp—1,Tn)

for all n € Ny and zg, 21,. ..,
only verify that

z, € S. To see such a measure exists, we need

Pn (To, ..., 2n) =T (20) p (70, 21) ... P (Tp_1,Zn)

verifies the hypothesis of Exercise taking into account a shift of the n —
index.

5.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 5.44 (Finite Regularity Result). Suppose A C 2% is an algebra,
B=o0(A) and p: B — [0,00) is a finite measure, i.e. {1 (§2) < co. Then for
every € > 0 and B € B there exists A € As and C € A, such that AC B C C
and p(C\ A) <e.

Proof. Let By denote the collection of B € B such that for every € > 0
there here exists A € As and C € A, such that A C BC C and u(C\ A) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i = 1,2,... and € > 0 is given. By assumption there
exists A; € As and C; € A, such that A; C B; C C; and u (C; \ 4;) < 27 %.

Let A := U2 A;, AN .= UN A, € As, B := U2 B;, and C 1= UZ,C; €
Agy. Then AN ¢ AC Bc C and

C\A= [Ufilci] \A= Uity

[Ofi \ A] (- U?il [Cz \ Az] .
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Therefore,

p(C\A) = p (U, [Ci\ A)) Z (Ci\ A4) sz (Ci\ Ai)

Since C'\ AN | C'\ A, it also follows that u (C’ \ AN) < ¢ for sufficiently large
N and this shows B = U2, B; € By. Hence By is a sub-o-algebra of B = o (A)
which contains A which shows By = B. ]

Many theorems in the sequel will require some control on the size of a
measure u. The relevant notion for our purposes (and most purposes) is that
of a 0 — finite measure defined next.

Definition 5.45. Suppose 2 is a set, ECB C 2 and p : B — [0,00] is a
function. The function p is o — finite on & if there exists E,, € £ such that
wWEy) < oo and 2 =UX2 E,. If B is a 0 — algebra and p is a measure on B
which is o — finite on B we will say (2,8, ) is a o — finite measure space.

The reader should check that if u is a finitely additive measure on an algebra,
B, then p is o — finite on B iff there exists (2, € B such that (2, T {2 and
w(f2,) < 0.

Corollary 5.46 (0 — Finite Regularity Result). Theorem continues
to hold under the weaker assumption that u: B — [0,00] is a measure which is
o — finite on A.

Proof. Let §2,, € A such that U2 ,$2,, = 2 and p(£2,) < oo for all n.Since
A€ B—-p,(A) = p(2,NA) is a finite measure on A € B for each n, by
Theorem [5.44] for every B € B there exists C,, € A, such that B C C,, and
w(£2,N[Cy \ B]) = pin (Cp \ B) < 27"¢. Now let C := U, [£2,NC,] € A,
and observe that B C C and

p(C\B) = 21 (2. N Ca]\ B))

[£2, N Cy]

(U7
si

Applying this result to B¢ shows there exists D € A, such that B¢ C D and

i (2, N[Cn \ B]) <

W(B\ D) = (D BE) < ¢

So if we let A := D¢ € As, then A C B C C and
p(C\A)=p([BNAJU(C\B)\A]) <p(B\A)+p(C\B) <2

and the result is proved. ]
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Exercise 5.11. Suppose A C 2 is an algebra and y and v are two measures

on B=oc(A).

a. Suppose that p and v are finite measures such that 4 = v on A. Show
uw=rv.

b. Generalize the previous assertion to the case where you only assume that
i and v are o — finite on A.

Corollary 5.47. Suppose A C 2% is an algebra and p : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € As,
and C € Ays such that AC B C C and u(C\ A) =0.

Proof. By Theorem [5.44] given B € B, we may choose A, € As and
C,, € A, such that A, C B C Cy, and u(C, \ B) < 1/n and u(B\ 4,,) < 1/n.
By replacing Ax by UﬁzlAn and Cy by ﬂ,ly:lCn, we may assume that A, T
and C,, | as n increases. Let A = UA, € A5, and C = NC,, € A,s, then
ACBcCC and

w(C\A) = p(C\B) +pu(B\ A) < u(Cr \ B) + (B \ Ap)
<2/n—0asn— .

Exercise 5.12. Let B = Bgr» = o ({open subsets of R"}) be the Borel o —
algebra on R™ and p be a probability measure on B. Further, let By denote
those sets B € B such that for every ¢ > 0 there exists ' C B C V such that
F is closed, V is open, and u (V' \ F) < e. Show:

1. By contains all closed subsets of B. Hint: given a closed subset, F' C R™ and
keN,let Vi :=UgzerB (x,1/k), where B (x,0) :={y € R" : |y — x| < §}.
Show, Vi, | F as k — .

2. Show By is a o — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [5.44]

3. Show for every ¢ > 0 and B € B, there exist a compact subset, X' C R™, such
that K C B and pu(B\ K) < e. Hint: take K := FN{z € R": |z| < n}
for some sufficiently large n.

5.7 Appendix: Completions of Measure Spaces*
Definition 5.48. A set E C 2 is a null set if E € B and u(F) = 0. If P is

some “property” which is either true or false for each x € 2, we will use the
terminology P a.e. (to be read P almost everywhere) to mean
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E:={xz € 2:P is false for x}

is a null set. For example if f and g are two measurable functions on (§2, 8, ),
f =g a.e. means that u(f # g) = 0.

Definition 5.49. A measure space (§2,B, u) is complete if every subset of a
null set is in B, i.e. for all F' C {2 such that F C E € B with u(E) = 0 implies
that F € B.

Proposition 5.50 (Completion of a Measure). Let (12,8, 1) be a measure
space. Set

N=NHt:={N CR:3F €Bsuch that N C F and u(F) =0},
B=B":={AUN:A€Band N € N} and
@(AUN) := u(A) for A€ B and N € N,
see Fig. ‘ Then Bf@‘s a o - algebra, [i is a well defined measure on B, i is the
unique measure on B which extends p on B, and (2,8, i) is complete measure

space. The o-algebra, B, is called the completion of B relative to p and [i, is
called the completion of .

Proof. Clearly 2,0) € B. Let A € B and N € N and choose F € B such

Fig. 5.2. Completing a o — algebra.

that N C F and u(F) = 0. Since N = (F\ N) U F°,

(AUN)° = A°NN°® = A°N (F\ N UF°)
= [A°N (F\ N)]U[A° N F*]

where [A° N (F\ N)] € N and [A° N F¢] € B. Thus B is closed under
complements. If A; € B and N; C F; € B such that u(F;) = 0 then

U(Aq; U Nz) = (UAi) U (UNz') € B since UA; € B and UN; C UF; and
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w(UE;) <5 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BU N,
with A, B € B and Ny, Ny, € N. Then AC AUN; CAUN, UF, = BUF,
which shows that

p(A) < uw(B) + p(Fz) = p(B).
Similarly, we show that u(B) < p(A) so that u(A) = p(B) and hence i(A U
N) := u(A) is well defined. Tt is left as an exercise to show fi is a measure, i.e.
that it is countable additive. ]

5.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 5.51 (Montone Class). C C 2 is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 5.52 (Monotone Class Theorem*). Suppose A C 2% is an algebra
and C is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(C)={BeC:CnNnB,CNB*,BNC*eC},

then C(C) is a monotone class. Indeed, if B,, € C(C) and B,, | B, then B, | B¢
and so

C>5CNB,1CNB
C>CNB: | CNB° and
C>B,NnC¢1BNC"

Since C is a monotone class, it follows that C N B,C N B¢, BN C° € C, i.e.
B € C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C') is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C € C. If A € A C C, then
ANB,ANB BN A € A C C for all B € A and hence it follows that
A C C(A) C C. Since C is the smallest monotone class containing .4 and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A € A. Let
B € C and notice that A € C(B) happens iff B € C(A). This observation and
the fact that C(A) = C for all A € Aimplies A C C(B) C C for all B € C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B € C. That is to say, if A, B € C then
A e C=C(B) and hence ANB, ANB®, AN B € C. So C is closed under
complements (since 2 € A C C) and finite intersections and increasing unions
from which it easily follows that C is a o — algebra. [ ]






6

Random Variables

Notation 6.1 If f: X — Y is a function and € C 2Y let
frle= 1€ ={f(B)Ee&}
If G C 2%, let
.G :={Ac2Y|f1(A) g}
Definition 6.2. Let £ C 2X be a collection of sets, A C X, is: A — X be the
inclusion map (ia(z) =z for allz € A) and
Ea=i"(E)={ANE:E€&}.
The following results will be used frequently (often without further refer-

ence) in the sequel.

Lemma 6.3 (A key measurability lemma). If f : X — Y is a function and
Ec2Y, then

o (f7HE) = fHa(€)). (6.1)
In particular, if A CY then
(@(€))a =0(Ea), (6.2)
(Similar assertion hold with o (-) being replaced by A(-).)
Proof. Since £ C o(£), it follows that f~1(£) C f~1(c(£)). Moreover, by
Exercise below, f~1(c(£)) is a o — algebra and therefore,
a(f7HE) € FH(a(€)).

To finish the proof we must show f~1(c(£)) C o(f~1(£)), i.e. that f~1(B) €
o(f71(€)) for all B € o (£). To do this we follow the usual measure theoretic
mantra, namely let

M:={BcY: [ (B)ea(f &)} = fo(fHE)).

We will now finish the proof by showing o (£) € M. This is easily achieved
by observing that M is a o — algebra (see Exercise which contains £ and
therefore o (£) C M.

Equation is a special case of Eq. (6.1). Indeed, f =i : A — X we

have
()4 =in'(0(E)) = a(ix ' (E)) = a(Ea).

Exercise 6.1.If f : X — Y is a function and F C 2¥ and B C 2% are o —
algebras (algebras), then f~'F and f.B are o — algebras (algebras).

Ezample 6.4. Let € = {(a,b] : —00 < a <b < oo} and B = o (€) be the Borel o
— field on R. Then
Eo =1{(a,b]: 0<a<b< 1}
and we have
B = (Eo) -
In particular, if A € B such that A C (0,1], then A € ¢ (5(0,1]) :

6.1 Measurable Functions

Definition 6.5. A measurable space is a pair (X, M), where X is a set and
M is a o — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, u) is a
measure space and f : X — Ry is a function. Roughly speaking, we are going

to define [ fdu as a certain limit of sums of the form,
X

oo

> aip(f~ (ai, ain])-

O0<ai;<az<as<...

For this to make sense we will need to require f~1((a,b]) € M for all a < b.
Because of Corollary below, this last condition is equivalent to the condition
f_l(B]R) C M.

Definition 6.6. Let (X, M) and (Y,F) be measurable spaces. A function f :

X — Y is measurable of more precisely, M/F — measurable or (M,F) -
measurable, if f~YH(F) C M, i.e. if f~1(A) € M forall A€ F.

Remark 6.7. Let f: X — Y be a function. Given a o — algebra F C 2Y, the o
— algebra M := f~1(F) is the smallest o — algebra on X such that f is (M, F)
- measurable . Similarly, if M is a o - algebra on X then

F=fM={Ac2V|f 1A € M}
is the largest o — algebra on Y such that f is (M, F) - measurable.
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Ezample 6.8 (Indicator Functions). Let (X, M) be a measurable space and A C
X. Then 1,4 is (M, Bg) — measurable iff A € M. Indeed, 1;,*(W) is either 0,
X, A or A° for any W C R with 1" ({1}) =

Ezxample 6.9. Suppose f : X — Y with Y being a finite or countable set and
F =2Y. Then f is measurable iff f~1 ({y}) € M for all y € Y.

Proposition 6.10. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume € C F generates F, i.e. F = 0o (E). Then a map, f: X - Y is
measurable iff f~1 () C M.

Proof. If f is M/F measurable, then f~! () C f~! (F) c M. Conversely
if f71(£) C M then o (f~'(£)) C M and so making use of Lemma

FUE) =0 ) =0 (f7HE) c M.
| |

Corollary 6.11. Suppose that (X, M) is a measurable space. Then the follow-
ing conditions on a function f: X — R are equivalent:

1 f is (M, Br) — measurable,
~1((a,0)) € M for all a € R,

“((a,0)) € M for all a € Q,

“1((~o0,a]) € M for all a € R.

Exercise 6.2. Prove Corollary [6.11] Hint: See Exercise [3.7}

Exercise 6.3. If M is the ¢ — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Exercise 6.4. Let (X, M) be a measure space and f, : X — R be a sequence
of measurable functions on X. Show that {z : lim, o fn(z) exists in R} € M.
Similarly show the same holds if R is replaced by C.

Exercise 6.5. Show that every monotone function f : R — R is (Bg,Bgr) —
measurable.

Definition 6.12. Given measurable spaces (X, M) and (Y,F) and a subset
A C X. We say a function f: A —'Y is measurable iff f is Ma/F — measur-
able.

Proposition 6.13 (Localizing Measurability). Let (X, M) and (Y, F) be
measurable spaces and f: X — Y be a function.

1. If f is measurable and A C X then fla: A—Y is Ma/F — measurable.
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2. Suppose there exist A, € M such that X = U2, A, and f|A, is Ma, |F
— measurable for all n, then f is M - measumble

Proof. 1. If f : X — Y is measurable, f~1(B) € M for all B € F and
therefore
flat(B)=Anf~Y(B) € My for all B € F.

2. If B € F, then

FHB) = Uty (fTHB)N A) = U2y fl4, (B).

Since each A, € M, M4, C M and so the previous displayed equation shows
f~1(B) e M. [

Lemma 6.14 (Composing Measurable Functions). Suppose that
(X, M), (Y,F) and (Z,G) are measurable spaces. If f : (X, M) — (Y, F) and
g: (Y, F) — (Z,G) are measurable functions then go f : (X, M) — (Z,G) is

measurable as well.

Proof. By assumption g71(G) C F and f~! (F) C M so that

(go /)G =F"(g7(G) C f(F)cM.
| |

Definition 6.15 (0 — Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yo, Fo) i € I} and
functions fo : X = Y, foralla € I. Let o(fy : a € I) denote the smallest o —
algebra on X such that each f. is measurable, i.e.

U(fa YOS I) = O'(Uaf(;l(fa))'

Example 6.16. Suppose that Y is a finite set, F = 2¥, and X = YV for some
N € N. Let m; : YN — Y be the projection maps, 7; (y1,-..,yn) = y;. Then,
as the reader should check,

o(m,...,mp) ={Ax AN AC A"}

Proposition 6.17. Assuming the notation in Definition (s0 fo : X —
Y, for all a € I) and additionally let (Z, M) be a measurable space. Then

g:7Z — X is (M,0(fo : « € I)) — measurable iff fo 0g (ZiX&»Ya) is
(M, Fo)-measurable for all a € I.

Proof. (=) If g is (M,0(fs : @ € I)) — measurable, then the composition
fa0gis (M, F,) — measurable by Lemma
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(<) Since o(fo : @ € I) = 0 (&) where € := U, f;'(Fa), according to
Proposition it suffices to show g=1 (A) € M for A € f;(F,). But this is
true since if A = f; ! (B) for some B € F,, then g~ (A) = g7' (f71(B)) =

(fao g)_1 (B) € M because f,0g:7Z — Y, is assumed to be measurable.
|

Definition 6.18. If {(Y,,F.) : @ € I} is a collection of measurable spaces, then
the product measure space, (Y, F), is Y :=[[,c; Yo, F := 0 (7o : « € I) where
T Y — Y, is the o — component projection. We call F the product o — algebra
and denote it by, F = Qqecr1Fa-

Let us record an important special case of Proposition [6.1

Corollary 6.19. If (Z, M) is a measure space, then g : Z — Y =[] c; Yo is
(M, F := ®qcrFa) — measurable iff o 0g: Z — Yy is (M, F,) — measurable
foralla e I.

As a special case of the above corollary, if A = {1,2,...,n}, then YV =
Y1 x---xY,and g = (¢q1,-.-,9n) : Z — Y is measurable iff each component,
g; : Z — Y, is measurable. Here is another closely related result.

Proposition 6.20. Suppose X is a set, {(Ya,Fo): a € I} is a collection of
measurable spaces, and we are given maps, fo : X — Y, for all o € 1. If
f:X =Y :=]l,c;Ya is the unique map, such that my o f = fo, then

o(farael)=0o(f)=f""(F)

acl

where F := QuecrFa-

Proof. Since mp 0 f = fo is 0 (fo : @ € I) /F, — measurable for all « € I it
follows from Corollary that f: X — Y is 0 (fo : @ € I) /F — measurable.
Since o (f) is the smallest o — algebra on X such that f is measurable we may
conclude that o (f) Co(fo:a€I).

Conversely, for each a € I, fo = mo 0 f is 0 (f) /F — measurable for all
a € I being the composition of two measurable functions. Since o (f, : @ € I)
is the smallest o — algebra on X such that each f, : X — Y, is measurable, we
learn that o (fo: € I) Co(f). |

Exercise 6.6. Suppose that (Y1, 71) and (Y3, F2) are measurable spaces and
& is a subset of F; such that Y; € & and F; = o (&;) for ¢ = 1 and 2. Show
Fi1@Fy =0 (E) where £ :={A; x Ay : A; € &; for i = 1,2} . Hints:

1. First show that if YV is a set and &1 and Sp are two non-empty sub-
sets of 2¥, then o (0 (S1) U0 (S)) = 0 (S;USs). (In fact, one has that
0 (Uaer0 (Sa)) = 0 (UaerSa) for any collection of non-empty subsets,
{Sataer €2Y)
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2. After this you might start your proof as follows;
f1®.7:2 =0 (71';1 (.71) U’lT;l (fz)) =0 (7‘(;1 (0 (52)) U’]T;l (U (52))) = ...,

Remark 6.21. The reader should convince herself that Exercise [6.6] admits the
following extension. If I is any finite or countable index set, {(Y3, Fi)},o; are
measurable spaces and &; C F; are such that Y; € & and F;, = o (&;) for all

i € I, then
®i61-7:i =0 <{HA1 : Aj S gj for all] S I})

il
and in particular,
QictFi=0 ({H A;r Aj € Fjforall je I}) .
iel
The last fact is easily verified directly without the aid of Exercise [6.6]

Exercise 6.7. Suppose that (Y1, F1) and (Y3, F») are measurable spaces and
() # B; CY; for i = 1,2. Show

[F1® Falp, «p, = [F1lp, @ [Falp, -
Hint: you may find it useful to use the result of Exercise [6.6] with
822{A1XA22Ai€fi fOI‘izl,Q}.

Definition 6.22. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 6.23. Let X and Y be two topological spaces and f: X — Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma and By = o(1y),
71 By) = fHo(ry)) = o(f 7 (1v)) C o(rx) = Bx.
[

Ezample 6.24. For i = 1,2,...,n, let m; : R® — R be defined by m; (x) = x;.
Then each 7; is continuous and therefore Bgn /Br — measurable.

Lemma 6.25. Let £ denote the collection of open rectangle in R™, then Brn =
o (€). We also have that Bgn = o (m1,...,m,) = Br®---®@Bg and in particular,
Ay X -+ X Ay, € Brn whenever A; € Bg fori=1,2,...,n. Therefore Bgn may
be described as the o algebra generated by {A1 X -+ X A, : A; € Br}. (Also see

Remark|6.21))
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Proof. Assertion 1. Since £ C Bgn, it follows that ¢ (£) C Brn. Let
& ={(a,b):a,be Q" 3 a<b},
where, for a,b € R™, we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,by) . (6.3)

Since every open set, V. C R™, may be written as a (necessarily) countable
union of elements from &y, we have

Veo() Cco(é),

ie. 0(&) and hence o (€) contains all open subsets of R™. Hence we may
conclude that

Brr = o (open sets) C o (&) C o (E) C Bgrn.

Assertion 2. Since each 7; : R™ — R is continuous, it is Bg» /Bgr — measur-
able and therefore, o (71,...,m,) C Bgn. Moreover, if (a,b) is as in Eq. ,
then

(a,b) = ﬁ?zlﬂ'i_l ((as,b5)) € o (m1, .-, 70) -
Therefore, £ C o (71,...,m,) and Brn =0 (£) C o (M1, .., T0n) -
Assertion 3. If A; € Bg fori=1,2,...,n, then

Ay x - x Ay =0yt (A) € o (T, e, Tp) = Bga.

Corollary 6.26. If (X, M) is a measurable space, then

f:(f17f27"'7fn):X4’Rn

is (M, Bgn) — measurable iff f; : X — R is (M,Br) — measurable for each 1i.
In particular, a function f: X — C is (M, Bc) — measurable iff Re f and Im f
are (M, Br) — measurable.

Proof. This is an application of Lemmal6.25 and Corollary .19 with ¥; = R
for each 1. ]

Corollary 6.27. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,B¢) -
measurable.
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Proof. Define FF: X - CxC, AL :CxC—->Cand M :CxC — C
by F(z) = (f(z),9(z)), Ax(w,2z) = w £+ z and M(w,z) = wz. Then Ay and
M are continuous and hence (Bgz,Bc) — measurable. Also F is (M, Be2) —
measurable since mj o F = f and myoF = g are (M, Bc) — measurable. Therefore
AyoF = fdgand MoF = f-g, being the composition of measurable functions,
are also measurable. [

Lemma 6.28. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

s measurable.

Proof. Define i : C — C by

, Lif 240
Z(Z){Oif z=0.

For any open set V C C we have
THV) = (VA{0h) UV n{0})

Because i is continuous except at z = 0, i~1(V \ {0}) is an open set and hence
in Be. Moreover, i~1(V N {0}) € Be since i~ 1(V N {0}) is either the empty
set or the one point set {0} . Therefore i~!(7¢) C B¢ and hence i~1(B¢) =
i~Y(o(mc)) = o(i~Y(7¢)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

Remark 6.29. For the real case of Lemma define 7 as above but now take
z to real. From the plot of i, Figure the reader may easily verify that
i1 ((—00,a]) is an infinite half interval for all a and therefore i is measurable.

See Example [6.34] for another proof of this fact.
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We will often deal with functions f : X — R =RU {+oco}. When talking
about measurability in this context we will refer to the o — algebra on R defined
by

Bg :=0 ({[a,<] : a € R}). (6.4)

Proposition 6.30 (The Structure of Bg). Let Br and Bg be as above, then
Bg={ACR:ANR EBg}. (6.5)
In particular {oo} ,{—o0} € Bg and Br C Bg.
Proof. Let us first observe that

{—OO} = mf:l[_oo? —TL) = Sbo:l[_nvoo]c € B]Ra

{00} =N, [n, <] € Bg and R = R\ {+o0} € Bg.
Letting i : R — R be the inclusion map,

it (Bg) =0 (i7" ({[a,00] :a €R})) =0 ({i7" ([a,0]) : a € R})
=0 ({la,c]NR:aeR}) =0 ({[a,) : a € R}) = Br.

Thus we have shown
Bg=i! (Bg) ={ANR: A€ Bg}.
This implies:

1. Ae Bg = ANR eBg and

2. if A C R is such that ANR €Bg there exists B € By such that ANR = BNR.
Because AAB C {#oo} and {oo},{—oc0} € Bz we may conclude that
A € Bz as well.

This proves Eq. (6.5). ]
The proofs of the next two corollaries are left to the reader, see Exercises

6.8 and [6.91

Corollary 6.31. Let (X, M) be a measurable space and f : X — R be a func-
tion. Then the following are equivalent

1. f is (M, Bg) - measurable,
2. f~Y((a,00]) € M for all a € R,
3. f71((—o0,a]) € M for all a € R,
4. fH{—o0}) e M, f71{oo}) € M and f°: X — R defined by
oy Jf@if flx)eR
Fiw)= { 0 if f(x) € {+o0}

1s measurable.
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Corollary 6.32. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f +g) : X — R using the conventions, 0-occ = 0
and (f +g)(z) =0 if f(x) =00 and g(x) = —o0 or f(z) = —oc0 and g (z) =
oo. Then f-g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.8. Prove Corollary noting that the equivalence of items 1. — 3.
is a direct analogue of Corollary [6.11] Use Proposition [6.30] to handle item 4.

Exercise 6.9. Prove Corollary

Proposition 6.33 (Closure under sups, infs ‘and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence of
M /By — measurable functions. Then

sup; f;j, inf;f;, limsup f; and lbrgérgf £

J—00

are all M /Bg — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g4 (z) :=sup; f;(z), then

{z:91(2) <ap ={z: fi(x) <aVj}
=nN{x: fj(x) <a} e M

so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then
{z:9_(z) >a} =nj{z: fj(z) >a} € M.

Since
limsup f; =infsup{f;:j > n} and
Jj—o0 n
liminf f; =supinf{f;:j > n}
j—00 n
we are done by what we have already proved. ]

Example 6.34. As we saw in Remark i: R — R defined by

, Lif 240
Z(Z)_{Oif z=0.

is measurable by a simple direct argument. For an alternative argument, let

in (2) :=

%foraﬂneN.
21

Then 4, is continuous and lim,, s i, (2) = i(z) for all z € R from which it
follows that i is Borel measurable.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



70 6 Random Variables

Ezample 6.35. Let {r,}52,; be an enumeration of the points in Q N [0,1] and
define

with the convention that

Then f: R — R is measurable. Indeed, if

gn<x>={mlf“”"

0 ifx=r,

then g, (z) = /|i (x — r,)| is measurable as the composition of measurable is
measurable. Therefore g, +5- 1y, } is measurable as well. Finally,

= lim E 2—n
T Nox v/ |x — Tl
is measurable since sums of measurable functions are measurable and limits

of measurable functions are measurable. Moral: if you can explicitly write a
function f : R — R down then it is going to be measurable.

Definition 6.36. Given a function f : X — R let fi(z) := max {f(x),0} and
f- (x) :=max (—f(x),0) = —min (f(z),0). Notice that f = f+ — f_.

Corollary 6.37. Suppose (X, M) is a measurable space and f : X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [6.33]implies fi are measurable.
Conversely if fi are measurable then sois f = f, — f_. [

Definition 6.38. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — Bg
measurable and ¢(X) contains only finitely many elements.

Any such simple functions can be written as

@ = Aila, with 4; € M and \; € F. (6.6)
i=1
Indeed, take A1, Ao,..., A, to be an enumeration of the range of ¢ and A; =

0 Y({\:}). Note that this argument shows that any simple function may be
written intrinsically as
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=2 Yo 1)) (6.7)

yeF
The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.39 (Approximation Theorem). Let f : X — [0, 00] be measur-
able and define, see Figure[6.1}
22n 1 k
on () = ’;) on L (e 1) (%) + 271 o1 (2n o0)) (2)
22" —1

- Z 2n Lo <retity (@) + 2" 0y (2)

then @, < f for all n, @n(x) 1 f(x) for allz € X and ¢, 1 f uniformly on the
sets Xpr :={x € X : f(x) < M} with M < cc.

Moreover, if f: X — C is a measurable function, then there exists simple
functions p,, such that im,, o, ¢, (z) = f(x) for allx and |p,| T |f] asn — oco.

Proof. Since f~1 (£, &) and f~1((2", oc]) are in M as f is measurable,

n, is a measurable simple function for each n. Because

k kE+1 2k 2k+1 2k+1 2k+42
(27’ on ]:(2n+1’ on+1 ] (2n+1 > 9n+l ]’
if v € ((2721&17225%11]) then LPn< ) = L)OnJrl( ) = 22% and if = €
2

I (( ktl 2’21'12}) then @, (z) = 2n+1 < gﬁﬂ = ¢p+1(x). Similarly
(2", 00] = (2", 2" U (2", o),

and so for z € f71((2"1,00]), pn(x) = 2" < 2" = ¢, 11 (x) and for = €
e, 2n ), ppai(x) > 2" = @, (x). Therefore ¢, < @, for all n. It is
clear by construction that 0 < ¢,(z) < f(x) for all  and that 0 < f(x) —
on(x) < 27" if x € Xon = {f < 2"} . Hence we have shown that ¢, (z) T f(z)
for all x € X and ¢, T f uniformly on bounded sets.

For the second assertion, first assume that f : X — R is a measurable
function and choose ; to be non-negative simple functions such that ¢ 1 fi
as n — oo and define ¢,, = ¢;7 — ¢, . Then (using ¢} - ¢, < f+ - f- =0)

lonl = @ff + 05 <O +0ni1 = lontl

and clearly |on| = ¢F +¢n T fr+f-=|fland o = o —¢p = fr—f-=f
as n — o0o. Now suppose that f : X — C is measurable. We may now choose
simple function u,, and v, such that |u,| T |[Re f|, |vn| T |Im f|, v, — Re f and
v, — Im f as n — oco. Let ¢,, = uy,, + iv,, then

lonl® = u2 +02 1 |Re fI> + |Im f|* = | [

and ¢, = up +iv, — Re f+ilm f = f as n — oco. ™
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Fig. 6.1. Constructing the simple function, 2, approximating a function, f : X —
[0, 00]. The graph of 2 is in red.

6.2 Factoring Random Variables

Lemma 6.40. Suppose that (Y,F) is a measurable space and Y —Yisa
map. Then to every (o(Y),Bg) — measurable function, h : 2 — R, there is a
(F,Bg) — measurable function H : Y — R such that h = HoY. More generally,

R may be replaced by any “standard Borel space, ’E| i.e. a space, (S,Bgs) which
is measure theoretic isomorphic to a Borel subset of R.

(2.0(Y)) = (V.F)
hl ) H
(5.55)

Proof. First suppose that h = 14 where A € 0(Y) =Y 1(F). Let B€ F
such that A = Y~}(B) then 14 = ly-1gy = 1p oY and hence the lemma

! Standard Borel spaces include almost any measurable space that we will consider in

these notes. For example they include all complete seperable metric spaces equipped
with the Borel o — algebra, see Section
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is valid in this case with H = 1. More generally if h = > a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence h = HoY
with H := Y a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, h, from {2 — R, choose simple
functions h,, converging to h. Let H, : Y — R be simple functions such that
h, = H,, oY. Then it follows that

h = lim h, =limsuph, =limsupH,oY =HoY

n—oo n— o0 n—oo

where H := limsup H,, — a measurable function from Y to R.

n—oo

For the last assertion we may assume that S € Br and Bs = (Br)g =
{ANS: A€ Bgr}. Since ig : S — R is measurable, what we have just proved
shows there exists, H : Y — R which is (F,Bg) — measurable such that h =
igoh = HoY. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

_ [ Hlg-syon H(S)
HS_{ * on Y\ H~1(S)

where * is some fixed arbitrary point in S. It follows from Proposition [6.13| that

Hs : Y — Sis (F,Bs) — measurable and we still have h = Hg oY as the range

of Y must necessarily be in H~* (S). |
Here is how this lemma will often be used in these notes.

Corollary 6.41. Suppose that (§2,B) is a measurable space, X,, : 2 — R are
B/Bgr — measurable functions, and B, := o (Xy,...,X,) C B for each n € N.
Then h : 2 — R is B, — measurable iff there exists H : R™ — R which is
Brn /Br — measurable such that h = H (X1,...,X,).

(2B, = o (¥)) Z=2 (RY Ban)
hl /,—/"/
.- H
(R7BR)

Proof. By Lemma and Corollary the map, YV := (Xy,...,X,) :
22— R"is (B,Bgr = Br ® - -+ ® Bg) — measurable and by Proposition
B, = o0(X1,...,Xy) = 0(Y). Thus we may apply Lemma to see that
there exists a Bgn /Bgr — measurable map, H : R” — R, such that h = HoY =
H(X1,...,Xn). -
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72 6 Random Variables

6.3 Summary of Measurability Statements 14. If X; : 2 — R are B/Bg — measurable maps and B, := o (X1,...,X,),

It may be worthwhile to gather the statements of the main measurability re-

then h : 2 — R is B,, — measurable iff h = H (X1, ..., X,) for some Bgn /Br
— measurable map, H : R — R (Corollary [6.41]).

sults of Sections and in one place. To do this let (2,8), (X, M), and 15. We also have the more general factorization Lemma [6.40]

{(Ya, Fa)}oer be measurable spaces and fo : £2 — Y, be given maps for all
a € 1. Also let m,, : Y — Y, be the o — projection map,

For the most part most of our future measurability issues can be resolved

by one or more of the items on this list.

F = QaciFa:=0(nq:a €l

be the product o — algebra on Y, and f : 2 — Y be the unique map determined
by mq o f = fo for all « € I. Then the following measurability results hold;

1. For A C {2, the indicator function, 14, is (B, Bg) — measurable iff A € B.
(Example [6.8).

2. If £ C M generates M (i.e. M =0 (£)), then a map, g: 2 — X is (B, M)

— measurable iff g~ (£) C B (Lemmal6.3) and Proposition )

The notion of measurability may be localized (Proposition |6.13]).

Composition of measurable functions are measurable (Lemma .

5. Continuous functions between two topological spaces are also Borel mea-
surable (Proposition [6.23).

6. o (f) =0 (fa:a€I) (Proposition [6.20).

7. Amap, h: X — 21is (M,0(f) =0 (fa: @ € I)) — measurable iff f, oh is
(M, F,) — measurable for all « € I (Proposition [6.17)).

8. Amap, h: X — Y is (M, F) - measurable iff 7, 0h is (M, F,) — measurable
for all o € I (Corollary [6.19).

9. I ={1,2,...,n}, then

w0

®a61.7:a:f1®"'®fn:0({141XAQX"'XA7LSAi€f¢f0ri€I}),

this is a special case of Remark

10. Bgn = Br ® - - ® Br (n - times) for all n € N, i.e. the Borel o — algebra on
R™ is the same as the product o — algebra. (Lemma .

11. The collection of measurable functions from (£2, B) to (R, Bg) is closed un-
der the usual pointwise algebraic operations (Corollary [6.32)). They are also
closed under the countable supremums, infimums, and limits (Proposition
6.33)).

12. The collection of measurable functions from (§2, B) to (C, Be) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
and Proposition . The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (£2,8) to (R, Bg) and from (12, B)
to (C, Bc) may be well approximated by measurable simple functions (The-

orem .
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6.4 Distributions / Laws of Random Vectors

The proof of the following proposition is routine and will be left to the reader.

Proposition 6.42. Let (X, M, 1) be a measure space, (Y,F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0,00] by
v(A) = p(f~1(A)) for all A € F. Then v is a measure on (Y, F). (In the future
we will denote v by fop or o f=1 or Law,, (f) and call f.u the push-forward
of u by f or the law of f under pu.

Definition 6.43. Suppose that {X;}!_, is a sequence of random variables on a
probability space, (12,8, P). The probability measure,

p=(X1,....X,), P=Po(Xy,....,X,)"" onBg

(see Proposition is called the joint distribution (or law) of
(X1,...,X,). To be more explicit,

w(B):=P((X1,....,Xn)€B)=P({we : (X1 (w),...,X,(w) € B})
for all B € Bgn.

Corollary 6.44. The joint distribution, p is uniquely determined from the
knowledge of

P((Xy,...,Xpn) € Ay x--- X A,) for all A; € By
or from the knowledge of
P(X; <x1,...,X, <z,) forall A; € By
for allx = (z1,...,2,) € R™.
Proof. Apply Proposition with P being the m — systems defined by
P:={A; x -+ x A, €Bgn: A; € B}
for the first case and
P:={(—o00,x1] X -+ X (—00,x,] € Brn : z; € R}
for the second case. ]

Definition 6.45. Suppose that {X;};_, and {Y;}!_, are two finite sequences of
random variables on two probability spaces, (£2,B,P) and (£2',B', P') respec-
tively. We write (X1, ..., Xn) = (Y1,...,Y,) if (X1,...,Xn) and (Y1,...,Y,,)
have the same distribution / law, i.e. if
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P((X1,...,X,) € B)=P((Y1,...,Y,) € B) for all B € Bgn.
More generally, if {X;};2, and {Y;};2, are two sequences of random variables
on two probability spaces, (12,8, P) and (£2',B', P") we write {X;};-, 4 {vi} .2,
i (X1, Xn) 2 (V1,...,Y,) for alln € N.

Proposition 6.46. Let us continue using the notation in Definition [6.45 Fur-
ther let

X=(X1,Xg,...): 2 =RV and Y := (V1,Ys,...): 2 — RY
and let F := ®@,enBr — be the product o — algebra on RYN. Then {Xi}2, 4
{Yi}i2) iff XuP =Y, P' as measures on (RN,f) )
Proof. Let
Pi=Us {A1 x Ay x -+ x Ay x RV 1 A; € B for 1 <i <m}.

Notice that P is a m — system and it is easy to show o (P) = F (see Exercise
. Therefore by Proposition X, P=Y.P iff X,P=Y,P' on P. Now
for A1 x Ay x -+ x A, x RN € P we have,

XoP(Ar x Ay x - x Ay xRY) = P((X1,...,Xn) € Ap X Ay x -+ X Ay)
and hence the condition becomes,
P((Xl,...,Xn)GAl XAQX"'XAn):P/((Yl,...,Yn)EAl X Ay X--~><An)

for all n € N and A; € Bg. Another application of Proposition [5.15| or us-
ing Corollary allows us to conclude that shows that X,P = Y.P' iff

(X1,..., X)) 2 (Y1,...,Y,,) for all n € N. -

Corollary 6.47. Continue the notation above and assume that {X;};o, 4

{Y;}:2, . Further let
{ limsup,, o Xn if +
Xy =

liminf, .. X, if —

and define Yo similarly. Then (X_, X ) 4 (Y_,Y,) as random variables into
(RQ, Bz ® BR) . In particular,

P ( lim X, exists in ]R) =P ( lim Y exists in R) . (6.8)
n—oo n—oo
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74 6 Random Variables

Proof. First suppose that (2/,B',P') = (RN,}', P = X*P) where
Y; (a1,a2,...) :=a; = m; (a1,a2,...). Then for C' € Bz ® By we have,

XT{(Vo, v el ={(Y-oX,Y,0X)eC} ={(X_,X,)eC},
since, for example,

Y_ oX =liminfY,, o X =liminf X,, = X_.

n—oo n—0oo

Therefore it follows that

P((X-,X;4)€C)=PoX " ({(Y_,Yy) € C}) = P/({(Y-,Y4) € C}). (6.9)

The general result now follows by two applications of this special case.
For the last assertion, take

C={(z,x):x € R} € Bg: = Br @ Br C B ® Bg.

Then (X_, X ) e Ciff X_ = X € R which happens iff lim,,_, . X, exists in
R. Similarly, (Y_,Yy) € C iff lim, . Y, exists in R and therefore Eq. ( .
holds as a consequence of Eq. .

Exercise 6.10. Let {X;};2, and {Y;}.°, be two sequences of random variables
such that {X;}2; 4 {Vi}2, . Let {S,},—, and {T,,} , be defined by, S, :=
Xi+---+X,and T}, :=Y; 4+ --- +Y,. Prove the following assertions.
1. Suppose that f : R® — RF is a Bgn/Bge — measurable function, then
JXu Xa) S f (Y, V).
2. Use your result in item 1. to show {S,} 4 {T.}, .

Hint: Apply item 1. with & = n after making a judicious choice for f :
R™ — R™.

6.5 Generating All Distributions from the Uniform
Distribution

Theorem 6.48. Given a distribution function, F : R —[0,1] let G : (0,1) = R
be defined (see Figure[6.9) by,

G(y)=inf{zx: F(z) > y}.
Then G : (0,1) — R is Borel measurable and G.m = pr where pp is the unique

measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —oco < a <b <
00.
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Ki O . >R

Fig. 6.3. As can be seen from this picture, G (y) < zo iff y < F (xo) and similarly,
G(y) <ziiff y <a1.

Proof. Since G : (0,1) — R is a non-decreasing function, G is measurable.
We also claim that, for all zg € R, that

G ((0,20]) = {y : G (y) < w0} = (0, F (w0)] NR, (6.10)

see Figure

To give a formal proof of Eq. (6.10), G (y) = inf {z : F (z) > y} < o, there
exists x,, > xg with x,, | z¢ such that F (x,) > y. By the right continuity of F,
it follows that F' () > y. Thus we have shown

{G <20} C(0,F (20)] N (0,1).
For the converse, if y < F(xg) then G (y) = inf{z: F(x) >y} < xo, ie.
y € {G <z} Indeed, y € G~ ((—o00, z0]) iff G (y) < xo. Observe that
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G (F (z9)) =inf{z: F(z) > F(x0)} < 29
and hence G (y) < xp whenever y < F (z¢) . This shows that
(0, F (20)] N (0,1) € G ((0, z0)) -
As a consequence we have G,m = up. Indeed,

(Gem) ((—o00,z]) = m (G ((—o0,a])) =m({y € (0,1) : G (y) < z})
=m((0,F (2)]N(0,1)) = F(z).

See section 2.5.2 on p. 61 of Resnick for more details. [

Theorem 6.49 (Durret’s Version). Given a distribution function, F
R —[0,1] let Y : (0,1) — R be defined (see Figure by,

Y (z) :=sup{y: F(y) < x}.

Then'Y : (0,1) — R is Borel measurable and Yom = up where pup is the unique
measure on (R, Br) such that pp ((a,b]) = F (b) — F (a) for all —oo < a < b <
00.

N X
- - - - - —:L— —!’—/—-_’:_——:—
J

<V

YA

Fig. 6.4. A pictorial definition of Y (z).

Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (2), then F (y) < = and hence,

F(Y()-)= lim F()<a.
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For y > Y (x), we have F (y) > x and therefore,

F(Y (@) =F(Y(@)4) = lim F(y)>a

and so we have shown

We will now show
{ze(0,1): Y (x) <wo} = (0,F (y0)] N (0,1). (6.11)

For the inclusion “C,” if x € (0,1) and Y (z) < yo, then x < F (Y (x)) < F (yo),
ie. z € (0,F (yo)] N (0,1). Conversely if z € (0,1) and = < F (yo) then (by
definition of Y (2)) yo > Y (x).

From the identity in Eq. , it follows that Y is measurable and

(Yam) ((—00,90)) =m (Y~ (—00,90)) = m ((0, F (y0)] N (0,1)) = F (yo) -

Therefore, Law (Y) = pp as desired. ]
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7

Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section above. Recall there that if (£2, B, u) was
measurable space and ¢ : {2 — [0,00) was a measurable simple function, then
we let

Eupi= Y Aulp=2A).
A€E[0,00)

The conventions being use here is that 0- (¢ = 0) = 0 even when u (¢ = 0) =
0o. This convention is necessary in order to make the integral linear — at a
minimum we will want E, [0] = 0. Please be careful not blindly apply the
0 - oo = 0 convention in other circumstances.

7.1 Integrals of positive functions

Definition 7.1. Let LT =L+ (B) = {f : 2 — [0,00] : f is measurable}. Define
| F@ ) = [ fduimsup (Bp: o is simple and ¢ < 1}

We say the f € L' is integrable if fQ fdu < oo. If A € B, let

[ r@dn) = [ fdu= [ 147 dn

We also use the notation,

]Ef:/nfd,u and E[f : A] ::/Afdu.

Remark 7.2. Because of item 3. of Proposition[d:19} if ¢ is a non-negative simple
function, [, pdp =E,¢ so that [, is an extension of E,,.

Lemma 7.3. Let f,g € L™ (B). Then:

/Qxfduzx/ﬁfdp

wherein X [, fdp =0 if X =0, even if [, fdu = oo.

1. if A >0, then

2.if0< f <g, then

/Qfdué/ngdu~ (7.1)

iz <5 [ Migsadns 5 [ pran (7.2

3. For alle >0 and p > 0,

The inequality in Fq. 1s called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4.1f [, fdp < oo then pu(f = 00) =0 (i.e. f < 0o a.e.) and the set {f > 0}
is 0 — finite.

Proof. 1. We may assume A > 0 in which case,
/ Afdp = sup{E ¢ : ¢ is simple and ¢ < Af}
2
= sup {E,¢ : ¢ is simple and Ao < £}

= sup{E, [\Y] : ¢ is simple and ¢ < f}
= sup {AE, [¢] : ¢ is simple and ¢ < f}

:)\/Qfdu.

{¢ is simple and ¢ < f} C {p is simple and ¢ < g},

2. Since

Eq. (7.1]) follows from the definition of the integral.
3. Since 1{f>.3 < 1{f25}%f < éf we have

1\ /1.\*
Lirzey < Lig2e) <€f> < <€f>

and by monotonicity and the multiplicative property of the integral,

u(fZE)Z/Ql{fzs}dué (i) /1{f>s}fpdﬂ<( ) /fpd“'
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4. If p(f =o00) > 0, then @, := nlfs_ is a simple function such that
pn < f for all n and hence

nu(f=o00)=E, (pn) < /Qfdu

for all n. Letting n — oo shows [, fdu = oo. Thus if [, fdu < oo then

p(f =o00)=0.
Moreover,
{f >0} =L {f > 1/n}
with pu (f > 1/n) < n [, fdu < oo for each n. n

Theorem 7.4 (Monotone Convergence Theorem). Suppose f, € Lt is a
sequence of functions such that f, T f (f is necessarily in L") then

[t [rasn—c

Proof. Since f,, < f,, < f, for all n < m < oo,

JEEY RS

from which if follows f fn is increasing in n and

lim hg/ﬁ (7.3)

n—oo

For the opposite inequality, let ¢ : 2 — [0,00) be a simple function such
that 0 < ¢ < f, a € (0,1) and £2,, := {f, > ap}. Notice that 2, T {2 and
fn > alg, ¢ and so by definition of [ f,,

[ 22 Bulato,el = aB, 10,6, (7.4)
Then using the identity

lo,p=1q, Zyl{sa:y} = Zyl{w:y}ﬂflm
y>0 y>0

and the linearity of [E,, we have,

lim B, [Lo,¢] = lim D> y-u(2n{o=1y})

n—oo

y>0
= Z ynhf;o w(2, N {p =y}) (finite sum)
y>0
=Y yn{e =y}) =Eu[¢],
y>0
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wherein we have used the continuity of p under increasing unions for the
third equality. This identity allows us to let n — oo in Eq. to conclude
lim, o [ fn > oE, [¢] and since a € (0,1) was arbitrary we may further con-
clude, E, [¢] < lim,_o [ fn. The latter inequality being true for all simple
functions ¢ with ¢ < f then implies that

/f: sup E,f¢] < lim [ fp,
0<p<f n—oo

which combined with Eq. (7.3]) proves the theorem. [

Remark 7.5 (“Explicit” Integral Formula). Given f : {2 — [0, 00] measurable,
we know from the approximation Theorem on 1 f where

22n 1

k
o= D guligeareiny T2 ey
k=0

Therefore by the monotone convergence theorem,

t/ifdu:: lim [ pnd

22n 1
k k k+1
= i E o = < 2" 2"
im 2n/¢<2n<f )+ p(f>2")

n— o0 on
k=0

Corollary 7.6. If f, € L™ is a sequence of functions then

/ini/n

In particular, if Yo~ [ fn < oo then Y 07 | fn < 00 a.e.

Proof. First off we show that

/(f1+f2):/f1+/f2

by choosing non-negative simple function ¢, and 1, such that ¢, T f1 and

Un T f2. Then (¢, + 1) is simple as well and (@, + ¥,) T (f1 + f2) so by the
monotone convergence theorem,

[+ = i [on )= ([on+ [v.)
= Jim [ont lim [v= [+ [
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Now to the general case. Let gy = Z fnand g = Z fn, then gy T g and so
n=1

again by monotone convergence theorem and the add1t1v1ty just proved,

Remark 7.7. It is in the proof of Corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition f fdu makes sense for all functions f: 2 — [0, o0]
not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary we use the approximation Theorem which relies heavily on
the measurability of the functions to be approximated.

Ezample 7.8 (Sums as Integrals I). Suppose, 2 = N, B := 2V 1 (A) = # (A)
for A C {2 is the counting measure on B, and f : N — [0, o¢] is a function. Since

n=1

it follows from Corollary [7.6] that

o0

s Z/f 1) Lyt = Zf nnh) =31

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 7.9 (Sums as Integrals IT*). Let {2 be a set and p : 2 — [0,00] be
a function, let p =3, p(w)d, on B=2% i.e.

p(A) =" p(w).

wEA

If f: 82— [0,00] is a function (which is necessarily measurable), then

fduw=>» fp.
=%
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Proof. Suppose that ¢ : 2 — [0,00) is a simple function, then ¢ =
ZzE[O,oo) Zl{‘P:Z} and

Z‘Pp: ZP(W) Z Zl{ga z} Z Z l{cp z} )
2

wesn? z€[0,00) z€[0,00) wE€N
= > ZM({<P=Z})=/<PCZH~
z€[0,00) 2

So if ¢ : 2 — [0,00) is a simple function such that ¢ < f, then

/ pdp =Y op< Y fp.
2 Q Q

Taking the sup over ¢ in this last equation then shows that

[ fin<> 1o
§2 2]

For the reverse inequality, let A CC {2 be a finite set and N € (0,00).
Set fN(w) = min{N, f(w)} and let ¢y 4 be the simple function given by
onN.A(w) == 14(w) fY (w). Because oy a(w) < f(w),

ZfNP=Z<PN,Ap=/ @N,Adué/ fdp.
- > 0 0

Since fN 1 f as N — 0o, we may let N — oo in this last equation to concluded

ZA:fp < /Q fdp.

Since A is arbitrary, this implies

zﬁ:fp < /Q fdp.

Exercise 7.1. Suppose that u,, : B — [0, 0o] are measures on B for n € N. Also
suppose that u,(A) is increasing in n for all A € B. Prove that u: B — [0, o]
defined by p(A) = lim, o pn(A4) is also a measure.

Proposition 7.10. Suppose that f > 0 is a measurable function. Then
fQ fdu =0 iff f =0 a.e. Also if f,g > 0 are measurable functions such that

[ <g ae. then [ fdu < [ gdup. In particular if f = g a.e. then [ fdu = [ gdp.
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80 7 Integration Theory

Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This
implies that u(¢~'({y})) = 0 for all y > 0 and hence [, pdp = 0 and therefore

Jo fdp = 0. Conversely, if [ fdu =0, then by (Lemma |7.3),
uw(f >1/n) < n/fd,u = 0 for all n.

Therefore, pu(f >0) <> 0% u(f>1/n) =0, ie f=0ae.
For the second assertion let E be the exceptional set where f > g, i.e.

E={weR: f(w)>gw)}

By assumption E is a null set and 1gcf < 1gecg everywhere. Because g =
lgeg+1pg and 1gg =0 a.e.,

/gdu:/lEcgdqu/lEgdu:/lEcgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,
/fdu:/1Eufd,u§/1Ecgd/,L:/gd,u.

Corollary 7.11. Suppose that {f.} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

/hT/fwnHw-

Proof. Let F C {2 be a null set such that f,1gc T flge as n — oo. Then
by the monotone convergence theorem and Proposition

/fn:/fnlEcT/flECZ/fasn—u)o.

Lemma 7.12 (Fatou’s Lemma). If f,, : 2 — [0,00] is a sequence of measur-
able functions then

/ liminf f, <liminf / fn

n—oo n—oo

Proof. Define g; := H>1fk fn so that gi T liminf, .. f, as k — oo. Since
gi < fn for all k < n, -
/gkg/fnforallnzk
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and therefore

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let & — oo to find
/hm inf f, = / lim gy Mot lim /g;€ < lim inf /fn.
n—00 k—oo k—oo T—00
]

The following Corollary and the next lemma are simple applications of Corol-

lary

Corollary 7.13. Suppose that (£2,8, 1) is a measure space and {A,}>~, C B
is a collection of sets such that u(A; N A;) =0 for all i # j, then

p(UpiiAn) = Z p(An).
n=1
Proof. Since

p(U Ay = / Ly 4, dp and
2

> nan) = [ 3 1a,du
n=1 2 =1

it suffices to show

o0
Z la, = 1ux 4, p—ae. (7.5)

n=1

Now 707 1 14, > 1y a, and 3527 14, (w) # 1o

= a,(w)iff we A;N Aj for
some i # j, that is

{w : Z la,(w) # 1= 4, (W)} = Ui Ai N A
n=1
and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (7.5 and hence the corollary. [
Lemma 7.14 (The First Borell — Cantelli Lemma). Let (2,8, 1) be a
measure space, A, € B, and set
(o)
{4, i.0.} ={w € 2 :w € A, for infinitely many n’s} = ﬂ U A,

N=1n>N

If > u(A,) < oo then p({A, i.0.}) =0.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



Proof. (First Proof.) Let us first observe that

{4, i.0.} = {w € : ilAn(w) = oo}.

n=1

Hence if Y | 1(A,,) < co then
oo > Zu(An):Z/ 1And,u:/ ZlAndu
n=1 n=17% 2 =1

o0
implies that > 14, (w) < oo for p - a.e. w. That is to say u({4, i.o.}) = 0.

n=1
(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

w(A, io.) = A}igloou U A,
n>N

< &
hS ngnoo Z 1(An)

n>N
and the last limit is zero since > - | pu(A,) < oo. [

Ezample 7.15. Suppose that (£2,B, P) is a probability space (i.e. P(£2) = 1)
and X, : 2 — {0, 1} are Bernoulli random variables with P (X,, = 1) = p,, and
P(X,=0)=1—=p,. If > p, < oo, then P(X, =11i0.) =0 and hence
P (X, =0 a.a.) =1. In particular, P (lim,_,c X, =0) = 1.

7.2 Integrals of Complex Valued Functions

Definition 7.16. A measurable function f : 2 — R is integrable if f, =
flgssoy and f— = —f 1gp<oy are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

/(Zfd/i:/gﬁdu—/nffdu-

To shorten notation in this chapter we may simply write [ fdu or even [ f for
dpu.
Jo fdu

Convention: If f, g : £2 — R are two measurable functions, let f + g denote
the collection of measurable functions h : £2 — R such that h(w) = f(w) + g(w)
whenever f(w)+ g(w) is well defined, i.e. is not of the form oo — 0o or —oo 4 0.
We use a similar convention for f — g. Notice that if f,g € L!(u;R) and
hi,ho € f + g, then hy = hy a.e. because |f| < oo and |g] < oo a.e.
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Notation 7.17 (Abuse of notation) We will sometimes denote the integral
Jo fdp by p(f) . With this notation we have pu(A) = (14) for all A € B.

Remark 7.18. Since
J <|fI < fe + f-,

a measurable function f is integrable iff [ |f| dp < co. Hence

L' (i R) := {f:Q—>R: fismeasurablcand/|f| du<oo}.
Q

If f,g € L' (;R) and f = g a.e. then fi = g+ a.e. and so it follows from
Proposition that [ fdp = [ gdp. In particular if f,g € L' (u;R) we may

define
|+ adn= [ na

where h is any element of f + g.

Proposition 7.19. The map
feLl'(wR) — [ fdpeR
0

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
L' (3 R) such that f < g a.e.

Proof. Let f,g € L' (1;R) and a,b € R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af +bg € L (u; R)
because

laf +bgl < lal ||+ [bl|g] € L' (11:R).

If a < 0, then
(af)s = —af— and (af)- = —afy

Jar=-a[sva[ti=a(ft.- [£)=a]1

A similar calculation works for ¢ > 0 and the case a = 0 is trivial so we have

shown that
/af = a/f.

Now set h = f + g. Since h =hy — h_,

so that

hy —h_=fr—f-+9+—9g-

or
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82 7 Integration Theory
hy+f-+g9-=h_+fi+9+.

T g e e s
S S I P (A P 9

Finally if f — f- = f < g=g94+ —g— then fi +¢9_ < gy + f- which implies

that
/f++/g,§/g++/f,
or equivalently that

1= 5% fofore o

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [7.10}] |

Therefore,

Definition 7.20. A measurable function f
Jo If] dp < co. Analogously to the real case, let

2 — C is integrable if

Ll(,u;(C):—{f:.QH(C: fismeasumbleand/\ﬂ du<oo}.
2

denote the complex valued integrable functions. Because, max (|Re f|, [Im f]) <

fI < V2max (|Re f|, [Im f]), [|f] dp < oo iff
/|Ref|du+/\1mf\du<oo.
For f € L (u;C) define

/fdu:/Refd,u—l-i/Imfdu.

It is routine to show the integral is still linear on L! (;C) (prove!). In the
remainder of this section, let L' (u) be either L (1;C) or L (u;R). If A € B
and f € L (u;C) or f: 2 — [0, 0] is a measurable function, let

/A fp = /!2 Lafdp.
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Proposition 7.21. Suppose that f € L (u;C), then

/Q fdu'< /Q fldp. (7.6)

Proof. Start by writing [, f du = Re®® with R > 0. We may assume that
R = | /. o fdu| > 0 since otherwise there is nothing to prove. Since

Rze’“’/ﬁf dMZ/Qe*“’f duz/ﬂRe(e’wf)du—i—i/Im(e’“’f)du,

9]

it must be that fQ Im [e’wf] dp = 0. Using the monotonicity in Proposition

/Qfdﬂl:/(2Re(e_i9f)d“</Q‘Re(e_wf)|du</g|f|du.

Proposition 7.22. Let f,g € L (1), then
1. The set {f # 0} is o — finite, in fact {|f| = L} 1 {f # 0} and p(|f] > L) <

oo for all n.
2. The following are equivalent

a) [of=[gp9 foral EcB
b)(];\f—m:o

c) f=g ae

Proof. 1. By Chebyshev’s inequality, Lemma

u71= ) < [ Ifldn <o

for all n.
2. (a) => (c) Notice that

[Ef:/Eg@ﬁE(f—m:o

for all £ € B. Taking E = {Re(f —g) > 0} and using 1pRe(f —g) > 0, we
learn that

OzRe/E(f—g)d,u:/lERe(f—g):>1ERe(f—g):0a.e.

This implies that 15 = 0 a.e. which happens iff
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p({Re(f —g) > 0}) = u(E) = 0.
Similar g(Re(f—g) < 0) = 0 so that Re(f —g) = 0 a.e. Similarly, Im(f —g) =0

a.e and hence f —g =0 a.e., i.e. f =g a.e.
(¢) = (b) is clear and so is (b) = (a) since

’/Ef_/Eg‘S/If—m:o.

Lemma 7.23 (Integral Comparison I). Suppose that h € L (1) satisfies
/ hdup >0 for all A € B, (7.7)
A

then h >0 a.e.

Proof. Since by assumption,
0 :Im/ hdy = / Im hdp for all A € B,
A A

we may apply Proposition to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (7.7) implies

/1A\h|d,u:/—1Ahd,u=—/hdu§0.
Q Q A

However 1,4 |h| > 0 and therefore it follows that [, 14 |h|dp = 0 and so Propo-
sition implies 14 |h| = 0 a.e. which then implies 0 = pu (4) = p (h < 0) = 0.
n

Lemma 7.24 (Integral Comparison II). Suppose (2,B,u) is a o — finite
measure space (i.e. there exists {2, € B such that 2, T 2 and p($2,) < oo for
alln) and f,g: 2 — [0,00] are B — measurable functions. Then f > g a.e. iff

/ fdu > / gdu for all A € B. (7.8)
A A

In particular f = g a.e. iff equality holds in Eq. @

Proof. It was already shown in Proposition that f > g a.e. implies Eq.
(7.8)). For the converse assertion, let B, := {f <nlg, }. Then from Eq. (7.8),

00 > np (§2,,) > /lendu > /ngndu
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from which it follows that both fl1g, and glp, are in L' (1) and hence h :=
flp, —glp, € L' (). Using Eq. (7.8)) again we know that

/h:/lenmA_/ngmAZOforallAEB.
A

An application of Lemma implies h > 0 a.e., i.e. flg, > glp, a.e. Since
B, T {f < oo}, we may conclude that

flifcoey = lim flp, > lim glp, = glijco) ae.

Since f > g whenever f = co, we have shown f > g a.e.
If equality holds in Eq. (7.8, then we know that ¢ < f and f < g a.e,, i.e.

f=gae. [
Notice that we can not drop the o — finiteness assumption in Lemma
For example, let 4 be the measure on B such that u(A4) = co when A # (),
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ()
when they are both zero) in Eq. holds even though f < g everywhere.

Definition 7.25. Let (2,8, 1) be a measure space and L*(n) = L(92,B, 1)
denote the set of L' (u) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

I£ =gl = [ 1f =gl d

and into a metric space using p1(f,g) = ||f — g1 -

Warning;: in the future we will often not make much of a distinction between
L'(u) and L! (1) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 7.26. More generally we may define LP(u) = LP(£2,B, u) for p € [1,00)
as the set of measurable functions f such that

/ 1P dy < oo
0

modulo the equivalence relation; f ~ g iff f = g a.e.

We will see in later that

1/p
e = ([ 1) for e 220
is a norm and (LP(u), ||-||.») is a Banach space in this norm and in particular,

1f +gll, < If1l, + llgll, forall f,g.€ LP (n).
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84 7 Integration Theory

Theorem 7.27 (Dominated Convergence Theorem). Suppose f,, gn,g €

L' (u), fo = f ae, [fu]l < gn € L' (1), gn — g ae. and [, gndp — [, gdp.
Then f € L (n) and

fdp = lim fndp.
Q h—oo J
(In most typical applications of this theorem g, = g € L' (i) for all n.)

Proof. Notice that |f| = limy, oo |[fn| < limpoo [gn] < g a.e. so that
f € L' (u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

[ (o D= [ timint g = g < timint [ (0% 1)
(9] (9} n—0o0 2

= lim gndp + lim inf (:l:/ fnd,u>

/gdu—i—liminf <:|:/ fndu)
Q n—0o0 Q

Since liminf,,_ . (—a,) = — limsup a,,, we have shown,
n—oo

liminf,, fQ fndu
gdui/fduﬁ/gdwr 1
/Q 5 o hrrlnasotip Jo fndp

and therefore

limsup/ fnd,ug/ fdu < liminf/ fndp.

n—oo

This shows that lim [, f,dp exists and is equal to [, fdp. n

Exercise 7.2. Give another proof of Proposition by first proving Eq. (|7.6])
with f being a simple function in which case the triangle inequality for complex
numbers will do the trick. Then use the approximation Theorem [6.39)along with
the dominated convergence Theorem [7.27] to handle the general case.

Corollary 7.28. Let {f,},~, C L'(n) be a sequence such that
ZZO:1 ||fn”Ll(H) < 00, then Zzozl n 18 convergent a.e. and

/ (i_ojl fn> dy — f}l | .
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Proof. The condition 3777, || fnll11(,) < oo is equivalent to 3572 [fu] €

L' (1) . Hence Y°°°, f,, is almost everywhere convergent and if Sy 1= YN f,.,
then

N [e%s)
‘SN| < Z|fn| < Z|fﬂ‘ € Ll (.u)
n=1 n=1

So by the dominated convergence theorem,

fnd:/lidezlim/Sd
/9(7; H  N—oo Nap N—co Jn Nap
N 00
Jim S [ =3 [ fud
=1 n=1

n

Ezample 7.29 (Sums as integrals). Suppose, 2 = N, B := 2V 1 is counting
measure on B (see Example , and f: N — C is a function. From Example
[7.8] we have f € L' (u) iff Y07, |f (n)] < oo, ie. iff the sum, 307 f(n) is
absolutely convergent. Moreover, if f € L (1), we may again write

n=1

and then use Corollary to conclude that

/Nfdui

n=1

/N F) Lmydn =3 F ) u(in) =S ().

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.
However if f (n) = (—1)" %, then

0o N
n;f(n) =ngnoo;f<n)

is perfectly well defined while fN fdp is not. In fact in this case we have,

/Nfidu = 00.

The point is that when we write Y - | f (n) the ordering of the terms in the
sum may matter. On the other hand, fN fdu knows nothing about the integer
ordering.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



The following corollary will be routinely be used in the sequel — often without
explicit mention.

Corollary 7.30 (Differentiation Under the Integral). Suppose that J C R
is an open interval and f : J x 2 — C is a function such that

1. w — f(t,w) is measurable for each t € J.
2. f§t0, ) € LY () for some to € J.
3. %t(t,w) exists for all (t,w).

4. There is a function g € L* (1)

%t(t,-)’ < g for each t € J.

Then f(t,-) € L' (u) for all t € J (ie. [,|f(t,w)]du(w) < o0), t —
fQ ft,w)du(w) is a differentiable function on J, and

/ftwdu /a (t, w)dpu(w).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

g{(t w) = lim n(f(t+n"tw) - f(t,w))
and therefore, for w — %(t,w) is a sequential limit of measurable functions
and hence is measurable for all ¢ € J. By the mean value theorem,

lf(t,w) — f(to,w)] < g(w) |t —to| for allt € J (7.9)
and hence
[t w)] < [f(tw) = flto,w)[ + | f(to, w)| < g(w) [t — to] + | f(to, w)]-
This shows f(t,-) € L' (u) for all t € J. Let G(t) := [, f(t,w)du(w), then
G(t)—G(o) _ [ f(t,w)— f(to,w)
t—to _/ t—to dp(w).

By assumption,

i L) = o) OF e 0
t—to t— tO at

and by Eq. (79),

ft,w) = f(to,w)
t—to

< g(w) for all t € J and w € £2.
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Therefore, we may apply the dominated convergence theorem to conclude

lim G(tn) lim / F(tn,w) — to’w)d,u(w)

n— oo tn 7250 tn —to

:/ lim f(t"’w)_f(to’w)du(w)
0

n— o0 tn —to

= [ o)t

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =
G(t)—G(to)
t—to

exists and

cmwzégﬁmwww»

limtﬂt(]

Corollary 7.31. Suppose that {an}zozo C C is a sequence of complexr numbers
such that series
o0
= Z an(z — 29)"
n=0

is convergent for |z — zo| < R, where R is some positive number. Then f :
D(zp, R) — C is complex differentiable on D(z, R) and

g nan(z — 2z9)"

By induction it follows that f*) exists for all k and that

Z nan(z — 20)" L. (7.10)

oo

f®(z) Z (n—1)...(n—k+Da,(z — 20)" "

Proof. Let p < R be given and choose r € (p,R). Since z = 2y + 1 €
o0
D(zo, R), by assumption the series > a,r™ is convergent and in particular

n=0
M := sup,, |a,r"| < co. We now apply Corollary with X = NU{0}, pu
being counting measure, {2 = D(zo, p) and g(z,n) := a,(z — 29)". Since

19'(z, )| = [nan(z — 20)" | < nlan| p" "
1 n—1 1 n—1
(&) < o (0)
r r r r
svmonob.cls date/time: 19-Feb-2010/11:31



86 7 Integration Theory

and the function G(n) := Xn (g)nil is summable (by the Ratio test for exam-
ple), we may use G as our dominating function. It then follows from Corollary

LL.o0
Z an(z — 20)"

is complex differentiable with the differential given as in Eq. (7.10). [

f(Z)=/X (2, m)dp(n

Definition 7.32 (Moment Generating Function). Let (§2, B, P) be a prob-
ability space and X : {2 — R a random variable. The moment generating
Sfunction of X is Mx : R — [0, 00| defined by

Mx (t) :==E [¢"¥].

Proposition 7.33. Suppose there exists € > 0 such that E [edxq < 00, then
Mx (t) is a smooth function of t € (—¢,€) and

=Y —EX" if [t| <e. (7.11)
— nl
In particular,
d n
EX" = (dt> lt=oMx (t) for all n € Ny. (7.12)

Proof. If |¢t| < ¢, then

nzo ighe 1

it !X < eI for all |t| < e. Hence it follows from Corollary that, for
t| <e,

o0

E?’L
52 x| - B[] <o

n=0

E

0 n X n
tX n n
Mx (t)=E[e"X] =E Zn!X]: —EX".
n=0 n=0
Equation (|7.12)) now is a consequence of Corollary |

Exercise 7.3. Let d € N, 2 = Nd, B = 2% ;1 : B — Ny U {00} be counting
measure on {2, and for x € R% and w € £2, let 2% := %" ... z%». Further suppose
that f : 2 — C is function and r; > 0 for 1 <14 < d such that

S 1f @)l /|f

wes?

| dp (w) < oo,
r4) . Show;

where r := (rq,.. .,
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1. There is a constant, C' < oo such that |f (w)| < £ for all w € £2.
2. Let

U::{xERd:|xi|<n—Vi} andU:{xeRd:|xi|§riVi}

Show Y .o |f (w)a¥| < oo for all z € U and the function, F : U — R
defined by
x) = Z f (w)z* is continuous on U.
wesn
3. Show, for all z € U and 1 < i < d, that

%F (x) = Z wif (w)x“ ™%

wes?

,0) is the 4" — standard basis vector on R,

where ¢; = (0,...,0,1,0,...
- (o5} g d .
4. For any «a € {2, let 0% := (6%1) (%) and o! :=[];_; a;! Explain

why we may now conclude that

0°F (z) = Z alf (w)z¥~ for all x € U. (7.13)
wes?
5. Conclude that f (a) = M for all o € (2.
6. If g : 2 — C is another functlon such that ) g (w)a¥ =3 .o f(w)a®

for x in a neighborhood of 0 € R%, then g (w) = f (w) for all w € £2.

Solution to Exercise ([7.3]). We take each item in turn.

1. If no such C existed, then there would exist w(n) € {2 such that
|f (w(n))|r“™ > n for all n € N and therefore, Y _,|f (W) > n
for all n € N which violates the assumption that ) g [f (w)|r® < oco.

2. If € U, then [2¢] < r* and therefore )  _,|f(w)z¥] <
Yowen lf (W)|rY < oo. The continuity of F' now follows by the DCT
where we can take g(w) |f (w)|r* as the integrable dominating
function.

3. For notational simplicity assume that ¢ = 1 and let p; €
Then for |x;| < p;, we have,

(0,7;) be chosen.

w—er

"Ulf (W)

.. C
| Swip” ™ =g (W)

where p = (p1,...,pa4) . Notice that g (w) is summable since,
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where the last sum is finite as we saw in the proof of Corollary [7.31] Thus
we may apply Corollary in order to differentiate past the integral (=
sum).

4. This is a simple matter of induction. Notice that each time we differentiate,
the resulting function is still defined and differentiable on all of U.

5. Setting z = 0 in Eq. (7.13]) shows (0*F) (0) = alf (a).
6. This follows directly from the previous item since,

olf (a (Z e ) om0 = 0" (Z g () > oo = alg ().
wen we

7.2.1 Square Integrable Random Variables and Correlations

Suppose that (2,8, P) is a probability space. We say that X : 2 — R is
integrable if X € L' (P) and square integrable if X € L?(P). When X is
integrable we let ax := EX be the mean of X.

Now suppose that X,Y : 2 — R are two square integrable random variables.
Since

0<[X —Y* =X+ |V|" - 2|X]||Y],
it follows that
XY <5 \Xl +5 IYI eL'(P).

In particular by taking Y = 1, we learn that |X| < % (1 + |X2|) which shows
that every square integrable random variable is also integrable.

Definition 7.34. The covariance, Cov (X,Y), of two square integrable ran-
dom variables, X and Y, is defined by

Cov(X,)Y)=E[(X —ax)(Y —ay)]| =E[XY]-EX -EY
where ax :=EX and ay := EY. The variance of X,
Var (X) := Cov (X, X) = E[X?] — (EX)? (7.14)

We say that X and Y are uncorrelated if Cov (X,Y) = 0, i.e. E[XY] =
EX - EY. More generally we say {Xy},_, C L*(P) are uncorrelated iff
Cov (X;,X;) =0 for all i # j.
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It follows from Eq. (7.14]) that
Var (X) <E [X?] for all X € L*(P). (7.15)

Lemma 7.35. The covariance function, Cov (X,Y) is bilinear in X andY and
Cov (X,Y) = 0 if either X orY is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k*Var(X). If {Xy},_, are uncorrelated L* (P) -
random variables, then

Var (5, Z Var (Xy)

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X);
Var (X + k) =Cov(X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)
=Cov(X +k,X) =Cov (X, X)+ Cov (k, X)
= Cov (X, X) = Var (X),

wherein we have used the bilinearity of Cov(:,-) and the property that
Cov (Y, k) = 0 whenever k is a constant. ]

Exercise 7.4 (A Weak Law of Large Numbers). Assume {X, }, -, is a se-
quence if uncorrelated square integrable random variables which are identically

distributed, i.e. X, 4 x,, for all m,n € N. Let S,, :=>"}_; X, p := EX}, and
2 .= Var (X}) (these are independent of k). Show;

]E{S"} = i
n

2 2
E(Sn—,u> = Var (SH> :0—, and
n n n

2
Sn_M‘M)SU

n

(

for all € > 0 and n € N. (Compare this with Exercise )

7.2.2 Some Discrete Distributions

Definition 7.36 (Generating Function). Suppose that N : 2 — Ny is an
integer valued random variable on a probability space, (2,8, P). The generating
function associated to N is defined by

Gy (2): ZP =n)z" for |z| < 1. (7.16)
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By Corollary it follows that P (N =n) = %GS\?) (0) so that Gy can
be used to completely recover the distribution of V.

Proposition 7.37 (Generating Functions). The generating function satis-
fies,

GO =E[NWN-1)...(N—k+1)2¥"*] for |2 <1
and

e (1):11%111@(’“) (2) =E[N(N—=1)...(N —k+1)],

where it is possible that one and hence both sides of this equation are infinite.
In particular, G' (1) :=lim,11 G’ (2) = EN and if EN? < oo,

Var (N) =G" (1) + G (1) - [¢' (1)]°. (7.17)
Proof. By Corollary [7.31] for |2| < 1,

Gg\],c)(z):iP(N:n)~n(n—1)...(n—k+1)z”_k
n=0

=E[N(N—-1)...(N—k+1)2N"*]. (7.18)
Since, for z € (0,1),
0OSN(N—-1)...(N=k+1D)2N"*"TNN-1)...(N-k+1) as 2 ] 1,
we may apply the MCT to pass to the limit as z T 1 in Eq. to find,

e (1):11%1110(’“) (2) =E[N(N—=1)...(N —k+1)].

Exercise 7.5 (Some Discrete Distributions). Let p € (0,1] and A > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function, G (2), in each case and use it to verify the given
formulas for EN and Var (N).

1. Bernoulli(p) : P(N=1) = p and P(N=0) = 1 — p. You should find
EN = p and Var (N) = p — p°.

2. Binomial(n,p) : P(N=k) = (Z)pk (1 —p)n_’C for k = 0,1,...,n.
(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n(pfpz).

3. Geometric(p) : P(N=k) = p(1 —p)k*1 for k € N. (P(N =k) is the
probability that the &*™® — trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 132,

p2
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4. Poisson(\) : P(N =k) = %e‘A for all k& € Ny. You should find EN =\ =
Var (N).

Exercise 7.6. Let S, ,, 4 Binomial(n,p), k € N, p,, = A\, /n where A\, = A >0
as n — o0o. Show that

)\k
lim P (S,,, = k)

=—e

A_p (Poisson (\) = k).

Thus we see that for p = O (1/n) and k not too large relative to n that for large
n’

k
(Pn)” —pn
k! '
(We will come back to the Poisson distribution and the related Poisson process
later on.)

P (Binomial (n, p) = k) = P (Poisson (pn) = k) =

Solution to Exercise ([7.6]). We have,

P(Supe =)= (1) O/t (=
CMam-1)...(n—k+1)

n—k
The result now follows since,
-1)...(n— 1
lim "2~ k(" E+D
n—oo n

and

lim In(1—XA,/n)" "= lim (n—k)In(1 - \,/n)

n—oo n—oo

=— lim [(n—k)A\,/n] = —A\.

n—oo

7.3 Integration on R

Notation 7.38 If m is Lebesgue measure on By, f is a mon-negative Borel
measurable function and a < b with a,b € R, we will often write f; f(z)dz or

[? fdm for Jiasyrz fm.

Ezample 7.39. Suppose —oco < a < b < 00, f € C([a,b],R) and m be Lebesgue
measure on R. Given a partition,

T={a=ay<a < - <a,=b},
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let
mesh(r) := max{|a; —a;—1|:j=1,...,n}
and )
fx (‘T) = Z / (al) l(az,al+1](‘r)'
1=0

Then

b n—1 n—1

[ fedm =Y 1 @ m((anaal) = Y F @) o = o)
@ 1=0 1=0

is a Riemann sum. Therefore if {m;},—; is a sequence of partitions with
limy_ o, mesh(7m) = 0, we know that

b b
khﬁrgo/a frn dm:/a f(x)dx (7.19)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a,b], it easily follows that limy_ o fr, (z) = f (2) and that |fr, (z)] <
g(x) == M1(gy) (v) for all z € (a,b] where M := max,¢[q4 |f (7)] < co. Since
fR gdm = M (b — a) < oo, we may apply D.C.T. to conclude,

b b b
klim / fra dmz/ klim fra dm:/ f dm.

This equation with Eq. (7.19) shows

/abfdm:/abf(x)d:r

whenever f € C([a,b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem [7.68| below for a more general statement
along these lines.

Theorem 7.40 (The Fundamental Theorem of Calculus)
—00 < a<b<oo, feC((ab),R)NL ((a,b),m) and F(z) = [ f(y
Then

Suppose

1. F € C([a,b],R) N C*((a,b),R).

2. F'(z) = f(x) for allme(a,b).

3. If G € C([a,b],R) N C*((a,b),R) is an anti-derivative of f on (a,b) (i.e.
[ =G|(ap) then

b
/ F(@)dm(z) = G(b) — Gla).
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Proof. Since F(z fR (a x) (y)dm(y), limg, ., 14 m)( ) = 1(a, z)( ) for
m — a.e. y and |1(a 2 (Y )f( )| < 1(a b)( )|f(y) is an L' — function, it follows
from the dominated convergence Theorem [7.27| that F is continuous on [a, b].
Simple manipulations show,

1) - s dmy)|ith >0
B |2 1) = F@)] dm(y)]| i <0
PR O <>| m(y) it h >0
Al fr-‘rh‘ (y) = f(2)[dm(y) it h <0
Ssup{lf(y)—f(w)lzye [z — |h|, =+ |h|]}

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F’ = f on (a,b).

For the converse direction, we have by assumption that G'(x) = F'(z) for

€ (a,b). Therefore by the mean value theorem, F' — G = C for some constant

F(zx+h)— F(x) _
)0 )| -

C. Hence
b
[ #@dmiz) = Fo) = Fb) - F(a)
= (G(b) + C) — (G(a) + C) = G(b) — G(a).
]
We can use the above results to integrate some non-Riemann integrable

functions:

Example 7.41. For all A > 0,

e 1
/0 e Mdm(x) = A7 and /Rmdm(w) = .

The proof of these identities are similar. By the monotone convergence theorem,
Example [7.39 and the fundamental theorem of calculus for Riemann integrals
(or Theorem below),

e} N N
/ e Mdm(x) = lim e Mdm(x) = lim e~ Mdg
0

— — 1 Az | N Afl
Ngnoo |O
and
1 N N
1 g R oy
/R 1+ 22 dm() N N 1+22 dm() N 1+ 22

macro: svmonob.cls date/time: 19-Feb-2010/11:31



90 7 Integration Theory

Let us also consider the functions z7P. Using the MCT and the fundamental
theorem of calculus,

1
/(0 L dm(z) = lim 1( 1]( ) L dm( )

’1] xP n—oo Jo
: ! i
= lim —dzr = lim
n—oo [1 xP n— oo l—p l/n
1 .
oo ifp>1

If p=1 we find

1 "1
/ — dm(z) = lim —dx = lim ln(w)H/n =00

P

Exercise 7.7. Show
> 1 c ifp<1
/1 xpdm():{pllifp>l'

Ezample 7.42 (Integration of Power Series). Suppose R > 0 and {a,},, is a
sequence of complex numbers such that Y7 |a,|r" < oo for all r € (0, R).
Then

5 oo
[ (S amter = Yo [ sante) = 3 P
@ n=0
for all —R < a < 8 < R. Indeed this follows from Corollary since
o B . oo 18] . lex] .
S [ lellal dmia) < 3 [ lenllal" dmia) + [ Ja] o] dm(a)
n=0"v% n=0 0 0

0 n+1 n+1 [e’]
18" + |af
< ng:0|an| T < 2rnE:0|an|7a" < 00

ﬁn-&-l an+1

where r = max(|5], |a|).

Ezample 7.43. Let {r,}52, be an enumeration of the points in Q N [0,1] and
define

with the convention that
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1

|z — 7y

=bifx=r,

Since, By Theorem

/1 Ly / L d+/” L g
—dr = —dzx —dx
0 ,/\x_rn| rn VI —Tp 0o VIn—x

=2Vr —raly, =2V —aly =2 (VI—rn — Vi)

<4,
we find
f@)dm(z) = 2=n / dzx < 27" =4 < 0.
[0,1] ; [0,1] \/ T — Ty Z

In particular, m(f = co) = 0, i.e. that f < oo for almost every x € [0, 1] and
this implies that

< oo for a.e. z € [0,1].

1
P —
nz::l Ve =1l

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 7.44. The following limit holds,

n

tim [ (1- f)n dm(z) = 1. (7.20)
n—oo [q n
DCT Proof. To verify this, let fu(z) = (1—%)"19,(z). Then
lim,, 00 frn(z) = e~ for all z > 0. Moreover by simple Calculu{lj

l—x<e*forall z e R.

Therefore, for x < n, we have

0<1-L<e @/ — (1 - E)n < {e*z/"r — e,

3

from which it follows that

0 < fu(x) <e® forall z > 0.

! Since y = 1 — x is the tangent line to y = e~ ® at = 0 and e~ is convex up, it

follows that 1 —x < e~ 7 for all x € R.
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From Example we know
/ e fdm(z) =1 < oo,
0

so that e is an integrable function on [0,00). Hence by the dominated con-
vergence theorem,

n o0

lim ; (1—£) dm(z) = lim fn(x)dm(x)

n—oo

_ /O T lim £ (@)dm(z) = /0 " etdm(z) = 1.

MCT Proof. The limit in Eq. (7.20) may also be computed using the
monotone convergence theorem. To do this we must show that n — f, (z) is
increasing in n for each x and for this it suffices to consider n > z. But for
n>z,

where, for 0 <y < 1,

Since h (0) = 0 and

1 1
W (y) = Y

— + +
-y 1-y (1-y)°

it follows that A > 0. Thus we have shown, f, (z) 1 e™* as n — oo as claimed.

Ezample 7.45. Suppose that f, (z) = nlgi(z) for n € N. Then
lim,, o0 fr (z) = 0 for all x € R while

lim [ f,(z)dx= lim 1:1;&0:/ lim f, (z)dx.
n—oo Jr n—oo RN—X®

The problem is that the best dominating function we can take is

n+l'n

g(m)zsgpfn(x)22n~1( 11 ().

Notice that

>0 1 1 1
d: . _—— = =
Lo@ar=3n (3 -0g) = g ==
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Ezample 7.46 (Jordan’s Lemma). In this example, let us consider the limit;

n—oo

g 0 .
lim cos (sin ) e~ 5@ gp.
0 n

Let 0
Jn (0) = 1(0,x) (€) cos <sin n) p—nsin(0)
Then
[fal < L0m € L* (m)
and

lim f, (9) = 1(O,7r] (9) 1{7\'} (0) = 1{7r} (0) .

Therefore by the D.C.T.,
s 9 X
lim [ cos <sin ) e~msinl0) gy = / Liqy (0)dm () = m ({n}) = 0.
0 n R

n—oo

Example 7.47. Recall from Example that

A= / e~ dm(z) for all A > 0.
[0,00)
Let € > 0. For A > 2¢ > 0 and n € N there exists C),(g) < oo such that
o< _i ne_)\gg — xne—)\g; < Cn(g)e—sas.
< Y <

Using this fact, Corollary and induction gives

d\" d\"
D\t S -1 _ _ -z
n!A ( d)\> A /[0’ : ( d)\) e "*dm(x)

= / z"e M dm(x).
[0,00)

nl=A\" /[0 )x"e_)‘”dm(x). (7.21)
,00

That is

Remark 7.48. Corollary may be generalized by allowing the hypothesis to
hold for € X \ E where E € B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary to g(t) =
fooo ly<idm(z),

oy d [ 2 [0
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The last integral is zero since %lmgt = 0 unless t = z in which case it is not
defined. On the other hand g(t) = ¢ so that ¢(¢t) = 1. (The reader should decide
which hypothesis of Corollary has been violated in this example.)

Exercise 7.8 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

sin( %)
Ll Jo” g e

1 14na?
2. lim Z dx
n—oo 0 (1+12 )™

3. nlirrgo fooo %‘Z/Qg) dz

4. For all a € R compute,

oo

f(a):= lim n(1 +n?z?) " 'dz.

Exercise 7.9 (Integration by Parts). Suppose that f,g : R — R are two
continuously differentiable functions such that f’g, fg’, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;

[r@ s@i=- [ 1@ @ (7.22)
R R

Similarly show that if Suppose that f, g : [0,00)— [0,00) are two continuously
differentiable functions such that f’g, fg’, and fg are all Lebesgue integrable
functions on [0, c0), then

/Oo f(@)-g(x)de=—f(0)g(0) - /OO f(@)- g (z)da. (7.23)
0 0

Outline: 1. First notice that Eq. holds if f (z) = 0 for |z| > N for
some N < oo by undergraduate calculus.

2. Let ¢ : R —[0,1] be a continuously differentiable function such that
P (z) =11if |2 <1 and ¢ (z) = 0if |x| > 2. For any € > 0 let ¢.(x) = ¢(ex)
Write out the identity in Eq. with f (x) being replaced by f (z) ¢e ().

3. Now use the dominated convergence theorem to pass to the limit ase | 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. .

Solution to Exercise ([7.9)). If f has compact support in [—N, N] for some
N < oo, then by undergraduate integration by parts,
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N
/Rf <m>-g<x>dw=[Nf (2) - g () de
N
—f<x>g<x>\f_VN—/ f (@) g () de
/ f / /(@
Similarly if f has compact support in [0, 00), then
o N
/0 f<x>~g<x>dx:/0 f () g (@) de
N
z) [N — z)-qg e
)13 / f (@) g (2)d

N
=-f(0)g0) - [ f(z) g (2)da

- N f(zw) J (o) du

For general f we may apply this identity with f (x) replaced by ¥, (z) f (x) to
learn,

|5 @-a@v@dot [ f@)g@ @) de =~ [ 0@ ] @) @

(7.24)
Since 9. (x) — 1 boundedly and |[¢. (x)| = |y (ex)| < Ce, we may use the

DCT to conclude,
leifg/f 2) ¥ (& d:v—/f
lgfg/f 2) ¥ (& dx—/f
W (2)dz| < Ce - /|f

Therefore passing to the limit as € | 0 in Eq. (7.24]) completes the proof of Eq.

(7.22). Equation (7.23)) is proved in the same way.

Definition 7.49 (Gamma Function). The Gamma function, I' : R} —
R4 is defined by

x)dx, and

(x)]dr —0ase]0.

I'(z):= /000 u” e du (7.25)

(The reader should check that I'(x) < oo for all x > 0.)
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Here are some of the more basic properties of this function.
Ezxample 7.50 (I' — function properties). Let I" be the gamma function, then;

1. I' (1) =1 as is easily verified.
2. I'(x +1) = al'(x) for all x > 0 as follows by integration by parts;

I'(z+1) :/ e Yyttt du :/ u” <d e“) du
0 u 0 du

= x/ ut e du =z I'(x).
0

In particular, it follows from items 1. and 2. and induction that

I'(n+1)=nl!for alln € N. (7.26)
(Equation as also proved in Eq. (7.21)).)

3. I'(1/2) = y/m. This last assertion is a bit trickier. One proof is to make use
of the fact (proved below in Lemma [9.29)) that

/ e~ dr = \/j for all @ > 0. (7.27)

Taking a = 1 and making the change of variables, u = 72 below implies,
VT = / e dr = 2/ uwH2edu = I'(1/2).
—0o0 0
> 2 > 2
Ir1/2) = 2/ e " dr :/ e " dr
0 —0o0
=I1(1) = /x.

4. A simple induction argument using items 2. and 3. now shows that

r(ney) =R

where (—1)!l:=1and 2n—1!!'=(2n—-1)(2n—3)...3-1forn € N.

7.4 Densities and Change of Variables Theorems

Exercise 7.10 (Measures and Densities). Let (X, M,p) be a measure
space and p : X — [0,00] be a measurable function. For A € M, set

v(A) = [, pdp.
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1. Show v : M — [0, 0] is a measure.
2. Let f: X — [0, 00] be a measurable function, show

/deVZ/Xfpdu. (7.28)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — C is in L(v) iff |f|p € L'(n)
and if f € L'(v) then Eq. still holds.

Solution to Exercise ([7.10)). The fact that v is a measure follows easily from
Corollary Clearly E holds when f = 14 by definition of v. It then
holds for positive simple functions, f, by linearity. Finally for general f € LT,
choose simple functions, ¢,,, such that 0 < ¢, T f. Then using MCT twice we
find

/fdl/: lim ppdy = lim / @npdu:/ lim ganpd,u:/ fpdu.

By what we have just proved, for all f: X — C we have

J 1= [ 1f1pa

so that f € L' (u) iff |f]p € L' (p). If f € L (1) and f is real,

[sav= [ eav— [ pav= [ fooau— [ fopa

:/X[f+p*f—p]du:/xfﬂdﬂ-

The complex case easily follows from this identity.

Notation 7.51 It is customary to informally describe v defined in Ezxercise
by writing dv = pdy.

Exercise 7.11 (Abstract Change of Variables Formula). Let (X, M, )
be a measure space, (Y, F) be a measurable space and f : X — Y be a mea-
surable map. Recall that v = f.u : F — [0,00] defined by v(A) := u(f~1(A))
for all A € F is a measure on F.

/Ygdv=/x(90f) dp (7.29)

for all measurable functions g : ¥ — [0, oo]. Hint: see the hint from Exercise

10

1. Show
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2. Show a measurable function g : ¥ — C is in L'(v) iff go f € L'(u) and
that Eq. (7.29) holds for all g € L!(v).

Ezample 7.52. Suppose (12, B, P) is a probability space and {X;}!_, are random
variables on {2 with v := Lawp (X71,...,X,), then

E[g(Xl,...,Xn)]:/ngdz/

for all ¢ : R® — R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise with f = (Xy,...,X,) :
22— R" and p = P.

Remark 7.53. As a special case of Example [7.52] suppose that X is a random
variable on a probability space, (£2,8, P), and F (z) := P(X < z). Then

E[f (X)) = / f (z) dF (2) (7.30)

where dF (z) is shorthand for dup (x) and pp is the unique probability measure
on (R, Bg) such that pup ((—o0,z]) = F'(z) for all z € R. Moreover if F': R —
[0, 1] happens to be C'-function, then

dup () = F' (z) dm () (7.31)

and Eq. may be written as
E[f (X)) = / f (@) F' (z) dm. (x) (7.32)

To verify Eq. (7.31]) it suffices to observe, by the fundamental theorem of cal-
culus, that

b
uF((a,b]):F(b)—F(a):/ F’(x)dx:/( .

From this equation we may deduce that pp (A) = [, F'dm for all A € Bg.
Equation [7.32] now follows from Exercise [7.10]

Exercise 7.12. Let F' : R — R be a C'-function such that F’(z) > 0 for all
x € R and lim, o F(2) = +oo. (Notice that F is strictly increasing so that
F~!:R — R exists and moreover, by the inverse function theorem that F~! is
a C! — function.) Let m be Lebesgue measure on Bg and

-1

v(A) =m(F(A)) =m((F~) " (4)) = (F7'm) (4)
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for all A € Bg. Show dv = F’dm. Use this result to prove the change of variable
formula,

/hoF-F’dmz/hdm (7.33)
R R

which is valid for all Borel measurable functions b : R — [0, o0].

Hint: Start by showing dv = F'dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Exercise to
conclude dv = F’'dm on all of Bg. To prove Eq. apply Exercise with
g=hoF and f=F"1

Solution to Exercise (7.12). Let du = F'dm and A = (a,b], then
v((a,b]) = m(F((a,0])) = m((F(a), F(b)]) = F(b) — F(a)

while

b
w((a,b]) = /( ' Fldm = / F'(z)dx = F(b) — F(a).

It follows that both 4 = v = up — where up is the measure described in
Theorem [5.33] By Exercise with g =ho F and f = F~!, we find

/hoF-F’dm:/hoFdV:/hoFd(F*_lm):/(hoF)oF_ldm
R R R R

= / hdm.
R

This result is also valid for all h € L (m).

7.5 Some Common Continuous Distributions

Ezample 7.54 (Uniform Distribution). Suppose that X has the uniform distri-
bution in [0, 5] for some b € (0,00), i.e. X, P =1 -m on [0,b]. More explicitly,

1 b
E[f(X)] = A f (z) dz for all bounded measurable f.

The moment generating function for X is;

ee} 1 . ee] bn .
= o) 1:th :

n=1 n=0
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On the other hand (see Proposition ,

t" "
Mx (t)=>" —EX
n=0
Thus it follows that o
EX"™ =
n+1

Of course this may be calculated directly just as easily,

I 1 b

EX™ = = Ny = n+11b _ .
b/ox “ b(n+1)x T n+1

Definition 7.55. A random wvariable T > 0 is said to be exponential with
parameter \ € [0,00) provided, P (T >t) = e~ for all t > 0. We will write

TLE (M) for short.

If A > 0, we have

P(T>t)=e M= e Adr

—~
3

from which it follows that P (T € (t,t + dt)) = A;>0e~*dt. Applying Corollary
[7-30] repeatedly implies,

> dy [~ d
ET = e Mdr =\ | —— MAr =M —— AT =271
;e ( d/\)/o v ( dA)

and more generally that

) k oo k
ET" = / e adr = A [~ / e dr = A (=L} At = eat,
) ) Jo d\

(7.34)
In particular we see that

Var (T) =2X72 = A2 = \72 (7.35)

Alternatively we may compute the moment generating function for 7T,

My (a) :=E[e*T] = / e e NMdr
0
* A 1

= TN Mdr = = 7.36
/0 @ e TTANCa T 1-ax! (7.36)

which is valid for ¢ < A. On the other hand (see Proposition [7.33]), we know
that
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E[e Z E [T"] for |a| < A. (7.37)
n= O
Comparing this with Eq. (7.36) again shows that Eq. (7.34]) is valid.

Here is yet another way to understand and generalize Eq. (7.36]). We simply
make the change of variables, u = A7 in the integral in Eq. (7.34)) to learn,

oo
ET* = A—’f/ ube tdr = \F0 (k4 1).
0

This last equation is valid for all k¥ € (—1,00) — in particular k£ need not be an
integer.

Theorem 7.56 (Memoryless property). A random variable, T € (0, 00] has
an exponential distribution iff it satisfies the memoryless property:

P(T>s+tT>s)=P(T>t) foralls,t >0,

P(AOB)/ (B) when p(B) > 0. (Note that T <

where as usual, P (A|B) :
> 1 1 for all t > 0 and therefore that T = oo

E (0) means that P (T
a.s.)

Proof. (The following proof is taken from [35].) Suppose first that T' ) (A)
for some A > 0. Then

0=

P(T>s+t —Als+t)
P(T>s+tT>s) = ](D(T;))—ee_m —eM=P(T>1).

For the converse, let g (t) := P (T > t), then by assumption,

g(t+s)

0 =P(T>s+tT>s)=P(T>t)=g(t)

whenever g (s) # 0 and ¢ (¢) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (¢t) = 0 for all £ > s. Thus it follows that

g(t+s)=g(t)g(s) forall s,t > 0.

Since T > 0, we know that ¢g(1/n) = P (T >1/n) > 0 for some n and
therefore, g (1) = g (1/n)" > 0 and we may write g (1) = e~* for some 0 < \ <
00.

Observe for p,q € N, g(p/q) = g(1/q)" and taking p = ¢ then shows,
e =g(1) =g (1/q)?. Therefore, g (p/q) = e *P/% 5o that g (t) = e~ for all
teQy :=QNR,. Given r,s € Q4 and ¢t € R such that r <t < s we have,
since ¢ is decreasing, that
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96 7 Integration Theory
e M =g(r)2gt)2g(s)=e.

Hence letting s Tt and r | t in the above equations shows that g (t) = e~ for
all t € Ry and therefore T ) (A). |

Exercise 7.13 (Gamma Distributions). Let X be a positive random vari-
able. For k,0 > 0, we say that X gGraurnrna(k:, 0) if

(X.P) (dz) = f (z;k,0) dz for z > 0,

where
—x/0

k 0 k 1 €
Find the moment generating function (see Definition n Mx (t) =E [etx ]
for t < 6~. Differentiate your result in ¢ to show

for x > 0, and k,0 > 0.

EX" =k(k+1)...(k+m—1)0™ for all m € Ny.

In particular, E[X] = k6 and Var (X) = k6?. (Notice that when k = 1 and
f=x21 X<LEMN).)

7.5.1 Normal (Gaussian) Random Variables

Definition 7.57 (Normal / Gaussian Random Variables). 4 random
variable, Y, is normal with mean u standard deviation o? iff

P(Y eB)= / ¢~ 27 W= 4y for all B € Bg. (7.38)

v 271'02

We will abbreviate this by writing Y N (,u,aQ) . When =0 and 0> =1 we
will simply write N for N (0,1) and if Y £ N, we will say Y is a standard
normal random variable.

Observe that Eq. (7.38) is equivalent to writing

E[f (V)] = y)e mm 0 dy

1
V2ro? Jr
for all bounded measurable functions, f : R — R. Also observe that Y 4

N (p, 02) is equivalent to Y LN + . Indeed, by making the change of variable,
y = oz + pu, we find
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E[f (0N + )] = V%/Rf(am+u)e‘%””2dw
_L — 52 (y )2@: -
—m/Rf(y)e v Tmz/Rf(
—1/2

y) e—ﬁ(y—uﬁdy.

Lastly the constant, (27r02) is chosen so that

1 1 1 1
e L = [ =

see Example [7.50] and Lemma [9.29]

Exercise 7.14. Suppose that X <N (0,1) and f : R — R is a C! — function
such that X f (X), f'(X) and f (X) are all integrable random variables. Show

Example 7.58. Suppose that X £ N (0,1) and define o := E [X%] for all
k € Ny. By Exercise

ok = E[X?PH . X] = (2k + 1) ay with ap = 1.
Hence it follows that
ar=a9g=1, as =301 =3, ag=5-3
and by a simple induction argument,
EX?* = oy, = (2k — 1)1, (7.39)

where (—1)!! := 0. Actually we can use the I" — function to say more. Namely
for any 8 > —1,

1 1 2 [ 1
]E|X\'8 = 7/ |$|'6 e 3 dy = 1/ f/ 2Pem2 dy.
V2 Jr T Jo

NOI)V make the change of variables, y = 22/2 (i.e. z = /2y and dz = %yil/Qdy)
to learn,

1 o _y —
E|X|B _ ﬁ/o (zy)ﬂ/Ze Yy I/Qdy

1 o0 1
fQﬁ/QA YO0 /20=uy =1 gy \Fgﬁ/?[‘ (5‘2* ) (7.40)
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Exercise 7.15. Suppose that X £ N (0,1) and A € R. Show
f [ 1)\X:| (_)\2/2) )

Hint: Use Corollary - to show, f/(\) =iE [X e X } and then use Exercise
- to see that f’ () satisfies a simple ordinary differential equation.

Solution to Exercise (|7.15)). Using Corollary and Exercise

(7.41)

. d .
/ — E X iAX — E _ iIAX
T\ =B [ X ] =i X €
=i-(iIA)E [e**] = =Af (\) with f(0) =
Solving for the unique solution of this differential equation gives Eq. ([7.41).

Exercise 7.16. Suppose that X £ N (0,1) and ¢t € R. Show E[etX} =

exp (t2 / 2). (You could follow the hint in Exercise or you could use a
completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 7.17. Use Exercise and Proposition to give another proof
that EX2F = (2k — 1)!! when X < N (0,1).

Exercise 7.18. Let X < N (0,1) and o € R, find p: R, — R, := (0, 00) such
that

E[f (1X]")] = p(x)de

for all continuous functions, f : Ry — R with compact support in R;..

f(x)
Ry

Lemma 7.59 (Gaussian tail estimates). Suppose that X is a standard nor-
mal random variable, i.e.

P(XeA= \/%/Ae_ﬁ/de for all A € B,

then for all x > 0,

1 x 2 1 2 1 _ -
P(X>z)<min (= - ——e * /2 e ” /2>< e°/2, 7.42
X za)< (2 V2T V2rx =3¢ ( )

Moreover (see [39, Lemma 2.5]),

T T 1 2
P(X>z)>max(1- , e_‘”/Q) 7.43
X za)2 ( Vor a2+ 1./2r (7.43)
which combined with Eq. proves Mill’s ratio (see [16]);
 P(X>a)
2mx
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Proof. See Figure Where; the green curve is the plot of P (X > x), the
black is the plot of
6—12/2> ,

. (1 1
min [ = — e
2 2mx
the red is the plot of %e"”2/2, and the blue is the plot of

(1 x x 1 _I2/2)
max | — — , e .
2 Vor a?+1.\2r

The formal proof of these estimates for the reader who is not convinced by

—I2/2 1
2rx

0125

o 1 2 3 4

1

Fig. 7.1. Plots of P (X > z) and its estimates.

Figure [7.1] is given below.
We begin by observing that

1
P(X>a)=— [ e¥/ay< /
F/ \/ﬂ
L1 g .

Voma - = \/27r33

If we only want to prove Mill’s ratio ((7.44)), we could proceed as follows. Let
a > 1, then for = > 0,

1 o 2
P(X>z)=— eV /2dy
S

a2
Y /Qdy

e, (7.45)

Varx

/ e~V /2d 1 ie—yz/2|yio¢x
\/271' \/ 2T ax y=r
— Lie—xz/Q [1 _ e—a2x2/2
V2T ax
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98 7 Integration Theory

from which it follows,

lim inf [\/27mce’”2/2~P(X > x)} >1/allasall.

r— 00

The estimate in Eq. (7.45) shows limsup,,_, ., [ 2rae” /2. P (X >z)| <1

To get more precise estimates, we begin by observing,

1 1 r
0
1 1 r 2 1 1 2
< - —— €_x/2d <*—7€_x/2$.
-2 \/27r/0 v= 2 \2r

This equation along with Eq. (7.45]) gives the first equality in Eq. (7.42)). To
prove the second equality observe that /27 > 2, so

1 1
——c
V2r

For x <1 we must show,

or equivalently that f (z) := e/ \/gx <1for 0 <z < 1. Since f is convex

(f” (@) = (22 +1) /2 > o) ,f(0) =1 and f(1) 2 0.85 < 1, it follows that
f <1on[0,1]. This proves the second inequality in Eq. (7.42)).
Tt follows from Eq. (7.46) that

1 1 z 2
PX>z)=-—— [ e V/%d
(X 22)=7 Nl y
1 1 z 1 1
D — ldy = = — ——ux for all z > 0.
-2 \/277/0 4 2 \or o
So to finish the proof of Eq. (7.43) we must show,
1 2
o —z=/2 2
T) = —xe 1+z°)P(X >z
fla) == (144%) P(X > )
:L {xe‘xz/Q—(l—FxQ) /Ooe_yz/Qdy} <Oforall 0 <2z < .
V2T z - -

This follows by observing that f (0) = —1/2 < 0, lim1o f () = 0 and
1

f/ (Z) _ E [671’2/2 (1 71,2) foP(X 2 SC)+ (1+$2) 67m2/2:|

1 2
=2 e ™2 _gP(X > >>07
(m (X=>y)) =

where the last inequality is a consequence Eq. (7.42)).
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7.6 Stirling’s Formula

On occasion one is faced with estimating an integral of the form, f ; e~ G dt,
where J = (a,b) C R and G (¢) is a C! — function with a unique (for simplicity)
global minimum at some point ¢ty € J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (o — «,to + @),
of tg. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G ()2 G (to) + 50 (10) (t — 10)°

Notice that the linear term is zero since ¢ is a minimum and therefore G (ty) =
0. We will further assume that G () # 0 and hence G (tg) > 0. Under these
hypothesis we will have,

1.
/ e~ M qt =~ e_G(tO)/ exp (—G (to) (t — t0)2> dt.
J [t—to| < 2

Making the change of variables, s = 1/ G (o) (t — to) , in the above integral then
gives,

1 1.2
—G(t) gy =~ —G(to)/ -357y
(& = ———e¢€ e S
/J /é(to) ls|<y/G(to) -

= 7__1 e~ Gto) |2 — ._ e_%szdsl
/G(to) VG(to) «

L 6t |\ar_o

1 o 4G(t0)-0?

G (to) G (to) -

If « is sufficiently large, for example if 1/G (to) - « = 3, then the error term is
about 0.0037 and we should be able to conclude that

/ OO gy [ 2T ~Glto) (7.47)
J G (to)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 7.60 (Stirling’s formula). The Gamma function (see Definition
7.49), satisfies Stirling’s formula,
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lim. \/% - (7.48)
In particular, if n € N, we have
n! =T (n+1) ~ 2re "p"+1/2
where we write a,, ~ b, to mean, lim,,_,, < = = 1. (See Example 7? below for a

slightly cruder but more elementary estimate of n!)

Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for I'(x + 1);

I'z+1)= / e itrdt = / e Gt (7.49)
0 0
where
G (t):=t—zlnt.

Then G, (t) = 1—x/t, G, (t) = x/t?, G, has a global minimum (since G, > 0)
at tg = x where )
Gy (x) =2 —zlnz and G, () = 1/x.

So if Eq. (|7.47) is valid in this case we should expect,
I (z+1) 2 2rpe @-2ne) — \/ope=ty#t1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s = /G (to) (t — to) =
ﬁ (t — z) as suggested above. Then

Gz (t) = Gy (2) = (t — w) —zn (t/z) = fS—xln<x+fs>

)

where 1 1
q(u) = — [u—In(1 +u)] foru> —1 with ¢ (0) := 3
u
Setting ¢ (0) = 1/2 makes ¢ a continuous and in fact smooth function on

(—1,00), see Figure Using the power series expansion for In (1 + u) we
find,
o0 k—2
+ Z for |u| < 1. (7.50)
k=3

l\D\H
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Fig. 7.2. Plot of ¢ (u).

Making the change of variables, ¢ = z + y/zs in the second integral in Eq.

[749) yields,

I(x+1)=e (@aho) f/ ds—a::”l/ze*w'f(x),

where

— 00

I(x)= / eiq(\%)‘gds = / sz eiq(ﬁ)szds. (7.51)
7\/5 -
From Eq. (7.50) it follows that lim, ¢ (u) = 1/2 and therefore,
e — (i)s2 e 1.2
/ lim [152_\/5-6 Nz } ds :/ e 2% ds = +2m. (7.52)
—0o0 — o0

So if there exists a dominating function, F' € L' (R, m), such that
_ (i)s2
152_\/5-6(1\/5 < F(s) forall se Rand z > 1,

we can apply the DCT to learn that lim, .., I (x) = v/27 which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. it follows that
q(u)>1/2for -1 <u<0.Sinceu—In(l1+u)>0foru#0(u—1In(l+uwu)is
convex and has a minimum of 0 at © = 0) we may conclude that ¢ (u) > 0 for
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100 7 Integration Theory

all u > —1 therefore by compactness (on [0, M]), min_1<y<pr q(u) = (M) >0
for all M € (0,00), see Remark for more explicit estimates. Lastly, since
Ln (14 u) — 0 as u — oo, there exists M < oo (M = 3 would due) such that
LIn(1+wu) < & for u > M and hence,

1 1 1
=—(1——In(1 > — fi > M.
q(u) u{ » n( —|—u)} 2 oo foruz

So there exists ¢ > 0 and M < oo such that (for all z > 1),

—al—=2)s? es —JZs
l>_ e () <1 mescme © "+ Lyspre”Vos/2
< 1—\/5<3§M€_682 + 1gsare /2

< 8—632 + e—|s|/2 - F (S) c Ll (R,ds) )
m

Remark 7.61 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C? —
function on [0, 1], then by the fundamental theorem of calculus and integration

by parts,
1. 1.
/Oh(t)dt:—/o h(t)d(1—1)

—h(t)(1—1t) |5+/01'h(t)(1—t)dt

h(1) — 1 (0)

1
=h(0)+ % /0 h(t)dv (t) (7.53)

where dv (t) := 2 (1 — t) dt which is a probability measure on [0,1]. Applying

this to h(t) = F(a+t(b—a)) for a C? — function on an interval of points
between a and b in R then implies,

F(b)—F(a):(b—a)F(a)—&-%(b—a)Q/O Fla+t(b—a))dv(t). (7.54)

(Similar formulas hold to any order.) Applying this result with F'(z) = x —
In(l1+z),a=0,and b=1u € (—1,00) gives,

1 ! 1

i.e.
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IR
q(u):§/0 mdu(t).

From this expression for ¢ (u) it now easily follows that
IR 1
q(u 27/ ——dv(t)==zif —1<u<0
W25 [ =

and

1t 1
Q(U)Zi/o md’/@)*m~

So an explicit formula for & (M) is e (M) = (14 M)™? /2.

7.6.1 Two applications of Stirling’s formula

In this subsection suppose = € (0,1) and S, iBinomial(n7 x) for all n € N, i.e.

P, (S, =k) = (Z) =) for0<k<n. (7.55)

Recall that ES,, = na and Var (S,) = no? where 02 := 2 (1 — ). The weak
law of large numbers states (Exercise [4.13)) that

(

and therefore, % is concentrating near its mean value, x, for n large, i.e. S, &
nx for n large. The next central limit theorem describes the fluctuations of S,
about nz.

Sn
— -z
n

1 2
e < —0o
ne2

Theorem 7.62 (De Moivre-Laplace Central Limit Theorem). For all
—o0o < a<b<oo,

S, — 1
lim P<a§m§b):/ e_%yzdy
n—oo o\/n V2 Ja
=Pa<N<D)

d d
where N % N (0,1). Informally, 507\_/%‘"” ~ N or equivalently, S, &£ nx+o+/n-N
which if valid in a neighborhood of nx whose length is order \/n.
Proof. (We are not going to cover all the technical details in this proof as

we will give much more general versions of this theorem later.) Starting with
the definition of the Binomial distribution we have,
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7.6 Stirling’s Formula 101

S k _ n—k
=P (a < S b) (S, € nx + ov/nla,b)) ﬁ?ﬂaﬁ(”)mk (1—2)"F ~ (1—2x)
g\f k (x+zk)k(1—x—zk)
= > P(S.=k) B 1
kenx+o+/nla,b - n—k
Snerovnled (1+ 120" (1- )
n k n—k
= Z ( )m (I—a)" ", 1 (n. k)
kenz+o+/nla,b] = nztz n(l—z—zy) = q\n,
(14 22" (1= )
Letting k = nz+o+v/nyx, i.e. yr, = (k — nx) /o\/n we see that Ay, = yp+1—yr = (7.58)
1/ (o4/n) . Therefore we may write p,, as .
n i Taking logarithms and using Taylor’s theorem we learn
Dn = Z U\/ﬁ<k>xk( — )" Ayg. (7.56) )
yr€lab] (z + zx)In (1 + zk>
x
So to finish the proof we need to show, for k = O (1/n) (yx = O (1)), that 1 1
. (x4 21) (Z}g o 22k+0( _3/2))
ny g n—k — 142
ovn(, |z" (1 —2)" " ~ e 2% asn — 00 (7.57)
(k) 2m =nz + 22213 +0 <n73/2) and
x
in which case the sum in Eq. (7.56)) may be well approximated by the “Riemann
sum.:” (I—z—2z)In{1- 2L
’ 1—2z
Z %e 2ykAyk—> / e~ 3V’ dy as n — oo. =n(l—xz—z) | — ! 2k — 1 ziJrO(n*‘i/Z)
yi Ela,b] v 11—z 2(1—1‘)
_ n 2 —3/2
By Stirling’s formula, = —nz+ 2(1— x)zk +0 (n / ) .
ov/n " _, \/ﬁl n! e Vvn nrtl/2 and then adding these expressions shows
k Kl (n—k)! V2m pht1/2 (n — k)nRkHL/2
1
_ 1 —1nq(n,k)zgz,%( +1>+O(n_3/2)
NG (E)kJrl/Q (1- E)n—kﬂ/z -
n n n 0 (n-32) =124 0(n32
_c 1 = 5 QZk + = ka + n .
- m " k+1/2 " n—k+1/2
(I + Tyk) (1 —T = Rk ) Combining this with Eq. (7.58) shows,
1 1
n—k N\ k1 _ an—k 1 [ ( 73/2)
O (ot o) (12— o) V() 1o e (-p 4O o
— 1 - 1 —. which gives the desired estimate in Eq. (7.57)) [
V2T (x I %yk) (1 e %yk)" The previous central limit theorem has shown that
Sy d
In order to shorten the notation, let zx := “Zy, = O (n=1/2) so that k = - >4 %N
nx + nzy = n(x + z;) . In this notation we have shown,
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102 7 Integration Theory

which implies the major fluctuations of S, /n occur within intervals about z
of length O (ﬁ) . The next result aims to understand the rare events where

Sp/n makes a “large” deviation from its mean value, = — in this case a large
deviation is something of size O (1) as n — oo.

Theorem 7.63 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem . Then for ally € (0,2),

— X

1 1
lim —In P, <Sn §y) :ylnf—l—(l—y)ln
n Y 1

n—oo N

Roughly speaking,

Px & < y ~ e_nlm(y)
P

where I, (y) is the “rate function,”

Fig. 7.3. A plot of the rate function, I /5.

Proof. By definition of the binomial distribution,
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r(Zcy)=rsism = X ()t a-at

k<ny

If a, > 0, then we have the following crude estimates on ZZ:OI ks

m—1
maxay, < E ar < m-maxay. (7.59)
k<m P k<m

In order to apply this with a, = (})z" (1 — 2)"* and m = [ny], we need to
find the maximum of the a; for 0 < k < ny. This is easy to do since ay is
increasing for 0 < k < ny as we now show. Consider,

L (kil)xk—i_l (1- x)n_k_l
a (Mak (1 —2)" "
Elln—k)!-x
k+1)!-(n—k=1)!(1-2x)
(n—k) x
(k+1)-(1—2z)

Therefore, where the latter expression is greater than or equal to 1 iff

B >l = k) z > (k+1)-(1-2)
ag

= ne>k+l-z <= k<(n-—-1)z—-1.

Thus for k < (n — 1) x — 1 we may conclude that (})z* (1 — 2)" " is increasing

in k.
Thus the crude bound in Eq. ((7.59)) implies,

({ n ])x[”y] (1- x)”—[”y] <P, <5;: < y) < [ny] ([:y])x[ny] (1- x)n—[ny]

ny

or equivalently,

2 (g )

<o) ()t

By Stirling’s formula, for k£ such that k and n — k is large we have,
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n 1 nn+1/2 B \/ﬁ 1
k V2 kk+1/2 . (n — k)n—k+1/2  Vor ( )k+1/2 (1 _ E)n_kﬂ/z
lln (n) N—Eln <k> _ (1_ k) In (1_ k)
n k n n n n

So taking k = [ny], we learn that

and therefore,

n—oo M

1
lim ln< " ) =—yhy—(1-y)ln(l—y)
Y
and therefore,
.1 Sn
lim —In P, ?gy =—yhhy—(1-y)ln(l—-y)+yhz+1—-y)ln(l—-=z)

n—oo N,
x 1—2
=yln—+ 1—yln( )
" (1—-y) -
]

As a consistency check it is worth noting, by Jensen’s inequality described
below, that

T 1—2x T 1—2x
—Imy:yln—&-l—yln()§1n<y+1—y )zlnle.
@)=y + (1 -y (= L) =l

This must be the case since

1 n 1
_Ix(y): lim *lan (i Sy) S lim —Inl=0.

n—oo N, n—oo N,

7.7 Comparison of the Lebesgue and the Riemann
Integral*

For the rest of this chapter, let —00 < a < b < 0o and f : [a,] — R be a
bounded function. A partition of [a,b] is a finite subset © C [a,b] containing
{a, b}. To each partition

r={a=ty<t1<---<t,=0>} (7.60)

of [a, b] let
mesh(7) := max{|t; —t;_1|:j=1,...,n},
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7.7 Comparison of the Lebesgue and the Riemann Integral® 103
Mj =sup{f(z):t; <z <tj1}, my =inf{f(x):{; <o <t; 1}

Gr = f(@)lgay + ) Mjla, 1)y 9n = f(@)lay + Y myl, ) and
1 1
Sef =Y Mj(t;

b b
Sﬁf:/ Grdm and sﬁf:/ grdm.

The upper and lower Riemann integrals are defined respectively by

ti—1) and s f = ij ti—1).
Notice that

) a
/ f(x)dx = il;Lf Srf and / f(x)dx = sup sif.
a Jp 7r

Definition 7.64. The function f is Riemann integrable iff Ef = ibf eR

and which case the Riemann integral fab f is defined to be the common value:

/ab f(x)dx = /abf(x)dac = /abf(sc)dm

The proof of the following Lemma is left to the reader as Exercise
Lemma 7.65. If 7' and m are two partitions of [a,b] and 7 C 7' then

G‘ITZGﬂ/ ZfZgn’ Zgﬂ and
SwaSn'fZSTr/fZSwf-

There exists an increasing sequence of partitions {my}r.,; such that mesh(my) |
0 and

swkflff andsﬂka/bf as k — .

If we let
G := lim G, and g := lim g, (7.61)
k—oo k—o00
then by the dominated convergence theorem,

b
/ gdm = lim G, = lim sq f z/ f(z)dz (7.62)

[a,b] k=00 Jla,b] k=00 Ja_

and

e
/ Gdm = lim Gr, = lim Sz, f :/ f(z)de. (7.63)

[a,b] k—oo [a,b] k—o0 a
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104 7 Integration Theory
Notation 7.66 For z € [a,b], let

H(z) = limsup f(y) := lim sup{f(y) : [y — o[ <e, y € [a,b]} and

Yy—x

h(z) = liminf f(y) := 1511101 inf {f(y):|ly—2x| <e, y€la,b]}.

y—w
Lemma 7.67. The functions H,h : [a,b] — R satisfy:

1. h(z) < f(z) < H(x) for all x € [a,b] and h(x) = H(z) iff f is continuous
at x.
2. If {my}rey is any increasing sequence of partitions such that mesh(my) | 0

and G and g are defined as in Eq. , then
Gx)=H(z) > f(z) > h(z) =g(z) Va¢mr:=Up Tk (7.64)

(Note 7 is a countable set.)
3. H and h are Borel measurable.

Proof. Let G, := G, | G and gx :==gr, T g

1. Tt is clear that h(z) < f(z) < H(x) for all z and H(x) = h(x) iff lim f(y)
Yy—x

exists and is equal to f(x). That is H(z) = h(x) iff f is continuous at z.
2. For x ¢ m,
Gi(x) > H(z) > f(x) > h(x) > gi(x) V k

and letting £ — oo in this equation implies
G(2) > H(z) > f(2) > hiz) > g(2) V2 ¢ . (7.65)
Moreover, given € > 0 and z ¢ T,

sup{f(y) : ly — [ <&, y € [a,b]} > Gi(2)

for all k large enough, since eventually G (z) is the supremum of f(y) over
some interval contained in [z — €,z + €]. Again letting ¥ — oo implies

sup  f(y) > G(x) and therefore, that
ly—z|<e

H(x) = limsup f(y) > G(x)
Yy—x
for all ¢ m. Combining this equation with Eq. (7.65)) then implies H(z) =
G(z) if x ¢ m. A similar argument shows that h(x) = g(z) if * ¢ 7 and

hence Eq. ((7.64) is proved.

3. The functions G and ¢ are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set ,
both H and h are also Borel measurable. (You justify this statement.)
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Theorem 7.68. Let f : [a,b] — R be a bounded function. Then

3 b
/ f= Hdm and/ f :/ hdm (7.66)
a [a,b] Ja [a,b]

and the following statements are equivalent:

1. H(xz) = h(zx) for m -a.e. x,
2. the set
E :={x € a,b] : f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measumblfﬂ ie. fis L/B -
measurable where L is the Lebesgue o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm = / f(z)dx = fdm = hdm. (7.67)
[a,b] a [a,b] [a,b]

Proof. Let {m},—, be an increasing sequence of partitions of [a,b] as de-
scribed in Lemma and let G and g be defined as in Lemma Since

m(rw) =0, H = G a.e., Eq. (7.66]) is a consequence of Eqs. (7.62)) and (7.63)).
From Eq. (7.66)), f is Riemann integrable iff

/ Hdm = hdm
[a,b] [a,b]

and because h < f < H this happens iff h(z) = H(x) for m - a.e. x. Since
E ={x: H(z) # h(x)}, this last condition is equivalent to F being a m — null
set. In light of these results and Eq. , the remaining assertions including
Eq. are now consequences of Lemma [

Notation 7.69 In view of this theorem we will often write ff f(z)dz for
I? fdm.

2 f need not be Borel measurable.
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7.8 Measurability on Complete Measure Spaces*

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 7.70. Suppose that (X, B, ) is a complete measure spaceﬁ and
f: X — R is measurable.

1. If g : X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If f, - X — R are measurable and f : X — R is a function such that
lim, .o fn = f, u - a.e., then f is measurable as well.

Proof. 1. Let £ = {x : f(x) # g(z)} which is assumed to be in B and
w(E) =0. Then g = 1gcf + 1gg since f = g on E°. Now lg.f is measurable
so g will be measurable if we show 1gg is measurable. For this consider,

1,0 JEU(Qgg)Tt(A\{0})if0€ A
(1eg)” (4) = {(1E9)1(A) if0¢ A (7.68)
Since (1gg)~'(B) ¢ E if 0 ¢ B and p(E) = 0, it follow by completeness
of B that (1gg)~(B) € B if 0 ¢ B. Therefore Eq. (7.68)) shows that 1gg is
measurable. 2. Let E = {z : lim f,(z) # f(z)} by assumption E € B and

w(E) = 0. Since g := 1gf = lim, 0o Lge frn, ¢ is measurable. Because f = ¢
on E¢ and u(E) =0, f = g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, B, 1) is not complete. For exam-
ple, let X = {0,1,2}, B={{0}, {1,2}, X, ¢} and p = §p. Take g(0) =0, g(1) =
1, g(2) =2, then g = 0 a.e. yet g is not measurable.

Lemma 7.71. Suppose that (X, M, ) is a measure space and M is the com-
pletion of M relative to pu and [i is the extension of i to M. Then a function
f: X —Ris (M,B=Bgr) — measurable iff there exists a function g : X — R
that is (M, B) — measurable such E = {x : f(x) # g(x)} € M and i (E) = 0,
i.e. f(x) = g(x) for i — a.e. x. Moreover for such a pair f and g, f € L*(ji) iff

g € L' (i) and in which case
/ fdp = / gdp.
X X

Proof. Suppose first that such a function g exists so that () = 0. Since
g is also (M, B) — measurable, we see from Proposition that fis (M, B) —
measurable. Conversely if f is (M, B) — measurable, by considering f+ we may

3 Recall this means that if N C X is a set such that N C A € M and u(4) = 0,
then N € M as well.
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assume that f > 0. Choose (/\;I,B) — measurable simple function ¢,, > 0 such
that ¢, T f as n — oco. Writing

Pn = Z aklAk

with Ay € M, we may choose By, € M such that Bj, C A, and ji(Ax \ Bx) = 0.

Letting
D, 1= Z arlp,

we have produced a (M, B) — measurable simple function @, > 0 such that
E, = {on # &n} has zero i — measure. Since i (U,E,) < > [i(Ey), there
exists F' € M such that U, E,, C F and p(F) = 0. It now follows that

lp-@n=1p-@op Tg:=1pf asn — oo.

This shows that g = 1gf is (M, B) — measurable and that {f # g} C F has i
— measure zero. Since f = g, i — a.e., [ fdji = [, gdfi so to prove Eq. (7.69)

it suffices to prove
/ gdji = / gdj. (7.69)
X X

Because i = p on M, Eq. is easily verified for non-negative M — mea-
surable simple functions. Then by the monotone convergence theorem and
the approximation Theorem [6.39] it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by con-
sidering (Reg), and (Img), . |

7.9 More Exercises

Exercise 7.19. Let i be a measure on an algebra A C 2%, then u(A)+u(B) =
uw(AUB)+ pu(ANB) for all A, B € A.

Exercise 7.20 (From problem 12 on p. 27 of Folland.). Let (X, M, pu)
be a finite measure space and for A,B € M let p(A4,B) = u(AAB) where
AAB = (A\ B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:

1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) forall A,B,C € M.

2. Define A ~ B iff u(AAB) = 0 and notice that p (A, B) = 0 iff A ~ B. Show
“~ 7 is an equivalence relation.

3. Let M/ ~ denote M modulo the equivalence relation, ~, and let [A] :=
{B € M: B~ A}.Show that p([A], [B]) := p (4, B) is gives a well defined
metric on M/ ~ .
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106 7 Integration Theory
4. Similarly show fi ([A]) = p (A) is a well defined function on M/ ~ and show
i (M/~)— Ry is p — continuous.

Exercise 7.21. Suppose that p, : M — [0, 00] are measures on M for n € N.
Also suppose that p,(A) is increasing in n for all A € M. Prove that p: M —
[0, 00] defined by p(A) := lim, o0 pin(A) is also a measure.

Exercise 7.22. Now suppose that A is some index set and for each A € A, uy :
M — [0, 00] is a measure on M. Define pr : M — [0, 00] by u(A) = >y 4 ua(A)
for each A € M. Show that y is also a measure.

Exercise 7.23. Let (X, M, 1) be a measure space and {4, } —; C M, show

n({A, a.a.}) <liminf p(A,)

n—0o0

and if g (Upm>nAm) < oo for some n, then

ﬂ({An 10}) > limsup p (An) .

n—oo

Exercise 7.24 (Folland 2.13 on p. 52.). Suppose that {f,} - is a sequence
of non-negative measurable functions such that f, — f pointwise and

lim fn:/f<oo.

Then
/ f= lim fn
n—oo

for all measurable sets £ € M. The conclusion need not hold if lim,, f fn =
J f- Hint: “Fatou times two.”

Exercise 7.25. Give examples of measurable functions {f,} on R such that
fn decreases to 0 uniformly yet f fndm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0, 1] such that g, — 0 while
J gndm =1 for all n.

Exercise 7.26. Suppose {an}zo:,oo C C is a summable sequence (i.e.

S22 lan] < o0), then f(6) :== 307 a,e™™ is a continuous function for
0 € R and

%:i/f@aww
2 J_,

Exercise 7.27. For any function f € L' (m), show = €
Ref(ioo_z]f(t) dm (t) is continuous in z. Also find a finite measure, pu,

on Bg such that z — f(_oo 2] f(t)dp (t) is not continuous.
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Exercise 7.28. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is wrong
by a factor of —1 and the sum is on & =1 to co. In part (e), s should be taken
to be a. You may also freely use the Taylor series expansion

oo
_\-1/2 (2n—1)!
(1-2) Z ol Z 22’ for |z < 1.
n=0 n=0
Exercise 7.29. Prove Lemma [7.65]
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8

Functional Forms of the m — A Theorem

In this chapter we will develop a very useful function analogue of the m — A
theorem. The results in this section will be used often in the sequel.

8.1 Multiplicative System Theorems

Notation 8.1 Let 2 be a set and H be a subset of the bounded real valued
functions on 2. We say that H is closed under bounded convergence if; for
every sequence, { f,},-, C H, satisfying:

1. there exists M < co such that |f,, (W)| < M for allw € 2 and n € N,
2. f(w):=1limy, o fn (w) exists for all w € 2, then f € H.

A subset, M, of H is called a multiplicative system if M is closed under
finite intersections.

The following result may be found in Dellacherie [8, p. 14]. The style of
proof given here may be found in Janson |21, Appendix A., p. 309].

Theorem 8.2 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from {2 to R which contains the
constant functions and is closed under bounded convergence. If M C H is a mul-
tiplicative system, then H contains all bounded o (M) — measurable functions.

Proof. In this proof, we may (and do) assume that H is the smallest sub-
space of bounded functions on {2 which contains the constant functions, contains
M, and is closed under bounded convergence. (As usual such a space exists by
taking the intersection of all such spaces.) The remainder of the proof will be
broken into four steps.

Step 1. (H is an algebra of functions.) For f € H, let Hf :=
{g€H:gf € H}. The reader will now easily verify that H/ is a linear sub-
space of H, 1 € Hf, and H/ is closed under bounded convergence. Moreover if
f € M, since M is a multiplicative system, M C H/. Hence by the definition of
H, H=H’, ie. fg € H for all f € M and g € H. Having proved this it now
follows for any f € H that M C H/ and therefore as before, Hf = H. Thus we
may conclude that fg € H whenever f,g € H, i.e. H is an algebra of functions.

Step 2. (B:={AC2:14 € H} is a 0 — algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed

under complementation, finite intersections, and contains {2, i.e. 3 is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is o — algebra.

Step 3. (H contains all bounded B — measurable functions.) Since H is a
vector space and H contains 14 for all A € B, H contains all B — measurable
simple functions. Since every bounded B — measurable function may be written
as a bounded limit of such simple functions (see Theorem , it follows that
H contains all bounded B — measurable functions.

Step 4. (6 (M) C B.) Let ¢, () = 0V [(nx) A 1] (see Figure below)
so that ¢, (z) T 1;s0. Given f € M and a € R, let F,, := ¢, (f —a) and
M :=sup,cp|f (w) — a|. By the Weierstrass approximation Theorem |4.36| we
may find polynomial functions, p; (x) such that p; — ¢,, uniformly on [—M, M].
Since p; is a polynomial and H is an algebra, p; (f — a) € H for all I. Moreover,
pio(f —a) — F, uniformly as [ — oo, from with it follows that F,, € H for all
n. Since, F,, T 1ifs4y it follows that 1(s5q) € H, ie. {f > a} € B. As the sets
{f > a} with a € R and f € M generate o (M), it follows that o (M) C B.

Fig. 8.1. Plots of 1, 2 and @s3.

Second proof.* (This proof may safely be skipped.) This proof will make
use of Dynkin’s m — A\ Theorem Let

L:={ACR:1,cH}.



108 8 Functional Forms of the m — A Theorem

We then have 2 € L since 1o =1€ H, if A,B € £ with A C Bthen B\A€ L
since 1g\4 = 1p — 14 € H, and if A,, € £ with A,, T A, then A € L because
1laq, € Hand 14, T 14 € H. Therefore £ is A — system.

Let ¢, () = 0V [(nx) A 1] (see Figure above) so that ¢, () T lzso.
Given f1, fo,..., fr € M and aq,...,ax € R, let

k
Fn = HQOn (fz - ai)
=1

and let
M= sup suplfi (@) - ail.
i=1,..,k w
By the Weierstrass approximation Theorem we may find polynomial func-
tions, p; (z) such that p; — ¢, uniformly on [—M, M] .Since p; is a polynomial
it is easily seen that Hle pio (f; —a;) € H. Moreover,

k
le o (fi — a;) — F, uniformly as | — oo,
i=1

from with it follows that F, € H for all n. Since,

k

Fnl H Wpivay = 1m§:1{fi>ai}
i=1

it follows that 1nr (r,,,) € H or equivalently that Nk, {fi > a;} € L. There-
fore £ contains the m — system, P, consisting of finite intersections of sets of
the form, {f > a} with f € M and a € R.

As a consequence of the above paragraphs and the m — A Theorem L
contains o (P) = o (M) . In particular it follows that 14 € H for all A € o (M).
Since any positive o (M) — measurable function may be written as a increasing
limit of simple functions (see Theorem [6.39)), it follows that H contains all non-
negative bounded o (M) — measurable functions. Finally, since any bounded
o (M) — measurable functions may be written as the difference of two such
non-negative simple functions, it follows that H contains all bounded o (M) —
measurable functions. ]

Corollary 8.3. Suppose H is a subspace of bounded real valued functions such
that 1 € H and H is closed under bounded convergence. If P C 2 is a mul-
tiplicative class such that 14 € H for all A € P, then H contains all bounded
o(P) — measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [8.2] [
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Ezample 8.4. Suppose p and v are two probability measure on ({2, B) such that

/Q Fdp = /Q fdv (8.1)

for all f in a multiplicative subset, M, of bounded measurable functions on {2.
Then g = v on o (M) . Indeed, apply Theorem with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U {14 : A € P} with P being a multiplicative class we learn that y = v on
cM)=0c(P).

Here is a complex version of Theorem [8.2

Theorem 8.5 (Complex Multiplicative System Theorem). Suppose H is
a complex linear subspace of the bounded complex functions on 2, 1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spans(M U {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (My) = o (M) . Let

HE .= {f € H: f is real valued} and
M = {f € My : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HE. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem H® contains
all bounded o (M{§) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(erf) and Im f = %(fff) are in H or
M respectively. Therefore My = M§ + iM§, o (M§) = o (M) = o (M), and
H = H® + iHX. Hence if f : 2 — C is a bounded o (M) — measurable function,
then f = Re f +iIm f € H since Re f and Im f are in HE. [

Lemma 8.6. Suppose that —0o < a < b < 0o and let Trig(R) C C (R, C) be the
complez linear span of {x — ¢** : X € R} . Then there exists f, € C. (R, [0,1])
and g, €Trig(R) such that im, oo fr (2) = L(ap) () = limy, o0 gn () for all
rzeR.

Proof. The assertion involving f, € C. (R, [0,1]) was the content of one of
your homework assignments. For the assertion involving g, €Trig(R), it will
suffice to show that any f € C. (R) may be written as f (z) = lim,— o gn ()
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for some {g,,} CTrig(R) where the limit is uniform for z in compact subsets of
R.

So suppose that f € C.(R) and L > 0 such that f(z) = 0 if |z| > L/4.
Then

fu@)= > f(z+nl)

n=—oo

is a continuous L — periodic function on R, see Figure If € > 0 is given, we

5 10

I

Fig. 8.2. This is plot of fs (z) where f (z) = (1 — r2) ljz)<1. The center hump by
itself would be the plot of f (x).

may apply Theorem to find A CC Z such that

fL <21;1_$) _ Za)\eiam

ac

<eforall z € R,

wherein we have use the fact that  — fr (&) is a 27 — periodic function of
z. Equivalently we have,

<e.

fr(x) — Z a>\ei%Taac

acA

max
x

In particular it follows that fr, (x) is a uniform limit of functions from Trig(R).
Since limy, o f1 () = f (z) uniformly on compact subsets of R, it is easy to
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conclude there exists g, €Trig(R) such that lim, .. gn () = f (x) uniformly
on compact subsets of R. [ |

Corollary 8.7. Each of the following ¢ — algebras on R? are equal to Bga;

I My =0 {z— f(z): feC.(R)}),

2. My := U(.T — f1 (Il) .. ~fd (xd) : fi eC. (R))
S Mz=oc (CC (Rd)) , and

4. My:=0 ({x — T e Rd}) .

Proof. As the functions defining each M; are continuous and hence Borel
measurable, it follows that M; C Bga for each i. So to finish the proof it suffices
to show Bra C M, for each <.

M case. Let a,b € R with —0co < a < b < oo. By Lemma there
exists f, € C.(R) such that lim, .o fn = 1(ap). Therefore it follows that
T — liap (x;) is My — measurable for each i. Moreover if —oco < a; < b; < 00
for each ¢, then we may conclude that

d
2= [ Lanba) (@) = Lay by} xx (ansba) (%)

i=1

is M — measurable as well and hence (aj,b1] X -+ X (aq,bq] € M;. As such
sets generate Bre we may conclude that Bra C M;.

and therefore M = Bga.

My case. As above, we may find f;,, — 1¢4,,) @ n — oo for each 1 <i < d
and therefore,

Liar,bu]x - x (aa,ba] (T) = nh_)rr;O fin(@1) ... fan (xq) forall z € R%.

This shows that 14, b,]x..-x(aq,bs] 15 M2 — measurable and therefore (a1, ;] x
cee X (ad,bd] € Mo.

M3 case. This is easy since Bgra = My C M3j.

My case. By Lemma here exists g, €Trig(R) such that lim, . gn =
L(a,p)- Since & — g, () is in the span {x — e\ € Rd} for each n, it follows
that 2 — 1(4) (7;) is My — measurable for all —co < a < b < oo. Therefore,
just as in the proof of case 1., we may now conclude that Bra C M. [

Corollary 8.8. Suppose that H is a subspace of complex valued functions on
R? which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

I.M:={z— fi(z1)... fa(zq) : fi € C.(R)}
2.M:=C, (Rd), or
3. M := {a:%ei)"‘r:)\ERd}
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then H contains all bounded complex Borel measurable functions on R<.

Proof. Observe that if f € C. (R) such that f(z) = 1 in a neighborhood
of 0, then f, (x) := f(z/n) — 1 as n — oo. Therefore in cases 1. and 2., H
contains the constant function, 1, since

L= lim fo (). o ().

In case 3, 1 € M C H as well. The result now follows from Theorem and
Corollary m

Proposition 8.9 (Change of Variables Formula). Suppose that —oco <
a <b<ooandu: [ab — R is a continuously differentiable function. Let
[e,d] = u([a,b]) where ¢ = minu ([a,b]) and d = maxu ([a,b]). (By the interme-
diate value theorem w ([a,b]) is an interval.) Then for all bounded measurable
functions, f:[c,d] — R we have

u(b) b
/ f(@)de = / Flu ()i () dt. (8.2)
u(a) a

Moreover, Eq. is also walid if f : [c,d] — R is measurable and

/ |f (w ()] | (t)] dt < . (8.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. holds. It is easily checked that H is a linear space closed under bounded
convergence. Next we show that M = C ([¢,d],R) C H which coupled with
Corollary [8.8| will show that H contains all bounded measurable functions from
[e,d] to R.

If f:[c,d] — R is a continuous function and let F' be an anti-derivative of
f. Then by the fundamental theorem of calculus,

b b
[ ta®yiwd= [ Fu@ioa

- /bdF(u () dt = F (u(t)) [}
. dt ‘

u(b) u(b)
:F(u(b))—F(u(a)):/() F’(a:)dx:/() f(z) da.

Thus M C H and the first assertion of the proposition is proved.

Now suppose that f : [c,d] — R is measurable and Eq. (8.3) holds. For M <
oo, let fur (x ) = f( ) - 1jf(z))<m — @ bounded measurable function. Therefore
applying Eq. (8.2) with f replaced by |fas| shows,
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u(b)

|far (z)] da| = t)| @ (t)dt

/UM DI i (1) dt.

u(a)

Using the MCT, we may let M T oo in the previous inequality to learn
u(b

/ x)|dx
u(a)

Now apply Eq. (8.2) with f replaced by fus to learn

/:(b dx—/ Far (u (1)) (1) dt.

Using the DCT we may now let M — oo in this equation to show that Eq. (8.2))
remains valid. [

</|f DI (t)] dt < .

Exercise 8.1. Suppose that v : R — R is a continuously differentiable function
such that @ (t) > 0 for all ¢t and lim;_, o u (t) = £oo. Show that

/]R f(z)dz = /R Fu ()i () dt (8.4)

for all measurable functions f : R — [0, 00]. In particular applying this result
to u (t) = at + b where a > 0 implies,

/Rf(x)dxza/Rf(at—&-b)dt

Definition 8.10. The Fourier transform or characteristic function of a
finite measure, u, on (Rd, BRd) , is the function, fi : R* — C defined by

()= / e Tdy (x) for all X € RY
Rd

Corollary 8.11. Suppose that p and v are two probability measures on
(Rd,BRd) . Then any one of the next three conditions implies that u = v;

L Joa fr(z1) . fa(za)dv(z) = [pu fi(@1)... fa(zq)dp(x) for all f; €

CC(]R).
(z) for all f € C. ( )

2 Jpa f = Jra £ (

3. v=1

Item 3. asserts that the Fourier transform is injective.
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Proof. Let H be the collection of bounded complex measurable functions
from R? to C such that

du = dv. .
[ s /Rdfv (8.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary it contains all bounded Borel measurable
functions form R¢ — C. Thus we may take f = 14 with A € Bga in Eq.
to learn, u (A) = v (A) for all A € Bya. ]

In many cases we can replace the condition in item 3. of Corollary by;

/ Ny () = / eMdy (z) for all A € U, (8.6)
R4 R

where U is a neighborhood of 0 € R?. In order to do this, one must assume
at least assume that the integrals involved are finite for all A € U. The idea
is to show that Condition implies 7 = fi. You are asked to carry out this
argument in Exercise 8.2 making use of the following lemma.

Lemma 8.12 (Analytic Continuation). Let ¢ > 0 and S =
{z+iyeC:|z|<e} be an e strip in C about the imaginary azis. Sup-
pose that h : S — C is a function such that for each b € R, there exists
{en (b)}77 s C C such that

h(z+ib) = ch

If ¢, (0) = 0 for all n € Ny, then h =0.

2" for all |z] <e. (8.7)

Proof. It suffices to prove the following assertion; if for some b € R we know
that ¢, (b) = 0 for all n, then ¢, (y) =0 for all n and y € (b—e,b+¢). We
now prove this assertion.

Let us assume that b € R and ¢, (b) = 0 for all n € Ny. It then follows from
Eq. that h (z +ib) = 0 for all |z| < e. Thus if |y — b|] < €, we may conclude
that h (x 4+ iy) = 0 for = in a (possibly very small) neighborhood (-4, ) of 0.
Since

ch h(z+iy) =0 for all |z| <4,
it follows that 1 &
0= adﬁh (z + 1Y) [z=0 = cn (y)
and the proof is complete. [
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8.2 Exercises
Exercise 8.2. Suppose € > 0 and X and Y are two random variables such that
E [e"X] =E [e"] < oo for all [¢| < e. Show;

1.E [65‘X|] and E [egm] are finite.
2. E [¢"X] = E [¢] for all t € R. Hint: Consider h (z) :=E [e*¥X] — E [e*Y]
for z € S.. Now show for |z| < e and b € R, that

h(z+ib)=E [eibxezx] —E [e®Y ZY Z en ( (8.8)
where
cn (b) := % (E[e®XX"] —E [e®Y™]). (8.9)

3. Conclude from item 2. that X £V, i.e. that Lawp (X) =Lawp (V).

Exercise 8.3. Let ({2, B, P) be a probability space and X,Y : {2 — R be a pair
of random variables such that

Elf(X)g (V)] =E[f(X)g(X)]

for every pair of bounded measurable functions, f, g R — R. Show
P(X =Y) = 1. Hint: Let H denote the bounded Borel measurable functions,
h : R? — R such that

Eh(X,Y)]=E[h(X,X)].

Use Theorem [8.2to show H is the vector space of all bounded Borel measurable
functions. Then take h (z,y) = 1=y

Exercise 8.4 (Density of A — simple functions). Let ({2, B, P) be a proba-
bility space and assume that 4 is a sub-algebra of B such that B = o (A) . Let H
denote the bounded measurable functions f : {2 — R such that for every ¢ > 0
there exists an an A — simple function, ¢ : 2 — R such that E|f — ¢| < e.
Show H consists of all bounded measurable functions, f : 2 — R. Hint: let M
denote the collection of A — simple functions.

Corollary 8.13. Suppose that (12,8, P) is a probability space, {X,},—, is a
collection of random variables on 2, and Boo := 0 (X1, X2, X3,...). Then for
all € > 0 and all bounded Bo, — measurable functions, f : £2 — R, there exists
ann € N and a bounded Bgrn — measurable function G : R® — R such that

E|f - G(Xi,...,Xn)| < e. Moreover we may assume that sup,cp» |G (z)| <
M :=sup,eq |f (W)].
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Proof. Apply Exercise with A := U5 0 (X1,...,X,) in order to find
an A — measurable simple function, ¢, such that E |f — ¢| < e. By the definition
of A we know that ¢ is ¢ (Xy,...,X,) — measurable for some n € N. It now

follows by the factorization Lemma that ¢ = G (X1, ..., X,) for some Bgn
— measurable function G : R™ — R. If necessary, replace G by [G A M|V (—M)
in order to insure sup,cp. |G (z)| < M. |

Exercise 8.5 (Density of A in B = o (A)). Keeping the same notation as
in Exercise but now take f = 1p for some B € B and given ¢ > 0, write
0 =>" o Aila, where \g = 0, {\;},_, is an enumeration of ¢ (£2) \ {0}, and
A; == {p = \;}. Show; 1.

ElLs — ol = P(40 N B)+ 3 (1= A P(BAA) + AP (A B)] (8.10)

=1
>P(AgNB)+ Y min{P(BNA),P(A;\B)}. (8.11)
i=1
2. Now let v = Y7 [ a;1a, with

_{1ifP(Ai\B)<P(BﬂAZ-)
YTV 0if P(A;\B)>P(BNA;) "

Then show that
El|lp —¢|=P (A NB)+> min{P(BNA;),P(4\B)}<E|lp—¢|.
i=1

Observe that ¢ = 1p where D = U;.4,_, A; € A and so you have shown; for
every € > 0 there exists a D € A such that

P(BAD)=E|lz —1p| <e.

8.3 A Strengthening of the Multiplicative System
Theorem*

Notation 8.14 We say that H C £ (2, R) is closed under monotone con-
) 0 L
vergence if; for every sequence, {f,},_, C H, satisfying:

1. there exists M < 0o such that 0 < fp, (W) < M for allw € 2 and n € N,
2. fn (w) is increasing in n for allw € §2, then f :=lim, o fn € H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. | learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [52} p. 365].
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Proposition 8.15. *Let {2 be a set. Suppose that H is a wvector subspace of
bounded real valued functions from {2 to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}-, C H
with sup, ey SUPyeq | fn (W) < 00 and f, — f, then f € H.

Proof. Let us first assume that {f,} -, C H such that f, converges uni-
formly to a bounded function, f : 2 — R. Let | f[| := sup,cqn |f (w)|. Let
€ > 0 be given. By passing to a subsequence if necessary, we may assume
1f = falloo < €271 Let

n = frn—0n + M
with §,, and M constants to be determined shortly. We then have
Gnt1 — Gn = fat1 — fr + 6n — Onpr = =27 45, — 6,11

Taking 6,, := 27", then §,, — 0,11 =27 (1 —1/2) = £2~(m+1) in which case
gnt1 — gn > 0 for all n. By choosing M sufficiently large, we will also have
gn > 0 for all n. Since H is a vector space containing the constant functions,
gn € H and since g, T f + M, it follows that f = f + M — M € H. So we have
shown that H is closed under uniform convergence. ]

This proposition immediately leads to the following strengthening of Theo-
rem 8.2

Theorem 8.16. *Suppose that H is a vector subspace of bounded real valued
functions on {2 which contains the constant functions and is closed under
monotone convergence. If M C H is multiplicative system, then H contains
all bounded o (M) — measurable functions.

Proof. Proposition reduces this theorem to Theorem [8.2 [

8.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 8.17 Given a collection of bounded functions, M, from a set, {2, to
R, let M; (M) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : 2 — R is in M;
respectively M| iff there exists f, € M such that f, T f respectively fn, | f.

Theorem 8.18 (Bounded Approximation Theorem®). Let (2,8, 1) be a
finite measure space and M be an algebra of bounded R — valued measurable
functions such that:

1.0(M) =B,
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2.1eM, and
3. 1fl e M for all f € M.

Then for every bounded o (M) measurable function, g : 2 — R, and every
e > 0, there exists f € M| and h € My such that f <g<h and u(h— f) < EH

Proof. Let us begin with a few simple observations.

1. M is a “lattice” —if f,g € M then

fUg=5(f+g+lf—g)eM

and 1
frg=5(f+g—If—gl) M.

If f,geM;or f,g € M| then f 4 g € Mj or f+ g € M| respectively.

.IfEX>0and feM; (f € M), then A\f € My (Af € M)).

. If f € My then —f € M and visa versa.

. If f,, € My and f,, T f where f : 2 — Ris a bounded function, then f € Mj.
Indeed, by assumption there exists f, ; € M such that f,; T f, as ¢ — oc.
By observation (1), g, := max {f;; : ¢,j < n} € M. Moreover it is clear that
gn <max{fr: k <n}=f, < fandhence g, T ¢ :=lim,_ g, < f. Since
fij < g for all 4,7, it follows that f, = lim;_.o fn; < ¢ and consequently
that f =lim, o fr < g < f. So we have shown that g, T f € Mj.

Ttk W N

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M C H and in fact it is also easy
to see that My and M are contained in H as well. For example, if f € My, by
definition, there exists f, € Ml C M such that f,, T f. Since M| > f,, < f <
feM; and p(f — fn) — 0 by the dominated convergence theorem, it follows
that f € H. As similar argument shows M| C H. We will now show H is a
vector sub-space of the bounded B = o (M) — measurable functions.

H is closed under addition. If g; € H for ¢ = 1,2, and € > 0 is given, we
may find f; € M| and h; € M such that f; < g; < h; and p(h; — f;) < /2 for
i =1,2. Sinceh=h1+h26MT, f5:f1—|-f2 EML, f§91+g2 < h, and

plh—f)=plhs— fi) +plha — f2) <e,

it follows that g; + go € H.

H is closed under scalar multiplication. If g € H then A\g € H for all
A € R. Indeed suppose that € > 0 is given and f € M| and h € My such that
f<g<hand p(h—f) <e. Thenfor A >0, M| 5 A\f < Ag < Ah € M; and

! Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies
of bounded functions.
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pwAh=Af)=Apu(h— f) < de.

Since ¢ > 0 was arbitrary, if follows that Ag € H for A > 0. Similarly, M| >
—h < —g<—feM;and

p(=f—=(=h)=plh-f)<e

which shows —g € H as well.

Because of Theorem to complete this proof, it suffices to show H is
closed under monotone convergence. So suppose that g, € H and g,, T g, where
g : 2 — R is a bounded function. Since H is a vector space, it follows that
0 < 6p = gnt1 — gn € H for all n € N. So if € > 0 is given, we can find,
M, 3 u, < 6y, < v, € My such that g (v, — uy,) < 27" for all n. By replacing
Uy, by un, VO € M| (by observation 1.), we may further assume that u,, > 0. Let

00 N
Z =1 hm Z vy, € My (using observations 2. and 5.)
= =1
and for N € N let
N

N.= Z un, € M| (using observation 2).
n=1
Then
oo N
2215n = ]\}Enooz:l5n = ngnoo (In+1—91) =9 — o
n= =

and uV < g — g1 < v. Moreover,

oo

N
N(U_UN):ZM(Un_un)+ Z Z€2 "4+ Z Un)
n=1

n=N+1 n=N+1

e+ Z 1 (vn) -

n=N+1

IA

However, since
oo (oo}
Zuvngz (6 +€277) Zu )+ en ()
- "

Z 1(g—g1)+en(£2) < oo,

it follows that for N € N sufficiently large that Y- ° v, pu(v,) < . Therefore,
for this N, we have u (v —ulN ) < 2¢ and since € > 0 is arbitrary, if follows
that ¢ — g1 € H. Since g; € H and H is a vector space, we may conclude that

g=(9—91)+g1 € H. u
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9

Multiple and Iterated Integrals

9.1 Iterated Integrals

Notation 9.1 (Iterated Integrals) If (X, M, u) and (Y,N,v) are two mea-
sure spaces and f : X xY — C is a MQN — measurable function, the iterated
integrals of f (when they make sense) are:

[ auta) [ s = [ | [ ena] due)

[ avt) [ autorsn) = [ [ /. f(x,y>du<x>] v (y).

Notation 9.2 Suppose that f : X — C and g :' Y — C are functions, let f ® g
denote the function on X XY given by

f@glz,y) = f(z)g(y).

Notice that if f, g are measurable, then f® g is (M @ N, Bc) — measurable.
To prove this let F(z,y) = f(x) and G(x,y) = g(y) so that f ® g = F - G will
be measurable provided that F' and G are measurable. Now F' = f o m; where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

9.2 Tonelli’s Theorem and Product Measure

Theorem 9.3. Suppose (X, M,u) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N, Br) — measurable function, then for eachy €Y,

v — f(z,y) is M — Bjg,oc] measurable, (9.1)

for each x € X,
y — f(z,y) is N~ Bjg,oc] measurable, (9.2)

x —>/ [z, y)dv(y) is M — By o] measurable, (9.3)
Y

y —>/ f(x,y)dp(z) is N — Bg o) measurable, (9.4)
X

and

| ) [ avwren = [ avt) [ ane)f@. 03)
Proof. Suppose that E = Ax B€ £ := M x N and f = 1g. Then
f(z,y) = Laxp(z,y) = La(z)1p(y)
and one sees that Egs. and hold. Moreover
| fenav) = [ 1a@iavy) = 1a@wms),
Y Y

so that Eq. (9.3 holds and we have

/ dyu(z) / dv(y) f(z.y) = v(B)u(A). (9.6)
X Y
Similarly,
/X f(.y)dp(z) = u(A)1p(y) and
[ avtw) [ duta)f(e.) = vBIa(4)
Y X

from which it follows that Eqgs. and hold in this case as well.

For the moment let us now further assume that p(X) < oo and v(Y) < 0o
and let H be the collection of all bounded (M ® N, Bg) — measurable functions
on X x Y such that Egs. - hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1 € H
for all F in the m — class, &, it follows by Corollary that H is the space
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of all bounded (M ® N, Bgr) — measurable functions on X x Y. Moreover, if
f: X xY —[0,00] is a (M ®N,Bg) — measurable function, let foy = M A f
so that fas T f as M — oo. Then Egs. - hold with f replaced by fas
for all M € N. Repeated use of the monotone convergence theorem allows us to
pass to the limit M — oo in these equations to deduce the theorem in the case
w1 and v are finite measures.

For the o — finite case, choose X,, € M, Y,, € N such that X,, 1 X, Y, 1Y,
w(Xy) < oo and v(Y,) < oo for all m,n € N. Then define p,, (A) = p(X,, N A)
and v,(B) = v(Y, N B) for all A € M and B € N or equivalently du,, =
1x,  dp and dv, = 1y, dv. By what we have just proved Egs. - with
u replaced by g, and v by v, for all (M ® N, Bg) — measurable functions,
f: X xY — [0,00]. The validity of Eqgs. - then follows by passing to
the limits m — oo and then n — oo making use of the monotone convergence
theorem in the following context. For all u € LT (X, M),

/ udfly, = / ulx, dp T / udpL as m — 0o,
b b b
and for all and v € LT (Y, N),

/ vdpl, = / vly, dp 7 / vdp as n — o0.
Y Y Y

Corollary 9.4. Suppose (X, M, ) and (Y,N,v) are o — finite measure spaces.
Then there exists a unique measure ™ on MQN such that m(Ax B) = u(A)v(B)
for all A€ M and B € N'. Moreover w is given by

7T(E)=/Xdu(:v)/YdV(y)lE(ﬂc,y)=/YdV(y)/Xclu(sc)lza(ﬂw) (9.7)

foral E€ M QN and w is o — finite.

Proof. Notice that any measure 7 such that 7(A4 x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y, € N be chosen so that pu(X,) < oo, v(¥,) < 00, X;, 1 X and Y,, 1Y,
then X, xY, e MN, X, xY, 1 X xY and (X, xY,,) < oo for all n.
The uniqueness assertion is a consequence of the combination of Exercises [3.10
and Proposition with & = M x N. For the existence, it suffices to
observe, using the monotone convergence theorem, that 7w defined in Eq.
is a measure on M ® N. Moreover this measure satisfies 7(A x B) = u(A)v(B)
for all A € M and B € N from Eq. (9.6). n

Notation 9.5 The measure 7 is called the product measure of u and v and will
be denoted by p ® v.
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Theorem 9.6 (Tonelli’s Theorem). Suppose (X, M, ) and (Y,N,v) are o
— finite measure spaces and T = Q@ v is the product measure on M QN If f €
LY (X xY,M@N), then f(-,y) € LT (X, M) forally €Y, f(x,:) € LT(Y,N)
forallz e X,

/ Fw)duly) € L (X, M), / f(x, () € LY, N)

and

/nyf dW:/}(du(x)Ldy(y)f(z,y) (9.8)
Z/Ydlf(y)/xdu(:c)f(x,y). (9.9)

Proof. By Theorem and Corollary the theorem holds when f = 1g
with E € M®N'. Using the linearity of all of the statements, the theorem is also
true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with the approximation Theorem [6.39] one deduces
the theorem for general f € LT (X x Y, M @ N). [

Ezample 9.7. In this example we are going to show, I := [, e~ 2dm (z) =
v27. To this end we observe, using Tonelli’s theorem, that

I = [/R e 2dm (a:)}2 =/Re‘y2/2 [/Re‘ﬁ/z’dm (x)} dm (y)

where m? = m ® m is “Lebesgue measure” on (Rz, Brz = Br ® BR) . From the

monotone convergence theorem,
I? = lim e (@ +9)/2 g2 (z,9)

where D = {(as,y) cx? 4yt < RQ}. Using the change of variables theorem
described in Section belowE we find

/ e (& +v°)/2 g (z,y) =/ e Prdrdd
Dr (0,R) % (0,27)
R 2 2
:27r/ efr/zrdr:27r<lfe*R/2).
0

L Alternatively, you can easily show that the integral / Dr fdm? agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

12 = lim 2r (1 _ 6*32/2) — o

— 00

as desired.

9.3 Fubini’s Theorem

Notation 9.8 If (X, M, ) is a measure space and f : X — C is any measur-
able function, let

/deﬂ:_{fxé“du if [y lfldp < oo

otherwise.

Theorem 9.9 (Fubini’s Theorem). Suppose (X, M,u) and (Y,N,v) are o
— finite measure spaces, T = p ® v is the product measure on M @ N and
f:XxY —CisaM®N — measurable function. Then the following three
conditions are equivalent:

/ |f|dr < o0, d.e. f € LY(m), (9.10)
XXY
| ([ 1@ lire)) duw) < oo ana (9.11)
x \Jy
([ x1f@lanta) ) aviy) < . (912
If any one (and hence all) of these condition hold, then f(z,-) € Ll( )for p-a.e.
x, f(-,y) € LY () for v-a.e. vy, fyf(-,y)dv( €L (u fX (x) € LY(v)

and Fqs. and are still valid after puttmg a bar over the integral
symbols.

Proof. The equivalence of Egs. is a direct consequence of
Tonelli’s Theorem. 9.6| Now suppose f € Ll( ) is a real valued function and let

E:= {xGX:/Y|f(ac,y)|dV(y)oo}. (9.13)

Then by Tonelli’s theorem,  — [, |f (x,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X[/Y|f($,y)|dl/(ll)] du(x):/xxy|f|dﬂ<oo
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which implies that u (F) = 0. Let f1 be the positive and negative parts of f,
then

/ f(@,y)dv (y) =
Y

Ige (%) f (z,y) dv (y)
Lge (z) [f4 (z,y) — f- (z,y)] dv (y)

Il
— o 5—

Lge (&) fi (2,) dv () — /Y Lpe (&) f- (2,y) dv (1)
(9.14)

Noting that 1ge (x) f+ (z,y) = (1ge ® 1y - f1) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem

that x — fyf (z,y)dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

i@ < [ ][ 15 wniaro) e <.

which shows fyf y)dv(y) € L'(u). Integrating Eq. |) on z and using

Tonelli’s theorem repeatedly implies,

/X l/yf(x,y) dv (y)] dp (z)
:/xd“(x)/ydl/(y) lpe (z

(«) D) [ )16 @1 (@)
= [ [ auta) 15 @) 7 @) - ) [ dn @16 @) £ ()

)
- [ [ aw@) @~ [ avw) [ dn@ s @)

which proves Eq. holds.
Now suppose that f = u + v is complex valued and again let E be as in
Eq. (9.13). Just as above we still have E € M and p (E) = 0 and

/ f (@,y)dv (y) = / L (2) f (2,y) dv (y) = / 1pe (&) [u (2, ) + v (2,)] dv (4)
Y Y Y
- / 1pe (2) u(z,y) dv (y) + i / L (2) v (2, y) dv (4)
Y Y

/fxde()

J
J

f+ (I’7y)* d:u(
X

dv (y
Y

v dp
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118 9 Multiple and Iterated Integrals

The last line is a measurable in z as we have just proved. Similarly one shows

[y f (¢ y)dv(y) € L' (u) and Eq. still holds by a computation similar to
that done in Eq. (9.15). The assertions pertaining to Eq. may be proved
in the same way. [

The previous theorems generalize to products of any finite number of o —
finite measure spaces.

Theorem 9.10. Suppose {(X;, M;,p;)}i—, are o - finite measure spaces
and X = X1 X -+ x X,. Then there exists a unique measure (mw) on

(X, M1 ®---®@M,,) such that
(A XX An) = (A1) o (An) for all A€ M. (9.16)

(This measure and its completion will be denoted by 1 ® -+ Q ) If [+ X —
[0,00] is a M1 ® - -+ @ M,, — measurable function then

/ fdﬂ' :/ dua(l)(xa(l)) . /
X Xo(1) X

where o is any permutation of {1,2,...,n}. In particular f € L*(r), iff

/ Aoy (To(1)) - - / Ao (n)(Tan)) 1f (@15
Xa(l) Xa(n)

for some (and hence all) permutations, o. Furthermore, if f € L' (), then

/ fdﬂ' :/ dug(l)(mg(l)).../
X Xa(1) X

for all permutations o.

d,uo(n) (.Tg(n)) f(:l?l, ‘e ,:cn) (917)

o(n)

, Ty)| < 00

dpto(n)(Tomy) f(T1,. .. 20) (9.18)

a(n)

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems and So
let n > 3 and assume the theorem is valid for n — 1 factors or less. To simplify
notation, for 1 < i < n, let X* = 1,2 X5, M= @M, and Pt = ®j i
be the product measure on (X ‘ Mz) which is assumed to exist by the induction
hypothesis. Also let M := M; ®---®@ M,, and for z = (z1,...,2;,...,2,) € X
let

2= (21, Dy ) = (T T 1, T 1y e e e ) -
Here is an outline of the argument with some details being left to the reader.

1. If f: X —[0,00] is M -measurable, then
(zl,...,ii,...,xn)ﬂ/ fxy, . iy xn) dug ()
X

is M? -measurable. Thus by the induction hypothesis, the right side of Eq.

(19.17) is well defined.
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. If 0 € S, (the permutations of {1,2,...,n}) we may define a measure 7 on

(X, M) by;

7 (A) = /X djio1 (1:01).../)( dion (Ton) 1a (T1,- -, 20) .-

on

(9.19)
It is easy to check that 7 is a measure which satisfies Eq. (9.16)). Using the
o — finiteness assumptions and the fact that

P:={A1 x - xA,: A€ M; for 1 <i<n}

is a 7 — system such that o (P) = M, it follows from Exercise[5.1] that there
is only one such measure satisfying Eq. (9.16). Thus the formula for 7 in

Eq. (9.19)) is independent of o € S,,.

. From Eq. (9.19) and the usual simple function approximation arguments

we may conclude that Eq. (9.17) is valid.
Now suppose that f € L' (X, M, ).

. Using step 1 it is easy to check that

(a:l,...,i:i,...,xn)—>/X.f(xl,...,:r,-,...,zn)d,ui(xi)
is M® — measurable. Indeed,
(wh“"iﬂi"“’mn)_)/x If (X1, @iy xn)| dp (24)
is M? — measurable and therefore
E = {(xl,...,i‘i,...,xn) : /X |f (21, @iy x| dpg () < oo} e M.

Now let u := Re f and v := Im f and u4 and vy are the positive and
negative parts of u and v respectively, then

/Xif(af) dp; (;) =/ 1z (2%) f (2) dui (z5)

i

:/X. 1g (wl)u(a?)duz(xz)—&-z/ 1g (2%) v () dp; ().

X

Both of these later terms are M? — measurable since, for example,

X

which is M? — measurable by step 1.
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5. It now follows by induction that the right side of Eq. (9.18)) is well defined.
6. Let i :=on and T : X — X; x X* be the obvious identification;
T(.’Ei,(fEl,...,QATi,...

 Tn)) = (z1,...,2) .

One easily verifies T is M/M; @ M* — measurable (use Corollary [6.19
repeatedly) and that m o T~! = u; ® u® (see Exercise .

7. Let f € L' (7). Combining step 6. with the abstract change of variables
Theorem (Exercise implies

[rar= [ (temya(uen).
X X x X
By Theorem we also have

(9.20)

/XixXi (foT)d (@ pu') :/ di' () /X‘d,ui(mi) FoT(us o)

i

= [ @) [ i) S
(9.21)

Then by the induction hypothesis,

[t [ i) s e -

X X, . X
J#

(9.22)

where the ordering the integrals in the last product are inconsequential.

Combining Egs. (9.20) — (9.22)) completes the proof.

]

Convention: We are now going to drop the bar above the integral sign
with the understanding that [, fdu = 0 whenever f: X — C is a measurable
function such that [ |f|du = oo. However if f is a non-negative function (i.e.
f: X — [0, 00]) non-integrable function we will interpret | + fdu to be infinite.

Example 9.11. In this example we will show

. M gin
lim
M —oco 0

do = /2. (9.23)

To see this write % = fooo et dt and use Fubini-Tonelli to conclude that
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H/jd/ij (%)/Xidm(mi) flay,...

9.3 Fubini’s Theorem 119

<1
—>/ 7dt:EasM—>oo,
o 1+t 2

wherein we have used the dominated convergence theorem (for instance, take
g(t) = ﬁ (1+te t+et)) to pass to the limit.

The next example is a refinement of this result.

Ezxample 9.12. We have

00 1
/ ST A7y — — — arctan A for all A > 0 (9.24)
0 X 2
and forA, M € [0, 00),
M s —MA
sinx _ 4., 1 e
—_— de — = tan A| < C 9.25
/0 e T = o + arctan A| < % (9.25)
) xn)
where C' = max;>g 11;:—;2 = 2\/%_2 = 1.2. In particular Eq. 1| is valid.
To verify these assertions, first notice that by the fundamental theorem of
calculus,
T xr xr
|sin x| = ’/ cosydy‘ < ‘/ |c0sy|dy’ < ‘/ ldy‘ = |z
0 0 0
so [#22] <1 for all x # 0. Making use of the identity
oo
/ e dt =1/x
0
and Fubini’s theorem,
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120 9 Multiple and Iterated Integrals

M e
sinx _ _
/ ey = dxsmme Am/ Lt
0

T
M
/ dt/ dx sin g e~ (ATH®

7/0017 (cos M + (A +t)sinM)e *M(A“)dt
0 (A + ) +1
o (A+1)P+1 0 (A+1t)* +
1
=57 arctan A — (M, A) (9.26)
where
E(M,A):/ cosM+(A+t)s1nM o= M(A+1) gy
0 (A+1)° +
Since
cos M + (A+t)sin M < 14+ (A+7)
(A+1)° +1 T A+
—MA

(M, A)| < / M+ g o
0

This estimate along with Eq. (9.26)) proves Eq. (9.25)) from which Eq. (9.23) fol-

lows by taking A — oo and Eq. (9.24]) follows (using the dominated convergence
theorem again) by letting M — oo.

Lemma 9.13. Suppose that X is a random variable and ¢ : R — R is a C!
— functions such that lim,_,_~ ¢ (x) = 0 and either ¢’ (z) > 0 for all z or
Jg ¢’ (@) dz < oo. Then

Ble (0] = [ &) PX>y)dy
Similarly ifX >0 and np [ ,00) — R is a C* — function such that ¢ (0) =0

and either ¢’ >0 or [ |¢' (z)|dz < oo, then

E[¢<X>]=/0m¢'<y>P<X>y>dy.

Proof. By the fundamental theorem of calculus for all M < co and z € R,

x

() = o (~M) + / W (9.27)
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Under the stated assumptions on ¢, we may use either the monotone or the
dominated convergence theorem to let M — oo in Eq. (9.27)) to find,

o (z) = / o' (y)dy = / ly<z¢’ (y)dy for all z € R.
—00 R

Therefore,

Efp(X)] =E [ [1exe' @) dy} - [l Was= [ P>

— 00

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader. ]

Example 9.1/. Here are a couple of examples involving Lemma [9.13]

1. Suppose X is a random variable, then

E[eX] = /OO P(X > y)eldy = /OOOP(X > Inu) du, (9.28)

— 00

where we made the change of variables, u = e¥, to get the second equality.
2.If X > 0and p>1, then

EXP = p/ yPIP (X > y)dy. (9.29)
0

9.4 Fubini’s Theorem and Completions*

Notation 9.15 Given E C X XY and z € X, let
E:={yeY:(x,y) € E}.
Similarly if y € Y is given let
E, ={zeX:(z,y) € E}.

If f : X xY — Cis a function let f, = f(z,-) and fY = f(-,y) so that
fz: Y —=Cand f¥: X —C.

Theorem 9.16. Suppose (X, M, 1) and (Y,N,v) are complete o — finite mea-
sure spaces. Let (X X Y, L, ) be the completion of (X xY, M QN , p@v). If f
is L — measurable and (a) f >0 or (b) f € L'(\) then f, is N' — measurable
for p a.e. x and fY is M — measurable for v a.e. y and in case (b) f, € L'(v)
and f¥ € L*(pn) for p a.e. x and v a.e. y respectively. Moreover,
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(m—>/yfxd1/> € L' (u) and (y—>/Xfydu> eL'(v)
/Xxyfd)\:/ydu/xduf:/xdu/ydl/f.

Proof. f E€e M®N is a p® v null set (ie. (u®@v)(E) = 0), then

and

0= (ue)(B) = [ vGEdn() = [ w(B,)vly)

X X

This shows that

u({z: v(,E) #0}) = 0 and v({y : p(E,) # 0}) =0,

ie. v(xF) =0 for p ae. z and p(E,) =0 for v a.e. y. If h is £ measurable and
h =0 for A — a.e., then there exists E € M ® N such that {(z,y) : h(z,y) #
0} C F and (u®@v)(E) = 0. Therefore |h(x,y)| < 1g(z,y) and (p @ v)(E) = 0.
Since

{hy #0} ={y €Y : h(z,y) #0} C . E and
{hy #0} = {z € X : hiz,y) £0} C B,

we learn that for p a.e. z and v a.e. y that {h, #0} € M, {h, #0} € N,
v({hs #0}) = 0 and a.e. and p({h, # 0}) = 0. This implies [, h(z,y)dv(y)
exists and equals 0 for p a.e. x and similarly that [, h(x,y)du(z) exists and
equals 0 for v a.e. y. Therefore

o= = () o= ()

For general f € L'()\), we may choose g € LY(M®N, u®v) such that f(z,y) =
g(x,y) for A— a.e. (z,y). Define h := f—g. Then h = 0, A— a.e. Hence by what
we have just proved and Theorem [9.6] f = g + h has the following properties:

L. For prae. o,y — f(a,y) = g(,y) + h(z,y) is in L(v) and

/Y f (@ y)dv(y) = /y o(, y)dv(y).

2. For v ae. y, x — f(x,y) = g(x,y) + h(z,y) is in L'(u) and

/Xf(%y)du(SC)Z/Xg(x,y)du(m)~
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From these assertions and Theorem it follows that

[ auta) [ awsen = [ anto) [ avtwgte.n)

_ /Y () /Y dv(z)g(z, y)
:/ g(z,y)d(p @ v)(z,y)
XxXY

[ fepirey.
XxXY
Similarly it is shown that

[ ) [ s = [ @iy,

9.5 Lebesgue Measure on R? and the Change of Variables
Theorem

Notation 9.17 Let

d times d times
mt=me--Qm on Bra = Br ® -+ - ® Br
be the d — fold product of Lebesgue measure m on Br. We will also use m?
d

to denote its completion and let Ly be the completion of Bra relative to m®.
A subset A € Lg is called a Lebesque measurable set and m? is called d —
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 9.18. A function f : R? — R is Lebesgue measurable if
f~Y(Br) C Ly.

Notation 9.19 I will often be sloppy in the sequel and write m for m® and dx
for dm(z) = dm?(x), i.e.

(x)dz = [ fdm= [ fdm®.
Rd Rd Rd
Hopefully the reader will understand the meaning from the context.

Theorem 9.20. Lebesque measure m® is translation invariant. Moreover m®

is the unique translation invariant measure on Bra such that m®((0,1]¢) = 1.
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122 9 Multiple and Iterated Integrals
Proof. Let A=J; x --- x J; with J; € Bg and z € R?. Then

,’E+A:($1+J1) X ($2+J2) X oo X (.’L‘d+Jd)
and therefore by translation invariance of m on Bg we find that
m(x+ A) =m(zy + J1)...m(zqg + Ja) = m(J1)...m(Jy) = mi(A)

and hence m?(z + A) = m?4(A) for all A € Bga since it holds for A in a multi-
plicative system which generates Bra. From this fact we see that the measure
m?(x + ) and m?(-) have the same null sets. Using this it is easily seen that
m(x + A) =m(A) for all A € L. The proof of the second assertion is Exercise
9. 10l ]

Exercise 9.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations and
satisfies, m(By(g)) > 0 for all € > 0. Show m(V) = oo for all non-empty open
subsets V' C H.

Theorem 9.21 (Change of Variables Theorem). Let 2 C, R? be an open
set and T : 2 — T(02) Co RY be a C' - diﬁeomorphismﬂ see Figure . Then
for any Borel measurable function, f : T(£2) — [0, 0],

/ F(T (@) | det T () |da = / f () dy, (9.30)
0

T(2)

where T'(z) is the linear transformation on R? defined by T'(z)v := 4 |oT(z +
tv). More explicitly, viewing vectors in R? as columns, T' (x) may be represented
by the matriz
81T1 (a:) e 6dT1 (1‘)
rw=| o | (9.31)
ale (x) ce é)de (.Z‘)

i.e. the i - j — matriz entry of T'(x) is given by T'(x);; = 0;T;(x) where
T(z) = (Th(x),...,Ty(x))™ and 0; = 0/0x;.

Remark 9.22. Theorem [2.21] is best remembered as the statement: if we make
the change of variables y = T (), then dy = | det T” (z) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if x ranges through 2
then y must range through T (£2).

2 That is T : 2 — T(2) C, R? is a continuously differentiable bijection and the
inverse map T~ ' : T(§2) — 2 is also continuously differentiable.
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18

A

T(xy=¢

LQE 4 /
g :
Y - Spoce
d
S

g - JaaTion) dx

K- dpole

Fig. 9.1. The geometric setup of Theorem m

Note: you may skip the rest of this section!

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < a < 8 < b such that [a,b] is a compact
subinterval of 2. Then | det 7’| = |T"| and

B
/[a,b] Lr(ap) (T (2)) [T (z)| dz =/ Lo (@) T (2)| do :/ T’ (2)| da.

[a,b] a

If 7' (x) > 0 on [a,b], then

B B
/|T’(x)|dx:/ T (x)de =T (B) — T (a)

while if 77 (z) < 0 on [a, b], then

153 B8
/|T’(a:)|da::—/ T (2)dz =T (o) — T (8)

=m (T ((a, 8])) = L7((a,g) (y) dy.-

T([a;b])
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Combining the previous three equations shows

(T @) [T (2)] dz = / f () dy (9.32)

[a,b] T([ab])

whenever f is of the form f = 1p((q,g) With a < a < 3 < b. An application
of Dynkin’s multiplicative system Theorem then implies that Eq.
holds for every bounded measurable function f : T ([a,b]) — R. (Observe that
|T" (z)| is continuous and hence bounded for z in the compact interval, [a,b] .)
Recall that 2 = YN (a,,b,) where a,,b, € RU{+o0} forn =1,2,--- < N
with N = oo possible. Hence if f : T (£2) — R ; is a Borel measurable function
and a, < ap < O < b, with ay | a, and By T b,, then by what we have
already proved and the monotone convergence theorem

/1<ambn> (foT) - |T'|dm = / (L7 ((anbuy) - f) o T - |T"|dm
2 2
= lim (1T([ak,ﬁk]) ’ f) oT: |T/| dm

k—o0
2

- lim Lr(aw,pi]) - f dm

k—oo
T(£2)

= / 1T((an,bn)) . f dm.
T(£2)

Summing this equality on n, then shows Eq. holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d — 1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T (x) , will always be taken to be given
as in Eq. .

Case 1. Suppose T' (z) has the form
T(x) = (z;,To (2),...,Tq(x)) (9.33)
T(x)=Ti(x),...,Ta-1 (x),x;) (9.34)

for some i € {1,...,d}. For definiteness we will assume 7' is as in Eq. (9.33)), the
case of T in Eq. (9.34) may be handled similarly. For ¢ € R, let 4, : RI-1 — R4
be the inclusion map defined by

i (W) == wy = (w1, ..o, Wi, b Wik, -, Wa—1)
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£2; be the (possibly empty) open subset of R?~! defined by

'Qt = {U) € Rdil : (wl" < 7wi—17ta Wity awd—l) S .Q}
and T : 2, — R%! be defined by
Tt (’U}) = (TQ (wt) gee ,Td (wt)) 5

see Figure Expanding det 7" (w;) along the first row of the matrix T” (w;)

RIS ) Mg, Ty
T(w\ '

XN 2 TiQy)

Tl t yt

Fig. 9.2. In this picture d =i = 3 and (2 is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map 7' and slicing the
set {2 along planes where x3 = t.

shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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124 9 Multiple and Iterated Integrals
/f oT|detT'|dm = /19 - foT|detT'|dm
2 Rd

_ /19 (w0) (f o T) (wr) | det T' (wy) |dwdt

Rd

:/]R /(foT) (wy) | det T (wy) |dw | dt
L2,

:/ /f(t,Tt(w))|detTt’(w) \dw | dt
R 9,

:/ / f(t,2) dz dt:/R /1T(Q)(t,z)f(t,z)dz dt

[T (£2¢) a-1

:/f ) dy

T(2)
wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;
=Y T (2) =Y {(t2):z€Ti(2)}.
teR teR

Case 2. (Eq. (9.30) is true locally.) Suppose that 7" : 2 — R? is a general
map as in the statement of the theorem and zy € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C {2 of x( such that

/foT| detT’|dm:/ fdm
o (W)

holds for all Borel measurable function, f : T(W) — [0, 00]. Let M; be the 1-4
minor of 7’ (%), i.e. the determinant of T’ (zo) with the first row and i‘h —
column removed. Since

)" a.Ty (20) - M;,

Mg

0 # det T' (xg) =

z=1
there must be some i such that M; # 0. Fix an ¢ such that M; # 0 and let,
S (2) = (@0, T3 (2) .., Ta (x). (9.35)
Observe that |det S’ (xg)| = |M;| # 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of g such that W C, 2 and S (W) c, R¢
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and S : W — S (W) is a C! — diffeomorphism. Let R : S (W) — T (W) C, R?
to be the C' — diffeomorphism defined by

R(z):=ToS ' (z) forall z€ §(W).
Because
(Ty (2),...,Tq(z)) =T (z) = R(S (2)) = R((2i, T2 (2) ..., Ty (z)))
for all z € W, if
(21,22, r2a) = S (z) = (23, To (2), ..., Ty (z))

then
R(z)= (T (57" (2)),22,-..,2a) - (9.36)

Observe that S is a map of the form in Eq. (9.33)), R is a map of the form in Eq.
(19.34), T’ (x) = R’ (S (z)) S’ (x) (by the chain rule) and (by the multiplicative
property of the determinant)

|det T" (z)| = |det R' (S (z)) | |det S" (z)|] V z € W.

Soif f: T(W) — [0, 00] is a Borel measurable function, two applications of the
results in Case 1. shows,

/fOT-\detT’|dm:/(fOR-\detR'|)OS-|detS’| dm
W

/foR-\detR’|dm: / fdm

S(W) R(S(W))
= / fdm
(W)
and Case 2. is proved.

Case 3. (General Case.) Let f : £2 — [0, o0] be a general non-negative Borel
measurable function and let

K, :={z € 02 :dist(z,2°) > 1/n and |z| < n}.

Then each K,, is a compact subset of 2 and K,, T {2 as n — oo. Using the
compactness of K,, and case 2, for each n € N, there is a finite open cover W,
of K, such that W C (2 and Eq - ) holds with {2 replaced by W for each
W e W,. Let {W}  be an enumeration of U3, W, and set W; = W; and
W, == W, \(WiU---UW,;_4) for all § > 2. Then 2 = 21:1 W; and by repeated
use of case 2.,
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)« | det T |dm

Z
/ (i T} | det T'|dm
W

/f oT|detT'|dm =
o

n

/IT(Wi)-fdm:Z/ (i) L dm

Lréws) =lr(n)

i Mg i Pllﬁg i Mg

= / fdm.
T(Q)

Remark 9.23. When d = 1, one often learns the change of variables formula as

T(b)
/ F(T (@) T (z) de = / £ (y) dy (9.37)

T(a)

where f : [a,b] — R is a continuous function and T is C' — function defined in

a neighborhood of [a,b]. If " > 0 on (a,b) then T ((a,b)) = (T (a),T (b)) and

Eq. is implies Eq. with 2 = (a,b). On the other hand if 77 < 0
n (a,b) then T ((a,b)) = (T (b),T (a)) and Eq. is equivalent to

T(a)
£ (T (@) (~ [T (&)]) da = —/ f(y)dy:—/T(( 1)

(a,b) T(b)

which is again implies Eq. (9.30). On the other hand Eq. (9.37) is more general

than Eq. (9.30]) since it does not require T to be injective. The standard proof
of Eq. (9.37) is as follows. For z € T ([a, b]) , let

z

F(z):= f(y)dy

T(a)

Then by the chain rule and the fundamental theorem of calculus,

b b
/f T (@)do = [ F(0@)T (w)do = [ (P (7)) do
a b o) a
=F (T (x = dy.
(T @) Ik /m) 7 () dy

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(9.37) holds for all bounded measurable functions f on (a,b). Then by the
usual truncation argument, it also holds for all positive measurable functions

n (a,b) .
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Exercise 9.2. Continuing the setup in Theorem [9.21] show that
felLt (T(Q),md) iff

/|foT\|detT’|dm<oo

and if f € L! (T (2) 7md) , then Eq. 1l holds.

Example 9.24. Continuing the setup in Theorem [9 if A€ Bg, then
m (T () = [ iy @)y = [ Lrga) (Ta) et T’ ()] da
R R
= / 14 (z)|det T (z)] dz
Rd

wherein the second equality we have made the change of variables, y = T (z).
Hence we have shown

d(moT)=|detT’ ()| dm.

Taking T € GL(d,R) = GL(RY) - the space of d x d invertible matrices in
the previous example implies m o T' = |det T'| m, i.e.

m (T (A)) = |det T|m (A) for all A € Bga. (9.38)

This equation also shows that m o T and m have the same null sets and hence
the equality in Eq. is valid for any A € L4. In particular we may conclude
that m is invariant under those T' € GL(d,R) with |det (T')| = 1. For example
if T is a rotation (i.e. THT = I), then detT = 41 and hence m is invariant
under all rotations. This is not obvious from the definition of m? as a product
measure!

Ezample 9.25. Suppose that T' (x) = x+b for some b € R%. In this case 7" () =
I and therefore it follows that

[tarna=[rua
J J

for all measurable f : R? — [0, 00] or for any f € L (m) . In particular Lebesgue
measure is invariant under translations.

Example 9.26 (Polar Coordinates). Suppose T : (0, 00) x (0,27) — R? is defined
by
x=T(r,0) = (rcosf,rsinf),
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126 9 Multiple and Iterated Integrals

i.e. we are making the change of variable,

r1 =7rcosf and x5 = rsinf for 0 < r < oo and 0 < 6 < 2.

T'(r,0) = (cos& —rsin9>

sinf rcos6

In this case

and therefore
dx = |det T’ (r,0)| drdf = rdrdo.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(x,0) : & > 0}

has m? — measure zero, it follows from the change of variables Theorem
that

2m [e's]
flz)dz = / d9/ dr r- f(r(cosf,sind)) (9.39)
R2 0 0
for any Borel measurable function f : R? — [0, oc].

Example 9.27 (Holomorphic Change of Variables). Suppose that f: 2 C, C &
R2— C is an injective holomorphic function such that f’(z) # 0 for all z € £2.
We may express f as

fz+iy) =U(z,y) +iV (z,y)
for all z =z + iy € 2. Hence if we make the change of variables,
w=u+iv=f(z+iy) = Uw.y) +iV (@)

then

dudv = dzdy = U,V — U, V| dzdy.

det |:Vz v, }

Recalling that U and V satisfy the Cauchy Riemann equations, U, =V}, and
Uy = =V, with f' = U, + iV, we learn

UsVy = UyVe = U2+ V2 =|f.

Therefore
dudv = | f' (z + iy)|* dzdy.

Example 9.28. In this example we will evaluate the integral

I:= //Q (z* — y*) dzdy
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j
,
R

s

Fig. 9.3. The region {2 consists of the two curved rectangular regions shown.

where
.Q:{(a:,y):1<562—y2<2,O<xy<1}7

see Figure We are going to do this by making the change of variables,
(u,0) := T (z,y) = (2% —y*,2y) ,

in which case

dudv =

det {2:17 Qy}
Yy T

dedy =2 (¢ + ) dedy
Notice that
(x4 - y4) _ (x2 _ y2) (x2 + y2) —u (3;2 + y2) = %ududv.

The function T is not injective on 2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
2=-DUD and T(£D) = (1,2) x (0,1). The change of variables theorem
then implies

1 14? 3
Ii::// zt — gyt da:dy:f// ududv:f—\Q'lzf
iD( ) 2 JJa2)x(0,1) 22" 4

and therefore I = I, +1_=2-(3/4) = 3/2.

Exercise 9.3 (Spherical Coordinates). Let T : (0,00)x (0, 7)x (0, 27) — R3
be defined by
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Fig. 9.4. The relation of z to (r, ¢, 0) in spherical coordinates.

T (r,0,0) = (rsinpcosf, rsinpsind, r cos p)

= r (sing cos @, sin psin b, cos ),

see Figure By making the change of variables © = T (r, ¢, 0) , show

™ 2m oo
— 2
o f(x)d:c—/o dgo/o d9/0 dr resine - f(T (r,¢,0))

for any Borel measurable function, f : R® — [0, cc].

Lemma 9.29. Let a > 0 and

Ii(a) := /e*“‘mﬁdm(x).

R4
Then Iy(a) = (7/a)?2.
Proof. By Tonelli’s theorem and induction,
Ii(a) = / efa‘yFe*“tde_l(dy) dt
R4—1xR
= I4—1(a)I1(a) = I{(a).

So it suffices to compute:

I5(a) :/e*a‘zwdm(x) = / e~ =) 4o das.

R2 R2\{0}
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(9.40)
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Using polar coordinates, see Eq. (9.39)), we find,

oo 27 N 0o R
I5(a) :/ dr 7’/ do e = 27r/ re " dr
0 0 0
M

—ar M

—ar? . e 27

re” " dr =2r lim = — =7/a.
M—oo —2a Jq

=27 lim
M—oo 0

This shows that I5(a) = m/a and the result now follows from Eq. (9.40). ]

9.6 The Polar Decomposition of Lebesgue Measure*

Let
d

St ={zeR: 2 =) 2l =1}
i=1
be the unit sphere in R? equipped with its Borel ¢ — algebra, Bga—1 and & :
R\ {0} — (0,00) x §971 be defined by &(z) := (||, |z|" #). The inverse map,
@1 :(0,00) x S — R4\ {0}, is given by &~ !(r,w) = rw. Since ¢ and &1
are continuous, they are both Borel measurable. For E € Bga-1 and a > 0, let
E,:={rw:r€(0,a] and w € B} = & *((0,a] x E) € Bga.

Definition 9.30. For E € Bga-1, let o(E) :==d-m(Ey). We call o the surface
measure on S471L.

It is easy to check that o is a measure. Indeed if £ € Bga—1, then E; =
@71((0,1] x E) € Bga so that m(Ey) is well defined. Moreover if E = "° | E;,
then By = >, (E;), and

o(E)=d-m(E) =) m((E),) =) o(E).

i=1 =1

The intuition behind this definition is as follows. If E ¢ S%1isaset and e > 0
is a small number, then the volume of

(Ll+e-E={rw:re(l,1+¢land w € E}

should be approximately given by m ((1,1+¢]- E) = o(E)e, see Figure
below. On the other hand

m((1,1+€]E) =m (B4 \ E1) = {1+ ) — 1} m(Ey).
Therefore we expect the area of E should be given by
1+e)d—1}m(E
o(E) = lim {( e }m( )
€l0 e
The following theorem is motivated by Example [9.26 and Exercise [9.3]
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E & 2

Fig. 9.5. Motivating the definition of surface measure for a sphere.

Theorem 9.31 (Polar Coordinates). If f : R — [0,00] is a (Bga,B)-
measurable function then

/f(x)dm(a:) = frw)ri=t drde(w). (9.41)
R

(0,00)x Sd—1

In particular if f: Ry — Ry is measurable then

[ #ahyaa = [ " v (9.42)
R4 0

where V(r) =m (B(0,7)) = r’m (B(0,1)) = d~to (59471) ro.
Proof. By Exercise [T.11}
/fdm: / (fod ') od dm = / (fod™') d(d.m) (9.43)
R4 R4\ {0} (0,00) x S4—1

and therefore to prove Eq. (9.41]) we must work out the measure @,m on By )®
Bga-1 defined by

®.m(A) :=m (& (A)) V A € B(g,00) ® Bga-1. (9.44)
If A=(a,b] x E with 0 <a<band E € Bga—1, then
oY (A)={rw:r € (a,b] and w € E} = bE; \ aE;

wherein we have used F, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,
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(®.m) ((a,b] x E) =m (bEy \ aEy) = m(bE1) — m(aFE)
= bvim(E)) — a’m(Ey) = d-m(E) /b rd=Ydr.  (9.45)

a

Letting dp(r) = r?~ldr, i.e.

p(J) = / ri=tdr v J e B(O,OO), (9.46)
J
Eq. may be written as
(@.m) ((a,b] x E) = p((a, ) - o(E) = (0@ 0) (@b x ). (9.47)

Since
E={(a,b)) x E:0<a<band E € Bga-1},

is a 7 class (in fact it is an elementary class) such that o(£) = B(g,00) ® Bga-1,
it follows from the m — A Theorem and Eq. (9.47) that ®#,m = p ® o. Using this

result in Eq. (9.43) gives
fdm = / (fod™) d(p®o)

R (0,00) x Sd—1
which combined with Tonelli’s Theorem proves Eq. (9.43). ]
Corollary 9.32. The surface area o(S?1) of the unit sphere ST~1 C RY is
27.(.d/2
Sty = 9.48

where I" is the gamma function is as in Example[7]7 and [7.50,
Proof. Using Theorem we find

Id(l):/ dr rile=" / dO':CT(Sdil)/ rd=te=" dr.
0 0

Sd—1

We simplify this last integral by making the change of variables w = r? so that
r=u? and dr = %u_l/Qdu. The result is

o0 2 4 1
/ rd=le " dr :/ W e uT2du
0 0 2

1 [~ 1
= 7/ wt e du = =I'(d/2). (9.49)
2 Jo 2
Combing the the last two equations with Lemma which states that I;(1) =
742 we conclude that
1
7% = I,(1) = ia(Sd’l)F(d/Q)

which proves Eq. (9.48). ]
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9.7 More Spherical Coordinates*

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r,60) € (0,00) X

[0,27) so that
z1\ (rcosf\
(@) - (rsin@) =T2(6,7)-

For n = 3 we let x3 = rcos ¢; and then

<i1> = T5(0,rsinpy),

2

as can be seen from Figure [9.6] so that

Fig. 9.6. Setting up polar coordinates in two and three dimensions.

V)

T . rsin o1 cos 6
T . .
o | = ( 2(677"5111901)) = | rsinpysing | =: T3(0, 01,1, ).
- T COS p1 i
3 7 COS 1

We continue to work inductively this way to define

T
T.(0,01,...,0n_2,Tsinp,_1,
zn+1

So for example,
1 = 78in g sin 1 cos
ZTo = 7 8in g sin 7 sin §
T3 = rsin 2 cos Y1

T4 = T COS P2
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and more generally,
L1 = 7rsin,_s...sin pysin ¢ cosl
To = TsinY,_g . ..sin p;sin pg sinf

T3 = rsin,_o...sinps; cos @1

Tp_o = Tsin @y_9Sin 3 COS Pr_4
Tp—1 = TSN Q2 COS Pp_3

Ty = T COS Pp_3. (9.50)

By the change of variables formula,

f(z)dm(z)
RTL
e An(0,01, .., Qn_2,T)
= dr/ doy ...dp,_odl Jrh ’
/o 0< s <m,0<O<2m oL P2 Xf(Tnh(0, 1, .., Pn—2,7))
(9.51)
where
A (0,01, on_o,r) = |det T (0,01, ..., 0n_2,7)].
Proposition 9.33. The Jacobian, A, is given by
An(0,01,. .. Pn_a,T) = " lsin™ "2 @, _o...sin? posing;. (9.52)

If f is a function on rS™ 1 — the sphere of radius r centered at 0 inside of R™,
then

/T o f@de@) = / F(rw)do(w)

Sn—1
f(Tn(ea P15 Pn—2, T))An(ea Ply- s Pn—2, V”)dﬁpl e d¢n72d9
(9.53)

/os%sﬂ,oseswr

Proof. We are going to compute 4, inductively. Letting p := rsing,_1

and writing ag;" for 887;" (0,01, ,0n_2,p) we have

An+1(97§017 ey Pn—2,Pn—1, 7")

aT, oT, oT, 9T, OT,
80n Btpab - agoniz 6’)” T COS Pp—1 apn SN ©p—1
0O 0 ... 0 —rsin,_1 COS (P —1

=7 (COS2 On_1 + sin? On-1) An(,0,01,. .., Pn—2,p)
= TATL(07 Ply--rPn—2, 7 sin ¢H—1)7
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130 9 Multiple and Iterated Integrals
ie.

Api1(0,01, ..oy on—o,0n—1,7) = 1A, (0,01,...,Pn_2,rsinp,_1). (9.54)
To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ag(6,r) = r already derived in Example [9.26] Eq. (9.54)

implies,

As(0,01,7) = rAy(0,rsin 1) = r? sin ¢y
Ay(0, 01, p2,7) = rA3(0, 01, rsinps) = r3 gin? 2 sin @1

n—2

An (0,01, .., pn_a,r) = ™ lgin On_g...sin? pgsing;

which proves Eq. (9.52)). Equation (9.53) now follows from Egs. (9.41]), (9.51))
and (9.52)). ]
As a simple application, Eq. (9.53) implies

o(S" 1 = / sin" "2 @, _o ...sin’ @y sin p1dy; . . . dp,_odf
0<p; <m,0<0<2m
n—2
=27 H Ve = 0(S" %) Yn_2 (9.55)
k=1
where v, := fow sin® odp. If k > 1, we have by integration by parts that,
Vi = / sin® pdp = —/ sin* "t dcosp = 26,1 + (k — 1)/ sin* =2 ¢ cos? pdyp
0 0 0

=201+ (k— 1)/ sin® % (1 —sin® ) dp = 20k1 + (k — 1) [ve—2 — Vi
0

and hence v, satisfies v = 7, 71 = 2 and the recursion relation

k—1
Ve = Yr—g for k > 2.
Hence we may conclude
9 1 22 31 4 22 531
= = = — = — = — =T = - — = —— =77
Yo ™, 71 y V2 27‘-’ 73 3% Y4 492" 5 537 Ve 649
and more generally by induction that
(2k — 1! (2K
=r——’" and =2——.
B O 75 TR DY 1T
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Indeed,
_ 2k+2 _2k+2_ (2k)! 5 [2(k+ 1)
TN T o 3 T 9 3T @k + ) (2(k + 1)+ DI
and
2k+1 2k+1 (2k—1)! (2k + )N
= = s =T .
T2 T g 1R T ok 12" (2K (2k + 2)1!
The recursion relation in Eq. (9.55) may be written as
o(S") =0 (5"") Y1 (9.56)
which combined with o (S') = 27 implies
o (Sl) = 2m,
o(S?) =21 -y =21 -2,
1 2272
2272 2272 2 2372
4y _ v — 9% _
e T e TR BT
1 2_ 31 2373
5 _
1 231 42 2473
6
— 9. 9. q.29.2 0. 29
087 =2m-2-gm 32 05T 5327
and more generally that
2 (2m)" (2m)" !
2n 2n+1y __
=—7 and = .
o) = G —n e = o (9:57)
which is verified inductively using Eq. (9.56)). Indeed,
202m)"  (2n—DN  (@2mn)"H!
2n+1 — SQ’I’L — =
(S = oS e = o T @ (2n)!
and
n+1 " 9 (97)" 1
(n+1)y _ 2n+2y _ 2n+1 _ (2m) 9 (2n)! _ (2m)
(ST = oS = o (ST M ens = 5 S 2 G o~ @as
Using

o)l =2n(2(n—-1))...(2-1) =2"n!

we may write o(S?"H1) = 2”;# which shows that Egs. 1) and 1 are in
agreement. We may also write the formula in Eq. (9.57) as

2(2m)"/?
o(sm = "L

((2:23 for n odd.

for n even
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9.8 Gaussian Random Vectors

Definition 9.34 (Gaussian Random Vectors). Let (2,8, P) be a probabil-
ity space and X : 2 — R? be a random vector. We say that X is Gaussian if
there exists an d x d — symmetric matriz Q and a vector y € R such that

) 1
E [ez/\X] = exp (—2Q)\ A )\) for all X € R%. (9.58)

We will write X < N (Q, 1) to denote a Gaussian random vector such that Eq.

holds.

Notice that if there exists a random variable satisfying Eq. @D then its law
is uniquely determined by @ and u because of Corollary [B.11] In the exercises
below your will develop some basic properties of Gaussian random vectors — see
Theorem for a summary of what you will prove.

Exercise 9.4. Show that ) must be non-negative in Eq. (9.58).

Definition 9.35. Given a Gaussian random vector, X, we call the pair, (Q, 1)
appearing in Eq. the characteristics of X. We will also abbreviate the
statement that X is a Gaussian random vector with characteristics (Q,p) by

writing X N (Q, ) -

Lemma 9.36. Suppose that X N (Q,p) and A: R — R™ is am x d — real
matriz and a € R™, then AX + « <N (AQA™, Ap+ ). In short we might
abbreviate this by saying, AN (Q, 1) + « N (AQA™, Ap + ).

Proof. Let £ € R™, then
E [e/(AXT0)| — gitrap [(ATEX] — piteexp (—;QA“g CATE + i A%)
= e %exp (—;AQA“& E+iAp- 5)
= exp <;AQA”§ E+i(Ap+ ) - §>

from which it follows that AX + a < N (AQA™, Au+ ). |

Exercise 9.5. Let P be the probability measure on {2 := R? defined by

1 iz d 1 2
dP (z) := <271-> e 2%y = H (me_wi/zdxi) .

i=1
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Show that N : 2 — R defined by N (r) = x is Gaussian and satisfies Eq.
(19.58) with @ = I and p = 0. Also show

Hi = ENZ and 51']' = Cov (Ni,Nj) for all 1 < Z,j < d. (959)
Hint: use Exercise and (of course) Fubini’s theorem.

Exercise 9.6. Let A be any real m xd matrix and u € R™ and set X := AN+pu
where 2 = R?, P, and N are as in Exercise Show that X is Gaussian by
showing Eq. holds with Q = AA"™ (AY is the transpose of the matrix A)
and p = p. Also show that

i = EXZ and QU = Cov (XzaX]) for all 1 < Z,j < m. (960)

Remark 9.37 (Spectral Theorem). Recall that if @ is a real symmetric d x d
matrix, then the spectral theorem asserts there exists an orthonormal basis,
{u};l:l, such that Qu; = Aju; for some A; € R. Moreover, A; > 0 for all j is
equivalent to Q being non-negative. When Q > 0 we may define Q/2 by

Ql/guj = \//\juj for 1 S j S d.

Notice that Q/2 > 0 and Q = (Q1/2)2 and Q2 is still symmetric. If Q is
positive definite, we may also define, Q—/2 by

1
Q Vu; = ——ujfor1<j<d

7
so that Q~1/2 = [Ql/ﬂ_l )

Exercise 9.7. Suppose that @ is a positive definite (for simplicity) d x d real
matrix and p € R? and let 2 = R¢, P, and N be as in Exercise By Exercise

we know that X = Q2N + y is a Gaussian random vector satisfying Eq.

(19.58). Use the multi-dimensional change of variables formula to show

Lawp (X) (dy) = 5O - )

1
—————exp
Vdet (27Q) ( 2
Let us summarize some of what the preceding exercises have shown.

Theorem 9.38. To each positive definite d x d real symmetric matriz Q and
p € R? there exist Gaussian random vectors, X, satisfying Eq. . Moreover
for such an X,

Lawp (X) (dy) = Loy - m) dy

1
——————ex
Jdet2rQ) P < 2
where Q and u may be computed from X using,

wi =EX; and Q;; = Cov (X;,X;) for alll <i,j <m. (9.61)
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132 9 Multiple and Iterated Integrals

When Q is degenerate, i.e. Nul(Q) # {0}, then X = Q2N + p is still a
Gaussian random vectors satisfying Eq. (9.58). However now the Lawp (X) is
a measure on R? which is concentrated on the non-trivial subspace, Nul (Q)l -
the details of this are left to the reader for now.

Exercise 9.8 (Gaussian random vectors are “highly” integrable.). Sup-

pose that X : 2 — R? is a Gaussian random vector, say X 4 N (Q, ). Let
|z]| := v/z -7 and m := max {Qz - z : ||| = 1} be the largest eigenvalud’| of Q.
Then E [ee”Xug} < oo for every e < ﬁ

Because of Eq. (9.61)), for all A € R? we have

d
poA=>EX; -\ =E(\-X)

i=1
and

QX A= "QiAid; = > Ai); Cov (X;, X;)

4,7 4,7
= Cov Z)\iXi,Z)\ij :Var()\-X).
@ J

Therefore we may reformulate the definition of a Gaussian random vector as
follows.

Definition 9.39 (Gaussian Random Vectors). Let (2,8, P) be a probabil-
ity space. A random vector, X : 2 — R%, is Gaussian iff for all X € RY,

E [e?] = exp <; Var (A - X) + B () - X)) : (9.62)

In short, X is a Gaussian random vector iff \- X is a Gaussian random variable
for all A € R,

Remark 9.40. To conclude that a random vector, X : 2 — R?, is Gaussian it
is not enough to check that each of its components, {Xi}?zl, are Gaussian
random variables. The following simple counter example was provided by Nate
Eldredge. Let (X,Y) : £2 — R? be a Random vector such that (X,Y), P = u®v

where dy (z) = \/%e_%“'zdx and v =3 (0_1 +61). Then (X,YX): 2 — R?is
a random vector such that both components, X and Y X, are Gaussian random
variables but (X,Y X) is not a Gaussian random vector.

Exercise 9.9. Prove the assertion made in Remark Hint: explicitly com-
pute E [ei(Alx“‘?XY)} .

3 For those who know about operator norms observe that m = ||Q|| in this case.
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9.9 Kolmogorov’s Extension Theorems

In this section we will extend the results of Section to spaces which are not
simply products of discrete spaces. We begin with a couple of results involving
the topology on RY.

9.9.1 Regularity and compactness results

Theorem 9.41 (Inner-Outer Regularity). Suppose p is a probability mea-
sure on (RN,BRN) , then for all B € Brn we have

pw(B)=inf{p(V): BCV and V is open} (9.63)

and

w(B) =sup{p(K): K C B with K compact} . (9.64)

Proof. In this proof, C, and C; will always denote a closed subset of RY
and V, V; will always be open subsets of RY. Let F be the collection of sets,
A € B, such that for all € > 0 there exists an open set V and a closed set, C,
such that C C A C V and u (V' \ C) < e. The key point of the proof is to show
F = B for this certainly implies Equation and also that

w(B) =sup{u(C): C C B with C closed}. (9.65)

Moreover, by MCT, we know that if C is closed and K, :=
Cn{zeRV:|z|<n}, then p(K,) T n(C). This observation along
with Eq. shows Eq. is valid as well.

To prove F = B, it suffices to show F is a o — algebra which contains all
closed subsets of RV, To the prove the latter assertion, given a closed subset,
C CRY, and ¢ > 0, let

C. := UgzecB (z,¢)

where B (z,¢) := {y € RV : |y — 2| < e} . Then C. is an open set and C. | C
as ¢ | 0. (You prove.) Hence by the DCT, we know that u(C:\ C) | 0 form
which it follows that C € F.

We will now show that F is an algebra. Clearly F contains the empty set
and if A€ Fwith C C ACV and u(V\C) < ¢, then V¢ C A° C C° with
w(C\Ve) =pu(V\C) < e. This shows A° € F. Similarly if A, € F fori=1,2
and C; C A; C V; with ,u(V; \ Cz) < g, then

C=CiUCyCcAjUA; C VUV =V

and
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p(VANC) < p(Vi\C)+p(V2\C)

<
<Sp MG +p(Va\ Gy < 2.

This implies that A; U As € F and we have shown F is an algebra.

We now show that F is a o — algebra. To do this it suffices to show A :=
Yoo Ay € Fif A, € F with A, N A, =0 for m # n. Let C, C A,, CV,, with
(Vi \ Cp) < €27 for all n and let CV := U,<nyCp, and V := U, V,,. Then
CNCcACV and

M(V\CN) < ZN(VH\CN) < ZN(VH\Cn)+ Z (Vo)
= n=0 n=N-+1

<Z<52 "y Z n) +e27"]
n=N-+1
=+ Z

n=N+1

The last term is less that 2¢ for N sufficiently large because > oo, p(A,) =
1 (A) < oo. |

Notation 9.42 Let I := [0,1], Q = IN, m; : Q — I be the projection
map, 7j(x) = x; (where x = (x1,22,...,%,...) for all j € N, and Bg :=
o (mj: j € N) be the product o — algebra on Q. Let us further say that a sequence
{z(m)}-_, C Q, where x (m) = (z1 (m),z2(m),...), converges to x € Q iff
lim,, 00 2 (M) = ; for all j € N. (This is just pointwise convergence.)

Lemma 9.43 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)}~_, C Q has a convergent
subsequence,{x (my)} pey -

Proof. Since I is compact, it follows that for each j € N, {z; (m)}f::l has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {my};—, , of N such that limj_, z; (my) € I exists
for all j € N. ]

Corollary 9.44 (Finite Intersection Property). Suppose that K,, C Q are
sets which are, (i) closed under taking sequential limitﬂ and (ii) have the finite
intersection property, (i.e. NI _1K,, # 0 for allm € N), then NS_, K,,, # 0.

Proof. By assumption, for each n € N, there exists z (n) € NI, _; K,,. Hence
by Lemma there exists a subsequence, « (ny) , such that  := limg_, x (ng)

4 For example, if K,, = K/, x Q with K/, being a closed subset of I"™, then K,, is
closed under sequential limits.
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exists in Q. Since x (ng) € NI, _, K, for all k large, and each K, is closed
under sequential limits, it follows that x € K, for all m. Thus we have shown,
x € N¥_, K, and hence N°_, K, # 0. n

9.9.2 Kolmogorov’s Extension Theorem and Infinite Product
Measures

Theorem 9.45 (Kolmogorov’s Extension Theorem). Let I := [0,1].
For each n € N, let pu, be a probability measure on (I™,Brn) such that
tnt1 (AXI) = pn (A). Then there exists a unique measure, P on (Q,Bg)
such that

P(AXQ) = pn(4) (9.66)
for all A € Byn and n € N.

Proof. Let A := UB,, where B,, :== {AXQ:A€Bm} =o0(m,...,7n),
where m; (x) = z; if x = (z1,22,...) € Q. Then define P on A by Eq. (9.66)
which is easily seen (Exercise to be a well defined finitely additive measure
on A. So to finish the proof it suffices to show if B,, € A is a decreasing sequence
such that

i%fP(Bn) = lim P(B,)=¢>0,

n—oo
then B :=NB, # 0.
To simplify notation, we may reduce to the case where B,, € B,, for all n.
To see this is permissible, Let us choose 1 < n; < ny < ng < .... such that
By, € B,,, for all k. (This is possible since B,, is increasing in n.) We now define

- )
a new decreasing sequence of sets, {Bk} as follows,

n1—1 times ns—nj times mng—ns times n4g—ng3 times

~ ~ ——
(31,32,...): 0...0.B....B.By...B.Bs.. Ba...

We then have B,, € B,, for all n, lim, . P (Bn) =e>0,and B = ﬁ;’leén.

Hence we may replace B, by B, if necessary so as to have B,, € B,, for all n.

Since B,, € B,, there exists B, € By~ such that B, = BJ, x @ for all n.
Using the regularity Theorem there are compact sets, K], C B], C I",
such that pu, (B, \ K}) < 27" for all n € N. Let K, := K/, x Q, then
P (B, \ K,) <e27""! for all n. Moreover,

P (Bu\ [Np=1Km]) = P (Up—q [Bn \ K] zn:P Bn \ Kim)

<Y P(Bpn\Kn) < 252 m-l < g/2.
m=1

m=1

macro: svmonob.cls date/time: 19-Feb-2010/11:31



134 9 Multiple and Iterated Integrals
So, for all n € N,

P(Mh=1Km) = P (Bn) = P(By \ [M21Km]) 2 e —€/2=¢/2,

and in particular, N%_, K, # 0. An application of Corollary now implies,
0 #nN,K, CN,By. m

Exercise 9.10. Show that Eq. defines a well defined finitely additive
measure on A := UB,,.

The next result is an easy corollary of Theorem

Theorem 9.46. Suppose {(X,, M)} nen are standard Borel spaces (see Ap-
pendiz [9.10) below), X = [[ X, mn : X — X,, be the n'* — projection map,
neN

B, =c(m:k<n), B=o(m, :n €N), and T, := Xpt1 X Xpy2 X ....
Further suppose that for each n € N we are given a probability measure, p, on
Mi®---® M, such that

tnt1 (A X Xpi1) = pn (A) forallneNand Ae M1 @ -+ @ M,.

Then there exists a unique probability measure, P, on (X,B) such that
PAXT,)=pn(A) foralAec M1 Q- @ M,.

Proof. Since each (X, M,) is measure theoretic isomorphic to a Borel
subset of I, we may assume that X,, € 81 and M,, = (Br)y, for all n. Given
A€ By, let i, (A) == pn (AN[Xy X -+ x X,]) — a probability measure on
Bpn. Furthermore,

Fing1 (A X T) = pg ([A X TN [Xy X - X Xpgq])
= 1 (AN [Xy X x Xp]) X Xppi1)
=t (AN X7 X - % Xy])) = fin (A).
Hence by Theorem there is a unique probability measure, P, on I such

that -
P(AxIV) =i, (A) foralln € N and A € B».

We will now check that P := P|ge 4
have

. is the desired measure. First off we

P(X)= lim P(X; x - x X, xIV) = lim i, (X1 x -+ x X,)

n—oo n—oo

= lim p, (X1 X - x X,) =

n—oo

Secondly, if A € M; ® --- ® M,,, we have
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P(AXT,) =P(AxT,) =P((AxI)nX)
P (AxIY) = fin (A) = py (A).

Here is an example of this theorem in action.

Theorem 9.47 (Infinite Product Measures). Suppose that {v,},. | are a
sequence of probability measures on (R, Br) and B := ®,enBr is the product o
— algebra on RY. Then there exists a unique probability measure, v, on (RN, B) ,
such that

v(Ay x Ay x o x Ay x RN =0y (A1) .. v, (A,) VA € Bg §neN.
(9.67)

Moreover, this measure satisfies,
Flonm)dr @) = o m)din () dv () (9.68)
R R

forallm € N and f : R™ — R which are bounded and measurable or non-negative
and measurable.

Proof. The measure v is created by apply Theorem with p, == 11 ®
- Q@ vy on (R™, Brn = @7_,Bgr) for each n € N. Observe that

Hr+1 (A X R) = Hn (A) *Vn41 (R) = Hn (A) )

so that {4, },., satisfies the needed consistency conditions. Thus there exists
a unique measure v on (RN, B) such that

v(AxRY) =y, (A) for all A€ Bpn and n € N.

Taking A = A; x Ay x --- x A,, with A; € Bg then gives Eq. (9.67)). For this
measure, it follows that Eq. holds when f = 14,x..xa,. Thus by an
application of Theorem with M = {14,x...x4, : 4; € Br} and H being the
set of bounded measurable functions, f : R™ — R, for which Eq. shows
that Eq. holds for all bounded and measurable functions, f : R™ — R.
The statement involving non-negative functions follows by a simple limiting
argument involving the MCT. [ ]
It turns out that the existence of infinite product measures require no topo-
logical restrictions on the measure spaces involved. See Theorem 7?7 below.

9.10 Appendix: Standard Borel Spaces*

For more information along the lines of this section, see Royden [50] and
Parthasarathy [38].
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Definition 9.48. Two measurable spaces, (X, M) and (Y,N) are said to be
isomorphic if there exists a bijective map, f : X — Y such that f (M) =N
and f=1 (N) = M, i.e. both f and f=1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X =Y.

Definition 9.49. A measurable space, (X, M) is said to be a standard Borel
space if (X, M) = (B, Bp) where B is a Borel subset of ((0,1),B,1)) -

Definition 9.50 (Polish spaces). A Polish space is a separable topological
space (X, T) which admits a complete metric, p, such that T = 7.

The main goal of this chapter is to prove every Borel subset of a Polish
space is a standard Borel space, see Corollary [0.60] below. Along the Way we
will show a number of spaces, including [0,1], (0,1], [0,1]%, R?, {0, 1},

RY, are all (measure theoretic) isomorphic to (0,1). Moreover we also w1ll see
that a countable product of standard Borel spaces is again a standard Borel

space, see Corollary [0.57}

*On first reading, you may wish to skip the rest of this
section.

Lemma 9.51. Suppose (X, M) and (Y,N) are measurable spaces such that
X =YY%, X,, Y =%V, with X, € M and Y,, € N. If (X,,, Mx,)
is isomorphic to (Y,, Ny, ) for all n then X =Y. Moreover, if (X,, M) and
(Yo, Ny) are isomorphic measure spaces, then (X = []°7 X, ®52,M,,) are
(Y =112, Yo, ®22,N,,) are isomorphic.

Proof. For each n € N, let f, : X,, — Y, be a measure theoretic isomor-
phism. Then define f : X — Y by f = f, on X,,. Clearly, f : X — Y is a
bijection and if B € N, then

FUB) = U f T (BAY.) = U £ (B Y,) € M.

This shows f is measurable and by similar considerations, f~! is measurable
as well. Therefore, f : X — Y is the desired measure theoretic isomorphism.

For the second assertion, let f,, : X,, — Y,, be a measure theoretic isomor-
phism of all n € N and then define

f@) = (fi(z1), fo(x2),...) with x = (z1,29,...) € X.

Again it is clear that f is bijective and measurable, since

—1 (f[an> Hf ) € Q@2 N,

for all B,, € M,, and n € N. Similar reasoning shows that f ! is measurable as
well. ]
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Proposition 9.52. Let —oc0 < a < b < o00. The following measurable spaces
equipped with there Borel o — algebras are all isomorphic; (0,1), [0,1], (0,1],
[0,1), (a,b), [a,b], (a,b], [a,b), R, and (0,1)UA where A is a finite or countable
subset of R\ (0,1).

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (—1,1) 2 [—1, 1]. To prove this it suffices, by Lemma to
observe that

(L) ={0yud_((-27 -27"julz™" 27
n=0

and
)= U S (22 U2,

Similarly (0, 1) is isomorphic to (0, 1] because

0,1)=>"[27""",27") and (0,1] = Y (27", 27"].
n=0 n=0

The assertion involving R can be proved using the bijection, tan
(—m/2,7/2) — R.

If A= {1}, then by Lemma and what we have already proved, (0,1) U
{1} = (0,1] 2 (0,1) . Similarly if N € N with N > 2 and A ={2,...,N + 1},
then

N—-1
(0.huA=(0,]JUud=(0,27""]u lZ@",wl} U4
n=1
while
N-—-1
(0,1) = (0,27"*) U [Z (2‘",2‘”‘1)] U{2min=12... N}
n=1

and so again it follows from what we have proved and Lemma that (0,1) =
(0,1) U A. Finally if A = {2,3,4,...} is a countable set, we can show (0,1) =
(0,1) U A with the aid of the identities,

o0
(0,1) = [Z (2”,2”1)] u{2™":neN}
n=1
and
0, 1UAZ(0,1Jud= > 227" | UA
n=1
| ]
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Notation 9.53 Suppose (X, M) is a measurable space and A is a set. Let
7, 1 X4 — X denote projection operator onto the a'® — component of X4 (i.e.
7o (W) = w(a) for all a € A) and let M®4 := o (14 : a € A) be the product o —
algebra on XA.

Lemma 9.54. If p : A — B is a bijection of sets and (X, M) is a measurable
space, then (XA,M®A) % (XB,M®B) .

Proof. The map f : X — X4 defined by f (w) =wo ¢ for all w € XB is
a bijection with f~! (o) = o~ !. Ifa € A and w € XZ, we have

X o fw) = f (W) (@) =w (p(a) = 150 ),

XA

o, and ¥ " are the projection operators on X and X7 respectively.

where
Thus X" o f = Ww(z) for all @ € A which shows f is measurable. Similarly,

of l=nr ,Al ®) showing f~! is measurable as well. ]

Proposition 9.55. Let 2 := {0,1}"", m; : 2 — {0,1} be projection onto the
i™" component, and B := o (71, m2,...) be the product o — algebra on 2. Then

(12,B) = ((0,1), B,1)) -

Proof. We will begin by using a specific binary digit expansion of a point
x € 10,1) to construct a map from [0,1) — §2. To this end, let 1 (x) = z,

1 (2) = 1y59-1 and 73 () == — 271y, (z) € (0, 2_1),

then let vo :=1,,59-2 and 73 = 1o — 272y, € (0, 2_2) . Working inductively, we
construct {7y (z), 7k (x)}re; such that v (z) € {0,1}, and

P () = rg (x) = 27 3 ( —x—22 I (z) € (0,27%) (9.69)

for all k. Let us now define g : [0,1) — 2 by g (z) := (71 (z),y2 (z),...). Since
each component function, m; o g =; : [0,1) — {0,1}, is measurable it follows
that g is measurable.

By construction,

x—ZQ j'Y] )+ e (@)

and ri41 () — 0 as k — oo, therefore

x = Z 277; (z) and 7441 ( Z 27y (z (9.70)
] j=k+1
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Hence if we define f: 2 — [0,1] by f =372, 27I7;, then f (g (x)) = z for all
€ [0,1). This shows g is injective, f is surjective, and f in injective on the
range of g.

We now claim that 2y := ¢ ([0,1)), the range of g, consists of those w € 2
such that w; = 0 for infinitely many ¢. Indeed, if there exists an k € N such
that v, (z) = 1 for all j > k, then (by Eq. (9.70)) 741 (z) = 27F which
would contradict Eq. (9.69). Hence g ([0,1)) C £2y. Conversely if w € 2y and
x = f(w) € [0,1), it is not hard to show inductively that ~; (z) = w; for all
j, i.e. g(z) = w. For example, if w; = 1 then > 27! and hence 71 (z) = 1.
Alternatively, if w; = 0, then

o0 o0
z=Y 27w <Y 277 =27"
j=2 j=2

so that 1 (z) = 0. Hence it follows that o (z) = 372, 27Jw; and by similar
reasoning we learn 7o (z) > 272 iff wy = 1, i.e. 32 () = 1 iff we = 1. The full
induction argument is now left to the reader.

Since single point sets are in B and

A:=0\ =02  {we R:w;=1forj>n}

is a countable set, it follows that A € B and therefore 20 = 2\ A4 € B.
Hence we may now conclude that g : ([O, 1), 8[071)) — (20, Bg,) is a measurable
bijection with measurable inverse given by f|q,, i.e. ([0, 1), 3[0,1)) > (£20,Bg,) -
An application of Lemma [0.51] and Proposition [0.52] now implies

Q=02UA2[0,1)UN[0,1)=(0,1).
]

Corollary 9.56. The following spaces are all isomorphic to ((071),[)’(071));

(0,1)* and R? for any d € N and [0,1]" and RY where both of these spaces
are equipped with their natural product o — algebras, .

Proof. In light of Lemma and Proposition we know that (0,1)% =
R? and (0,1)" 2 [0,1]" = RY. So, using Proposition it suffices to show
(0,1) = 2 = (0,1)" and to do this it suffices to show 24 2 2 and 2N = (2.

To reduce the problem further, let us observe that 2¢ = {0, 1}NX{1’2 """ 4
and 2V = {0, 1}N2 . For example, let g : 2% — {0, I}N2 be defined by

N
g (W) (i,5) = w (i) (j) for all w € NN = [{0, 1}N} . Then g is a bijection and

since ﬂ&{zb} og(w) =y (wiﬂN (w)) , it follows that g is measurable. The in-

verse, g~ ! : {0,1}N2 — N to g is given by g7 () (i) () = a(i,7). To see
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this map is measurable, we have 7T;QN ogt:{o0, 1}N2 — 2 ={0,1}" is given

72 097 (@) = g7 (@) (i) (-) = (i, -) and hence

N o 0,1 N2
orf og(@) =a(ij) =75 (a)
2
from which it follows that 7rj907riQN og™! = 013" is measurable for all i,7 €N

N . ; .
and hence 7> o g~! is measurable for all i € N and hence g~! is measurable.

This shows 28 22 {0, 1}N2 . The proof that £2¢ = {0, 1}NX{1’2""’d} is analogous.

We may now complete the proof with a couple of applications of Lemma
Indeed N, N x {1,2,...,d}, and N? all have the same cardinality and
therefore,

1

0, 1}N><{1,2,4-~7d} =~ {0, 1}N2 ~ (0,1} =
[

Corollary 9.57. Suppose that (X,,, M,,) for n € N are standard Borel spaces,
then X = [[.2, X,, equipped with the product o — algebra, M := @22 M,, is
again a standard Borel space.

Proof. Let A, € Bjy,1) be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, fn X, — A,. Then f: X — A:=[][_, A, defined by
f(z1,22,...) = (fi1 (z1), fa (z2),...) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product o — algebra, ®5% B4, . So ac-
cording to Corollary [0.56] to finish the proof it suffice to show @52, B4, = My
where M := ®52,Bjg 1] is the product o — algebra on [0, 1N

The o — algebra, ®32,B,4,, is generated by sets of the form, B :=[[ -, B
where B,, € By, C 3[0,1 On the other hand, the ¢ — algebra, M 4 is generated
by sets of the form, AN B where B := | B,, with B,, € Bjo,1)- Since

ANB= ﬁ (BnmAn) =
n=1

where B,, = B,, N A,, is the generic element in By, , we see that @52 84, and
M 4 can both be generated by the same collections of sets, we may conclude
that ®952 84, = Ma. [ |

Our next goal is to show that any Polish space with its Borel o — algebra is
a standard Borel space.

3

B,

n=1

Notation 9.58 Let Q := [0,1]N denote the (infinite dimensional) unit cube
in RN, Fora,be Q let

oo oo

d(a,b) =3 Qin an —bal =3 ;n im0 (@) — 70 ()] - 9.71)

n=1 n=1
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Exercise 9.11. Show d is a metric and that the Borel o — algebra on (Q, d) is
the same as the product o — algebra.

Solution to Exercise (9.11)). It is easily seen that d is a metric on @ which,
by Eq. (9.71) is measurable relative to the product o — algebra, M.. There-
fore, M contains all open balls and hence contains the Borel ¢ — algebra, B.

Conversely, since
|7n (@) — 7 (b)] < 2"d (a,b),

each of the projection operators, m, : @ — [0,1] is continuous. Therefore each
T, is B — measurable and hence M = o ({m,},— ;) C B.

Theorem 9.59. To every separable metric space (X, p), there exists a contin-
uous injective map G : X — Q such that G : X — G(X) C Q is a homeomor-
phism. Moreover if the metric, p, is also complete, then G (X) is a G5 —set, i.e.
the G (X) is the countable intersection of open subsets of (Q,d). In short, any
separable metrizable space X is homeomorphic to a subset of (Q,d) and if X is
a Polish space then X is homeomorphic to a Gs — subset of (Q,d).

Proof. (This proof follows that in Rogers and Williams [47, Theorem 82.5
on p. 106.].) By replacing p by 1= 1f necessary, we may assume that 0 < p < 1.

Let D = {an},., bea countable dense subset of X and define

G(x)=(p(z,a1),p(x,a2),p(z,a3),...) €Q

and

SL' Gnp _p(yvan)‘

w‘,_.

7 (2,y) = d(G(z Z

for z,y € X. To prove the first assertion, we must show G is injective and = is
a metric on X which is compatible with the topology determined by p.

If G(x) = G(y), then p(x,a) = p(y,a) for all @ € D. Since D is a dense
subset of X, we may choose oy € D such that

0= lim p(z,a5) = lim p(y,ax) =p(y,2)

k—oo

and therefore x = y. A simple argument using the dominated convergence
theorem shows y — v (z,y) is p — continuous, i.e. v (z,y) is small if p (z,y) is
small. Conversely,

p(z,y) < p(x,an) +p(y,an) = 2p (2, an) + p (y,an) — p (2, an)
<2p(z,an) +[p(2,an) — p (Y, an)| < 2p(2,an) + 2"y (2,y) .
Hence if € > 0 is given, we may choose n so that 2p(x,a,) < £/2 and so if

v (z,y) < 27("+Ve it will follow that p(z,y) < e. This shows 7, = 7,. Since
G: (X,v7) — (Q,d) is isometric, G is a homeomorphism.
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Now suppose that (X, p) is a complete metric space. Let S := G (X) and o
be the metric on S defined by o (G (x),G (y)) = p(x,y) for all x,y € X. Then
(S,0) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, 7, = 74,. Consequently, if u € S and £ >
0 is given, we may find ¢’ (¢) such that B, (u,d’ (¢)) C Bg (u,¢) . Taking ¢ (g) =
min (8’ (¢) &), we have diamg (Bg (u,d (¢))) < € and diam, (Bg (u,d(¢))) < €
where

diam, (A) := {supo (u,v) : u,v € A} and
diamy (A) := {supd (u,v) : u,v € A}.

Let S denote the closure of S inside of (Q,d) and for each n € N let
N, :={N € 74 : diam, (N) V diam, (NN S) < 1/n}

and let U, := UN,, € 74. From the previous paragraph, it follows that S C U,
and therefore S C SN (N2, U,,) .

Conversely if u € SN (N%,U,) and n € N, there exists N,, € N,, such
that u € N,,. Moreover, since Ny N---N N,, is an open neighborhood of u € S,
there exists u,, € Ny N---N N, NS for each n € N. From the definition of
N, we have lim,, . d (u,u,) = 0 and o (uy, up) < max (n’l,mfl) — 0 as
m,n — oo. Since (S,0) is complete, it follows that {u,} -, is convergent in
(S,0) to some element ug € S. Since (S5, dg) has the same topology as (S, 0)
it follows that d(un,,up) — 0 as well and thus that v = ug € S. We have
now shown, S = S N (N%,U,). This completes the proof because we may
write S = (N, S1/n) where S1/,, := {u € Q:d(u,S) <1/n} and therefore,
S= (Mol Un) N (Noy Siyn) is a Gy set. [

Corollary 9.60. Every Polish space, X, with its Borel o — algebra is a standard
Borel space. Consequently any Borel subset of X is also a standard Borel space.

Proof. Theorem shows that X is homeomorphic to a measurable (in
fact a Gs) subset Qg of (Q,d) and hence X = Q. Since @ is a standard Borel
space so is Qg and hence so is X. [

9.11 More Exercises

Exercise 9.12. Let (X;, M, p1;) for j = 1,2,3 be o — finite measure spaces.
Let F : (Xl X X2) X X3 — X1 X X2 X X3 be defined by

F((z1,x2),23) = (1,22, 23).
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1. Show F is (M1 ® Ma) ® M3, M1 ® My ® M3) — measurable and F~! is
(M7 @ Ms ® M3, (M1 ® Ms3) ® Ms) — measurable. That is

F: ((X1 X XQ) XX3, (Ml ®M2)®M3) — (X1 XX2 XX3,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. 7(A) = [(u1 @ p2) @ 3] (F~1(A)) for all
A e M;® My ® Ms. Then 7 is the unique measure on M1 ® My ® M3
such that

m(Ar x Ay x Az) = p1 (A1) p2(A2)ps(As)

for all A; € M;. We will write 7 := 1 ® po ® 3.
3. Let f: X1 x Xg x X3 — [0,00] be a (M1 @ Mg ® Mg, Bg) — measurable
function. Verify the identity,

/ fdr = du3($3)/ dpa(z2) dpa (w1) f (21, 22, 73),
X1><X2><X3 X3 X2 Xl

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible
orderings of the iterated integrals.

Exercise 9.13. Prove the second assertion of Theorem [9.20] That is show m?
is the unique translation invariant measure on Bga such that m<((0,1]%) = 1.
Hint: Look at the proof of Theorem

Exercise 9.14. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1], M =
Bip,1) be the Borel o — field on X, m be Lebesgue measure on [0,1] and v be
counting measure, v(A) = #(A). Finally let D = {(z,z) € X?: 2 € X} be the
diagonal in X?2. Show

/XUX 1D(x,y)du(y)} dm(x)#/x[/X 1D(x,y)dm(x)} dv(y)

by explicitly computing both sides of this equation.

Exercise 9.15. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 9.16. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M x Bg should be M ® Bz in this problem.)

Exercise 9.17. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.18. Folland Problem 2.56 on p. 77. Let f € Ll((07a),dm)’ g(x) =
Je @dt for 2 € (0,a), show g € L'((0,a),dm) and

/Oag(x)dx - /Oaf(t)dt.
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Exercise 9.19. Show [ [¥2£|dm(z) = oo. So #2Z ¢ L([0,00),m) and

fooo Si%dm(m) is not defined as a Lebesgue integral.

Exercise 9.20. Folland Problem 2.57 on p. 77.

Exercise 9.21. Folland Problem 2.58 on p. 77.

Exercise 9.22. Folland Problem 2.60 on p. 77. Properties of the I" — function.
Exercise 9.23. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.24. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on S" 1,

Exercise 9.25. Folland Problem 2.64 on p. 80. On the integrability of
|z|* [log |z||” for = near 0 and z near co in R™.

Exercise 9.26. Show, using Problem [9.24] that
1
/ wiw;do (w) = =6;;0 (ST1).
i d

Hint: show [g, , wido (w) is independent of i and therefore

d
1
24 == § / 24 .
/Sdfl wl 7 (w) d j=1 Sd—l w'] 7 (W)
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Independence

As usual, (£2,B,P) will be some fixed probability space. Recall that for
A, B € B with P (B) > 0 we let

P(ANnB)

P(A|B) := )

which is to be read as; the probability of A given B.

Definition 10.1. We say that A is independent of B is P (A|B) = P (A) or
equivalently that
P(AnB)=P(A)P(B).
We further say a finite sequence of collection of sets, {C;}.—, , are independent
if
P(NjesA;) = [ P(4)
jeJ

for all A; € C; and J C {1,2,...,n}.

10.1 Basic Properties of Independence

If {C;}!, , are independent classes then so are {C; U {£2}}!_, . Moreover, if we
assume that 2 € C; for each i, then {C;};_,, are independent iff

P (1 4;) =[] P(4)) forall (Ay,...,A;) €Crx -+ xCp.

j=1

Theorem 10.2. Suppose that {C;};—, is a finite sequence of independent m —
classes. Then {o (C;)};_, are also independent.

Proof. As mentioned above, we may always assume without loss of gener-
ality that 2 € C;. Fix, A; € C; for j = 2,3,...,n. We will begin by showing
that

Q(A):=P(ANAsN---NA,) =P(A) P(Ay)...P(A,) forall A€ o (Cy).
(10.1)

Since @ (-) and P (As)... P (A,) P (-) are both finite measures agreeing on (2
and A in the m — system Cq, Eq. is a direct consequence of Proposition
Since (As,..., Ay) € Co X -+ X C,, were arbitrary we may now conclude
that o (C1),Ca,...,C, are independent.

By applying the result we have just proved to the sequence, Ca, . .. ,Cp, 0 (C1)
shows that o (C3),Cs,...,Cy,0 (C1) are independent. Similarly we show induc-
tively that

O'(Cj) ,Cj+1, ces ,Cn,O'(C1) yo o .,O'(Cj_l)
are independent for each j = 1,2,...,n. The desired result occurs at j =n. =
Definition 10.3. Let (2,8, P) be a probability space, {(S;, S;)};—, be a collec-
tion of measurable spaces and Y; : 2 — S; be a measurable map for 1 < i < n.

The maps {Y;};_, are P - independent iff {C;};_, are P — independent, where
Ci=Y 1 (S)=0c(Yi)CBfor1<i<n.

3

Theorem 10.4 (Independence and Product Measures). Let (§2,3, P) be
a probability space, {(S;,S;)}i—_, be a collection of measurable spaces and Y; :
2 — S; be a measurable map for 1 < i < n. Further let u; == P o Y[l =
Lawp (Y;). Then {Y;},_, are independent iff

Lawp (Y1,...,Y,) = 11 @ -+ @ fin,
where (Y1,...,Y,): 2 — 51 x--- xS, and
Lawp (Y1,...,Y,) =Po(Yy,....Y,) '8 @ @8, — [0,1]
is the joint law of Y1,...,Y,.

Proof. Recall that the general element of C; is of the form A; = Yi_1 (By)
with B; € S;. Therefore for A; = Y[l (B;) € C; we have

P(Ain---NnA,)=P(Y1,...,Y,) € By X --- X By)
— (Yi,.. ., Yo). P) (By X - X By).
If (Vi,...,Y,), P = 1 ® - ® pn it follows that
PA N NA) =1 ® @ pin (By X -+ x By)
=p1 (B1)--p(Bp) =P (Y1 € B1)--- P (Y, € By)
— P(41)...P(A)
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and therefore {C;} are P — independent and hence {Y;} are P — independent.
Conversely if {Y;} are P — independent, i.e. {C;} are P — independent, then
P((Yl,,Yn) € By x--- XBn) :P(AlﬂﬁAn)
=P(4))...P(4,)
—P(Y,€By)-- P(Y, € By)
=1 (B1)--- p(Bn)
:M1®®/~Ln(31 Xowee XBn)
Since
m:={By X+ xB,:B; €8 for1 <i<n}
is a m — system which generates S1 ® ---® S,, and
Y1,....Y), P=p11 ® - @ py onm,
it follows that (Y1,...,Y,), P=11 ® - Q@puuonalof §1 ®---® S,. n

Remark 10.5. When have a collection of not necessarily independent random
functions, Y; : 2 — S, like in Theorem it is not in general possible
to recover the joint distribution, 7 := Lawp (Y7,...,Y},), from the individual
distributions, p; = Lawp (Y;) for all 1 < ¢ < n. For example suppose that
S; = R for i = 1,2. u is a probability measure on (R, Bg), and (Y7, Ys) have
joint distribution, m, given by,

m(C) = /Rlc (z,2)dp (z) for all C' € Bg.

If we let u; = Lawp (Y;), then for all A € Bg we have
wm (A)=P(Y1 € A)=P((}1,Y2) € AxR)

:7T(A><R):/RleR(x,x)d,u(x):,u(A).

Similarly we show that po = . On the other hand if p is not concentrated on
one point, p ® u is another probability measure on (RQ,BRz) with the same
marginals as 7, i.e. 1 (A X R) = u(A) =7 (R x A) for all A € Bg.

Lemma 10.6. Let (£2,,B,P) be a probability space, {(S;,S;)}—, and
{(Tl-,’];)}?zl be two collection of measurable spaces, F; : S; — T; be a mea-
surable map for each i and Y; : 2 — S; be a collection of P — independent
measurable maps. Then {F; o Y;}._, are also P — independent.

Proof. Notice that
o(FoY;) = (FoY) () =Y, " (FE1(T)) Y, ' (S) =C..

?

The fact that {o (F; oY;)};_, is independent now follows easily from the as-
sumption that {C;} are P — independent. ]
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Ezample 10.7. If 2 := Hl 1 Si, B:=8®--®8p, Yi(s1,...,8,) = s; for all
(51,...,5,) € 2, and C; := Y, 1 (S;) for all 4. Then the probability measures, P,
on ({2, B) for which {C; } _, are independent are precisely the product measures,
P =y ®- - ® p, where y; is a probability measure on (S;,S;) for 1 < i < n.
Notice that in this setting,

Ci=Y 1 (S)={S1 x xS 1 xBxSy1x--x8,:BeS;}CB.

Proposition 10.8. Suppose that (12,8, P) is a probability space and {Zj}?zl
are independent integrable random wvariables. Then H;Zl Z; is also integrable

and
E|[]%|=]]EZ-
j=1 j=1

Proof. Let p; := PoZ; ! BR — [0,1] be the law of Z; for each j. Then we
know (Z1,...,2,), P = ® - ® pin- Therefore by Example - and Tonelli’s
theorem,

e[zl = [ |TLE |4 (@) @)
j=1 j=1
H/ 23] diy (25) HE|Z\<oo

which shows that H;.Lzl Z; is integrable. Thus again by Example and Fu-

bini’s theorem,

Theorem 10.9. Let (£2,, B, P) be a probability space, {(S;,S;)}—, be a collec-
tion of measurable spaces and Y; : 2 — S; be a measurable map for 1<i<n.
Further let p; := POYf1 = Lawp (Y;) and m := Po(Y7,... ,Ynf1 SR8,
be the joint distribution of

(Yl,...,Yn):Q—>Sl><-~><Sn.

Then the following are equivalent,
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1. {Y;}"_,| are independent,

2T =1 QU ® - Q Uy

3. for all bounded measurable functions, f : (S1 X+ X 8,81 Q- ®S,) —
(Ra B]R) s

Ef(Yl,...,Yn):/S s fay,.ooyxn)dpy (1) .. dpn (2),  (10.2)

( where the integrals may be taken in any order),
4. BT, fi V)] = 1=, E[f; (Y;)] for all bounded (or non-negative) measur-
able functions, f; : S; — R or C.

Proof. (1 <= 2) has already been proved in Theorem The fact
that (2. = 3.) now follows from Exercise and Fubini’s theorem. Sim-
ilarly, (3. = 4.) follows from Exercise and Fubini’s theorem after taking
f(z1,..,xn) = [l fi (zi). Lastly for (4. = 1.), let A; € S; and take
fi :=14, in 4. to learn,
=[[Ela ) =] P (Vi€ 4)

1=1 i=1

P(nis {Yic Ai}) =E lH La, (Ya)
i=1

which shows that the {Y;};, are independent. [

Corollary 10.10. Suppose that (£2,B,P) is a probability space and
Y, : 2 — R}?:l is a sequence of random variables with countable ranges, say

A CR. Then {Y]};L:1 are independent iff

P (5= {Ys = ui}) = [T PO = w) (10.3)

for all choices of y1,...,yn € A.

Proof. If the {Y; } are independent then clearly Eq. (10.3]) holds by definition
as {Y; = y;} € Y; ' (Bg) . Conversely if Eq. (10.3) holds and f; : R —0, 00) are
measurable functions then,

Elei(Yi) = Z Hfi(yi)'P(m?:I{Yj:yj})

Y1y Yn €A T=1

= Z Hfi(yi)'HP(Yj:yj)

Y1, Yn €A =1 j=1
=113 fiwa) - Py =)
=1y, €A

= HE[fi (Y3)]
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wherein we have used Tonelli’s theorem for sum in the third equality. It now
follows that {Y;} are independent using item 4. of Theorem [10.9] |

Exercise 10.1. Suppose that 2 = (0,1], B = B(g,1}, and P = m is Lebesgue
measure on B. Let Y; (w) := w; be the ¥ — digit in the base two expansion of
w. To be more precise, the Y; (w) € {0,1} is chosen so that

oo
w=)Y Yi(w)2"" for all w; € {0,1}.
=1

As long as w # k27" for some 0 < k < n, the above equation uniquely deter-
mines the {Y; (w)}. Owing to the fact that >°° ;27! = 27" if w = k277,
there is some ambiguity in the definitions of the Y; (w) for large ¢ which you
may resolve anyway you choose. Show the random variables, {Y;}!_, , are i.i.d.
for each n € Nwith P(Y; =1)=1/2= P (Y; =0) for all .

Hint: the idea is that knowledge of (Y7 (w),...,Y, (w)) is equivalent to
knowing for which & € Ny N [0,2") that w € (27"k,27" (k + 1)] and that this
knowledge in no way helps you predict the value of Y;,11 (w). More formally,
you might start by showing,

P ((Yarr = 1@k 27" (k4 1)) = 5 = P ({Yain =0}k, 27" (k1))

See Section if you need some more help with this exercise.
Exercise 10.2. Let X,Y be two random variables on (2, B, P).

1. Show that X and Y are independent iff Cov (f (X),g(Y)) =0 (i.e. f(X)
and ¢ (V) are uncorrelated) for bounded measurable functions, f, g : R —
R.

2.If XY € L?(P) and X and Y are independent, then Cov (X,Y) = 0.

3. Show by example that if X,Y € L?(P) and Cov(X,Y) = 0 does not
necessarily imply that X and Y are independent. Hint: try taking (X,Y) =
(X, ZX) where X and Z are independent simple random variables such that
EZ = 0 similar to Remark [0.40l

Solution to Exercise . 1. Since
Cov (f(X),g(YV)=E[f(X)g(YV)]-E[f(X)]E[g(Y)]
it follows that Cov (f (X),g(Y)) =0 iff
E[f (X)g(Y)]=E[f(X)]E[g(Y)]

from which item 1. easily follows.
2. Let far (z) = 21j/<r, then by independence,
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E [far (X) far (V)] = E [far (X)]E [far (V)] (10.4)

Since

|far (X) far (V)] < [ XY

IN

(X*+Y?) eL"(P),

|fu (X)| < X< 5 (1+X?%) eL'(P), and

(
lfu (V) <Y< (1+Y?) el (P),

we may use the DCT three times to pass to the limit as M — oo in Eq.
to learn that E[XY] =E[X]|E[Y], i.e. Cov (X,Y) = 0.

3. Let X and Z be independent with P (Z = +1) = } and take Y = XZ.
Then EZ = 0 and

Cov (X,Y)=E[X?Z] -E[X]E[XZ]
=E[X?] -EZ -E[X|E[X]|EZ = 0.
On the other hand it should be intuitively clear that X and Y are not inde-
pendent since knowledge of X typically will give some information about Y. To

verify this assertion let us suppose that X is a discrete random variable with
P (X =0)=0. Then

PX=zY=yy=PX=x,2Z=y)=P(X=zx)-P(X=y/z)
while
P(X=x2)P(Y=y)=P(X=2)-P(XZ=y).
Thus for X and Y to be independent we would have to have,
P(xX =y)=P(XZ=y) for all z,y.

This is clearly not going to be true in general. For example, suppose that
P(X=1) = % = P(X =0). Taking « = y = 1 in the previously displayed
equation would imply

%:P(le):P(XZzl):P(X:I,Z:1):P(X:1)P(Z:1):1

which is false.

Exercise 10.3 (A correlation inequality). Suppose that X is a random
variable and f,g : R — R are two increasing functions such that both f (X)
and g(X) are square integrable, ie. E|f(X)]> + E|g(X)]®> < oo. Show

Cov (f(X),¢9(X)) > 0. Hint: let Y be another random variable which has
the same law as X and is independent of X. Then consider

E[(f(Y)=f(X))-(g(Y) —g(X))].
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Let us now specialize to the case where S; = R™ and S; = Bgm; for some
m; € N.

Theorem 10.11. Let (£2,B,P) be a probability space, m; € N, S; = R™3,
S; = Bgmy, Yj : 2 — S; be random vectors, and p; := Lawp (Y;) = P o Yj_1
S; — [0,1] for 1 < j <n. The the following are equivalent;

1. {Yj}?:l are independent,

2. Lawp (Y1,...,Yn) = 11 @ a2 @ -+ @ puy,

3. for all bounded measurable functions, f: (S1 X+ x5, S1® - ®S,) —
(R7 B]R) )

Ef(Yl,,Yn)Z/S s f(xl,...,xn)dul (1‘1)d/,6n (l‘n), (105)

( where the integrals may be taken in any order),

4. E [H?:l i (YJ)} == E[fj (Y))] for all bounded (or non-negative) mea-
surable functions, f; : S — R or C.

5. P(N_{Y; <y;}) = H;L \P{Y; <y;}) for all y; € S;, where we say
thatY<y]zﬁ( e < (W5), for 1 <k <m;.

6. E[[Tj=y £ ()] = [T} ELf; (Y3)] for all f; € C. (S5, R),
E [ei 25 AJ"YJ} =TI, E[6XY5] for all Aj € S; = R™.

j=1

Proof. The equivalence of 1. — 4. has already been proved in Theorem [10.9
It is also clear that item 4. implies both or items 5. —7. upon noting that item
5. may be written as,

H 1( 00,Y5] HE 00,Y;] )]

where (—o00,y;] := (=00, (y;);] X -+ x (=00, (¥;),, ] The proofs that either 5.
or 6. or 7. implies item 3. is a simple application of the multiplicative system
theorem in the form of either Corollary [8.3]or Corollary In each case, let H
denote the linear space of bounded measurable functions such that Eq.
holds. To complete the proof I will simply give you the multiplicative system,
M, to use in each of the cases. To describe M, let N = mq + --- + m, and

y= 1) = (¥9% . yY) €RY and
A=A, ) = (AN AN) e RY

For showing 5. = 3.take M = {1(,oo’y] Ty € RN} .
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For showing 6. :> 3. take M to be a those functions on RY which are of
the form, f (y) = Hl LN ( ) with each f; € C. (R).
For showing 7. = 3. take M to be the functions of the form,

Fly)=exp|id Ay | =exp(ir-y).

j=1
|

Definition 10.12. A collection of subsets of B, {Ci},cp is said to be indepen-
dent iff {Ct},c 4 are independent for all finite subsets, A C T. More explicitly,
we are requiring
P (NieaAs) = HP (Ay)
teA

whenever A is a finite subset of T and Ay € Cy for allt € A.

Corollary 10.13. If {C;},.p 45 a collection of independent classes such that
each Cy is a m — system, then {0 (Ct)},cp are independent as well.

Definition 10.14. A collections of random variables, {X;:t € T} are inde-
pendent iff {o (X;) :t € T} are independent.

Ezample 10.15. Suppose that {u,} -, is any sequence of probability measure
on (R,Bgr). Let 2 =RY, B:= ®2 ,Bg be the product ¢ — algebra on §2, and
P = @32 pin be the product measure. Then the random variables, {Y,,})7
defined by Y, (w) = w,, for all w € 2 are independent with Law p (Yn) = u, for
each n.

Lemma 10.16 (Independence of groupings). Suppose that {B;:t € T} is
an independent family of o — fields. Suppose further that {Ts} g is a partition
of T (ie. T =3, gTs) and let

Br, = Vier,Bi = 0 (Uter, By) -
Then {Br, },cg s again independent family of o fields.

Proof. Let
Cs ={NackBa : By € By, K CC Ty}

It is now easily checked that By, = o (C,) and that {Cs}, ¢ is an independent
family of m — systems. Therefore {Br,}, ¢ is an independent family of o —
algebras by Corollary [10.13 [
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Corollary 10.17. Suppose that {Y,},- | is a sequence of independent random
variables (or vectors) and Ay, ..., Ay, is a collection of pairwise disjoint subsets
of N. Further suppose that f; : RY — R is a measurable function for each
1<i<m,then Z; .= f; ({Yl}lem) is again a collection of independent random
variables.

Proof. Notice that o(Z;) C o ({Yl}lem) = 0 (Uea,0(Y7)). Since
{o (Y})};2, are independent by assumption, it follows from Lemma that
{o ({Yl}leA)}:l are independent and therefore so is {o (Z;)}/,, i.e. {Z o
are independent. ]

Definition 10.18 (i.i.d.). A sequences of random variables, {X,} -, on a
probability space, (2,8, P), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (X,,), P = (Xy), P for all k,n. That is
we should have

P(X,€A)=P(X,€A) forallk,n e N and A € Bg.

Observe that {X,,} -, are i.i.d. random variables iff

P(X;€A;,.... X, €A, ﬁ P(X; e A) :ﬁ XleA,;):ﬁu(A)
ol ok e

(10.6)
where p = (X1), P. The identity in Eq. (10.6]) is to hold for all n € N and all

A; € Bg. If we choose p,, = i in Example 5, the {Y,,},2 | there are i.i.d.
with Lawp (Y,,) = PoY, ! = pfor all n € N.
The following theorem follows immediately from the definitions and Theo-

rem [[0.TT1

Theorem 10.19. Let X := {X; : t € T} be a collection of random variables.
Then the following are equivalent:

1. The collection X is independent,

2.
P(Niea{X: € As}) = H P (X, e Ay)
teA
for all finite subsets, A C T, and all {As},c, C Bg.
3.

P(Niea{Xe < a4}) = H P(Xy <)
teA

for all finite subsets, A C T, and all {x4},., CR.
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4. For oll ' CC T and f; : R"— R which are bounded an measurable for all
tel,

E

I1+ <Xt)] [T Es 0= [ T]f o0 T o ).

ter R yer ter

5. E [[lierexp (e %)] = Tlyep ite (M)
6. For all ' cC T and f : (R")" =R,

Bl o= [ 7@ T de o).

7. For allI' CC T, Lawp (Xr) = ®Qtcrpis.
8. Lawp (X) = Qtcrfit-

Moreover, if By is a sub-o - algebra of B fort € T, then {B;},., are inde-
pendent iff for oll ' CC T,

E

HXt] = H]EXt for all Xy € L™ (82,8, P).

tel’ tel’

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that o (X;) = {{X, € A} : A € Br}.
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
with C; := {{X; < a} : a € R} and making use the observations that C;
is a m — system for all ¢ and that o (C;) = o (X;). The remaining equivalence
are also easy to check. [

10.2 Examples of Independence

10.2.1 An Example of Ranks

Lemma 10.20 (No Ties). Suppose that X and Y are independent random
variables on a probability space (2,8, P). If F (z) := P (X < x) is continuous,
then P(X =Y) =0.

Proof. Let 4 (A) := P(X € A) and v (A) = P(Y € A). Because F is con-
tinuous, u ({y}) = F' (y) — F (y—) = 0, and hence

P(X=Y)=E[l{xeyy] = /RZ La—ypd (p@v) (2,9)

~ [ ) [ dn@1i0mp = [ n) v )

:/R()dy(y):O.
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Second Proof. For sake of comparison, lets give a proof where we do not
(o)
allow ourselves to use Fubini’s theorem. To this end let {a; := %} 1o, (or for

the moment any sequence such that, a; < a;41 for alll € Z, lim;_, 4 o, a; = £00).
Then

{(z,2) : x € R} C Usez [(ar, ary1] x (a1, a41]]

and therefore,

P(X=Y) <Y P(X€(a,a],Y € (a,an]) =Y [Flupn) - F(a)

l€Z leZ
< sup [F (a41) = F ()] Y [F (@s1) = F (@)] = sup [F (a41) = F (ar)].
leZ lez lEZ

Since F' is continuous and F (co+) =1 and F (co—) = 0, it is easily seen that
F' is uniformly continuous on R. Therefore, if we choose a; = %, we have

[+1 l
P(X=Y)<limsupsup |F|—— | - F | — 0.
( )< N*)OOplEZp|: < N ) <N)]

Let {X,},2, be i.i.d. with common continuous distribution function, F. So
by Lemma |10.20] we know that

P(X, =X;)=0for all i # j.

Let R,, denote the “rank” of X,, in the list (X1,...,X,,), ie.
Ry = lejzxn =#{j<n:X; > X,}.
j=1

Thus R, = k if X,, is the k" — largest element in the list, (Xi,...,X,).
For example if (X1, Xa, X3, X4, X5, X6, X7,...) = (9,-8,3,7,23,0,—-11,...),
WehaveR1:1,R2:2,R3:2,R4:2,R5:17R6:5,andR7:
7. Observe that rank order, from lowest to highest, of (X7, X5, X3, X4, X5)
is (X2, X3, X4, X1, X5). This can be determined by the values of R; for i =
1,2,...,5 as follows. Since R = 1, we must have X5 in the last slot, i.e.
(, %, %, %, X5) . Since Ry = 2, we know out of the remaining slots, X, must be
in the second from the far most right, i.e. (*,%, X4, *, X5). Since R3 = 2, we
know that X3 is again the second from the right of the remaining slots, i.e. we
now know, (%, X3, X4, %, X5). Similarly, Ry = 2 implies (X2, X3, X4, %, X5) and
finally Ry = 1 gives, (Xa, X3, X4, X1, X5) (= (—8,4,7,9,23) in the example).
As another example, if R; =i for i =1,2,...,n, then X,, < X,,_1 <--- < Xj.

Theorem 10.21 (Renyi Theorem). Let {X,} ~, be i.i.d. and assume that
F (z) := P (X, <) is continuous. The {R,},—, is an independent sequence,
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1
P(Rn:k):ﬁforkzl,Q,...,n,

and the events, A, = {X,, is a record} = {R,, = 1} are independent as n varies
and 1
P(A,)=P(R,=1)= o
Proof. By Problem 6 on p. 110 of Resnick or by Fubini’s theorem,
(X1,...,X,) and (X1, ..., Xon) have the same distribution for any permu-
tation o.
Since F' is continuous, it now follows that up to a set of measure zero,

Q:Z{X51<X02<"'<Xon}

and therefore

1=P(2)=> P({Xo1 < Xo2 <+ < Xon}).

Since P ({X,1 < Xo2 < -+ < Xopn}) is independent of o we may now conclude
that 1

P({Xgl < Xgo < --- <Xgn}) = ﬁ
for all 0. As observed before the statement of the theorem, to each realization
(€1y...,en), (here &; € N with &; < i) of (Ry,...,R;,) there is a uniquely

determined permutation, o = o (g1,...,&,), such that X,1 < Xpo0 < -+- <
Xon. (Notice that there are n! permutations of {1,2,...,n} and there are also
n! choices for the {(e1,...,e,) : 1 <e; <i}.) From this it follows that

{(Rl,...,Rn) = (61,...,€n)} = {Xgl < Xga <00 < Xgn}
and therefore,
P<{(R17""Rn>:(517-~-a5n)}):P(Xol <X02 < - <X0'n>:7

Since

P{Ry=¢e.})= Y. P{R1....Ra)=(e1,....c0)})

(517---571—1)

1 1 1
_ ey — 1) —
B Z n!_(n 1! n'  n

(51,...6”_1)

we have shown that

P({(Ry,...,R,) = (e1,...,en)}) = = =
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10.3 Gaussian Random Vectors
As you saw in Exercise uncorrelated random variables are typically not

independent. However, if the random variables involved are jointly Gaussian,
then independence and uncorrelated are actually the same thing!

Lemma 10.22. Suppose that Z = (X,Y)tr is a Gaussian random vector with
X € R* and Y € R, Then X is independent of Y iff Cov (X;,Y;) = 0 for all
1<i<kandl <j <I. Thislemma also holds more generally. Namely if
{Xl};bzl is a sequence of random vectors such that (Xl7 . ,X") is a Gaussian

random vector. Then {Xl};;l are independent iff Cov (Xf,X,lC') = 0 for all
1 #10 and i and k.

Proof. We know by Exercise [10.2] that if X; and Yj are independent, then
Cov (X;,Y;) = 0. For the converse direction, if Cov (X;,Y;) =0forall1 <i<k
and 1 < j <l and z € R* and y € R, then

Var(z- X +y-Y)=Var(z-X)+ Var(y-Y)+2Cov(xz-X,y-Y)
=Var(z-X)+ Var(y-Y).

Therefore using the fact that (X,Y") is a Gaussian random vector,
E[eXeWY] =K {ei(ayXer-Y)}
1
= exp (—2Var(x-X+y~Y)+E(3;.X+y.y)>

= exp (—;Var(x-X)+iE(x~X) - ;Var(y'Y)-l-i]E(y'Y))
B[] B[],

and because x and y were arbitrary, we may conclude from Theorem [I0.11] that
X and Y are independent. [

Corollary 10.23. Suppose that X : 2 — R* and Y : 2 — R are two indepen-
dent random Gaussian vectors, then (X,Y) is also a Gaussian random vector.
This corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let x € R¥ and y € R, then
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148 10 Independence
E {ei(az,y)-(X,Y)} -F [ei(w-X+y~Y)} -E [eiw-Xeiy-Y] —-E [em-x] E [eiy-Y]

—exp (—;Var(wX)—i—iE(:c-X))

X exp <—;Var (y-Y)+iE (y~Y)>
—exp <;Var(x-X)+iE(x~X);Var(y-Y)JriIE(y-Y))
—exp (—;Var(x~X+y-Y)+iIE(x-X+y-Y)>

which shows that (X,Y) is again Gaussian. |

Notation 10.24 Suppose that {X;},_, is a collection of R —valued variables or
1L 11
RY - valued random vectors. We will write X, + Xo+ ...+ X, for X1+ +X,

under the additional assumption that the {X;};_, are mdependent

Corollary 10.25. Suppose that {Xi}?=1 are independent Gaussian random
variables, then S,, := Z?:l X, is a Gaussian random variables with :

Var (S ZVar i) and ES, = ZEXi, (10.7)

i.€.
11 11

1L n n
Xi + Xo ... 1 XniN<ZVar(Xi),ZIEXi>.
=1

=1

In particular if {X;};2, are i.i.d. Gaussian random variables with EX; = p and
0% = Var (X;), then

%—u N( 02) and (10.8)
Sn =1 d N (o)1), (10.9)

oy

Equation is a very special case of the central limit theorem while Eq.
leads to a very special case of the strong law of large numbers, see Corol-

lary [10.24

Proof. The fact that S,,, % — i, and % are all Gaussian follows from
Corollary [10.25] and Lemma [9.36] or by direct calculation. The formulas for the
variances and means of these random variables are routine to compute. [
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Recall the first Borel Cantelli-Lemma states that if {A,,} -, are mea-
surable sets, then

i ) <oo = P ({4, i0.})=0. (10.10)

Corollary 10.26. Let {X;};°, be i.i.d. Gaussian random variables with EX; =
p and 0? = Var (X;). Then lim,, “%" = 1 a.s. and moreover for every a < %
there exists Ny, : 2 — NU{oo}, such that P (N, = c0) =0 and

— —u| <n~% forn > N,.

n

Sh ‘

Sn
n

In particular, lim,, = [ a.s.

Proof. Let Z < N (0,1) so that 4

N(o, a ) From the Eq. (10.8

and Eq. (7-32),
P12 ulse)=p(| 2z 5e) =P (121> V=

n M=) T N o
con [ (V) e (—
=P 2\ o TP\ T2 )
Taking e = n™* with 1 — 2a > 0, it follows that
G S —a - 1 1—2«
ZP(nu‘Zn )g;exp<wn )<oo

and so by the first Borel-Cantelli lemma,

P({[2 ]z ia)) -0

S., |% — ,u| < n~% a.a., and in particular lim,, .

VA

%

S _
o T HAs.

Therefore, P — a
]

10.4 Summing independent random variables

Exercise 10.4. Suppose that X 2N (O,a2) and Y £ N (0,b2) and X and
Y are independent. Show by direct computation using the formulas for the
distributions of X and Y that X +Y = N (0, a’ + b2) .
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Solution to Exercise ((10.4). If f : R — R be a bounded measurable func-
tion, then

1 1 2 1 2
Ef (X V)= | fty)e e oy

where Z = 2mab. Let us make the change of variables, (z,z) = (x,2 + y) and

observe that dzdy = dxdz (you check). Therefore we have,

Ef(X+Y)] = (2) e 5% e G grdy

1
7 )t
which shows, Lawp (X +Y') (dz) = p(z) dz where

1

p(z) = E/e_ﬁmze_ﬁ(z_mydm. (10.11)
R

Working the exponent, for any ¢ € R, we have

1 1 , 1 1
a—2x2+b—2(z—m) :§x2+b—2(x2—2xz+22)
11\, 2 1,
“\etr)” prtR?
1 1 2 1
= <a2 + 132) [(x —c2)? + 2caz — 0222} — 2t + b—222.

Let us now choose (to complete the squares) ¢ such that where ¢ must be chosen

so that
11 1 a?
\Netw) " w = T erw
in which case,
1 1 2 1 1 2 1 1 1

1 ,/1 1 1 1

e (a2+b2> —pl-9= oo
So making the change of variables, x — = — ¢z, in the integral in Eq. ((10.11])
implies,

1 1/1 1\ , 1 1
(45 w2 )d
r) =7 | ( 2<a2+b2>w 2a2+b2z> v

1 1
_Zz)
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I
|
o
[}
e}

|
N
0]
ko)
N
no
Q
[\v]
+
>
]
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1 1/e LR N T DS DS B 1+1*1
—_ = = X —— J— — = T — R
zZ Z Jr Pl a2 T 2mab a? = b2
1 /. a2b? 1
= 2T = .
2mab a? + b2 27 (a2 + b?)

) 1l 4 5 1o
Thus it follows that X + Y =N (a +b ,O) .

Exercise 10.5. Show that the sum, N7 + N, of two independent Poisson ran-
dom variables, N7 and N3, with parameters A1 and Ao respectively is again a
Poisson random variable with parameter A\; + A2. (You could use generating

11
functions or do this by hand.) In short Poi (A1) + Poi (A2) £ Poi (M + A2).
Solution to Exercise ([10.5)). Let z € C, then by independence,

E [ZNIJFNQ} =E [lezNﬂ =E [le] E [ZNQ}
— =D)L hale=1) — gPatra)(z-1)
from which it follows that N; + Ny 4 Poisson(A; + Az) .

Ezample 10.27 (Gamma Distribution Sums). We will show here that

LL
Gamma(k,6) + Gamma(l, 9)
showed if k,0 > 0 then

=Gamma(k +1,0). In Exercise [7.13] you

E[e]=(1- Ht)fk fort < @~!

where X is a positive random variable with X iGamma(k, 0), ie.

e—$/0

(X.P) (do) = o Gty

dx for = > 0.

Suppose that X and Y are independent Random variables with

X iGammrnau(k:,t9) and Y iGamma(l,@) for some | > 0. It now follows
that

E {et(X+Y):| ) [etXetY} ) [etX} E [etY]

=(1-0)F -0t =1 -6t "D,

Therefore it follows from Exercise |8.2|that X +Y gGamma&m(k +1,0).
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150 10 Independence

Ezample 10.28 (Exponential Distribution Sums). If {Ty};_, are independent
random variables such that Ty < E (Ag) for all k, then

11 11 11 .
T+ 15 + ... + Tn:Gamma(n,/\ )

This follows directly from Example [10.27| using E (A\) =Gamma(1,A™!) and
induction. We will verify this directly later on in Corollary [I1.8

Example may also be verified using brute force. To this end, suppose
that f: Ry — Ry is a measurable function, then

—x/0 —y/0
B X+ = [ Flatnet s

1

- k=1, 11— (o+1)/60
G (6 T (1) Rif(x—l—y)x y' e dzdy.

Let us now make the change of variables, x = x and z = z 4 y, so that dxdy =
dxdz, to find,

Ef(X+Y)] =

1 k—1 -1 _—2/0
= m/10§x§2<wf(z)x (z—2) e dadz.

(10.12)
To finish the proof we must now do that z integral and show,

Tk —1 o, kL))
/Osck (z—z)! " do = 2 Tkl

(In fact we already know this must be correct from our Laplace transform
computations above.) First make the change of variable, x = zt to find,

/ 1 (2 — 2)  de = 2B (k1)
0
where B (k, 1) is the beta — function defined by;
1
B (k1) := / t*=1 (1 —t)" " dt for Rek,Rel > 0. (10.13)
0
Combining these results with Eq. (10.12]) then shows,
B (k,1 o
Ef(X+Y)] = #/ f(z) 2 te=2/0,, (10.14)
) (D) Jo

B O+ (K

Since we already know that
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/ 2200y — 9FHD (k4 1)
0

it follows by taking f =1 in Eq. (10.14)) that

B (k,1)

L= 0

ORI (k+1)

which implies,
(k) I (1)
I'(k+1) "

Therefore, using this back in Eq. (10.14) implies

B (k1) = (10.15)

E[f(X+Y)] = m/o F(2) ZRHilem2/0g,

from which it follows that X +Y iGrammau(k +1,0).
Let us pause to give a direct verification of Eq. ([10.15)). By definition of the
gamma function,

F(k)f’(l):/ xk_le_xyl_le_ydxdy:/ 2Py e @) dady.
R

2 2
+ L

- -1 _
:/ 27 (2 — ) T e P dadz
0<zr<z<0

Making the change of variables, x = x and z = z 4 y it follows,
r'k)ra= / 2z — o) e P dadz.
0<z<2<00

Now make the change of variables, x = zt to find,

rk)Ir) = /OOO dze™? /1 dt (2t)" ' (z —t2) 7t 2

0

oo 1

=/ e F M1y / -t dt
0 0

=T (k+1)B (k).

Definition 10.29 (Beta distribution). The § — distribution is

(1 —)Y " dt
Bt () = 59(13 v)
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Observe that

I(z+1)I'(y)
/1td,u ()_B(x+17y)_ F;(C$+y+1?§ _ z
*.Y o OO
and
I(z+2)I(;
/1t2du =Bty G (et D
o B (z,y) Lety) - (e ty+1) (@ +y)

10.5 A Strong Law of Large Numbers

Theorem 10.30 (A simple form of the strong law of large numbers).
If {X,} ", is a sequence of i.i.d. random variables such that E {|Xn|4} < 00,
then

lim - =4 a.s.
n—oo M
where Sy, ==Y p_y X and p:=EX, = EX;.
Exercise 10.6. Use the following outline to give a proof of Theorem [10.30

1. First show that 2P < 14 z* for all > 0 and 1 < p < 4. Use this to
conclude;
E|X,P <14+E|X,|' <ooforl<p<4.

Thus v :=E [\Xn - u|4] and the standard deviation (02) of X,, defined by,
0? = E[X2] - 2 =E[(X, - )] < ox,

are finite constants independent of n.
2. Show for all n € N that

()

(Thus 2= — pin L* (P).)
3. Use item 2. and Chebyshev’s inequality to show

-1 -1\ 4
P(S” ’>€><n 1+3(1=nY)ot

no # gin?
4. Use item 3. and the first Borel Cantelli Lemma [7.14] to conclude
lim,, oo Sn = [ a.s.

1
-y (ny +3n(n—1)0?)

% [n_lw +3 (1 — n_l) 04} .
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10.6 A Central Limit Theorem

In this section we will give a preliminary a couple versions of the central limit
theorem following [25, Chapter 2.14]. Let us set up some notation. Given a
square integrable random variable Y, let

Y = % where o (V) := \/E(Y —EY)? = \/Var ().

Let us also recall that if Z = N (0,0?), then Z < VoN (0,1) and so by Eq.
(7.40) with 8 = 3 we have,

E|Z%| = o*B|N (0,1)° = \/8/m0®, (10.16)

Theorem 10.31 (A CLT proof w/o Fourier). Suppose that {Xi},-, C
L3 (P) is a sequence of independent random variables such that

C = supE | X}, — EX;|? < 0
k
Then for every function, f € C3 (R) with M := sup,cp | f®) (z)| < oo we have
_ M C
IEf (N) —Ef (S)| < ot (1—1-\/8/77) — ., (10.17)
3! o (Sy)

where S, .= X1+---+X,, and N 4N (0,1) . In particular if we further assume
that
| 2 1 &
0:=1 f—o(S,)” =liminf — Var (X;) > 0, 10.18
minf o (S,)° = lminf o3 Var (X, (10-18)

i=1
Then it follows that
1

|Ef (N)—Ef (Sn)] =0 (ﬁ) as n — 0o (10.19)

which is to say, S, is “close” in distribution to N, which we abbreviate by
_ d
Sn =2 N for large n.

(It should be noted that the estimate in Eq. is valid for any finite
collection of random variables, {Xx}7_, )

Proof. Let n € N be fixed and then Let {Yj, Ny},-, be a collection of
independent random variables such that
d = X —EXg

Vi LX), = G and Nj, £ N (0, Var (Y3)) for 1 <k < n.
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Let SY =Yy + -+ Y, 28, and T, := Ny + - + N,,. Since
I;Var (Ny) = ZVar Vi) = (Sn ;Var X —EX})
= 72 ZVar (Xk) =1,
7 (Sn)” i
it follows by Corollary that T, = N (0,1).

To compare Ef (S,) w1th Ef (N ) we may compare Ef (SY) with Ef (T,,)
which we will do by interpolating between SY and Tj,. To this end, for 0 < k <
n, let

Vi=Nit o+ N+ Y+ 4+ Y,

with the convention that V,, = T}, and Vi = SY. Then by a telescoping series
argument, it follows that

n

=Y 1F (Vi) = f (Vi)

k=1

F(T0) = £(Sy) = f (Va) = f (Vo) (10.20)

We now make use of Taylor’s theorem with integral remainder the form,

fla+A) —f(x)=f () A+ %f” (z) A% 47 (x, A) A3 (10.21)

where
r (2, A) / P+ tA) (1 — D2 d

Taking Eq. (10.20) with A replaced by ¢ and subtracting the results then implies

f+A)—f(x+0)=f(z)(A- 6)+%f” (z) (A% = 6*)+p (z, A,5), (10.22)

where
lp(x,4,0) = |r(z,4) A> — 1 (2,6) 6| <

M
T [|A|3 + |5\3} , (10.23)

wherein we have used the simple estimate, |r (z,
If we define

M)V |r (z,8)] < M/3L.

Uk = Ny 4 Nyoy + Yigs + - + Yo,

then Vi = Uy + Ny and Vi_1 = Uy, + Y. Hence, using Eq. (??) with x = Uy,
A = Npand § =Y}, it follows that
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f Vi) = f (Vi—1) = f (U + Ni) — f (U + V)
= f" (Ur) (Ng = Yi) + f”( W) (N2 —Y2) + Ry (10.24)

where

M
(Bl < S0 (Il + ] (10.25)

Taking expectations of Eq. (10.24)) using; Eq. (10.25)), EN, = 0 = EY, IEN,? =
IEYkQ, and the fact that Uy is independent of both Y, and Ng, we find

M
E(f (Vi) = F Vien)l| = [ERi| < S2E [INf® + i)
Making use of Eq. (10.16)) it follows that

E|Ny|* = \/8/7-Var (Ny,) 3/2 = +/8/mVar (V) 3/ = /8/7 .(JEYIE)S/z < \B/TE|Yi|?,

wherein we have used Jensen’s (or Holder’s) inequality (see Chapter 12 below)
for the last inequality. Combining these estimates with Eq. (10.20)) shows,

[E[f(Tn) = £(S2)]] = [D_ER| < > B[Ry
k=1 k=1
< Z:‘,kaE (189 + %3]
-1
M n
<3 (1 + \/8/77) ’;E [\Ykﬂ . (10.26)
Since
3 Xp —EX;\° C
[Ef (N) —Ef (Sa)| = [E[f(Tn) = f (Sx)]]
we see that Eq. (10.17) now follows from Eq. (10.26). n

Corollary 10.32. Suppose that {X,},—, is a sequence of i.i.d. random vari-
ables in L3 (P), C = E|X; —IEXl\ <00, S, =Xi1+--+X,, and N 4
N (0,1). Then for every function, f € C3(R) with M := sup,cp [f® (2)] < o0
we have

[Ef (N) — Ef (S,)] < % (1+ \/8/7) )3/2 (10.27)

(This is a specialized form of the “Berry—FEsseen theorem.”)
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By a slight modification of the proof of Theorem [10.31| we have the following

central limit theorem.

Theorem 10.33 (A CLT proof w/o Fourier). Suppose that {X,}.—, is a

sequence of i.i.d. random variables in L? (P), S, = X1 + -+ X,,, and N 4
N (0,1). Then for every function, f € C*(R) with M := sup,cg |f(2) (z)] < o0
and f" being uniformly continuous on R we have,

lim Ef (S,) = Ef (N).

n—oo

Proof. In this proof we use the following form of Taylor’s theorem;
1
fla+A)—f(z)=f () A+ ifﬂ () A% +r(z, A) A* (10.28)

where
red) = [ @ ta) - £ @] - e
0

Taking Eq. (10.28) with A replaced by § and subtracting the results then implies

f(m+A)—f(x+6):f’(x)(A—6)+%f”(a:) (A% = 6%) + p(z,A4,6)

where now,

p(z,A,08) =r(zx,A) A —r(z,6) §°.
Since f” is uniformly continuous it follows that
1
e(A) = isup{|f"(x—|—tA)—f(x)| cx€Rand 0<t <1} -0

Thus we may conclude that

1 1
|r (z, )] < / I (x4 tA) — f" (2)| (1 —t)dt < / 26 (A) (1 —t)dt =e(AQ).
0 0
and therefore that
10 (2, A,8)] < £ (4) A% 12 (6) 62,
So working just as in the proof of Theorem [10.31] we may conclude,

[Ef (N) —Ef (Sa)| <Y E|Ry|
k=1

where now,

[Ri| = £ (Ni) N7 + & (Vi) Y7
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Since the {Y}};_, and the {Ny};_, are i.i.d. now it follows that
|Ef (N) —Ef (Sn)| <n-El[e(Ny)Nf+e (Y1) Y7].

Since Var (S,,) = n- Var (X1), we have Y, = faExl Var (N;) = Var (V;) = +
and therefore Ny 4 \/gN . Combining these observations shows,

[Ef (V) - Ef (S, |<El<\fN>N2 (fa{EX)fi)(X;;(Efj”Q

which goes to zero as n — oo by the DCT. ]

Lemma 10.34. Suppose that {W} U {W,,},2_, is a collection of random vari-
ables such that lim, o Ef (W,) = Ef(W) for all f € C(R), then
lim, 0o Ef (W,,) = Ef (W) for all bounded continuous functions, f: R — R.

Proof. According to Theorem 7?7 below it suffices to show
lim, oo Ef (W,,) = Ef(W) for all f € C.(R). For such a function,
f € C.(R), we may ﬁndE| fr € C (R) with all supports being contained in a
compact subset of R such that e := sup,cp |f (z) — fi (x)] — 0 as k — oo.
We then have,

Ef (W) —Ef (Wy)| <[Ef (W) —Efi (W)
+ [Efi (W) = Efi (W)l + [Efe (Wa) —Ef (Wy)]
<E|f(W)— fi (W)
+ Efi (W) = Efi (Wa)| + E[fi (Wn) — f(Wy)]
<2 + [Efx (W) — Efi (Wy)|.

Therefore it follows that
limsup [Ef (W) — Ef (W)| < 265 + limsup [Efi (W) — Efi, (W,)]

=2¢, — 0as k — oo.
[

Corollary 10.35. Suppose that {X,, } _, 15 a sequence of independent random
variables, then under the hypothesis on this sequence in either of Theorem|10.51
or Theorem we have that lim, . Ef (S,) = Ef (N (0,1)) for all f :
R — R which are bounded and continuous.

For more on the methods employed in this section the reader is advised
to look up “Stein’s method.” In Chapters ?? and ?? below, we will relax
the assumptions in the above theorem. The proofs later will be based in the
characteristic functional or equivalently the Fourier transform.

! We will eventually prove this standard real analysis fact later in the course.
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154 10 Independence
10.7 The Second Borel-Cantelli Lemma

Lemma 10.36. If0 <z < %, then
e <l—gr<e . (10.29)
Moreover, the upper bound in Eq. 1s valid for all x € R.

Proof. The upper bound follows by the convexity of e~%, see Figure

: L
-1 03 0 05 1

I

Fig. 10.1. A graph of 1 — z and e~ showing that 1 —x < e~ " for all .

For the lower bound we use the convexity of ¢ () = e~2 to conclude that the
line joining (0,1) = (0,¢(0)) and (1/2,e7!) = (1/2,¢(1/2)) lies above ¢ (z)
for 0 < z < 1/2. Then we use the fact that the line 1 — x lies above this line

to conclude the lower bound in Eq. ( , see Figure[10.2] See Example

below for a more formal proof of th1s lemma [
For {a,} ., C[0,1], let
00 N
H (1-ay,):= lim (1—ap).
n=1

N—oo
n=1

The limit exists since, [],/_; (1 — a,,) decreases as N increases.

Exercise 10.7. Show; if {a,},., C [0,1), then

ﬁ(l—an):o <— ian:oo
n=1 n=1

The implication, <=, holds even if a,, = 1 is allowed.
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025+

Fig. 10.2. A graph of 1—z (in red), the line joining (0, 1) and (1/2,e~") (in green), e
(in purple), and e~ (in black) showing that e ™2* <1 —x < e™° for all z € [0,1/2].

Solution to Exercise ((10.7)). By Eq. (10.29) we always have,

N N N
H (1—ap) < H e %" =exp ( Z an>

which upon passing to the limit as N — oo gives

1;[ (1—ay) <exp< Zan>

Hence if Y~ ° | a, = oo then [[°2, (1 —a,) = 0.
Conversely, suppose that EZOZI a, < oo. In this case a,, — 0 as n — oo and
so there exists an m € N such that a, € [0,1/2] for all n > m. Therefore by

Eq. (10.29), for any N > m,

N m N
(1=an)=J[0=a)- J] Q-an)
n=1 n=1 n=m+1

\V;
=
=

|

§
=
)

|

s

3
=
-

|

£

D

¥4

e}
N
b
3
] =
N———

3
Il
_
3
Il
3
+
~
3
Il
A

v
s

(1—ay)-exp <2 Z an> .

So again letting N — oo shows,

3
Il
—
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Lemma 10.37 (Second Borel-Cantelli Lemma). Suppose that {A,},._ | are
independent sets. If

i P(4,) =0, (10.30)
n=1

then
P({A, io})=1. (10.31)

Combining this with the first Borel Cantelli Lemma gives the (Borel)
Zero-One law,

0 if Y%, P(A,) < oo
P (A, io.)= .
Lif Y2, P(A,) =0

Proof. We are going to prove Eq. (10.31) by showing,
0=P{A,i0.}°) =P {AS aa}) = P (U2, Nk>n AT).
Since Np>pAf T USZ; Nig>n Af as n — oo and NP AL | N2y Uksn A as
m — 00,

P(Uzozl Ni>n A;) = lim P(ﬂanAi) = lim lim P(ﬂmZanAz)'

n—oo n—oo m—0o0

Making use of the independence of {A;};~, and hence the independence of
{Ag}7 |, we have

P(Omzizndf) = [ P4 = J[ (1—P(AL). (10.32)

m>k>n m>k>n

Using the upper estimate in Eq. (10.29) along with Eq. (10.32) shows

P (Nm>r>ndf) < H e~ PAR) — exp (— Z P(Ak)> )
k=n

m>k>n

Using Eq. (10.30), we find from the above inequality that
lim,, 00 P (Mim>k>nA%) = 0 and hence

P(Uzozl Nk>n Az) = lim lim P(ﬂmZanA%) = lim 0=0

n—oo m—0o0 n—oo

Note: we could also appeal to Exercise above to give a proof of the Borel
Zero-One law without appealing to the first Borel Cantelli Lemma. [

Ezxample 10.38 (E:cample continued). Suppose that {X,,} are now indepen-
dent Bernoulli random variables with P (X,, =1) = p, and P(X,, =0) =1 —
Pr. Then P (lim, 00 X, =0) = 1iff 3 p, < co. Indeed, P (lim,,—,o0 X, = 0) =
liff P(X,=0aa)=1if P(X,=110.)=0if Y p, => P(X, =1) < .
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Proposition 10.39 (Extremal behaviour of iid random variables). Sup-
pose that {X,,} -, is a sequence of i.i.d. random variables and ¢,, is an increas-
ing sequence of positive real numbers such that for all @ > 1 we have

Y P(X1>a7le) =00 (10.33)
n=1
while -
> P (X1>ac,) < . (10.34)
n=1
Then

X
limsup — =1 a.s. (10.35)

n—oo c'n,

Proof. By the second Borel-Cantelli Lemma, Eq. (10.33]) implies
P (Xn > a~te, io. n) =1
from which it follows that

. X
hmsup—n >a !as.

n— oo Cn

Taking o = o, = 1 + 1/k, we find

Xn X, 1
P <limsup > 1) =P (ﬁzo_l {limsup > }) =1.
n—oo Cn n—oo Cn (652
Similarly, by the first Borel-Cantelli lemma, Eq. (10.34) implies
P (X, > ac, 1.0.n)=0

or equivalently,
P (X, < ac, a.a.n) = 1.

That is to say,

. X
lim sup < aas.

n—oo Cn

and hence working as above,

Xn Xn
P (hmsup < 1) =P (ﬂ,;“il {limsup < ak}> =1.
n—oo C'n, n—oo C’I’L

Hence,

Xn Xn : Xn
P (hmsup = 1) =P ({limsup > 1} N {hmsup < 1}) =1
n—oo Cp n—oo Cn n—oo Cp
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156 10 Independence
Ezample 10.40. Let {X,,},~_, be i.i.d. standard normal random variables. Then
by Mills’ ratio (see Lemma ,
1 2.2
P (X, > acy) ~ ————e @ /2,
( o ) V2rae,

Now, suppose that we take ¢, so that

e 1
Arn

e = ¢, =+/2In(n).

It then follows that
1 —042 ln(n) _ 1 1

\/ﬁa\/an(n)e " 2ay/mIn(n) n=

P (X, > ac,) ~

and therefore

ZP(anacn):ooifa<1
n=1

and -
ZP(XnZacn)<ooifa>l.
n=1

Hence an application of Proposition [10.39] shows

=1 a.s..

lim sup

Xn
n—00 v2lnn

Ezample 10.41. Let {E,},~, be a sequence of i.i.d. random variables with ex-
ponential distributions determined by

P(En > z) - 67(1’\/0) or P(En S z) = 1 - 67(2\/0)'

(Observe that P (E, < 0) = 0) so that E,, > 0 a.s.) Then for ¢, > 0 and a > 0,

we have . N _
Z P(E, > ac,) = Ze—acn — Z (e—Cn)a.
n=1 n=1 ne1

Hence if we choose ¢, = lnn so that e=¢» = 1/n, then we have

iP(En > alnn) :i (i)a

n=1 n=1

which is convergent iff & > 1. So by Proposition [10.39] it follows that

. E,
limsup — =1 a.s.
n—oo 1N
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Ezample 10.42. * Suppose now that {X,,} | are i.i.d. distributed by the Pois-
son distribution with intensity, A, i.e.

P(X,=k)= Ee_
In this case we have
N
- Y
P()C1>>n)——e E:Ziﬁ _‘%T
k=n
and
o0 o0
AN A n o n
Do = ey o
k=n k=n
_)\"_/\OO n! & )\”_/\001,6_)\"
= G S N =
k=0 k=0
Thus we have shown that
™ ™
e "< P(X;>n)< =
n! n!

Thus in terms of convergence issues, we may assume that
A A

PXi>2z)~ — v ——

( ) x! V2mxe *x®

wherein we have used Stirling’s formula,
@) ~\2mze e,
Now suppose that we wish to choose ¢,, so that
P(X; >c¢,) ~1/n.

This suggests that we need to solve the equation, £ = n. Taking logarithms of
this equation implies that

_ln
" lnz
and upon iteration we find,
Inn Inn Inn
Tr = = =
(B2 L6 G — b ()
B Inn

b (n) — L3 (n) + €5 ()
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k - times

—
where {, =Inolno---oln. Since, < In(n), it follows that ¢3 () < ¢3 (n) and

hence
"= lféngeg oIt EZ; (1 e <ﬁ3 EZD) |

Thus we are lead to take ¢, := %. We then have, for a € (0, 00) that

2

(acy)™™ = exp (ac, [Ina + Inc,))

— exp (a In (n) [In o+ £ (n) — 05 (n)])

ly (n)
= exp (a [w + 1] In (n))
— nll(l"l‘fn(a))
where | ts ()
__Ina—"t3(n
en (@) := “hm) ")
Hence we have
A%Cn (Ae)* 1

P(X; > n) ™~ ac, .
( 17&6) me,acn (acn) n \/mna(1+sn(a))

Since
Inn In(\/e)

In(M\e) =Inn®m |
G V)

In(\/e)*" = ac,In(\e) =«

it follows that

ey =

Therefore,

In(X/e)
n® T 1 3 (n) 1
P(Xy > acy) ~ A (n) ne(1+6n(e))

/1n(n) nO‘(lJFEn(D‘))
éz (n)

where §,, (@) — 0 as n — oco. From this observation, we may show,

ZP(Xlzacn)<ooifa>1and

n=1

ZP(Xlzacn):ooifa<1

n=1

and so by Proposition [10.39] we may conclude that

lim sup =1 a.s.

o T (n) /3 (n)
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10.8 Kolmogorov and Hewitt-Savage Zero-One Laws

Let {X,,} -, be a sequence of random variables on a measurable space, ({2, B).
Let B, == o0 (Xy,...,Xn), B :=0(X1,X0,...), Ty i= 0 (Xpa1, Xnt2,--- ),
and 7 := N2, 7, C Bs. We call 7 the tail o — field and events, A € 7, are
called tail events.

Ezample 10.43. Let S, :== X1+ -+ X, and {b, },—, C (0, 00) such that b,, T co.
Here are some example of tail events and tail measurable random variables:

1. {3, X,, converges} € 7. Indeed,

{Z X converges} = { Z X converges} 7,

k=1 k=n+1
for all n € N.
2. Both limsup X,, and liminf, _,., X,, are 7 — measurable as are lim sup g—”
n—oo n—oo

and liminf,,_, . f—".

3. {lim X, exists in R} = {lim sup X,, = liminf, Xn} € 7 and similarly,

n—oo
{limS” exists in R} = {limsup & = lim inf Sn} eT
bn n—oo n n—00 Op

and

n n—00 n n—oo On

{limfn exists in R} = {—oo < limsupf—n = liminf% < oo} e”T.

4. {limn_,OO % = O} € 7. Indeed, for any k € N,

n—00 by n— oo bn

from which it follows that {limnﬁOo ‘2—: = } € 7Ty, for all k.

Definition 10.44. Let (2,8, P) be a probability space. A o — field, F C B is
almost trivial iff P (F) = {0,1}, i.e. P(A) € {0,1} for all A€ F.

The following conditions on a sub-o-algebra, 7 C B are equivalent; 1) F
is almost trivial, 2) P (A) = P (A)® for all A € F, and 3) F is independent
of itself. For example if F is independent of itself, then P (A) = P(ANA) =
P(A)P(A) for all A € F which implies P (A) = 0 or 1. If F is almost trivial
and A,B € F, then P(ANB)=1=P(A)P(B) if P(A) = P(B) =1 and
P(ANB)=0= P(A)P(B) if either P(A) =0 or P(B) = 0. Therefore F is
independent of itself.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



158 10 Independence

Lemma 10.45. Suppose that X : 2 — R is a random wvariable which is F
measurable, where F C B is almost trivial. Then there exists ¢ € R such that
X =c a.s.

Proof. Since {X = oo} and {X = —oo} are in F, if P(X =00) > 0 or
P(X =-00) > 0, then P(X =00) = 1 or P(X = —00) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X € R) =
1.

For each z € R, {X < z} € F and therefore, P (X < z) is either 0 or 1. Since
the function, F'(z) := P (X < x) € {0,1} is right continuous, non-decreasing
and F' (—o0) = 0 and F (+00) = 1, there is a unique point ¢ € R where F' (¢) =1
and F'(c—) = 0. At this point, we have P (X =¢) = 1.

Alternatively if X : {2 — R is an integrable F measurable random vari-
able, we know that X is independent of itself and therefore X? is integrable
and EX2 = (EX)? =: ¢ Thus it follows that E [(X - 0)2} =0,ie. X =¢
a.s. For general X : 2 — R, let Xpr := (M AX)V (=M), then Xy = EXpy
a.s. For sufficiently large M we know by MCT that P (|X| < M) > 0 and since
X =Xy =EX) as. on {|X| < M}, it follows that ¢ = EX/ is constant in-
dependent of M for M large. Therefore, X = limps— oo Xns E limpy oo € = C.
[

Proposition 10.46 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (£2,B) such that {X,,} _, are independent random vari-
ables. Then T is almost trivial, i.e. P (A) € {0,1} for all A € T. In particular
the tail events in Example have probability either 0 or 1.

Proof. For each n € N, T C ¢ (Xp41, Xna2,...) which is independent of
B, = o (Xi,...,X,). Therefore T is independent of UB, which is a multi-
plicative system. Therefore 7 and is independent of Boo = 0 (UB,,) = VS, B,,.
As T C By it follows that 7 is independent of itself, i.e. 7 is almost trivial.

]

Corollary 10.47. Keeping the assumptions in Proposition [10.46] and let
{bp}.2; C (0,00) such that b, 1 oo. Then limsup X, liminf, .. X,,

n—oo
lim sup %, and liminf,,_, ?—" are all constant almost surely. In particular, ei-

n—oo

ther P ({ lim *2—" e:m'sts}) =0orP ({ lim “g—: em’sts}) =1 and in the latter

n—oo “n n—oo

case lim 22 = ¢ a.s for some ¢ € R.

n—oo bn
Ezample 10.48. Suppose that {A,,} -, are independent sets and let X,, := 14,
for all n and 7 = Np>10 (Xpn, Xpt1,...). Then {4, i.0.} € 7 and therefore
by the Kolmogorov 0-1 law, P ({4, i.0.}) = 0 or 1. Of course, in this case the
Borel zero - one laws tells when P ({4, i.0.}) is 0 and when it is 1 depending
on whether > | P (A,,) is finite or infinite respectively.
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10.8.1 Hewitt-Savage Zero-One Law

In this subsection, let £2 := R® = RN and X, (w) = w,, for allw € 2 and n € N,
and B := o (X1, Xo,...) be the product o — algebra on 2. We say a permutation
(i.e. a bijective map on N), 7 : N — N is finite if 7 (n) = n for a.a. n. Define
Tr: 02— 2 by T (w) = (Wr1,wr2,...). Since X; 0 Ty (w) = waj = Xgi (w) for
all i, it follows that T is B/B — measurable.

Let us further suppose that p is a probability measure on (R, Br) and let
P = @721 be the infinite product measure on (2 =RY,B). Then {X,} ",
are i.i.d. random variables with Lawp (X,,) = u for all n. If 7 : N — N is a finite
permutation and A; € By for all 7, then

T (Al x Ay x Az X ...) = Ap1q X Apoig X ...

Since sets of the form, A; x A x Az x ..., form a 7 — system generating B and

8

POTﬂ__l(AlXAgXAgX...): /,L(Aﬂ—li)

.
Il
ah

S

o
Il
=

w(A;) =P(A; x Ay x Az X ...),

we may conclude that Po T ! = P.

Definition 10.49. The permutation invariant o — field, S C B, is the col-
lection of sets, A € B such that T ' (A) = A for all finite permutations 7. (You
should check that S is a o — field!)

Proposition 10.50 (Hewitt-Savage Zero-One Law). Let u be a probabil-
ity measure on (R,Br) and P = @22 ,u be the infinite product measure on
(2 =RN,B) so that {X,},~, (recall that X, (w) = wy) is an i.i.d. sequence

with Lawp (X,,) = p for all n. Then S is P — almost trivial.

Proof.Let B€ S, f=1pg,and g =G (X4,...,X,) beaoc (X1, Xo,..., X)
— measurable function such that sup,cg, [¢ (w)| < 1. Further let 7 be a finite
permutation such that {w1,...,7n} N{1,2,...,n} =0 — for example we could
take w (j)=j+n,7(j+n)=jforj=1,2,...,n,and 7 (j + 2n) = j + 2n for
all j € N. Then go T, = G (Xr1,- .., Xzn) is independent of g and therefore,

(Eg)* =Eg-ElgoTy] =E[g-goTy].

Since foTr = ly—1p) = 1p = f, it follows that Ef =Ef2=E|[f- foT,] and
therefore,
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[Ef - (Eg)*| = B/ foTr —g-goT]

S]EHf_g]foTﬂ"+E|g[foT7T_goT7T]|
SE|f =gl +E|foTr —goTs| =2E|f —g|. (10.36)

According to Corollary (or see Corollary or Theorem or Exercise
8.5)), we may choose g = gy as above with E|f — gx| — 0 as n — oo and so

passing to the limit in Eq. (10.36)) with g = gx, we may conclude,
P(B) - P(B)| = |Ef - (Bf| <0

That is P (B) € {0,1} for all B € S. [
In a nutshell, here is the crux of the above proof. First off we know that
for B € S C B, there exists g which is o (Xy,...,X,) — measurable such that
f:=1p=g. Since Po T ! = P it also follows that f = f o T, = g o T. For
judiciously chosen 7, we know that g and g o T}, are independent. Therefore

Ef?=E[f foTx2E[g-goTs|=E[g] -E[goT:] = (Eg)* = (Ef)°.

As the approximation f by g may be made as accurate as we please, it follows
that P(B) = Ef2? = (Ef)” = [P (B)]® for all B € S.

Ezample 10.51 (Some Random Walk 0—1 Law Results). Continue the notation
in Proposition [10.50)

1. As above, if S, = X1 + -+ + X,,, then P (S, € Bio.) € {0,1} for all
B € Bg. Indeed, if 7 is a finite permutation,

T-'({S, € Bio.})={S,0T, € Bio.} ={S, € Bio.}.

Hence {S,, € B i.0.} is in the permutation invariant o — field, §. The same
goes for {S,, € B a.a.}
2. If P (X; #0) > 0, then limsup S,, = co a.s. or limsup S,, = —c0 a.s. Indeed,

n—oo n—oo

T;l {limsup Sy < :17} = {hmsupSn oT, < x} = {limsup Sy < x}

n—oo n—oo n—o0

which shows that lim sup S,, is S — measurable. Therefore, lim sup .S,, = ca.s.

for some ¢ € R. Since (X3, X3,...) 4 (X1, X5,...) it follows (see Corollary

and Exercise [6.10)) that

¢ =limsup S, ilimsup(Xg + X34+ + Xny1)

n— oo n—00

=limsup (Sp4+1 — X1) = limsup S,4+1 — X5 = c— X;.

n—oo n—oo
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By Exercise below we may now conclude that ¢ = ¢ — X; a.s. which
is possible iff ¢ € {£oo} or X7 = 0 a.s. Since the latter is not allowed,
limsup S,, = oo or limsup .S,, = —c0 a.s.

n—o0 n—oo

3. Now assume that P (X; #0) > 0 and X, L X, ie. P(X;€A) =
P(—X;€A) for all A € Bg. By 2. we know limsup S, = c¢ a.s. with

n—oo

¢ € {xoo}. Since {X,,},—; and {—-X,,} - are i.id. and —X,, 4 X,, it
follows that {X,} 2, 4 {=X,},2, .The results of Exercises and m
then imply that ¢ 4 lim sup S, 4 lim sup (—S,,) and in particular

n—oo n—oo
a.s. q. . . .
¢ = limsup (—S,,) = —liminf S,, > —limsup S,, = —c.
n—oo n—0o0 n— oo
Since the ¢ = —oo does not satisfy, ¢ > —c¢, we must ¢ = co. Hence in this
symmetric case we have shown,
limsup S,, = oo and liminf §,, = —oco a.s.

n—oo n—oo

Exercise 10.8. Suppose that (2, B, P) is a probability space, Y : 2 — R is a

random variable and ¢ € R is a constant. Then Y = c a.s. if Y 4 c.

Solution to Exercise (10.8). If Y = ¢ a.s. then P(Y € A) = P(c€ A) for
c

all A € Bg and therefore Y <. Conversely, if Y 4 ¢, then P(Y =c¢) =
P(c=c¢)=1,ie. Y =cas.

10.9 Another Construction of Independent Random
Variables*

This section may be skipped as the results are a special case of those given above.
The arguments given here avoid the use of Kolmogorov’s existence theorem for
product measures.

Ezample 10.52. Suppose that 2 = A™ where A is a finite set, B = 22, P ({w}) =
H;L=1 q; (wj) where g; : A — [0, 1] are functions such that » ., ¢; (\) = 1. Let
Ci = {A1x AxA"~": AC A}. Then {C;};_, are independent. Indeed, if
B; = A"t x A; x A"7%, then

ﬂBi:AqXAQX'--XAn

and we have
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160 10 Independence

PrB)= > Jlaw)=I1> «™

WEALXAg XX Ay i=1 i=1\€A;

while

P(B;) = 3 [Ta@)=> a.

WEAITIXA; x An—i i=1 A€A;

Ezxample 10.53. Continue the notation of Example [10.52] and further assume
that A C R and let X; : 2 — A be defined by, X; (w) = w;. Then {X;},_,
are independent random Varlables Indeed, o (X;) = C; with C; as in Example

10,52
Alternatively, from Exercise we know that

Ep lH fi (Xi)] = HEP [fi (X3)]

for all f; : A — R. Taking A, C A and f; := 14, in the above identity shows
that

P(XleAl,...,XHEAn):]EP

ﬁ 14, (Xi)] = ﬁEP [La, (X

i=1
ﬁP X, € 4A)
=1

as desired.

Theorem 10.54 (Existence of i.i.d simple R.V.’s). Suppose that {q;};_,

s a sequence of positive numbers such that Z?:o q; = 1. Then there exists a se-

quence { Xy}, of simple random variables taking values in A = {0,1,2...,n}
n ((0,1], B,m) such that

m({X1 :Z.17~-~7Xk:ii}):qil---qik

for all iy,ia,... i € {0,1,2,...,n} and all k € N. (See Example above
and Theorem below for the general case of this theorem.)

Proof. For i = 0,1,...,n, let o_; = 0 and o0; = ZZ;O ¢; and for any
interval, (a,b], let

T; ((a,b]) :==(a+ i1 (b—a),a+ o; (b—a)].
Given i1, 1i9,...,ir € {0,1,2,...,n}, let

Ji17i27---,ik = Tik (ﬂk—l ( i Til ((0’ 1])))
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and define { X}~ on (0,1] by

Xy = E WLy iy iy

i1,92,...,ik€{0,1,2,...,n}

see Figure Repeated applications of Corollary shows the functions,

X : (0,1] — R are measurable.

!

{
<
S

Fig. 10.3. Here we suppose that po = 2/3 and p1 = 1/3 and then we construct J;

and J; for I,k € {0,1}.

Observe that

m (T; ((a,0])) = q; (b —a) = ggm ((a, b]),

and so by induction,

m (Jihiz,m,ik) =iy Qip_y -+ Giy-

The reader should convince herself/himself that

{Xl =11,... X = Zz} = 11,1,2,4..,2';‘.
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and therefore, we have
m({ X1 =d1,..., Xp =0i}) = m (Jiy ig,.iin) = Qi -+~ Qi
as desired. -

Corollary 10.55 (Independent variables on product spaces). Suppose
A ={0,1,2...,n}, ¢ > 0 with Y1 yqi = 1, 2 = A = AN, and for
1 €N letY; : 2 — R be defined by Y; (w) = w; for all w € §2. Further let
B :=o0cM,Ys,...,Y,, ...). Then there exists a unique probability measure,
P : B —0,1] such that

P({Yi=i,....Ys =4}) =qi, - Giy -
Proof. Let {X;}” | be as in Theorem and define T': (0,1] — 2 by
T(z)=(X1(z), X2 (x),..., Xk (z),...).

Observe that T is measurable since Y; o T = X; is measurable for all 7. We now
define, P := T,m. Then we have

P((Yi=ir...Ye=i}) =m(I7 (Y1 =ir,.... Yo =ii}))
=m({YioT =i1,...,Y, 0T =i;})

({Xl :i17...,Xk :Zl}) =iy -Gy
]

Theorem 10.56. Given a finite subset, A C R and a function q : A — [0,1]
such that ) \c,q(\) = 1, there exists a probability space, (£2,B,P) and an
independent sequence of random variables, {X,} ~ | such that P (X, =) =
q(A) for all X € A.

Proof. Use Corollary [10.10| to shows that random variables constructed in
Example or Theorem fit the bill. [

Proposition 10.57. Suppose that {X,} | is a sequence of i.i.d. random
variables with distribution, P (X, =0) = P(X,=1) = 1. If we let U :=
S22 27X, then P(U < z) = (0V z)A1, i.e. U has the uniform distribution

n=1

on [0,1].

Proof. Let us recall that P (X, =0a.a.) = 0 = P(X,, =1 a.a.). Hence
we may, by shrinking 2 if necessary, assume that {X, =0a.a.} = 0 =
{X,, =1 a.a.} . With this simplification, we have
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1
{U< 2} ={X;, =0},
1
U<Z :{X1:07X2:O} and

1

{red}-{v<stols=v<d]

={X1 =0}U{X; =1,X,=0}.

and hence that

From these identities, it follows that

1 1 1 1 3 3

More generally, we claim that if x = Z?Zl ;279 with €; € {0,1}, then
PU<z)=u. (10.38)

The proof is by induction on n. Indeed, we have already verified (10.38) when
n = 1,2. Suppose we have verified ((10.38) up to some n € N and let z =
> 515277 and consider
P(U < x+2_("+1)> —P(U<z)+P (x <U< a:+2—<"+1))
—o+P(e<U<at+2 (D),

Since
{x <U<z+ 2*<”+1>} — [P (X = )] N {Xopa = 0}

we see that
P (m <U<zx+ 2*("+1)) = o~ (n+1)

and hence
P (U <z+ 2_("+1)) =g 42 (D)

which completes the induction argument.

Since x — P (U <x) is left continuous we may now conclude that
P(U < z) =z for all x € (0,1) and since x — z is continuous we may also
deduce that P (U < z) = z for all z € (0,1). Hence we may conclude that

PU<z)=(0Vz)Al
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(]
We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 10.58. Suppose that {j,},-, are a sequence of probability measures
on (R,Br). Then there exists a probability space, (£2,B,P) and a sequence
{Y,}.2 | independent random variables with Law (Y,,) := Po Y, ' = p, for all
n.

Proof. By Theorem[10.56] there exists a sequence of i.i.d. random variables,

{Z.};7, ,such that P(Z, = 1) = P (Z, = 0) = 1. These random variables may

be put into a two dimensional array, {X; ; : i,j € N}, see the proof of Lemma

For each i, let U := 7%, 27X, j — o ({Xi,j};il) — measurable random

variable. According to Proposition [10.57} U; is uniformly distributed on [0, 1].

Moreover by the grouping Lemma [10.16 {a ({Xi,j }?i1>} are independent
=) )i=1

o — algebras and hence {U;};-, is a sequence of i.i.d.. random variables with
the uniform distribution.

Finally, let F;(xz) = p((—oo,z]) for all z € R and let G;(y) =
inf {z : F; (z) > y}. Then according to Theorem Y; := G; (U;) has p; as

its distribution. Moreover each Y; is o ({Xi,j };’;1 — measurable and therefore

the {Y;};, are independent random variables. [



11

The Standard Poisson Process

11.1 Poisson Random Variables

Recall from Exercise[7.5|that a Random variable, X, is Poisson distributed with

intensity, a, if
k

—e¢ * for all k € Ng.

P(X=k) =7

We will abbreviate this in the future by writing X £ Poi (a) . Let us also recall
that

oo k
a
E [ZX} _ E Zk e~ — =0 — ea(zfl)
k!
k=0

and as in Exercise [7.5| we have EX = a = Var (X) .

Lemma 11.1. If X = Poi(a) and Y = Poi (b) and X and Y are independent,
then X +Y = Poi(a +b).

Proof. For k € Ny,

k
P(X+Y =k =) P(X=1LY=k-1)= ZP Y =k—1)
=0
k l k—1 —(a+b) _F
_ —a@ b k—1
_l;e 0 =1y 2() @b
—(a+b)
== @+ d)”

Alternative Proof. Notice that
E [ZXer] =E [ZX} E [ZY} = DG —exp ((a+b) (2 — 1)).
This suffices to complete the proof. [

Lemma 11.2. Suppose that {N;};-, are independent Poisson random variables
with parameters, {\;};—, such thaty .o, Ai = o0o. Then > ;=) N; = 00 a.s.

lambda

Fig. 11.1. This plot shows, 1 —e™> > T(IAN).

Proof. From Figure we see that 1 —e™* > 2 (1A ) for all A > 0.
Therefore,

ZPN>1:§: ilfe*)‘i)zéi)\i/\lzoo
i=1 i=1 i=1

and so by the second Borel Cantelli Lemma, P ({N; > 11i.0.}) = 1. From this
it certainly follows that Y .o N; = oo a.s.
Alternatively, let A, = A\; +---+ \,, then

(ZN >I<:>>P(ZN >k>—1—e—A Z——masn—mo

Therefore P (3 .2, N; > k) =1 for all k € N and hence,

(S oS-
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11.2 Exponential Random Variables

Recall from Definition that T £ E (A) is an exponential random variable
with parameter A € [0,00) provided, P (T >t) = e~ for all t > 0. We have
seen that

o 1
E [6 T] = m for a < A (111)

ET = A~! and Var (T') = A~2, and (see Theorem|[7.56) that T being exponential
is characterized by the following memoryless property;

P(T>s+tlT'>s)=P (T >t) forall s,t>0.
Theorem 11.3. Let {Tj};il be independent random variables such that T} <
E(X;) with 0 < A\; < oo for all j. Then:

LIfY > At < oo then P(30r Ty =00) =0 (ie. P(> 07 T, <o0) =
1).
2. If > At =00 then P(} 02 | T,, = 00) = 1.

(By Kolmogorov’s zero-one law (see Proposition it follows that
P> T, =00) is always either 0 or 1. We are showing here that

P (3t To=00) = LiffE[3502, Tn] = 00.)

Proof. 1. Since
o0
B>,
n=1

it follows that Y 2 | T, < o a.s., i.e. P (3., T, = o0) = 0.
2. By the DCT, independence, and Eq. (L1.1)) with a = —1,

N
E [e* anlT"} = lim E [e Zng"] = lim E [e*T"}
n=

:iE[Tn]:i/\;l < 00
n=1

N—o0

where

oo

Hence by Exercise [10.7, E [67 nle”} = 0 iff o = >0, a, which hap-
pens iff >°°°  A\;! = oo as you should verify. This completes the proof since

E {e_ P T”} =0iffe” 2 T = 0 a.s. or equivalently > 2 | T,, = co a.s.
]
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11.2.1 Appendix: More properties of Exponential random
Variables*

Theorem 11.4. Let I be a countable set and let {T}},o; be independent ran-
dom wariables such that Ty ~ E(q) with ¢ = > ,c;ax € (0,00). Let
T := inf;, T} and let K = k on the set where T; > Ty}, for all j # k. On the
complement of all these sets, define K = x where * is some point not in I. Then
P(K =x%)=0, K and T are independent, T ~ E(q), and P (K =k) = q/q.

Proof. Let k € I and t € Ry and A,, Cy I such that A, T I\ {k}, then

P(K:k‘,T>t):P< j7g;€{T >Tk} Tk>t)— hmP NjeA, {T >Tk} Tk>t)

= lim H ]‘tj>tk . ]-tk>td/1'n <{tj}j6/1n> le_qktkdtk

n—o00 [0700)An,u{k} jeA

where f1,, is the joint distribution of {7} . So by Fubini’s theorem,

JEAR

P(K=kT>t)= lim %ﬁ*%%dn:/ IT 1ot Tusedion ({5} 5e4,)
0,00)

n—oo A
t " jedn

oo

= lim P (ijAn {T] > tk}) qke_qktkdtk

n—oo

/ P (ﬂj¢k {T > 7'}) qkeiqdeT

/ He T qe qdeT*/ He T qdr
t

J#k Jel

/ “2hw qde—/ e qpdr = Bk o—qt. (11.2)
t q

Taking ¢ = 0 shows that P(K =k) = %’“ and summing this on k shows
P(K e€I) =1 so that P(K ==%) = 0. Moreover summing Eq. on k
now shows that P (T >1t) =e —at so that T' is exponential. Moreover we have
shown that

P(K=kT>t)=P(K=k)P(T >1t)
proving the desired independence. [

Theorem 11.5. Suppose that S ~ E (\) and R ~ E (u) are independent. Then
fort >0 we have

P(S<t<S+R)=AP(R<t<R+5).
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Proof. We have

t
,uP(SSt<S+R):u/ Ae P (t < s+ R)ds
0

t
:u)\/ e M) gg
0

t
= ,u)\e_“t/ e~ Amsds = e Mt .
0

e*,ut,e*)\t
=N —
A—p

1 — e~ (A=)t

A—p

which is symmetric in the interchanged of u and A.Alternatively:

P(S<t<S+R)= )\,u/ 1s§t<s+ref)‘sef’“ﬂdsdr

R2

2
t [e’¢)
= A\ ds/ dre e Hr
0 t—s
t
= )\/ dse e H(t=s)
0

t
:)\67’“/ dse=(A—1)s
0

S 1 — e~ (A—mt
A—p
_ )\efp,t _ 67)\15
A—p

Therefore,
e—ut _ e—)\t
puP(S<t<S+R)=p\
A—p
which is symmetric in the interchanged of 1 and A and hence

efll«tfe*)\t

Ezxample 11.6. Suppose T is a positive random variable such that
P(T>t+s|T>s)=P(T >t) for all s,t > 0, or equivalently

P(T>t+s)=P(T>t)P(T >s) forall s,t >0,

Page: 165 job: prob

macro: svmonob.cls

11.3 The Standard Poisson Process 165

then P(T >t) = e for some a > 0. (Such exponential random variables
are often used to model “waiting times.”) The distribution function for T is
Fr(t):=P(T <t)=1—-e*0 Since Fr (t) is piecewise differentiable, the
law of T, 1 := P o T~1, has a density,

dp (t) = Fp (t) dt = ae™ " 1;>odt.

Therefore,
E [¢"T] = /0 ae” et = " _ai)\ =na(N).
Since “ a
V(AN =i————and i’ (\) = —2—————
fi" (A) @ in? " (A) @ _in?
it follows that
/' 0) 2 _A7(0) 2
ET = ; =a " and ET” = 2 — 2

and hence Var (T) = 2 — (1)2 =a 2.

11.3 The Standard Poisson Process

Let {T}},—, be an i.i.d. sequence of random exponential times with parameter
A, ie. P(Ty € [t,t +dt]) = Ae Mdt. For each n € Nlet W,, :=T, +---+ T, be
the “waiting time” for the n'" event to occur. Because of Theorem we
know that lim,,_, . W,, = oo a.s.

Definition 11.7 (Poisson Process I). For any subset A C Ry let N (A) :=
>0 14 (Wy) count the number of waiting times which occurred in A. When
A = (0,t] we will write, Ny := N ((0,t]) for all t > 0 and refer to {N},~, as
the Poisson Process with intensity \. (Observe that {N; =n} =W, <t <
Whi1.)

The next few results summarize a number of the basic properties of this
Poisson process. Many of the proofs will be left as exercises to the reader. We
will use the following notation below; for each n € N and T > 0 let

Ap (T) :={(w1,...,wp) ER": 0 < wy <we < -+ <wy <T}
and let
Ay = Upsody, (T) ={(wy,...,wp) ER": 0 < wy <wy < -+ < wy < 00}

(We equip each of these spaces with their Borel o — algebras.)
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166 11 The Standard Poisson Process

Exercise 11.1. Show m,, (4, (T)) = T™/n! where m,, is Lebesgue measure on
Bgn.

Exercise 11.2. If n € N and ¢g : A,, — R bounded (non-negative) measurable,
then

E[g(Wl,...7Wn)]:/ g (wi,wa,. .. wy) A"e rdwy ... dw,.  (11.3)
A

n

As a simple corollary we have the following direct proof of Example [10.28]

Corollary 11.8. If n € N, then W, iGamma(n, AT

Proof. Taking g (wy,ws,...,w,) = f (w,) in Eq. (11.3) we find with the
aid of Exercise [[1.1] that

/ £ (wy) e M dwy . .. dwy,

/ f(w n—l) e M dw

which shows that W, iGamma(n, )\_1) . ]

Corollary 11.9. Ift € Ry and f: A, (t) — R is a bounded (or non-negative)
measurable function, then

E[f (Wy,...,Wy): Ny =n]
:)\"e*)‘t/ fwy,wa, ... wy)dws ... dw,. (11.4)
Ay (t)
Proof. Making use of the observation that {N; =n} = {W,, <t < W11},
we may apply Eq. (11.3) at level n 4+ 1 with
g(wi,wa,...,wey1) = f(wi, w2, ..., wn) Lo, <t<w,
to learn
E[f (Wy,...,W,): Ny =n]

f(wi,wa, ... wy) N L= Ant1 quyy L dwy, dwp 41

/0(’[1}1 < LWy <E<Wip 41

:/ f(wy,we, ... wy) Ne Mdw; ... dw,.
An(t)
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Exercise 11.3. Show N; < Poi (At) for all t > 0.

Definition 11.10 (Order Statistics). Suppose that Xi,...,X, are non-
negative random variables such that P (X; = X;) = 0 for all i # j. The order
statistics of X4, ..., X, are the random variables, X1, Xo, ..., X,, defined by

X, = #I(nax min{X; :i € A} (11.5)

where A always denotes a subset of {1,2,...,n} in Eq. .

The reader should verify that X; < X, < --- < X,,, {X1,..., X} =
{Xl,XQ,... Xn} with repetitions, and that X < X9 < -0 < X, if
X; # X, for all i # j. In particular if P(X; = X;) = 0 for all ¢ # j then
P (U 27,gJ{X X;H)=0and X; < Xy <--- < X, as.

Exercise 11.4. Suppose that Xq,..., X, are non-negativeﬂ random variables
such that P (X; = X;) =0 for all ¢ # j. Show;

1.If f: A, — R is bounded (non-negative) measurable, then

E[f (%0 %) = Y B (Xon o Xon) : Xo1 < X2 <o < X,

€S,
(11.6)
where S, is the permutation group on {1,2,...,n}.
2. If we further assume that {X;,..., X, } are i.i.d. random variables, then

E[f(xlxn)] =l E[f (X1, X)X < Xo < -+ < Xo].©
(11.7)
(It is not important that f (5(1, e ,Xn) is not defined on the null set,
Uiz {Xi = X5} )
3. f : R} — R is a bounded (non-negative) measurable symmetric function

(ice. f(Woty-- s Won) = f(wy,...,wy,) for all ¢ € S, and (wy,...,w,) €
R ) then

E[f (Xan)] —E[f(X1,....X,)].

4. Suppose that Y7,... Y, is another collection of non-negative random vari-
ables such that P (Y; =Y;) = 0 for all ¢ # j such that

Elf (X1,....X)]=E[f(Y1,....Y,)]

! The non-negativity of the X; are not really necessary here but this is all we need
to consider.
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for all bounded (non-negative) measurable symmetric functions from R?} —
R. Show that (Xy....,%,) £ (Vi,....7,)

Hint: if g : A, — R is a bounded measurable function, define f : R} — R
by;

f (yla s ayn) = Z 1y01<y02<---<ymg (yah Yo2,--- 7ya'n)

oEeS,

and then show f is symmetric.

Exercise 11.5. Let t € Ry and {U;}]_, be i.i.d. uniformly distributed random
variables on [0, ¢] . Show that the order statistics, (Ul, el f]n> , of (Uy,...,Up)

has the same distribution as (W1,...,W,,) given N; = n. (Thus, given N; =
n, the collection of points, {W7,...,W,}, has the same distribution as the
collection of points, {Uy,...,U,}, in [0,¢].)

Theorem 11.11 (Joint Distributions). If {Ai}le C Bjoy is a partition

of [0,t], then {N (Al-)}f:1 are independent random variables and N (A) 4

Poi (Am (A)) for all A € By with m(A) < oo. In particular, if 0 < t; <

ty < -+ < tp, then {Nt,- _Ntifl}?:].

N, — N, £ Poi (A(t—s)) for all0 < s <t < oo. (We say that {Ni},~, is a
stochastic process with independent increments.) -

are independent random variables and

Proof. If z € C and A € Bjp ), then
ZN(A) = Zzzn=1 1A(W7") on {Nt = TL} .
Let n € N, z; € C, and define

S0 ()

flw, ... wy) = 2%

D iy Ly (w)
ks
which is a symmetric function. On Ny = n we have,

z (Al)...z]]cv(A’“) =f(Wy,...,Wy,)

and therefore,

Page: 167 job: prob

11.3 The Standard Poisson Process 167
N(A
N = n] =E[f (W, W) [Ny =)

=E[f(Uy,...,Uy,)]
B {zlz @ 1Ak<U1:>}

B [(z;mw.. )]

A

~(igmw-<).

wherein we have made use of the fact that {A;}._, is a partition of [0, ¢] so that

E [Z{V(Al)...

Il
=

Il
s

7

/N

o#\»—l

1a,(U1) 1A (Ur)
27! k E zila, (

Thus it follows that

E [Z{V(Al) . z,i\[(A’“)] =

n=0
— (1 TR
:;)(t;m(Az) Zz) (n') A
o) 1 k n
:ZE )\Zm(Ai)wZ) e M
n=0 i=1
k
= exp ()\ Zm(Al)zl —t})
121
= exp (A > m(4) (2 - 1)])

From this result it follows that {N (4;)}!_, are independent random variables
and N (A) = Poi (Am (A)) for all A € Bg with m (A) < oo.

Alternatively; suppose that a; € Ny and n :=a; + - -+ + ag, then
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168 11 The Standard Poisson Process

P[N (Ay)=ay,...,N (Ag) = ag| Ny = n]

and therefore,

[ (A1) = ar,..., N (Ap) = ax]
(Al) ,N (Ay) = ag|N; = n] - P (N, = n)

k n
) e e,ww

n!

which shows that {N (Al)}f=1 are independent and that N (4;) 2 Poi (Am (4;))
for each . ]

Remark 11.12. If A € Bjp o) with m (A) = oo, then N (A) = oo a.s. To prove
this observe that N (A) =1 lim,, o N (AN [0,n]). Therefore for any k € N, we
have

P(N(A) >k)>P(N(AN[0,n]) > k)

— 1 asn — oo.

=1 ¢ Amanln) §° (Am (AN [0,n]))'

!
0<I<k

This shows that N (A) > k a.s. for all k € N, i.e. N (4) = oo a.s.

Exercise 11.6 (A Generalized Poisson Process I). Suppose that (S, Bs, )
is a finite measure space with 11 (S) < co. Define 2 =Y~ | 5™ where S° = {x},
were * is some arbitrary point. Define By, to be those sets, B = Y ° | B,, where
B, € Bgn = B?" — the product o — algebra on S™. Now define a probability
measure, P, on ({2, Bp) by

o0
1
P(B):=e "9 E ﬁ/@" (Bn)
n=0
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where u®° ({x}) = 1 by definition. (We denote P schematically by P :=
e & er® ) Finally for ever w € £2, let N, be the point measure on (S, Bs)
defined by; N, =0 and

Nw226si ifw=1(s1,...,8,) € S" forn > 1.

i=1
So for A € Bg, we have N, (A) =0 and N, (A) =Y 14 (s;). Show;

1. For each A € Bg, w — N,, (A) is a Poisson random variable with intensity
w(A), ie. N(A) =Poi(u(A)).

2. If {A}]", C Bg are disjoint sets, the {w — N, (Ag)}-, are independent
random variables.

An integer valued random measure on (S,Bs) (2 > w — N,,) satisfying
properties 1. and 2. of Exercise is called a Poisson process on (S, Bs)
with intensity measure pu.

Exercise 11.7 (A Generalized Poisson Process II). Let (S, Bg, i) be as in
Exercise {Yi};2, be iid. S — valued Random variables with Lawp (Y;) =
w(-) /e (S) and v be a Poi(u(S)) — random variable which is independent of
{Yi}. Show N :=>""_, 8y, is a Poisson process on (S, Bg) with intensity mea-
sure, f.

Exercise 11.8 (A Generalized Poisson Process III). Suppose now that
(S, Bg, 1) is a o — finite measure space and S = Y=, S is a partition of S such
that 0 < 1 (S;) < oo for all I. For each [ € N, using either of the construction
above we may construct a Poisson point process, N, on (S, Bg) with intensity
measure, f; where p; (A) == p(ANS;) for all A € Bs. We do this in such a
what that {N;},2, are all independent. Show that N := ) > N, is a Poisson
point process on (S, Bg) with intensity measure, u. To be more precise observe
that N is a random measure on (S, Bg) which satisfies (as you should show);

1. For each A € Bg with p (A) < oo, show N (A) < Poi (1 (A4)).

2. If {Ay}}", C Bs are disjoint sets with p (Ay) < oo, show {N (Ay)}-, are
independent random variables.

3. If A € Bg with p(A) = o0, show N (A) = o0 a.s.

11.4 Poission Process Extras*

(This subsection still needs work!) In Definition we really gave a construc-

tion of a Poisson process as defined in Definition [I1.13] The goal of this section

is to show that the Poisson process, {N¢},, as defined in Definition [11.13)is
Y

uniquely determined and is essentially equivalent to what we have already done
above.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



Definition 11.13 (Poisson Process II). Let (2,8, P) be a probability space
and N : 2 — Ny be a random variable for each t > 0. We say that {Nt}tZO s a
Poisson process with intensity A if; 1) Ng =0, 2) Ny — N, 2 Poi (A(t—s)) for
all0 < s <t < o0, 3) {Ni},~, has independent increments, and 4) t — N; (w)
is Tight continuous and non-decreasing for all w € 2.

Let Ny (w) =1 limoo V¢ (w) and observe that N =
Yoreo(Nk — Ng—1) = oo as. by Lemma m Therefore, we may and do
assume that Ne, (w) = oo for all w € (2.

Lemma 11.14. There is zero probability that {N;},~, makes a jump greater
than or equal to 2. -

Proof. Suppose that T € (0,00) is fixed and w € {2 is sample point where
t — N (w) makes a jump of 2 or more for ¢ € [0,7]. Then for all n € N we

must have w € Uj_; {NET ~ N1 > 2} . Therefore,
P*"({w:[0,T] 2t — Nt (w) has jump > 2})
<3rp (N@T —Niig > 2) =3 0(12/n?) =0(1/n) — 0
k=1 " " k=1
as n — oo. I am leaving open the possibility that the set of w where a jump

size 2 or larger is not measurable. [

Theorem 11.15. Suppose that {N;},~, is a Poisson process with intensity A
as in Definition B

W, :==1inf {t : Ny =n} for alln € Ny

be the first time Ny reaches n. (The {W,},~, are well defined off a set of
measure zero and Wy, < Wy for all n by the right continuity of {N¢},~,-)
Then the {T,, :== W,, — W,,_1},—, are i.i.d. E()\) — random variables. Thus the
two descriptions of a Poisson process given in Definitions and [11.13 are
equivalent.

Proof. Suppose that J; = (a;,b;] with b; < a;41 < oo for all i. We will
begin by showing

n—1
PO (Wi € Ji) = X" [[ m () / =X gy, (11.8)
i=1 In
= A”/ e N dwy ... dw,. (11.9)
J1><Jz><~-- Jn
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To show this let K; := (b;—1, a;] where by = 0. Then
NPy Wi € Ji} = iy {N (K;) = 0} N NP5 {N (i) = 0} N {N (J,) > 2}
and therefore,
n n—1
POy (Wi € i) = [Te Xm0 [T e mam (- (1= e )
i=1

=1

n—1
_ /\n—l H m(Jl) . [e—)\an _ e—)\bn]
=1

n

n—1
=X () / Ae ™A duy, .
i=1

We may now apply a m — A — argument, using o ({J; X --- x J,}) = Ba,,
to show

E[g(Wl,...,Wn)]:/ g(wi,...,wy) e Mndw; ... dw,
Ap

holds for all bounded Ba, /Br measurable functions, g : 4,, — R. Undoing
the change of variables you made in Exercise allows us to conclude that
{T,};2, are iid. E (X) — distributed random variables. [
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12

LP — spaces

Let (£2,B, 1) be a measure space and for 0 < p < oo and a measurable

function f : 2 — C let
1/p
1l = (/;Lﬂpdu> (12.1)

[flloc =inf{a >0: p(|f] > a) =0} (12.2)

and when p = oo, let

For 0 < p < o0, let
LP(£2,B,1) ={f: 2 — C: f is measurable and ||f||, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g||, =0 iff f ~ g and if f ~ g then
Ifll, = llgllp- In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 12.1. Suppose that || f|lcc < M, then for all a > M, u(|f| > a) = 0 and
therefore p(|f| > M) = limy oo (| f| > M +1/n) =0, ie. |f(w)] < M for p -
a.e. w. Conversely, if |f| < M a.e. and a > M then u(|f] > a) = 0 and hence
[Iflloo < M. This leads to the identity:

[ fllooc =inf{a>0:|f(w)| <afor u—ae w}.

12.1 Modes of Convergence

Let {fn}oo; U{f} be a collection of complex valued measurable functions on
2. We have the following notions of convergence and Cauchy sequences.

Definition 12.2. 1. f, — f a.e. if there is a set E € B such that u(E) = 0
and limy, oo 1ge frn = 1ge f.
2. fn — f in p — measure if lim, oo pu(|fn— f| > ) =0 for alle > 0. We
will abbreviate this by saying f, — f in L° or by f, & f.
3. fn— fin LP iff f € L? and f,, € LP for alln, and lim,_ || fr — f||p =0.

Definition 12.3. 1. {f,} is a.e. Cauchy if there is a set E € B such that
w(E) =0 and{1ge f,} is a pointwise Cauchy sequences.
2. {fn} is Cauchy in p — measure (or L — Cauchy) if imyy, oo (| fr— fm| >
g) =0 for alle > 0.
3. A fn} is Cauchy in LP if limpy, pnoo | fr — finll, = 0.

When p is a probability measure, we describe, f, - f as f, converging
to f in probability. If a sequence {f,} -, is L? — convergent, then it is L?
— Cauchy. For example, when p € [1,00] and f, — f in LP, we have (using
Minikowski’s inequality of Theorem [12.22] below)

I fn = fmll, < W fu = Fll, + I1f = fmll, = 0 as m,n — oo.
The case where p = 0 will be handled in Theorem below.

Lemma 12.4 (L? — convergence implies convergence in probability).
Let p € [1,00). If {fn} C LP is LP — convergent (Cauchy) then {f.} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.2)),

pfl22) = nlsP = < 5 [ 1P du= 5181

and therefore if {f,} is LP — Cauchy, then

| —

N(‘fn_fm‘zg)é an—meg—’()aSmaTL—)OO

bS]

€

showing {f,} is L — Cauchy. A similar argument holds for the LP — convergent
case. ]

Example 12.5. Let us consider a number of examples here to get a feeling for
these different notions of convergence. In each of these examples we will work
in the measure space, (]R+, B = Bg,, m) .

1. Let f, = %1[0,@ as in Figure In this case f, - 0 in L' but f, — 0
a.e.,fp — 01in L? for all p > 1 and f,, = 0.
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Fig. 12.1. Graphs of f,, = %1[o,n] forn=1,2,3,4.

2. Let fn = 11,5 as in the figure below. Then f,, — 0 a.e., yet f, - 0 in
any LP —space or in measure.

3. Now suppose that f, = n- 11/, as in Figure In this case f, — 0

a.e., f, = 0 but fo -+ 0in L' or in any L? for p > 1. Observe that
||anp =n'"1P for all p > 1.

Fig. 12.2. Graphs of f,, =n -1, forn =1,2,3,4.
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4. ForneNand 1<k <mn,let gpi:= 1(@7&]. Then define {f,} as

(fh f2, f3,.. ) = (91,1,9‘2,1,92,2,93,1,93,2793,3794,1,94,2,94,3794,4, . )

as depicted in the figures below.

For this sequence of functions we have f, — 0 in L? for all 1 < p < co and
fn 3 0but f, - 0 a.e. and f, - 0 in L. In this case, ||gn7k|\p = (%)Up
for 1 < p < oo while ||g, k]|, = 1 for all n, k.

12.2 Almost Everywhere and Measure Convergence

Theorem 12.6 (Egorov: a.s. = convergence in probability). Suppose
w(2) =1 and f,, — f a.s. Then for all € > 0 there exists E = E. € B such
that w(E) < € and f,, — f uniformly on E€. In particular f, 25 fasn — oo

Proof. Let f,, — f a.e. Then for all ¢ > 0,

0=p({lfn = fI>cio. n})

= Jim | U {Ifa—11>2} (12.3)

n>N

> limsup p ({|fn — f| > €})
N—o0
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from which it follows that f,, - f as n — oo.
We now prove that the convergence is uniform off a small exceptional set.
By Eq. (12.3)), there exists an increasing sequence {Nj} -, , such that pu(Ey) <

€27F where
1
Ey = U {|fn—f|>k}-

’I’I,Z]\/vlc

If we now set E := US| By, then u(FE) < Y., e27% = ¢ and for w ¢ E we have
|fn (W) — f(w)] < ¢ for all n > Ny and k € N. That is f, — f uniformly on
E° ]

oo
Lemma 12.7. Suppose a,, € C and |ant1 —an| < &, and Y &, < co. Then

n=1

o0
lim a, =a € C exists and |a — ap| <y := > €.
n—oo e

Proof. Let m > n then

m—1 m—1 [e%S)
|am —anl = | D (ap+1 —ar)| < D |agsr —ag| < D g :=0p - (12.4)
k=n k=n k=n

S0 |am — an| < Omin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
in (12.4) to find |a — a,| < 8,. ]

Theorem 12.8. Let (12,8, 1) be a measure space and {fn} -, be a sequence
of measurable functions on {2.

1. If f and g are measurable functions and fn, = f and fn 2> g then f = g
a.e.

2. If frn B f and gn 2> g then Mf, — \f for all X € C and f, + gn 2 [ +g.

S If fn 5 f then {fn}o, is Cauchy in measure.

4. If { fn},—, is Cauchy in measure, there exists a measurable function, f, and
a subsequence g; = fn, of {fn} such that lim; .. g; := f exists a.e.

5. (Completeness of convergence in measure.) If {f,},., is Cauchy in

measure and f is as in item 4. then f, = f.

Proof. One of the basic tricks here is to observe that if € > 0 and a,b > 0
such that a + b > €, then either a > ¢/2 or b > ¢/2.

1. Suppose that f and g are measurable functions such that f, % ¢ and
n LN f asn — oo and € > 0 is given. Since

f =9l <|f = fal +1fa—yl,

if e >0 and |f — g| > ¢, then either |f — f,| > ¢/2 or |f,, — g| > €/2. Thus
it follows
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{If —gl > e} c{lf = ful > /2y U{lg = ful > €/2},

and therefore,

p(lf =gl >e) <ullf = ful >€/2) + (g — ful >€/2) = 0asn — oco.

Hence
-~ 1 - 1
u(lf =gl > 0) =p (G f =gl >~ ¢ ) <D ullf—gl> ) =0,
n=1
ie. f=ga.e.
2. The first claim is easy and the second follows similarly to the proof of the
first item.

3. Suppose fnif,s>0andm,n€N, then | fr, = fiul < |f — ful +1fm — f]-
So by the basic trick,

p(|fn = fml >e) <p(fa = f1 > e/2)+u([fm — fI > €/2) — 0 as m,n — cc.

4. Suppose {f,} is L° (u) — Cauchy and let &, > 0 such that > &, < oo

n=1
(en = 27" would do) and set &, = > &x. Choose g; = f,, where {n;} is a
k=n
subsequence of N such that
n({lgi+1 —gil > ;}) <.

Let

Fy =Uj>n{lgj+1 — gj| > &;} and
E=n%_Fn= {|gj+1 — gj| >€j i.O.}.
Since
ILL(FN) < 51\/’ < 0

and Fy | E it followd]| that 0 = p(E) = limy—_ec pt (Fy). For w ¢ E,
|gj+1 (W) — g; (w)| < ¢gj for a.a. j and so by Lemma|12.7, f (w) := lim g;(w)
J—00

exists. For w € E we may define f (w) = 0.
5. Next we will show gy - f as N — co where f and gy are as above. If
w € Fy =N~ {lgj+1 — gj| < &5},
then

! Alternatively, u(FE) = 0 by the first Borel Cantelli lemma and the fact that
>oior b({lgi+1 — g5l > e5}) <3072, €5 < oo
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lgj+1 (w) — gj (w)| < e forall j > N.
Another application of Lemma|12.7|shows | f(w) — g;(w)| < 6; for all j > N,

i.e.
Fy Cnjen{lf =gl <6;} CH{If —gn| <N}

Therefore, by taking complements of this equation, {|f — gn| > dn} C Fn
and hence

w(lf —gn| > 0n) < u(Fy) <oy —0as N — oo

and in particular, gn LN fas N — co.
With this in hand, it is straightforward to show f, - f. Indeed, by the
usual trick, for all j € N,

p{lfn = FI > €}) < u({lf — 951 > €/2}) + pllg; — ful > £/2).

Therefore, letting 7 — oo in this inequality gives,

1({fn — fI > €}) < limsup p(lg; — fu| > €/2) — 0 as n — oo,

J—00
. . . m
wherein we have used {f,},—, is Cauchy in measure and g; — f.
]

Corollary 12.9 (Dominated Convergence Theorem). Let (2,5, 1) be a
measure space. Suppose {fn}, {gn}, and g are in L' and f € L° are functions
such that

|fol < gn ace, fo 5 f, g0 g, and /gnﬂ/g as n — oo.

Then f € L' and lim, . ||f — foll, = 0, i.e. f, — f in L'. In particular
hmn—>ooffn = ff

Proof. First notice that |f| < g a.e. and hence f € L! since g € L!. To see
that |f| < g, use item 4. of Theorem to find subsequences {f,, } and {gn, }
of {fn} and {g,} respectively which are almost everywhere convergent. Then

Ifl = Jim | fri] < Jim_gn, = g ae.

If (for sake of contradiction) lim, .. ||f — fnl|l; # O there exists ¢ > 0 and a
subsequence {fy, } of {fn} such that

/If = faul = € for all k. (12.5)
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Using item 4. of Theorem again, we may assume (by passing to a further
subsequences if necessary) that f,, — f and g, — ¢ almost everywhere.
Noting, |f — farl < 9+ gn. — 29 and [ (g + gn,) — [ 29, an application of the
dominated convergence Theorem implies limy_—oo [ |f — fn,| = 0 which

contradicts Eq. (12.5)). ]

Exercise 12.1 (Fatou’s Lemma). Let ({2, B, 1) be a measure space. If f,, > 0
and f, — f in measure, then [, fdu < liminf, . [, fudp.

Lemma 12.10. Suppose 1 < p < oo, {fn,}>°, C LP(u), and f, & f,

n=1

then ||fl|, < liminf, oo [|fall,. Moreover if {fu},2y U{f} C LP(n), then
f-= anp — 0 as n — oo iff limy oo ”anp = ||pr < oo and fr - e
Proof. Choose a subsequence, gx = fy,, such that liminf, .o |[fal, =

limg—co [|gk |, - By passing to a further subsequence if necessary, we may further
assume that g — f a.e. Therefore, by Fatou’s lemma,

1AIE = / 1P dp = / lim |gi” dyt < lim inf / Jgal? dp = T inf [ fo 2
0 Qkﬁoo k—oo 0 n—oo

which proves the first assertion.
If If=ful, — 0 as n — oo, then by the triangle inequality,

‘Ilfllp—l\fnllp < |If = full, which shows [|fu[" — [|fI" if fn — f in
LP. Chebyschev’s inequality implies f, —— f if f, — f in LP.

Conversely if lim,, o || full, = [ f]l, < oo and f, L flet Fy = |f — ful
and G, := 27L[|f[” + |fu|"]. Then F,, > B F, < G, € L', and [ G, — [ G
\}/IgereOG := 27| f|” € L'. Therefore, by Corollary [1f=fulf = [F, —

=0. |

Exercise 12.2. Let (§2, B, 1) be a measure space, p € [1,00), and suppose that
0< felL'(n),0< f, € L (p) for all n, f, *= f, and J fndp — [ fdp. Then
fn — fin L' (u). In particular if f, f, € L? (u) and f,, — f in LP (i), then
[ful” = [fI” in L ().

Solution to Exercise (12.2). Let F), := |f — fo| < [+ fu := gn and g :=
2f. Then F,, > 0, g, > g, and [g,du — [ gdu. So by Corollary
J1f = faldu= [ Fodp — 0 as n — oco.

Proposition 12.11. Suppose (£2,B, p) is a probability space and {f,},-, be a
sequence of measurable functions on §2. Then {fn}ff:1 converges to f in prob-
ability iff every subsequence, {f1}." of {fn},—, has a further subsequence,
{fII}>2,, which is almost surely convergent to f.

2 This is becuase |Fy,| > ¢ iff [f — fn| > &'/P.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



Proof. If {f,},-, is convergent and hence Cauchy in probability then any
subsequence, {f}},~; is also Cauchy in probability. Hence by item 4. of Theo-
remthere is a further subsequence, {f//},~_, of { f/,} -, which is convergent
almost surely.

Conversely if {f,} -, does not converge to f in probability, then there
exists an € > 0 and a subsequence, {n} such that infy u (|f — fn,| >€) > 0.
Any subsequence of {f,, } would have the same property and hence can not be

almost surely convergent because of Egorov’s Theorem [12.6 ]

Corollary 12.12. Suppose (2, B, 1) is a probability space, f, —— f and g,
g and ¢ : R — R and ¢ : R?> — R are continuous functions. Then

Lo (fa) == 0 (f),
2.9 (fns gn) — Y (f,9), and
3. fn‘gn L)fg
Proof. Item 1. and 3. follow from item 2. by taking ¥ (z,y) = ¢ (z) and
¥ (z,y) = x - y respectively. So it suffices to prove item 2. To do this we will
make repeated use of Theorem [12.8
Given any subsequence, {n;}, of N there is a subsequence, {n}} of {n;}
such that f,, — f a.s. and yet a further subsequence {nj} of {nj} such that
gnr — g a.s. Hence, by the continuity of 1, it now follows that

lim 6 (fursguy ) =0 (f19) as.
which completes the proof. [ |

Ezample 12.13. 1t is not possible to drop the assumption that p(§2) < oo in
Corollary [12.12] For example, let 2 = R, B = Bg, ;1 = m be Lebesgue measure,
fn(x) = % and g, (r) = 22 = g (). Then f, 20, gn & g while f,,g, does not
converge to 0 = 0- g in measure. Also if we let ¢ (y) = 4%, f, () = x+1/n and
f(z) =z for all z € R, then f, % f while

o (fo) = (N (@)= (+1/n)* —a® = o+ =

does not go to 0 in measure as n — oc.

12.3 Jensen’s, Holder’s and Minikowski’s Inequalities

Theorem 12.14 (Jensen’s Inequality). Suppose that (£2,B,p) is a proba-
bility space, i.e. [ is a positive measure and u(£2) = 1. Also suppose that
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€ LY(u), f: 2 — (a,b), and ¢ : (a,b) — R is a convex function, (i.c.
"(x) >0 on (a,b).) Then

w(/nfdu> S/Qw(f)du

where if ¢ o f ¢ LY(p), then @ o f is integrable in the extended sense and
Joe(f)dp = oo.

Proof. Let t = [, fdu € (a,b) and let § € R (8 = ¢ (t) when ¢ (t) exists),
be such that ¢(s) — ¢(t) > B(s —t) for all s € (a,b). (See Lemma [12.52)) and
Figure when ¢ is C! and Theorem below for the existence of such a
B in the general case.) Then integrating the inequality, p(f) — ¢(t) > 8(f — 1),
implies that

0< [ epin=l) = [ etau—s[ fin)

Moreover, if ¢(f) is not integrable, then o(f) > () + B(f — t) which shows
that negative part of ¢(f) is integrable. Therefore, fQ o(f)dp = oo in this case.
[

Example 12.15. Since e® for x € R, —Inz for x > 0, and 2P forz > 0and p > 1
are all convex functions, we have the following inequalities

exp (/Q fdu> S/Qefdu, (12.6)
/Qlog(lfl)duﬁlog (/Qlfldu)

’/Qfd“pﬁ </Qf|du>p§/9|fpdu.

Ezample 12.16. As a special case of Eq. (12.6)), if p;,s; > 0 for i = 1,2,...,n
and Yo, i =1, then

and for p > 1,

n LCE 23

" Ins; " LpgPi 1 P; 5
sl...sn:ezizl ns: _ )i prlns < E —elnsit = E L, (12.7)

= Pi =1 Pi

Indeed, we have applied Eq. lj with 2 ={1,2,....,n}, u=>", iéi and
f (@) == Inst". As a special case of Eq. (12.7)), suppose that s,t,p,q € (1, 00)
with ¢ = S5 (ie. % + % = 1) then

1 1
st < —sP + —t9., (12.8)
P q
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(When p = ¢ = 1/2, the inequality in Eq. - ) follows from the inequality,
0<(s— t) J)

As another special case of Eq. , take p; =n and s; = ag/" with a; > 0,
then we get the arithmetic geometric mean inequality,

1 n
Yay ... a, < = E a;. (12.9)
n
i=1

Ezample 12.17. Let (§2,B, 1) be a probability space, 0 < p < ¢ < oo, and
f: 2 — C be a measurable function. Then by Jensen’s inequality,

q/p
P g p\a/P g, — 44
([ura) < [ arm @ an= [ 170a

from which it follows that |||, < [[f]|,. In particular, LP (u) C L9 () for all
0 < p < g < oo. See Corollary [12.31] for an alternative proof.

Theorem 12.18 (Hoélder’s inequality). Suppose that 1 < p < co and q :=
ﬁ, or equivalently p~" + ¢~ = 1. If f and g are measurable functions then

1fglle < [1£1lp - llgllq- (12.10)

Assuming p € (1,00) and || f|lp - lgllq < oo, equality holds in Eq. (12.10) iff | f|”

and |g|? are linearly dependent as elements of L' which happens iff

91" I£ 115 = llgllg 11" a-e. (12.11)

Proof. The cases p =1 and ¢ = oo or p = oo and ¢ = 1 are easy to deal
with and will be left to the reader. So we now assume that p,q € (1,00). If
[I£llg =0 or oo or ||g|l, = 0 or oo, Eq. is again easily verified. So we will
now assume that 0 < |||, lgll, < oc. Taking s = |f| /| fll, and ¢ = |g|/lgll,
in Eq. gives,

p
fol 1 A7 1 gl

< - (12.12)
IFllolglle = » 171 g Tglle
with equality iff [g/|lglly| = [f7" /IFIF ™ = [F1779 /1 F1B9, L. |9l f112 =
lgllZ|f|” . Integrating Bq. (12.12) implies
1 1
lfall bl
£l llgle =

with equality iff Eq. m 112.11)) holds. The proof is finished since it is easily checked
that equality holds in Eq. (12.10) when |f|” = c|g|? of |g|? = ¢|f|” for some
constant c. [ |
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Ezample 12.19. Suppose that a; € C for k =1,2,...,n and p € [1,00), then

n

p
> ar

k=1

n
<P aglP (12.13)

Indeed, by Holder’s inequality applied using the measure space, {1,2,...,n}
equipped with counting measure, we have
> x| =

n n 1/p n 1/q n 1/p
S| < (o) (X))
k=1 k=1 k=1 k=1 k=1

where ¢ = p%l' Taking the p* — power of this inequality then gives, Eq. (12.14)).

n

Theorem 12.20 (Generalized Holder’s inequality). Suppose that f; : 2 —
C are measurable functions fori=1,....n and p1,...,p, and r are positive
numbers such that ZZ 1 pZ =r~L then

n

11+

i=1

<TI0, (12.14)
i=1

Proof. One may prove this theorem by induction based on Hélder’s Theo-
rem [I2.18 above. Alternatively we may give a proof along the lines of the proof
of Theorem m which is what we will do here.

Since Eq. is easily seen to hold if [|fi||,, = 0 for some i, we will

assume that || fl|| > 0 for all 4. By assumption, EZ’ 1 - = 1, hence we may

replace s; by s and p; by p;/r for each i in Eq. - to “find

CLR

Now replace s; by |fi| / || fill,,, in the previous inequality and integrate the result
to find

n

Pi g, — - r_
Hf" Tgrzpz ||f1|p1/|fl| _21 pi

I il ”fz

Pi

|
Definition 12.21. A norm on a vector space Z is a function ||-|| : Z — [0, c0)
such that
1. (Homogeneity) | Afll = |AL | f]| for all N € F and f € Z.
2. (Triangle inequality) || f + gl| < || fIl + |lgl| for all f,g € Z.
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3. (Positive definite) ||f|| = 0 implies f = 0.

A pair (Z,||-]|) where Z is a vector space and ||| is a norm on Z is called a
normed vector space.

Theorem 12.22 (Minkowski’s Inequality). If 1 < p < oo and f,g € LP (n)
then

1f+gllp < 171+ llgllp- (12.15)

In particular, (Lp (n), ||||p) s a normed vector space for all 1 < p < co.

Proof. When p = oo, |f] < |||l a-e. and |g| < ||g]l, a-.e. so that |f+g] <
L1+ 19] < 1 fllo + llgll o, a.e. and therefore

If +9lloe <Nl + 119l -
When p < oo,

[f +gl” < (2max (If],|g])" = 2 max (IfI", g]") < 2" (|1 +1gI"),
which impliesE| f+ g € LP since
1 +gllp <22 (11 + llgllp) < oo

Furthermore, when p = 1 we have

||f+g||1:/ \f+g|duS/ Ifldu+/ gl = £l + gl
(9] (9] (9]

We now consider p € (1,00). We may assume || f + gl|p, || f[l, and [|g]|, are
all positive since otherwise the theorem is easily verified. Integrating

[f+glP =1 +gllf +glP~" < (L] +1gDIf + 9P
and then applying Holder’s inequality with ¢ = p/(p — 1) gives

/|f+g|”du§/ £l |f+g|p‘1du+/ lg| | £+ g|P~ " dp
(] 2 (9]

< (£l + lgllp) I11F + 91" N, (12.16)

where

I1f + gl = / (I + ") 0dp = / FtgPdu=IIf +glE.  (12.17)
(9] (9]

Combining Egs. (12.16)) and (12.17) implies

1+ glly < FUpI1F + gle/e + llglollf + gllb/e (12.18)
Solving this inequality for || f + g||, gives Eq. (12.15)). ]

3 In light of Example [12.19] the last 2P in the above inequality may be replaced by

or—1,
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12.4 Completeness of LP — spaces

Definition 12.23 (Banach space). A normed wvector space (Z,|]]) is a
Banach space if is is complete, i.e. all Cauchy sequences are conver-
gent. To be more precise we are assuming that if {xn}ff:l C Z satis-
fies, limp, n—oo ||Tn — Tm|| = 0, then there exists an x € Z such that
lim,, o0 ||z — 2, ]| = 0.

Theorem 12.24. Let |||, be as defined in Eq (12.9), then
(L>°(2,B, 1), ||'l.) is a Banach space. A sequence {fn} -y C L*> con-

verges to f € L iff there exists E € B such that u(E) = 0 and f, — f
uniformly on E°. Moreover, bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem|12.22] ||-||  satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ||| is a
norm. Suppose that {fn}zo=1 C L* is a sequence such f, — f € L, i.e.

Ilf = fullo — 0 as n — oo. Then for all k € N, there exists Nj < oo such that
w(lf = fal > k1) =0 for all n > N
Let
E= L-Jgo=1 Un>nN, {|f - fn| > k‘il}.

Then wu(E) = 0 and for z € E¢, |f(z) — fo(z)] < k7! for all n > N. This
shows that f,, — f uniformly on E€. Conversely, if there exists E € B such that
w(E) =0 and f,, — f uniformly on E€, then for any £ > 0,

p(lf = fol Zze) =p{lf = fal 2 NES) =0
for all n sufficiently large. That is to say limsup ||f — fn||,, < € for all € > 0.
o

The density of simple functions follows from the approximation Theorem [6.39]
So the last item to prove is the completeness of L.

Suppose €, | fro — fulle — 0 as m,n — oo. Let E,, =
{Ifn = fm| > €mn} and E := UE,, ,,, then p(E) = 0 and

sup |fm (:C) - fn (l‘)| < Emn — 0 as m,n — oQ.
reke°

Therefore, f := lim,, s fn exists on E° and the limit is uniform on F°. Letting
f=limy, o0 1ge fp, it then follows that lim, . || f» — fl|,, = 0. [

Theorem 12.25 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, |||, (see Eq. ), is a Banach space.
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178 12 LP? — spaces

Proof. By Minkowski’s Theorem |||, satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure [|-[|,
is a norm. So we are left to prove the completeness of LP(u) for 1 < p < oo, the
case p = 0o being done in Theorem [12:24]

Let {fn};—, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma , {fn} is L°-Cauchy (i.e. Cauchy in measure) and by Theorem
there exists a subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s
Lemma,

lg; = fllz = /kligrolc inf|g; — gilPdp < lim inf/ l9; — gn|Pdps

= lim inf|[g; — gxlh — 0 as j — oo.
k—oco

In particular, ||f|l, < lg; — fllp + llgjllp < oo so the f € LP and g; L% f. The
proof is finished because,

an_pr < ”fn_gjllp"’ng _pr_’O&S J,n — oo.

(]

See Definition for a very important example of where completeness is
used. To end this section we are going to record a few results we will need later
regarding subspace of LP () which are induced by sub — o — algebras, By C B.

Lemma 12.26. Let (12,8, 1) be a measure space and By be a sub — o — algebra
of B. Then for 1 < p < oo, the map i : LP (£2,By, 1) — LP (2,8, 1) defined by
i ([fly) = [f] is a well defined linear isometry. Here we are writing,

[flo={9€L?(2,Bo,1) : g= f a.e.} and
[fl={gelP(2,B,u):g=f ae.}.
Moreover the image of i, i (LP (£2, By, 1)), is a closed subspace of LP (£2,B, 1) .

Proof. This is proof is routine and most of it will be left to the reader. Let us
just check that i (LP (£2, By, 1)) , is a closed subspace of L? (§2, B, 1) . To this end,
suppose that i ([f,],) = [fn] is a convergent sequence in L? ({2, B, ) . Because,
i, is an isometry it follows that {[f,],} —, is a Cauchy and hence convergent
sequence in LP (§2, By, ut) . Letting f € LP (£2, By, ) such that || f — fn||Lp(H) —
0, we will have, since i is isometric, that [f,]| — [f] =i ([f],) € i (L? (£2, Bo, 11))
as desired. [

Exercise 12.3. Let ({2, B, 1) be a measure space and By be a sub — o — algebra
of B. Further suppose that to every B € B there exists A € By such that
1 (BAA) = 0. Show for all 1 < p < oo that i (L? (£2, By, ) = L? (2,8, ), i.e.
to each f € LP (£2,B, 1) there exists a g € LP (2, By, 1) such that f = g a.e.
Hints: 1. verify the last assertion for simple functions in L? (£2, By, i4) . 2. then
make use of Theorem and Exercise [6.4]
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Exercise 12.4. Suppose that 1 < p < oo, (2, B, ) is a o — finite measure space
and By is a sub — o — algebra of B. Show that i (L (£2,Bo, ) = LP (2, B, 1)
implies; to every B € B there exists A € By such that u (BAA) = 0.

Solution to Exercise (12.4). Let B € B with p(B) < oco. Then 1p €
LP (£2,B, 1) and hence by assumption there exists g € LP (2, By, 1) such that
g=1p a.e. Let A:= {g =1} € By and observe that AAB C {g # 1p}. There-
fore u(AAB) = pu(g# 1p) = 0. For general the case we use the fact that
(£2,B,1) is a o — finite measure space to conclude that each B € B may be
written as a disjoint union, B = "7, B, with B,, € B and p(B,) < co. By
what we have just proved we may find A, € By such that u(B,AA,) = 0.1
now claim that A := U2, A4, € By satisfies u (AAB) = 0. Indeed, notice that

A\B=U2 A, \ BCUX A, \ By,

similarly B\ A C U322, B, \ Ay, and therefore AAB C U2, A, AB,,. Therefore
by sub-additivity of p, p(AAB) < Y07 | u(A,AB,) = 0.

Convention: From now on we will drop the cumbersome notation and
simply identify [f] with f and L? (£2, By, 1) with its image, ¢ (L? (£2, By, 1)) , in
LP (2,8, ).

12.5 Density Results

Theorem 12.27 (Density Theorem). Let p € [1,00), (12,8, 1) be a measure
space and M be an algebra of bounded R — valued measurable functions such
that

1I.MC L? (g, R) and o (M) = B.
2. There exists 1, € M such that ¥, — 1 boundedly.

Then to every function f € LP(u,R), there exist p, € M such that
imp oo [f = @nllpo(u) = 0, i-e. M is dense in LP (1, R) .

Proof. Fix k € N for the moment and let H denote those bounded B —
measurable functions, f : 2 — R, for which there exists {¢,} ., C M such
that lim,—.cc [[¢¥kf — ¢@nll1s(,) = 0. A routine check shows H is a subspace of
the bounded measurable R — valued functions on 2, 1 € H, M C H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn € Hand f, — f boundedly. Then, by the dominated convergence theorem,
oo [k (f = fr)ll Loy = ()E| (Take the dominating function to be g =

4 Tt is at this point that the proof would break down if p = .
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[2C |9y |]” where C is a constant bounding all of the {|f,|} —;.) We may now
choose ¢, € M such that ||¢, — wkfn”m(u) < L then

lim sup [l f — @ull oo <lim sup [ (f = fu)l g

n—oo

+lim sup [[Yxfn — nllzegy =0  (12.19)
n—oo

which implies f € H.

An application of Dynkin’s Multiplicative System Theorem [8.16] now shows
H contains all bounded measurable functions on 2. Let f € L” (u1) be given. The
dominated convergence theorem implies limy_oo ||¢ 1 f|<k}.f — fHLP(m = 0.
(Take the dominating function to be g = [2C | f|]” where C' is a bound on all of

the |¢k|.) Using this and what we have just proved, there exists @5 € M such
that

1
lentpicar S = ekl o < 7

The same line of reasoning used in FEq. (12.19) now implies
hmkﬁoo Hf - SDkHLp(‘u) =0. u

Ezample 12.28. Let p be a measure on (R, Bgr) such that p([-M,M]) < oo
for all M < co. Then, C. (R,R) (the space of continuous functions on R with
compact support) is dense in LP (i) for all 1 < p < oco. To see this, apply
Theorem with M = C. (R, R) and 9y, := 1j_ .

Theorem 12.29. Suppose p € [1,00), A C B C 29 is an algebra such that
o(A) = B and u is o — finite on A. Let S(A, u) denote the measurable simple
functions, ¢ : 2 — R such {p =y} € A for all y € R and u({¢ # 0}) < oc.
Then S(A, 1) is dense subspace of LP(u).

Proof. Let M := S(A, ). By assumption there exists 2, € A such that
w(§2) <ooand 2, T Pask — oco. If A € A, then 2;,NA € Aand (2, N A) <
oo so that 1g,na € M. Therefore 14 = limg_,00 1,04 is 0 (M) — measurable
for every A € A. So we have shown that A C o (M) C B and therefore B =
o(A) C o(M) C B, ie. o (M) = B. The theorem now follows from Theorem
after observing 1 := 1, € M and v, — 1 boundedly. [

Theorem 12.30 (Separability of L? — Spaces). Suppose, p € [1,00), A C B
is a countable algebra such that o(A) = B and p is o — finite on A. Then LP(u)
is separable and

D={) a;la, :a; € Q+iQ, A; € A with u(A;) < oo}
18 a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, u) relative to the LP ()
— norm. Once this is done, the proof is then complete since S(A, 1) is a dense

subspace of L? (1) by Theorem [12.29 ]
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12.6 Relationships between different LP — spaces

The LP(u) — norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point z¢ € {2, then locally near zq it is harder for f to be in LP(u)
as p increases. On the other hand a function f € LP(u) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect LP(u) C L9(u) or L9(u) C LP(u). However,
there are two notable exceptions. (1) If x(§2) < oo, then there is no behavior at
infinity to worry about and L4(u) C LP(u) for all ¢ > p as is shown in Corollary
below. (2) If p is counting measure, i.e. u(A) = #(A), then all functions
in LP(p) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case LP(u) C L(u) for all ¢ > p, see Corollary
below.

Corollary 12.31 (Example [12.17| revisited). If pu(2) < o0 and 0 < p <
q < oo, then LI(u) C LP(u), the inclusion map is bounded and in fact

11
1£1l, < @15~ )1,
Proof. Take a € [1,00] such that

1 1 1
-—=—4 -, i.e.a:ﬂ.
p a q q—p

Then by Theorem [12.20]
1_1
11, = 1F - UL, < 1 Fllg - 1lla = m(2) (1 fllg = ()| £l

The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/00 to be 1/p. ]

The rest of this section may be skipped.

Ezample 12.32 (Power Inequalities). Let a := (ay,...,a,) with a; > 0 for i =
1,2,...,n and for p € R\ {0}, let

1o 1/p
= (3)
i=1

Then by Corollary [12.31} p — ||a||p is increasing in p for p > 0. For p = —¢ < 0,
we have
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Lo —~1/q ) 1/q -t
e S I e I
"= w2 i (i) “llg
where % :=(1/as,...,1/ay). So for p < 0, as p increases, ¢ = —p decreases, so

that H%Hq is decreasing and hence ||%||;1 is increasing. Hence we have shown
that p — |la|[, is increasing for p € R\ {0}.

We now claim that lim, o [la|, = {/@1..-a,. To prove this, write aj =
ePnai — 1 4 plna; + O (pz) for p near zero. Therefore,

1 n - l n ‘ )
E;ai —1+pn;1na2+0(p)

Hence it follows that

L 1/p 1/p
;ii%”aHP:,l,ii% (n;af> *hm <1+p ;lnaZJrO( ))

1 n

—en 2 MY = oaray,.
So if we now define [[all, := {/ar.. an, the map p € R —|[al[, € (0,00) is

continuous and increasing in p.
We will now show that lim,, .« [|al|, = max; a; =: M and lim,_,_« |laf,, =
min; a; =: m. Indeed, for p > 0,

and therefore,
1 1/p
(3) ar<lal, <
n

Since (%)1/;3 — lasp — oo, it follows that limy, .o [lal|,, = M. For p = —¢ <0,
we have

1 1 .
lim_|al[, = hm T = = = m = mina,.
p——o0 H H max; (1/a;)  1/m i
Conclusion. If we extend the definition of Ha||p top = oo and p = —c0

by |all,, = max;a; and |ja||__, = min;a;, then R 3p — [all, € (0,00) is a
continuous non-decreasing function of p.
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Proposition 12.33. Suppose that 0 < pg < p1 < oo, A € (0,1) and py €

(po,p1) be defined by
L_1-A, )

P P D
with the interpretation that \/py = 0 if p1 = ooE| Then LP>» C LPo + LP1) j.e.

every function f € LP> may be written as f = g+ h with g € LP° and h € LP*.
For1<py<p <o and f € LPO+ LP1 et

11 = int {llgll, + Al < F = g+h}.

Then (LPo + LP1 ||-]|) is a Banach space and the inclusion map from LP> to
LPo + LP' is bounded; in fact ||| < 2||f|,, for all f € LP.

(12.20)

Proof. Let M > 0, then the local singularities of f are contained in the
set F := {|f| > M} and the behavior of f at “infinity” is solely determined by
f on E°. Hence let g = flgp and h = flge so that f = g + h. By our earlier
discussion we expect that g € LP° and h € LP* and this is the case since,

f Po
lolly = [ 1017 Ugpor = 217 [
f J2N
< Mo
< [|L

P1
P1o__ P1_ p1 g f
IR, = 1F 272 [) —/If\ 1< = M 1/ -

f 2N
< Mpl
< [1 4

Moreover this shows

Lig>m

L < MPTP[ P < o0

and

Lipi<m

Lipicn < MPUTPA| Y < oo

If|| < MI—Pr/Po Hf”px/po M—pa/p ||prx/p1 .

Taking M = A ||f|[,, then gives
i P e N T

and then taking A = 1 shows || f[| < 2||f|,, - The proof that (LF° + LP, ||-||) is
a Banach space is left as Exercise [12.1]] t0 the reader. [

5 A little algebra shows that A may be computed in terms of po, px and p; by

/\:go D1 —Px
Px P1—Do
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Corollary 12.34 (Interpolation of L? — norms). Suppose that 0 < py <
p1 <00, A € (0,1) and px € (po,p1) be defined as in Eq. , then LP° N
LPr C LP> and

A 1-A
11y < NF I 1115, ™ (12.21)
Further assume 1 < pg < px < p1 < 00, and for f € LPo N LP* [et
I = WAl + 1A, -
Then (LPoNLP ||-||) is @ Banach space and the inclusion map of LP° N LP* into
LP> s bounded, in fact
11, < max A8 (1= X)) (11, + 11, ) - (12.22)

The heuristic explanation of this corollary is that if f € LP° N LP', then f
has local singularities no worse than an LP' function and behavior at infinity
no worse than an LP° function. Hence f € LP» for any p) between py and p;.

Proof. Let A be determined as above, a = pg/A and b = p;/(1 — \), then
by Theorem

17y = (L2 < i =, = g,

It is easily checked that ||| is a norm on LP° N LP*. To show this space is
complete, suppose that {f,} C LP° N L™ is a ||-|| — Cauchy sequence. Then
{fn} is both LPo and L”1 Cauchy. Hence there exist f € LP° and g € LP* such
that lim,co [|f — fall,, = 0 and lim,_.o |lg — full,, = 0. By Chebyshev’s
inequality ( Lemma ﬂ 12.4) f, — f and f, — g in measure and therefore by
Theorem f = g a.e. It now is clear that lim, o ||f — full = 0. The
estimate in Eq is left as Exercise [12.10] to the reader. n

Remark 12.35. Combining Proposition [12.33| and Corollary gives
LPoN [P C LP> C LPo _|_LP1
for 0 < pg < p1 < o0, A € (0,1) and py € (po, p1) as in Eq. (12.20).

Corollary 12.36. Suppose now that i1 is counting measure on §2. Then LP(u) C
Li(p) for all0 <p < g < oo and || fl|l, < If]l,-

Proof. Suppose that 0 < p < ¢ = oo, then
I£11% = sup {If(@)I" sz € 2} < Y [f(@)" = £},

e

||fH for all 0 < p < 0o. For 0 < p < ¢ < o0, apply Corollarym
P and p1 = oo to find

A1, < IFIE/ AN < AR AL = N f, -

e || fllo
with Po =
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12.6.1 Summary:

Lron LPr C LT C LPo + L for any ¢ € (po, p1)-

If p < g, then &/ C (% and || f]|, < | fIl,-

Since (| f| > &) < &7 |||

L% — convergence implies almost everywhere convergence for some subse-

quence.

5. If pu(2) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L% —
convergence.

6. If u(2) < oo, then L? C LP for all p < g and L9 — convergence implies LP

— convergence.

, L? — convergence implies L° — convergence.

= w =

12.7 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L° — convergent sequence is LP — convergent. This will lead us
to the notion of uniform integrability. To simplify matters a bit here, it will be
assumed that (£2, B, 1) is a finite measure space for this section.

Notation 12.37 For f € L'(u) and E € B, let

u(:B)= [ fan.

and more generally if A, B € B let

p(f A B) = /AHB fdp.

When p is a probability measure, we will often write E[f : E] for u(f : E) and
E[f : A, B] for u(f : A,B).

Definition 12.38. A collection of functions, A C L'(p) is said to be umi-
formly integrable if,

lim sup o (|f|: |f| > a)=0. (12.23)
a—>OOfeA

In words, A C L' (u) is uniformly integrable if “tail expectations” can be made
uniformly small.
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The condition in Eq. (12.23)) implies supc 4 [|fll; < ooﬂ Indeed, choose a
sufficiently large so that supyc 4 p (|f] 2 |f| > a) <1, then for f € A

1l = p(f1: 11 = a) +u(f] [ f] < a) ST+ ap(2).

Ezample 12.39.1f A = {f} with f € L' (u), then A is uniformly integrable.
Indeed, lim, oo it (| f] : |f] > @) = 0 by the dominated convergence theorem.

Exercise 12.5. Suppose 4 is an index set, {fa},c4 and {ga},c4 are two col-
lections of random variables. If {g,} ¢ 4 is uniformly integrable and |fo| < [ga/|
for all @ € A, show {fa},c4 is uniformly integrable as well.

Solution to Exercise ([12.5)). For a > 0 we have

Ellfal:1fal Z al <E[lgal : [fal = al <E[lgal 194l = a].
Therefore,

lim supE[|fa] : |fal = a] < lim supE[|ga| : |ga] > a] = 0.

Definition 12.40. A collection of functions, A C L'(u) is said to be uni-
formly absolutely continuous if for all € > 0 there exists § > 0 such that

sup i (|f| : E) < & whenever p(E) < 4. (12.24)
feA
Equivalently put,
%iﬁ)lsup{u(|f|:E):f€A and p (E) <6} =0. (12.25)

Remark 12.41. Tt is not in general true that if {f,} C L'(u) is uniformly ab-
solutely continuous implies sup,, || fn|l; < co. For example take 2 = {*} and

u({*}) = 1. Let f,(x) = n. Since for § < 1 a set E C {2 such that pu(E) < ¢
is in fact the empty set and hence {f,}, -, is uniformly absolutely continuous.
However, for finite measure spaces without “atoms”, for every d > 0 we may
find a finite partition of {2 by sets {Eg}if:l with ,u(Eg) < 4. If Eq. holds
with € = 1, then

k
=1

showing that u(|fn|) < k for all n.

5 This is not necessarily the case if p(2) = oco. Indeed, if 2 = R and p = m is
Lebesgue measure, the sequences of functions, { fn = 1[,%”]}:’:1 are uniformly
integrable but not bounded in L' (m).
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Proposition 12.42. A subset A C L' () is uniformly integrable iff A C L* (u)
is bounded and uniformly absolutely continuous.

Proof. (=) We have already seen that uniformly integrable subsets, A,
are bounded in L' (1) . Moreover, for f € A, and E € B,

p(lf1 = E) = p(f]: |fl = M, E) + p(|f]: |f] < M, E)
< u(lf] = f] = M)+ Mu(E).
Therefore,

limsup { (|f]  £) : f € Aand p(E) < 6} < sup p(|f] + |f| = M) — 0 as M — o0
feA

which verifies that A is uniformly absolutely continuous.
(=) Let K :=supye, || fll; < oo. Then for f € A, we have

p(lfl =a) <|fll;/a < K/aforall a> 0.

Hence given € > 0 and § > 0 as in the definition of uniform absolute continuity,
we may choose a = K/¢ in which case

sup i ([f]: [f] = a) <e.
fea

Since € > 0 was arbitrary, it follows that limg o sup e p (|| [f| > a) =0 as
desired. -

Corollary 12.43. Suppose {fa}naca and {ga}aca are two uniformly integrable
collections of functions, then {fa + ga}aca 15 also uniformly integrable.

Proof. By Proposition m {fataca and {ga},ca are both bounded
in L' (p) and are both uniformly absolutely continuous. Since ||fo + gall, <
[ falli + llgall; it follows that {fa + ga}aca is bounded in L' (u) as well.
Moreover, for € > 0 we may choose 6 > 0 such that u(|fa|: E) < € and
1 (|9a] : E) < € whenever p (E) < 6. For this choice of ¢ and ¢, we then have

p|fo+ gal - B) < p(lfal +1gal - E) < 2¢ whenever p (E) <6,

showing {fo + ga}4c4 uniformly absolutely continuous. Another application of
Proposition completes the proof. [

Exercise 12.6 (Problem 5 on p. 196 of Resnick.). Suppose that {X,,} 7 |
is a sequence of integrable and i.i.d random variables. Then {%}:il is uni-
formly integrable.
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Theorem 12.44 (Vitali Convergence Theorem). Let (2,5, 1) be a finite

measure space, A := {fn} >, be a sequence of functions in L* (u), and f: 2 —

C be a measurable function. Then f € L' (u) and ||f — full; — 0 as n — oo iff
fn — [ in p measure and A is uniformly integrable.

Proof. (=) If f, — f in L' (i), then by Chebyschev’s inequality it fol-
lows that f,, — f in g — measure. Given € > 0 we may choose N = N, € N such
that || f — full; < /2 for n > N.. Since convergent sequences are bounded,
we have K := sup,, || fnll; < co and p(|fn| > a) < K/a for all a > 0. Apply-
ing Proposition with A = {f}, for any « sufficiently large we will have
sup,, (| f] : |fnl > a) < e/2. Thus for a sufficiently large and n > N, it follows
that

w(| ful = N fnl = @) < p(f = ol = [ful = @) + pdlf] = 1 fo] = @)
< = fally + 671 : | fnl 2 a) <e/2+e/2=e.

By Example|12.39|we also know that lim sup,_, . max,<n p(|fn] : |fn] > a) =0
for any finite N. Therefore we have shown,

lim supsup (| ful : |fu] > @) < ¢

a— 00 n

and as € > 0 was arbitrary it follows that {f,}, -, is uniformly integrable.
(<) If f, — f in p measure and A = {f,},_, is uniformly integrable then
we know M := sup, || fn|l; < oo. Hence and application of Fatou’s lemma, see

Exercise [12.3]
[ 11w < timin [ galdn < M <,
.Q n—oo Q

ie. f € LY(p). It then follows by Example [12.39| and Corollary [12.43| that
Ao :={f — fn},—, is uniformly integrable.
Therefore,

Hf*fn‘|1:N(|f7fn||f*fn|za)+/1’(|f7fn||f7fn|<a)

<c@+ [ Npi<alf = Fuldo (12.26)

where
£ (@) i=sup e (If — funl i | = finl = @) — 0 a5 @ — oo,

Since 1y_g,|<a |f = ful < a € L' () and 1;_y, |<q |f = ful = 0 becuase

(
“(1|fffn|<a |f = fal > €) <u(lf—=fa]>e) —0asn— oo,

we may pass to the limit in Eq. (12.26]), with the aid of the dominated conver-

gence theorem (see Corollary [12.9)), to find
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limsup||f — full; <e(a) = 0as a — oo.

n—oo

Ezample 12.45. Let 2 = [0,1], B = Bjg,1) and P = m be Lebesgue measure on
B. Then the collection of functions, f. := L1 for € € (0,1) is bounded in
LY(P), f. - 0ae. ase | 0but

0 /Qalfgfsd #;ﬁ)l/nfsd

This is a typical example of a bounded and pointwise convergent sequence in L'
which is not uniformly integrable. This is easy to check directly as well since,

sup m (|fe| : |fe] > a) =1for all a > 0.
€€(0,1)

Ezample 12.46. Let 2 = [0,1], P be Lebesgue measure on B = Bj 1}, and for
e €(0,1) let ae > 0 with lim.|p a. = 0o and let f; := acly . Then Ef. = ca.
and so sup,g || fz]|; =1 K < o0 iff ea. < K for all €. Since

supE [f. : fe > M] =sup[eac - Lo, >Mm],
1> I

if { .} is uniformly integrable and § > 0 is given, for large M we have ea. < § for
¢ small enough so that a. > M. From this we conclude that limsup, | (ca.) < ¢
and since 6 > 0 was arbitrary, lim. g ea. = 0 if {f.} is uniformly integrable. By
reversing these steps one sees the converse is also true.

Alternatively. No matter how a. > 0 is chosen, lim.|( f = 0 a.s.. So from
Theorem if {f.} is uniformly integrable we would have to have

151{8 (eae) = IEIHJI]EfE =E0=0.

Corollary 12.47. Let (2,8, 1) be a finite measure space, p € [1,00),{fn}r—;
be a sequence of functions in LP (i), and f : 2 — C be a measurable function.
Then f € LP (u) and ||f — fall, = 0 as n — oo iff fn — f in p measure and

A= {|fn|P}.2, is uniformly integrable.

Proof. (<= ) Suppose that f, — f in g measure and A = {|f,|"} —,
is uniformly integrable. By Corollary |ful? 2 1f]P in g — measure, and
By i=|f — fo|’ %5 0, and by Theorem [12.44} |f[* € L' (1) and |f,|" — |f|” in
L' (1) . Tt now follows by an application of Lemma that || f — fn||p —0
as m — 00.

(=) Suppose f € L? and f, — f in LP. Again f, — f in ;1 — measure by
Lemma [[2.4] Let

macro: svmonob.cls date/time: 19-Feb-2010/11:31



184 12 LP? — spaces
b = | falP = [fPL < |ful? + | fP = gn € LT

and g := 2|f|P € L'. Then g, % g, h, %5 0 and [ g,dpu — [ gdu. Therefore
by the dominated convergence theorem in Corollary nh_)rr;o S hn dp =0,
ie. [ful? — |f|P in L' (u) E] Hence it follows from Theorem that A is
uniformly integrable. [ ]

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 12.48. Suppose that p(2) < oo, and A C L°(2) is a collection of
functions.

1. If there exists a measurable function ¢ : Ry — Ry such that
lim, 00 p(z)/x = 00 and
K = sup (g (1)) < oo, (12.27)
fea

then A is uniformly integrable. (A typical example for ¢ in item 1. is ¢ (x) =
aP for some p > 1.)

2. *(Skip this if you like.) Conversely if A is uniformly integrable, there exists
a non-decreasing continuous function ¢ : Ry — Ry such that ¢(0) = 0,

lim, .o ¢(x)/x = 00 and Eq. is valid.

Proof. 1. Let ¢ be as in item 1. above and set €, := sup, >, ﬁ — 0 as
a — oo by assumption. Then for f € A

W(lf1: 1] = a) = u( (f}l) (D) : 11 = ) < u(o (1) : 1] > a)ea

< ple(If))ea < Kea

and hence

" Here is an alternative proof. By the mean value theorem,

1P = 1£al?l < plmax(£], 1o D)P ] = 1fall < pOA A+ LD AL = 1 fall

and therefore by Hoélder’s inequality,

/Ilflp 1 fal?l Sp/(lfl D] = ol Sp/(lfl DS = fol di

< plIf = FallplIUF]+ 1£DP g = DI+ FllIE AN f = Fallo
< P(”f”p + ||fn||p)p/q“f - anp

where g := p/(p — 1). This shows that [ ||f|” — |fa|?|dp — 0 as n — oo.
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lim sup p (|f] 1171>0) < lim Ke, =0.
a/_)oofeA - a— 00

*(Skip this if you like.) By assumption, e, := sup e i (|f| 1|f|2a) — 0 as
a — o00. Therefore we may choose a,, T co such that

oo

Z(n+1)<€an < 00

n=0

where by convention ag := 0. Now define ¢ so that ¢(0) = 0 and

Z 1(an,an+1]( )

n=0

i.e.
oo

o) = [ ¢y =3 (04 1) @ At~ ).

n=0

By construction ¢ is continuous, ¢(0) = 0, ¢’(z) is increasing (so ¢ is convex)
and ¢'(z) > (n+1) for « > a,. In particular

o) - plan) + (n+ 1)z

> >n+1for x> a,
T T

from which we conclude lim,_, ¢(z)/x = co. We also have ¢'(z) < (n+1) on
[0, an+1] and therefore

o) < (n+ 1z for < apeq-

So for f € A,

8

u(w(lfl))=z (@D @nsans ) (1)

< Z (n+1) 1 (If Lean,ans g (1FD)

o0

<Z (n+ D) i (f1g12a,) €Y (n+1eq,
n=0
and hence -
sup i (@(|f1)) < Y (n+1)eq, < oo.
feA n—0
|
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Exercise 12.7. Show directly that if ;4 (£2) < oo, ¢ is as in Lemma [12.48
and {f,} € L' () such that f, & f and K := sup, E[¢ (|fa])] < oo, then
If = fally = 0 as n — oo.

Solution to Exercise |) Letting €, := sup,>, ﬁ as above we have
x < eqp (2) for > a. Therefore,

Elfol = E{|ful : 1fal = a] + E[|fal : |fn| < a]
< e[ (Iful) : 1fnl > a] +a
<elElp(|ful)] +a=a+e K

from which it follows sup,, E|f,,| < co. Hence by Fatou’s lemma,

E|f] <liminfE|f,| < supE|f,| < co.

Similarly,

E(lf = ful s [ful = a] SE[f]: [fnl Z al + E[[fn] : [fn] = a]

<
SE[f]: [fnl = al +eaK

and for b >0

E(f:1fnl = a] = E[If]  [fI Z b, ful = a] + E[|f] - [f] <b,[fn] = a
SE[If1:[f] 2 0] +bP (|fn] = a)

SE[F]51f] 2 0+ b supE| .

Therefore,
limsup E[|f — ful : [fn| = a] <limsup (E[|f]: |fu] = a] + oK)
<E[lf]:[f1=0].
Now by the DCT, lim, oo E[|f — fu| : |fn| < @] = 0 and hence
limsup E[[f — ful] <limsupE[[f = ful : [fo] = a] + limsup E[[f — fu| : [fn] < a]
n—oo n—oo n—oo
SE[f]:[f= 0]

Another application of the DCT now show E[|f| : | f| > b] — 0 as b — oo which
completes the proof.
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12.8 Exercises

Exercise 12.8. Let f € LPN L for some p < oo. Show || f|, = limy—.oc || f], -
If we further assume p(X) < oo, show [|f]l, = limg.c || f|, for all mea-
surable functions f : X — C. In particular, f € L* iff limg .o || f[[, < oo.
Hints: Use Corollary to show limsup, . || fll, < [Ifll. and to show
liminfy .o [|fll, = [fl Tet M < [|f]l,, and make use of Chebyshev’s in-
equality.

Exercise 12.9. Let 0o > a,b > 1 with a=! 4+ b~! = 1. Give a calculus proof of

the inequality
a b

stgs—+t—foralls,t20.
a b

Hint: by taking s = 2t%/®, show that it suffices to prove

a

1
:ch——i—fforall:tzo.
a b

and then maximize the function f (z) =z — x%/a for x € [0, 00).

Exercise 12.10. Prove Eq. (12.22)) in Corollary [12.34] (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! +b~! = 1 chosen
appropriately,
s b
st < —+ —
a

b
applied to the right side of Eq. (12.21}).

Exercise 12.11. Complete the proof of Proposition [12.33| by showing (LP +
L™, ||-]) is a Banach space.

Exercise 12.12. Let ({2, B, i) be a probability space. Show directly that for
any g € L'(p), A = {g} is uniformly absolutely continuous. (We already know

this is true by combining Example [12.39| with Proposition [12.42])

Solution to Exercise . First Proof. If the statement is false, there
would exist € > 0 and sets E,, such that p(E,) — 0 while pu(|g| : E,) > ¢ for all
n. Since [1g, g| < |g| € L' and for any § > 0, u(lg, - |g| > ) < u(E,) — 0 as
n — oo so that 1p, - |g| % 0, the dominated convergence theorem of Corollary
implies lim,, o pt(|g| : Er) = 0. This contradicts u(|g| : E,) > € for all n
and the proof is complete.

Second Proof. Let ¢ = >  ¢1p, be a simple function such that
llg — ¢ll; <e/2. Then
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pllgl: E) <p(lel: E)+p(lg—ol: E)

<Y el n(EnB) +lg - ¢l < (ZIQI) E)+e/2.

=1
This shows y (|g| : E) < e provided that pu (E) <& (231, |es) ™"

Exercise 12.13. Suppose that (§2, 8, P) is a probability space and {X,,} -, is
a sequence of uncorrelated (i.e. Cov (X, X,,) = 0 if m # n) square integrable
random variables such that y = EX,, and 02 = Var (X,,) for all n. Let S,, :=

X; +---+ X,,. Show ’|%_MHEZL2_>O&S”_>OO'

n

Solution to Exercise ((12.13)). To say that the {X,} -, are uncorrelated
is equivalent to saying that {X, —p},—, is an orthogonal set. Thus by
Pythagorean’s theorem,

S, 2
— — K
n

1 2
L8l

2

1 2
=7||(X1—u)+-~'+(Xn—u)||2

- QZIIX ully = 2%

Exercise 12.14. Suppose that {X,,} -, are i.i.d. integrable random variables
and S, = X7 +---+ X, and p := EX,,. Show, n”—>,u1nL1(P)asn—>

oo. (Incidentally, this shows that {2= } . is U.L. Hint: for M € (0,00), let
XM Xi - 11x,)<m and SM .= XM 4. Xfl” and use Exercise to see

that
—EXMin L? (P) c L' (P) for all M.

— 0 asn — oo.

SM

n
Using this to show lim, ||‘%" —EX1H1 = 0 by getting good control on
Su _ Sal ( and |EX,, — EXM|.

n

Exercise 12.15. Suppose 1 < p < oo, {X,},—, are iid. random varlables
such that E|X,|” < oo, S, := X1 + -+ + X, and p := EX,,. Show, 5= —

in LP (P) as n — co. Hint: show {|57”‘p} is U.I. — this is not meant to be
n=1
hard!

12.9 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.
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Definition 12.49. Given any function, ¢ : (a,b) — R, we say that ¢ is convex
if for alla < xg <21 <b andt €0,1],

w(xy) < hg:= (1 —t)p(zo) + te(xq) for allt € [0,1], (12.28)

where
g =m0+t (x1 — o) = (1 — ) + a1, (12.29)

see Figure below.

I

Fig. 12.3. A convex function along with three cords corresponding to zop = —5 and
z1 = —2 129 =—2and 1 = 5/2, and zo = —5 and 1 = 5/2 with slopes, m; = —15/3,
ma = 15/6 and mg = —1/2 respectively. Notice that mi < mgz < ma.

Lemma 12.50. Let ¢ : (a,b) — R be a function and

F(zo,21) :== %ﬁ;mo)

fora<zy <z <D

Then the following are equivalent;

1. ¢ is convez,
2. F (xg,21) is non-decreasing in xo for all a < zg < 21 < b, and
3. F (xo,x1) is non-decreasing in x1 for all a < xg < x1 < b.

Proof. Let x; and h; be as in Eq. , then (z¢, hy) is on the line segment
joining (zg, ¢ (zo)) to (z1,¢ (z1)) and the statement that ¢ is convex is then
equivalent to the assertion that ¢ (z;) < hy for all 0 < ¢ < 1. Since (x4, hy) lies
on a straight line we always have the following three slopes are equal;
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Fig. 12.4. A convex function with three cords. Notice the slope relationships; m; <
ms S mo.

he =@ (@) _p(x1) =@ (x0) _ @(z1) =M
T — To 1 — T 1 — Ty

In light of this identity, it is now clear that the convexity of ¢ is equivalent to
either,

F (0, 30) = p(2) =@ (x0) _ he —w(@0) _ ¢(x1) = (20) _ F (20, 21)

Ty — X T Ty — X9 1 — X
or
_ —h _
F (20,1) = p(@) —¢ (o) _ (@) —he @) —pl) _ F (o)
1 — 2o T1 — Tt T1 — Tt
holding for all ¢ < x¢ < x71. ]

Lemma 12.51 (A generalized FTC). If p € PC* ((a,b) — ]R)EL then for all
a<z<y<hb,

8 PC' denotes the space of piecewise C' — functions, i.e. p € PC' ((a,b) — R) means
the ¢ is continuous and there are a finite number of points,

{a=ap<a1<az<-<apn-1<an=">b},

such that <p|[aj isC! forall j =1,2,...,n.

,1,aj]ﬂ(a,b)
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<P(y)—¢(x):/y@'(t)dt~

Proof. Let by,...,b;_1 be the points of non-differentiability of ¢ in (x,y)
and set by = x and b; = y. Then

l

oY) — e (@)= [ (br) — @ (br)]
k=1
l br y
- Z/ @’(t)dt:/ ¢ (t) dt.
k=1"br—1 z
]
Figure below serves as motivation for the following elementary lemma
on convex functions.

I

Fig. 12.5. A convex function, ¢, along with a cord and a tangent line. Notice that
the tangent line is always below ¢ and the cord lies above ¢ between the points of
intersection of the cord with the graph of .

Lemma 12.52 (Convex Functions). Let ¢ € PC' ((a,b) — R) and for x €
(a,b), let

/ T (p(l‘—‘y—h)—g@(l‘)

o' (z+) .—1}5101 o and
fo v e@th) —e(a)

¢ (z=)=lim h '

(Of course, ¢’ (x£) = ¢ (z) at points x € (a,b) where ¢ is differentiable.)
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1. If ¢ (x) < @' (y) for all a < x <y < b with x and y be points where ¢ is
differentiable, then for any zo € (a,b), we have ¢' (xog—) < ¢ (xo+) and
form € (¢’ (z0—) , ¢’ (z0+)) we have,

o (zo) + m (x — xo) <@ (x) V20,2 € (a,b). (12.30)

2. If p € PC?((a,b) — Rﬂ with " (x) > 0 for almost all x € (a,b), then Eq.
holds with m = ¢’ () .

3. If either of the hypothesis in items 1. and 2. above hold then ¢ is convex.

(This lemma applies to the functions, e’ for all X\ € R, |z|* for a > 1,
and —Inz to name a few examples. See Appendiz[12.9 below for much more on
convex functions.)

Proof. 1. If zy is a point where ¢ is not differentiable and A > 0 is small, by
the mean value theorem, for all A > 0 small, there exists ¢y (h) € (zg, 20 + h)
and c_ (h) € (g — h,xo) such that

QO('IO - }i)h_ @(xo) — (pl (C_ (h)) < S0/ (C+ (h)) _ @(xo + h’f)L - @(330)

Letting A | 0 in this equation shows ¢’ (xg—) < ¢’ (zo+). Furthermore if
T < xg < y with x and y being points of differentiability of ¢, the for small
h >0,

¢ (2) < @' (e (b)) < ¢ (cx (h) < ¢ () -
Letting A | 0 in these inequalities shows,

' (2) < @' (z0—) < ¢ (z0t) < ¢ (y)- (12.31)

Now let m € (¢’ (zo—), ¢ (xz0+)). By the fundamental theorem of calculus in

Lemma [12.51| and making use of Eq. (12.31)), if x > zo then
o) = p(eo) = [

Zo

x x

go’(t)dtZ/ m dt =m (z — o)

Zo

and if x < xo, then

xo xo
@ (zo) — @ (x) :/ go'(t)dtg/ m dt =m (zo— ).
x T
9 PC? denotes the space of piecewise C? — functions, i.e. ¢ € PC? ((a,b) — R) means
the ¢ is C! and there are a finite number of points,
{a=ap<a1<az < - <apn-1<an=">b},

such that <p|[aj is C? forall j =1,2,...,n.

,1,aj]ﬂ(a,b)
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These two equations implies Eq. (12.30]) holds.
2. Notice that ¢’ € PC! ((a,b)) and therefore,

y
gp'(y)—(p’(x):/ O (t)dt>0foralla <z <y<b

which shows that item 1. may be used.
Alternatively; by Taylor’s theorem with integral remainder (see Eq. ((7.54)
with F' = ¢, a = g, and b = x) implies

1
¢ () = ¢ (z0) + ¢ (z0) (z — 20) + (z — $0)2/0 ©" (xo+ 7 (. —20)) (1 —7)dT
> ¢ (x0) + ¢ (o) (x — 20) .

3. For any & € (a,b), let he (z) := ¢ (z0) + ¢’ (x0) (z — zo) . By Eq. (12.30))
we know that h¢ (z) < ¢ (x) for all &,z € (a,b) with equality when ¢ = = and
therefore,

@ (r)= sup he(z).
£€(a,b)

Since h¢ is an affine function for each & € (a,b) , it follows that
he (20) = (1 =) he (20) + the (21) < (1 = 1) ¢ (x0) + L (1)

for all ¢t € [0,1]. Thus we may conclude that

¢ (x) = sup he (z1) < (1—1) @ (20) + b (1)
¢e(and)

as desired.
*For fun, here are three more proofs of Eq. (12.28]) under the hypothesis of
item 2. Clearly these proofs may be omitted.
3a. By Lemma [12.50] below it suffices to show either
d ¢(y) —¢(x)

d p(y) —p(2) >00r &

>0fora<z<y<b.
dx y— dy y—x

For the first case,

doW —v@) el —e@)—¢@)ly—=)
dv y-—=z (y — )’

:/0 o (x+t(y—x)) (1—t)dt > 0.

Similarly,
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do) —v@) _ ¢Wy—2)—lply) —¢@)]
dy Y-z (y — =)

where we now use,

1
w(x)—so(y):<P'(y)(x—y)+(:v—y)2/0 Syt —y)) (1 t)dt

so that
Ot Rl GOV ) :(x_y)z/lgpn(ymx_y))u_Mzo
(y —x) 0
again.
3b. Let

f@):=p)+tp@)—p@)—plut+tv—u).

Then f(0) = f (1) =0 with f (t) = — (v —u)* " (u+t (v —u)) <0 for almost
all t. By the mean value theorem, there exists, to € (0,1) such that f (t9) =0
and then by the fundamental theorem of calculus it follows that

fey=[ f)dt.

to

In particular, f(t) < 0 for t > to and f(t) > 0 for t < to and hence f () >
f()=0fort>tyand f(¢t) > f(0) =0 for t <, ie f(t)>0.

3c. Let b : [0,1] — R be a piecewise C2 — function. Then by the fundamental
theorem of calculus and integration by parts,

h(t):h(0)+/0 h(T)dT:h(O)-i-th(t)—/O h(7)7dr

Thus we have shown,
t
h(£) = h(0) + th (1) —/ h () rdr and
0

1
h(t):h(l)Jr(tfl)h(t)Jr/t h(r)(r —1)dr.

So if we multiply the first equation by (1 — ¢) and add to it the second equation
multiplied by ¢ shows,
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1
h(t):(lft)h(O)thh(l)f/ Gt 1) i (r) dr, (12.32)
0

where ( it
T(1l—-t)ifr <t
G(t7) '_{t(l—T) ifr>¢

(The function G (t,7) is the “Green’s function” for the operator —d?/dt? on
[0,1] with Dirichlet boundary conditions. The formula in Eq. is a stan-
dard representation formula for h (t) which appears naturally in the study of
harmonic functions.)

We now take h (t) := ¢ (z9 + ¢ (x1 — 20)) in Eq. to learn
@ (xo +t (21— x0)) = (1 = 1) @ (x0) + tp (z1)
— (#1 — 20)° /01 G, 7)p(xg+ 7 (21 —20)) dT
<@ =t)p(xo) +tp(21),
because ¢ > 0 and G (t,7) > 0. |

Example 12.55. The functions exp(x) and —log(z) are convex and |z|” is
convex iff p > 1 as follows from Lemma

Ezample 12.54 (Proof of Lemma . Taking ¢ () = e~® in Lemma [12.52
Eq. (12.30) with zp = 0 implies (see Figure ,

l—z<gp(x)=e"forall z €R.

Taking ¢ () = e 2% in Lemma [12.52] Eq. (12.28) with 20 = 0 and z; = 1
implies, for all ¢ € [0, 1],

1
e_t§<p<(1—t)0+t2)
1 . 1

wherein the last equality we used e™! < % Taking ¢ = 2z in this equation then
gives (see Figure (10.2))
1
e <l—gfor0<z< 3 (12.33)
Theorem 12.55. Suppose that ¢ : (a,b) — R is convex and for x,y € (a,b)
with x < y, leEI

0 The same formula would define F (x,y) for  # y. However, since F (z,y) =

F (y,z), we would gain no new information by this extension.
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py) —p(z)

F(z,y) = =

Then;

1. F (z,y) is increasing in each of its arguments.
2. The following limits exist,

ol (z) = F (z,24) := liInF (z,y) < 0o and (12.34)
ylx
¢_(y) = F(y—y) = lim F" (2, y) > —oo. (12.35)

3. The functions, ¢! are both increasing functions and further satisfy,
—oo<¢ () <¢ () <¢_(y) <o Va<z<y<b. (12.36)
4. For any t € [90’_ (36) ) <,0Q_ (36)] )
o) >p(x)+tly—x) for al z,y € (a,b). (12.37)
¢ (B)|}. Then

lp (y) =@ (@)] < Ky — x| for all z,y € [o, 5]

5. Fora<a<f<b, let K :=max{|¢ (a)

)

That is ¢ is Lipschitz continuous on [«, 3] .

6. The function @', is right continuous and ¢’ is left continuous.

7. The set of discontinuity points for ', and for ¢’ are the same as the set of
points of non-differentiability of . Moreover this set is at most countable.

Proof. BRUCE: The first two items are a repetition of Lemma [12.50}

1. and 2. If we let hy = tp(z1) + (1 — t)p(zo), then (x4, ht) is on the line
segment joining (xg, ¢ (20)) to (z1,¢ (1)) and the statement that ¢ is convex
is then equivalent of ¢ (z;) < h; for all 0 < ¢ < 1. Since

he =@ (w0) _ p(x1) =@ (x0) _ (1) =M
T — To 1 — T 1 — T

the convexity of ¢ is equivalent to

¢ () — (@) _ I —¢(x0) _ ¢ (21) = ¢ (20)
T+ — X T Ty — X T — X

for all zg < x; < 19

and to

(@) —p @) _ ) =l _ p(z1) — o ()

1 — X xr1— T T, — Tt

for all zg < 2 < 7.

Convexity also implies
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o) —p(@o)  h—p(wo) wlr) =T < @(5'31)—@(3%).

Ty — X Ty — g €Ty — Ty Tl — Tt

These inequalities may be written more compactly as,

¢ (v) — ¢ (u) < e (w) — ¢ (u) < @ (w) — ¢ (v)

, (12.38)

valid for all ¢« < u < v < w < b, again see Figure The first (second)
inequality in Eq. shows F'(z,y) is increasing y (). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

—00 < ¢ (z) =F(z—,2) < F(z,2+) = ¢/, (z) <0
and
¢l (z) = F (z,24) < F (y—,y) = ¢ ()

as desired.
4. Let t € [¢_ (x),¢, (z)] . Then

1S @) = F(@04) < Fa,y) = £ =20

or equivalently,
ey) =) +t(y—=) fory >z
Therefore Eq. (12.37) holds for y > x. Similarly, for y < z,

o) —p(y)
T —y

t>¢ (x)=F(z—,2) > F(y,x) =

or equivalently,
e) zp@) —t@—y) =) +t(y—=) fory <z

Hence we have proved Eq. (12.37)) for all z,y € (a,b) .
5. Fora<a<z<y<pf<b, we have

¢ (a) <@\ () = F(z,24) < F(z,y) < F (y—y) = ¢ (y) < ¢ (B)

(12.39)
and in particular,

-K < ¢ (a)

IA
A
P
=
IA
=

This last inequality implies, |¢ (y) — ¢ ()] < K (y — ) which is the desired
Lipschitz bound.
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6. Fora < c <z <y <b, wehave ¢, () =F (z,2+) < F (x,y) and letting
x | ¢ (using the continuity of F') we learn ¢/, (¢c+) < F' (c,y). We may now let
y | ¢ to conclude ¢/, (c+) < ¢/, (¢). Since ¢’ (¢) < ¢/, (c+), it follows that
¢ (c) = ¢ (c+) and hence that ¢/, is right continuous.

Similarly, for a < z < y < ¢ < b, we have ¢’ (y) > F(z,y) and letting
y T ¢ (using the continuity of F) we learn ¢’ (¢c—) > F (z,¢). Now let « 1 ¢ to
conclude ¢’ (c—) > ¢’ (c). Since ¢’ (¢) > ¢’ (¢—), it follows that ¢’ (c¢) =
@ (c—), i.e. ¢ is left continuous.

7. Since ¢4 are increasing functions, they have at most countably many
points of discontinuity. Letting « T y in Eq. , using the left continuity
of ', shows ¢’ (y) = ¢/ (y—). Hence if ¢’ is continuous at y, ¢’ (y) =
¢ (y+) = ¢/, (y) and ¢ is differentiable at y. Conversely if ¢ is differentiable
at y, then

o (=) =9 (W) =¢' () = ¢4 )
which shows ¢/, is continuous at y. Thus we have shown that set of discontinuity
points of ¢/, is the same as the set of points of non-differentiability of . That
the discontinuity set of ¢’ is the same as the non-differentiability set of ¢ is
proved similarly. m

Corollary 12.56. If ¢ : (a,b) — R is a convex function and D C (a,b) is a
dense set, then

# W) = sup [o (@) + ¢l (@) (y —2)] forall 2,y € (a,0).

Proof. Let ¢+ (y) = sup,ep (¢ () + ¢+ (2) (y — x)] . According to Eq.
above, we know that ¢ (y) > ¢+ (y) for all y € (a,b) . Now suppose that
z € (a,b) and z, € A with x,, 7 . Then passing to the limit in the estimate,
V- (y) 2 ¢ (@) + ¢- (zn) (y — zn), shows ¥_(y) > ¢ (2) + ¢_ (z)(y— ).
Since = € (a,b) is arbitrary we may take z = y to discover ¥_ (y) > ¢ (y) and
hence ¢ (y) = ¥— (y) . The proof that ¢ (y) = ¥+ (y) is similar. ]

Lemma 12.57. Suppose that ¢ : (a,b) — R is a non-decreasing function such

that
1

0 (2 (o + y>) < Lle@) o] for allz.y € (a.b). (12.40)

then ¢ is convex. The result remains true if @ is assumed to be continuous
rather than non-decreasing.

Proof. Let 29,21 € (a,b) and x4 := x¢+¢ (z1 — x0) as above. For n € N let
D, = {4 : 1 <k < 2"} . We are going to being by showing Eq. (12.40) implies

o(xt) < (1 =t)@(xo) +tp(x1) forall t € D := U,D,. (12.41)
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We will do this by induction on n. For n = 1, this follows directly from Eq.

(12.40)). So now suppose that Eq. (12.41)) holds for all t € D,, and now suppose
that ¢ = 251 € D,, ;. Observing that

1
Ty = = (l‘ k +Ik+1>
2 on—1 i

we may again use Eq. (12.40) to conclude,

¢ (1) < % (cp (xwgl) +o (xz%ll»

Then use the induction hypothesis to conclude,
L (1= 55) ¢ (20) + giere (1) >
T - on—1 on—1
plz) < 5 <+(1 — L) o (20) + £ o (21)
(1 =) ¢ (z0) +tp (1)

IN

as desired.
For general ¢t € (0,1), let 7 € D such that 7 > ¢. Since ¢ is increasing and

by Eq. (12.41)) we conclude,
o (@) < p(xr) < (1—7) @ (x0) + 70 (1)

We may now let 7 | ¢ to complete the proof. This same technique clearly also
works if we were to assume that ¢ is continuous rather than monotonic. ]
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13

Hilbert Space Basics

Definition 13.1. Let H be a complex vector space. An inner product on H is
a function, {-|-) : H x H — C, such that

1. {ax + by|z) = alx|z) + bly|z) i.e. x — (x|z) is linear.

2. (zly) = (y|z).
3. ||z||? == (z|z) > 0 with ||z]|*> = 0 iff x = 0.

Notice that combining properties (1) and (2) that x — (z|x) is conjugate
linear for fixed z € H, i.e.

(zlaz + by) = a(z|a) + bizly).

The following identity will be used frequently in the sequel without further
mention,

lz +yl1* = (@ +yle +y) = |2 + lyl* + (oly) + (ylz)
= [l + llyl* + 2Re(z[y). (13.1)

Theorem 13.2 (Schwarz Inequality). Let (H,{(:|-)) be an inner product
space, then for all x,y € H

[(zly)| < [yl

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and observe;
if 2 = ay for some a € C, then (z|y) = a||y||* and hence

2
[(zly)| = lad Iyl = [z lllyll

Now suppose that x € H is arbitrary, let 2 := z — ||ly[| =2 (z|y)y. (So ||lyl|~2(z|y)y
is the “orthogonal projection” of x along y, see Figure [13.1}) Then

) 1P el o (aly)
os||z||2=Hx— Y Iyll2 - 2Refe 1))
W2 TR Pk

_ ||xH2 _ |<x|y>|2

2

from which it follows that 0 < [jy|?||z||* — |{z|y)|* with equality iff 2 = 0 or
equivalently iff z = ||y|| %(z|y)y. ]

Fig. 13.1. The picture behind the proof of the Schwarz inequality.

Corollary 13.3. Let (H,(:|}) be an inner product space and ||z| = /{(z|z).
Then the Hilbertian norm, ||-||, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H, |-||).

Proof. If x,y € H, then, using Schwarz’s inequality,

lz + I = ll=* + llyl|* + 2Re(z]y)
<l ll* + llyll* + 2l [yl = (=l + ly])?-

Taking the square root of this inequality shows ||-|| satisfies the triangle inequal-

1ty.
Checking that ||-|| satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If x,y, Az, Ay € H, then

[(z + Azly + Ay) — (z|y)| = [(z|Ay) + (Azly) + (Az|Ay)|
< [zl Ayl + Nyl Az]| + (| Az[[]| Ay]|
— 0 as Az, Ay — 0,

from which it follows that (-|-) is continuous. |

Definition 13.4. Let (H, (-|-)) be an inner product space, we say x,y € H are
orthogonal and write © L y iff (x|y) = 0. More generally if A C H is a set,
x € H is orthogonal to A (write x 1 A) iff {(xzly) = 0 for all y € A. Let
At ={z € H:xz L A} be the set of vectors orthogonal to A. A subset S C H
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is an orthogonal set if x 1 y for all distinct elements x,y € S. If S further
satisfies, ||x|| = 1 for all x € S, then S is said to be an orthonormal set.

Proposition 13.5. Let (H, {(-|-)) be an inner product space then
1. (Parallelogram Law)
la+0]1* + la = b]I* = 2]|al* + 2||b]* (13.2)

for all a,b € H.
2. (Pythagorean Theorem) If S CC H is a finite orthogonal set, then

doa

zes

2

=3 . (13.3)

zeSs

3. If A C H is a set, then At is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;
lla + Blf* + [|a — b]|?
= [lall* + [Ib]]* + 2Re(alb) + [la]|* + [[b]|* — 2Re(alb)
= 2|lal|* +2|[b]1%,
and

2

Sz =0 2> w= > (zlv

€S zeS yeS z,y€S
= (ala) =) llell*.
eSS zes

Item 3. is a consequence of the continuity of (-|-) and the fact that
A+ = Nyea Nul((z))

where Nul((-|z)) = {y € H : (y|x) = 0} — a closed subspace of H. Alternatively,
if x,, € A+ and z,, — « in H, then

0= lim 0= lim (z,la) = < lim xn|a> = (z]a) Yae A

which shows that z € AL, [
Definition 13.6. A Hilbert space is an inner product space (H,{:|-)) such

that the induced Hilbertian norm is complete.
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Ezample 13.7. For any measure space, (2,8, ), H := L? (u) with inner prod-
uct,

o) = [ 17 @) du ()
is a Hilbert space — see Theorem for the completeness assertion.

Definition 13.8. A subset C of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] :== {tx + (1 —t)y : 0 <t < 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convez.)

Theorem 13.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed convexr subset of H. Then for any x € H
there exists a unique y € M such that

lz =yl = d(z, M) = inf o - z|.

Moreover, if M is a vector subspace of H, then the point y may also be charac-
terized as the unique point in M such that (x —y) L M.

Proof. Let x € H, § :=d(x, M), y,z € M, and, referring to Figure let
w=z+(y—2x)and ¢ = (z+y) /2 € M. It then follows by the parallelogram
law (Eq. (13.2) with a = (y — z) and b = (z — z)) and the fact that ¢ € M that

2 2 2 2
2ly — 2" + 2|z — zl|” = [lw — z[|” + [ly — =]
=llz+y— 22|+ ly — ="
2 2
=4z ="+ lly - =l
> 46° + [ly — 2|*.

Thus we have shown for all y, 2z € M that,
ly =21 < 2y — 2]|* + 2|2 — =||* — 45°. (13.4)

Uniqueness. If y, z € M minimize the distance to z, then ||y — z|| = § =
Iz — z|| and it follows from Eq. (13.4) that y = z.
Existence. Let y, € M be chosen such that ||y, —z|| = 6, — 6 = d(z, M).

Taking y = ¥, and z = y,, in Eq. (13.4)) shows
Y — ym|* < 25,2n + 25721 —46% - 0 as m,n — 0.

Therefore, by completeness of H, {y,} ., is convergent. Because M is closed,
y:= lim y, € M and because the norm is continuous,
n—oo

ly— ol = lim Jly, — o = & = d(z, 7).
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Fig. 13.2. In this figure y, z € M and by convexity, ¢ = (z +y) /2 € M.

So y is the desired point in M which is closest to x.
Orthogonality property. Now suppose M is a closed subspace of H and
x € H. Let y € M be the closest point in M to . Then for w € M, the function

9(t) = llz — (y + tw)|* = [l — y|I* — 2tRe(z — y|w) + *|lw]?

has a minimum at ¢ = 0 and therefore 0 = ¢’(0) = —2Re(z —y|w). Since w € M
is arbitrary, this implies that (z —y) L M, see Figure [13.3]

=< i ¢
0 v M

Fig. 13.3. The orthogonality relationships of closest points.
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Finally suppose y € M is any point such that (z — y) L M. Then for z € M,
by Pythagorean’s theorem,

lo =2l = lz —y +y — 2l = |z = yllI* + ly — 2> > l= — o

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest to
x. [

Notation 13.10 IfA: X — Y is a linear operator between two normed spaces,
we let

Ax
| HY: sup || Azl]y .
cex\{0} lZllx  Jellc=1

IA]] =

We refer to |A|| as the operator norm of A and call A a bounded operator if
|A]| < co. We further let L (X,Y) be the set of bounded operators from X to
Y.

Exercise 13.1. Show that a linear operator, A : X — Y, is a bounded iff it is
continuous.

Solution to Exercise (13.1)). If A is continuous at x = 0, then (as A0 = 0)
there exists ¢ > 0 such that ||Az|, <1 for ||z||y < ¢. Thus if x # 0, we have

ﬁx“ = ¢ and therefore,
x llx

1)
O\ aaf)y = HA

x <1
1z x 2]l x

Y

from which it follows that ||Az|y < 6! |z|y which shows that [|A| < §~! <
00. Conversely if ||A|| < oo, then

Az — A2'|ly = |A(z — 2)[ly < JA] llz — 2'[|x
from which it follows that A is continuous.

Definition 13.11. Suppose that A : H — H 1is a bounded operator. The
adjoint of A, denoted A*, is the unique operator A* : H — H such that
(Azxly) = (z|A*y). (The proof that A* exists and is unique will be given in
Proposition below.) A bounded operator A : H — H is self - adjoint or
Hermitian if A= A*.

Definition 13.12. H be a Hilbert space and M C H be a closed subspace. The
orthogonal projection of H onto M is the function Py : H — H such that for
x € H, Py(x) is the unique element in M such that (x — Py(x)) L M, i.e.
Py (z) is the unique element in M such that

(x|m) = (Pp(x)|m) for allm e M. (13.5)
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Given a linear transformation A, we will let Ran (A) and Nul (A) denote the
range and the null-space of A respectively.

Theorem 13.13 (Projection Theorem). Let H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection Py satisfies:

Py is linear and hence we will write Pyyx rather than Py (x).

P2, = Py (P is a projection).

Pi; = Py (P is self-adjoint).

. Ran(PM) =M and Nul(PM) = Ml.

.If N C M C H 1is another closed subspace, the Py Py = Py Py = Py

SRS to o

Proof.
1. Let z1,20 € H and a € C, then Pyz1 + aPyze € M and

Pyzy 4+ aPyzg — (21 + axg) = [Pyxy — 21 + a(Pyza — 22)] € M+

showing Py + aPyas = Py(x1 + axs), i.e. Py is linear.
2. Obviously Ran(Pys) = M and Py;x = x for all 2 € M. Therefore P?, = Py.
3. Let o,y € H, then since (z — Pyr) and (y — Pyy) are in M+,

(Przly) = (Puz|Puy +y — Puy) = (Puz|Puy)
— (Pya + (@ — Para)| Pary) = (al Pary).

4. We have already seen, Ran(Py;) = M and Pyxz =0iff 2 =2 —0 € M+,
i.e. Nul(PM) = MJ‘.

5 f N ¢ M C H it is clear that Py Py = Py since Pyy = Id on
N = Ran(Py) C M. Taking adjoints gives the other identity, namely that
Py Py = Py
Alternative proof 1 of PyPy = Py. If x € H, then (x — Pyz) L M
and therefore (z — Pyrz) L N. We also have (Pyx — Py Pyx) L N and
therefore,

T — PnPyx = (.23 — PMJ?) + (PM.I — PNPMQE) S Nt

which shows Py Pyrx = Pyx.
Alternative proof 2 of PyPy; = Py. If x € H and n € N, we have

(Py Pyrz|n) = (Pyrx|Pyn) = (Pyrzin) = (x| Pyn) = (x|n) .

Since this holds for all n we may conclude that Py Py x = Pyx.
[
Corollary 13.14. If M C H is a proper closed subspace of a Hilbert space H,
then H=M @& M*.
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Proof. Given z € H,let y = Pyx so that x—y € M*. Then x = y+(z—y) €
M+M*t If 2z € MAM>L, then z L z, ie. ||z|> = (z]z) = 0. So MNM+L = {0}.
]

Exercise 13.2. Suppose M is a subset of H, then M*+ = span(M) where (as
usual), span (M) denotes all finite linear combinations of elements from M.

Theorem 13.15 (Riesz Theorem). Let H* be the dual space of H, i.e. f €
H* iff f: H— F is linear and continuous. The map

zeH-L (|2) e H (13.6)
is a conjugate linemﬂ isometric isomorphism, where for f € H* we let,
fx
1l o= swp TNy 7 o).
z€H\{0} [E4| [|l]|=1

Proof. Let f € H* and M =Nul(f) — a closed proper subspace of H since f
is continuous. If f = 0, then clearly f (-) = (:|0) . If f # 0 there exists y € H\ M.
Then for any o € C we have e := a (y — Pyry) € M*. We now choose « so that
f(e) =1. Hence if x € H,

flz=f(x)e)=f(z) = f () f(e) = f(x) = f(z) =0,
which shows z — f (z) e € M. As e € M it follows that

0=(z— f(z)ele) = (zle) — f (x)|le||”

which shows f (-) = (-|z) = jz where z := ¢/ ||e||* and thus j is surjective.
The map j is conjugate linear by the axioms of the inner products. Moreover,
for x,z € H,
[(z[2)| < [l [|z]| for all z € H

with equality when « = z. This implies that ||jz[ ;. = ||(:|2)|| -~ = ||2|| . There-
fore j is isometric and this implies j is injective.
]

Proposition 13.16 (Adjoints). Let H and K be Hilbert spaces and A : H —
K be a bounded operator. Then there exists a unique bounded operator A* :

K — H such that
(Az|ly)k = (x|A™y)y for allz € H and y € K. (13.7)
Moreover, for all A,B € L(H,K) and X € C,

! Recall that j is conjugate linear if
j(z1+ az2) = jz1 + @jze
for all 21,22 € H and a € C.
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1. (A+AB)" = A* + \B*,

2. A = (A")* = A,

3. A%l = [IA[l and

4o | AA] = Al

5.If K = H, then (AB)" = B*A*. In particular A € L(H) has a bounded
inverse iff A* has a bounded inverse and (A*)™' = (A_l)* .

Proof. For each y € K, the map  — (Az|y)k is in H* and therefore there
exists, by Theorem a unique vector z € H (we will denote this z by
A* (y)) such that

(Az|y)k = (x|2z)y for all z € H.

This shows there is a unique map A* : K — H such that (Az|y)x = (x| A*(v))u
forall z € H and y € K.
To see A* is linear, let 1,92 € K and A € C, then for any = € H,

(Az|yr + My2) k. = (Azlyr) k- + MAz[y2) i
= (2] A" (1)) ik + M| A* (y2))
= (z[A"(y1) + AA(y2)) 1

and by the uniqueness of A*(y; + Ay2) we find
A"(y1 + Ay2) = A%(y1) + AA"(y2).

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(Aylo)g = (@|A*y)m = (Azly)k = (y|Az) K
it follows that A** = A. The assertion that (A + AB)" = A* + AB* is Exercise
LS.

Items 3. and 4. Making use of Schwarz’s inequality (Theorem [13.2), we
have

[A*| = sup [A"K]
keK:||k|=1
— s sup  [(AK[))
keK:||k||=1 he H:|[h]|=1
= sup sup  [(k[Ah)| = sup [lAR[ = |A]
heH:||h||=1 keK:||k||=1 heH:|[h||=1

so that ||A*|| = ||A]| . Since
1A= Al < |47 1Al = |14l

and
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IAI* = sup [AR|* = sup [(Ah|Ah)|
heH:||h|=1 heH:||h||=1
= sup [(h|ATAR)| < sup [|ATAR| = ||A™A| (13.8)
heH:|h||=1 heH:||h|=1

we also have || A*A|| < ||A||*> < ||A* A|| which shows ||A||]*> = ||A*A]|.
Alternatively, from Eq. ((13.8]),

1AI* < A=Al < [l A] 1A% (13.9)

which then implies ||A|| < ||A*||. Replacing A by A* in this last inequality
shows [|[A*|| < ||A]| and hence that ||A*|| = ||A| . Using this identity back in
Rq. (13.9) proves | A = | 4* A].

Now suppose that K = H. Then

(ABh|k) = (Bh|A*k) = (h|B*A"k)
which shows (AB)* = B*A*. If A~ exists then
(A A" =(AA™) =" =T and
A(AY =(AA) = =1

This shows that A* is invertible and (A*)™" = (A’l)*. Similarly if A* is
invertible then so is A = A**. ]

Exercise 13.3. Let H, K, M be Hilbert spaces, A, B € L(H,K), C € L(K, M)
and \ € C. Show (A + AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 13.4. Let H = C" and K = C™ equipped with the usual inner
products, i.e. (z|lw)g = z-@ for z,w € H. Let A be an m x n matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 13.17. Suppose A: H — K is a bounded operator, then:
1. Nul(A4*) = Ran(A4)*.
2. Ran(A) = Nul(A*)*.

3. if K=H and V C H is an A — invariant subspace (i.e. A(V) C V), then
VL is A* — invariant.

Proof. An element y € K is in Nul(A4*) iff 0 = (A*y|z) = (y|Ax) for all
x € H which happens iff y € Ran(A)*. Because, by Exercise Ran(A) =
Ran(A)++, and so by the first item, Ran(A) = Nul(A*)+. Now suppose A(V) C
V and y € V+, then

(A*ylx) = (y|Az)y =0forall z € V
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198 13 Hilbert Space Basics

which shows A*y € V. n
The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 13.18 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach space, and S C Z is a dense linear subspace of Z. If T : S — X is a
bounded linear transformation (i.e. there exists C < 0o such that | Tz|| < C'|z]]
for all z € S), then T has a unique extension to an element TcL(ZX) and
this extension still satisfies

|Tz|| < C ||| forallz€eS.
Proof. Let z € Z and choose z, € S such that 2z, — z. Since
ITzm — Tzn|| < Cllzm — 2|l — 0 as m,n — oo,

it follows by the completeness of X that lim,_,oc T2, =: T% exists. Moreover,
if w,, € S is another sequence converging to z, then

T2 — Twn|| < Cllzn —wn| = Cllz =2 =0

and therefore Tz is well defined. It is now a simple matter to check that T :
7 — X is still linear and that

|Tz]| = lim Tz, < lim C|lz,| = C|z|| for all z € Z.
n—o0 n—oo

Thus T is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader. ]

13.1 Compactness Results for LP — Spaces™

In this section we are going to identify the sequentially “weak” compact subsets
of LP (§2,B, P) for 1 < p < oo, where ({2, B, P) is a probability space. The key
to our proofs will be the following Hilbert space compactness result.

Theorem 13.19. Suppose {x,,} -, is a bounded sequence in a Hilbert space H
(i.e. C :=sup, ||z,|| < c0), then there exists a sub-sequence, yi = xn, and an
x € H such that limg_, (yr|h) = (x|h) for all h € H. We say that yi converges
to x weakly in this case and denote this by v, — .

Proof. Let Hy := span(zy : k € N). Then Hj is a closed separable Hilbert
subspace of H and {x},-,; C Ho. Let {h,,}, -, be a countable dense subset of
Hy. Since [{zg|hy)| < ||lzk || |hn ] < C ||hy|| < oo, the sequence, {(@x|hn)}re, C
C, is bounded and hence has a convergent sub-sequence for all n € N. By the
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Cantor’s diagonalization argument we can find a a sub-sequence, yi := xy, , of
{zy} such that limg_,o (yx|hn,) exists for all n € N.

We now show ¢ (2) := limy_c0 (Y |2) exists for all z € Hy. Indeed, for any
k,l,n € N, we have

[(ykl2) = il2) = 1k = wil2)] < 1wk = wilha)| + ok — 9ilz = o)

Letting k,1 — oo in this estimate then shows

limsup |(yx|2) — (uil2)] < 2C [z = hal| -

J—o0

Since we may choose n € N such that ||z — h,,|| is as small as we please, we may
conclude that limsupy ;. [{yx|2) — (nl2)], i.e. ¢ (2) = limg . (yx|2) exists.
The function, @ (z) = limg_,~ (2|yk) is a bounded linear functional on H
because
7 (2)] = limin [(zly)| < C2]].

Therefore by the Riesz Theorem [13.15] there exists € Hy such that ¢ (z) =
(z|x) for all z € Hy. Thus, for this € Hy we have shown

klim (yk|z) = (z]z) for all z € Hy. (13.10)

To finish the proof we need only observe that Eq. (13.10]) is valid for all
z € H. Indeed if z € H, then z = 2y + z; where 2y = Py,z € Hy and 2z; =
z— Pp,z € HOL Since yg, © € Hy, we have

klim (yk|z) = klim (yk|z0) = (x|z0) = (x|2) for all z € H.

]

Since unbounded subsets of H are clearly not sequentially weakly compact,

Theorem[I3.19states that a set is sequentially precompact in H iff it is bounded.

Let us now use Theorem to identify the sequentially compact subsets of
LP (§2,B, P) for all 1 < p < co. We begin with the case p = 1.

Theorem 13.20. If {X,,},~, is a uniformly integrable subset of L' (2,8, P),
there exists a subsequence Yy, == X, of {X,}o, and X € L' (£2,B, P) such
that

klim E[Yi;h] =E[Xh] for all h € By. (13.11)
Proof. For each m € N let X" := X, 1,x, |<m- The truncated sequence

{Xm}> | is a bounded subset of the Hilbert space, L? (£2, B, P), for all m € N.
Therefore by Theorem [13.19] {X™}>° | has a weakly convergent sub-sequence
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for all m € N. By Cantor’s diagonalization argument, we can find V" := X"
and X™ € L?(£2,B, P) such that Y = X™ as m — oo and in particular

klim E[Y,"h] = E[X™h] for all h € By.
Our next goal is to show X™ — X in L' (£2, B, P). To this end, for m < M
and h € B, we have
M _ ym S H M _ ym < limi M _ ym
B [(X = X™) h]| = lim [B[(V" = ¥;") h]| < lminf B [V, = Y[ [A]
< [|h]l & ~likminfE[|Yk| : M > Y| > m]

< [|hll - liminf E Vi £ Vi > m).

Taking h = sgn(X™ — X™) in this inequality shows
E[|xM-Xxm] < lim inf B [ ¥y : [¥i[ > m]

with the right member of this inequality going to zero as m, M — oo with
M > m by the assumed uniform integrability of the {X,}. Therefore there
exists X € L' (£2, B, P) such that lim,, ... E|X — X™| = 0.

We are now ready to verify Eq. is valid. For h € By,

[E[(X = Yy) Al < [E[(X™ = ¥;") B][ + [E[(X — X™) B][ + [E[(Yx — ¥;™) A

< EX™ = Vi) Al + (Al - (B[X = X[+ E[[Ys] : [Ya] > m])

< [E[(X™ V) H]| 4+ ]| - (E[X - X7+ supE ] Y] > m1) |

Passing to the limit as £ — oo in the above inequality shows

imsup (X — ) 4] < il - (B[ = X7+ supE (Vi [yl > m]).
Since X™ — X in L! and sup, E[|Y}| : |Y;| > m] — 0 by uniform integrability,
it follows that, limsup;,_, ., |E [(X — Yi) h]| = 0. L]

Ezample 13.21. Let (§2,B, P) = ((07 1), B(o,l),m) where m is Lebesgue measure
and let X,, (w) = 2"1p<p<2-n. Then EX,, =1 for all n and hence {X,} 2| is
bounded in L' (£2, B, P) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X € L' (£2, B, P) and subsequence, Y} := X,,,
such that Y3, = X. Then for h € B, and any € > 0 we would have

E[Xhl.p] = Jim B [Yihl1)] = 0.
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Then by DCT it would follow that E [Xh] = 0 for all h € B, and hence that
X = 0. On the other hand we would also have

0=E[X-1] = lim E[t; -1] =1

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L! (£2, B, P) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem [13.20

When 1 < p < oo, the situation is simpler.

Theorem 13.22. Let p € (1,00) and g =p(p—1)"" € (1,00) be its conjugate
exponent. If {X,} " | is a bounded sequence in LP (£2,B,P), there exists X €
L? (2,B, P) and a subsequence Yy, := X,,, of {X,},—, such that

klim E[Yiyh] =E[Xh] for allh e LY (2,B,P). (13.12)

Proof. Let C' := sup,cy[|Xn|, < co and recall that Lemma [12.48) guar-
antees that {X,},- , is a uniformly integrable subset of L' (2,8, P). There-
fore by Theorem [13.20] there exists X € L' (f2,B,P) and a subsequence,
Yy := X, , such that Eq. (13.11)) holds. We will complete the proof by showing;

a) X € LP (£2,B, P) and b) and Eq. (13.12)) is valid.
a) For h € B, we have

£ (XH] < liminf E [Yih[] < i nf [l - ], < C 1],
For M < oo, taking h = sgn(X) |X|p*1 1)x)<n in the previous inequality shows
E [|X17 1x1<a] < C [[5en(X) 1XP ™ 1<
q

_ 1/
=c (]E [|X|(” D 1\X|§MD C<CE[XPLx<u])
from which it follows that
(E (X" 1xiear]) < B [XP1x20]) T <0

Using the monotone convergence theorem, we may let M — oo in this equation
to find || X, = (E[X|")? < C < cc.
b) Now that we know X € LP(£2,B,P), in make sense to consider
E[(X —Yy)h] for all h € LP (2,8, P). For M < oo, let h™ := h1;<as, then
IE[(X = Yi) h)| < |E[(X = Yi) hM]| + |E [(X = Y3) hljpy=a] |
< E[(X = Ya) M|+ 1X = Yall, [[ALjy= ],
< |E[(X - Vi) RM]| +2C th|h|>M||q .

macro: svmonob.cls date/time: 19-Feb-2010/11:31



200 13 Hilbert Space Basics

Since h™ € By, we may pass to the limit & — oo in the previous inequality to
find,
limsup [E[(X — Yi) h]| < 2C [l a ],

k—oo

This completes the proof, since th\h\>MHq — 0 as M — oo by DCT. [

13.2 Exercises

Exercise 13.5. Suppose that {M,,}, -, is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of My := USZ, M,,. Show
limy, o0 Py, x = Py for all z € H. Hint: first prove this for # € My and then
for x € M. Also consider the case where z € M.

Solution to Exercise (13.5). Let P, := Py, and P = Py. If y € My, then
P,y = y = Py for all n sufficiently large. and therefore, lim,, .., P,y = Py.
Now suppose that x € M and y € My. Then

| Pz — Pux|| < ||Px — Pyl + [|Py — Poyll + || Py — Paz||
<2z =yl + [Py — Puyll

and passing to the limit as n — oo then shows

limsup | Px — Pz < 2|z — v
The left hand side may be made as small as we like by choosing y € My
arbitrarily close to x € M = M.
For the general case, if x € H, then = Px +y where y = — Pz € M C
M- for all n. Therefore,

P,x = P,Pr — Pxr asn — o
by what we have just proved.

Exercise 13.6 (A “Martingale” Convergence Theorem). Suppose that
{Mn}zo , is an increasing sequence of closed subspaces of a Hilbert space, H,
P, := Py, and {:rn} _, is a sequence of elements from H such that z, =
P,x,4q for all n € N, Show

1. Phx, =x, foralll <m <n < oo,

2. (xy — x) L M, for all n > m,

3. ||zn] is increasing as n increases,

4. if sup,, [|zn] = limp—eo ||2n|| < 00, then z = lim,_,o =, exists in M and
that @, = P,z for all n € N. (Hint: show {z,},- is a Cauchy sequence.)
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Remark 13.23. Let H = (? := L? (N, counting measure),
M, ={(a(1),...,a(n),0,0,...):a(i) e Cfor 1 <i<n},

and z, (i) = l;<p, then x,, = Py, for all n > m while Hxn||2 =n 1 oo as
n — oo. Thus, we can not drop the assumption that sup,, ||z, || < co in Exercise
113,60

The rest of this section may be safely skipped.

Exercise 13.7. *Suppose that (X, ||-]|) is a normed space such that parallelo-
gram law, Eq. (| , holds for all z,y € X, then there exists a unique inner
product on (-|-) such that ||z|| :== /(z|z) for all x € X. In this case we say that
[I]| is a Hilbertian norm.

Solution to Exercise (13.7). If ||-|| is going to come from an inner product
(-]), it follows from Eq. (13.1)) that

2Re(aly) = |z + ylI* — ll=[* — lly|*

and
—2Re(zly) = [z —ylI* — =] — |lylI*.

Subtracting these two equations gives the “polarization identity,”

1Relaly) = |1z + |2 - |z -y (13.13)
Replacing y by 4y in this equation then implies that

Am(zly) = [l + iy[|* — ||z — iy?

from which we find
(z|y) = 1 Ze||ac—|—5y\|2 (13.14)
e€eG
where G = {41, 4i} — a cyclic subgroup of S' C C. Hence, if (-|-) is going to
exist we must define it by Eq. (13.14]) and the uniqueness has been proved.
For existence, define (z|y) by Eq. (13.14) in which case,

(z|x) = ZeHx—FexHZ [H2x||2—|—i||a:+im||2 —i||x—i3:||2]
EEG
2
= |l=|* + }1 +i*] |lz)* - |1 — il = = [|l=]|°.

So to finish the proof, it only remains to show that (z|y) defined by Eq. (13.14)
is an inner product.
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Since
Aylz) = elly+exl> =D elle(y+ex) |?
eeG eeG
= clley + %
eeG
=lly+zl® = | —y+zl® +illiy — «|® —i|| — iy — z|?

= llz +yl* =z =yl +ille — iyl|* — ille + iyl

= 4(z|y)
it suffices to show « — (z|y) is linear for all y € H. For this we will need to
derive an identity from Eq. ,. To do this we make use of Eq. , three
times to find
o +y+ 21> = =l +y — 2[* + 2llz + y|* + 2|2

= |l —y — 2|* = 2llz — 2l = 2[lylI* + 2]}z + y|* + 2||z]?

= lly+ 2 —a|* = 2llz — 2|* = 2/|y]* + 2]}z + y|* + 2|z

= —lly+ 2+l +2lly + 2] + 2]

= 2|z — 2| = 2llyl* + 2]|= + y[|* + 2] ||*.

Solving this equation for |z + y + 2||? gives

lz+y + 21 = lly + 2lI* + o+ yll* = lla = 21> + [l2l|* + [[2]]* = ly]]*. (13.15)

Using Eq. , for z,y,z € H,
4Re(z + zly) = [lz + 2 + y[I” = |z + 2 — y|?
= lly + 217 + llz +ylI* — lle — 21> + [|l2]* + [[2]* — [ly]I”
— (2 =yl + llz = yl* = ll — 201> + ll2[I* + [[2l1* — [ly]1*)
=llz+yl* = llz = yl* + =+ yl* = [l — y|?
= 4Re(z|y) + 4 Re(z|y). (13.16)

Now suppose that § € G, then since [0| = 1,

1 1 _
Aoaly) = D elldw+ eyl = 3 3 ellw + 6 ey

ceG eeG
1
=1 Zaé”x—i—ésy”z = 46{x|y) (13.17)
eeG

where in the third inequality, the substitution ¢ — €§ was made in the sum. So
Eq. (13.17) says (fiz|y) = +i{z|y) and (—z|y) = —(z|y). Therefore
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Im(zly) = Re (—i(z[y)) = Re(—iz|y)
which combined with Eq. shows
Im(z + z|y) = Re(—iz —iz|y) = Re(—ix|y) + Re(—iz|y)
= Im(z|y) + Im(z]y)
and therefore (again in combination with Eq. ),
(x + z|ly) = (x|y) + (z|y) for all x,y € H.

Because of this equation and Eq. (13.17) to finish the proof that  — (z|y) is
linear, it suffices to show (Az|y) = A(z|y) for all A > 0. Now if A = m € N, then

(mzly) = (x + (m — Dzly) = (zly) + ((m — 1)z|y)

so that by induction (mz|y) = m(z|y). Replacing x by x/m then shows that
(x|ly) = m{m~txly) so that (m~lz|y) = m~1{x|y) and so if m,n € N, we find

n 1 n
—

<Ew|y> = n%wa) = z|y)

so that (Az|y) = A(z|y) for all A > 0 and A € Q. By continuity, it now follows
that (Az|y) = A(z|y) for all XA > 0.

An alternate ending: In the case where X is real, the latter parts of the
proof are easier to digest as we can use Eq. for the formula for the inner
product. For example, we have

4(z|22) = ||z + 2z|° — ||z — 2z

le+z+2|?+lz+z—2)® =z — 24z - |z — 2 — 2|

1 2 2 1 2 2
5 [le+ 217+ 121] = 5 [l = 207 + 11217

1 2 2
5 [le+ 21 = llz = 2| =2 (al2)
from which it follows that (z|2z) = 2 (z|z) . Similarly,

2 2 2 2
4(z[2) + (Yl = [z + 207 = llz = 2[1" + [ly + 2[” = lly — =]|
2 2 2 2

[z + 21"+ lly + 217 = llz = 2)” = lly — =]

1 1
5 (le+y+2:07 +lle = yl?) = 5 (o +y =220 + o — /)
=2(z +yl22) =4(x +ylz)

from which it follows that and (z + y|z) = (z|z) + (y|z) . From this identity one
shows as above that (-|-) is a real inner product on X.
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Now suppose that X is complex and now let

Qy) =g [+ 2~ — 21
We should expect that @ (-,-) = Re (:|-) and therefore we should define
(zly) == Q (z,y) —iQ (iz,y).
Since

. . 2 . 2 S 2 .. 2
4Q (iz,y) = iz + y[I” — lliz — yl” = (=i iz + y)[I” = |7 (iz = y)|
= o —iy|* — o+ iy|* = —4Q (x,iy),

it follows that Q (iz,z) = 0 so that (z|z) = ||z|* and that
(ylz) = Q (y,2) —iQ (iy, ) = Q (y, ) +iQ (y, iz) = (x|y).

Since © — (z|y) is real linear, we now need only show that (iz|y) = i(z|y).
However,

(izly) = Q (iz,y) —iQ (i (iz) ,y)
= Q (iz,y) +iQ (z,y) = i (z|y)

as desired.
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Conditional Expectation

In this section let (£2,8, P) be a probability space and G C B be a sub —
sigma algebra of B. We will write f € G iff f : {2 — C is bounded and f is
(G, Bc) — measurable. If A € B and P (A) > 0, we will let

(AN B)

E[X]|4] := E[X: A] and P (B|A) :=E[1p]4] := PP(A)

P(4)
for all integrable random variables, X, and B € B. We will often use the fac-
torization Lemma in this section. Because of this let us repeat it here.

Lemma 14.1. Suppose that (Y,F) is a measurable space and 'Y 2 —Yisa
map. Then to every (o(Y),Bg) — measurable function, H : §2 — R, there is a
(F,Bg) — measurable function h:Y — R such that H =ho.

Proof. First suppose that H = 14 where A € o(Y) =Y " 1(F). Let B€ F
such that A = Y~(B) then 14 = 1y-1(p) = 1 oY and hence the lemma
is valid in this case with h = 1. More generally if H = 3" a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence H = hoY
with h := 3" a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, H, from {2 — R, choose simple
functions H,, converging to H. Let h, : Y — R be simple functions such that
H, = h, oY. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—0o0 n— o0 n—o0o

where h := limsup h,, — a measurable function from Y to R. [

n—oo

Definition 14.2 (Conditional Expectation). Let Eg : L?(2,B,P) —
L?(2,G, P) denote orthogonal projection of L*(£2,B,P) onto the closed sub-
space L?(£2,G, P). For f € L*(2,B, P), we say that Egf € L*(£2,G, P) is the
conditional expectation of f given G.

Remark 14.3 (Basic Properties of Eg). Let f € L?(£2,B, P). By the orthogonal
projection Theorem [13.13| we know that F' € L?(§2,G, P) is Egf a.s. iff either
of the following two conditions hold;

LIf = Flly <|If = gll, for all g € L2(£2,G, P) or

2. E[fh] = E[Fh] for all h € L*(2,G, P).

Moreover if Go C G1 C B then L?(£2,Gy, P) C L*(£2,G1, P) C L*(£2,B,P)
and therefore,

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L?(2,B,P). (14.1)
It is also useful to observe that condition 2. above may expressed as
E[f: A]=E[F:A] forall Aeg (14.2)

or
E[fh] = E[Fh)] for all h € Gy. (14.3)

Indeed, if Eq. (14.2) holds, then by linearity we have E[fh] = E[Fh] for all
G — measurable simple functions, h and hence by the approximation Theorem

and the DCT for all h € G,. Therefore Eq. (14.2)) implies Eq. (14.3). If Eq.
(14.3) holds and h € L?(£2,G, P), we may use DCT to show

E|[fn] "£"

. (14.3) .. DCT
which is condition 2. in Remark Taking h = 14 with A € G in condition
2. or Remark [14.3] we learn that Eq. (14.2)) is satisfied as well.

Theorem 14.4. Let (2,8, P) and G C B be as above and let f,g € L' (2, B, P).
The operator Eg : L?(§2, B, P) — L?(02,G, P) extends uniquely to a linear con-
traction from L'(£2,B,P) to L*(£2,G, P). This estension enjoys the following
properties;

Iff>0, P —a.e then Egf >0, P — a.e.

. Monotonicity. If f > g, P — a.e. there Egf > Egg, P — a.e.

. L — contraction property. |Egf| <Eg|f|, P — a.e.

. Averaging Property. If f € LY (Q2,B,P) then F = Egf iff F €
LY(02,G,P) and

Bl WO~

E(Fh) =E(fh) for all h € Gy. (14.4)

5. Pull out property or product rule. If g € G, and f € L'($2, B, P), then
Eg(gf) =9 -Egf, P - a.e.
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6. Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L' (22,8, P). (14.5)
Proof. By the definition of orthogonal projection, f € L?(§2,B,P) and
h S gba
E(fh) = E(f - Egh) = E(Egf - h). (14.6)
Taking
— = Egf
h=sgn(Egf) := @1|ng|>o (14.7)

in Eq. shows
E([Eg f[) = E(Egf - h) = E(fh) <E(|fh]) < E(f]). (14.8)

It follows from this equation and the BLT (Theorem that Eg extends
uniquely to a contraction form L(§2, B, P) to L*(£2,G, P). Moreover, by a sim-
ple limiting argument, Eq. remains valid for all f € L' (£2,B,P) and
h € Gp. Indeed, (without reference to Theorem if fn = flifj<n €
L?(£2,B,P), then f, — f in L'(£2,B, P) and hence

E[|Egfn — Egfml] = E[|[Eg (fn — fi)l]l L E[|fn — fml] — 0 as m,n — oc.

By the completeness of L(£2,G, P), F = L'(£2,G, P)-lim, . Egf, exists.
Moreover the function F satisfies,

E(F-h) = E(lim Egf,-h) = lim E(f, -h) =E(f ) (14.9)

for all h € G, and by Proposition there is at most one, F' € L'(£2,G, P),
which satisfies Eq. . We will again denote F' by Egf. This proves the
existence and uniqueness of F satisfying the defining relation in Eq. of
item 4. The same argument used in Eq. (14.8) again shows E |F| < E|f| and
therefore that Eg : L' (2,8, P) — L' (2,G, P) is a contraction.

Items 1 and 2. If f € L' (2, B, P) with f > 0, then

E(Egf-h) =E(fh) >0V h € Gy with & > 0. (14.10)

An application of Lemmathen shows that Egf > 0 a.sE The proof of item
2. follows by applying item 1. with f replaced by f —¢g > 0.

Ttem 3. If f is real, £f < |f| and so by Item 2., £Egf < Eg|f], i.e.
[Egfl < Eg|f|, P — a.e. For complex f, let h > 0 be a bounded and G —
measurable function. Then

! This can also easily be proved directly here by taking h = 1gg <o in Eq. (14.10).
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E([Egf|h] = E Eqf -sen (Eg/)h| =E |f -sen (B )]
<E[|f|n] =E[Eg|f| - hl.

Since h > 0 is an arbitrary G — measurable function, it follows, by Lemma [7.23
that |Egf| < Eg|f|, P — a.s. Recall the item 4. has already been proved.

Item 5. If h,g € Gy and f € L' (2, B, P), then

E[(9Egf)hl =E[Egf -hg] =E[f-hg] =E[gf-hl =E[Eg (9f) - ].
Thus Eg (gf) = g-Egf, P — a.e.

Item 6., by the item 5. of the projection Theorem Eq. holds
on L?(£2,B, P). By continuity of conditional expectation on L' (£2,B, P) and
the density of L' probability spaces in L? — probability spaces shows that Eq.
(14.5) continues to hold on L'(§2, B, P).

Second Proof. For h € (Gy), , we have

E[Eg,Eg, f-h] =E[Eg, f-h] =E[f-h] =E[Eg,f - h]

which shows Eg Eg, f = Eg, f a.s. By the product rule in item 5., it also follows
that

Eg, [Eg, f] = Eg, [Eg, f - 1] = Eg, f - Eg, [1] = Eg, [ a.s.
Notice that Eg, [Eg, f] need only be G; — measurable. What the statement says
there are representatives of Eg, [Eg, f] which is Gy — measurable and any such
representative is also a representative of Eg, f. ]

Remark 14.5. There is another standard construction of Eg f based on the char-
acterization in Eq. and the Radon Nikodym Theorembelow. It goes
as follows, for 0 < f € L* (P), let Q be the measure defined by dQ := fdP. Then
Q|g < P|g and hence there exists 0 < g € L' (£2,G, P) such that dQ|g = gdP|g.
This then implies that

/fdP:Q(A):/gdeorallAeg,
A A

i.e. g = Egf. For general real valued, f € L' (P), define Egf = Egf, —Egf_
and then for complex f € L' (P) let Egf = Eg Re f + iEg Im f.

Notation 14.6 In the future, we will often write Egf as E[f|G]. Moreover,
if (X, M) is a measurable space and X : 2 — X is a measurable map.
We will often simply denote E[flo (X)] simply by E[f|X]. We will further
let P(A|G) := E[14]G] be the conditional probability of A given G, and
P(A|X):= P(A|o (X)) be conditional probability of A given X.
Exercise 14.1. Suppose f € L' (£2,B, P) and f > 0 a.s. Show E [f|G] > 0 a.s.
(i.e. show g > 0 a.s. for any version, g, of E[f|G].) Use this result to conclude if
f € (a,b) a.s. for some a, b such that —oco < a < b < 0o, then E[f|]] € (a,b) a.s.
More precisely you are to show that any version, g, of E [f|G] satisfies, g € (a,b)
a.s.
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14.1 Examples

Ezample 14.7. Suppose G is the trivial o — algebra, i.e. G = {0}, 2} . In this case
Egf =Ef as.

Example 14.8. On the opposite extreme, if G = B, then Egf = f a.s.

Exercise 14.2 (Exercise revisited.). Suppose ({2, B, P) is a probability
space and P := {A;};2, C B is a partition of 2. (Recall this means 2 =
>oooi A;.) Let G be the o — algebra generated by P. Show:

1. Be G iff B=U;cpA; for some A C N.

2. g: 82 — Ris G — measurable iff g = 21021 Aily, for some \; € R.

3.For f € LY(92,B,P), let E[f|A;] := E[la,f]/P(A;) if P(A;) # 0 and
E [f|A;] = 0 otherwise. Show

]ng = io:E [f|Al] 1Ai a.s. (14.11)

i=1

Solution to Exercise ([14.2]). We will only prove part 3. here. To do this,
suppose that Egf = > "2, \;14, for some )\; € R. Then

lZ)\lA DA

which holds automatically if P (A;) = 0 no matter how \; is chosen. Therefore,
we must take
Elf: 4] _

P (4;)

E[f:Aj] =E[Egf : Aj] =\ P (4;)

Aj =

which verifies Eq. (14.11)).

Example 14.9. If S is a countable or finite set equipped with the o — algebra,
29 and X : 2 — S is a measurable map. Then

E[f14;]

E[Z|X] =) E[Z|X = s]1x—, as.
ses

where by convention we set E[Z|X =s] = 0 if P(X =s) = 1. This is an
immediate consequence of Exercise with G = o (X)) which is generated by
the partition, {X = s} for s € S. Thus if we define F'(s) := E[Z|X = s], we
will have E [Z]X] = F (X) a.s.

Lemma 14.10. Suppose (X, M) is a measurable space, X : 2 — X is a mea-
surable function, and G is a sub-c-algebra of B. If X is independent of G and
[+ X — R is a measurable function such that f(X) € L'(£2,B,P), then
Eg[f(X)] = E[f(X)] a.s.. Conversely if Eg[f (X)] = E[f(X)] a.s. for all
bounded measurable functions, f : X — R, then X is independent of G.
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Proof. Suppose that X is independent of G, f : X — R is a measurable
function such that f(X) € L' (2,B,P), u:=E[f (X)], and A € G. Then, by
independence,

Elf (X): Al =E[f (X)1a] =E[f (X)]E[1a] = E[pla] =E[u: A].

Therefore Eg [f (X)]=p =E[f (X)] a
Conversely if Eg [f ( |=E[f(X )] =g and A € G, then

Elf (X)1a] =E[f (X): Al =E[u: Al = pE[14] = E[f (X)]E[14].

Since this last equation is assumed to hold true for all A € G and all bounded
measurable functions, f : X — R, X is independent of G. [

The following remark is often useful in computing conditional expectations.
The following Exercise should help you gain some more intuition about condi-
tional expectations.

Remark 14.11 (Note well.). According to Lemma E(f|X) = f( ) a
for some measurable function, f : X — R. So computlng E(fIX) = f(X )
equivalent to finding a function, f X — R, such that

E[f-h(X)]=E |f(X)h(X)] (14.12)

for all bounded and measurable functions, A : X — R. “The” function, f :
X — R, is often denoted by writing f(z) = E(f|X =z). If P(X =z) >
0, then E(f|X =2) =E(f: X =z) /P (X = z) consistent with our previous
definitions — compare with Example If P(X=2x), E(f|X =) is not
given a value but is just a convenient notational way to denote a function f :
X — R such that Eq. holds. (Roughly speaking, you should think that
E(fIX =2) =E[f -6, (X)]/E[d: (X)] where 4, is the “Dirac delta function”
at x. If this last comment is confusing to you, please ignore it!)

Example 14.12. Suppose that X is a random variable, ¢ € R and f : R - R
is a measurable function such that f(X) € L'(P). We wish to compute
E[f(X)|X At]=h(X At). So we are looking for a function, h : (—o0,t] — R
such that

Elf X)u(XAt)]=Eh(XAt)u(X At)] (14.13)

for all bounded measurable functions, u : (—o0,t] — R. Taking u = 1y} in Eq.

(14.13]) implies,
Ef(X): X>tj=h(t)P(X >1)

and therefore we should take,

h(t) =E[f (X)X = 1]
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which by convention we set to be (say) zero if P (X > t) = 0. Now suppose that

u (t) =0, then Eq. becomes,
E[f (X)u(X): X <t] =E[h(X)u(X): X <{]

from which it follows that f (X)1x<: = h(X) 1x<¢ a.s. Thus we can take

ifz<t

and we have shown,

E[f (X)X At] =1xcf(X) 4+ 1x>E[f (X)X = 1]
= ]-X/\t<tf (X) + Ixpe=tE [f (X) ‘X > f;] .
Proposition 14.13. Suppose that (2,8, P) is a probability space, (X, M, p)

and (Y,N,v) are two o — finite measure spaces, X : 2 - X andY : 2 - Y
are measurable functions, and there exists 0 < p € L*(£2,B,u ® v) such that

P((X,Y)eU) = [,p(z,y)du(z)dv(y) for allU e M@ON. Let
pla) = [ plam)dv () (14.14)
and x € X and B € N, let
oy S e @) dv () if p(w) € (0,00)
Q)= {7 e b (1419)

where yo is some arbitrary but fized point in' Y. Then for any bounded (or non-
negative) measurable function, f : X x Y — R, we have

E[f (X, Y)[X] = Q(X, f(X,-)) =1/Yf(X,y)Q(X,dy)=g(X) a.s. (14.16)

where,
z) =/Yf<x,y>c2<m,dy>=Q<m,f<m,->>.

As usual we use the notation,

Lo Lt fv @) ey v () i (@) € (0,00)
Q)= [vw Q@ { 5y (0) =0 () if plx) € {0,00}.

for all bounded measurable functions, v:Y — R.

Page: 206 job: prob

Proof. Our goal is to compute E [f (X,Y") | X]. According to Remark [14.11

we are searching for a bounded measurable function, g : X — R, such that
Elf (X,Y)h(X)]|=E[g(X)h(X)] for all h € M,. (14.17)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (14.17));

E[f(X,Y)h(X)] =/X Yh(x)f(m,y)P(fc,y)du(x)dV(y)

- [1@ | [t@nsenam|ae@ o
X Y
Elg(X)h(X)] = / h(z)g(x)p(z,y)dp(z)dv(y)
XxY

= [ 1@ @)p @) du o). (14.19)
Since the right sides of Eqs. (14.18]) and 14 19)) must be equal for all h € My,

we must demand (see Lemma [7.23| and [7.24)) that
|1 @apedr ) = o)) for p e (14.20)

There are two possible problems in solving this equation for g (z) at a particular
point x; the first is when p (z) = 0 and the second is when g (2) = oo. Since

[o@ant = [ | [ omaro|ane -1

we know that p(z) < oo for u — a.e. x and therefore it does not matter how g
is defined on {p = oo} as long as it is measurable. If

0=5@) = [ pn)ar),
then p(z,y) = 0 for v — a.e. y and therefore,

L1 @upeni ) - (14.21)
Hence Eq. (14.20) will be valid no matter how we choose ¢ (z) for z € {5 = 0} .
So a valid solution of Eq. (14.20)) is

o (z) = {p(lz)fyf(w,y)p(m,y) dv (y) it p(z) € (0,00)
' f(@,y0) =8y, (f (z,7)) if p(x) € {0, 00}
19-Feb-2010/11:31
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and with this choice we will have E[f (X,Y)|X] = ¢(X) = Q (X, f) as.

as desired. (Observe here that when p(z) < oo, p(z,-) € L' (v) and hence

Jy f(x.y) p(z,y)dv (y) is a well defined integral.) ]
It is comforting to observe that

PXe{p=01)=P(p(X)=0) = [ 1oopdn=0
and similarly
P(X € {p=oc}) = / oot = 0.

Thus it follows that P(X € {r €X:p(z) =00f co}) = 0 while the set
{z € X: p(x) =0 of 0o} is precisely where there is ambiguity in defining g (z) .
Just for added security, let us check directly that g (X) = E[f (X,Y)|X] a.s.
According to Eq. we have

Elg (X)h (X)) = / h(2)g (@) p () du ()

= / ) h(xz)g(x)p(x)du(x)
XNn{0<p<oo}

p
=  h@)p@) L f(@,y) p(z,y)dv(y) | du(x)
/Xﬂ{()<p<00} (P (z) Jy

-/ @) ([r@noenae) e

= [ v ([ o) i)
“E[f(X,Y)h(X)]  (by B (EI9)),

wherein we have repeatedly used p(p = o00) = 0 and Eq. holds when
p () = 0. This completes the verification that g (X) =E[f (X,Y) |X] a.s..

Proposition [14.13] shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. Proposition also gives an example of regular conditional
probabilities which we now define.

Definition 14.14. Let (X, M) and (Y,N) be measurable spaces. A function,
Q:Xx N —10,1] is a probability kernel on X x Y if

1. Q(z,-) : N —[0,1] is a probability measure on (Y,N) for each z € X and
2.Q(,B): X —10,1] is M/Bg — measurable for all B € N.
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If @Q is a probability kernel on X x Y and f : Y — R is a bounded
measurable function or a positive measurable function, then z — @ (z, f) =
Jy f () Q (x,dy) is M/Bg — measurable. This is clear for simple functions and
then for general functions via simple limiting arguments.

Definition 14.15. Let (X, M) and (Y,N) be measurable spaces and X : 2 —
XandY : 2 — Y be measurable functions. A probability kernel, Q, on X x Y
is said to be a regular conditional distribution of Y given X iff Q (X, B)
is a version of P(Y € B|X) for each B € N. Equivalently, we should have
Q(X,f)=E[f(Y)|X] a.s. for all f € N,.

The probability kernel, @, defined in Eq. (|14.15)) is an example of a regular
conditional distribution of Y given X.

Remark 14.16. Unfortunately, regular conditional distributions do not always
exists, see Doob [10, p. 624]. However, if we require Y to be a “standard Borel
space,” (i.e. Y is isomorphic to a Borel subset of R), then a conditional distribu-
tion of Y given X will always exists. See Theorem [14.32)in the appendix to this
chapter. Moreover, it is known that “reasonable” measure spaces are standard
Borel spaces, see Section above for more details. So in most instances of
interest a regular conditional distribution of Y given X will exist.

Exercise 14.3. Suppose that (X, M) and (Y, N) are measurable spaces, X :
2 - Xand Y : 2 — Y are measurable functions, and there exists a regular
conditional distribution, @, of Y given X. Show:

1. For all bounded measurable functions, f: (X x Y, M ® N') — R, the func-
tion X >z — @ (z, f (x,-)) is measurable and

QX,f(X,)=E[f(X,Y)|X] as. (14.22)

Hint: let H denote the set of bounded measurable functions, f, on X x Y
such that the two assertions are valid.
2.f A€ M®N and p:= Po X! be the law of X, then

PUXY)ed) = [ Qs du(@ = [ du@) [ 14(@) Q).
(14.23)

Exercise 14.4. Keeping the same notation as in Exercise and further as-
sume that X and Y are independent. Find a regular conditional distribution of
Y given X and prove

E[f(X,Y)|X] = hy(X) a.s. V bounded measurable f : X x Y — R,

where
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hy(z) :=E[f (z,Y)] forall z € X,

i.e.

Elf (X, Y)[X]=E[f (z,Y)]|a=x a.s.

Exercise 14.5. Suppose ({2, B, P) and (£, B, P’) are two probability spaces,
(X, M) and (Y,N) are measurable spaces, X : 2 — X, X' : ' - X YV :
Q2 — Yand Y’ : 2 — Y are measurable functions such that Po (X,Y)™ ' =
Po(X'Y"),ie (X,Y) 4 (X,Y). If f: XxY,M®N)— R is a bounded
measurable function and f: (X, M) — R is a measurable function such that
f(X)=E[f(X,Y)]|X] P - a.s. then

E'[f (X', Y)|X'] = f(X') P as.

Let now suppose that G is a sub-o-algebra of B and let Pg : B — L' (2,G, P)
be defined by, Pg (B) = P (B|G) :=Eglg € L' (2,B,P) for all B€ B. If B =
S>> | By with B, € B, then 15 = Y~ | 15, and this sum converges in L* (P)
(in fact in all LP (P)) by the DCT. Since Eg : L' (2,8, P) — L' (£2,G, P) is a
contraction and therefore continuous it follows that

Pg(B)=Eglp=Eg» 1p,=> Eglp, =Y Ps(Bn) (14.24)
n=1 n=1

n=1

where all equalities are in L' (£2,G,P). Now suppose that we have chosen a
representative, Pg (B) : 2 — [0,1], of Pg (B) for each B € B. From Eq. (14.24)
it follows that

Pg(B)(w)=>_ Pg(Bn)(w) for P -ae. w. (14.25)
n=1

However, note well, the exceptional set of w’s depends on the sets B, B,, €
B. The goal of regular conditioning is to carefully choose the representative,
Pg (B) : 2 — [0, 1], such that Eq. holds for all w € 2 and all B, B,, € B
with B=3"° | B,.

Definition 14.17. If G is a sub-o — algebra of B, a regular conditional dis-
tribution given G is a probability kernel on Q : (£2,G) x (£2,B) — [0,1] such
that

Q(,B)=P(B|9)(-) a.s. for every B € B. (14.26)

This corresponds to the @Q in Definition provided, (X, M) = (02,G),
(Y, N)=(2,B), and X (w) =Y (w) = w for allw € £2.
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14.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expectations
to all non-negative functions and to proving conditional versions of the MCT,
DCT, and Fatou’s lemma.

Theorem 14.18 (Extending Eg). If f : {2 — [0, 00] is B — measurable, there
is a G — measurable function, F : 2 — [0,00], satisfying

E[f:A]=E[F:A] forall Acg. (14.27)

By Lemma[7.24) the function F is uniquely determined up to sets of measure
zero and hence we denote any such version of F' by Eg f.

1. Properties 2., 5. (with 0 < g € Gy), and 6. of Theorem [14.4) still hold for
any B — measurable functions such that 0 < f < g. Namely;
a) Order Preserving. Egf <Egg a.s. when 0 < f <g,
b) Pull out Property. Eg[hf] = hEg[f] a.s. for all h > 0 and G —
measurable.
¢) Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s.

2. Conditional Monotone Convergence (¢cMCT). Suppose that, almost
surely, 0 < f,, < fus1 for all n, then lim, o Eg f,, = Eg [lim,,—oo frn] a.s.
3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 < f, €

L' (£2,B,P) a.s., then

Eg {lim inf fn} <liminfEg [f,] a.s. (14.28)
Proof. Since fAn € L' (£2, B, P) and fAn is increasing, it follows that F' :=1

lim,, o Eg [f A n] exists a.s. Moreover, by two applications of the standard
MCT, we have for any A € G, that

E[F: Al = lim E[Eg[f/\n]:A]:nli_{rolOE[f/\n:A]:nILII;OE[f:A].

n—o0

Thus Eq. (14.27) holds and this uniquely determines F' follows from Lemma
(.24
Ttem 1. a) If 0 < f < g, then

Egf = lim Eg[f An] < lim Eglg An] =Egg a.s.

and so Eg still preserves order. We will prove items 1b and 1c at the end of this
proof.
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Item 2. Suppose that, almost surely, 0 < f,, < fn41 for all n, then Egf,
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A € G, we have

E[lim ngn:A} = lim E[Egf,: A] = lim E[f, : 4]

n—oo n—00

:E[hm fn;A} :E[]Eg {nllnéofn} ;A]

n—oo

which combined with Lemma, implies that lim, . Eg f, = Eg [limp,— 00 fn]
a.s.

Item 3. For 0 < fp,, let g := inf,,>1 fr. Then g < fi for all k& and gi 1
liminf, . f, and hence by cMCT and item 1.,

Eg [liminf fn] — lim Eggy, < liminfEgfy as.
n—oo k—o00 k—o0
Ttem 1. b) If h > 0 is a G — measurable function and f > 0, then by ¢cMCT,

Eg [hf] “=7 lim Eg [(h An) (f An)]

= lim (hAn)Eg[(f An)] =T hEgf as.

n—oo

Item 1. ¢) Similarly by multiple uses of cMCT,
Eg,Eg, [ = Eg, lim Eg, (f An)= lim Eg,Eg, (fAn)
= lim Eg, (f An)=Eg, [
and
Eg Eg,f = Eg, lim Eg, (f An)= lim Eg,Eg, [f An]
= lim Eg, (f An)=Eg,f.
]

Theorem 14.19 (Conditional Dominated Convergence (cDCT)). If
oS f, and |fo) < g€ L' (2,B,P), then Egf, — Egf a.s.

Proof. From Corollary we know that f,, — f in L' (P) and therefore
Eg f, — Egf in L' (P) as conditional expectation is a contraction on L' (P). So
we need only prove the almost sure convergence. As usual it suffices to consider
the real case.

Following the proof of the Dominated convergence theorem, we start with
the fact that 0 < g £ f,, a.s. for all n. Hence by cFatou,
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Eg (9% f) = Eg [liminf (9 = /)|

liminf, o Eg (fn) in + case

< liminfEg (¢ & fn) = Egg + { —limsup, . Eg (f,)in — case,

where the above equations hold a.s. Cancelling Egg from both sides of the
equation then implies

limsupEg (fn) < Egf < liminfEg (f,) a.s.
[ ]
Remark 14.20. Suppose that f, Kt £ fnl < gn € LY (2,B,P), gn il g €

L' (2,B, P) and Eg,, — Eg. Then by the DCT in Corollary |12.9} we know that
fn — fin L' (£2,B, P). Since Eg is a contraction, it follows that Eg f,, — Eg f

in L (2, B, P) and hence Eg f,, 2 Eg .
Exercise 14.6. Suppose that (X, M) and (Y, N') are measurable spaces, (Y, N)
X: 2 —>Xand Y : 2 — Y are measurable functions. Further assume that G is

a sub — o — algebra of B, X is G/M — measurable and Y is independent of G.
Show for all bounded measurable functions, f: (X x Y, M ® N') — R, that

E[f(X;Y)[G] = hy (X) =E[f (2,Y)]|a=x as.

where if p := Lawp (Y),

hy(z) =E[f (2,Y)] = / f (@) dp (). (14.29)

Solution to Exercise (14.6). Notice by Fubini’s theorem, hy (z) is N'/Bg
— measurable and therefore hy (X) is G — measurable. If f (z,y) = u(x)v (y)
where v : (X, M) — (R, Bg) and v : (Y,N) — (R, Br) are measurable functions,
then by Lemma [14.10

E[f (X.Y)[6] = E[u(X)v(¥)|0) = u(X)E[o (V)|
= w(X)Efo (V)] = u(X) u (v) = hy (X) as.

The proof may now be completed using the multiplicative systems Theorem
In more detail, let

H:={feMaN], E[f(X,Y)|F] =hs(X) as.}.

Using the linearity of conditional expectations and of expectations along with
the DCT and the ¢cDCT (Theorem [14.19), it is easily seen that H is a linear
subspace which is closed under bounded convergence. Moreover we have just
seen that H contains the multiplicative system of product functions of the form
f(z,y) = u(x)v(y). Since such functions generate M @ N, it follows that H
consists of all bounded measurable functions on X x Y.
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The next result in Lemma [14.23| shows how to localize conditional expec-
tations. In order to state and prove the lemma we need a little ground work
first.

Definition 14.21. Suppose that F and G are sub-o-fields of B and A € B. We
say that F =G on A iff Fa = Ga. Recall that F4 ={BNA:B¢€F}.

Lemma 14.22. If Ac F NG, then FANGa = [F NG|, and Fa = Ga implies
Fa=Ga=[FNG],. (14.30)

Proof. If A € F we have B € F, iff there exists B’ € F such that B =
ANDB'. As A € F it follows that B € F and therefore we have

Fa={BCA:B¢cF}.

Thus if A € F NG it follows that 4 = {BCA:B€F} and G4 =
{B C A: B € G} and therefore

FanNGa={BCA:BeFngG}=[FngG],.
Equation ((14.30) now clearly follows from this identity when F4 = G4. ]

Lemma 14.23 (Localizing Conditional Expectations). Let (2,8, P) be
a probability space, F and G be sub-sigma-fileds of B, X,Y € L' (2,B,P) or
X,Y : (£2,B) — [0,00] are measurable, and A € FNG. If F =G on A and
X =Y a.s. on A, then

ErX =ErngX =ErngY = EgY a.s. on A. (14.31)

Proof. It suffices to prove, Ex X = ExrngY a.s. on A and this is equivalent
t0 1uEx X = 14E£ngY a.s. As both sides of this equation are F — measurable,
by the comparison Lemma [7.24] we need to show

E[14ErX : B] = E[14EzngY : B] for all B € F.

So let B € F in which case ANB € Fy =G4 =[FNG], C FNG (see Lemma
14.22)). Therefore, using the basic properties of conditional expectations, we
have

E[1AE£X : Bj]=E[ExX : ANB]|=E[X : AN B]

and similarly
E[1AEsngY : B] = E[ErngY : ANB]=E[Y : AN B].
This completes the proof as E[X : AN B] = E[Y : AN B] because of the as-

sumption that X =Y a.s. on A. [

Page: 210 job: prob

Ezample 14.24. Let us use Lemma to show E[f (X)|X At] = f(X) =
f(X At)on {X <t} —afact we have already seen to be true in Example[14.12]
Let us begin by observing that {X <t} = {X At <t} € o (X)No (X AYL).
Moreover, using o (X) , = o (X|a) for all A € BE| we see that

U(X){X<t} =0 (X|{x<ty) =0 (X A1) [{x<ty) =0 (X /\t){X<t}'

Therefore it follows that

E[f (X)X A] =E[f (X) o (X A8)] =E[f (X) |o (X)] = £ (X) as. on {X <1}.

What goes wrong with the above argument if you replace {X < ¢} by {X <t}
everywhere? (Notice that the same argument shows; if X =Y on A € o (X) N
o(Y)then E[f (X)|Y]=f(Y)=f(X) as. on A.)

Theorem 14.25 (Conditional Jensen’s inequality). Let (£2,5,P) be a
probability space, —o0 < a < b < oo, and ¢ : (a,b) — R be a convex func-
tion. Assume f € L*(£2,B, P;R) is a random variable satisfying, f € (a,b) a.s.
and ¢(f) € L*(92,B, P;R). Then o(Egf) € L* (12,G, P),

p(Egf) <Eglp(f)] as. (14.32)

and
E[p(Egf)] < Efp(f)] (14.33)

Proof. Let A := QN (a,b) — a countable dense subset of (a, ). By Theorem

12.55| (also see Lemma [12.52) and Figure when ¢ is C1)
o(y) > () + ¢ (x)(y — x) for all for all z,y € (a,b), (14.34)

where ¢’ (z) is the left hand derivative of ¢ at z. Taking y = f and then taking
conditional expectations imply,

Eg [o(f)] = Eg [p(2) + ¢_(2)(f — 2)] = ¢() + " (2)(Egf — x) a.s. (14.35)

Since this is true for all z € (a,b) (and hence all z in the countable set, A) we
may conclude that

Eg [¢(f)] = sup [p(z) + ¢ (2)(Egf — )] as.

? Here is the verification that o (X), = o (X|a). Let ia : A — §2 be the inclusion
map. Since ¢ (X) = X' (Br) and ¢ (X) , = i,'0 (X) it follows that
o(X), =iy (X' (Br)) = (Xo0ia)~" (Br)
ZU(XOiA) ZU(X‘A).
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By Exercise Egf € (a,b), and hence it follows from Corollary that
sup [p(x) + ¢ (2)(Bgf — 2)] = ¢ (Eg[) as.
Combining the last two estimates proves Eq. .
From Eq. and Eq. with y = Egf and « € (a,b) fixed we find,
o) +¢_(z) (Egf — ) < ¢(Egf) < Eg [o(f)]. (14.36)
Therefore
[0(Eg f)] < [Eg [o(N]IV |p(z) +¢" (2)(Egf —2)| € L' (2,G,P)  (14.37)
which implies that ¢(Egf) € L' (2,G, P). Taking expectations of Eq.

is now allowed and immediately gives Eq. (14.33). ]
Remark 14.26 (On Theorem and its proof.). *From Eq. (14.34),
o(f) = p(Egf) + ¢_ (Egf)(f — Egf). (14.38)

Therefore taking Eg of this equation “implies” that

Eg [o(f)] >¢(Eg f) +Eg [¢_(Egf)(f —Egf)]
= o(Egf) + ¢_(Bg f)Eg [(f — Egf)] = p(Eg f). (14.39)

The technical problem with this argument is the justification that
Eg [ (Egf)(f ~Egf)] = ¢ (Egf)Eg [(f —Egf)] since there is no rea-
son for ¢’ to be a bounded function. The proof we give in Theorem
circumvents this technical detail.

On the other hand let us now suppose that ¢ is C! (R) is convex and for
the moment that |f| < M < oo a.s. Then Egf € [-M,M] a.s. and hence
¢ (Egf) = ¢’ (Egf) is bounded and Eq. is now valid. Moreover, taking

z =0 in Eq. shows
¢(0) + ¢"(0)Egf < p(Egf) < Eg [p(f)]-

If f is unbounded we may apply the above inequality with f replaced by fy; :=
[ 1jfj<nm in order to conclude,

©(0) + ' (0)Eg far < w(Eg far) < Eg [o(fumr)] -

If we further assume that ¢ (fas) > 0 is increasing as M increase (for example
this is the case if ¢ (x) = |2| for some p > 1) we may conclude by passing to
the limit along a nicely chosen subsequence that

©(0) + ¢ (0)Egf < p(Egf) < Eg [o(f)]
where we used Eg [o(far)] — Eg [p(f)] by ¢MCT.
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Corollary 14.27. The conditional expectation operator, Eg maps LP (£2,B, P)
into LP (2, B, P) and the map remains a contraction for all 1 < p < oo.

Proof. The case p = oo and p = 1 have already been covered in Theorem

So now suppose, 1 < p < oo, and apply Jensen’s inequality with ¢ (z) =

|z|” to find |Egf|” < Eg|f|" a.s. Taking expectations of this inequality gives
the desired result. ]

Exercise 14.7 (Martingale Convergence Theorem for p = 1 and 2.”).
Let (£2, B, P) be a probability space and {B,},., be an increasing sequence of
sub-o-algebras of B. Show;

1. The closure, M, of U L?(£2,B,,P) is L?(2,Bw,P) where B, =
Vo By, =0 (U, B,,). Hint: make use of Theorem

2. For every X € L? (2,B,P), X,, .= E[X|B,] — E[X|Bs] in L? (P). Hint:
see Exercise [3.5

3. For every X € L' (2,B,P), X,, :=E[X|B,] — E[X|Bs] in L' (P). Hint:
make use of item 2. by a truncation argument using the contractive prop-
erties of conditional expectations.

(Eventually we will show that X,, = E[X|B,] — E [X|Bw] a.s. as well.)

Exercise 14.8 (Martingale Convergence Theorem for general p). Let
1 < p < oo, (£2,B,P) be a probability space, and {B,},., be an increas-
ing sequence of sub-c-algebras of B. Show for all X € L? (£2,B,P), X, =
E[X|B,] — E[X|Bx] in L? (P). (Hint: show that {\E[X|Bn]|p}f;1 is uni-
formly integrable and E [X|5,,] LE [X|Boo] with the aid of item 3. of Exercise
i17)

14.3 Construction of Regular Conditional Distributions*

Lemma 14.28. Suppose that h : Q — [0,1] is an increasing (i.e. non-
decreasing) function and H (t) := inf{h(s) :t <s € Q} for allt € R. Then
H :R — [0,1] is an increasing right continuous function.

Proof. If t; < to, then
{h(s):t1 <seQ} C{h(s):t2 <se€Q}

and therefore H (t1) < H (t2). Let H (t+) :=lim, |, H (7). Then for any s € Q
with s > t we have H (t) < H (t4+) < h(s) and then taking the infimum over
such s we learn that H (t) < H (t+) < H (t), i.e. H (t+) = H (t) . ]
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Lemma 14.29. Suppose that (X, M) is a measurable space and F': X xR — R
is a function such that; 1) F (-, t) : X — R is M/Br — measurable for all t € R,
and 2) F (z,-) : R — R is right continuous for all x € X. Then F is M ® Br/Br
— measurable.

Proof. For n € N, the function,

Fy ($7t> = Z F ('Tv (k + 1) 2_n) 1(k2—",(k+1)2—"] (t) )

k=—o0

is M ® Bgr/Bgr — measurable. Using the right continuity assumption, it follows
that F (z,t) = limy,—00 Fy (2,t) for all (x,t) € X x R and therefore F is also
M ® Br/Bgr — measurable. |

Proposition 14.30. Let Br be the Borel o — algebra on R. Then Bg contains
a countable sub-algebra, Ax C Bgr, which generates Bg and has the amazing
property that every finitely additive probability measure on Ar extends uniquely
to a countably additive probability measure on Bg.

Proof. By the results in Appendix [9.10, we know that (R, Bgr) is measure
theoretically isomorphic to ({07 1}N S F ) where F is the product o — algebra. As

we saw in Section F is generated by the countable algebra, A := U2, A,
where
An:={Bx 2:Bc{0,1}"} foralln € N.

According to the baby Kolmogorov Theorem [5.40] any finitely additive prob-
ability measure on 4 has a unique extension to a probability measure on F.
The algebra A may now be transferred by the measure theoretic isomorphism
to the desired sub-algebra, Ag, of Bg. [

Theorem 14.31. Suppose that (X, M) is a measurable space, X : 2 — X is a
measurable function and Y : {2 — R is a random variable. Then there exists a
probability kernel, @Q, on X X R such that E[f (Y)|X]=Q (X, f), P — a.s., for
all bounded measurable functions, f: R — R.

Proof. First proof. For each r € Q, let ¢, : X — [0, 1] be a measurable
function such that
Elly<,X] =¢- (X) as.

Let v := PoX ! be the law of X. Then using the basic properties of conditional
expectation, ¢, < ¢s v —a.s. for all 7 < s, limy100 ¢ = 1 and lim; |50 ¢ =0, v —
a.s. Hence the set, Xy C X where ¢, (2) < g, (x) for all r < s, lim,q00 ¢ (x) = 1,
and lim, | ¢, (x) = 0 satisfies, v (Xy) = P (X € X¢) = 1. For t € R, let

F(x,t) := 1x, (v) - inf {q, (¥) : 7 >t} + Ix\x, () - Li>o0.
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Then F (-,t) : X — R is measurable for each ¢ € R and by Lemmal[{4.28] F (z, )
is a distribution function on R for each x € X. Hence an application of Lemma
shows F : X x R — [0, 1] is measurable.

For each » € X and B € Bg, let Q (x, B) = pp(s,) (B) where up denotes the
probability measure on R determined by a distribution function, F' : R — [0, 1].

We will now show that @ is the desired probability kernel. To prove this, let
H be the collection of bounded measurable functions, f : R — R, such that X 5
x— Q(z, f) € Rismeasurable and E[f (V) |X] = Q (X, f), P —a.s. It is easily
seen that H is a linear subspace which is closed under bounded convergence. We
will finish the proof by showing that H contains the multiplicative class, Ml =
{1(_Oo7t] 1t € R} so that multiplicative systems Theorem may be applied.

Notice that @ (:c, 1(_Oo,t]) = F(z,t) is measurable. Now let r € Q and
g : X — R be a bounded measurable function, then

Elly<r - g(X)] =E[E[ly<|X]g(X)] =E[g (X) g (X)]
=E[gr (X) 1x, (X) g (X)].

For t € R, we may let r | ¢ in the above equality (use DCT) to learn,
Elly<ig(X)] = E[F (X, 1) 1%, (X) g (X)] = E[F (X,1) g (X)].
Since g was arbitrary, we may conclude that
Q(X,1(cooy) = F(X,t) =E[ly<|X] as.

This completes the proof.

Second proof. Let A := Ag be the algebra described in Proposition [I4.30]
For each A € A, let g : X — R be a measurable function such that pa (X) =
P(Y € A|X) as. If A= A; U Ay with A; € A and A; N Az = 0, then

s (X) + s, (X) = P(Y € A4|X) + P(Y € A|X)
= P(Y € A UA2|X) = UA,+As (X) a.s.

Thus if v := Lawp (X), we have pa, () + pia, () = pa, 44, (x) for v —ae. z.
Since
pur(X) =P (Y e R|X) =1 as.

we know that ug (z) =1 for v — a.e. x.

Thus if we let Xy denote those € X such that ug () = 1 and pa, (z) +
pa, () = pa, 14, (z) for all disjoint pairs, (A1, A2) € A2, we have v (Xo) = 1
and A3A — Qo (x,A) := pa (x) is a finitely additive probability measure on
A. According to Proposition Qo (z,-) extends to a probability measure,
Q (z,-) on Bg for all x € Xy. For « ¢ Xy we let Qg (z,:) = 9 where §y (B) =
15 (0) for all B € Bg.
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We will now show that @ is the desired probability kernel. To prove this,
let H be the collection of bounded measurable functions, f : R — R, such that
X3z — Q(zx,f) € Ris measurable and E[f (V) |X] = Q (X, f), P — a.s. By
construction, H contains the multiplicative system, {14 : A € A}. Moreover
it is easily seen that H is a linear subspace which is closed under bounded
convergence. Therefore by the multiplicative systems Theorem H consists
of all bounded measurable functions on R. ]

This result leads fairly immediately to the following far reaching generaliza-
tion.

Theorem 14.32. Suppose that (X, M) is a measurable space and (Y,N) is
a standard Borel spaceﬂ see Appendix . Suppose that X : 2 — X and
Y : 2 — Y are measurable functions. Then there exists a probability kernel, Q,
on X XY such that E[f (Y)|X] =Q (X, f), P — a.s., for all bounded measurable
functions, f:Y — R.

Proof. By definition of a standard Borel space, we may assume that Y € Bg
and A" = By. In this case Y may also be viewed to be a measurable map form
2 — R such that Y (£2) C Y. By Theorem we may find a probability
kernel, Qg, on X x R such that

Elf )| X]=Qo(X,f), P—a.s., (14.40)

for all bounded measurable functions, f: R — R.

Taking f = 1y in Eq. (14.40) shows
1=E[ly(Y)|X] = Qo (X,Y) as..

Thus if we let Xp := {z € X: Qo (z,Y) =1}, we know that P (X € Xp) = 1.
Let us now define

Q (z,B) = 1x, (z) Qo (z, B) + Ix\x, (z) 0y (B) for (z,B) € X x By,

where y is an arbitrary but fixed point in Y. Then and hence @ is a probability
kernel on X x Y. Moreover if B € By C Bg, then

Q(X,B)=1x,(X) Qo (X,B)=1x, X)E[15 (V) |X]=E[15 (V) |X] as.
This shows that @ is the desired regular conditional probability. ]

Corollary 14.33. Suppose G is a sub-oc — algebra of B, (Y,N) is a standard
Borel space, and Y : 2 — Y is a measurable function. Then there exists a
probability kernel, Q, on (£2,G) x (Y,N) such that E[f (Y)|G) =Q (-, f), P -
a.s. for all bounded measurable functions, f:Y — R.

3 According to the counter example in Doob [10, p. 624], it is not sufficient to assume
that N is countably generated!
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Proof. This is a special case of Theorem [14.32|applied with (X, M) = (£2,G)
and X : 2 — 2 being the identity map which is B/G — measurable. ]

Corollary 14.34. Suppose that (£2, B, P) is a probability space such that (£2,5)
is a standard Borel space and G is a sub-oc — algebra B. Then there exists a
probability kernel, @ on (£2,G) x (§2,B) such that E[Z|G] = Q (-, Z), P - a.s.
for all bounded B — measurable random variables, Z : 2 — R.

Proof. This is a special case of Corollary [14.33| with (Y,N) = (£2,B) and
Y : 2 — (2 being the identity map which is B/B — measurable. [

Remark 14.85. It turns out that every standard Borel space (X, M) possess a
countable sub-algebra A generating M with the property that every finitely
additive probability measure on A extends to a probability measure on M,
see [5]. With this in hand, the second proof of Theorem extends easily to
give another proof of Theorem all in one go. As the next example shows
it is a bit tricky to produce the algebra A.

Ezample 14.36. Let 2 := {0, 1}N7 7; + 2 — {0,1} be projection onto the i*"
component and B := o (71,72, ...) be the product o — algebra on (2. Further
let A := U2 A, where

A, :={Bx Q2:Bc{0,1}"} for all n € N.

Suppose that X = {e,} -~ C 2 where e, (i) = &;, for i,n € N. I now claim
that
Ax ={ACX:#(A) <o or #(A°) <} =:C

is the so called cofinite o — algebra. To see this observe that A is generated by
sets of the form {m; = 1} for ¢ € N. Therefore Ax is generated by sets of the
form {m; = 1}y = {e;}. But these one point sets are easily seen to generate C.
Now suppose that A : X — [0, 1] is a function such that Z := 3 A (en) €
(0,1) and let pu(B) := > ,cp A(a) for all B C X. Then u is a measure on 2%
with p(X) =2 < 1.
Using this measure u, we may define Py : Ax =C — [0, 1] by,

o (A) if #(A) <o
Po(4) '—{1_%(%1@) if 4 (A%) < 00"

I claim that P is a finitely additive probability measure on Ax = C which has
no -extension to a probability measure on 2% . To see that P, is finitely additive,
let A, B € C be disjoint sets. If both A and B are finite sets, then

Py(AUB) = pi(AU B) = i (A) + u(B) = Py (4) + Py (B).

If one of the sets is an infinite set, say B, then # (B¢) < oo and # (A4) < oo for
otherwise AN B # (. As AN B = () we know that A C B¢ and therefore,
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Py(AUB)=1-u([AUB]°) =1—-u(A°N B°)
=1 u(B°\A) =1 (u(B°) — u(A))
=1 u(B%) + (A) = Py (B) + Py (A).

Thus we have shown that Py : Ax — [0,1] is a finitely additive probability
measure. If P were a countably additive extension of Py, we would have to
have,

o0

1=PFP (X ZP {en})

= ZPO ({en}) = Zu {ex})=2Z <1
n=1 n=1

which is clearly a contradiction.

There is however a way to fix this example as shown in [5]. It is to replace
Ax in this example by the algebra, A, generated by € := {{n} : n > 2}. This
algebra may be described as those A C N such that either A CC {2,3,...} for
1€ Aand # (A°) < co. Thus if A, € A with Ay, | () we must have that 1 ¢ Ay
for k large and therefore # (Ay) < oo for k large. Moreover # (Ay) is decreasing
in k. If limg oo # (Ax) = m > 0, we must have that Ay = A; for all &, large
and therefore NA; # (). Thus we must conclude that A = () for large k. We
therefore may conclude that any finitely additive probability measure, Py, on
A has a unique extension to a probability measure on o (A) = 2.
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The Radon-Nikodym Theorem

Theorem 15.1 (A Baby Radon-Nikodym Theorem). Suppose (X, M) is
a measurable space, X and v are two finite positive measures on M such that
v(A) < A(A) for all A € M. Then there exists a measurable function, p: X —
[0,1] such that dv = pdA.

Proof. If f is a non-negative simple function, then
v(f)=) av(f=a) <Y ar(f=a)= ().
a>0 a>0

In light of Theorem [6.39) and the MCT, this inequality continues to hold for all
non-negative measurable functions. Furthermore if f € L' (\), then v (|f]) <
A(|f]) < oo and hence f € L' (v) and

DI <v (D S AU S A2 1 e -

Therefore, L? (\) > f — v (f) € C is a continuous linear functional on LZ(\).
By the Riesz representation Theorem [13.15] there exists a unique p € L?(\)
such that

v(f) = /X fpdX for all f € L*(\).

In particular this equation holds for all bounded measurable functions, f : X —
R and for such a function we have

V(f):Reu(f)zRe/Xfpd)\:/XfRepd/\. (15.1)

Thus by replacing p by Re p if necessary we may assume p is real.

Taking f = 1,40 in Eq. (15.1)) shows
O§V(p<0)=/ locop dX <0,
b'e

from which we conclude that 1,.9p =0, A — a.e., i.e. A(p < 0) = 0. Therefore
p >0, A —a.e. Similarly for a > 1,

A(p>a)2u(p>a):/ Lpsap dX > aX(p > «)
b's

which is possible iff A (p > «) = 0. Letting « | 1, it follows that A (p > 1) =0
and hence 0 < p <1, X - a.e. [ |

Definition 15.2. Let p and v be two positive measure on a measurable space,
(X, M). Then:

1. p and v are mutually singular (written as p L v) if there exists A € M
such that v (A) = 0 and p(A°) = 0. We say that v lives on A and p lives
on A°.

2. The measure v is absolutely continuous relative to p (written as v <
) provided v(A) = 0 whenever p(A) = 0.

As an example, suppose that u is a positive measure and p > 0 is a measur-

able function. Then the measure, v := pu is absolutely continuous relative to
w. Indeed, if ;1 (A) = 0 then

I/(A):/Apduzo.

We will eventually show that if ;4 and v are o — finite and v < p, then dv = pdu
for some measurable function, p > 0.

Definition 15.3 (Lebesgue Decomposition). Let p and v be two positive
measure on a measurable space, (X, M). Two positive measures v, and vs form
a Lebesgue decomposition of v relative to p if v = vg + vs, Vg < u, and
vs L p.

Lemma 15.4. If u1, po and v are positive measures on (X, M) such that pg L
v and py L v, then (p1 + po) L v. More generally if {p;};—, is a sequence of
positive measures such that p; L v for alli then =3 0, w; is singular relative
to v.

Proof. It suffices to prove the second assertion since we can then take p; = 0
for all j > 3. Choose A; € M such that v (A;) = 0 and p; (A5) = 0 for all 4.
Letting A := U;A; we have v (A) = 0. Moreover, since A® = N;AS C A¢, for
all m, we have p; (A°) = 0 for all i and therefore,  (A°) = 0. This shows that
nl v [ |

Lemma 15.5. Let v and u be positive measures on (X, M). If there exists a
Lebesgue decomposition, v = vs + vy, of the measure v relative to u then this
decomposition is unique. Moreover: if v is a o — finite measure then so are v
and v,.
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Proof. Since v; L 1, there exists A € M such that y(A) = 0 and v, (A°) =0
and because v, < 1, we also know that v, (A) = 0. So for C € M,
v(CNA) =v,(CNA)+1,(CNA)=v,(CNA)=r,(C) (15.2)
and

v(CNAY) =v, (CNAY)+ 1, (CNAY) =1, (CNA°) =, (C). (15.3)

Now suppose we have another Lebesgue decomposition, v = 7, + U5 with
vs L pand 7, < pu. Working as above, we may choose A € M such that
p(A) = 0 and A is 7, — null. Then B = AU A is still a g — null set and and
B¢ = A¢N A¢ is a null set for both v, and ;. Therefore we may use Eqgs.
and with A being replaced by B to conclude,

vs(C) =v(C N B) =1,(C) and
va(C) = v(C' N B¢) = 5,(C) for all C € M.

Lastly if v is a o — finite measure then there exists X,, € M such that
X =" X, and v(X,) < oo for all n. Since 0o > v(X,,) = v (Xy) +vs(X5),
we must have v,(X,) < oo and v4(X,,) < oo, showing v, and v, are o — finite
as well. ]

Lemma 15.6. Suppose u is a positive measure on (X, M) and f,g : X — [0, 00]
are functions such that the measures, fdu and gdup are o — finite and further
satisfy,

/ fdu = / gdp for all A € M. (15.4)
A A

Then f(z) = g(x) for p — a.e. x. (BRUCE: this lemma is very closely related
to Lemma above. )

Proof. By assumption there exists X,, € M such that X,, T X and
Jx, fdp < oo and an gdp < oo for all n. Replacing A by AN X, in Eq.
(15.4) implies

/1xnfdu=/ fdu=/ gdu=/ lx,g9dp
A ANX,, ANX, A

for all A € M. Since 1x_ f and 1, g are in L' (1) for all n, this equation implies
1x,f =1x,9, 1 — a.e. Letting n — oo then shows that f =g, u — a.e. [

Remark 15.7. Lemma is in general false without the o — finiteness assump-
tion. A trivial counterexample is to take M = 2% ;i(A) = oo for all non-empty

AeM, f=1x and g =2-1x. Then Eq. (15.4) holds yet f # g.
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Theorem 15.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that 1 and v are o — finite positive measures on (X, M). Then v has
a unique Lebesgue decomposition v = v, + v, relative to p and there exists
a unique (modulo sets of u — measure 0) function p : X — [0,00) such that
dv, = pdu. Moreover, vs =0 iff v < p.

Proof. The uniqueness assertions follow directly from Lemmas [I5.5] and
15,0l

Existence when p and v are both finite measures. (Von-Neumann’s
Proof. See Remark for the motivation for this proof.) First suppose that p
and v are finite measures and let A\ = p + v. By Theorem dv = hd\ with
0 < h <1 and this implies, for all non-negative measurable functions f, that

v(f) = Mfh) = u(fh) +v(fh) (15.5)

or equivalently

v(f(L=h)) = p(fh). (15.6)
Taking f = 1{p—1} in Eq. (15.6)) shows that

p({h=1}) = v(l=1y(1 = h)) =0,

ie. 0<h(z)<1for pu-ae z. Let

P = L{n<1y -7
_ _1 . .
and then take f = glg,<13(1 —h)~! with ¢ > 0 in Eq. (15.6) to learn
v(glin<ty) = u(glincry(1 — h)'h) = u(pg).
Hence if we define
Vo = lperyv and vg i= 1130,

we then have vy L p (since v; “lives” on {h =1} while u(h=1) = 0) and
v, = pi and in particular v, < pu. Hence v = v, + v, is the desired Lebesgue
decomposition of v. If we further assume that v < p, then g (h = 1) = 0 implies
v (h =1) =0 and hence that v, = 0 and we conclude that v = v, = pp.

Existence when p and v are o-finite measures. Write X = > | X,
where X,, € M are chosen so that u(X,) < co and v(X,,) < oo for all n. Let
dp, = 1x, dp and dv,, = 1x, dv. Then by what we have just proved there exists
pn € LY(X, pn) C LY(X, ) and measure v¢ such that dv, = p,du, + dvS with
vS L py. Since p, and v “live” on X, there exists 4, € Mx, such that
1 (An) = pin (An) = 0 and
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vo (X \ An) =v (Xn\ An) =0.

This shows that v L p for all n and so by Lemma [15.4]) vy := > 7 w8 is
singular relative to u. Since

v = Z Vp = Z (Pnttn +vp) = Z (pnlx, p+vy) = pp+ vs, (15.7)
n=1 n=1 n=1

where p := > | 1x, pn, it follows that v = v, + v, with v, = pu. Hence this
is the desired Lebesgue decomposition of v relative to u. ]

Remark 15.9. Here is the motivation for the above construction. Suppose that
dv = dvs + pdu is the Radon-Nikodym decomposition and X = A>" B such
that vs(B) =0 and p(A) = 0. Then we find

v,(£) + npf) = U(F) = Mhf) = v(hf) + u(hf).
Letting f — 14 f then implies that
v(laf) = vs(1af) = v(1ahf)
which show that h =1, v —a.e. on A. Also letting f — 1gf implies that
uplpf) =v(hpf) + p(hlpf) = pphlsf) + p(hls f)
which implies, p = ph + h, 1 — a.e. on B, i.e.
p(1—h)=nh, uy—a.e. on B.

In particular it follows that h < 1, u = v — a.e. on B and that p = ﬁlha,
p — a.e. So up to sets of v — measure zero, A = {h =1} and B = {h < 1} and
therefore,

dv = l{hzl}dl/ + 1{h<1}dl/ = 1{h:1}dV + lp<1dp.

1—-h
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Some Ergodic Theory

The goal of this chapter is to show (in certain circumstances) that “time
averages” are the same as “spatial averages.” We start with a “simple” Hilbert
space version of the type of theorem that we are after. For more on the following
mean Ergodic theorem, see [17] and [11].

Theorem 16.1 (Von-Neumann’s Mean Ergodic Theorem). Let U : H —
H be an isometry on a Hilbert space H, M = Nul(U —1), P = Py be orthogonal
projection onto M, and S, = Z;& UF. Show 37” — Py strongly by which we
mean lim,,_, %x = Pyx for all x € H.

Proof. Since U is an isometry we have (Uz,Uy) = (z,y) for all z,y € H
and therefore that U*U = I. In general it is not true that UU* = I but instead,
UU* = Pranv)- Thus U*U = I ift U is surjective, i.e. U is unitary.

Before starting the proof in earnest we need to prove

Nul(U* — I) = Nul(U — I).

If v € Nul(U —I) then = Uz and therefore U*z = U*Ux = z, i.e. x €
Nul(U* — I). Conversely if x € Nul(U* — I) then U*z = z and we have
|Uz — &> = 2||o]* — 2Re (Uz, )
= 2||z||* = 2Re (z,U*z) = 2||z||* — 2Re (z,2) = 0
which shows that Uz = z, i.e. x € Nul (U — I'). With this remark in hand we

can easily complete the proof.
Let us first observe that

Sn 1

U-I)==-[U"-1I] - 0asn— .
n n
Thus if x = (U — I)y € Ran(U — I), we have
&x:l(U”yfy)HOaanoo.
n n

More generally if x € Ran(U — I) and 2’ € Ran(U—1I), we have, since } %’|

that

<1

Sn_ Sn_,
—T——x
n

<z — 2|
n

and hence

. Sn Sn

=lim sup ||—zx — —=x
n—oo || T n

S
lim sup an <||lz—2'|.
n

n—oo

Letting ' € Ran (U — I) tend to € Ran(U — I) allows us to conclude that

1imsupn_>oo||%x|| =0.
For
x € Ran(U—I)L =Ran(U—-I)" =Nul(U* —I) =Nul(U —I) = M
we have %x = x. So for general x € H, we have x = Py;x +y with y € M+ =

Ran(U — I) and therefore,
Sh S

—x = —nPMx—F&y:PMx—I—&yHPMx as n — 00.
n n n n
(]
For the rest of this section, suppose that (§2,8,u) is a o — finite measure
space and 6 : 2 — (2 is a measurable map such that 6, = p. After Theorem
[16.6] we will further assume that u = P is a probability measure. For more
results along the lines of this chapter, the reader is referred to Kallenberg [23|
Chapter 10]. The reader may also benefit from Norris’s notes in [36].

Definition 16.2. Let

By:={Ae€B:607' (A) = A} and
By:={AeB:pu(67" (A)AA) =0}

be the invariant o — field and almost invariant o —fields respectively.

In what follows we will make use of the following easily proved set identities.
Let {A,},2,, {Bn},—,,and A, B,C be a collection of subsets of 2, then;

1. AAC C [AAB]U[BAC],

2. (U, Ay A[UX, B,] C UX, A, AB,,
3. [N, A,] AN, By] C UX | A, AB,,
4. BA{A, i.0.} C U2 [BAA,].
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Lemma 16.3. The elements of By are the same as the elements in By modulo
null sets, i.e.

By={BeB:3A€By > u(AAB) =0}.
Moreover if B € By, then
A={weR:0"(w)eBio. k} By (16.1)

and pw(AAB) = 0. (We could have just as well taken A to be equal to
{weR:6"(w)eBaal}.)

Proof. If A € By and B € B such that u(AAB) = 0, then
1 (AA0~ (B)) = p (07" (A) A0™! (B)) = o~ " (AAB) = u(AAB) =0
and therefore it follows that
1 (BAO™ (B)) < i (BAA) + i (A20™ (B)) = 0.

This shows that B € 5.

Conversely if B € Bj then by the invariance of p under 6 it follows that
p (071 (B) A9~(+1 (B)) = 0 for all kK = 0,1,2,3.... In particular we learn
that

(07 (B) AB) = p(|Lo-+() — 15])
k

Zlu(

IN

19—1(3) - 197(”1)(3) D

T
- O

" (e—l (B) Ag=(+D) (B)) =0

Thus if A= {6#7%(B) i.0. k} as in Eq. we have,

1t (BAA) Z (BAO~F (B)) = 0.

~

This completes the proof since
0 (A) ={weN: 0" (w)eBio k}=A
and thus A € By. ]

Definition 16.4. A B — measurable function, f : 2 — R is (almost) invariant

iff foOd=f (folb=f as.)
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Lemma 16.5. A B — measurable function, f : 2 — R is (almost) invariant iff
fis By (B}) measurable. Moreover, if f is almost invariant, then there exists
and invariant function, g : 2 — R, such that f = g, u — a.e. (This latter
assertion has already been explained in Ezercises and )

Proof. If f is invariant, f o6 = f, then 671 ({f <z}) = {fob <z} =
{f <z} which shows that {f <z} € By for all € R and therefore f is By —
measurable. Similarly if f is almost invariant so that fof = f (u — a.e.), then

n (|1971({f§x}) - 1{f§!v}|) =K (|1{f09§w - l{fSI}D
=K 1(7oo,m] ofoa_l(*w@] Ofb =0

from which it follows that {f <z} € Bj for all z € R, that is f is Bj —
measurable.

Conversely if f : £2 — R is (Bj) By -measurable, then for all —oo < a <b <
o0, ({a < f <b} e By) {a< f<b} € By from which it follows that 11,<r<py
is (almost) invariant. Thus for every N € N the function defined by;

N2

n
fx= D0 Flmter<ay

n=—N2

is (almost) invariant. As f = limy_« fn, it follows that f is (almost) invariant
as well.

In the case where f is almost invariant, we can choose Dy (n) € By such
that p (DN {"—1 < f< N}) =0 for all n and N and then set

Z NIDN(n)

n=—

We then have gy = fn a.e. and gy is By — measurable. We may thus conclude
that g := limsupy_, ., gn is By — measurable. It now follows that g := g1 |5/<oo
is By — measurable function such that g = f a.e. ]

Theorem 16.6. Suppose that (£2,B, ) is a o — finite measure space and 6 :
2 — (2 is a measurable map such that O, = p. Then;

1.U : L? () — L? (u) defined by Uf := f o0 is an isometry. The isometry U
is unitary if 071 exists as a measurable map.

2. The map,
L (2.Bg. ) > f — f € Nul(U — 1)

is unitary. In other words, Uf = f iff there exists g € L* (82, By, 1) such
that f = g a.e.
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3. For every f € L* (u) we have,
n—1
L2 () - lim fHfol+ -+ fob

n— oo n

= EBe [f]

where Ep, denotes orthogonal projection from L*(§2,B,u) onto
L? (£2,By, i), i.e. Ep, is conditional expectation.

Proof. 1. To see that U is an isometry observe that
1P = [ 1foodn= [ 7P @) = [ 11 du= 1517
Q Q 0

for all f e L?(u).

2. f eNUU-—-1)iff foO =Uf = f ae., ie. iff fis almost invariant.
According to Lemma this happen iff there exists a By — measurable func-
tion, g, such that f = g a.e. Necessarily, g € L? (i) so that g € L? (£2,Bg, ) as
required.

3. The last assertion now follows from items 1. and 2. and the mean ergodic
Theorem [6.11 m

Assumption 1 From now on we will assume that = P is a probability mea-
sure such that PO~1 = 0.

Exercise 16.1. For every Z € L' (P), show that E[Z 0 0|By] = E[Z|By] a.s.
More generally, show for sub — ¢ -algebra, G C B, show E [Z09|9_1Q] =
E[Z|G] o0 as.

Solution to Exercise ([16.1)). First observe that E [Z|G]o6 is G — measurable
being the composition of (£2,671G) 8, (2,6) ElZ|) (R,Bgr). Now let A € G,
then
E[E[Z0007'G]:07'A|=E[Zo0:0 A =E[(Z-14)00]

—E[Z 14 =E[E[2]6] 14]

=E[(E[Z|G]14) 0 0] =E[E[Z|G]o6: 6" A].
As A € G is arbitrary, it follows that E [Z o 9|0‘1Q] =E[Z|G] 0 0 a.s. Taking
G = By then shows,

E[Zo0|Bg] =E [Z06|07'By] =E[Z|Bg] 00 =E[Z|By] as.

Exercise 16.2. Let 1 < p < oo. Following the ideas introduced in Exercises

[[47 and [T4:8] show

... n71
[P (P)— lim LS00+ fob

n— o0 n

(Some of these ideas will again be used in the proof of Theorem below.)

=Epg, [f] for all f € L? (2,8, P).
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Definition 16.7. A sequence of random variables § = {&;} -, is a stationary

if (€2:63,,-..) 2 (€1,60,...).

If we temporarily let

0 (z1,22,3,...) =0 (x2,23,...) for (z1,z2,25,...) € RY, (16.2)

the stationarity condition states that 6¢& 4 £, Equivalently if
i = Lawp (&,&,...) on (RN, BEY), then & = {&}io, is stationary iff
pof® 1 = p. Let us also observe that ¢ is stationary implies §2¢ 4 0¢ < 13

and 6%¢ £ ¢ £ ¢, cte. so that 07¢ 2 ¢ for all n € NJ| In what follows for
T € (21, 22,73,...) € RY we will let Sy (z) =0,

Sp(x)=z14+ 29+ +2,, and
S: = max (Sl, SQ, ey Sn)
for all n € N.
Lemma 16.8 (Maximal Ergodic Lemma). Suppose & := {&;},-, is a sta-
tionary sequence and Sy, (§) = &1 + -+ + &, as above, then
E & :sup S, (&) > 0| > 0. (16.3)

Proof. In this proof, 8 will be as in Eq. (16.2)). If 1 < k <n, then
Sk (€) = &+ Sk—1 (0) < & + 551 (06) <& + 55, (06) = &1+ [S5, (6],
and therefore, S}, (§) < & + [S;; (0§)], . So we may conclude that

Ef6 : S5 (€) > 0] > B[S} (€) S5 (6€)], : 5 > 0]
= E[[S; ()], ~ 57 (66)], 15;0]
> E[[5; (9], — [5; (09)],] = E[S} (9)], ~E[S} (69)], =0,

n

wherein we used & 4 0¢ for the last equality. Letting n — oo making use of
the MCT and the observation that {S} (&) > 0} 1 {sup,, Sn (§) > 0} gives Eq.
(16.3). -

! In other words if {&k}5=, is stationary, then by lopping off the first random variable
on each side of the identity, (&2, &s,,...) = (€1,&2, . ..

d d
(€s,84,...) = (2,&3,,...) = (&1, &2, -).

Continuing this way inductively shows that stationarity is equivalent to

(Ens€nitsbnta,...) = (&1,&,...) for all n € N.

), implies that
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Theorem 16.9 (Birkoff’s Ergodic Theorem). Suppose that [ €
LY(02,B,P) or f >0 and is B — measurable, then

n

lim %Zfo&’“l —E[f|Bs] a.s. (16.4)
k=1

Moreover if f € LP (2,8, P) for some 1 < p < oo then the convergence in Eq.

holds in LP as well.

Proof. Let us begin with the general observation that if £ = (§1,&a,...) is
a sequence of random variables such that £ 00 = &1 for i = 1,2,..., then &
is stationary. This is because,

(517527"')g(§1a§2a"-)09:(510975209a-'-):(§2a€37"')-

We will first prove Eq. (16.4) under the assumption that f € L' (P). We
now let g := E[f|Bs] and & := fo6*"1 — g for all k € N. Since g is By —
measurable we know that g o § = g and therefore,

§rot = (foek_l_g)"a:foak—ngkﬂ

and therefore £ = (£1,&a, ... ) is stationary. To simplify notation let us write S,
for S, (§) = &+ - -+&,. To finish the proof we need to show that lim,, 37" =
0 a.s. for then,

1 — 1
Ezfoek_l = ESn—|—g—>g:1[*:[f|l’))9] a.s.
k=1

In order to show limnﬂoo‘%" = 0 a.s. it suffices to show M (§) :=

limsup,, S”T(E) < 0 a.s. If we can do this we can also show that M (=§) =

limsup,,_, =5n(8) < 0, i.e.

lim inf Sni(ﬁ) >0 > limsup Sf a.s.
n

n—oo n n— o0

which shows that lim,,_ %ﬂ = 0 a.s. Finally in order to prove M (§) < 0 a.s.

it suffices to show P (M (§) > ) = 0 for all € > 0. This is what we will do now.
Since S, 0 0 = S, 11 — & we have so that

n+1 1

M () 06 = limsup % (Snt1 — &) = limsup Spt1| =M ().

Thus M (§) is an invariant function and therefore A, := {M (&) > e} € By.
Using E [&1|Bo]) = E[f — g|Bs] = g — g = 0 a.s. it follows that
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0=E[E[&|Bs]: M (&) >e]=E[& : M (E—¢) > 0]
=E[§i—e:M(E—¢)>0]+eP(A).

If we now define & := (&, — €) 14_, which is still stationary since
§r00=({nol—e)la, 00 = ({ny1 —¢)la, :§i+17

then it is easily verified?] that
Ac={M (£—¢) >0} = {supSn (&) > 0} .
Therefore by an application of the maximal ergodic Lemma [16.8| we have,
2P (M () > 2) ~Eley — £ 4] = B[ :5up., (€) > 0] 20

which shows P (M (§) > ¢) = 0.

Now suppose that f € LP (P). To prove the LP — convergence of the limit in
Eq. it suffices by Corollary [12.47|to show {|%Sn (n)’p}zoz is uniformly
integrable. This can be done as in the second solution to Exercise (Resnick
§ 6.7, #5). Here are the details.

First observe that {|n|"},—, are uniformly integrable. Indeed, by station-
arity,

E[[nel” : [nel” > a] = E[Jm]” : Im|” > a]

and therefore

DCT
St;pE[lnk\” Snel” = al = Elm " s Im|” > a] = 0as a— oco.

Thus if ¢ > 0 is given we may find (see Proposition [12.42)) § > 0 such that
E[|ne|” : A] < & whenever A € B with P(A) < 4. Then for such an A, we

have (using Jensen’s inequality relative to normalized counting measure on

{1,2,...,n}),

1
n

|25, )

P 1 & 1
: < n Py = — L < —ne =-e¢.
A] E[ S (Inf") A] ng:lEan' A< ne=e

2 Since A. C {sup S,/n > €}, it follows that

A, = {sup% >5}ﬂA5 = {sup S, —ne >0} N A
={supSn (§ —¢) >0} NA. = {supSn (£ —¢) 14, > 0}

= {S‘,‘LPS" (&) > 0}-
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Another application of Proposition |12.42[ shows {’%Sn (n)‘p}zo:l is uniformly
integrable as

1
sup E ' ﬁSn (77)

P 1 n
<sup TS E[el’] = Efm” < oc.
n k=1

Finally we need to consider the case where f > 0 but f ¢ L* (P). As before,
let g =E[f|Bg] > 0. For r € (0,00) and let f, := f - 15<,. We then have

E[fr|Be] =E[f - 1g<r|Bo] = 1y<,E[f - |Bo] = 1y<r - g

and in particular, Ef, = E(14<,g) < r < oo. Thus by the L' - case already
proved,

1 k—1
nlingo -~ Z frof =1g<,-g as.
k=1

On the other hand, since g is § —invariant, we see that f,. o 8% = f o 6" . ly<r

and therefore
1 — _ 1 — _
=~ frottt= <n2fook 1) ly<r.
k=1 k=1

Using these identities and the fact that » < co was arbitrary we may conclude
that

1 n
lim — E fob* !t =gas. on {g<oo}. (16.5)
n—oo N
k=1

To take care of the set where {g = oo}, again let r € (0,00) but now take
fr=f Ar < f. It then follows that

NS b1 e L k-1
hnn—l>l<>2fnkg_1foe _hnn—l>l<>l<1>fnkg_1 [froe ] E[f A r|Bg]

Letting r T oo and using the cMCT implies,
1 n
1iminf—Zf 00" >E[f|Bg] =g
n—oo N
k=1

and therefore liminf, oo £ 3} | f o 0*"1 = oo a.s. on {g=o0}. This then
shows that

1 n
]: _ 0’671 = = e = .
ngrgonk%lfo oo =g as. on {g=o0}
which combined with Eq. (16.5)) completes the proof. ]

As a corollary we have the following version of the strong law of large num-
bers, also see Theorems 77 and Example [I8.71] below for other proofs.
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Theorem 16.10 (Kolmogorov’s Strong Law of Large Numbers). Sup-
pose that {X,} " | are i.i.d. random variables and let S, == X1 + -+ + X,,. If
X, are integrable or X, > 0, then

lim lSn =EX; a.s.

n—oo n
and 1S, — EX; in L' (P) when E|X,| < co.

Proof. We may assume that 2 = RY, B is the product o — algebra, and
P = u®N where 1 = Lawp (X1). In this model, X, (w) = w, for all w € 2
and we take 6 : 2 — (2 as in Eq. . Wit this notation we have X,, =
X1 060" ! and therefore, S,, = Y j_, X1 06071, So by Birkoff’s ergodic theorem
lim,, oo %Sn =E[X1|Bg] =: g as.

If A€ By, then A=0""(A4) € 0 (Xn+1, Xnt2,...) and therefore A € 7 =
Mo (Xnt1, Xnt2,...) — the tail o — algebra. However by Kolmogorov’s 0 - 1
law (Proposition , we know that 7 is almost trivial and therefore so is
By. Hence we may conclude that g = ¢ a.s. where ¢ € [0, 0] is a constant, see
Lemma [10.45]

If X; > 0 as. and EX; = oo then we must ¢ = E[X;|By] = oo a.s. for
if ¢ < oo, then EX; = E[E[X;|By]] = E[¢] < co. When X; € L' (P), the
convergence in Birkoff’s ergodic theorem is also in L' and therefore we may
conclude that

c=Ec= lim E [15‘"} = lim lE [Sn] = EX;.
n

n— o0 n—oo n

Thus we have shown in all cases that lim,, . %Sn =E[X1|By) =EX; as. m
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Part 111

Stochastic Processes 1






In the sequel (£2, B, P) will be a probability space and (S, S) will denote a
measurable space which we refer to as state space. If we say that f : 2 —
S is a function we will always assume that it is B/S — measurable. We also
let S denote the bounded S/Bg — measurable functions from S to R. On
occasion we will assume that (5,S) is a standard Borel space in order to have
available to us the existence of regular conditional distributions (see Remark
@ and Theorem and the use of Kolmogorov’s extension Theorem
[17.46] for proving the existence of Markov processes.

In the rest of this book we will devote most of our time to studying stochas-
tic processes, i.e. a collection of random variables or more generally random
functions, X := {X;: 2 — S}, ;, indexed by some parameter space, T. The
weakest description of such a stochastic process will be through its “finite di-
mensional distributions.”

Definition 16.11. Given a stochastic process, X := {X;: 2 — S},.,, and a
finite subset, A C T, we say that vy = Lawp ({X;},c,) on (54,8%4) is a
finite dimensional distribution of X.

Unless T is a countable or finite set or X; has some continuity properties
in ¢, knowledge of the finite dimensional distributions alone is not going to be
adequate for our purposes, however it is a starting point. For now we are going
to restrict our attention to the case where T =Ny or T =Ry :=[0,00) (t € T
is typically interpreted as a time). Later in this part we will further restrict
attention to stochastic processes indexed by Ny leaving the technically more
complicated case where T'= R to later parts of the book.

Definition 16.12. An increasing (i.e. non-decreasing) sequence {Bi},., of
sub-o-algebras of B is called o filtration. We will let By = VierB: =
o (UierBi) . A four-tuple, (Q,B, {Bt}teT7P)7 where (£2,B, P) is a probabil-
ity space and {Bi},cp is a filtration is called a filtered probability space. We
say that a stochastic process, {Xi},cq, of random functions from 2 — S is
adapted to the filtration if X, is B;/S — measurable for every t € T.

A typical way to make a filtration is to start with a stochastic process
{Xi},cr and then define B := o (X, : s <t). Clearly {X;},., will always be
adapted to this filtration.

In this part of the book we are going to study stochastic processes with
certain dependency structures. This will take us to the notion of Markov pro-
cesses and martingales. Before starting our study of Markov processes it will be
helpful to record a few more facts about probability kernels.

Given a probability kernel, @, on S x S (so @ : S x § — [0,1]), we may
associate a linear transformation, T' = Tg : S — S defined by

(Tf) (x) =Q(z, f) = /SQ(I,dy)f(y) for all f € Sp. (16.6)

It is easy to check that T satisfies;

1. T1 =1,
2.Tf>0if0< f e Sy,
3. if f, € S and f,, — f boundedly then T'f,, — T'f boundedly as well.

Notice that an operator T : S, — S satisfying conditions 1. and 2. above
also satisfies Tf < Tg and T f is real is f. Indeed if f = f — f_ is real then

Tf=T(fs—f)=Tfs -~ T}
with 0 <Tfr € R and if f < g then 0 < f — g which implies
Tf-Tg=T(f-g)=0.

As £f < |f| when f is real, we have £Tf < T'|f| and therefore |Tf| < T |f].
More generally if f is complex and z € S, we may choose # € R such that
e’ (Tf) (x) > 0 and therefore,

(TF) (@) = € (Tf) (&) = (T [ ]) ()
= (TRe [e”f]) (z) + i (TIm [e”f]) ().

Furthermore we must have (7'Im [¢? f]) (z) = 0 and using Re [¢? f] < |f| we
find,

(Tf) (2)] = (TRe [ef]) () < (T|f]) (2).
As x € S was arbitrary we have shown that |T'f| < T'|f|. Thus if |f| < M for
some 0 < M < oo we may conclude,

Tf| < TIf| < T (M-1) = MT1 = M.

Proposition 16.13. If T : S, — Sy is a linear transformation satisfying the
three properties listed after Eq. (16.6), then Q (x, A) := (T14) (z) for all A€ S
and x € S is a probability kernel such that Eq. holds.

The proof of this proposition is straightforward and will be left to the reader.
Let me just remark that if Q (z, A) := (T'14) (z) for all z € S and A € S then
Tf=Q(:,f) for all simple functions in S, and then by approximation for all
fesSy.

Corollary 16.14. If Q1 and Q2 are two probability kernels on (S,S) x (S,S),
then T, Tg, = Tg where Q is the probability kernel given by

Q (x’ A) = (TQ1TQ2 1A) (.T) = Q1 (x’ Q2 (?A))
= /SQl (z,dy) Q2 (y, A)

for all A€ S and x € S. We will denote Q by Q1Q>.



From now on we will identify the probability kernel @ : S x & — [0,1]
with the linear transformation T' = Ty and simply write Qf for Q (-, f). The
last construction that we need involving probability kernels is the following
extension of the notion of product measure.

Proposition 16.15. Suppose that v is a probability measure on (S,S) and Qy :
Sx8 — [0, 1] are probability kernels on (S,8)x(S,S) for1 < k < n. Then there

exists a probability measure p on (S”H,S(g(”“)) such that for all f € S;?(HH)
we have

n () = [ v (o) [ @) [ Quar.da).
/SQn (xn—1,dxyn) f (o, ..., xn). (16.7)

Part of the assertion here is that all functions appearing are bounded and mea-
surable so that all of the above integrals make sense. We will denote p in the
future by,

dp (2o, ..., xn) = dv (z0) Q1 (20, dz1) Q2 (21, dx2) . .. Qn (Tn—1,dzn) .

Proof. The fact that all of the iterated integrals make sense in Eq.
follows from Exercise the measurability statements in Fubini’s theorem,
and induction. The measure u is defined by setting p(A) = u(14) for all A €
S®(M+) Tt is a simple matter to check that p is a measure on (S"+1, S®(+1))

and that fs fdp agrees with the right side of Eq. 1] for all f € S,?(nﬂ). ]

Remark 16.16. As usual the measure p is determined by its value on product
functions of the form f (zo,...,z,) = [/, fi (z:;) with f; € S,. For such a
function we have

p(f) =E, [foQiMpQaMy, ... Qn_1My, ,Qnfn]

where My : S, — Sy is defined by Mg = fg, i.e. My is multiplication by f.



17

The Markov Property

For purposes of this section, 7= Ny or R, ((2, B, {B:i},cr P) is a filtered
probability space, and (S,S) be a measurable space. We will often write ¢ > 0
to mean that ¢ € T. Thus we will often denote a stochastic process by {X;},-,
instead of {X¢},cp -

Definition 17.1 (The Markov Property). A stochastic process
{Xt: 2 — S}, cp is said to satisfy the Markov property if X; is adapted and

Ep. f(Xy) :=E[f(Xy)|Bs] =E[f (X¢)|Xs] a.s. forall0<s<t (17.1)
and for every f € Sp.

If Eq. holds then by the factorization Lemmathere exists F' € Sy
such that F (X,) = E[f (X;)|Xs]. Conversely if we want to verify Eq. it
suffices to find an F € S, such that Eg_f (X;) = F (Xs) a.s. This is because,
by the tower property of conditional expectation,

Es.f(X:) = F (X)) = E[F (X,) |X,] = E[Es,  (X;) |X.] = E[f (X,) |X.] as.

(17.2)
Poetically speaking as stochastic process with the Markov property is forgetful
in the sense that knowing the positions of the process up to some time s < ¢ does
not give any more information about the position of the process, X, at time ¢
than knowing where the process was at time s. We will in fact show (Theorem
below) that given X, what the process did before time s is independent of
the what it will do after time s.

Lemma 17.2. If {X.},., satisfies the Markov property relative to
the filtration {Bt}tzo it also satisfies the Markov property relative to

{B¥ :a(XS:sgt)}tZO.

Proof. It is clear that {X;},., is Bi* — adapted and that o (X,) C By C B,
for all s € T. Therefore using the tower property of conditional expectation we
have,

Epx f(X1) = EpxEg, f (X1) = EpxEo(x,) f (X) = Eo(x) f (Xi) -

Remark 17.3.1f T = Ny, a stochastic process {Xy},~, is Markov iff for all
f €S, -

E[f (Xm+1) |Bm] =E[f (Xm+1) | Xm] as. for all m >0 (17.3)
Indeed if Eq. (17.3) holds for all m, we may use induction on n to show
E[f (Xn)|Bm] =E[f (X,)|Xm] as. for all n > m. (17.4)

It is clear that Eq. (17.4) holds for n = m and n = m + 1. So now suppose Eq.
(17.4) holds for a given n > m. Using Eq. (17.3)) with m = n implies

Ean (Xn+1) =E [f (XnJrl) ‘Xn] =F (Xn)

for some F' € S,. Thus by the tower property of conditional expectations and
the induction hypothesis,

Eg,, f(Xn+1) =Eg,Ep, f (Xnt1) = Ep,, I (X5) = E[F (Xy) [ Xn)]
=E [Ean (XnJrl) |Xm] =E [f (Xn+1) |Xm] .
The next theorem and Exercise shows that a stochastic process has the

Markov property iff it has the property that given its present state, its past and
future are independent.

Theorem 17.4 (Markov Independence). Suppose that {X;},.p is an
adapted stochastic process with the Markov property and let Fs := o (X¢ : t > s)
be the future o — algebra. Then By is independent of Fs given Xg which we
abbreviate as By J)_(J_ Fs. In more detail we are asserting the

P(ANB|Xs) = P(AlX;) P(B|Xs) a.s.
for all A € Bs and B € Fs or equivalently that
E[FG|Xs] =E[F|X{-E[G|X;] a.s. (17.5)

for all F € (Bs), and G € (Fy), and s € T.
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Proof. Suppose first that G =[]\, g; (X¢,) with s <t <to <--- <1, and
gi € Sp. Then by the Markov property and the tower property of conditional
expectations,

H gi (th)

i=1

=Eg.Es,, lH i (Xti)]
i=1
n—1

= Eg, H 9i (Xt,) - Eg,,  gn (Xt,)
i=1
:171 n—1
=Es, [] 0i (X0) B [gn (X0,) X0, ] = Es, [] 3 (X0)

i=1 i=1

Eg, [G] = Eg,

s

where g; = ¢; for i < n—1 and §,—1 = gn—1 - g where g is chosen so that
E [gn (X:,) | Xt,_.] = 9 (Xt,_,) a.s.. Continuing this way inductively we learn
that Eg, [G] = F (X) a.s. for some F € S, and therefore,

E [G|X9] =E [EB<G|X‘;] =E [F (Xs) |Xs] =F (Xs) = ]EBS [G] a.s.

Now suppose that G = go (X,) [, gi (X,) where g; € S, and s < t; <
to <--- <ty and F € (By),. Then

Ep, [FG] = F -Eg,G=F - go(Xs)Eg, lﬁgl (Xt)l

Xs]

9o (Xs) ng‘ (Xe,) | Xs

:F'QO(XS)E

H 9gi (th)
i=1

—F-E = F-E[G|X,].

We may now condition this equation on X to arrive at Eq. (17.5)) for product
functions, G, as above. An application of the multiplicative system Theorem
8.2l may now be used to show that Eq. (17.5) holds for general G € (F,),. =

Exercise 17.1. Suppose that {X;},., is an adapted stochastic process such
that Eq. (I7.5) holds for all F' € (B;), and G € (F;), and s € T. Show that
{Xt};cp has the Markov property.

17.1 Markov Processes
If S is a standard Borel space (i.e. S is isomorphic to a Borel subset of [0, 1]), we

may a find regular conditional probability kernels, Qs on (S, S) x(S,S) — [0, 1]
for all 0 < s < t such that
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E [f (Xt) ‘Xs] = Qs,t (Xs; f) = (Qs,tf) (Xs) a.s. (176)

Moreover by the Markov property if 0 < o < s < t, then

(Qa,tf) (Xa) =K [f (Xt) |XU} =E [EBsf (Xt) |XU]
=E [(Qstf) (XS) |Xa] = (Qa,sttf) (Xa) P —as.
= Qo‘,s (XU§ Qs,t ('; f)) R P — a.s.

If we let py := Lawp (X)) : S — [0,1] for all ¢ € T, we have just shown that for
every f € Sy, that

Qot (5f) = Qoys (5Qst (5 ) po —as. (17.7)

In the sequel we want to assume that such kernels exists and that Eq. (17.7))
holds for everywhere not just p, — a.s. Thus we make the following definitions.

Definition 17.5 (Markov transition kernels). We say a collection of prob-
ability kernels, {Qst}ocscicnnr 0N S X S are Markov transition kernels
if Qs,s(x,dy) = 64 (dy) (as an operator Qs,s = Is,) for all s € T and the
Chapmann-Kolmogorov equations hold;

Qot = QusQsy for all0 <o < s <t (17.8)

Recall that Eq. (17.8) is equivalent to

Qo (x,A) = / Qo5 (2,dy) Qi (y, A) forallz e Sand A€ S (17.9)
S

or
Qo () = Qous (#: Qs (5 £)) for allz € S and [ € S, (17.10)

Thus Markov transition kernels should satisfy Eq. everywhere not just
almost everywhere.

The reader should keep in mind that (), (z, A) represents the jump prob-
ability of starting at x at time o and ending up in A € § at time t. With this
in mind, Qs s (x,dy) Qs (y, A) intuitively is the probability of jumping from z
at time s to y at time ¢ followed by a jump into A at time u. Thus Eq.
states that averaging these probabilities over the intermediate location (y) of
the particle at time ¢ gives the jump probability of starting at = at time s and
ending up in A € § at time ¢. This interpretation is rigorously true when S is
a finite or countable set.

Definition 17.6 (Markov process). A Markov process is an adapted
stochastic process, { Xy : £2 — S}, , with the Markov property such that there
are Markov transition kernels {Q;t}o<s<t<oo> on S x S such that Eq.
holds. T
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Definition 17.7. A stochastic process, {Xt 02— 5= Rd}teT , has indepen-
dent increments if for all finite subsets, A = {0<tx <t; <---<t,} CT
the random wvariables {Xo} U {th — thfl}’lz:l are independent. We refer to
X — X, for s <t as an increment of X.

Exercise 17.2. Suppose that {Xt 02— 5= Rd}teT is a stochastic process

with independent increments and let B; := B for all + € T. Show, for all
0 < s < t, that (X; — X,) is independent of BX and then use this to show
{Xt}ep is @ Markov process with transition kernels defined by 0 < s <,

Qs (x,A) :=FE [l (z+ X; — X,)] forall A€ S and z € R (17.11)

You should verify that {Qs:},. ., are indeed Markov transition kernels, i.e.
satisfy the Chapmann-Kolmogorov equations.

Ezample 17.8 (Random Walks). Suppose that {fn = Rd}:O:O are in-
dependent random vectors and X, := Y -, & and By, := o (&, ..., &m) for
each m € T = Ny. Then {X,,}, -, has independent increments and therefore
has the Markov property with Markov transition kernels being given by

Qs (v, f) =E[f (v + X; — X,)]

=E|flz+ ) &

s<k<t

or in other words,

Qui (@) =Lawp [24+ 3 &

s<k<t

The one step transition kernels are determined by

(Quns1f) (@) = E[f (x + &ny1)] for n € Np.

Exercise 17.3. Let us now suppose that {&,: 2 — S}ZO:O are independent
random functions where (S5,S) is a general a measurable space, B, :=
o (€0,&1,--.,&n) for n >0, u, : S x S — S are measurable functions for n > 1,
and X,, : 2 — S for n € Ny are defined by Xy = & and then inductively for
n > 1 by

Xnt1 = Ung1 (Xn,&ngr) for n > 0.

Convince yourself that for 0 < m < n there is a measurable function, ¢, , :
Srn=m+l G determined by the {uy} such that X,, = @ m (Xim, Emt1y -5 &n) -
(You need not write the proof of this assertion in your solution.) In particular,
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Xy = ¢no (&0, ---,&n) is B, /S — measurable so that X = {X,}, -, is adapted.
Show {Xn}nZO is a Markov process with transition kernels, -

Qm,n (x, ) = Lawp (SDn,m (x7£m+17 cee afn)) forall 0 <m <n

where (by definition) Q. m (z,-) = J,(-). Please explicitly verify that
{Q@mntocmen are Markov transition kernels, i.e. satisfy the Chapmann-
Kolmogorov equations.

Remark 17.9. Suppose that T = Ng and {@Q : 0 < m < n} are Markov tran-
sition kernels on S x S. Since

Qm,n = Qm,m+1Qm+1,m+2 cee Qn—l,na (1712)

it follows that the @, , are uniquely determined by knowing the one step tran-
sition kernels, {Qnnt1}r. - Conversely if {Qn nq1} -, are arbitrarily given
probability kernels on S x S and @, are defined as in Eq. (17.12), then the
resulting {Q.n : 0 < m < n} are Markov transition kernels on S x S. Moreover
if S is a countable set, then we may let

I (2,Y) = Qmn (,{y}) = P (X, =y| Xy =2x) forallz,y e S (17.13)

so that
Qm,n (937 A) = Z dm.n (:E, y) .

yeA

In this case it is easily checked that

Gmn (T,Y)

= Z dm,m+1 (l’, ‘rerl) dm+1,m+2 (merla $m+2) e Gn—1n (xnflv y) .
r; ES:m<i<n

(17.14)
The reader should observe that this is simply matrix multiplication!

Exercise 17.4 (Polya’s Urn). Suppose that an urn contains r red balls and
g green balls. At each time (¢t € T = Ng) we draw a ball out, then replace it and
add ¢ more balls of the color drawn. It is reasonable to model this as a Markov
process with S := Ny x Ny and X,, := (75, gn) € S being the number of red and
green balls respectively in the earn at time n. Find

tnnt1((r9),(”,9) = P (Xni1 = (r',9') [ X0 = (r,9))

for this model.
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Theorem 17.10 (Finite Dimensional Distributions). Suppose that X =
{Xt}i>0 is a Markov process with Markov transition kernels {Qs,t}o< <y - Fur-
ther let v := Lawp (Xg), then for all 0 =tg < t; < tg < --- < t, we have

Lawp (Xt Xi,,. ., Xp,) (do, day, ... day) = dv (z0) [ [ Qui_y, (im1, dai)
i=1
(17.15)
or equivalently,

E[f (Xto, Xty, -5 Xe,)] 2/ N f@o w1,y an) dv (o) [ [ Qery o, (wica, dazy)
Sn+1 i—1

(17.16)
forall f € Sl?(nﬂ).

Proof. Because of the multiplicative system Theorem 8.2] it suffices to prove
Eq. for functions of the form f (z1,...,2,) = [\ fi (x;) where f; € Sp.
The proof is now easily completed by induction on n. It is true for n = 0 by
definition of v. Now assume it is true for some n —1 > 0. We then have, making
use of the inductive hypothesis, that

E[f(Xto?XtN"-ath)]

=EEs,, , [H fi (Xti)]

=0

=E

n—1
Qs it (Xtn 15 fn) - H fi (Xti)]
i=0

n—1 n—1
:/s Qtor it (@n1, fo) - [ fi (i) dv (o) [ Qucvts (wica, dai)
" 1=0 i=1

n—1 n—1
— [ [ @i @nmrdnn) fuen)] - TT £ o o) T Qo i)
1=0 =1

=/ . f@o, a1, ) dv (o) [ [ Qe s (wica, dai)
st i=1

as desired. [ ]

Theorem 17.11. Suppose that {Qst}y< .., are Markov transition kernels on
a standard Borel space, (S,S). Let 2 := ST, X; : 2 — S be the projection
map, X¢ (W) = w(t) and B; = BYX = 0(X,:5<t) forallt € T and B :=
S®T = g (X;:t€T). Then to each probability measure, v, on (S,S) there
exists a unique probability measure P, on (£2,B) such that 1) Lawp, (Xo) = v
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and 2) { X1}~ s a Markov process having { Qs+ }o« ., as its Markov transition
kernels. B T

Proof. This is mainly an exercise in applying Kolmogorov’s extension Theo-
rem [17.46] as described in the appendix to this chapter. I will only briefly sketch
the proof here.

For each A ={0=ty <t; <te <---<t,} CT,let Py be the measure on
(5nt1, 82+ defined by

dPy (zo, 21, - .., 2y) = dv (20) HQti_l,ti (Ti—1,dz;).

i=1

Using the Chapman-Kolmogorov equations one shows that the {Pa} 4 1 (4 Cy
T denotes a finite subset of T') are consistently defined measures as described
in the statement of Theorem [I7.46] Therefore it follows by an application of
that theorem that there exists a unique measure P, on ({2, B) such that

Lavvpu (XlA) =Py forall A Cyr T. (1717)

In light of Theorem [I7.10} in order to finish the proof we need only show
that {X¢},-, is a Markov process having {Qs ¢}, ., as its Markov transition
kernels. Since if this is this case it finite dimensional distributions must be given
as in Eq. and therefore P, is uniquely determined. So let us now verify
the desired Markov property.

Againlet A = {0=tg<t;1 <te<- - <tp,} CT witht,_1 =s<t=t,
and suppose that f(zo,...,2,) = h(zo,...,Zn-1)9g(x,) with h € S;?" and
f € Sp. By the definition of P, we then have (writing E, for Ep,),

EV [h (Xtoa th geue 7th—1) g (Xt)]

= / X h(xo, 21, .., Tn-1) g (xn)dv (o) H Qi yt; (Tiz1,dzy)
S‘n, 1

=1
n—1
= / h (.’EO, Liy.e- 7xn71) Qtn—lvtn (xnflvg) dv (xO) H Qti—lqti (‘rifl’ dxl)
" i=1

- Eu [h (Xtm tha ey th_l) Qtn_l,tn (th_l,g)]
=E, [h (thvtha B th,l) Qs,t (stg)]

It then follows by an application of the multiplicative system theorem that
E, [Hg (X:)] =E, [HQs+ (X5, g)] for all H € (By),

and therefore that
E, [g(Xt)[Bs] = Qs (X5, 9) as.
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]
We are now going to specialize to the more manageable class of “time ho-
mogeneous” Markov processes.

Definition 17.12. We say that a collection of Markov transition kernels,
{Qs,t}gcs<y are time homogeneous if Qs = Qot—s for all0 < s < t. In
this case we usually let Q; := Qo.t—s. The condition that Qs s (x,-) = 0z now
reduces to Qo (z,-) = 0, and the Chapmann-Kolmogorov equations reduce to

QsQr = Qs-‘rt for all s,t > 0, (1718)

i.€.

/ Qs (z,dy) Qt (y, A) = Qsyt (x, A) for all s,t >0, z €S, and A€ S.
s

(17.19)
A collection of operators {Q+},~, with Qo = Id satisfying Eq. (17.18) is called
a one parameter semi-group.

Definition 17.13. A Markov process is time homogeneous if it has time
homogeneous Markov transition kernels. In this case we will have,

E[f (X:)[Bs] = Qi—s (Xs, [) = (Qi—sf) (Xs) a.s (17.20)

forall0<s<tand f €Sp.

Theorem 17.14 (The time homogeneous Markov Property). Suppose
that (S,8) is a measurable space, Q; : S x S — [0,1] are time homoge-

neous Markov transition kernels, (Q,B, {Bt}t>0) s a filtered measure space,

{X;: 02 — S},-, are adapted functions, and for each x € S there exists a prob-
ability measure, P, on (£2,B) such that;

1. Xo (w) = for Py, — a.e. w and
2. {X¢},.0 i a time homogeneous Markov process with transition kernels
{Q¢},>¢ relative to P,.

Let us further suppose that P is any probability measure on (£2,B) such that
{Xi},50 is a time homogeneous Markov process with transition kernels being
{Q:}. Then for all F € ST and t > 0 we have that S > x — E,F (X) is S/Br

— measurable and

Ep [F (Xis.) |Be] = Ep [F (Xey) | Xe] = Ex, [F(X)] P -as  (17.21)
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Warning:in this equation Ex, does not denote E,(x,) = E[|X{] but in-
stea(ﬂ it means the composition of X; with the function S >z — E, [F (X)] €
R. In more detail we are saying,

Ep [F(Xiy.) 1Bi] (@) = Ex, () [F (X))

B /_QF (X (W) P (do').

Proof. Let 1v; = Lawp (X,). If g € Sy, f € SP"Y, and F(X) =
f(Xt(J7' ..,th), then

Ep[9(Xe) F (Xeq)] = Ep 9 (Xe) [ (Xegte, - --

:/g(xo)f(mo,..., ) dvy (20 HQt —t; (xj1,dxy)

s Xtpvt)]

= /dut (0) g (20) Eno f (Xtg, -, Xt,)
- / vy (0) g (20) Eny F (X) = E, [g (X)) Ex, F (X))].

An application of the multiplicative systems Theorem shows this equation
is valid for all F' € S{?T and this tells us that

Ep [F (X)) | X =Ex,F (X) P, — as.

for all F € S
Now suppose that G € (B), and F € SP7. As F (X4.)
by Theorem [I7.4] that

€ (F), it follows

p|GF (Xey) [ Xe] = Ep [GIXy] - Ep [F (X31.) | Xi] aus.

Thus we may conclude that

Ep [GF (Xi1.)] = Ep [Ep [GIXy] - Ep [F (Xi1.) | X4]]
=Ep [Ep [G|X] - Ex, F (X)]

=Ep [Ep [Ex, F'(X)-G|Xi]] =Ep [Ex, [F (X)] - G].

This being valid for all G € (B;), is equivalent to Eq. (17.21)). [ ]

! Unfortunately we now have a lot of different meanings for E¢ depending on what &
happens to be. So if £ = P is a measure then Ep stands for expectation relative to
P. If £ = G is a o — algebra it stands for conditional expectation relative to G and
a given probability measure which not indicated in the notation. Finally if z € S
we are writing E, for Ep, .
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234 17 The Markov Property

17.2 Discrete Time Homogeneous Markov Processes

The proof of the following easy lemma is left to the reader.

Lemma 17.15. If Q,, : S xS — [0,1] for n € Ny are time homogeneous
Markov kernels then Q,, = Q™ where Q := Q1 and Q° := I. Conversely if Q is
a probability kernel on S x S then Q, := Q™ for n € Ny are time homogeneous
Markov kernels.

Ezample 17.16 (Random Walks Revisited). Suppose that & : 2 — S := R? is
independent of {fn 12— 5= Rd}:1 which are now assumed to be i.i.d. If
Xm = Yo & is as in Example then {X,,}, . is a time homogeneous
Markov process with

Qm (z,-) = Lawp (X, — Xo)

and the one step transition kernel, Q) = @)1, is given by

Qf(x)=@<x,f>=E[f<x+a>1=/sf<x+y>dp<y>

where p := Lawp(£). For example if d = 1 and P({,=1) = p and
P(=-1) = q:=1-p for some 0 < p < 1, then we may take S = Z
and we then have

Qf(x)=Qz, f)=pf(x+1)+qf (x—1).

Ezxample 17.17 (Ehrenfest Urn Model). Let a beaker filled with a particle fluid
mixture be divided into two parts A and B by a semipermeable membrane. Let
X, = (# of particles in A) which we assume evolves by choosing a particle at
random from A U B and then replacing this particle in the opposite bin from
which it was found. Modeling {X,} as a Markov process we find,

0 ifj¢{i—1,i+1}
PXpti=j|Xn=0)=q¢ x I Jj=i-1 =:q(ij)
f

i j=i+1

As these probabilities do not depend on n, {X,,} is a time homogeneous Markov
chain.

Exercise 17.5. Consider a rat in a maze consisting of 7 rooms which is laid
out as in the following figure.

1 2 3
4 ) 6
7
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In this figure rooms are connected by either vertical or horizontal adjacent
passages only, so that 1 is connected to 2 and 4 but not to 5 and 7 is only
connected to 4. At each time t € Ny the rat moves from her current room to
one of the adjacent rooms with equal probability (the rat always changes rooms
at each time step). Find the one step 7 x 7 transition matrix, ¢, with entries
given by ¢ (i,7) := P (X,41 = j| X = 1), where X,, denotes the room the rat
is in at time n.

Solution to Exercise ([17.5)). The rat moves to an adjacent room from near-
est neighbor locations probability being 1/D where D is the number of doors in
the room where the rat is currently located. The transition matrix is therefore,

1 23 4567
[0 1/2 0 1/2 0 0 0]
1/3 0 1/3 0 1/3 0 0
01/20 0 0 1/2 0
¢g=11/30 0 0 1/3 0 1/3
0 1/3 0 1/3 0 1/3 0
0 01/20 1/20 0
|00 0 1 0 0 0|

(17.22)

N O U W N

and the corresponding jump diagram is given in Figure [17.1

1/2 1/3

1/2L 71/3 1/3(/ /)1/3 1/2(/ 71/2
1/3 1/3
1/3 1/2

Fig. 17.1. The jump diagram for our proverbial rat in the maze.

Exercise 17.6 (2 - step MC). Consider the following simple (i.e. no-brainer)
two state “game” consisting of moving between two sites labeled 1 and 2. At
each site you find a coin with sides labeled 1 and 2. The probability of flipping a
2 at site lisa € (0,1) and a 1 at site 2is b € (0, 1). If you are at site ¢ at time n,
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then you flip the coin at this site and move or stay at the current site as indicated
by coin toss. We summarize this scheme by the “jump diagram” of Figure
It is reasonable to suppose that your location, X,, at time n is modeled by a

N O=00

Fig. 17.2. The generic jump diagram for a two state Markov chain.

Markov process with state space, S = {1,2}. Explain (briefly) why this is a
time homogeneous chain and find the one step transition probabilities,

¢(i,§) = P(Xoi1 = jIX, = 1) fori,j € 8.

Use your result and basic linear (matrix) algebra to compute,
lim,, 0 P (X, =1). Your answer should be independent of the possible
starting distributions, v = (11, 1) for X where v; := P (Xy = 1).

17.3 Continuous time homogeneous Markov processes

An analogous (to Lemma “infinitesimal description” of time homoge-
neous Markov kernels in the continuous time case can involve a considerable
number of technicalities. Nevertheless, in this section we are going to ignore
these difficulties in order to give a general impression of how the story goes. We
will cover more precisely the missing details later.

So let {Qt},cp, be time homogeneous collection of Markov transition ker-
nels. We define the infinitesimal generator of {Q:},~, by,
Quf—f

t

d .

For now we make the (often unreasonable assumption) that the limit in Eq.
holds for all f € S. This assumption is OK when S is a finite or
sometimes even a countable state space. For more complicated states spaces we
will have to restrict the set of f € S, that we consider when computing Af by
Eq. ( You should get a feeling for this issue by working through Exercise
?7? which involves “Brownian motion.”

Since we are assuming %|0+ Q:f exists we must also have lim; g Qrf = f.
More generally for ¢,h > 0, using the semi-group property, we have

Qiyn — Q= (Qn —1)Qr = Q¢ (Qn — I) (17.24)
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and therefore,

Quinf —Qif =(Qn—1)Qif - 0ash |0

so that @, f is right continuous. Similarly,

Qin—Qi=—(Qn—1)Qt—n = —Qt—n(Qn—1I) (17.25)

and

|Qt—nf —Quf| = |Qt—n (Qn —1I) f| <[Qe—n |[(Qn —I) f]| < SgPKQh = 1) fl

which will tend to zero as h | 0 provided Qrf — f uniformly (another fantasy
in general). With this as justification we will assume that t — Q. f is continuous
in ¢.

Taking Eq. (17.24) divided by h and Eq. (17.25) divided by —h and then
letting h | 0 implies,

(i) @r=40s=aus

and J
— = AQ; = Q.A.
(4) a-a-a
where (%) . and (&) _ denote the right and left derivatives at ¢. So in principle

we can expect that {Q¢},~ is uniquely determined by its infinitesimal generator
A by solving the differential equation,

d

Assuming all of this works out as sketched, it is now reasonable to denote Q;
by €*4. Let us now give a few examples to illustrate the discussion above.

Ezample 17.18. Suppose that S = {1,2,...,n} and Q; is a Markov-semi-group
with infinitesimal generator, A, so that %Qt = AQ; = Q:A. By assumption
Q:(i,7) > 0 for all 4,5 € S and Z?Zl Q: (i,7) = 1 for all i € S. We may write
this last condition as ;1 =1 for all ¢ > 0 where 1 denotes the vector in R™
with all entries being 1. Differentiating ;1 =1 at ¢ = 0 shows that A1 = 0,
ie. 320 Ajj =0 for all i € S. Since

Az’j — lim Q¢ (4,7) — 51‘;‘
t10 t

if i # j we will have,
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236 17 The Markov Property

A

ij

= lim
10

Qt (17.7) > 0.
— 2

Thus we have shown the infinitesimal generator, A, of ); must satisfy A;; > 0
for all ¢ # j and Z 1A =0forall i € S. You are asked to prove the converse
in Exercise [7.7

Exercise 17.7. Suppose that S = {1,2,...,n} and A is a matrix such that
A;j > 0fori+#jand Z?=1 A;; = 0 for all 4. Show

o0 tn
Qr=ct=>" AT (17.27)
n=0

is a time homogeneous Markov kernel.

Hints: 1. To show @y (i,7) > 0 for all ¢t > 0 and 4,j € S, write Q; =
e~ retXM+4) where A > 0 is chosen so that A + A has only non-negative
entries. 2. To show Zjes Q¢ (i,7) = 1, compute %Qtl.

Ezample 17.19 (Poisson Process). By Exercise it follows that Poisson pro-
cess, {N; € §:=Np},., with intensity A has the Markov property. For all
0 < s <t we have, -

P(N;=y|Ns=2)=P(Ns+ N; — Ny = y|N; = x)
= P(Ns+ Ny — N; = y|Ns =)
=P(N;— Ny =y —z|Ns =1x)

A(E=3)""" _\it=s
R e M =g (2,y).
With this notation it follows that
P(f (Nt) |Ns) = (Qtfsf) (Ns)
where
2) =Y aq(z,y) f ()
yeSs
- Z 1y>w _)‘tf (v)
yeSs
— (A"
= nzz:o ¢ Mf(x+n). (17.28)

In particular {N},~, is a time homogeneous Markov process. It is easy (but
technically unnecessary) to directly verify the semi-group property;
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(9:s) (2,2) = > (2,9) g (¥, 2) = qope (2, 2) .
yeSs

This can be done using the binomial theorem as follows;

(A" As)* Y

D (@ y)as (v, 2 lex e‘“ : 1221,&'(“
yeSs z€8 —)! (z—y)!
St ()\t)n ()\S)zfzfn
= (z—xz—n)!

_ 1z>x67>\(t+s) Zz_f (/\t)n (AS)Z_I_TL

= Qs+t (.’IJ, Z) .

To identify infinitesimal generator, A = %|O+Qt7 in this example observe
that

Qtf(

+n)

n—1
= —\Q:f (z +Ae—MZ At f(z+n)

= —AQ:f () + Ae™™ Z (/\;')nf (x+n+1)
n=0 '

= —AQ:f () + AMQef) (x +1)

= QA+ =Af()](z)
and hence

Af (@) =A(f(z+1) = f ().

Finally let us try to solve Eq. (17.26]) in order to recover ); from A. Formally
we can hope that Q; = e'4 where e’/ is given as its power series expansion. To
simplify the computation it convenient to write A = A (T — I) where I'f = f
and Tf = f(-+1). Since I and T commute we further expect
tA _ M(T—I) _ ,=MINT _ =Xt MT

e
where
— ()",
(M) (@) = D> = (1)) (@)

n=0

o~ ()"

n=0
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Putting this all together we find
o0 )n

( tAf 7)\tz w )

which is indeed in agreement with Qf (z) as we saw in Eq. (17.28).

Definition 17.20 (Brownian Motion). Let (Q,B, {Bt}icr, ,P) be a fil-

tered probability space. A real valued adapted process, {X;: 2 — S = R}teR+ ,
is called a Brownian motion if;

1. {Xi}ier, has independent increments,

2.for0<s<t, Xy — X, 4 N (0,t —s), i.e. Xy — X5 is a normal mean zero
random variable with variance (t — s) ,
3.t — Xy (w) is continuous for all w € (2.

Exercise 17.8 (Brownian Motion). Assuming a Brownian motion {B;},,
exists as described in Definition [17.20| show; B

1. The process is a time homogeneous Markov process with transition kernels
given by;
Qt ('T7 dy) = qt (xay) dy

where
2
e—szly—zl®

qt (Ivy): \/TTl't

2. Show by direct computation that Q:Qs = Quys for all s,t > 0E| Hint:
one of the many ways to do this it to use basic facts you have already
proved about sums of independent Gaussian random variables along with

the identity,
(Quf) (@) =E |f (v +iZ)],

where Z £ N (0,1).
3. Show by direct computation that ¢, (z,y) satisfies the heat equation,

d 1 d? 1 d?
-~ = fi .
dtqt (z,y) S 42 qt (7, y) B dyQQt (z,y) fort >0

% Once this is done the existence of a process {B},-, satisfying items 1. and 2. of
Definition [17.20] (but not the path continuity property in item 3.) is a consequence
of Theorem To get the path continuity requires more work which will be
done later.
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4. Suppose that f: R — R is a twice continuously differentiable function with
compact support. Show

%Qtf = AQ:f = Q:Af for all t > 0,

where
1

Af (@) = 31" (@).

Modulo technical details, this shows that A = d < is the infinitesimal gener-
ator of ;. (The technical details we have ignored involve the proper func-
tion spaces in which to carry out these computations along with a proper
description of the domain of the operator A. We will have to postpone these
somewhat delicate issues until later. By the way it is no longer necessarily

a good idea to try to recover Q; as Y ., ’;, A™ in this example.)

A Levy process is a generalization of this type a process in that it is again
a process with independent stationary increments which has right continuous
paths.

Example 17.21. If {N;},~, is a Poisson process and {B;},- is a Brownian mo-
tion which is independent of {N;},~,, then X, = B, + N; is a Levy process,
i.e. has independent stationary increments and is right continuous. The process

X is a time homogeneous Markov process with Markov transition kernels given
by;

e TR f (2 4y + Ny dy

(Quf) (z) = Ef (x + Ny + By) :/R

MZ/ o
ﬁZ/ v "‘Z%’Rf(xw)dy
:/qt (2.9) f () dy

R

7t

f(x-l—y—l—n)d

where

2ly—n|?

x
% (@) \/ﬁ Z
The infinitesimal generator, A = E|0+ Q; of this process satisfies,
1
(Af) (@) = 5 /" () + A (f (z +1) = f ()

at least for all f € C2 (R).
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238 17 The Markov Property
17.4 First Step Analysis and Hitting Probabilities

In this section we suppose that 7' = Np, (Q, B, {Bt}teT) is a filtered measures
space, X; : 2 — S is a B;/S — measurable function forallt € T, Q : S x S —
[0, 1] is a Markov-transition kernel, and for each = € S there exists a probability,
P,, on (£2,B) such that P, (Xo=2) = 1 and {X;},, is a time homogenous
Markov process with () as its one step Markov transition kernel. To shorten
notation we will write E, for the expectation relative to the measure P,.

Definition 17.22 (Hitting times). For B € S, let
Tp(X):=min{n >0: X, € B}

with the convention that min() = co. We call Tg (X) = T (X0, X1,...) the
first hitting time of B by X = {X,,},

Notation 17.23 For A€ S, let Q4 : AxSa — [0, 1] be the restriction of Q to
A, so that Q4 (x,C) :=Q (z,C) for allxz € A and C € S4. As with probability
kernels we may identify Qa with an operator from (Sa), to itself via,

(Qaf)( /Qa:dy (y) forallz € A and f € (Sa), -

Theorem 17.24. Let n denote a non-negative integer. If h : B — R is mea-
surable and either bounded or non-negative, then

Ex [h(Xn) : Tp = 1] = (Q%'Q[15h]) ()

and

E, [h(X1,) : Tp < o0 (Z QLQ 1Bh]>( ). (17.29)

n=0

If g : A — Ry is a measurable function, then for all x € A and n € Ny,

By [9 (Xn) In<rs] = (Q49) (7).

In particular we have

E, [ 3 g<xn>] =3 (@i9) (@) = ua), (17.30)

where by convention, 1. g(X,) =0 when T = 0.

Proof. Let x € A. In computing each of these quantities we will use;
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{Tg>n}={X;€ Afor 0<i<n} and
{Ip=n}={X,€¢Afor0<i<n-1}n{X, € B}.

From the second identity above it follows that for

E. [h(X,): Tp =n] =E, [h(X,) : (Xl,... X,-1) € A", X, € B]

-Z/Aw 1l

:( 1Bh)33

Q (zj—1,dxj) h(zn)

and therefore

E. [ (X7,) : Tp < o0] = ZIE ): T =n

:ZQZ_I Q[1ph] = ZQAQ [Lih].

n=1 n=0

Similarly,

E;E [9 (Xn) 1n<TB] = o Q (xa d$1) Q (1‘1, dl‘g) cee Q (mn—lv dmn) g (xn)

= (Q49) (z)

and therefore,

Z n n<TB]
Z (Q%49) (
]

In practice it is not so easy to sum the series in Egs. (17.29) and (17.30)).

Thus we would like to have another way to compute these quantities. Since
ZZO:O Q"; is a geometric series, we expect that

ZQ (I-Qa)~"

which is basically correct at least when (I — @Q4) is invertible. This suggests
that if u(z) = Ey [h (X1y) : T < 00], then (see Eq. (17.29))

u=Qau+ Q[lph] on A, (17.31)
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and if u (z) = By [Y, o7, 9 (Xn)] , then (see Eq. )

u=Qau+gon A. (17.32)

That these equations are valid is the content of Corollaries [T7.26] and [17.27
below which we will prove using the “first step” analysis in the next theorem.
We will give another direct proof in Theorem [17.31] below as well.

Theorem 17.25 (First step analysis). Let us keep the assumptions in The-
orem|17.14| and add the further assumption that T' = Ny. Then for all F' € SZ?N
or F: SY — [0, 00| measurable;

]Ez [F(Xo,Xl,)} = /SQ(I',dy)EyF(SU,XQ,Xl,) (1733)

This equation can be iterated to show more generally that

Ew [F(Xo,Xl,)] = / HQ(xj—l?dxj)EIn [F(Z‘(),.’L‘l,...,J}n_l,XQ,Xl,...)]
nj=1

(17.34)
where xg := x.

Proof. Since Xy (w) = z for P, — a.e. w, we have F (X, X1,...) =
F (z,X1,Xs,...) as. Therefore by Theorem [17.14] we know that

Ex [F (XO;X17~ . ) |Bl} = Ea: [F (.I,Xl,XQ, .. )|Bl] = EXIF(J),X(),Xh. . )
Taking expectations of this equation shows,

E, [F (X0, X1,...)] =E, [Ex, F

:LQ(%,dy)EyF($7X03X17)

(ZL’,Xo,Xl, e )]

Corollary 17.26. Suppose that B € S, A:= B° € S, h: B — R is a measur-
able function which is either bounded or non-negative, and

u(x) :=E; [h(Xry): Tp < 0] forz e A
Then u : A — R satisfies Eq. (17.31), i.e. w = Qau+ Q[1ph] on A or in more

detail
/Qw@ /Qx@

In particular, when h =1, u(x) = P, (T < 00) is a solution to the equation,

u=Qau+ Qlg on A.

(y) for all z € A.

(17.35)
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Proof. To shorten the notation we will use the convention that h (Xr,) =0
if Tp = 0o so that we may simply write u (x) := E, [h (X1,)] . Let

) =h (XTB(X)) =h (XTB(X)) 1TB(X)<OO’

then for z € A we have F (z, Xo, X1,...) = F (X0, X1, ...
first step analysis (Theorem [17.25)) we learn

F(Xo, X1, ...

). Therefore by the

u(z) = Eoh (X7,x)) = BoF (2, X1,. ..

):/SQ(xady)EyF<$,X0,X1,...>

=/Q%@W

:AQm@mﬁu@&PJ h (X1 00)]

=/Qm@m (X7s(x))] /Qw@ )
/Q x,dy)u /Q z,dy) h(y)
= (Qau) (z) + (Q1p) (

Corollary 17.27. Suppose that B € S, A := B € S, g : A — [0,00] is
a measurable function Further let u(x) = E, [Zn<TB g(Xn)] . Then u(x)
satisfies Fq. i.e. u = Qau~+ g on A or in more detail,

m:AQm@mw

Proof. Let F (Xo, X1,...)

+g(x) forallz € A.

= Zn<TB(X0,X1,...)g(X”)7 then forz € A

TB (J),X(),Xl,...) :1+TB (Xo,Xl,...)

and so if we let X_; = z, then

)= >

n<14+Tp(Xo,X1,...)

=g(x)+ >

1<n<1+T5(X0,X1,...)
=yg(z)+ >

0<n<Tp(X0,X1,...)
:g(‘r)+F(X07X1a)

F(.Z‘,Xo,Xl,... g(anl)

Therefore by the first step analysis (Theorem [17.25)) it follows that
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240 17 The Markov Property
u(z) = E, F (Xo,X1,...) = / Q (z,dy)E,F (2, Xo, X1,...)
S

=/SQ<m,dy> [Ey [g (2) + F (Xo, X1,...)]

=g<x>+/@(x,dymy[F(Xo,Xl,...)]
S

=g<x>+/Q(x,dymy[F(Xo,Xl,...)]
A

=g<w>+/AQ<x,dy>u<y>.

|

The problem with Corollaries and is that the solutions to Egs.

([17.31) and (17.32) may not be unique as we will see in the next examples.

Theorem [I7.31] below will explain when these ambiguities may occur and how
to deal with them when they do.

Example 17.28 (Biased random walks I). Let p € (1/2,1) and consider the bi-
ased random walk {S,}, -, on the S = Z where S,, = Xo + X1 +--- + X,
{X;};2, are iid. with P(X; =1) =p€ (0,1) and P(X; =-1)=¢qg:=1—p,
and Xy = x for some x € Z. Let B := {0} and u (x) := P, (T < o0). Clearly
u (0) = 0 and by the first step analysis,

u(x)=pu(r+1)+qu(x—1) for z #0. (17.36)

From Exercise |17.10| below, we know that the general solution to Eq. (17.36) is
of the form
u(z) = aX] + AT

where At are the roots for the characteristic polynomial, pA? — A+ ¢ = 0. since
constants solve Eq. ((17.36) we know that one root is 1 as is easily verified. The
other rooﬂ is ¢/p. Thus the general solution is of the form,

u(z) =a+b(q/p)*
Using the boundary condition at x = 0 implies, 0 = a + b so that
u(z)=a+(1-a)(q/p)”. (17.37)

Please keep in mind that we will need to use different a depending on whether
x>0 or z < 0. Recsll that p > % and ¢/p=(1—-p)/p <1

3 Indeed,

2
p(g) ~Lig=Ig-1+p=0.
P p P
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Case 1. 2 < 0: As z — —o0, we will have |u(x)| — oo unless a = 1. Thus
we must take ¢ = 1 and we have shown,

P, (Th < 00) =1 for all z < 0.

Case 2. ¢ > 0: For n € Ny, let T,, = min{m : X,, = n} be the first time
X hits n. By the MCT we have,
P, (Ty < 00) = lim P, (Ty < Tp).

n—oo

So we will now try to compute u (z) = P, (Tp < T},). By the first step analysis
(take B = {0,n} and h(0) = 1 and h(n) = 0 in Corollary we will
still have that u (z) satisfies Eq. for 0 < # < m but now the boundary
conditions are u (0) = 1 and u (n) = 0. Accordingly u (z) for 0 < z < n is still
of the form given in Eq. but we may now determine a = a,, using the
boundary condition

O0=u(n)=a+(1-a)(e/p)" =(a/p)" +all~(a/p)")
from which it follows that

(¢/p)"

———— — 0asn — oo.
(¢/p)" —1

Ap =

Thus we have shown

P (Ty < T, = (q;(]])/)g)—l + <1 - (q(/qp/)]j)_1> (Q/p)m
_ @)~ @l
(¢/p)" —1
— M — z as n — oo
= 1) (¢/p)

and therefore,
P, (Ty < 00) = (¢/p)” for all z > 0.

Ezample 17.29 (Biased random walks II). Continue the notation in Example
Let us now try to compute E,Tp. Since P, (Tp = 00) > 0 for > 0 we
already know that E,Ty = oo for all x > 0. Nevertheless we will deduce this
fact again here.

Letting u (x) = E, T} it follows by the first step analysis that, for x # 0,

u(z)=p[l4+u(z+1)]+q[l+u(z-—1)]
=pu(zx+1)+qu(z—1)+1 (17.38)
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with u (0) = 0. Notice u (z) = oo is a solution to this equation while if u (a) < oo
for some a # 0 then Eq. implies that u (z) < oo for all z # 0 with the
same sign as a.

A particular solution to this equation may be found by trying u (z) = ax
to learn,

ar=pa(z+1)+ga(z—1)+1l=azx+a(p—q)+1

which is valid for all z provided a = (¢ — p)fl . The general finite solution to

Eq. (17.38) is therefore,
u(z)=(g—p) 'z+a+blg/p)”. (17.39)

Using the boundary condition, u (0) = 0 allows us to conclude that a +b =0
and therefore,

u(z) =uq (z) = (q — p)_1 r+all—(q/p)*]. (17.40)

Notice that u, () — —o0 as £ — 400 no matter how a is chosen and therefore
we must conclude that the desired solution to Eq. is u (z) = oo for x > 0
as we already mentioned.

The question now is for x < 0. Is it again the case that u (z) = oo or is
u(x) = ug (z) for some a € R. Since lim, o0 uq () = —o0 unless a < 0, we
may restrict our attention to a < 0. To work out which a < 0 is correct observe
by MCT that

E,To = lim E, [T, ATo)= lim E, [T0)].
n——oo n——oo

So let n € Z with n < 0 be fixed for the moment. By the first step analysis

u(z) = By [Tn01] now satisfies Eq. for n < z < 0 and has bound-

ary conditions u (n) = 0 = « (0). Using the boundary condition u(n) = 0 to

determine a = a,, in Eq. implies,

0=1wu,(n)=(q —p)_1 n+all —(q/p)"]

so that
n

(1—(a/p)")(p—q)

— 0asn— —oo.

a=a, =

Thus we conclude that

E,Tp= lim E, [T, ATyl = lim ua, (z) = —— for z < 0.

n——oo n——oo q —

Definition 17.30. Suppose (A, A) is a measurable space. A sub-probability
kernel on (A, A) is a function p: A x A — [0,1] such that p(-,C) is A/Bg
measurable for all C € A and p(x,-) : A — [0,1] is a measure for all x € A.
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As with probability kernels we will identify p with the linear map, p : A, —
Ay given by

(0f) () = p (. ) = /A @) p (e dy).

Of course we have in mind that A = S5 and p = Q4. In the following lemma
let ||g||, :=sup,eca |9 (z)] for all g € Ay.

Theorem 17.31. Let p be a sub-probability kernel on a measurable space (A, A)
and define uy, (x) := (p™1) (z) for all x € A and n € Ng. Then;

1. u, is a decreasing sequence so that u := lim, .., u, exists and is in Ap.
(When p=Qa, un () =P (Tsg >n) | u(z) =P (T =o0) as n — 0.)

2. The function u satisfies pu = u.

3. Ifw € Ay and pw = w then |w| < ||w|| u. In particular the equation,
pw = w, has a non-zero solution w € Ay iff u # 0.

4. Ifu=0 and g € Ay, then there is at most one w € Ay such that w = pw+g.

5. Let

U:= Z Uy = Zp”l : A — [0, 00] (17.41)
n=0 n=0

and suppose that U (x) < oo for all z € A. Then for each g € Sp,

w = Z g (17.42)
n=0
is absolutely convergent,
lwl < [lgllo U (17.43)

p(z,|w|) < oo for all x € A, and w solves w = pw + g. Moreover if v also
solves v = pv + g and |v| < CU for some C < oo then v = w.
Observe that when p = Q 4,

U(.I) = ZPHG (TB > ’I’L) = ZEI (1T3>n) =E, (Z 1TB>TL> =E, [TB] .
n=0 n=0 n=0

6.If g: A — [0,00] is any measurable function then

w::Zp"g:AH[O,oo]

n=0

is a solution to w = pw + g. (It may be that w = oo though!) Moreover if
v: A — [0,00] satisfies v = pv + g then w < v. Thus w is the minimal
non-negative solution to v = pv + g.
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242 17 The Markov Property

7. If there exists a < 1 such that uw < o on A then w = 0. (When p = Qa, this
state that P, (Tp = 00) < « for all x € A implies P, (Ty = o0) =0 for all
reA)

8. If there exists an o < 1 and an n € N such that u, = p"1 < o on A, then
there exists C < oo such that

ug (z) = (pkl) (x) < CB* for all z € A and k € Ny

where (3 := o'/™ < 1. In particular, U < C (1 — 6)_1 and u = 0 under this
assumption.

(When p = Q4 this assertion states; if P, (Tg > n) < « for alla € A, then
P, (Tg > k) < CBF and B, Tp < C(1— )" for all k € Ny.)

Proof. We will prove each item in turn.
1. First observe that u; (z) = p (x, A) <1 =g (x) and therefore,
U1 = p" T = p"uy < p"1 = uy,.

We now let u := lim,, oo ty, so that u: A — [0,1].

2. Using DCT we may let n — oo in the identity, pu,, = 4,41 in order to show
pU = u.

3. If w e Ap with pw = w, then

w] = |p"w| < p" [w] < fwl[ p"1 = [Jwll - tn.

Letting n — oo shows that |w| < [Jw]| _ .

4. If w; € Ay solves w; = pw; + g for ¢ = 1,2 then w := wo — wy satisfies
w = pw and therefore |w| < Cu = 0.

5. Let U := >0 jup = Y orgp™l : A — [0,00] and suppose U (z) < oo for
all z € A. Then u,, () — 0 as n — oo and so bounded solutions to pu = u
are necessarily zero. Moreover we have, for all k € Ny, that

pkUz ipkun = iuwrk = iun <U.
n=0 n=0 n=k

Since the tails of convergent series tend to zero it follows that limy,_, o pFU =
0.
Now if g € &p, we have

o0 oo oo
ST1mgl <> gl <D " gl = llgllee - U < 00
n=0 n=0 n=0

and therefore 7, p™g is absolutely convergent. Making use of Eqs. (17.44)
and (|17.45)) we see that

(17.44)

(17.45)
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> 1"l <9l - PU < llgllo U < o0
n=1

and therefore (using DCT),
w=Y plg=g+y p'g
n=0 n=1

oo
=g+p) P rg=g+pw,

n=1

i.e. w solves w = g + pw.
If v : A — R is measurable such that [v| < CU and v = g + pv, then
y :=w — v solves y = py with |y| < (C + [|g||.) U. It follows that

lyl = [p"yl < (C +lg]l.) p"U — 0 as n — oo,

ie.0=y=w-—wn.

. If g > 0 we may always define w by Eq. (17.42) allowing for w (x) = co for

some or even all z € A. As in the proof of the previous item (with DCT
being replaced by MCT), it follows that w = pw + g. If v > 0 also solves
v =g+ pv, then

v=g+p(g+pv) =g+pg+p°v

and more generally by induction we have
n n
v — Zpkg+pn+lv > Zplcg.
k=0 k=0

Letting n — oo in this last equation shows that v > w.

. Ifu<a<1on A, then by item 3. with w = u we find that

u < ||lull - u < au

which clearly implies u = 0.

. If u, < a <1, then for any m € N we have,

Un+m = pmun < @Pml = QU -

Taking m = kn in this inequality shows, w41y, < aug,. Thus a simple
induction argument shows ug, < aF for all k € Ny. For general [ € Ny we
write [ = kn + r with 0 < r < n. We then have,

l—r
U] = Ukn+r < ugn < ak =anrn = Cal/n

n—1

where C = o™ = .
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Corollary 17.32. If h : B — [0,00] is measurable, then u(x) :=
E, [h(Xr1y,): Tp < 0] is the unique minimal non-negative solution to Eq.
while if g : A — [0,00] is measurable, then u(z) = By [Y, .p, 9 (Xn)]
is the unique minimal non-negative solution to Eq. .

Exercise 17.9. Keeping the notation of Example [I7.28| and [I7.29] Use Corol-
lary [17.32] m to show again that P, (T < oo) = (g/p)” for all z > 0 and
E,To = x/q — p for < 0. You should do so without making use of the extra-
neous hitting times, 7T;, for n # 0.

Corollary 17.33. If P, (Tg =c0) = 0 for all € Aand h : B - R is a
bounded measurable function, then u (z) := E, [h (Xr1y)] is the unique solution

to Eq. (17.51]).

Corollary 17.34. Suppose now that A = B¢ is a finite subset of S and there
exists an o € (0,1) such that P, (Tg = o) < « for all x € A. Then there exists
C < o0 and 8 € (0,1) such that P, (Tp > n) < Cp™.

Proof. We know that

lim P, (Tg >n) =P, (T =o0) <« forall z € A.
Therefore if & € (a,1), using the fact that A is a finite set, there exists an
n sufficiently large such that P, (Tp > n) < & for all © € A. The result now
follows from item 8. of Theorem [I7.31] ]

17.5 Finite state space chains

In this subsection I would like to write out the above theorems in the special
case where S is a finite set. In this case we will let ¢ (z,y) := Q (z, {y}) so that

z) =Y qy) f)

yeSs

Thus if we view f : S — R as a column vector and @ to be the matrix with
q (z,y) in the 2" — row and y*" — column, then Qf is simply matrix multiplica-
tion. As above we now suppose that S is partitioned into two nonempty subsets
B and A = B°. We further assume that P, (Tp < 00) > 0 for all z € A, i.e.
it is possible with positive probability for the chain {X,},° ; to visit B when
started from any point in A. Because of Corollary we know that in fact
there exists C' < oo and 8 € (0,1) such that P, (T > n) < CG™ for all n € Ny.
In particular it follows that E, T < oo and P, (T < 00) =1 for all z € A.
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If we let Qa = Qa,a be the matrix with entries, Q4 = (¢(2,9)), yea

and I be the corresponding identity matrix, then (Qa — I )_1 exits according
to Theorem Let us further let R = Q4 p be the matrix with entries,
(2(2,9)) e and yep - Thus @ decomposes as

A B
_ |QaR| A
Q= {*A*] B’

To summarize, @ 4 is Q with the rows and columns indexed by B deleted and R
is the @ — matrix with the columns indexed by A deleted and rows indexed by
B being deleted. Given a function h: B — R let (Rh) (z) =3>_ cpq (2, y) h(y)
for all x € A which again may be thought of as matrix multiplication.

Theorem 17.35. Let us continue to use the notation and assumptions as de-
scribed above. If h : B — R and g : A — R are given functions, then for all
x € A we have;

E, [h (X1,)] = [(I - QA)*th] (z) and

> g(Xn)] = [1-Qu) g (@).

n<Tpg

E,

Remark 17.36. Here is a story to go along with the above scenario. Suppose
that g (z) is the toll you have to pay for visiting a site x € A while h(y)
is the amount of prize money you get when landing on a point in B. Then

Ez |>0cner g(Xn)} is the expected toll you have to pay before your first exit
from A while E, [h (X7)] is your expected winnings upon exiting B.

Here are some typical choices for h and g.

1. If y € B and h = ¢, then
P (X, =y) = [(1 = Qa) 7 Ro,) () = [(1 - Qa) ™"

2. If y € A and g = §y, then

D 9K =D 6 (X

n<Tp n<Tp

= # visits to before hitting B

and hence
E,. (# visits to before hitting B) = {(I —Qa)" (54 (z)
= (I - Qa)y, -
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244 17 The Markov Property

3. Ifg=1,ie g(y)=1forallye A, then  _, g(X,)=Tp and we find, 11 -3 -3 01 0
-z 1 0 -0
i i
-1 -1 _ - | -1 _1
E,Tp = [(IfQA) 1}05:2([7@,4)%, I1-Qa 3 oL ; ol
yEA 0 03 30 13
. o . —2
where E,Tp is the expected hitting time of B when starting from . and using a computer algebra package we find
Example 17.37. Let us continue the rat in the maze Exercise |17.5f and now 12456
suppose that room 3 contains food while room 7 contains a mouse trap. 115571171
1 2 3 (food) ) %%%1% 2
7 (trap) Piiodl,
We would like to compute the probability that the rat reaches the food before 22
he is trapped. To answer this question we let A = {1,2,4,5,6}, B = {3,7}, In particular we may conclude,
and T := Tp be the first hitting time of B. Then deleting the 3 and 7 rows of BT 17
q in Eq. (17.22) leaves the matrix, ElT &
2 3
— -1, _ | 11
1234567 e I
0 1/2 0 1/20 0 071 E5T 3
1/3 0 1/3 0 1/3 0 0 |2 6 3
1/3 0 0 0 1/3 0 1/3|4. and
0 1/3 0 1/3 0 1/3 0 |5
0 01/2 0 1/20 0 |6 37
P (X7 =3) P (X7 =T7) L 211
Deleting the 3 and 7 columns from this matrix gives Py (X7 =3) Py (Xr =3) kS %2 )
et s Py(Xp=3) Py (Xp=3) | =(I—Qa) 'R= %% 4
01/21/2 0 0 |1 Ps (Xp =3) Ps (Xp =7) 21
1/3 0 0 1/3 0 |2
Qa=11/3 0 0 1/3 0 |4
0 1/31/3 0 1/315 Since the event of hitting 3 before 7 is the same as the event {Xr = 3}, the
0 0 01/20]6 desired hitting probabilities are
and deleting the 1,2,4,5, and 6 columns gives Py (Xp =3) e
. Ptr=3)| |4
P Xr=3)|=|3
0 0171 7
1 2 B (Xr=9 3
/3 0 Ps (X7 = 3) 5
R=Qap=| 0 1/3|4
0 015 We can also derive these hitting probabilities from scratch using the first
1/2 0 |6 step analysis. In order to do this let
Therefore, h; = P; (X1 = 3) = P, (X, hits 3 (food) before 7(trapped)) .
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By the first step analysis we will have,

h':ZP- (X7 =3|X1 =j) P (X1 =)
_Zq i,J) Py (X7 = 3|X1 =)
—Zq i,5) P; (X1 =3)
=Zqz‘,j
J

where h3 = 1 and h7; = 0. Looking at the jump diagram (Figure[17.3)) we easily

[ :Wu
(?::@::@

1/3

Fig. 17.3. The jump diagram for our proverbial rat in the maze.

find

1

hq §(h2+h4)
1

ha g(h1+h3+h5) 3(h1+1+h5)
1

hy =3 (h1+hs+ h7) = 3 (h1 + hs)
1

hs g(h2+h4+h6)
1 1

he *(h3+h) 2(1—|—h5)

and the solutions to these equations are (as seen before) given by

Page: 245 job: prob

17.5 Finite state space chains 245

2
O s =2 hg= 2| (17.46)

Similarly, if
k; == P; (Xp =7) = P, (X, is trapped before dinner),

we need only use the above equations with h replaced by k£ and now taking
ks =0 and k7 = 1 to find,

1

ki = 5 (k2 + ka)
1

ko = 3 (k1 + ks)
1
1

ks = 3 (k2 + ks + ko)
1

kﬁ = 5]{/’5

and then solve to find,
5 1 7 1 1
kl_ﬁ7k2 Z,k4—ﬁ7k5 §7k6_6 . (1747)

Notice that the sum of the hitting probabilities in Eqs. (17.46)) and (17.47) add
up to 1 as they should.

17.5.1 Invariant distributions and return times

For this subsection suppose that S = {1,2,...,n} and Q;; is a Markov matrix.

To each state i € S, let
7 :=min{n >1: X, =i} (17.48)
be the first passage time of the chain to site i.
Proposition 17.38. The Markov matriz Q@ has an invariant distribution.
Proof. If 1 := [1 1... 1]“, then @1 = 1 from which it follows that
0=det(Q—1I)=det (Q" —1).

Therefore there exists a non-zero row vector v such that Q" v" = v or equiv-
alently that ¥@Q = v. At this point we would be done if we knew that v; > 0 for
all i — but we don’t. So let 7; := |v;| and observe that
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246 17 The Markov Property

n n n
> Qi <D [kl Qri <D Qi
k=1 k=1 k=1

We now claim that in fact 7 = 7@Q. If this were not the case we would have
i < Yop_q TkQk; for some i and therefore

0< Zﬂz <ZZ7Tkaz—ZZ7Tkai => ™
k=1

i=1 k=1 k=11i=1

ﬂ—l = |l/2| =

which is a contradiction. So all that is left to do is normalize 7; so Z?:l =1
and we are done. [

We are now going to assume that @ is irreducible which means that for
all ¢ # j there exists n € N such that Q7; > 0. Alternatively put this implies
that P; (T; < oco) > 0 for all i # j. Because of Corollary to show that
E; [1j] = E;T; < oo for all 4 # j and with a little thought you will see that
E;7; < oo as well. This will come out of the proof of the next proposition as
well.

Proposition 17.39. If Q) is irreducible, then there is precisely one invariant
distribution, 7, which is given by m; = 1/E;7; > 0 for alli € S.

Proof. We begin by using the first step analysis to write equations for E; [7;]
as follows:

ZE TJ|X1_kQ1k—ZE T]|X1_k]sz+Qm

k#j
—Z Ey 7] + 1) Qus + Qij1 = Y B [13] Qui + 1.
k#j k#j
and therefore,
7= QirBEi[rj] + 1. (17.49)

=y

Now suppose that 7 is any invariant distribution for ), then multiplying Eq.
(17.49) by m; and summing on ¢ shows

Zﬂ-i ZTFZZQM:EIC Tj +Z7Tz
=1

=1 k#j
= ZT"I@Ek Tj] +1
k#j

Since » ;. meEg [7;] < 0o we may cancel it from both sides of this equation in
order to learn m;E; [1;] = 1. -
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We may use Eq. (17.49) to compute E; [7;] in examples. To do this, fix j and
set v; := E;7;. Then Eq. (17.49) states that v = QYo + 1 where QU) denotes
Q with the j" — column replaced by all zeros. Thus we have

W\ —1
(Eitj)iy = (I - Q(j)> 1, (17.50)
i.e.
ElTj 1
W\ —1
| =(1-@Y) 1|, (17.51)
EnTj 1

17.5.2 Some worked examples

Ezample 17.40. Let S = {1,2} and Q = {(1)(1)

In this case Q?* = I while Q?"*! = Q and therefore lim,,_,o, @™ does not

] with jump diagram in Figure

1
1
Fig. 17.4. A non-random chain.

have a limit. On the other hand it is easy to see that the invariant distribution,
, for Q is m = [1/2 1/2] . Moreover it is easy to see that

Q+Q°+--+QY 1711] [«
N o1t | # |

G
- (53153 -

so that indeed, 71 = 1/E17 and mo = 1/Eq7s.

and

Ezample 17.41. Again let S = {1,2} and Q = [1 0 with jump diagram in

01
Figure In this case the chain is not irreducible and every m = [a b] with
a+b=1and a,b > 0 is an invariant distribution.
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Fig. 17.5. A simple non-irreducible chain.

Example 17.42. Suppose that S = {1,2,3}, and

123
01071

Q=1|1/201/2]2
100 |3

has the jump graph given by Notice that Q3; > 0 and @3, > 0 that Q is

o
4

Fig. 17.6. A simple 3 state jump diagram.

“aperiodic.” We now find the invariant distribution,

-1 3 1 2
Nul(Q@-DN"=Nul| 1 =10 [|=R|2
0 4 -1 1
Therefore the invariant distribution is given by
1
=—-1221].
= 1l221]
Let us now observe that
ER
2
@=|10
1010
o107’ 530
Q= [1/201/2| = %5%
| 100 505
409 205 205
" Wi 0.399 41 0.400 39 0.200 20
Q" = %‘g’ e 19%04 = | 0.40039 0.399 41 0.200 20
K ET; 556 0.400 39 0.400 39 0.199 22
Page: 247 job: prob
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Let us also compute Ey73 via,

Ei13 100 010 1 4
Eors| = 010| —1{1/200 11 =13
Es73 001 1 00 1 5
so that
1 1
E3T3_5_7T3.

Example 17.43. The transition matrix,

1 2 3
1/41/21/47 1
Q=1|1/2 0 1/2]|2
1/31/31/3 3

is represented by the jump diagram in Figure[I7.7 This chain is aperiodic. We

>w

3
]

N

Fig. 17.7. In the above diagram there are jumps from 1 to 1 with probability 1/4
and jumps from 3 to 3 with probability 1/3 which are not explicitly shown but must
be inferred by conservation of probability.

find the invariant distribution as,

tr

[1/41/21/4 100]
Nul(Q—I)"=Nul| [1/2 0 1/2| =010
11/31/31/3 001 ]

314 1] 6

= Nul %—1 i =R|2|=R|5

1 3 3 1] 6

= % [656] =[0.35294 0.29412 0.35294] .
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248 17 The Markov Property

In this case

1/41/21/47"  [0.35298 0.29404 0.352 98
QY= 11/2 0 1/2| = [0.352890.29423 0.35289
1/31/31/3 0.35295 0.2941 0.35295
Let us also compute
-1 11
E17o 100 1/401/4 1 g
Eom | = 010 —1{1/201/2 1=
Es 001 1/301/3 1 1

so that
1/E27’2 = 5/17 = Tg.

Ezxample 17.44. Consider the following Markov matrix,

1 2 3 4
1/41/41/41/47 1
174 0 0 3/4]2
@=11212 0 0 |3
0 1/43/4 0 |4

with jump diagram in Figure Since this matrix is doubly stochastic (i.e

1

4

() (2)

N4

\ A\

3 Lﬁ 3
O,

Fig. 17.8. The jump diagram for Q.

S Qi = 1 for all j as well as 2?21 Qi; = 1 for all 1), it is easy to check that
m=14[1111].Let us compute Ezrs as follows

Page: 248 job: prob

By 7 1000 1/41/401/4 1
Ears| | ]0100 1/4 0 03/4 1
Esrs| [ |0010 1/21/20 0 1
Eq7s 0001 0 1/40 0 1

[ 50

53

— | 17

4

30

L 17

so that Egm3 = 4 = 1/m4 as it should be. Similarly,

E17 1000 1/401/41/47\ ' 1
Eors| | |0100] |1/40 0 3/4 1
Esmo| 0010 1/20 0 0 1
Eymo 0001 0 03/4 0 1

[ 54

1

= | 44

50

L 17

and again Eomo = 4 = 1/m5.

17.5.3 Exercises

Exercise 17.10 (2nd order recurrence relations). Let a, b, ¢ be real num-
bers with a # 0 # ¢ and suppose that {u(z)},— _ solves the second order
homogeneous recurrence relation:

au(z+1)+bu(z)+cu(x—1)=0. (17.52)
Show:

1. for any A € C,
aX™T AT 4 AT = AT (N) (17.53)

where p (\) = aA? 4+ b\ + ¢ is the characteristic polynomial associated
to Eq. (17.59).
2. Let \y = —bEvbi—dac W be the roots of p and suppose for the moment that
b? — dac # 0. Show
u(w) = AL\ + AT

solves Eq. (17.52)) for any choice of A, and A_.
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3. Now suppose that b? = 4ac and \g := —b/ (2a) is the double root of p ()\).
Show that
u(z) == (Ag + A1) A§

solves Eq. (17.52)) for any choice of Ay and A;. Hint: Differentiate Eq.
(17.53|) with respect to A and then set A = Aq.

4. Show that every solution to Eq. (17.52) is of the form found in parts 2. and
3.

In the next couple of exercises you are going to use first step analysis to show
that a simple unbiased random walk on Z is null recurrent. We let {X,,}°  be
the Markov chain with values in Z with transition probabilities given by

P(X,y1=2+1|X,=2)=1/2for alln € Ny and = € Z.
Further let a,b € Z with a < 0 < b and
Top :=min{n: X, € {a,b}} and T}, :=inf {n : X,, = b}.

We know by Corollaryﬁ 17.34] that E¢ [T}, 5] < oo from which it follows that
P(Typ <oo)=1foralla<0<b.

Exercise 17.11. Let w,, := P, (XTa,b = b) =P (XTa,b =b| Xy = x) .

1. Use first step analysis to show for a < = < b that

Wy = 5 (wx+1 + wz,l) (1754)
provided we define w, = 0 and wy = 1.
2. Use the results of Exercise [17.10] to show
1
P, (Xr,,=b) =w, = —a (x —a). (17.55)

3. Let
min {n : X,, = b} if {X,} hits b
Tb = )
0 otherwise
be the first time {X,} hits b. Explain why, {Xr, , =b} C {T}, < 0o} and
use this along with Eq. (17.55) to concluddﬂ that P, (T < 00) = 1 for all

x < b. (By symmetry this result holds true for all z € Z.)

Exercise 17.12. The goal of this exercise is to give a second proof of the fact
that P, (T, < oo0) = 1. Here is the outline:

4 Apply this corollary to finite walk in [a,b] N Z.
® The fact that P; (T, < co) = 1 is also follows from Example[10.51|above.
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1. Let w, := P, (Tp < 00). Again use first step analysis to show that w,
satisfies Eq. (17.54])) for all x with w, = 1.
2. Use Exercise to show that there is a constant, ¢, such that

wy =c(r—0b)+ 1 for all x € Z.

3. Explain why ¢ must be zero to again show that P, (T < co) = 1 for all
x € Z.

Exercise 17.13. Let T =T, and u, :=E, T :=E[T|X( = z].

1. Use first step analysis to show for a < = < b that

Uy = 3 (Ugy1 + Ug—1)+ 1 (17.56)
with the convention that u, = 0 = .
2. Show that
Uy = Ag + Az — 2? (17.57)

solves Eq. (17.56) for any choice of constants Ay and Aj.
3. Choose Ay and A; so that u, satisfies the boundary conditions, u, = 0 = u.
Use this to conclude that

E,Tpp=—ab+ (b+a)x —2* = —a(b—xz) + bz — 2°. (17.58)

Remark 17.45. Notice that Tp, T T, = inf{n: X, =b} as a | —o0, and so
passing to the limit as a | —oo in Eq. ((17.58]) shows

E,Ty, = oo for all x < b.

Combining the last couple of exercises together shows that {X,} is “null -
recurrent.”

Exercise 17.14. Let T' = Tj,. The goal of this exercise is to give a second
proof of the fact and w, := E,T = oo for all z # b. Here is the outline. Let
Uy :=E,T € [0,00] = [0,00) U {o0}.

1. Note that u, = 0 and, by a first step analysis, that u, satisfies Eq.
for all x # b — allowing for the possibility that some of the u, may be
infinite.

2. Argue, using Eq. , that if u, < oo for some = < b then u, < oo for
all y < b. Similarly, if u, < oo for some x > b then u, < oo for all y > b.

3. If u, < oo for all z > b then u, must be of the form in Eq. for some
Ap and A; in R such that u, = 0. However, this would imply, u, = E,T —
—o0 as x — oo which is impossible since E,T" > 0 for all x. Thus we must
conclude that E,T = u, = oo for all > b. (A similar argument works if
we assume that u, < oo for all x < b.)

macro: svmonob.cls date/time: 19-Feb-2010/11:31



250 17 The Markov Property

17.6 Appendix: Kolmogorov’s extension theorem 11

The Kolmogorov extension Theorem [9.46| generalizes to the case where N is
replaced by an arbitrary index set, T'. Let us set up the notation for this theorem.
Let T be an arbitrary index set, {(S¢, S¢)},op be a collection of standard Borel
spaces, S = [[,c1 St, S := @4erSy, and for A C T let

(SA =1 584 := ®teA8t>
teA

and X, : S — S, be the projection map, X4 (z) :=z[4. f A C A C T, also

let X4 40 : Sav — Sx be the projection map, X4 4/ (z) := |4 for all z € Sy.

Theorem 17.46 (Kolmogorov). For each A Cy T (i.e. A C T and # (A) <

00), let py be a probability measure on (Sa,Sa) . We further suppose {/M}AQT
satisfy the following compatibility relations;

pa o Xy =pa forall AC A Cy T. (17.59)

Then there exists a unique probability measure, P, on (S,S) such that POXZl =
pa for all ACy T.

Proof. (For slight variation on the proof of this theorem given here, see

Exercise [17.16]) Let

A= UACfTXV/T1 (Sa)
and for A = X' (A") € A, let P(A) := pa (A’). The compatibility conditions
in Eq. imply P is a well defined finitely additive measure on the algebra,
A. We now complete the proof by showing P is continuous on A.

To this end, suppose A, := X;: (Al) € A with 4, | 0 as n — oo. Let
A== U2, A, — a countable subset of T. Owing to Theorem there is a
unique probability measure, Py, on (S4,S4) such that Py (X7 (A)) = pr (A)
for all I' Cy A and A € Sp. Hence if we let A, = X/I}An (4,,), we then have

P (An) = pa, (A,) = Pa (4,)

with A,, | # as n — oco. Since P, is a measure, we may conclude

lim P(A,) = lim P, (An) = 0.

n—oo n—o0

Exercise 17.15. Let us write A C. T to mean A C T and A is at most count-
able. Show
S =Unc.r X1 (Sa). (17.60)

Hint: Verify Eq. (17.60) by showing Sy := Uac,7X ;" (S4) is a o — algebra.
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Exercise 17.16. For each A C T, let S := X' (Sa) = o(X;:i€ A) C S.
Show;

1.if U,V C T then S, NSy, = S}ny-

2. By Theorem if U,V C. T, there exists unique probability measures,
Py and Py on §); and Sf, respectively such that Py o XXl = u, for all
A Cy U and Py OXZ1 = pa for all A Cy V. Show Py = Py on S, NSy,
Hence for any A € S we may define P (A) := Py (A) provided A € Sj;.

3. Show P defined in the previous item is a countably additive measure on S.

17.7 Removing the standard Borel restriction

Theorem 17.47. Let {(Sy, Sn) tnen, be a collection of measurable spaces, S =
HZOZO Sp and S 1= ®22,Sy,. Moreover for each n € Ny let 8™ := Sy x --- x S,
and 8" = Sy ® - ® S,. We further suppose that ug is a given probability
measure on (So,So) and T, : S"™1 x S, — [0,1] for n = 1,2,... are give
probability kernels on S~ x S,,. Finally let p1,, be the probability measure on
(8™, 8™) defined inductively by,

tn (dxo, ... dey) = pn—1 (dxo, ..., dey—1) Ty (o, ..., Tp_1;dx,) ¥ n €N
(17.61)
Then there exists a unique probability measure, P on (S,S) such that

P = [ Fi,

whenever f(x) = F (xq,...,xy,) for some F € (S,), -

Remark 17.48 (Heuristic proof). Before giving the formal proof of this theorem
let me indicate the main ideas. Let X; : § — S; be the projection maps and
B, =0 (Xo,...,X,). If P exists, then

P[F (XO’...’XTL+1) |Bn] = Tn (X07...,Xn;F(X0,...,Xn7-))

= (TF(X(),,qu)) (Xo,...,Xn).

o X F(Xoy .o, X0, 1)) G (Xoy -2, X))

T, (xo,...,Tn;deny1) F (xo,. .., Tn, Tnt1) G (o, -, Zn) dpin (zo, - - -, T0)

F(zg,...,Tn, Tn+1) G (o, .., Tn) dpins1 (Toy -« s Tyy Trt1)
F

(X0, s Xn+1) G (Xo, ..., X0n)]-
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Now suppose that f, = F,, (Xo,...,X,) is a decreasing sequence of func-
tions such that lim, .. P (fn) =: € > 0. Letting fo := lim, . f, we would
have f, > fo for all n and therefore f, > E[foo|Bn] := fn. We also use

fn (X0, X1,...,X5)
=E [foo|Bn] =E [E [foo|Bn+1] |Bn]

=E [fos1|Bn] = /fn+1 (Xo, X1, s ¥ny1) Tngr (Xos - - Xy dyg)

and P (f,) = P (fs) = limy—oo P (f;n) = € > 0 (we only use the case where
n = 0 here). Since P (fo (Xo)) = ¢ > 0, there exists z¢ € Sy such that

e < fo(zo) = E [filBo] = /ﬁ (w0, 1) T1 (z0,dr1)

and so similarly there exists x; € S such that
e < fi(wo, 1) = /fz (w0, 21, 72) T (w0, T1; d2) .

Again it follows that there must exists an o € Sy such that e < fo (zg, 21, 22) .
We continue on this way to find and x € S such that

fn () > fo (20,...,1,) > ¢ for all n.
Thus if P(f,) | € > 0 then lim,,_.o, f, () > & # 0 as desired.

Proof. Now onto the formal proof. Let S denote the space of finitely
based bounded cylinder functions on S, i.e. functions of the form f(z) =
F(zg,...,z,) with F' € §. For such an f we define

I(f):=Pn(F).

It is easy to check that I is a well defined positive linear functional on S.

Now suppose that 0 < f, € S are forms a decreasing sequence of functions
such that lim,, o I (f,) = € > 0. We wish to show that lim, . fn (z) # 0
for every x € S. By assumption, f, (z) = F, (2o,...,zn, ) for some N, € N of
which we may assume Ny < N1 < Ny < .... Moreover if Ng =2 < N; =5 <
Ny =7 < ..., we may replace (fo, f1,...) by

(903913927"') = (]—a1;f07f03f07f17f13f27"‘)'

Noting that lim, 00 gn = liMp o0 fr, liMp oo I (grn) = I (fn), and g, (z) =
Gp (zo,...,x,) for some G, € S, we may now assume that f,(z) =
F, (zo,...,z,) with F,, € S

Page: 251 job: prob
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For any k£ < n let

n—1
F¥ (zg,...,xp) ::/~~/Fn(x0,...,xn)HTl(wo,...,xl,dmlH)
I=k

which is an explicit version of P, [F, (xq,...,Zn) |Z0,..., 2] “="E [fn|Bk] (x).
By construction of the measures P, it follows that
P.Ff = P,F, =1(f,) forall k <n. (17.62)
Since
F,(xo,- . xn) = fn(x) < frna1 () = Fpa1 (o, -+ -, Ty Tpy1)

it follows that

n
F,’f (xo,...,T) = /Fn (T, -+, Zn) HTl (zo, ..., 2z, dxisq)
1=k

n
< /Fn+1 (€0, -+ Ty Tng1) [ [ T (w0, -, 20, daig)
I=k

:F:fJrl (zo,...,xk) .

Thus we may define F¥ (zg,...,2) :=] lim, o F¥ (z0,...,2) which is for-
mally equal to E [f|By] (z) . Hence we expect that

F* (205, Tk) :/Fk+1 (205 -+« s Tk, Thy1) Tk (2o, - -y Ty dagin) - (17.63)

by the tower property for conditional expectations. This is indeed that case
since,

/F”c+1 (o, Tk, Tht1) Tk (o, - - -y T, dTht1)

= lim F,]:+1 (l‘o, . 7xk7$k+1) Tk (xo, . ,l’k,dl'kJrl)

n—oo

while

/F71:+1 (1‘07 s ,.Z'k,.’l)k;-i,—l)Tk (l'(), e 7.’17k,d$k;+1)

:/[//Fn(xo,,xn) H Tl(xo,...,xl,dl‘l_,_l) Tk(xo,...,xk,dka)

I=k+1
n
= /~-~/Fn(z0,...,xn)HTl (zo,..., 2z, dxiy1)
=k
k
=Fy (zg,..., %) .
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252 17 The Markov Property
We may now pass to the limit as n — oo in Eq. (17.62]) to find

Py (F*) =& >0 for all k.

For k = 0 it follows that F° (zg) > & > 0 for some zoy € Sy for otherwise
Py (Fy) < . But

e < FO(z) = /F1 (xg,x1) Th (20, dx1)
and so there exists z; such that
e< P’1 (xo,xl) = /F2 (I0,$1,$2)Tg (xo,xl,dxg)

and hence there exists zo such that ¢ < F? (9,1, 22), etc. etc. Thus in the
end we find an = (29, 71,...) € S such that F* (xg,...,z,) > ¢ for all k.
Finally recall that

F¥(xo,...,24) > F* (x0,...,23) > € for all k < n.
Taking k£ = n then implies,
fn (z) = F)l (x0,...,2n) > F" (z0,...,2,) > ¢ for all n.

Therefore we have constructed a x € S such that f (z) = lim, oo frn () > >
0.

We may now use the Caratheodory extension theorem to show that P
extends to a countably additive measure on (S,S). Indeed suppose A, €
A(X;:i€Ny). If A, | 0 then 14, | 0 and by what we have just proved,

P(A,)=P((1a,) |l 0asn— cc.
[

Corollary 17.49 (Infinite Product Measures). Let {(Sn,Sn, tin) }nen, be
a collection of measurable spaces, then there exists P on (S,S) such that

P(f):P(f):/nF(xo,...,xn)duo(xo)...dun(xn)

whenever f (x) = F (xo,...,xy) for some F € (S,), -

Proof. Let ug = vy and

T, ($O; sy Tp—1; dxn—i—l) = Un (dxn) .
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Then in this case we will have
Hn (dx07 sy dxn) - dVO (ZEO) dVl (dxl) <o Un (dxn)

as desired. -
Proof. Let pp = v and

Tn (xO; ceey Tn—1; dwn-{-l) = Qn (l‘n_l,dl‘n) .

Then in this case we will have

Hn (dx07 cee 7dzn) =dv (.To) Q1 (:]C07 dzl) - Qn (In—la dzn)

as desired. -

17.8 *Appendix: More Probability Kernel Constructions
Lemma 17.50. Suppose that (X, M), (Y, F), and (Z,B) are measurable spaces

and Q : X x F — [0,1] and R:Y x B — [0, 1] are probability kernels. Then for
every bounded measurable function, F : (Y x Z,F @ B) — (R, Br) , the map

yH/ZR(y;dZ)F(yvz)

is measurable. Moreover, if we define P (x;A) for Ac F®B and x € X by

P<x,A>:LQ<x;dy>/ZR<y;dz>1A<y,z>,

then P: X x F® B — [0,1] is a probability kernel such that

P(%F)=/YQ(w;dy)/ZR(y;dz>F(y,z>

for all bounded measurable functions, F: (Y x Z,F @ B) — (R, Bgr). We will
denote the kernel P by Q ® R and write

(Q®R) (z;dy,dz) = Q (z;dy) R (y;dz) .

Moreover if S (z,dw) is another probability kernel, then ((Q® R)®S) =
Q®(R®S5)).

Proof. A routine exercise in using the multiplicative systems theorem. To
verify the last assertion it suffices to consider the kernels on sets of the form
A x B x C in which case,
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(Q®(R®9))(r,Ax BxO)

_ / Q (s dy) / RS (ys dz, dw) Laxsxo (y, 2 w)
Y ZxXW

:/Q<x;dy>1A<y>/ RS (y: B x C)
Y ZxW

_ / Q (a3 dy) 14 (y) / R(y:d2) S (2, dw) Lxe (2, 0)
Y ZxXW

_ / Q (a1 dy) 1a () / R(y:d2) S (2,0) 15 (2)
Y 7Z

while

(Q®R)®S) (z,Ax BxC)

= QR (x;dy, dz)/ S (z,dw) laxpxc (y, z,w)

YxZ ZXW

= QR (z;dy,dz) laxp (y,2) S (z,C)

YXxZ
/Q xdy/ (y;dz) laxp (y,2) S (2,C)
:/ Q (w;dy) 14 (y /R(y;dZ)S(Z,C)lB(Z%
Y z
| ]

Corollary 17.51. Keeping the notation m Lemma[I7.50, let QR be the proba-
bility kernel given by QR (x,dz) fY (z;dy) R (y;dz) so that

QR(z;B) =Q®R(x;Y x B).
Then we have Q (RS) = (QR) S.

Proof. Let C € By, then
Q(RS) (#:C) = Q® (RS) (1;Y x C) = /Y Q (x: dy) (RS) (4 C)
=/YQ(x;dy)<R®S>(y;Zx C)=QeRe9)(Y xZx(C).

Similarly one shows that
(QR) S (z:0) =[(Q®R) @S] (Y x Z x C)

and then the result follows from Lemma [17.50 [ ]






18

(Sub and Super) Martingales

Notation 18.1 Through out this chapter we will let (S, S) denote a measurable
space which we will refer to as state space.

Ezample 18.2 (Setting the odds). Let S be a finite set (think of the outcomes
of a spinner, or dice, or a roulette wheel) and p : S — (0,1) be a prob-
ability functiorﬂ Let {Z,},>, be random functions with values in S such
that p(s) := P(Z,=s) for all s € S. (Z, represents the outcome of the
n'® — game.) Also let o : S — [0,00) be the house’s payoff function, i.e.
for each dollar you (the gambler) bets on s € S, the house will pay «(s)
dollars back if s is rolled. Further let {W,},>, be another collection of ran-
dom variables (representing your random “whims”). We now assume that Z,
is independent of (Wy, W1,...,Wy_1,Z1,...,Zn—1) for each n, i.e. the dice
are not influenced by the previous plays or your random whims. If we let
B, =0 Wo,Wi,....,.W,, Z1,...,2Z,) with By = 0 (Wp), then we are assuming
the Z,, is independent of B,,_1 for each n € N.

As a gambler, you are allowed to choose before the n'" — game is played,
the amounts that you want to bet on each of the possible outcomes of the ntP
game. Assuming the you are not clairvoyant (i.e. can not see the future), these
amounts may be random but must be B,,_; — measurable, that is C,, (s) =
Cp (Wo,Wi,...,.Wn_1,Z1,...,Zpn_1,s) . Thus if X, denotes your initial wealth
(assumed to be a non-random quantity) and X,, denotes your wealth just after
the n'* — game is played, then

)( )(n 1= jg:(j +’(7 ( ) (ZZJ

seS

where —Y°__ C, (s) is your total bet on the n'® — game and C,, (Z,) a (Z,)
represents the house’s payoff to you for the n'® — game. Therefore it follows

that
X =Xo+ Y [=D Ci(s)+Cn(Zr)a(Z)
k=1 SES

1 To be concrete, take S = {2,...,12} representing the possible values for the sums
of the upward pointing faces of two dice. Assuming the dice are independent and
fair then determines p : S — (0,1). For example p(2) = p(12) = 1/36, p(3) =
p(11) =1/18, p(7) = 1/6, etc.

X, is B,, — measurable for each n, and

Eg, , [Xn = Xn_1] ==Y Cn(s) +Ep,_, [Cn(Zn) a(Zy)]

seS
Y+ X G as)p (o)
seS ses
=3 Cu(s) (@ ($)p ()~ D).
sesS

Thus it follows, that no matter the choice of the betting “strategy,”
{Cn (s):s€ S},2,, we will have

>0ifa()p()>1
Eg, | [Xn—Xn1]={ =0ifa()p()=1.
<Oifa()p() <1

So if the Casino wants to be guaranteed to make money, it had better choose
a: S — [0,00) such that a (s) < 1/p(s) for all s € S. In this case the expected
earnings of the gambler will be decreasing which means the expected earnings
of the Casino will be increasing.

With this example in mind we now introduce the main players of this chap-
ter.

Notation 18.3 A filtered probability space is a probability space, (12,8, P)
endowed with a sequence of sub-o -algebras, {By} - such that B, C B,11 C B
foralln =0,1,2.... We further define

Boo 1= V22 B, = 0 (U, B,) C B. (18.1)

Through out this chapter, we will assume (£2, B, {B,},—,,P) is a filtered
probability space and B, is defined as in Eq. (18.1)).

Definition 18.4. A sequence of random functions, Y, : £2 — S for n € Ny,
are said to be adapted to the filtration if Y, is B, /S — measurable for all n.
We say {C, : 2 — S} >~ is predictable or previsible if each C,, is B,—1/S
— measurable for all n € N. (Typically in this chapter we have in mind that
(5,8) = (R, Br) .)
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A typical example is when {X,, : 2 — S},° is a sequence of measurable
functions on a probability space (2,8, P) and B,, := o (Xo,...,X,). An ap-
plication of Lemma shows that a sequence of random variables, {Yn}zo:o ,
is adapted to the filtration iff there are S®(»+1) /By — measurable functions,
fn i 8™ — R, such that Y,, = f,(Xo,...,X,) for all n € Ny and a se-
quence of random variables, {Zn}ff:l , is predictable iff there exists, there are
measurable functions, f, : R® — R such that Z,, = f, (Xo,...,Xp—1) for all

n € N.

Definition 18.5. Let X := {X,,},~ is a be an adapted sequence of integrable
random variables. Then;

1. X is a {Bn},—, - martingale if E[X,,1|B,] = X,, a.s. for alln € Ny.

2. X is a {B,},—, — submartingale if E [X,,1|B,] > X,, a.s. for alln € N,.

3. X is a {Bn}zozo - supermartingale if E[X,11|B,] < X, a.s. for all
n € Np.

It is often fruitful to view X,, as your earnings at time n while playing some
game of chance. In this interpretation, your expected earnings at time n + 1
given the history of the game up to time n is the same, greater than, less than
your earnings at time n if X = {X,} _, is a martingale, submartingale or
supermartingale respectively. In this interpretation, martingales are fair games,
submartingales are games which are favorable to the gambler (unfavorable to the
casino), and supermartingales are games which are unfavorable to the gambler
(favorable to the casino), see Example

By induction one shows that X is a supermartingale, martingale, or sub-

martingale iff
<
E [ X |B,] N X, as for all m > n, (18.2)

to be read from top to bottom respectively. This last equation may also be
expressed as

<
E [X.m|B,] = Xoman a.s for all m,n € Ng. (18.3)
The reader should also note that E[X,,] is decreasing, constant, or increasing
respectively. The next lemma shows that we may shrink the filtration, {Bn}zozo ,
within limits and still have X retain the property of being a supermartingale,
martingale, or submartingale.

Lemma 18.6 (Shrinking the filtration). Suppose that X is a {B,},—, -
. . . . 7\ 00 .
supermartingale, martingale, submartingale respectively and {B;,},_, is another
filtration such that o (Xo, ..., X,) C Bl, C B, for all n. Then X is a {B},},,

- supermartingale, martingale, submartingale respectively.
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Proof. Since {X,}, is adapted to {B,},., and o (Xo,...,X,) C B, C

B, for all n,
<
Ep Xnt1 = Ep Ep, Xnt1 = Ep Xpn = X,

when X isa {B,,} -, — supermartingale, martingale, submartingale respectively
— read from top to bottom. [

Enlarging the filtration is another matter all together. In what follows we
will simply say X is a supermartingale, martingale, submartingale if it is a
{B,.},>, — supermartingale, martingale, submartingale.

18.1 (Sub and Super) Martingale Examples

Ezample 18.7. Suppose that (£2,8,{B,},—,,P) is a filtered probability space
and X € L' (£2,B,P). Then X,, := E[X|B,] is a martingale. Indeed, by the
tower property of conditional expectations,

E[Xps1|Bn] = E[E[X|Bus1] [Ba] = E[X|Bn] = Xn a.s.

Ezample 18.8. Suppose that 2 = [0,1], B = Bjp,1, and P = m - Lebesgue
measure. Let P,, = {( ki k“]}izzl U {[O, %]} and B, := o (P,) for each

ony 9n
n € N. Then M,, := 2"1(g2-») for n € N is a martingale such that E[M,| =1
for all n. However, there is no X € L' (2, B, P) such that M,, = E[X|B,]. To
verify this last assertion, suppose such an X existed. Let . We would then have

for 2™ > k > 0 and any m > n, that
e (o 55 -2 e (550
2” 2” m 27L 2”

o (£.41]] <o
2n’ 2n

Using E[X:4 = 0 for all A in the # - system, Q :=
use, {(2, 58] : 0 < k< 2"}, an application of the m — A theorem shows

E[X : A] =0 for all A € 0(Q) = B. Therefore X = 0 a.s. by Proposition [7.22]
But this is impossible since 1 = EM,, = EX.

Moral: not all L' — bounded martingales are of the form in example
Proposition shows what is missing from this martingale in order for it to
be of the form in Example

Proposition 18.9. Suppose 1 < p < co and X € LP (2,8, P). Then the col-
lection of random wvariables, I' := {E[X|G]:G C B} is a bounded subset of
LP (§2,B, P) which is also uniformly integrable.
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Proof. Since Eg is a contraction on all LP — spaces it follows that I is
bounded in LP with
sup [|E [X[G][|, < [ X1,
gcB

For the p > 1 the uniform integrability of I" follows directly from Lemma [12.48]
We now concentrate on the p = 1 case. Recall that |[EgX| < Eg |X| a.s. and
therefore,

E[|[EgX|: |[EgX| > a] <E[IX|: |EgX| > a] for all a > 0.

But by Chebyshev’s inequality,
1 1
P(|[EgX|>a) < -E[EgX| < -E|X].
a a

Since {|X|} is uniformly integrable, it follows from Proposition [12.42| that, by
choosing a sufficiently large, E[|X|: |[EgX| > a] is as small as we please uni-
formly in G C B and therefore,
lim sup E[|[EgX]|: |EgX]| > a] =0.
cB

a—00 g
u

Ezxample 18.10. This  example  generalizes Example [18.8 Suppose
(£2,B,{B,},~,,P) is a filtered probability space and @ is another probability
measure on ({2, B). Let us assume that Q|p, < P|g, for all n, which by the
Raydon-Nikodym Theorem implies there exists 0 < X,, € L' (2,8, P)
with EX,, = 1 such that dQ|s, = X,dP|g,, or equivalently put, for any
B € B,, we have

Q(B):/BXndP:]E[Xn:B].

Since B € B, C By11, we also have E[X,4+1: B] = Q(B) = E[X,, : B] for
all B € B, and hence E[X,,41|B,] = X,, a.s., L.e. X = {X,,},2, is a positive
martingale.

Example is of this form with @ = dg. Notice that dp|z, < m|g, for all
n < oo while dg L m on By 1) = B See Section for more in the direction
of this example.

Lemma 18.11. Let X := {X,,},~, be an adapted process of integrable random
variables on a filtered probability space, (2,B8,{Bn},—,.P) and let d, := X,, —
Xp—1 with X_1 := EXy. Then X is a martingale (respectively submartingale
or supermartingale) iff E[dn41|Bn] = 0 (E[dpt1|Bn] > 0 or E[dp+1|Bn] < 0
respectively) for all n € Ny.

Conversely if {d,}o-, is an adapted sequence of integrable random vari-
ables and Xy is a By -measurable integral random wvariable. Then X, =
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Xo + 2?21 d; is a martingale (respectively submartingale or supermartingale)
iff Eldn+11Bn] = 0 (BE[dnt1|Br] = 0 or E[dnt1|Br] < 0 respectively) for all
n € N.

Proof. We prove the assertions for martingales only, the other all being
similar. Clearly X is a martingale iff

0=E[Xpi1|Bn] — Xn = E[Xns1 — Xn|Bn] = E [dns1|Bul -
The second assertion is an easy consequence of the first assertion. [ |

Ezample 18.12. Suppose that {X,},> is a sequence of independent random
variables, S, = Xo + -+ X, and B,, := 0 (Xo,...,Xpn) = 0 (So,...,5n).
Then

E [Sn+1|Bn} =E [Sn =+ Xn+1|Bn] =5, +E [Xn-«-l‘Bn] =5, +E [Xn-H] :

Therefore {S,,}~, is a martingale respectively submartingale or supermartin-
gale) iff EX,, = 0 (EX,, > 0 or EX,, < 0 respectively) for all n € N.

Ezample 18.13. Suppose that {Z,}_ is a sequence of independent integrable
random variables, X,, = Zy...Z,, and B,, := 0(Zy,...,Zy). (Observe that
E|X,| = [Ti_oE|Zk| < o0.) If EZ, = 1 for all n then X is a martingale
while if Z,, > 0 and EZ,, <1 (EZ,, > 1) for all n then X is a supermartingale
(submartingale). Indeed, this follows from the simple identity;

E[Xps1|Bn] = E [ X0 Zns1|Bp] = XnE [Zns1|Bn] = Xn - E [Zngi] as.

Proposition 18.14. Suppose that X = {X,} -, is a martingale and ¢ is a
convex function such that ¢ (X,) € L' for all n. Then ¢ (X) = {¢ (X»)}rey
is a submartingale. If ¢ is also assumed to be increasing, it suffices to assume
that X is a submartingale in order to conclude that ¢ (X) is a submartingale.
(For example if X is a positive submartingale, p € (1,00), and EXE < oo for

all n, then XP := {XP}> . is another positive submartingale.

Proof. When X is a martingale, by the conditional Jensen’s inequality

[L4.25,

¢ (Xn) = ¢ (Ep, Xni1) < Eg, [p (Xnt1)]

which shows ¢ (X) is a submartingale. Similarly, if X is a submartingale and ¢
is convex and increasing, then ¢ preserves the inequality, X,, <Eg_ X, 1, and
hence

0 (Xn) <9 (Ep, Xnt1) <Eg, [p (Xnt1)]

so again ¢ (X) is a submartingale. ]
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18.2 Decompositions

Notation 18.15 Given a sequence {Zy}r—, let AyZ == Zy, — Zy_y for k =
1,2,....

o
n=0"

Lemma 18.16 (Doob Decomposition). Fach adapted sequence, {Z,}
of integrable random variables has a unique decomposition,

Zp =M, + A, (18.4)

where {Mn}f;o is a martingale and A, is a predictable process such that Ay =
0. Moreover this decomposition is given by Ay = 0,

Ay = Ep,_, [AcZ] forn>1 (18.5)
k=1
and
n
M, = Z, — A, = Z, — ZEBH [ArZ] (18.6)
k=1
=Zo+Y (2 —Es,_,Z1) . (18.7)
k=1

In particular, {Z,},"_, is a submartingale (supermartingale) iff A, is increasing
(decreasing) almost surely.
Proof. Assuming Z, has a decomposition as in Eq. (18.4)), then
]EB [An+1Z] = ]EBn [An+1M + An+1A] == An+1A (188)

n

wherein we have used M is a martingale and A is predictable so that
Ep, [Ant1M] = 0 and Ep, [A,114] = A,41A. Hence we must define, for
m>1,

Ap =Y A A= Ep,_, [ArZ]
k=1 k=1

which is a predictable process. This proves the uniqueness of the decomposition
and the validity of Eq. (18.5]).
For existence, from Eq. ((18.5) it follows that
Eg, [Ani12] = Anj1A = Es, [Ani14].
Hence, if we define M,, := Z,, — A,,, then

Eg, [Ant1M] =Ep, [Ant1Z — Api1A] =0

n
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and hence {Mn}zozo is a martingale. Moreover, Eq. (18.7) follows from Eq.
(18.6|) since,

n

M, =2Zy+ Y (AvZ —Ep,_, [AcZ))
k=1

and
AyZ —Ep,_, |[AxZ) = Zk — Zk—1 — Bp,_, [Zk — Zk—1]
=2y — Zy-1— (B, , Zk — Zi—1) = Z — B, _, Zi.
n

Remark 18.17. Suppose that X = {X,,}°~ , is a submartingale and X,, = M, +
A, is it Doob decomposition. Then A, =7 lim,,_ A, exists a.s.,

EA, =E[X, — M,] =EX,, —EM, = E[X,, — X¢] (18.9)
and hence by MCT,
EA, =7 lim E[X, — X].

n—oo

(18.10)

Hence if lim,, o E[X,, — Xo] = sup,, E [X,, — X] < o0, then EA, < oo and so
by DCT, A,, — A in L' (£2, B, P) . In particular if sup,, E | X,,| < co, we may
conclude that {X,} 7, is L' (12, B, P) convergent iff {M,} ~ , is L' (12,8, P)
convergent. (We will see below in Corollary that X := lim,_ . X,
and My, := lim, ., M, exist almost surely under the assumption that
sup, E|X,,| < 00.)

Example 18.18. Suppose that N = {Nn}zo=0 is a square integrable martingale,
L.e. EN2 < oo for all n. Then from Proposition [18.14] X := {X,, = N2} 'is
a positive submartingale. In this case

Ep, , AkX =Eg,_, (Nf — Ni_y) =Ep,_, [(Nk — Np—1) (Ni + Ni—1)]
=Ep,_, [(Nr — Ng—1) (N — Ni—1)]
=Ep,_, (Nk — Nj—1)®

wherein the second to last equality we have used
E3k71 [(Nk — Nkfl) Nkfl] = NkflEB,%l (Nk - Nkfl) =0 a.s.

in order to change (Nj + Nj_1) to (N — Ni_1). Hence the increasing pre-
dictable process, A, in the Doob decomposition may be written as

Ap=> Ep,_,AX =) Ep,_, (AN)”.

k<n k<n

(18.11)

macro: svmonob.cls date/time: 19-Feb-2010/11:31



For the next result we will use the following remarks.

Remark 18.19. If X is a real valued random variable, then X = X+ — X,
[ X|=XT+ X", XT <|X|=2XT — X, so that

EX* <E|X|=2EX* — EX.
Hence if {X,,},~, is a submartingale then
EXT <E|X,| = 2EX} — EX, < 2EX} — EX,
from which it follows that

supEX, <supE|X,| < 2supEX," — EX,. (18.12)

Theorem 18.20 (Krickeberg Decomposition). Suppose that X is an in-
tegrable submartingale such that C := sup, E[X,]] < oo or equivalently

sup,, E | X,,| < oo, see Fq. . Then
M, =7 lim E [XI'HB,L] erists a.s.,
p—o0
M = {M,} ", is a positive martingale, Y = {Y,} ~_ with Y, := X,, — M, is

a positive supermartingale, and hence X,, = M,, —Y,. So X can be decomposed
into the difference of a positive martingale and a positive supermartingale.

Proof. From Proposition|18.14|we know that X T = { X} is a still a positive
submartingale. Therefore for each n € N, and p > n,

]EBn [X;_+l] = EB”EBP [X;:I»l] Z ]EBHX; a.s.

Therefore ]EBHX;‘ is increasing in p for p > n and therefore, M, :=
lim, .o Ep, [X,f] exists in [0, 00]. By Fatou’s lemma, we know that

EM, <liminfE [Eg, [X,/]] <liminfE [X] =C < o0

p—00 pP—0Q0

which shows M is integrable. By cMCT and the tower property of conditional
expectation,

]EBn M"""l = EBn pll{IOlO EBH+1 [X]j] = pli)Holo EBnEBnJrl [X;]

= lim Ep, [X;] = M, a.s.,

p—0oo

which shows M = {M,,} is a martingale.
We now define Y,, := M,, — X,,. Using the submartingale property of X+
implies,
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Y, =M, - X, = lim Eg_ [X]ﬂ — X, = lim Eg,_ [X]ﬂ —X;f—l—X;
p—00 p—00

= lim Eg, X,/ - Xf]+ X, > 0as.

p—00
Moreover,
E [Yn+1|Bn] =E [Mn+1 - Xn+1|Bn] = Mn —E [Xn+1|Bn] > Mn - Xn = Yn

wherein we have use M is a martingale in the second equality and X is sub-
martingale the last inequality. [ ]

18.3 Stopping Times

Definition 18.21. Again let {B,,},_ be a filtration on (£2,B) and assume that
B=Bo = ViloBn = 0 (UploBy) . A function, 7: 2 — N := NU{0,00} is
said to be a stopping time if {T <n} € B, for all n € N. Equivalently put,

7 : 82 — N is a stopping time iff the process, n — 1.<, is adapted.

Lemma 18.22. Let {B,}.~, be a filtration on (2,B) and 7 : £ — N be a
function. Then the following are equivalent;

1. 7 15 a stopping time.

2.{r <n} e B, foralln € Ny.
3A{r>n}={r>n+1} € B, for all n € Ny.
4. {T =n} € B, for all n € Ny.

Moreover if any of these conditions hold for n € Ny then they also hold for
n = oo.

Proof. (1. <= 2.) Observe that if {r <n} € B, for all n € Ny, then
{r <00} = U2, {7 <n} € By and therefore {T =00} = {7 <00}’ € By
and hence {7 < 0o} = {7 < 0} U{T = 00} € B. Hence in order to check that
T is a stopping time, it suffices to show {7 < n} € B, for all n € Ny.

The equivalence of 2., 3., and 4. follows from the identities

{r>n}={r<n},
{T:n}:{q—gn}\{Tgn—l}, and
{r<n}=Ui_o{r=Fk}
from which we conclude that 2. — 3. = 4. = 1. ]
Clearly any constant function, 7 : {2 — N, is a stopping time. The reader

should also observe that if B, = o (Xo,...,X,), then 7: 2 — N is a stopping
time iff, for each n € Ny there exists a measurable function, f,, : R**! — R such

that 1(;—ny = fn (Xo,...,Xy). Here is another common example of a stopping
time.
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260 18 (Sub and Super) Martingales

Ezample 18.23 (First hitting times). Let (S,S) be a state sapce, X :=
{X,, : 2 — 5}, be an adapted process on the filtered space, (£2, B,{Bn},—,)
and A € S. Then the first hitting time of A,

T:=inf{n e Ny: X, € A},
(with convention that inf ) = c0) is a stopping time. To see this, observe that
{r=n}={Xoe€ A% ..., X1 € A5, X, € A} € 0 (Xy,..., Xpn) C B,.
More generally if o is a stopping time, then the first hitting time after o,
T:=inf{k>0: X, € A},
is also a stopping time. Indeed,

{r=n}={c<n}in{X,¢A4,...,Xn1¢A X, €A}
:Uogkgn{azk‘}ﬂ{Xk ¢A,...,Xn_1 %A,Xn GA}

which is in B,, for all n. Here we use the convention that
{Xix ¢ A,.... X1 ¢ A X, e A} ={X,, € A} if k =n.

On the other hand the last hitting time, 7 = sup{n € Ny : X, € A}, of a
set A is typically not a stopping time. Indeed, in this case

{’T = n} = {Xn S A,XnJrl §é A7Xn+2 ¢ A,} S O'(Xn,Xn+1,...)
which typically will not be in B,,.

Proposition 18.24 (New Stopping Times from O1d). Let (2, B,{B,}, )
be a filtered measure space and suppose o, T, and {Tn}ff:l are all stopping times.
Then

1.7 ANo, TV o, T+ o are all stopping times.
2.If T, T Too OT Tk | Too, then T is a stopping time.

3. In general, sup,7, = limgpcomax{m, ...,7} and infy7, =
limg oo min{7 ..., 7%} are also stopping times.
Proof.

1. Since {tAo>n} ={r>n}tnN{oc>n} € By, {rVvo<n} = {r<n}n
{o <n} € B, for all n, and

{r+o=n}=U_o{r=ko=n—k} B,

for all n, 7 Ao, 7V o, T+ o are all stopping times.
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2. If 7% 1 Too, then {7oc <n} = Ng{mx <n} € B, and so 7 is a stopping
time. Similarly, if 7 | Teo, then {70 > n} = N {7 > n} € B, and so0 7
is a stopping time. (Recall that {7, > n} = {rec > n+1}.)

3. This follows from items 1. and 2.

Lemma 18.25. If 7 is a stopping time, then the processes, fn = l{;<n}, and
fn = l{z=pny are adapted and f, := 1,y is predictable. Moreover, if o and
T are two stopping times, then f, := locn<, s predictable.

Proof. These are all trivial to prove. For example, if f,, := 1o<p<-, then f,
is B,,_1 measurable since,

{o<n<ti={o<nin{n<r}={o<ntn{r<n} €B,_1.

Notation 18.26 (Stochastic intervals) Ifo,7: 2 — N, let
(o,7):=={(w,n) € 2xN:o(w)<n<7(w)}
and we will write 1(4, ) for the process, 15<n<s.

Our next goal is to define the “stopped” o — algebra, B,. To motivate the
upcoming definition, suppose X,, : 2 — R are given functions for all n € Ny,
B, =0 (Xo,...,Xn),and 7: 2 — Ny is a B. — stopping time. Recalling that
a function Y : 2 — R is B, measurable iff Y (w) = f,, (Xo (w),... X, (w)) for
some measurable function, f, : R**! — R, it is reasonable to suggest that Y
is B, measurable iff Y (w) = fr) (Xo (W), ... X;@) (w)), where f, : R"™! —
R are measurable random variables. If this is the case, then we would have
1r=nY = fn (Xo,...,X,) is B,, — measurable for all n. Hence we should define
A C 2 to bein B, iff 14 is B, measurable iff 1,_,,14 is I3,, measurable for all
n which happens iff {7 =n} N A € B, for all n.

Definition 18.27 (Stopped o — algebra). Given a stopping time T on a
filtered measure space (2, B, {Bn}fzo) with Beo 1= V2 oByp 1= 0 (US2B,) , let

B ={ACQ:{r=n}NAeB, foralln < co}. (18.13)

Lemma 18.28. Suppose o and T are stopping times.

1. A set, AC Q2 isin B, iff An{r <n} € B, for alln < co.
2. B; is a sub-o-algebra of B.
3. If o <7, then B, C B.

macro: svmonob.cls date/time: 19-Feb-2010/11:31



Proof. 1. Since

ANn{r <n} =Up<pn [AN{r < k}] and
An{r=n}=[An{r <n}\[AN{r <n-1}],
it easily follows that A C 2 isin B, ifft AN {r <n} € B, for all n < oco.

2. Since 2N {r <n} = {r <n} € B, for all n, it follows that 2 € B;. If
A € B;, then, for all n € Ny,

An{r<n}={r<n}\A={r<n}\[AN{r <n}]| € B,.
This shows A° € B,. Similarly if {A4};—, C B, then
{Tr<n}n (M1 A4r) =N, {7 <n}tnNAg) € B,

and hence N$2; Ay, € B;. This completes the proof the B, is a o — algebra. Since
A=An{r < oo}, it also follows that B, C B.

3. Now suppose that o < 7 and A € B,. Since AN{c < n} and {7 < n} are
in B,, for all n < oo, we find

An{r<n}=[An{oc<n}In{r<n}eB,Vn<x
which shows A € B.. [

Proposition 18.29 (B, — measurable random variables). Let
(02,B,{B,},>,) be a filtered measure space. Let T be a stopping time
and Z : {2 — R be a function. Then the following are equivalent;

1. Z is B; — measurable,

2. li7<n)Z is By, — measurable for all n < oo,

3. Lir=n)Z is By, — measurable for all n < co.

4. There exists, Y, : £2 — R which are B, — measurable for all n < oo such

that
Z=Y, =Y lir—pYa.
neN

Proof. 1. = 2. By definition, if A € B;, then 1{;<,31a = 1{;<nyjna
is B,, — measurable for all n < co. Consequently any simple B, — measurable
function, Z, satisfies 1{;<,1Z is B, — measurable for all n. So by the usual
limiting argument (Theorem , it follows that 1(,<,,Z is B, — measurable
for all n for any B, — measurable function, Z.

2. = 3. This property follows from the identity,

l{T:n}Z = 1{T§n}Z - 1{T<n}Z

3. = 4. Simply take Y, = 11 Z.
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4. = 1.Since Z = Y, . 1{r=n} Y, it suffices to show 1¢,—,}Y,, is B, —
measurable if Y}, is B,, — measurable. Further, by the usual limiting arguments
using Theorem [6.39] it suffices to assume that Y,, = 14 for some A € B,. In
this case 1{;—,}Yn = 1an{r=n}. Hence we must show AN {7 =n} € B, which
indeed is true because

- o 0eB,  ifk#n
Am{T_n}m{T_k}_{Aﬁ{rzn}eBkifk:n'

Alternatively proof for 1. = 2. If Z is B, measurable, then {Z € B}nN
{r <n} eB, forall n < oo and B € Bg. Hence if B € Bg with 0 ¢ B, then

{1p<mZeB}={ZeB}yn{r<n}eB,foraln
and similarly,
{1 Z =0} = {1r<yZ #0} ={Z £ 0} N {r < n} € B, for all n.

From these two observations, it follows that { lr<myZ €B } € B, for all B € Bg
and therefore, 11, <,y Z is B,, — measurable. [

Lemma 18.30 (5, — conditioning). Suppose o is a stopping time and Z €
LY (02,B,P) or Z >0, then

E(Z|Bs] = Y 1o=nE[Z|B.] =Y, (18.14)
n<oo
where -
Y, :=E[Z|B,] for alln € N. (18.15)

Proof. By Proposition [18.29] Y, is B, — measurable. Moreover if Z is inte-
grable, then

> E[lgmny [Val] = Y Eljomny [E[Z]B,]|

n<oo n<oo

> E[1{o—nyE[1Z]|Ba]]

n<oo

S E[E [Lo—ny 12]1Bn]

n<oo

=Y E[l{o—ny |Z|] =E|Z| < o0

n<oo

IN

(18.16)

and therefore
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262 18 (Sub and Super) Martingales

E|Y,|=E|) [lo-mYa]
n<oo
<Y E[lipeny [Yal] E|Z] < o0
n<oo

Furthermore if A € B,, then

E[Z:Al=)Y E[Z:An{oc=n}]= )Y E[Y,:AN{o=n}]

n<oo n<oo

S E[LomnyYn A =E | ) LjommyYn: A

n<oo n<oo

=E[Y, : 4],

wherein the interchange of the sum and the expectation in the second to last
equality is justified by the estimate in [I8:16] or by the fact that everything in
sight is positive when Z > 0. ]

Exercise 18.1. Suppose ¢ and 7 are two stopping times. Show;

1.{oc <7},{oc=7}, and {o < 7} are all in B, N B,
2. BO’/\T = Bo’ N 677

3. Byyr =B,V B, :=0(B,UB,), and

4. (B{,){UST} C Boar and (B”){0'<T} C Bonr-

Recall that
(BJ){(TST} = {A N {U < T} tAe Bo‘} .

Exercise 18.2 (Tower Property II). Let X € L' (2,B,P) or X : 2 —
[0,00] be a B — measurable function. Then given any two stopping times, o
and 7, show

Ep Eg. X =Ep Ep, X =Ep,,..X.

oNT

(18.17)

(Hints: 1. It suffices to consider the case where X > 0. 2. Make use of Exercise
[18.1] Lemma[I8:30] and the basic properties of conditional expectations. If you
want to be sophisticated you may also want to use the localization Lemma [14.23
— but it can be avoided if you choose.)

Exercise 18.3. Show, by example, that it is not necessarily true that
EQ1E92 = Egl/\g2

for arbitrary G; and Gs — sub-sigma algebras of B.
Hint: it suffices to take (£2, B, P) with 2 = {1,2,3}, B =29, and P ({j}) =
% for j =1,2,3.

Page: 262 job: prob

18.4 Stochastic Integrals and Optional Stopping

Notation 18.31 Suppose that {u,} —, and {z,} ., are two sequences of
numbers, let udx denote the sequence of numbers defined by

(u-Ax), Zu]

For a gambling interpretation of (u-Ax), , let x; represent the price of
a stock at time j. Suppose that you, the investor, then buys u;_; shares at
time 7 — 1 and then sells these shares back at time j. With this interpretation,
uj_14;x represents your profit (or loss if negative) in the time interval from
j—1tojand (u- Az), represents your profit (or loss) from time 0 to time n.
By the way, if you want to buy 5 shares of the stock at time n = 0 and then
sell them all at time n, you would take uy =5 - 1p<p.

n
—xj_1) = Zujij forn > 1.

j=1

Example 18.32. Suppose that 0 < o < 7 where 0,7 € Ny and let w,, := locn<r.
Then

00
U Agj E 10‘<]<7’ — T 1 § 1a<j§'r/\n(xj*1'j—l)
=1

= Tran — ToAn-

Proposition 18.33 (The Discrete Stochastic Integral). Let X = {X,,},,
be an adapted integrable process, i.e. E|X,| < oo for all n. If X is a martin-
gale and {U,},~_, is a predictable sequence of bounded random variables, then
{(U-AX),}>7 | is still a martingale. If X := {X,,},_ is a submartingale (su-
permartingale) (necessarily real valued) and U, > 0, then {(U - AX) }> | is a
submartingale (supermartingale).

Conversely if X s an adapted process of integrable functions such that
E[(U-AX),] = 0 for all bounded predictable processes, {Uy,} —,, then X is
a martingale. Similarly if X is real valued adapted process such that

E[(U-AX),]

IV IA
o

(18.18)

for all n and for all bounded, non-negative predictable processes, U, then X is
a supermartingale, martingale, or submartingale respectively.

Proof. For any adapted process X, we have

E [(U ! AX)n-‘rl |Bn] =E [(U : AX)n + Un+1 (X”+1 - X”) |Bn]

= (U-AX), 4+ Up1E[(Xps1 — X)) |Ba] . (18.19)
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The first assertions easily follow from this identity.

Now suppose that X is an adapted process of integrable functions such
that E[(U - AX),] = 0 for all bounded predictable processes, {U,} -, . Taking
expectations of Eq. then allows us to conclude that

E [Un+1E [(Xn+l - Xn) ‘BTLH =

for all bounded B, — measurable random variables, U,;;. Taking U,11 =
sgn(E [(Xnt1 — X») |By]) shows [E[(Xpn41 — Xn) |Br]| = 0 a.s. and hence X is
a martingale. Similarly, if for all non-negative, predictable U, Eq. holds
for all n > 1, and U,, > 0, then taking A € B,, and Uy, = 0y 4114 in Eq.
allows us to conclude that

E[Xn1— X, : A] =E[(U- AX) 0,

IV IA

n+1]

i.e. X is a supermartingale, martingale, or submartingale respectively. ]
Ezample 18.34. Suppose that {X,} -, are mean zero independent integrable
random variables and f, : R” — R are bounded measurable functions. Then

Vo= fu(Xoy. o, Xno1) (Xn — Xn1) (18.20)

defines a martingale sequence.

Notation 18.35 Given an adapted process, X, and a stopping time T, let
X7 = Xran. We call X7 :={X]},°, the process X stopped by 7.

Theorem 18.36 (Optional stopping theorem). Suppose X = {X,,},7 is
a supermartingale, martingale, or submartingale and T is a stopping time, then
X" isa {Bn}zozo — supermartingale, martingale, or submartingale respectively.
This valid if either E|X,,| < oo for all n or if X, >0 for all n.

Proof. First proof. Since 1,<,X; = > ;_1,-,X, is B, measurable,
{r >n} € B,, and

X‘r/\(n—o—l) = lr<nXr + LisnXnia,
we have

EB,L [XT/\(nJrl)] :1T§nX7' + 17’>nEBan+1

IV IA

1‘rSn*XV’r + 1T>an = ATAn-
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Second proof in case E|X,,| < co. Let Uy := locp<, for k = 1,2,....
Then U is a bounded predictable process and

(U-4AX), =) locrzrApX = Y AX = Xopnn = X

k<n 0<k<tAn

Therefore, by Proposition [18.33] X7 = Xo + (U - AX),, is (respectively) a su-
permartingale, martingale, or submartingale.

Third proof. See Remark below. |

Theorem 18.37 (Optional sampling theorem I). Suppose that o and T
are two stopping times and T is bounded, i.e. there exists N € N such that
T<N<ooas If X ={X,} - _o 18 an integrable supermartingale, martingale,
or submartingale, then X, is integrable and

E[X;|Bs]

VAL IA

Xonr G.S. (18.21)
respectivelgﬂ from top to bottom. Moreover, Eq. (18.21)) is valid with no inte-
grability assumptions on X provided X, > 0 a.s. for all n < co.
Proof. Since
| X = Z Lk Xg| < Z L | Xg| < Z | Xk,
0<k<r 0<k<r 0<k<N

if X,, € L' (2, B, P) for all n we see that E[X,| < Y7, <y E|Xk| < oo. Hence
it remains to prove Eq. (18.21)) in case X,, > 0 or X,, € L' (£2, B, P) for all n.
According to Lemma [I8:3

E [X,|B,] 210 WE[X-B,]. (18.22)

On the other hand we know X7 is a supermartingale, martingale, or submartin-
gale respectively and therefore, for any n < co and m > max (n, N) we have
E[X; B, =E[X]|B,) =X = X;an-

n

IV IA

Combining this equation with Eq. (18.22]) shows

§ ]-D' n T/\n— TNO*

2 This is the natural generalization of Eq. 1) to the stopping time setting.

E[X,|B,]

\/|| IN
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264 18 (Sub and Super) Martingales

This completes the proof. Nevertheless we will give two more proofs of Eq.
(18.22) under the assumption that X,, € L' (£2, B, P) for all n.

First alternative proof. First suppose X is a martingale in which case
X, =Ep, XN for all n < N and hence

X, = Z lr=nXn = Z 17':n]El’j’"AXVN = Z 1T:’I’LEB”XN = EBTXN~

n<N n<N n<oo
Therefore, by Exercise |18.2

Ep, X; = Ep,Ep, Xy =Ep, ., XN = Xonr-

oNT

Now suppose that X is a submartingale. By the Doob decomposition
(Lemma(18.16)), X,, = M,,+ A,, where M is a martingale and A is an increasing
predictable process. In this case we have

]EB(,XT = ]EB(,MT + ]EB(,AT = MO’/\T + ]EB(,AT
> Mo/\‘r + EBUAO'/\T = MO’/\T + AO’/\T = XO'/\T'
The supermartingale case follows from the submartingale result just proved
applied to —X.

Second alternative proof. Let A € B, and U, := 14 - lo<p<,. Then U
is predictable since

An{oc<n<rt}=(An{o<n})Nn{n <7} € B, for all n.
Let us also observe that
(U-AX), = Z 1a - locp<r A X = Z 1a - loar<k<randiX
k<n
= 1; (Xonn — Xonr) forall n > 1.
By Proposition (U - AX) is a supermartingale, martingale, or submartin-
gale respectively and hence

<
E[1a(Xr — Xonr)] =E[1a (Xoan — Xonr)] = E[(U - AX) y] = 0 respectively.

Since A € B, is arbitrary and X,,, is B, — measurable (in fact By, — mea-

surable), Eq. (18.21)) has been proved. ]

Remark 18.38. Theorem[I8.37]can be used to give a simple proof of the Optional
stopping Theorem [18.36] For example, if X = {Xn}fbo=0 is a submartingale and
T is a stopping time, then

EB”XT/\(TL-‘,-l) > X[T/\(n+1)]/\n = Xr/\m

i.e. X7 is a submartingale.
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18.5 Submartingale Inequalities
For a process, X = {X,,}.- let

X7 = max {|Xo|,..., [ Xn|}. (18.23)

18.5.1 Maximal Inequalities

Proposition 18.39 (Maximal Inequalities of Bernstein and Lévy). Let
{X,} be a submartingale on a filtered probability space, (2,B,{Bn},—,,P).
The7E|f07‘ any a >0 and N € N,

aP (maxXn > a> <E [XN :max X, > a} <E [XJJH , (18.24)
aP (min Xn < —a) <E [XN s min X > —a] — E [Xo] (18.25)
n<N k<N
<E[X¥] -E[Xo], (18.26)
and
aP (X} > a) <2E (X3 ] —E[Xo]. (18.27)

Proof. Initially let X be any integrable process and 7 be the random time
defined by, 7 :=inf {n : X,, > a}. Since X; > a on

< = >
{r <N} {Lnﬁaﬁchn > a} ) (18.28)
we have
aP (m<a1)v<Xn2a) =E[a:7<N]<E[X,:7<N] (18.29)
n=

=EXy:7T<N]|-E[Xy—-X;:7<N]
=E[Xy:7T<N|-E[Xy— X,;rnN]|- (18.30)

Let me emphasize again that in deriving Eq. , we have not used any
special properties (not even adaptedness) of X.

If X is now assumed to be a submartingale, by the optional sampling The-
orem Es v XN > X;an and in particular E[Xy — X, an] > 0. Com-

bining this observation with Eq. (18.30) and Eq. (18.28) gives Eq. (18.24).

(Alternatively, since {7 < N} € B, an, it follows by optional sampling that

3 The first inequality is the most important.
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EX;:T<N|=E[Xan:T<N]<E[Xy:7<N]

which combined with Eq. (18.29)) gives Eq. (18.24]).)
Secondly we may apply Eq. (18.30) with X,, replaced by —X,, to find

aP <min X, < —a) =aP (— rrgn X, > a) =aP <max(—Xn) > a)

n<N n<N
< E[XN T<N]+E[XN X’T‘/\N] (1831)
where now,
=inf{n:-X, >a} =inf{n: X, <-a}.

By the optional sampling Theorem [18.37} E [X,,n — Xo] > 0 and adding this
to right side of Eq. ((18.31]) gives the estimate

aP <rrii]r\1]Xn < —a) <-E[Xy:7T <N +E[Xy— Xoan] +E[Xoan — Xo]
SE[XN—X()]—E[XNZTSN]
=E[Xy:7>N]—-E[X(]

=E |:XN : ’EIil]I\}Xk > —a —E[Xo]

which proves Eq. ([18.25)) and hence Eq. (|18.26 m Adding Egs. (18.24]) and ( m
gives the estlmate in Eq m

Remark 18.40. 1t is of course possible to give a direct proof of Proposition[18.39
For example,

WE

E XN:m<aK[(XnZa] EXy:X1<a,...,Xk-1 <a,Xi>a

e
Il

1

] =

E[Xk:X1<a,...,Xk,1<a,Xk2a]

=
Il
—

M=

Ela: X;<a,...,Xp-1<a,Xi>d

>
Il

1

=aP <maXXn > a)
n<N

which proves Eq. (|18.24)).

Corollary 18.41. Suppose that {Y, } _, 5 a non-negative super martingale,
a >0 and N € N, then

aP (Iriajichn > a) <E[YpAa]—E [YN : m<a]i[(Yn < a] <E[YyAa]. (18.32)
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Proof. Let X,, := —Y,, in Eq. (18.25)) to learn

aP <min (-Y,) < —a) <E [—YN :min (-Y,) > —a] + E [Yo]
n<N n<N

or equivalently that

aP <m<aj§ Y, > a) <E[Yy]-E [YN ma]{[(Y < a] <E[Yy]. (18.33)
Since ¢, (z) := a A x is concave and nondecreasing, it follows by Jensen’s

inequality that
E o (Yn) [Bm] < @a (E [Ya|Bm]) < ¢a (V) for all m <n.

In this way we see that ¢, (V) = Y, Aa is a supermartingale as well. Applying

Eq. (18.33) with Y,, replaced by Y,, A a proves Eq. (|18.32]). [ |
Ezxample 1 8.42. Let {Xn} be a sequence of independent random variables with
mean zero, S, = Xi + -+ + X,,, and S} = max;<,|S;|. Since {S,}.-, is

a martingale and {ISnl? } _, is an (poss1b1y extended) submartingale for any
p € [1,00). Therefore an application of Eq. (18.24)) of Proposition [18.39| show

S}‘i,?zozp)<i

e
o
2*
\Y
£

I
e

E[|Sy|?: S% > a].

When p = 2, this is Kolmogorov’s Inequality, see Theorem ?7.

Lemma 18.43. Suppose that X and Y are two non-negative random variables
such that P(Y > y) < 1E [X :Y >y for ally > 0. Then for all p € (1,00),

P p
EY? < <p_1> EX?. (18.34)

Proof. We will begin by proving Eq. (18.34]) under the additional assump-
tion that Y € LP (§2, B, P) . Since

o0 o0
EY? = pIE/ ly<y - yP dy = p/ E[1,<v]- yPtdy
0 0
o oo 1
=p/ P(YZy)-yp‘ldyﬁp/ “E[X:Y >y]-yP dy
0 o Y

:pE/ Xly<y -yP2dy = P g [(XY?~1].
0 p—1

Now apply Holder’s inequality, with ¢ = p (p — 1)71 , to find
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266 18 (Sub and Super) Martingales
_ — 1
E (XY <X, [y?7, = X, - [E [y

Combining thew two inequalities shows and solving for [|Y||, shows [V, <
ﬁ | X||, which proves Eq. (18.34) under the additional restriction of Y being

in L? (2,8, P).
To remove the integrability restriction on Y, for M > 0let Z :=Y A M and
observe that

[t

1
P(Z>y)=PY >y <-EX:Y>y=-E[X:Z>y]ify<M
y

<

while

1
P(Z>y)=0=-E[X:Z>y] ify> M.
y

Since Z is bounded, the special case just proved shows

E[(Y A M)P] =EZP < (pfl)pEXP.

We may now use the MCT to pass to the limit, M T oo, and hence conclude
that Eq. ((18.34) holds in general. [

Corollary 18.44 (Doob’s Inequality). If X = {X,}° be a non-negative
submartingale and 1 < p < oo, then

p
EXZP < <pf1) EX?,. (18.35)

Proof. Equation [18.35| follows by applying Lemma [18.43] with the aid of
Proposition [18.39 u

Corollary 18.45 (Doob’s Inequality). If {M,},, is a martingale and 1 <
p < 00, then for all a > 0,

1 1
P(Mj > a) < E[[M|y: My > a] < ~E[|My]] (18.36)

and

p
EMP < <pl> E|My[”. (18.37)
=

Proof. By the conditional Jensen’s inequality, it follows that X,, := |M,]

is a submartingale. Hence Eq. ((18.36]) follows from Eq. (18.24]) and Eq. ((18.37))
follows from Eq. (18.35)). ]
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18.5.2 Upcrossing Inequalities and Convergence Results
Given a function, Ng3n — X, € Rand —c0 < a < b < 00, let

70=0, m=inf{n>7:X, <a}
To=inf{n>m: X, >b}, s:=inf{n>mn:X, <a}

Top = inf {n > 1op_1 : X, > b}, Topt1 :=inf {n >y : X, <a} (18.38)

with the usual convention that inf ) = oo in the definitions above, see Figures
and Observe that 7,411 > 7, + 1 for all n > 1 and hence 7, > n —1
for all n > 1. Further, for each N € N let

U (a,b) = max {k : 7o, < N} (18.39)
be the number of upcrossings of X across [a, ] in the time interval, [0, N].

Lemma 18.46. Suppose X = {Xn}fbozo is a sequence of extended real numbers
such that U (a,b) < oo for all a,b € Q with a <b. Then Xo := limy o0 X,
ezists in R.

Proof. If lim,_,., X,, does not exists in R, then there would exists a,b € Q
such that
liminf X, < a < b < limsup X,,

n—oo n—00

and for this choice of a and b, we must have X,, < a and X,, > b infinitely
often. Therefore, UZ (a,b) = co. |

Theorem 18.47 (Doob’s Upcrossing Inequality — buy low sell high).
If{X,}.2, is a submartingale and —co < a < b < oo, then for all N € N,

E[U% (a,0)] < ;- [E(Xn — )

+—E(X0—a)+] .
Proof. We first suppose that X,, >0, a =0 and b > 0. Let

70=0, 1, =inf{n > 19 : X, =0}
To=inf{n >m : X, > b}, 3:=inf{n >mn: X, =0}

Top = inf {n > 191 : X, > b}, Topt1 :=inf {n >y : X,, =0}
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Positive Martingale Path

To b N Tl

Fig. 18.1. A sample path of a positive martingale with crossing levels, a = 1 and
b = 2 marked off.

a sequence of stopping times. Suppose that IV is given and we choose k such
that 2k > N. Then we know that 7o, > N. Thus if we let 7/, := 7, A N, we
know that 7,, = N for all n > 2k. Therefore,

2k
Xy -Xo=3 (XT;I - XT:H)
n=1
k
=3 (X = X, )+ 20 (K~ X, )
n=1 n=1
k
20U (0.0)+ Y (X, = Xey ), (18.40)
n=1

wherein we have used X, — Xop 2 b if there were an upcrossing in the
interval [75,_,,75,] and Xy =X 20 otherwiseﬂ see Figurem Taking
expectations of Eq. (18.40) implies

YIf 73p-1 > N, then Xy — X, = Xy — Xy =0, while if 72,1 < N, X, —
Xy =Xy —0>0.

Tan—1
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Simpre-Randerrifetices

Poskwe Swb wadivmacde

Fig. 18.2. A sample path of a positive submartingale along with stopping times
T2; and Tgj41, successive hitting times of 2 and 0 respectively. Notice that X, i70 —
Xrzar0 > 2 while Xga70 — Xr5a70 > 0. Also observe that Xrga00 — Xrn00 = 0.

k
EXy —EXo > bEUR (0,6) + Y E (Xry | = Xy ) > bEUR (0,0)
n=1
wherein we have used the optional sampling theorem to guarantee,

E <XT/ ~ X, ) > 0.
2n—1 2n—2

If X is a general submartingale and —oco < a < b < 00, we know by Jensen’s
inequality that (X,, —a) is still a sub-martingale and moreover

UR (a,b) = US4 (0,b — a)

and therefore
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268 18 (Sub and Super) Martingales
(b—a)E[UX (a,b)] = (b—a)E [U(X‘“)+ (0,6 — a)]
SE(Xy-a), —E(Xo—a),.
| ]
2) > 0 given

that are strategy is to buy high and sell low. On {72,-1 < N}, X, | —
X < 0— b= —b and therefore,

It is worth contemplating a bit how is that E (Xfén_l — XTén_

ran-2
0<E(X;  -X; )
—E(Xpp , — Xryp :Ton 1 S N)+E (X%_l — Xy i Taa1 > N)
<= bP (1201 S N)+E (Xy = Xy, i 7201 > N).
Therefore we must have
E (XN — X oAN : Top—1 > N) > bP (191 < N)

so that Xy must be sufficiently large sufficiently often on the set where 5,1 >
N.

Corollary 18.48. Suppose {X,} -, is an integrable submartingale such that
sup, EX;F < oo (or equivalently C := sup, E|X,| < oo, see Remark ,
then Xoo = lim, .o X, ewists in R a.s. and moreover, Xoo € L' (82,8, P).
Moreover {Xn}, o is a submartingale (i.e. X, <E[X|By] a.s. for all n), iff
{X,FY0, is uniformly integrable.

Proof. For any —0o < a < b < o0, by Doob’s upcrossing inequality (Theo-

rem [18.47)) and the MCT,

1
b—a

E[UZ (a,b)] < supE (Xy —a), —E(Xo—a), | < oo
N

where
UX (a,b) :== Nlim Ux (a,b)

is the total number of upcrossings of X across [a,b]. In particular it follows
that
Q0 :=nN{U% (a,b) < co:a,beQ with a < b}

has probability one. Hence by Lemma [18.46) for w € 2y we have X, (w) :=
lim,, 00 X, (w) exists in R. By Fatou’s lemma we know that

E[|X| =E [nminf |Xn\] <liminfE[|X,|] < C < « (18.41)
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and therefore that X, € R a.s.

If {X;F} 7, is uniformly integrable, then X, — XL in L! (P) by Vitalli’s
convergence Theorem [12.44] and the fact that X, — X a.s. as we have already
shown. Therefore for A € B,, we have by Fatou’s lemma that

E[X,14] <limsupE[X,,14] = limsup (IE [X:,rllA] —E [X;LIA])

—E[X£14] ~ liminfE [X,14] <E[X514] - E [liminf X, 1,]
m—0o0 m—00

=K [X;_olA} —E [Xo_olA] :E[XoolA].

Since A € B,, was arbitrary we may conclude that X, < E[X]|B,] a.s. for n.
Conversely if we suppose that X,, < E[X|B,] a.s. for n, then by Jensen’s
inequality,
X, <E[XZL|B,] as. foralln

and therefore {X;F} 7| is uniformly integrable by Propositionand Exercise

Second Proof. We may also give another proof of the first assertion based
on the Krickeberg Decomposition Theorem and the supermartingale con-
vergence Corollary below. Indeed, by Theorem X, = M, -Y,
where M is a positive martingale and Y is a positive supermartingale. Hence
by two applications of Corollary we may conclude that

Xoo = lim X,, = lim M, — lim Y,

n—oo n—oo n—oo

exists in R almost surely. [ ]

Remark 18.49. If {X,,}°7, is a submartingale such that {X;} ~  is uniformly
integrable, it does not necessarily follows that {X,} -, is uniformly integrable.
Indeed, let X,, = —M,, where M, is the non-uniformly integrable martingale
in Example m Then X, is a negative (sub)martingale and hence X;F =0 is
uniformly integrable but {X,},° ; is not uniformly integrable. This also shows
that assuming the positive part of a martingale is uniformly integrable is not
sufficient to show the martingale itself in uniformly integrable.

Notation 18.50 Given a probability space, (2,8, P) and A,B € B, we say
A=DB as. iff P(AA B) =0.

Corollary 18.51 (Localizing Corollary Eq. 18.48)). Suppose
M = {M,},_, is a martingale and ¢ < oo such that A,M < ¢ a.s. for
all n. Then

{ lim M, exists in R} = {supMn < oo} a.S.

n—oo
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Proof. Let 7, := inf {n : M,, > m} for all m € N. Then by the optional
stopping theorem, n — M is still a martingale. Since M]™ < m+c, it follows
that E (M), < m+c < oo for all n. Hence we may apply Corollary to
conclude, lim,,_,o M ™ = M7 exists in R almost surely. Therefore n — M,, is
convergent in R almost surely on the set

Un{M™ =M} = {supMn < oo}.
n

Conversely if n — M, is convergent in R, then sup,, M,, < co. ]

Corollary 18.52. Suppose M = {Mn}?zo is a martingale, and ¢ < oo such
that | A, M| < ¢ a.s. for all n. Let

C .= { lim M, exists in R} and

n—oo

D= {limsupMn = oo} N {liminan = —oo} .

Then, P(C UD) =1.
Proof. Since both M and —M satisfy the hypothesis of Corollary [I8.51} we

may conclude that almost surely,

C = {sgpMn < oo} = {i%an > —oo}

n

and hence almost surely,

C¢= {supMn = oo} = {inan = —oo}

n

= {SupMn = oo} N {inan = —oo} =D.

n

Corollary 18.53. Suppose (2,B,{Bn},—,.P) is a filtered probability space
and A, € B, for all n. Then

{A, io} = {Z]E[lAn|Bn1] = oo} a.s. (18.42)

Proof. Let A,M =14, —E[l14,[B,—1] and then set M, := %, A, M.
Then M is a martingale with |A, M| <1 for all n. Since N

{4, i0.} = {ZlA" = oo} ,
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it follows that on C' we have {A4,, i.0.} = {3, E[14,|B,_1] = oo} a.s. Moreover,

on D, we must have >~ 14, =ooand > E[l4,|B,-1] = co and hence again

it follows that Eq. holds. Since CU D = {2 a.s., the proof is complete. m
See Durrett [12, Chapter 4.3] for more in this direction.

18.6 Supermartingale inequalities

As the optional sampling theorem was our basic tool for deriving submartingale
inequalities, the following switching lemma will be our basic tool for deriving
positive supermartingale inequalities.

Lemma 18.54 (Switching Lemma). Suppose that X and Y are two super-
martingales and T is a stopping time such that X, > Y, on {T < oo}. Then

Xpifn<Tt

Zn = 1n<TXn + 1nZvYn = { Yn an >

is again a supermartingale. (In short we can switch from X toY at time, T,
provided Y < X at the switching time, 7.) This lemma is valid if X,,,Y, €
LY (2,8, P) for all n or if both X,,,Y, > 0 for all n. In the latter case, we

should be using the extended notion of conditional expectations.

Proof. We begin by observing,

Zni1 = lnp1<r X1 + lupi>0 Yot
= lpt1<r Xnt1 + Lo Y1 + L1 Yot
< lpj1<r Xng1 + Lo Yo + L1 X
=ln<r Xop1 + 1n>oYog1.

Since {n < 7} and {n > 7} are B,, — measurable, it now follows from the super-
martingale property of X and Y that

EB" ZnJrl < EB,L [1n<‘an+1 + 1n2vYn+1]
= ]-n<‘rEBn [XnJrl] + ]-nZvEBn [Yn+1}
< 1n<TXn + 1n2vYn = Zn

18.6.1 Maximal Inequalities

Theorem 18.55 (Supermartingale maximal inequality). Let X be a pos-
itive supermartingale (in the extended sense) and a € By with a > 0, then
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270 18 (Sub and Super) Martingales

aP {sup X, > a|80} <an X (18.43)

and moreover

P {supX = oo|Bo] =0 on {Xog < o0}. (18.44)

In particular if Xo < 0o a.s. then sup,, X, < 0o a.s.

Proof. Proof. Simply apply Corollary [18.41f with Y, = ((2a) A X,,) - 14
where A € By to find

alE <P [suan > aBO] : A) =aP [suan >a: A] <ElaAXy:A4].
Since this holds for all A € By, Eq. (18.43) follows.
Second Proof. Let 7 :=inf {n: X,, > a} which is a stopping time since,
{r <n}={X, >a} € B, for all n.

Since X, > a on {7 < 0o} and Y;, := a is a supermartingale, it follows by the
switching Lemma [18.54] that

Ly = ]-n<7'Xn + aanT
is a supermartingale (in the extended sense). In particular it follows
aP (1 < n|By) = Eg, l[alp>,] < Ep,Z, < Zo,

and
Zy = lo<r Xo+alr—g = 1x,<aXo + 1x,>a0 = a A Xp.

Therefore, using the cMCT,
aP [suan > a|80} =aP [t < 0|By] = lim aP (1 < n|Bp)
< ZO =al Xo

which proves Eq. (18.43).
For the last assertion, take a > 0 to be constant in Eq. (18.43]) and then use

the ¢cDCT to let a T co to conclude
. . Xo
P |sup X,, = oo|By| = lim P [sup X,, > a|By| < lim 1 A — = 1x,—co-
n aloo n aloo a
Multiplying this equation by 1x,<~ and then taking expectations implies

E [lsupn X,L:oo1X0<oo] =E [1X0:oolX0<oo] =0

which implies Lgyp, x,=0clX,<00 = 0 a.s., i.e. sup, X, < 00 a.s. on {Xy < 0o} .
[
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18.6.2 The upcrossing inequality and convergence result

Theorem 18.56 (Dubin’s Upcrossing Inequality). Suppose X = {X,.},~,
is a positive supermartingale and 0 < a < b < co. Then

P (UX (a,b) > K|Bo) < (%)k (1 A )20)  fork>1 (18.45)

and Uss (a,b) < 00 a.s. and in fact

E [UZ (a,b)] < ? <.

~bla—1 T b—a

Proof. Since
UX (a,b) = Un/" (1,b/a) ,

it suffices to consider the case where a = 1 and b > 1. Let 7,, be the stopping
times defined in Eq. (18.38) with a =1 and b > 1, i.e.

70=0, m=inf{n>7m:X, <1}
=inf{n>m:X,>b}, s:=inf{n>mn:X, <1}

To = inf {n > 1951 : X,, > b}, Topq1 :=inf {n > i : X,, <1},

see Figure [I8.1)
Let £ > 1 and use the switching Lemma [18.54] repeatedly to define a new
positive supermatingale Y,, = ngk) (see Exercise below) as follows,

Y,,gk) == 1n<71 + 17-1§n<72Xn
+ bl <ner +0Xplr<nen,
+ b2 1T4§n<7'5 + b2Xﬂ17’5§"<7’6

+ bk7117'2k—2§71<7'2k—1 + bk71X7L17'2k—1§”<72k
N blezk,gn- (18.46)
Since E[Y,,|Bo] < Yo ass., Y;, > bF1,,, <, and

Yb = 10<7'1 + ]-Tl:OXO = 1Xo>1 + 1X0§1X0 =1 /\X(),

we may infer that
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bk p (Tgk < n|Bo) =E [bk17—2kgn|80] <E [Yn|80} <1AXjpa.s.
Using cM C'T, we may now let n — oo to conclude
1
bk

which is Eq. (18.45)). Using ¢cDCT, we may let k T oo in this equation to discover
P (UZ (1,b) = 00|By) = 0 a.s. and in particular, UZ (1,b) < oo a.s. In fact we
have

P (UX (1,b) > k|By) < P (721, < 00|Bo) < — (1A Xo) as.

B[V (0] = P WX (L0 2 K) < SB[ L)
k=1

k=1

11 1
L E[1AX) < — <o
pT= il (WA Xol < gy <oc

Exercise 18.4. In this exercise you are asked to fill in the details showing Y,
in Eq. (18.46) is still a supermartingale. To do this, define Y, via Eq. (18.46)
and then show (making use of the switching Lemma [18.54fwice) YV s a

supermartingale under the assumption that Y,gk) is a supermartingale. Finish
off the induction argument by observing that the constant process, U, := 1 and
V., = 0 are supermartingales such that U,, =1 > 0=V, on {r; < oo}, and
therefore by the switching Lemma

erl) = 10§n<7’1 Un + 1T1§nVn = 10§n<7'1
is also a supermartingale.

Corollary 18.57 (Positive Supermartingale convergence). Suppose X =
{Xn}o" is a positive supermartingale (possibly in the extended sense), then
Xoo = lim,,—.oo X,, exists a.s. and we have

E[Xo|B,] < X, for all n € N. (18.47)

In particular,
EX. <EX, <EXj for all n < oo. (18.48)

Proof. The set,
Q0 :=N{UZ (a,b) < co:a,beQ with a < b},
has full measure (P (f2y) = 1) by Dubin’s upcrossing inequality in Theorem

18.56l So by Lemma [18.46] for w € 2y we have X (w) = lim, o X, (w)
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existsﬂ in [0, 00] . For definiteness, let X, = 0 on (25. Equation (18.47) is now
a consequence of cFatou;

E[Xn|B,] = E [ lim Xm\Bn] < liminf E [X,,|Bn] < liminf X, = X, as.
The supermartingale property guarantees that EX,, < EXj for all n < oo while
taking expectations of Eq. (18.47) implies EX,, < EX,,. [

Theorem 18.58 (Optional sampling IT — Positive supermartingales).
Suppose that X = {Xn}zozo is a positive supermartingale, X = lim,_ o X,
(which ezists a.s. by Corollary , and o and T are arbitrary stopping
times. Then X := X;an is a positive {B,} ~, — super martingale, X7, =
limy, 00 X7 A, and

T

E[X,|Bs] < Xonr a.s. (18.49)
Moreover, if EXy < oo, then E[X;] =E[X7] < cc.
Proof. We already know that X7 is a positive supermatingale by optional

stopping Theorem [I8:36] Hence an application of Corollary implies that

limy, 00 X = lim,, 00 X;an is convergent and

E [ lim X;|Bm] < X7 = Xram for all m < oo. (18.50)
On the set {r < oo}, lim, oo X;nn = X, and on the set {r = oo},
limy, oo Xopn = lim, oo X5, = Xoo = X, a.s. Therefore it follows that

lim,, o X, = X; and Eq. (18.50) may be expressed as
E X |Bn] < Xam for all m < oco. (18.51)

An application of Lemma [18.30| now implies

E [XT|BO'] = Z lo=mE [XT|Bm] < Z lo=mXram = Xrao 8.

m<oo m<oo

18.7 Martingale Closure and Regularity Results

Theorem 18.59. Let M := {M,},~; be an L* — bounded martingale, i.e. C' :=
sup,, E |M,| < oo and let My, := lim,,_,o, M,, which exists a.s. and satisfies,
E|Ms| < oo by Corollary|18.48. Then the following are equivalent;

5 If EXo < 00, this may also be deduced by applying Corollary [18.48[to {-Xn}ois-

macro: svmonob.cls date/time: 19-Feb-2010/11:31



272 18 (Sub and Super) Martingales

1. There exists X € L' (£2,B, P) such that M, = E[X|B,] for all n.
2. {M,} ", is uniformly integrable.
3. M,, — My, in L' (2,8, P).

Moreover, if any of the above equivalent conditions hold we may take X =
My, i.e. My, =E[Mx|B,].

Proof. 1. = 2. was already proved in Proposition[I8.9] 2. = 3. follows
from the Vitali Convergence Theorem

3. — 2.1t M, — M. in L' (2,8, P) and A € B,,, then E[M, : A] =
E [M,, : A] for all n > m and

E[My : Al = lim E[M,, : Al =E[M,, : A].

n—oo
Since A € B,, was arbitrary, it follows that M,, = E [Mu|B,] . [

Definition 18.60. A martingale satisfying any and all of the equivalent state-
ments in Theorem is said to be regular.

Theorem 18.61. Suppose 1 < p < oo and M := {M,} ", is an LP — bounded
martingale. Then M, — My, almost surely and in LP.

Proof. (The case p = 2 is covered in Exercise ) Again, the almost sure
convergence follows from Corollary [I848 So, because of Corollary to
finish the proof it suffices to show {|M, |}, is uniformly integrable. But by
Doob’s inequality, Corollary and the MCT, we find

P
E [sup|Mk|p] < <p) sup E [|[M|"] < oo.

k p=1/ &
As |M,|? < supy, |[Mg|? € L' (P) for all n € N, it follows by Example [12.39| and
Exercise that {|M,|"},~, is uniformly integrable. [

Theorem 18.62 (Optional sampling III — regular martingales). Suppose
that M = {M,} -, is a reqular martingale, o and T are arbitrary stopping
times. Define My, := lim,, oo M,, a.s.. Then My, € L' (P),

M, =E[My|B,], E|M,| < (18.52)

and

E [M,|By] = Myrr a.s. (18.53)

Proof. By Theorem 18.59|7 My, € L' (2,B,P) and M,, := Eg, M, a.s. for
all n < oo. By Lemma [T8:30]

EBTMOO = Z 1T:nEBnMoo = Z 1 —n M, = M;.

n<oo n<oo
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Hence we have |M;| = |[Eg, M| < Ep, |[Ms| a.s. and E M, | < E|My| < co.
An application of Exercise now concludes the proof;

EBGMT = EBU]EBTMOO =Ep,r, Moo = Mopr.

oNT

Definition 18.63. Let M = {M,}, -, be a martingale. We say that T is a
regular stopping time for M if M7 is a regular martingale.

Remark 18.64. If T is regular for M, then lim,,_,., M := M exists a.s. and
hence
lim M, = M7 as.on {r =o00}.

n—oo

(18.54)
Thus if 7 is regular for M, we may define M., as,

M: =M = lim Mpa,.

n— oo

Also observe by Fatou’s lemma that,

E|M,| <liminf E[M]| < supE [M]|.

Theorem 18.65. Suppose M = {Mn}zozo is a martingale and o, T, are stopping
times such that T is a reqular stopping time for M. Then

1.
EB,7 M‘I’ = M‘r/\a-

2. Ifc <71 a.s. then MZ =Eg, [Eg, M;| and o is reqular for M.

(18.55)

Proof. By assumption, M, = lim, . My, exists almost surely and in
L' (P) and M = E[M,|B,] for n < ococ.
1. Equation ([18.55)) is a consequence of;

Eg,M; = Y lomnBEp, My = Y lomy M} = Myp,.

n<oo n<oo

2. By Theorem [18.62| and Exercise [18.2

MU = MD’/\TL :MT/\n :EBU/\W.M;—O :EB

n o

oAn M‘r: EBTL [EBC, MT]

from which it follows that M7 is a regular martingale. [

Proposition 18.66. Suppose that M is a martingale and T is a stopping time.
Then the T is reqular for M iff;

1.E[|M:|: 7 < o0] < o0 and
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2. {Mn1n<T}Z°:0 18 a uniformly integrable sequence of random variables.

Moreover, condition 1. is automatically satisfied if M is L' — bounded, i.e.
if C :=sup,, E|M,| < .

Proof. (=) If 7 is regular for M, M, € L' (P) and M,, = Eg, M,. In
particular it follows that

E[|M:|:7<o0] <E|M,| < o0.

Moreover,
|Mn1n<'r| < |EB7LM71H<T| <Eg,

M| a.s.

from which it follows that {M,1,<,},-, is uniformly integrable.
(<= Our goal is to show {M} 7, is uniformly integrable. We begin with
the identity;

E[[M;]: [My] > al =E[|M;]: |M;] > a, 7 <n
+E[M|: M| >a, n<T].

Since (by assumption 1.) E[|M;1,;<s]|] < oo and
E[|M:|: |M;| > a, 7 <n] <E[|[M:1rcool : [Mrlrcoo| > d],

if follows that
lim supE[|M;|: |M;| > a, 7 <n]=0.
a— 00 n

Moreover,
sup B ([M7]: M) > 0, n < 7] = supE [ M7 Lur |+ M Lncr] > a
goes to zero as n — oo by assumption 2. Hence we have shown,
Jim supE{[M ]« |My| > o] =0
as desired.

For the last assertion, by Corollary [I848] My := lim, . M, a.s. and
E |Mo| < 0o. Therefore,

E[M,|: 7 < o] <E|M,| =E [ lim \Mm@

< UHminfE [|[Mnp|] < lminfE [|M,]] < oo

wherein we have used the optional sampling theorem (M A, = Eg_ ., My) and
cJensen to conclude | M pn| < Eg, .. |[My,]|. ]

TAN
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Corollary 18.67. Suppose that M is an L' — bounded martingale and J € Bg
is a bounded set, then T = inf {n : M,, & J} is a regular stopping time for M.

Proof. According to Proposition it suffices to show {M,1,<-},",
is a uniformly integrable sequence of random variables. However, if we choose
A < oo such that J C [—A, A], since M,1,«, € J we have |[M,1,.,| < A
which is sufficient to complete the proof. [

Exercise 18.5. Suppose {M, } - is a square integrable martingale. Show;

LE[M2,— M?B,) =E [(Mn+1 — M,)* |Bn} . Conclude from this that the

Doob decomposition of M?2 is of the form,
M2 =N, + A,

where
2
An = Z E {(Mk - Mk—l) ‘Bk—l] .
1<k<n
2. If we further assume that My — Mj_1 is independent of By_; for all & =
1,2,..., explain why,

A= ) E(My— M),

1<k<n

For the next four exercises, let {Z,}~, be a sequence of Bernoulli random
variables with P (Z,, = £1) = % and let So =0 and S, := Z; +---+ Z,. Then
S becomes a martingale relative to the filtration, B,, := o (Z1,...,Z,) with
By := {0, 2} — of course S, is the (fair) simple random walk on Z. For any
a €7, let

0, :=inf{n: S, =a}.

Exercise 18.6. For a < 0 < b with a,b € Z, let 7 = 0, A 0. Explain why 7
is regular for S. Use this to show P (7 = co) = 0. Hint: make use of Remark
18.64] and the fact that |S,, — Sn—1| = |Z,| = 1 for all n.

Exercise 18.7 (Exercise may now be out of place.). In this exercise, you
are asked to use the central limit theorem to prove again that P (7 = o) = 0,
Exercise [[8.6l Hints: Use the central limit theorem to show

\/12?/Rf(:z:) e~ 2z > f(0) P (r = o) (18.56)

for all bounded continuous functions, f : R — [0,00). Use this inequality to
conclude that P (7 = o0) = 0.
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Exercise 18.8. Show al
a
P < 0g) = 18.57
<o) = (18.57)
and use this to conclude P (0, < 00) = 1, i.e. every b € N is almost surely visited
by Sp. (This last result also follows by the Hewitt-Savage Zero-One Law, see
Example [10.51| where it is shown b is visited infinitely often.)
Hint: Using properties of martingales and Exercise compute
lim,,—, o E [SZ2"??] in two different ways.

Exercise 18.9. Let 7 := 0, Aop. In this problem you are asked to show E [7] =
|a] b with the aid of the following outline.

1. Use Exercise above to conclude N,, := S§% —n is a martingale.
2. Now show
0=ENy =EN, 5, =ES?,, —E[r An]. (18.58)

TAT
3. Now use DCT and MCT along with Exercise to compute the limit as
n — oo in Eq. (18.58)) to find

Elog Aoy =E[r] =b|al. (18.59)

4. By considering the limit, a — —oo in Eq. (18.59)), show E [o}] = occ.

18.7.1 More Random Walk Exercises

Suppose now that P(Z, =1) =p > % and P(Z,=-1)=q=1-p< % As
before let B, = o (Z1,...,Z,), So=0and S, =21 +---+ Z, forn € N. In
order to follow the procedures above, we start by looking for a function, ¢, such
that ¢ (S,,) is a martingale. Such a function must satisfy,

©(Sn) =Eg, ¢ (Snt1) =0 (Sn+1)p+ ¢ (Sn—1)g,
and this then leads us to try to solve the following difference equation for ¢;
v()=pe(z+1)+qp(x—1) for all z € Z. (18.60)

Similar to the theory of second order ODE’s this equation has two linearly
independent solutions which could be found by solving Eq. with initial
conditions, ¢ (0) = 1 and ¢ (1) = 0 and then with ¢ (0) = 0 and ¢ (1) =
0 for example. Rather than doing this, motivated by second order constant
coefficient ODE’s, let us try to find solutions of the form ¢ (z) = A\* with A
to be determined. Doing so leads to the equation, A\* = pATT! 4+ ¢gA\*~1, or
equivalently to the characteristic equation,

pA — A+ q=0.
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The solutions to this equation are

\— 1+IT—4pqg 1+ /1 —4p(l—p)
a 2p a 2p

1A —dprl lEy(2p- 1)
a 2p a 2p
The most general solution to Eq. (18.60)) is then given by
¢ (x)=A+B(a/p)".

Below we will take A =0 and B = 1. As before let 0, =inf{n >0:5, =a}.

={1,(1-p)/p} ={1,q/p}.

Exercise 18.10. Let a < 0 < b and 7 := g, A 0p.

1. Apply the method in Exercise with S, replaced by M, := (q/p)S" to
show P (1 = 00) = 0.
2. Now use the method in Exercise [[8.8 to show

(a/p)’ -1

P(og<op)= —tl —— (18.61)
(¢/p)" = (a/p)
3. By letting a — —oco in Eq. ([18.61)), conclude P (o, = c0) = 0.
4. By letting b — oo in Eq. (18.61)), conclude P (o, < c0) = (q/p)la| .
Exercise 18.11. Verify,
M, ::Sn_n(p_Q)
and
N, = M? - o*n
are martingales, where 02 =1 — (p — q)2 .
Exercise 18.12. Using exercise [I8:11] show
E( ) b[1—(a/p)*] +a [(Q/p)b - 1} oo (18.62)
Oq NOp) = 5 - p—q . .
(¢/p)" = (a/p)
By considering the limit of this equation as a — —oo, show
b
Elo] = —
p—q
and by considering the limit as b — oo, show E [o,] = 0.
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18.8 More Exercises:

Exercise 18.13. Let (M), be a martingale with My = 0 and E[M?] < oo
for all n. Show that for all A > 0,

E[M?]
> < "
P (éifféan = A) = EM2] + 22

Hints: First show that for any ¢ > 0 that {Xn = (M, +c)2}210 is a
submartingale and then observe,

{ max M, > )\} - { max X, > (/\+c)2}.
1<m<n 1<m<n

Now use Doob’ Maximal inequality (Proposition [18.39)) to estimate the proba-
bility of the last set and then choose ¢ so as to optimize the resulting estimate
you get for P (maxi<m<n Mm > ).

Exercise 18.14. Let {Z,},~, be independent random variables, Sy = 0 and
Spi=Z1+ -+ Zy,and f,(\) :=E [e“‘Z"] . Suppose Ee*Sn = HnN:1 fn (V)
converges to a continuous function, F' (\), as N — oo. Show for each A € R
that

P ( lim ¢S exists) =1 (18.63)

n—oo

Hints:

1. Show it is enough to find an € > 0 such that Eq. (18.63)) holds for |A| <e.
2. Choose ¢ > 0 such that |[F (\) — 1| <Xﬁ2 for |\| < e. For |A|] < e, show

M, (\) = E‘EPM% is a bounded comple

tion, Bn =0 (Zl, ey Zn) .

martingale relative to the filtra-

Exercise 18.15 (Continuation of Exercise . Let {Z,},2; be inde-
pendent random variables. Prove the series, >, Z,, converges in R a.s. iff
ny:l fn (A) converges to a continuous function, F'(A) as N — oo. Conclude
from this that Y - | Z, is a.s. convergent iff >~° | Z,, is convergent in distri-
bution. (See Doob [10, Chapter VIL5] or better yet see the lemma on p. 22.
Protter [41] for a very nice proof.)

5 Please use the obvious generalization of a martingale for complex valued processes.
It will be useful to observe that the real and imaginary parts of a complex martin-
gales are real martingales.
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18.9 Backwards (Reverse) Submartingales

In this section we will consider submartingales indexed by Z_ :=
{...,—n,—n+1,...,-2,-1,0}. So again we assume that we have an
increasing filtration, {8, :n <0}, ie. --- C B_y C B_; C By C B. As
usual, we say an adapted process {X,}, ., is a submartingale (martingale)
provided E [X,, — X,,|Bn] > 0 (= 0) for all m > n. Observe that EX,,, > EX,,
for m > n, so that EX_, decreases as n increases. Also observe that
(X_n, X_(n=1)s--+, X1, XO) is a “finite string” submartingale relative to the
filtration, B_,, C B_(,—1) C -+ C B_1 C By.

Theorem 18.68 (Backwards (or reverse) submartingale convergence).
Let {B,, : n < 0} be a reverse filtration, {Xn}, <, is a backwards submartingale.
Then X_ oo = lim,, o X, exists a.s. in {—oco} UR and X+ __ € L' (2,B,P).
If we further assume that

C = hIEl EX, = ilg)EXn > —00, (18.64)
then {X,}, <, uniformly integrability, X_. € L'(£2,B,P), and
lim, o E|X,, — X_o| =0.

Proof. The number of downcrossings of (XO,X_l,...,X,(n,l),X_n)
across [a,b], (denoted by D, (a,b)) is equal to the number of upcrossings,
(X_n, X (n-1)y-+, X1, XO) across [a, b] . Since (X_n,X_(n_l), . ,X_l,Xo)
isaB_, C B_(,—1) C -+ C B_1 C By submartingale, we may apply Doob’s
upcrossing inequality (Theorem to find;

(b—a)E[D, (a,0)] <E(Xo—a), —E(X_, —a),
<E(Xo—a), < oo (18.65)

Letting Do (a, b) :=1 lim,, . Dy, (a,b) be the total number of downcrossing of
(X0, X_1,...,X_p,...), using the MCT to pass to the limit in Eq. , we
have

(b—a)E[Du (a,b)] <E(Xo—a), <ooc.

In particular it follows that Do (a,b) < co a.s. for all a < b.

As in the proof of Corollary [T8.48] (making use of the obvious downcrossing
analogue of Lemma [18.46)), it follows that X__, := lim,_ _. X, exists in R
a.s. At the end of the proof, we will show that X_,, takes values in {—oco} UR
almost surely.

Now suppose that C > —oo. We begin by computing the Doob decom-
position of X, as X,, = M,, + A, with A, being predictable, increasing and
satisfying, A_ o, = lim,,_,_o, A, = 0. If such an A is to exist, following Lemma
[I816] we should define
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276 18 (Sub and Super) Martingales
Ap =Y E[AX|Bi1].

k<n

This is a well defined increasing predictable process since that submartingale
property implies E [A; X |By_1] > 0. Moreover we have

EAg =Y E[R[AX|Bi 1]l = Y E[AX]

k<0 k<0
= lim (EXo —EX_y) =EXo — inf EX, = EX, — C < oc.

As0 < A, < A; = Ay € L' (P), it follows that {A,},, -, is uniformly integrable
Moreover if we define M,, := X,, — A,,, then -

E[AM|By_1] =E[AnX — ApAlBy_1] =E[AnX|Bn_1] — AnA =0 as.

Thus M is a martingale and therefore, M, = E[My|B,] with My = X, —
Ag € L* (P). An application of Proposition implies {M,},, ~ is uniformly
integrable and hence X,, = M,,+A,, is uniformly integrable as well. (See Remark
for an alternate proof of the uniform integrability of X.)

Therefore X_o, € L' (2,8, P) and X,, — X_o, in L' (£2,B, P) as n — 0.

To finish the proof we must show, without assumptions on C > —oo,
that X*__ € L' (2, B, P)which will certainly imply P (X_,, =oc) = 0. To
prove this, notice that Xfoo = lim,,—,_ o, X, and that by Jensen’s inequality,
{X;F }Zozl is a non-negative backwards submartingale. Since inf EX;F > 0 >
—00, it follows by what we have just proved that X _ € L' (£2,B, P). ]

Remark 18.69. Let us give a direct proof of the fact that X is uniformly inte-
grable if C' > —oo. We begin with Jensen’s inequality;

E|X,| =2EX,) -EX, <2EX; —EX, <2EX] —C =K <0, (18.66)

which shows that {X,,} -, is L' - bounded. For uniform integrability we will
use the following identity;

E[X|:|X|>AN=E[X:X>)\-E[X:X<-)
EX:X>\N-(EX-E[X:X >-)\)
E

[X:X>AN+E[X:X>-\-EX.

Taking X = X, and k > n, we find

E[[Xn|: | X0| 2 N =E[Xp: Xp > A + E[Xp : Xn > —A] — EX,,
<E[Xp: Xp > N +E[Xy: X > A — EXp, + (EXy — EX,)
—E[Xp: X, >N —E[Xp: X, < -A + (EX), — EX,,)
=E[|Xk|: [Xn] = A + (EX) — EX,)
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Given ¢ > 0 we may choose k = k. < 0 such that if n <k, 0 <EX; —-EX, <¢
and hence

limsupsup E[| X,| : | Xn| > Al <limsupE[|Xg| : [ Xn| > A +e<e
Ao n<k AToo

wherein we have used Eq. , Chebyschev’s inequality to conclude
P(|X,| > A) < K/X and then the uniform integrability of the singleton set,
{|Xk|} € L' (£2,B, P). From this it now easily follows that {X,}, ., is a uni-
formly integrable.

Corollary 18.70. Suppose 1 < p < oo and X,, = M,, in Theorem where
M, is an LP — bounded martingale on —NU{0}. Then M_ := lim,_,oc M, ez-
ists a.s. and in LP (P). Moreover M_., = E [My|B_], where B_oo = Nyp<oBn.

Proof. Since M,, = E [My|B,,] for all n, it follows by cJensen that |M,[" <
E[|Mo|” |B,] for all n. By Proposition {E[|Mo|” |Bn]},,<o is uniformly
integrable and so is {|M,["}, -, . By Theorem [18.68) M,, — M_,, a.s.. Hence
we may now apply Corollary to see that M, —» M_. in LP (P). ]

Example 18.71 (Kolmogorov’s SLLN). In this example we are going to give an-
other proof of the strong law of large numbers in Theorem also see The-
orem ?? below for a third proof.. Let {X,},~, be ii.d. random variables such
that EX,, = 0 and let S, :== X7 +---+ X,, and B_,, = 0 (Sn, Snt1,Sn+2,-..)
so that .S, is B_,, measurable for all n.

1. For any permutation o of the set {1,2,...,n},
d
(X17 e 7X'IL7 Sna STL+17 Sn+27 . ) = (X0'17 .. 7X<7n7 Snv Sn+17 S7L+27 .. )
and in particular
(X}, Sni1r Sniar- o) = (X1, Sn, St Snsay...) forall j <n.

2. By Exercise [14.5) we may conclude that

E [Xj|Sn, SnJr]_, Sn+2, .. ] =E [X1|Sn, SnJrl’ Sn+2, .. ] for all j S n.
(18.67)
3. Summing Eq. (18.67)) over j = 1,2,...,n gives,
Sn = E [Sn|5n7 Sn+1, SnJrQ, .. ] = TLE [X1|Sn, Sn+17 Sn+2, . }

from which it follows that
S

Mn = Wn ::E[Xl\Sn,S7L+1,Sn+2,...] (1868)

and hence {M = %Sn} is a backwards martingale.
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4. By Theorem [18.68| we know;

S
lim —= = lim M,, exists a.s.
n—oo M n—oo

5. By Kolmogorov's zero one law (Proposition [10.46) we know that

lim,, oo % = ¢ a.s. for some constant c.

6. Equation (|18.68]) along with Proposition shows {%}Zozl is uniformly

integrable. Therefore,

lim S”“'cE[hm S"} = lim E[S"} =EX;

n—oo N n—oo N n— o0 n

wherein we have use Theorem to justify the interchange of the limit
with the expectation. This shows ¢ = EXj;.

We have proved the strong law of large numbers.

18.10 Appendix: Some Alternate Proofs

This section may be safely omitted.
Proof. Alternate proof of Theorem Let A € B,. Then

N—1
E[X, - X,:A]=E Z locperApp1 X - A
k=0

E[AsX : An{o <k <T}].

I
] =

B
I

1

Since A € B,, AN{o <k} € By, and since {k < 7} = {7 < k}° € By, it follows
that AN {oc <k < 7} € By. Hence we know that

<
E[Ar1 X :ANn{o <k <7} % 0 respectively.

and hence that -

E[X, — X, : 4] % 0 respectively.
Since this true for all A € B,, Eq. (18.21) follows. [
Lemma 18.72. Suppose (2,B,{Bn},—, . P) is a filtered probability space, 1 <

p < 00, and let By = VB, = 0 (U B,,). Then U LP (02,B,,P) is
dense in LP (§2, B, P).
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Proof. Let M,, := L?(£2,B,,P), then M, is an increasing sequence of
closed subspaces of My, = LP (£2, B, P) . Further let A be the algebra of func-
tions consisting of those f € U5 M, such that f is bounded. As a consequence
of the density Theorem [T2:27] we know that A and hence U;2, M, is dense in
Mo, = LP (2, B, P). This completes the proof. However for the readers con-
venience let us quickly review the proof of Theorem in this context.

Let H denote those bounded B, — measurable functions, f : 2 — R, for
which there exists {¢,,},-, C A such that lim, . || f — @nllpo(py = 0. A Tou-
tine check shows H is a subspace of the bounded B,, —measurable R — valued
functions on 2, 1 € H, A C H and H is closed under bounded convergence. To
verify the latter assertion, suppose f,, € Hand f,, — f boundedly. Then, by the
dominated (or bounded) convergence theorem, limy, .o [|(f = fu)llzo(p) = Oﬂ

We may now choose ¢,, € A such that ||¢, — fn||L,,(P) < L then

lim sup [[f = nll Lo py <lim sup [(f = fu)ll 1o (p)

n—oo

+lim sup [fo — @nllpspy =0,
n—oo

which implies f € H.

An application of Dynkin’s Multiplicative System Theorem [8.16] now shows
H contains all bounded o (A) = B, — measurable functions on {2. Since for any
f€LP(£2,B,P), flj<n € H there exists 5, € A such that || fn, — ¢nl, < n~L.
Using the DCT we know that f,, — f in LP and therefore by Minikowski’s
inequality it follows that ¢, — f in LP. ]

Theorem 18.73. Suppose (2,B,{B,},—,,P) is a filtered probability space,
1 < p < o0, and let By = VS8, = o(US2,B,). Then for every

X el?(,B,P), X, =E[X|B,] is a martingale and X,, = X := E[X|Bs]
in L? (£2, Boo, P) as n — 0.

Proof. We have already seen in Example that X,, = E [X|B,] is always
a martingale. Since conditional expectation is a contraction on LP it follows that
E|X,|" <E|X|" < oo for all n € NU{oo}. So to finish the proof we need to
show X,, — X in LP (£2,B, P) as n — oc.

Let M, := L? (2,B,,P) and My, = L? (2,B,P). If X € U2, M, then
X, = X for all sufficiently large n and for n = co. Now suppose that X € M,
and Y € Up2 | M,,. Then

[Es.X —Ep, X[, < |Es. X —Ep. Y|, + [|Es.Y —Eg, Y|, + |Es,Y — Eg, X|,

<2[X =Y, + B Y —Eg, Y],

and hence

" It is at this point that the proof would break down if p = .
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278 18 (Sub and Super) Martingales
fim sup B, X — B, X, <2/ X V],

Using the density Lemma [18.72| we may choose Y € USZ | M, as close to X €
Mo as we please and therefore it follows that limsup,, o [[Es X —Es, X[, =
0.

For general X € LP (£2, B, P) it suffices to observe that X, := E [X|Bs] €
L? (2, B, P) and by the tower property of conditional expectations,

E[Xoo‘Bn] =E []E [X‘Boo} |Bn] =E [X|Bn} = Xn.

So again X,, — X in LP as desired. ]
We are now ready to prove the converse of Theorem [18.73

Theorem 18.74. Suppose (2,B,{B,}.—,.P) is a filtered probability space,
1 < p < oo, B := V2B, = o (U21B,), and {X,},~, C L?(2,B,P)
is a martingale. Further assume that sup,, || Xn||, < oo and that {X,},, is
uniformly integrable if p = 1. Then there exists Xoo € LP (£2,Boo, P) such that
Xy = E[Xw|Bs]. Moreover by Theorem we know that X, — Xo in
LP (£2,Bs, P) as n — oo and hence X is uniquely determined by {X,} >~ .

Proof. By Theorems [13.20| and [13.22] exists X, € L? (§2, B, P) and a
subsequence, Y = X,,, such that

lim E [Yih] = E[Xooh] for all h € L (2, Bx, P)

where ¢ :=p(p — 1)_1 . Using the martingale property, if h € (B,,), for some n,
it follows that E [Yyh] = E[X,,A] for all large k and therefore that

E[Xooh] = E[X,h] for all h € (B,), .
This implies that X,, = E [X|B,] as desired. |

Theorem 18.75 (Almost sure convergence). Suppose (£2,B,{B,},~,,P)
is a filtered probability space, 1 < p < oo, and let Boo = VoL B, =
o (U B,,). Then for every X € L' (§2,B, P), the martingale, X,, = E[X|B,],
converges almost surely to X := E[X|Boo] -

Before starting the proof, recall from Proposition if {a,},—, and
{b,},~, are two bounded sequences, then

lim sup (ay, + b,) — liminf (a, + b,)

n— oo n—oo

<limsupa,, + limsupb,, — (lim inf a,, + lim inf bn>

n—00 n— oo n—0oo n—00

=limsup a,, — liminf a,, + lim sup b,, — liminf b,,. (18.69)

n— 00 n—00 n—oo n— o0
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Proof. Since

there is no loss in generality in assuming X = X... If X € M,, := L* (2, B,, P),
then X,, = X, a.s. for all m > n and hence X,, — X a.s. Therefore the
theorem is valid for any X in the dense (by Lemma of L' (2, Bs, P).

For general X € L' (£2,B,P), let Y; € UM, such that ¥; — X €
L' (2,Bx, P) and let Y, := E[Y;|B,] and X,, := E[X|B,]. We know that
Y;n — Yj oo as. for each j € N and our goal is to show X;,, — X a.s. By
Doob’s inequality in Corollary and the L' - contraction property of con-
ditional expectation we know that

1 1
P(Xy>a) < -E|Xy| < -E|X|
a a
and so passing to the limit as N — oo we learn that
1
P <sup | Xn| > a) < -E|X] for all a > 0. (18.70)
n a

Letting @ T oo then shows P (sup,, | X,| = o0) = 0 and hence sup,, | X,| < o
a.s. Hence we may use Eq. (18.69)) with a,, = X,, =Y}, and b, := Y}, to find

D = limsup X,, — liminf X,

n— 00 n—oo
< limsup a,, — liminf a,, + lim sup b,, — lim inf b,,
n— oo n—oo n—oo n— 00

= limsup a,, — liminf a,, < 2sup |a,|

n— 00 n—oo n

=2sup |X,, — Y.,

wherein we have used lim sup,,_, . b, —liminf, .. b, = 0 a.s. since Y; ,, — Y;
a.s.

We now apply Doob’s inequality one more time, i.e. use Eq. (18.70) with
Xn— X, —Y;pand X — X —Y}, to conclude,

2
P(Dza)gp(sup|xn—ygm|zg) <ZE|X - Yj| —0as j — o
n a

Since a > 0 is arbitrary here, it follows that D = 0 a.s., i.e. limsup,,_, . X, =
liminf, . X, and hence lim,,_, ., X, exists in R almost surely. Since we already
know that X,, — X in L' (£2, B, P), we may conclude that lim, ., X, = X
a.s. [ ]
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Some Martingale Examples and Applications

Exercise 19.1. Let S,, be the total assets of an insurance company in year n.
Assume that for all n, we have S, = S,,_1+&,, where {, = c—Z, and Z1, Z,, . ..
are i.i.d. random variables having the normal distribution with mean p < ¢ and
variance o2. (The number c is to be interpreted as the yearly premium.) Let R
be the event that S,, < 0 for some n. Show that if Sy > 0 is constant, then

P(Ruin) = P(R) < e~ 2(c=mS0/o*

Solution to Exercise 1' . Let us first find A such that 1 = E [eAgn] . To
do this let N be a standard normal random variable in which case,

9

1| [eAgn] ) [BA(C—H—UN)] _ e)\(c—#)e(a2)\2)/2
leads to the equation for A;
2
%)\2+>\(c—u) =0.

Hence we should take A\ = —2 (¢ — p) /o? — the other solution, A = 0, is unin-
teresting. Since E [e’\gn} =1, we know from Example [18.13| that

Y, = e% H e*i = exp (AS,,)
j=1

is a non-negative B, = o(Z1,...,Z,) — martingale. By the super-martingale
or the sub-martingale convergence theorem, it follows that lim, .. Y, = Y
exists and 7 is any stopping time,
EY, =E lim Y;r, < liminf EY;, = EYy = e %
n—oo n—oo
as follows from Fatou’s Lemma and the optional sampling theorem.

Let us now take 7 = inf{n : S, < 0} and observe that S; < 0 on R =
{7 < oo} . Because A < 0, it follows that Y, = e*>7 > 1 on R and therefore,

P (R) <EY, < e 0 = ¢m2(cmmSo/o”,

19.1 A Polya Urn Model

Suppose that an urn contains 7 red balls and g green balls. At each time we
draw a ball out, then replace it and add ¢ more balls of the color drawn. Let
(n, gn) be the number of red and green balls in the earn at time n. Then we
have

P ((rns1,90) = (r+¢,9)[(rn, gn) = (r.9)) = - T, o
P ((rastgn) = (1,9 + ) (s gn) = (r,9)) = =
Let us observe that r, + g, = r9 + go + nc and hence
NP R TR
Tn + gn ro + go + nc
We now claim that {X,,},2, is a martingale. Indeed,
T'n In 9n gn t+c

E[Xni1|Xn] = : + :
Tm+9n Thnt+gnt+C Th+gn Tht+tgntc

9n .rn+gn+C:X
Tm+9n Tn+9gntc

n-

Since X,, > 0, we know that X, := lim, ., X, exists a.s. Our next goal is to
prove the following theorem.

Theorem 19.1. Lety := g/c and p := r/c and Po X! be the law of Xoo. Then
Xoo 18 distributed according to the beta distribution on [0, 1] with parameters,

Y5 P, i-€.

d(PoXZh) (dr) = Im:ﬂl (1—2)" " dz forz € [0,1].

Proof. We will begin by computing the distribution of X,,. As an example,
the probability of drawing 3 greens and then 2 reds is

g g+c g+ 2c T T+c
r+g r+g+c r+g+2c r+g+3c r+g+4dc
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More generally, the probability of first drawing m greens and then n — m reds
is
g g+ g+ (n=1)e) o (r+e) e (r+ (n—m—1)c)
(r+g)-(r+g+c)- (r+g+(n—1)c '

Since this is the same probability for any of the (:1) — ways of drawing m greens
and n — m reds in n draws we have

P (Draw m — greens)

_ (n)9~(g+6)-~---(9+(m—1)6)~T~(T+C)--~--(r+(n—m—1)6)
m (r+g)-(r+g+c)----(r+g9+m-1)¢)

_ (n)v-(7+1)-----(7+(m—1))-p-(p+1) ----- (p+(n—m—1))
m (p+7)-(p+r+1) - (p+7r+(n—-1))

(19.1)

Before going to the general case let us warm up with the special case, g =r =
¢ = 1. In this case Eq. (19.1]) becomes,

n\1:2----m-1-2---(n—m) 1
P(D - = = .
(Draw m -~ greens) (m) 2:3-----(n+1) n+1
On the set, {Draw m — greens}, we have X,, = IQJFT’:Z and hence it follows that

Bl ()= ) (”’") P (Draw m - greens)

o 2+n

" 1 1 1
=Y (5 - [ 1@

= 24n /) n+1 0

from which it follows that X, has the uniform distribution on [0, 1].
For the general case, recall from Example that n! = I'(n + 1) where

)= / ' le " dx for t > 0.
[0,00)

Moreover we have

d d
rit+1)= / e Taldr = —/ —e ¥ aldr = / e " —atdr
[0,00) [0,00) 4 [0,50) dx

= t/ e atlde = tI (t)
[0,00)

and therefore for m € N,
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'le+m)=(xz+m-1)(z+m-2)...(x+ 1)zl (x). (19.2)
Another key fact about the I' function is Sterling’s formula which states
I (z) = V2rz" Y27 [1 + 1 (2)] (19.3)

where |r (x)] — 0 as © — oo.
On the set, {Draw m — greens} , we have

g+mec  y+m
r+g+nc p+y+n

n — mmv
where p :=r/c and v := g/c. For later notice that A,,x =

0
p+y+n’
Using this notation we may rewrite Eq. (19.1)) as

P (Draw m — greens)
I'(y+m)  I'(ptn—m)

_(n I'(v) I'(p)
m L(pty+n)
I(p+)

_I'lp+1) I'(n+1) '(y+m)I'(p+n—m) (19.4)
I'pI'(y) '(m+1H)I'(n—m+1) I'(p+~+n) ' ’
Now by Stirling’s formula,
L(ytm) _ (y+m) ™" 0 147 (3 +m)]
Fm+1) (1 +m)" 2 e=mt) [1 4+ (1 +m)]
Gyt (1Y ey L m)
m+1 Il+r(m+1)
eyt (s T nltr(yam)
14+1/m 14+7r(m+1)

We will keep m fairly large, so that

()" = (enrmm (T72))

=~ exp ((m 4+ 1/2) (y/m — 1/m)) = 7%

Hence we have
I'(y+m)

I'(m+1)

Similarly, keeping n — m fairly large, we also have

< (y+ m)'y_1 )
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I'(p+n—m)

I'n—m+1)

I'(p+vy+n)
I'(n+1)

=(p+n—m)”" and

=(p+vy+n)7

Combining these estimates with Eq. (19.4) gives,

P (Draw m — greens)

T+ (+m)' 7 (p+n—m)!

T Ir(p)l(v) (p+~+n)ft71
_ T(p+) (%)W '(’Zﬁl’f)p
I'(p) I (v) (p+7y+n)yr !

I'(p+1)

ST ()" (1 = 2) " A,

Therefore it follows that

E[f (Xeo)] = lim E[f (Xy)]

n—oo

- ”li_’HOIOmE;‘Of (@m) m ) (=2 A

1
~ [ @@
0

where
) = va—l (1 p—1 )

=TT () )

19.2 Galton Watson Branching Process

This section is taken from [12| p. 245 —249]. Let {&" : i,n > 0} be a sequence
of i.i.d. non-negative integer valued random variables. Suppose that Z,, is the
number of people in the n'" — generation and £, 4! are the number of

off spring of the Z,, people of generation n. Then
Zuir = G 44 g
represents the number of people present in generation, n + 1. We complete the

description of the process, Z,, by setting Zy = 1 and Z,,41 = 0 if Z,, = 0,
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i.e. once the population dies out it remains extinct forever after. The process
{Z,},,>¢ is called a Galton-Watson process.

Let ¢ £ €M, py, == P (€ = k) be the off-spring distribution,
o0
pi=EE = kpy,
k=0

and
B, =0c(":i>1land 1 <m<n).

On theset {Z, =k}, Zn11 = &+ -+ and therefore, on {Z, = k},

EZyi1|Ba] =E[& 4+ + B, = E [ ™ + - 4 0]
= pk = pz,.

Since this is true for all k, it follows that
E[Zn111Bn]) = uZ, as. (19.5)

So we have shown, M,, := Z,,/u™ is a martingale in the extended sense. From
this observation it follows that

EZ,

1=EMy,=EM, = ——,
ie. EZ, = pu™ < o0.
Theorem 19.2. If 4 < 1, then, almost surely, Z, =0 a.a.

Proof. When p < 1, we have
o0 o0 1
— n __
EY Zu=) u"= T,
n=0 n=0
and therefore that

o0
ZZ” < 00 a.S.
n=0

But this can only happen if Z,, = 0 a.a. ]

Theorem 19.3. If p =1 and P (£ = 1) < 1, then again, almost surely, Z,, =
0 a.a.
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282 19 Some Martingale Examples and Applications

Proof. In this case {Z,},_, is a martingale which, being positive, is L' -
bounded. Therefore, lim,,_, Z, =: Zo, exists. Because Z, is integer valued, it
must happen that Z,, = Z, a.a. If k € N, Since

{Zo =k} ={Z,=kas}=U§_1{Z, =k foralln> N},

we have

P(Zyw=k)= lim P(Z,

N—oo

=k foralln>N).
However,
P(Z,=kforalln>N)=P (&' +---+&; =k foraln>N)
=[PE+- &G =R =

because,
P+ +& =k <L

(Note that the only way P ({7 +---+ & =k) = 1 would be for P({ =1),
but we assumed P (" =1) < 1.) Therefore we have shown P (Z, = k) = 0 for
all £ > 0 and therefore, Z,, = 0 a.s. and hence almost surely, Z,, = 0 for a.a.
n. (]

Remark 19.4. By the way, the branching process, {Z,},—, with ¢ = 1 and
P(£=1) <1 gives a nice example of a non regular martingale. Indeed, if Z
were regular, we would have

Z, =E [ lim Zm\Bn] —E[0|B,] = 0
which is clearly false.

We now wish to consider the case where p := E[£]"] > 1. Let ¢ 4 &M and

for s € (—1,00), let
p(s) =E[s] = Zpksk.

k>0
Then if |s| < 1, we have
"(s) = kakskfl and ¢’ (s) = Zk (k—1) pps®2
k>0 k>0
with
181%111@ ];)kpk = =: p and
lim " (s Zk ~Dpe =B~ 1)
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Fig. 19.1. Figure associated to ¢ (s) = é (1 + 35+ 352 + 33) which is relevant for
Exercise 3.13 of Durrett on p. 249. In this case p = 0.236 07.

Lemma 19.5. If u = ¢’ (1) > 1, there exists a unique p < 1 so that ¢ (p) = p.
Proof. See Figure [19.1] below.

Theorem 19.6 (See Durrett [12], p. 247-248.). If u > 1, then

P ({Z, =0 for some n}) = p.

Proof. Since {Z,, =0} C {Z,41 =0}, it follows that {Z,, =0} 1
{Z,, = 0 for some n} and therefore if

O := P (Zy, = 0),

then
P ({Z, =0 for some n}) = lm 6,,.

m—00

We now show; 6, = ¢ (0—1) . To see this, conditioned on the set {Z; = k},
Zm = 0 iff all k — families die out in the remaining m — 1 time units. Since each
family evolves mdependently, the probablhtyl of this event is 0¥ ;. Combining

this with, P ({Z1 = k}) = P (& = k) = px, allows us to conclude,

>

3

I

g
3

I
=

I
(]2

P(Zm=0,7, =k)

=
I
=]

*ZP M*O|Z1*k) Zpkem 1*30 m— 1)-

k=0 k=0
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0 0.05 0.1 0.15 2 0.2 03
b 6" BF g
X

Fig. 19.2. The graphical interpretation of 0, = ¢ (0:n—1) starting with 6y = 0.

It is now easy to see that 6,, T p as m | oo, again see Figure [19.2]

19.3 Kakutani’s Theorem

Proposition 19.7. Suppose that p and v are o — finite positive measures on
(X, M), v = v, + vg is the Lebesque decomposition of v relative to u, and
p: X —[0,00) is a measurable function such that dv, = pdu so that

dv = dv, + dvs = pdp + dvg.

If g : X — [0,00) is another measurable function such that gdp < dv, (i.e.
Jp9dn < v (B) for all B e M), then g < p, i - a.e.

Proof. Let A € M be chosen so that p(A°) =0 and vs (A) = 0. Then, for
all Be M,

/gdu=/ ngSV(BﬂA)=/ pdu=/pdu~
B BNA BNA B

So by the comparison Lemma [7.24] g < p. [

! The argument could use a little shoring up here.
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Ezxample 19.8. This  example  generalizes Example [18.10) Suppose
(2,B,{Bn},~,,P) is a filtered probability space and @ is any another
probability measure on (§2,8). By the Raydon-Nikodym Theorem for
each n € N we may write

dQ|Bn = XndP‘Bn +dR,

where R, is a measure on ({2, B,,) which is singular relative to P|p, and 0 <
X,, € L*(£2,B,,, P). In this case the most we can say in general is that X :=
{Xn}, <o s a positive supermartingale. To verify this assertion, for B € B,
and n < m < oo, we have

Q(B) =E[Xn : Bl + Ry (B) > E[Xp, : B] = E[Eg, (Xm) : B]

from which it follows that Eg, (X,,) - dP|s, < dQ|s, . So according to Propo-
sition [19.7]

Eg, (Xm) < X, (P —as.) for all n <m < co. (19.6)

Proposition 19.9. Keeping the assumptions and notation used in FExample
then lim, o X,, = Xo a.s. and in particular the Lebesque decomposi-
tion of Q|p,, relative to P|p., may be written as

aQlis.. = (lim X,.) - dPls. + dRu. (19.7)

Proof. By Example we know that {X,,} 7, is a positive supermartin-
gale and by letting m = oo in Eq. (19.6]), we know

Eg, Xoo < X, a.s. (19.8)

By the supermartingale convergence Corollary or by the submartingale
convergence Corollary applied to —X,, we know that Xy := lim,, 00 Xn
exists almost surely. From the regular martingale convergence Theorem
we also know that lim, .. Eg, Xoo = X a.s. as well. So passing to the limit
in Eq. implies X, < Xj a.s.

To prove the reverse inequality, Xg < X a.s., let B € B, and n > m.
Then

Q(B)=E[X,:B]+R,(B) >E[X, : B|

and so by Fatou’s lemma,

E[X,: B]=E [lim inf X, : B} <liminfE[X, : B] < Q(B). (19.9)

n—oo n—o0

Since m € N was arbitrary, we have proved E [X, : B] < Q(B) for all B in
the algebra, A := UenBim. As a consequence of the regularity Theorem [5.44]
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284 19 Some Martingale Examples and Applications

or of the monotone class Lemma or of Theoren’] it follows that
E[Xo: B] < Q(B) for all B € ¢ (A) = Bs. An application of Proposition [19.7]
then implies Xy < X a.s. [ |

Theorem 19.10. Let (£2,B,{B,},—,,P) be a filtered probability space and Q
be a probability measure on (§2,8) such that Q|, < P|p, for all n € N. Let

M, = Zgli: be a version of the Raydon-Nikodym derivative of Q|g, relative to

P|g,, see Theorem . Recall from Example|18.1( that {M,},_, is a positive
martingale and let M, = lim,,_.o, M,, which exists a.s. Then the following are

equivalent;

1. Q|p.,. < Pls...

2. EpM,, =1,

3. M,, — My, in L* (P), and

4. {My,}.°_, is uniformly integrable.

Proof. Recall from Propositionm (where X,, is now M,,) that in general,
dQ|p,, = M - dP|g.. + dRwo (19.10)
where R, is singular relative to P|g_ . Therefore, Q|g.. < P|p,, iff Rooc =0
which happens iff Ry, (£2) =0, i.e. iff
1=Q(2) = / My -dP|g,, = EpMy.
Q

This proves the equivalence of items 1. and 2. If item 2. holds, then M,, — M,
by the DCT, Corollary [12.9] with g, = f, = M,, and g = f = M., and so item
3. holds. The implication of 3. = 2. is easy and the equivalence of items 3.
and 4. follows from Theorem [2.44 m

Remark 19.11. Recall from Exercise that if 0 < a, <1, [[,, a, > 0 iff
>0 (1—ay) < oco. Indeed, [[02, an > 0 iff

—00 < In (Han> :Zlnan:Zln(l—(l—an))

and Y2 In(l1—(1—ay) > —oo iff D77, (1—a,) < oo. Recall that
In(l1—(1-ay,)) = (1-—a,) for a, near 1.

2 This theorem implies that for B € B,
E[Xo:B]=inf{E[Xo: A]: A€ A,} and
Q(B)=inf{Q(A): Aec A}

and since, by MCT, E[Xo: A] < Q(A) for all A € A, it follows that Eq. (19.9)
holds for all B € B.
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Theorem 19.12 (Kakutani’s Theorem). Let {X, },-, be independent non-
negative random wvariables with EX, = 1 for all n. Further, let My = 1 and
M, = X1 -Xo -+ X, — a martingale relative to the filtration, B, :=
o(Xi,...,X,) as was shown in Example . According to C’orollary

My := limy, oo M, exists a.s. and EMy, < 1. The following statements are
equivalent;
1.EM, =1,

2. M,, — My, in L' (2,8, P),
3. My}, is uniformly integrable,
4- 1 B (VX)) > 0,
5 (1-E (VEL)) < .
Moreover, if any one, and hence all of the above statements, fails to hold,
then P (M =0) = 1.

Proof. If a,, := E (v/X,,) , then 0 < a, and a? < EX,, = 1 with equality iff
X, =1 a.s. So Remark gives the equivalence of items 4. and 5.

The equivalence of items 1., 2. and 3. follow by the same techniques used in
the proof of Theorem above. We will now complete the proof by showing
4. = 3. and not(4.) = P (Ms =0) = 1 which clearly implies not(1.).
For both pars of the argument, let No = 1 and N,, be the martingale (again see

Example [18.13|) defined by
VX VM,
N,, = H b
k=1

ax szl ar’

(19.11)

Further observe that, in all cases, Noo = lim,, oo IV, exists in [0,00) g — a.s.,

see Corollary [I8:48| or Corollary [I8:57]

4. = 3. Since

=X M,,
N2 =]] 67’“ =
k=1 k (ITx=1 ax)
E[Nﬁ]: ;EMn 2 = nl 5 < ool 7 <09,
(ITx=1 ax) (ITx=1 ar) (ITx=y ax)

and hence {N,,}.7 | is bounded in L?. Therefore, using

n 2
M, = <H ak> N2 < N2 (19.12)
k=1

and Doob’s inequality in Corollary [I8:45] we find

E [sup Mn} =E [sup Ng} <4supE [N}?] < oo. (19.13)
n n n
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Equation Eq. (19.13)) certainly implies {M,} ~, is uniformly integrable, see
Proposition [12.42
Not(4) = P My =0)=1.1f

n

T2 (V%) = i [T =0

k=1

we may pass to the limit in Eq. (19.12)) to find

n 2
M, = hmM = lim (Hak> ~N,2L :0-(lim Nn)2:0a.s..

n—o0o n—o0
k=1

Lemma 19.13. Given two probability measures, i and v on a measurable space,

(£2,B), there exists a a positive measure p such that dp := 4/ g‘; Z; dA, where

A is any other o — finite measure on (£2,B) such that p < X and v < \. We
will write \/du - dv for dp in the future.

Proof. The main point is to show that p is well defined. So suppose A; and
Ao are two o — finite measures such that < A\; and v < \; for i = 1, 2. Further
let A := A1 + Ao so that \; < A for i = 1, 2. Observe that

d\ = &d/\
B d,u dp dhy
dp =y M= gy, Ty O and
dv dv d\

So

du dv dp dhy  dv d\
V ax A= d)\; d\  d\; dA PN
dp dv dh du dv
d\i d)\; d\ D= Vi, d)\ld/\l

and by symmetry,

du dl/ | dp
dx d/\
This shows
V d)\g d)\g \/
and hence dp = v/dp - dv is well defined. [ ]
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Definition 19.14. Two probability measures, © and v on a measure space,
(£2,B) are said to be equivalent (written p ~ v) if p < v and v < p, i.e.
if u and v are absolutely continuous relative to one another. The Hellinger
integral of u and v is defined as

v) z/ \/du-duz/ %-%d/\ (19.14)
Q Q

where X is any measure (for ezample X = 3 (u + v) would work) on (£2,B) such
that there exists, ﬁ and d” in L' (2,B,\) such that dp = %d/\ and dv = %d/\.

Lemma guamntees that H (p,v) is well defined.

Proposition 19.15. The Hellinger integral, H (u,v), of two probability mea-
sures, u and v, is well defined. Moreover H (u,v) satisfies;

1.0 < H (p,v) <1,

2. H (u,v)=11iff u=v,
3. H (u,v)=0if p L v, and
4. If . ~ v or more generally if v < p, then H (u,v) > 0.

Furthermord),

V):inf{i Vi (4) v (A) :Q:ZTL:AZ- andnEN}. (19.15)
i=1 =1

Proof. Items 1. and 2. are both an easy consequence of the Schwarz in-
equality and its converse. For item 3., if H (u,v) = 0, then Z’; gﬁ =0, -
Therefore, if we let

dp
A=<—#0
(a0}
then 4 ﬁ =14 Z—‘; — A —a.e. and d”lAc = %’\ — X\ — a.e. Hence it follows that

1w(A¢) =0and v (A) =0 and hence w Lo
If v ~ p and in particular, v < u, then

dv du / dv
——dp= | | 5-dp
dudp™ = Jo \ap™

For sake of contradiction, if H (u, ) = 0 then ’/T =0 and hence =0, pu-—
a.e. The later would imply v = 0 which is impossible. Therefore, H (u, v) >0
if v <« p. The last statement is left to the reader as Exercise [

3 This statement and its proof may be safely omitted.
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286 19 Some Martingale Examples and Applications

Exercise 19.2. Find a counter example to the statement that H (u,v) > 0
implies v < .

Exercise 19.3. Prove Eq. (19.15).

Corollary 19.16 (Kakutani [22]). Let 2 = RN Y, (w) = w,, for allw € 2
and n € N, and B := By = o (Y, : n € N) be the product o — algebra on (2.

Further, let g := @2 1, and v := Q@22 v, be product measures on (§2,Bs)
associated to two sequences of probability measures, {pn}or, and {v,}o—, on

(R, Bgr), see Theorem d (take i := Po(Yy,Ya,...)""). Let us further assume
that v, < py, for all n so that

dv,
0 < H (tn,Vn :/1/ "dungl.
( ) R de

Then precisely one of the two cases below hold;

1.5°0° 1 (1= H (pn, v)) < 0o which happens iff [~ H (ptn,vn) > 0 which
happens iff v < p

2.5 (1= H (pn, vn)) = 0o which happens iff [1,—; H (ptn,vn) = 0 which
happens iff p 1L v.

In case 1. where v < 1 we have

H d”” ji-a.s. (19.16)

n= 1

and in all cases we have

= T o)

Proof. Let P=p, Q =v, B, :=0 (Y1,....Y,), X, := SZ" (Y,,), and

diy dv,,
M, =X,..X,=—Y1)...—
' d:ul( 1) d/'Cn

If f:R™ — R is a bounded measurable function, then

(¥n).

E, (f (YY) = [ f (Yo syn) dvn (y1) - dvn (yn)

R7L

dl/1 an

n) d coodpg (Y,
m (yl) d,un (y) p1 (Y1) 1% (y)

d
—E, {f(Yl,... Y)d:11

:EM [f (Ylv"'7)/;L)Mn]

f(y17"'ayn)
Rn

dvn

().

(Yn)
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from which it follows that
dVan = Mnd,u|8n-

Hence by Theorem [19.10, My, := lim,_ .., M, exists a.s. and the Lebesgue
decomposition of v is given by

dv = Moodp + dRoo

where Ry, L p. Moreover v < p iff Roo = 0 which happens iff EM,, = 1 and
v L piff Ry = 0 which happens iff M., = 0. From Theorem [19.12)

[ee] dl/n B e’}
V) =L [\ = TL# o)

E, My =1iff 0 < [] E,
n=1
and in this case

dv = Myodp = (ﬁ Xk> cdp = <10_O[ dl/n(Yn)> - ds.
k=1

n=1 dﬂn

On the other hand, if

ﬁ E, ( ) ﬁ H (pp,vn) =0,
n=1 n=1

Theorem [19.12] implies Mo, = 0, p — a.s. in which case Theorem [19.10] implies
vl u.

(The rest of the argument may be safely omitted.) For the last assertion,
if [1,2, H (pn,vn) = 0 then p L v and hence H (p,v) = 0. Conversely if
102, H (n,vs) > 0, then M,, — My in L' (1) and therefore

£, || V3%~ VOL['| <8, (| VR - VAT | VAT + O]

=E,[|M, — M| — 0asn— occ.

Since dv = My,dp in this case, it follows that

H (1) = By [V M| = 1im E, |V/M,] = lim HH o) = TLH o).

n— oo
=1

Ezxample 19.17. Suppose that v, = 01 for all n and u, = (1 —p%) So + p2o
with p, € (0,1). Then v, < u, with
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dv,

-/ 1 —2

H (pin,vn) = / \V 1gypn 2 dpn = \/pn” - P2 = pn.
R

So in this case v < piff 37 | (1 — py,) < oo. Observe that y is never absolutely
continuous relative to v.

and

On the other hand; if we further assume in Corollary that p, ~ vy,
then either; 4 ~ v or p L v depending on whether [[7° | H (pin,v,) > 0 or
[0, H (ptn, vs) = 0 respectively.

For broad generalizations of the results in this section, see Chapter IV of [19]
or [20]. In the next group of problems you will be given probability measures, i,
and v, on R and you will be asked to decide if p := @9y, and v := Q02 vy,
are equivalent. For the solutions of these problems you will want to make use
of the following Gaussian integral formula;

a a b\2  p?
[oo(gesmpacm fom (4 (o2 + )
:e%/exp (—Eﬁ) dr = 216%
R 2 V a

which is valide for all @ > 0 and b € R.

Exercise 19.4 (A Discrete Cameron-Martin Theorem). Suppose t > 0,
{an} C R, d,U/n (x) = \/%E_Cﬁ/%dl' and dv,, ((E) = \/ﬁe—(m"_a”)z/%dx . Show
v i 300 af < oo

Exercise 19.5. Suppose s,t > 0, {a,} C R, du, (z) = \/2176*“72/2%33 and

mt
dvy, (z) = \/%e*@*a")w%dm. Show p L v if s # ¢.

27s

Exercise 19.6. Suppose {t,} C (0,00), dpn, (z) = \/%e*ﬁ/zdx and dv, (z) =

\/2%”6—1'2/2%6[;5_ If %% (tn — 1)° < 0o then p ~ v.
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