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Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

-3.1 Homework 1. Due Wednesday, September 30, 2009

e Read over Chapter
e Hand in Exercises and

-3.2 Homework 2. Due Wednesday, October 7, 2009

e Look at Resnick, p. 20-27: 9, 12, 17, 19, 27, 30, 36, and Exercise [3.9] from
the lecture notes.

e Hand in Resnick, p. 20-27: 5, 18, 23, 40*, 41, and Exercise from the
lecture notes.
*Notes on Resnick’s #40: (i) B ((0,1]) should be B ([0,1)) in the statement

of this problem, (ii) k is an integer, (iii) r > 2.

-3.3 Homework 3. Due Wednesday, October 21, 2009

e Look at Lecture note Exercises;
e Hand in Resnick, p. 63-70; 7* and 13.

e Hand in Lecture note Exercises: 4 -

*Hint: For #7 you might label the coupons as {1,2,..., N} and let A; be
the event that the collector does not have the it* — coupon after buying n -
boxes of cereal.

-3.4 Homework 4. Due Wednesday, October 28, 2009

Look at Lecture note Exercises;
Look at Resnick, p. 63-70; 5, 14, 16, 19
Hand in Resnick, p. 63-70; 3, 6, 11

Hand in Lecture note Exercises: -

-3.5 Homework 5. Due Wednesday, November 4, 2009

Look at Resnick, p. 85-90: 3, 7, 8, 12, 17, 21

Hand in from Resnick, p. 85-90: 4, 6%, 9, 15, 18**,

*Note: In #6, the random variable X is understood to take values in the
extended real numbers.

** T would write the left side in terms of an expectation.

Look at Lecture note Exercise

Hand in Lecture note Exercises:

-3.6 Homework 6. Due Wednesday, November 18, 2009

Look at Lecture note Exercise and [7.27]

Hand in Lecture note Exercises: 77 7 11) [7.13] [7.14] [7.16
Look at from Resnik, p. 155-166: 6, 13, 26, 37

Hand in from Resnick,p. 155-166: 7, 38

-3.7 Homework 7. Due Wednesday, November 25, 2009

Look at Lecture note Exercise [0.12] - [@.14
Look at from Resnick§ 5.10: #18, 19, 20, 22, 31.
Hand in Lecture note Exercises: and
9.9
¢ Hand in from Resnick § 5.10: #9, 29.

See next page!



-3.8 Homework 8. Due Monday, December 7, 2009 by
11:00AM (Put under my office door if I am not in.)

Look at Lecture note Exercise [10.1], [10.2] [T0.3] [10.4] [T0.6]
Look at from Resnick § 4.5: 3, 5, 6, 8, 19, 28, 29.

Look at from Resnick § 5.10: #6, 7, 8, 11, 13, 16, 22, 34

Hand in Lecture note Exercises:

Hand in from Resnick § 4.5: 1, 9%, 11, 18, 25. *Exercise [10.6| may be useful
here.

e Hand in from Resnick § 5.10: #14, 26, 38
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1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+o0}, i.e. it
is R with two new points called oo and —oo. We use the following conventions,
+00-0=0, £o0-a =t if a € R with a > 0, +00-a = Foo if a € R with
a<0,oo+a==x0 for any a € R, co+ o0 = 00 and —oco — o0 = —o0 while
00 — 00 is not defined. A sequence a, € R is said to converge to 0o (—oo) if for
all M € R there ezists m € N such that ap, > M (a, < M) for all n > m.

Lemma 1.2. Suppose {a,},—, and {b,},. | are convergent sequences in R,
then:

1. If a, < by, meI a.a. n, then lim,_, . a,, <lim, _ o b,.
2. If c € R, then lim,, o (cay) = clim, o0 ap.
3. {an + bn},— is convergent and

lim (a, +b,)= lim a, + lim b, (1.1)

n—oo n—oo n—oo

provided the right side is not of the form oo — co.
4. {anby },2, is convergent and

lim (apb,) = lim a, - lim b, (1.2)

provided the right hand side is not of the for £00-0 of 0 (£00).

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l1
lim (ay, + by) = 0 fa=1
—ocoifa>1
while
lim a, + lim b,“ ="00 — o0.

n—oo n—oo

This shows that the requirement that the right side of Eq. (1.1 is not of form
00— o0 is necessary in Lemmal[l.2] Similarly by considering the examples a,, = n

)

! Here we use “a.a. n” as an abbreviation for almost all n. So an < b, a.a. n iff there
exists N < oo such that a, < b, for all n > N.

and b, = n~% with a > 0 shows the necessity for assuming right hand side of
Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. . Let a :=lim, . a, and b = lim,,_. o, b,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists NV such that b, > M and a,, > a — 1 for all n > N and this implies

ap +b,>M+a—1foralln > N.

Since M is arbitrary it follows that a, + b, — 0o as n — co. The cases where
b = —o0 or a = oo are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists N € N such that

la —an| <eand |b—b,| <eforalln>N.
Therefore,
la+b—(an+by)|=|a—an+b—by| <|a—a,|+1]b—0,| <2

for all n > N. Since € > 0 is arbitrary, it follows that lim,, o (a, + b,) = a+b.

Proof of Eq. (1.2)). It will be left to the reader to prove the case where lim a,,
and lim b,, exist in R. I will only consider the case where a = lim,, .o a, # 0
and lim,_ . b, = oo here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let @ := min (%, 1). Given any M < oo, there exists
N € N such that a,, > a and b, > M for all n > N and for this choice of N,
anby, > Ma for all n > N. Since o > 0 is fixed and M is arbitrary it follows
that lim, o (anbyp) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if oo € A or A is not bounded from above and inf A = —oo0 if —co € A or A is
not bounded from below. We will also use the conventions that sup () = —co
and inf ) = +o0.

Notation 1.3 Suppose that {x,} -~ , C R is a sequence of numbers. Then

liminf 2, = lim inf{zy : k > n} and (1.3)
n—oo n—oo
limsupz, = lim sup{xy: k > n}. (1.4)
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We will also write lim for liminf, .o and lim for limsup.
n—oo
Remark 1.4. Notice that if ap := inf{xy : £k > n} and by := sup{zy : k >
n}, then {ax} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R and
liminf x,, = supinf{zy : £ > n} and
n—oo n
lim sup x,, = inf sup{zy, : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {a,}52, and {b,}52, be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,_. a, ezxists in R iff
n—oo

liminf a,, = limsup a,, € R.

n—00 n— o0

2. There is a subsequence {an, }52, of {an}S2, such that limy o ap,
limsup a,,. Similarly, there is a subsequence {an, }32, of {an}52, such that

n—oo
limy o0 ap, = liminf, . ay,.
3.
lim sup(a,, + b,) < limsup a,, + limsup b, (1.5)
n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — co.
4. If ap, > 0 and b, > 0 for alln € N, then

lim sup(a,by,) < limsup a,, - lim sup by, (1.6)

provided the right hand side of @ is not of the form 0 - oo or oo - 0.
Proof. 1. Since
inf{ag : k > n} <sup{ag : k > n} ¥n,
liminf a,, < limsup a,,.

n—00 n— oo

Now suppose that liminf,, .. a, = limsupa, = a € R. Then for all ¢ > 0,
n—oo
there is an integer N such that

a—e<inf{ag : k> N} <sup{arp:k >N} <a+e,

Page: 14 job: prob

ie.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limg_ o ax = a. If liminf,, . a, = oo,
then we know for all M € (0, 00) there is an integer N such that

M <inf{ay : k > N}

and hence lim,,_,~, a, = 0o. The case where lim sup a,, = —oc0o is handled simi-
n—oo

larly.
Conversely, suppose that lim, ..o a, = A € R exists. If A € R, then for
every € > 0 there exists N(g) € N such that |A — a,| < ¢ for all n > N(e), i.e.

A—e<a, <A+ceforaln>N().
From this we learn that

A — e <liminfa, <limsupa, < A+e¢.

n—oo n—00

Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A4,

n—oo N—00

i.e. that A = liminf, ., a, = limsupa,. If A = oo, then for all M > 0

n—oo

there exists N = N(M) such that a, > M for all n > N. This show that
liminf, .. a, > M and since M is arbitrary it follows that

oo < liminf a,, < limsup a,.
n—0oo n—00

The proof for the case A = —oo is analogous to the A = co case.
2. — 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let a,, = (—1)" and
bp = —an = (—1)"*". Then a, + b, = 0 so that
0= lim (a, + b,) = liminf (a, + b,) = limsup (a, + by)
n—oo n—oo n—oo
while
liminf a,, = liminfb,, = —1 and
n—oo n—oo
limsup a,, = limsup b,, = 1.
n—oo n—oo
Thus in this case we have
macro: svmonob.cls date/time: 24-Nov-2009/13:23



lim sup (a,, + by,) < limsup a,, + lim sup b,, and

n—oo n—oo n—oo
liminf (a,, + b,) > liminf a,, + liminf b,,.
n—oo n—oo n—oo

]
We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n € N, {f, (i)};=,
is a sequence in [0,00] such that T limy, o fn (i) = f (i) by which we mean
fn (@) T f (i) as n — oco. Then

Jom, Z I
JKZM%
i=1

We allow for the possibility that these expression may equal to +oo.

Proof. Let M :=1lim,, o0 Y 50y fn (2). As fi, (¢) < f (i) for all n it follows
that oo fr (i) < Yooy f (i) for all n and therefore passing to the limit shows
M <Y 2, f(i). If N € N we have,

N
250 th G —,}LH;Oan )< Jim 3 a9 =

=1

f @), ie

7

=1

3

lim f, (7).
1

1=

Letting N 1 oo in this equation then shows Y .- f (i) < M which completes
the proof. -

Proposition 1.7 (Tonelli’s theorem for sums). If {axn};,—; C [0,00],

then
o0 oo oo oo
Zzakn = Zzakn-

k=1n=1 n=1k=1
Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let Sy (k) := ij:l Akn, then by the MCT (Proposi-
tion ,
hm ZSN

On the other hand,

oo

)= Jim Sy (k)= > ar.

k=1 k=1n=1

Page: 15 job: prob
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so that
N oo oo 00
Nlim ZSN lim ZZakn:ZZakn.
e N=oo =1 n=1k=1

Second Proof. Let
K N N K

M = sup{ZZakn : K,NEN} ZSUP{ZZGML : K,NEN}
k=1n=1

and

Since

oo 0o K o K N
L:ZZ@M :IQPOOZZLL;M = hmooj\}gnooZZakn

k=1n=1 k=1n=1 k=1n=1
and Zk 1 Z _q 0kn < M for all K and N, it follows that L < M. Conversely,
K N K oo 0o 00
PBP SIS 35 SIS 3) I’
k=1n=1 k=1n=1 k=1n=1

and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

oo 00
E E Afn — M
k=1n=1

By symmetry (or by a similar argument), we also have that > >~ | > 7° | ap, =
M and hence the proof is complete. [
You are asked to prove the next three results in the exercises.

Proposition 1.8 (Fubini for sums). Suppose {arn}y,—; C R such that

E E lakn| = E E lagn| < 00
k=1n=1 n=1 k=1
Then
oo o0 oo oo
DD k=) am
k=1n=1 n=1k=1

macro: svmonob.cls date/time: 24-Nov-2009/13:23



16 1 Limsups, Liminfs and Extended Limits

Ezample 1.9 (Counter example). Let {Smn}:,nzl be any sequence of complex

numbers such that lim,, .o Sy, = 1 for all n and lim,, .o Sy = 0 for all n.
For example, take Sy = Lm>pn 4 +Lm<n. Then define {aij}fC;.:l so that

m n
=1 j=1

Then

ZZaij = lim lim S,,,=0#1= lim lim S,

m—0o00 N—00 n—oo m—0o0

o0 oo
=2
j=11i=1

i=1 j=1

To find a;j, set Sy = 0if m =0 or n = 0, then

n
Smn — Sm—l,n = § Qmj
Jj=1

and

n — Smn - Smfl,n - (Sm,nfl - Smfl,nfl)
= Smn - Smfl,n - Sm,nfl + Smfl,nfl'
Proposition 1.10 (Fatou’s Lemma for sums). Suppose that for eachn € N,

{hn (i) };=, is any sequence in [0,00], then

- N < Tim
Zhnnigfhn(z)_hnn_{nghn(z)

i=1 =1

The next proposition is referred to as the dominated convergence theorem

(DCT for short) for sums.

Proposition 1.11 (DCT for sums). Suppose that for each n € N,

{fn ())};2, C R is a sequence and {gn (i)};~, is a sequence in [0,00) such that;

1.5°% gn (i) < 00 for all n,

2. f(i) =limp— o0 fn (1) and g (i) := limy, 00 gn (¢) exists for each i,
3. 1fu ()| < g (i) Jor all i andn,

4. lim o D770 g (1) = 3072, 9 (i) < oo

Then -
Jim, > () Z lin i (i Zf
i=1

(Often this proposition is used in the special case where g, = g for all n.)

Page: 16 job: prob

Exercise 1.1. Prove Proposwlonu 1.8l Hint: Let o}, := max (agn,0) and a,, =
max (—akn, 0) and observe that; ag, = a;n — al;n and ‘a,m| + ’akn’ = |agn| -

Now apply Proposition with ay, replaced by a,m and a,,.

Exercise 1.2. Prove Proposition [[.10} Hint: apply the MCT by applying the
monotone convergence theorem with f, (7) := inf,,>p b (7).

Exercise 1.3. Prove Proposition[I.11} Hint: Apply Fatou’s lemma twice. Once
with hy, (1) = gn (1) + fn (1) and once with hy, (1) = gp, (2) — fn (7).
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2

Basic Probabilistic Notions

Definition 2.1. A sample space {2 is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, 1}N and for flipping an infinite number of times,

Q={w=(w1,ws,...) 1 w; € {0,1}} = {0,1}".
3. If we have a roulette wheel with 38 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 =1{00,0,1,2,...,36}"

for N spins, and
2 ={00,0,1,2,...,36}"

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Q2 =Dp:={(z,y) ER*:2” +y* < R}

for one throw,
2 =D¥

for N throws, and
2=D%

for an infinite number of throws.
5. Suppose we release a perfume particle at location € R? and follow its
motion for all time, 0 <t < oco. In this case, we might take,

Q2 ={weC(0,0),R*:w(0)=2a}.

Definition 2.3. An event, A, is a subset of 2. Given A C 2 we also define
the indicator function of A by

_JlifweAd
La (@) '_{OifwgéA'

Ezample 2.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n*" — toss, while w,, = 0 represents a tail on the n'® — toss.

1. A ={w € 2 : w3 = 1} represents the event that the third toss was a head.

2.A=U2, {w € 2:w; =w;y1 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3.A=nNF_; Up>n {w e 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A =UF_; Np>n {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w (n) € (2 for each n € N,
then try to “define” P (A) by

P(A) = Jim =314 (k) (2.1)
k=1
—Nliinm%#{lgng:w(k)eA}. (2.2)
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That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {w (k)},—; .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we know that B has occurred. Thus we would
like to compute:

. #{k:1<EkE<Nandw, € ANB}
P(A|B)—ngr(1>o #{k:1<k<Nandw, € B} ’

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

L4k 1<k<Nandwr,€ ANB
P(AB) = lim N#{ — = e )
—oo  m#{k:1<k <N andw, € B}
~ P(ANnB)
- P(B)

Definition 2.5. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,

P(ANB)

PAIB) = =5

There are of course a number of problems with this definition of P in Eq.
including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P(A) €[0,1] for all A C (2.

2. P@)=0and P(2)=1

3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then
laup =14 + 1p so that

N
P(AUB) = Jim =3 Lus(w(k) = Jim 3" [1a(w (k) + 1s (@ ()]
k_le 1 N k=1
= lim |2 1a (@ k) + 5 D1 (@ (R))
k=1 k=1
= P(A)+P(B).

4. Countable Additivity. If {A; }Joil are pairwise disjoint events (i.e. A; N
Aj, = 0 for all j # k), then again, lux 4, = > 51 1a, and therefore we
might hope that,
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P = i 3 o8 = i %550
k=1j5=1
oo 1 N
S0 L0 SN
Jj=1 k=1
) 00 1 N
:ZI\}llnooﬁzlAJ (w (k) (by a leap of faith)
j=1 k=1
:ZP(AJ)

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every w € (2 is equally likely, i.e. P ({w}) = QLN
Assuming this we are then forced to define

P(A)= oo # (4).

Observe that this probability has the following property. Suppose that o €
{0,1}" is a given sequence, then

1 1
P(fw: (w1 wn) = o)) = g 2V =

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Ezxample 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now £2 = {0,1}", then we should define

P{we 2:(wy,...,wx) =0}) = — (2.3)

for any k > 1 and o € {0, 1}k. Assuming there exists a probability, P : 27 —
[0,1] such that Eq. holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

Ap ={w e 2 :w, =1} = {heads at time n}
By :=U,>nA, = {at least one heads at time N or later}

and
B = ﬂ?voleN = {An 10} = m]ovo:1 Un>nN A,.

Since
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we see that

Therefore, P (By) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using By | B, that
P(B)= lim P(By)=1.

N—o0
Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z € C: |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 25 — [0,1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limats.

Proof. We are going to use the fact proved below in Proposition that
the continuity condition on P is equivalent to the ¢ — additivity of P. For z € S
and N C S let

zN:={zneS:neN}, (2.4)

that is to say ¢’’N is the set N rotated counter clockwise by angle §. By
assumption, we are supposing that

P(zN) = P(N) (2.5)

for all z€ S and N C S.
Let A ‘
Ri={z=e?":tcQ}={z=¢?":1€[0,1)NQ}

— a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z,w € S are equivalent if z = rw for some
r € R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N C S be the set of these representative
points. Then every point z € S may be uniquely written as z = nr with n € N
and r € R. That is to say

=Y (rN) (2.6)

rER

where ) A, is used to denote the union of pair-wise disjoint sets {A,}. By

Eqgs. and ,
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1=P(S)=>_ P(rN)=>_ P(N). (2.7)

reR reR

We have thus arrived at a contradiction, since the right side of Eq. is either
equal to 0 or to co depending on whether P (N) =0 or P(N) > 0. |

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2. So we are going to only define P on
particular subsets, B C 22. We will developed this below.
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Formal Development






3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in 'Y and often write f, for f(n) and express f as {fn}rry. If
X ={1,2,..., N}, we will write YV in place of Y112N} and denote f € YN
by f = (f1, f2,..., fn) where fr, = f(n).

Notation 3.2 More generally if {X, : « € A} is a collection of non-empty sets,

let X4 = [] Xa and 7o : Xa4 — X, be the canonical projection map defined
acA
by mo(z) = o If If Xo = X for some fized space X, then we will write || Xa
acA
as X4 rather than X 4.

Recall that an element x € X4 is a “choice function,” i.e. an assignment
ZTo = z(a) € X, for each a € A. The axiom of choice states that X4 # 0
provided that X, # ) for each « € A.

Notation 3.3 Given a set X, let 2% denote the power set of X — the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={re X :a(zx)=1} C X.

In this way elements in {0,1}~ are in one to one correspondence with subsets
of X.
For A € 2% let
A =X\A={zeX:z ¢ A}

and more generally if A, B C X let
B\A:={zxeB:x¢ A} = Bn A°.

We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\B).
As usual if {A4},,; is an indexed collection of subsets of X we define the union
and the intersection of this collection by
Uaerda ={z€X:F3ael 3 x€ A,} and
NaciAa ={zeX:z € A Vael}.

Notation 3.4 We will also write Zael A, for UserAes in the case that
{Aa} e are pairwise disjoint, i.e. Aq N Ag =0 if o # .

Notice that U is closely related to 3 and N is closely related to V. For example
let {A,},~, be a sequence of subsets from X and define

inf A, == Ni>nAgk,
k>n -

sup A, = UanAk,
k>n

limsup A, :={A, l0.} :={z e X :#{n:xe€ A} =}

and
liminf A, := {A, a.a.} :={z € X : 2 € A, for all n sufficiently large}.

n—oo

(One should read {A,, i.0.} as A, infinitely often and {A,, a.a.} as A,, almost
always.) Then = € {A, i.0.} iff

VNeNdn>N>ze€A,
and this may be expressed as

{4, 1.0.} =NXy Up>n An.
Similarly, z € {4,, a.a.} iff

dNeN>VYn>N, z€ A,
which may be written as

{An a.a.} = U?\?:l ngN An
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Definition 3.5. Given a set A C X, let

_JlifxeA
lA(x)_{OifxgéA

be the indicator function of A.
Lemma 3.6. We have:

(UnAn)c = ﬂnAfw
{A, i.0.}° = {A¢ a.a.},
limsup A, ={z € X:> " 14, (z) =00},

n—oo
liminf, oo Ay = {z € X : 307 14c (z) <00},
SUPg>n La, (.%') = 1Uk2nAk = 1Supk2n Ag>s
infr>nla, () = 1n,2, 4, = Linfys, Acs

liim sup 4,, = limsup 1,4, , and

n— o0 n— oo

© N otE W=

Limint, .o A, = liminf, 14, .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

. If A C X is a subset of a countable set X then A is countable.

. Any infinite subset A C N is in one to one correspondence with N.

. A non-empty set X is countable iff there exists a surjective map, g : N — X.

If X and Y are countable then X XY is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =UP_ Ay, is countable. In short, the countable union of countable sets
1s still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2% is uncountable for any infinite set X.

Grds Lo o~

Proof. 1. If f : X — N is an injective map then so is the restriction, f|4,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1) = min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f : N — A
defined this way is a bijection.
3. If g : N — X is a surjective map, let

f(z) =ming™ ({z}) =min{n € N: f(n) = z}.

Then f: X — N is injective which combined with item
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2. (taking A = f(X)) shows X is countable. Conversely if f : X — N is
injective let 29 € X be a fixed point and define g : N — X by g(n) = f~1(n)
for n € f(X) and g(n) = xg otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put the
elements of N x N into an array of the form

and then “count” these elements by counting the sets {(i,5): i+ j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f : N—X and g : N =Y are
surjective functions, then the function (f x g) o h : N =X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € N x N.

5. If A = () then A is countable by definition so we may assume A # ().
With out loss of generality we may assume A; # @ and by replacing A,, by
Ay if necessary we may also assume A,, # @ for all m. For each m € N let
am : N — A, be a surjective function and then define f: NxN — U>®_, A, by
flm,n) := a,(n). The function f is surjective and hence so is the composition,
foh:N—UX_ A, where h : N — N x N is the bijection defined above.

6. Let us begin by showing 2N = {O,I}N is uncountable. For sake of
contradiction suppose f : N — {O,l}N is a surjection and write f(n) as
(fi(n), f2(n), f3(n),...). Now define a € {0,1}" by a, := 1 — f,(n). By
construction f,, (n) # a, for all n and so a ¢ f(N). This contradicts the as-
sumption that f is surjective and shows 2V is uncountable. For the general
case, since Y;5 C YX for any subset Yy C Y, if Y;¥ is uncountable then so
is YX. In this way we may assume Y is a two point set which may as well
be Yy = {0,1}. Moreover, since X is an infinite set we may find an injective
map z : N — X and use this to set up an injection, i : 2V — 2X by setting
i(A) := {z, :n €N} C X for all A C N. If 2% were countable we could find
a surjective map f : 2% — N in which case foi : 28 — N would be surjec-
tive as well. However this is impossible since we have already seed that 2V is
uncountable. ]

3.2 Exercises

Let f: X — Y be a function and {4;};cr be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (N;jerA;)°¢ = U;er AS.
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Exercise 3.2. Suppose that B C Y, show that B\ (U;cr4;) = Nier(B\ A;).
Exercise 3.3. f 1 (UjerA;) = Uier fH(A).
Exercise 3.4. f 1 (NierA;) = NierfH(A).

Exercise 3.5. Find a counterexample which shows that f(C N D) = f(C) N
f(D) need not hold.

Ezample 3.9. Let X = {a,b,c} and Y = {1,2} and define f(a) = f(b) =1
and f (c) = 2. Then § = f ({a} N {b}) # f ({a}) N f({0}) = {1} and {1,2} =
f({a}?) # f({a})" ={2}.

3.3 Algebraic sub-structures of sets

Definition 3.10. A collection of subsets A of a set X is a m — system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.11. A collection of subsets A of a set X is an algebra (Field)
if

1.0, Xec A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if A1, ..., A, € A then A1U---UA,, € A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 3.12. A collection of subsets B of X is a 0 — algebra (or some-
times called a o — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};0, C B, then U2, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.13. Here are some examples of algebras.

1. B =2%, then Bis a o — algebra.

2. B={0,X} is a o — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, § :=
{0, X,{2,3}} is a not an algebra but is a 7 — system.

Proposition 3.14. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.
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Proof. Simply take

A(€) = n{A : A is an algebra such that & C A}

and

(&) = ﬂ{/\/l : M is a o — algebra such that £ C M}.

Ezample 3.15. Suppose X = {1,2,3} and £ = {0, X, {1,2},{1,3}}, see Figure
31l Then

Fig. 3.1. A collection of subsets.

AE) =0o(&) =2%.
On the other hand if £ = {{1,2}}, then A(£) = {0, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that & C 2% for i = 1,2. Show that A (&;) = A(&)
iff & C A(&) and & C A(&r). Similarly show, o (€1) = 0 (&) iff & C o (&)
and & C o (&) . Give a simple example where A (1) = A (E2) while & # &s.

In this course we will often be interested in the Borel ¢ — algebra on a
topological space.

Definition 3.16 (Borel o — field). The Borel ¢ — algebra, B = Br =
B(R), on R is the smallest o -field containing all of the open subsets of R.
More generally if (X, 7) is a topological space, the Borel o — algebra on X is

Bx := 0 (1) — i.e. the smallest o — algebra containing all open (closed) subsets
of X.
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Exercise 3.7. Verify the Borel o — algebra, Bg, is generated by any of the
following collection of sets:

1. {(a,00):a €R}, 2. {(a,0):a € Q} or 3. {[a,0):acQ}.
Hint: make use of Exercise

We will postpone a more in depth study of ¢ — algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 3.17. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F.

Ezample 8.18. Let X be a set and & = {A;,...,A,} where Ay,... A4, is a
partition of X. In this case

A(E) = 0(&) = {Uieadi - AC{1,2,...,n}}
where U;e 1 A; := 0 when A = (). Notice that
#(AE)) = #2012 =2m,

Example 3.19. Suppose that X is a set and that A C 2% is a finite algebra, i.e.
# (A) < oo. For each z € X let

A, =nN{AecA:zc A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest set
in A which contains x.

Now suppose that y € X. If x € A, then A, C A, so that A, N A, = A,.
On the other hand, if ¢ A, then z € A, \ A, and therefore A, C 4, \ 4,, i.e.
Ay N Ay = 0. Therefore we have shown, either A, N A, =0 or A, N A, = A,.
By reversing the roles of z and y it also follows that either A, N A, = 0 or
Ay N A, = A,. Therefore we may conclude, either A, = A, or A, N A, =0 for
all z,y € X.

Let us now define {Bi}le to be an enumeration of {4}, y . It is a straight-
forward to conclude that

A={UieaB;i : AC{1,2,... k}}.

For example observe that for any A € A, we have A = Uyc 4 Ay = Ujea B; where
A:={i:B; C A}.
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Proposition 3.20. Suppose that B C 2% is a o — algebra and B is at most
a countable set. Then there erists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AeF:ACB}. (3.1)
In particular B is actually a finite set and # (B) = 2" for some n € N.

Proof. We proceed as in Example |3.19} For each z € X let
A, =n{AeB:zc A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N A, =0 or A, = A, and therefore F = {4, : 2 € X} C Bisa
(necessarily countable) partition of X for which Eq. holds for all B € B.

Enumerate the elements of F as F = {P,})_, where N € Nor N = co. If
N = oo, then the correspondence

aef{0,1}" 54, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[3.8] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. [

Ezample 3.21 (Countable/Co-countable o — Field). Let X = R and £ :=
{{z} : 2 € R}. Then o (€) consists of those subsets, A C R, such that A is
countable or A€ is countable. Similarly, A (€) consists of those subsets, A C R,
such that A is finite or A€ is finite. More generally we have the following exercise.

Exercise 3.8. Let X be a set, I be an infinite index set, and £ = {4;}ics be a
partition of X. Prove the algebra, A (£), and that o — algebra, o (£), generated
by & are given by

A(E) = {UseaA; : A C I with # (A) < 0o or # (A°) < oo}

and
(&) ={Uicad; : A C I with A countable or A° countable}

respectively. Here we are using the convention that U;e4A; := 0 when A = 0.
In particular if I is countable, then

O'(g) :{UieAAiZACI}.

Proposition 3.22. Let X be a set and £ C 2%, Let £¢ := {A°: A € £} and
E=EU{X,0}UEC Then

A(E) := {finite unions of finite intersections of elements from E.}.  (3.2)
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Proof. Let A denote the right member of Eq. (3.2]). From the definition of
an algebra, it is clear that £ C A C A(£). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
Z=J( A
i=1j=1
where A;; € &. Therefore, writing B;; = Af; € &, we find that

N K K
ZC:mUBij: U, (Bijy N Baj, N---N Byjy) € A

wherein we have used the fact that B1;, NBaj,N- - -N By, is a finite intersection
of sets from &.. [ |

Remark 3.23. One might think that in general o(£) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
oo o0
Z=J( A

i=1j=1
with Aij € gc, then

Z° = U <ﬂ AZ]’@)
(=1

Ji=1,j2=1,...58v=1,...

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe o (&), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition [3.20

Exercise 3.9. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F NV where F is closed and V is open.

Solution to Exercise . In this case 7. is the collection of sets which are
either open or closed. Now if V; C, X and F; C X for each j, then (N, Vi) N
(ﬂ;”:le) is simply a set of the form VNF where V C, X and F C X. Therefore
the result is an immediate consequence of Proposition [3.22

Definition 3.24. A set S C 2X is said to be an semialgebra or elementary
class provided that
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e Des

o S is closed under finite intersections

o if E €S8, then E€ is a finite disjoint union of sets from S. (In particular
X = 0° is a finite disjoint union of elements from S.)

Proposition 3.25. Suppose S C 2% is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S C A C A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that #, X € A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that 4; =3 p, F' € A
where, for i = 1,2,...,n, A; is a finite collection of disjoint sets from S. Then

(s, Y

(Fiyseeis Fp)EAL XX Ay,

(FLNFyn---NF,)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (Ais closed under complementation.) If A = 3" .  F with A being a finite
collection of disjoint sets from S, then A¢ = (., F°. Since, by assumption,
Fee Aforall Fe€ ACS and A is closed under finite intersections by step 1.,
it follows that A€ € A. ]

Ezxample 3.26. Let X = R, then

S:={(a,))NR:a,beR}
={(a,b] : a € [-00,0) and a < b < oo} U {0, R}

is a semi-field. The algebra, A(S), generated by S consists of finite disjoint
unions of sets from S. For example,

A= (0,7]U (27,7 U(11,00) € A(S).
Exercise 3.10. Let A C 2% and B € 2¥ be semi-fields. Show the collection
S:={AxB:Ac Aand B € B}

is also a semi-field.

macro: svmonob.cls date/time: 24-Nov-2009/13:23



Solution to Exercise ((3.10). Clearly 0 =0 x 0 € E = Ax B. Let A; € A
and B; € B, then

ﬁ?zl(Ai X Bl) = ( ;IzlAi) X (ﬂ?lel) ceAxB

showing & is closed under finite intersections. For A x B € &,
(Ax B)"=(A°x B> (A°xB)Y (AxB°)

and by assumption A° = >"" | A; with 4; € Aand B¢ = ;.”:1 B; with B; € B.
Therefore

ACXBc:<iAZ’>X zm:Bl = %n AZ'XBi,
=1 j=1

i=1,j=1

ACxB:iAixB, andAch:iAxBi
j=1

i=1

showing (A x B) may be written as finite disjoint union of elements from S.



4

Finitely Additive Measures / Integration

Definition 4.1. Suppose that £ C 2% is a collection of subsets of X and p :
&€ — [0,00] is a function. Then

1. p is additive or finitely additive on £ if
WE) =Y u(E;) (4.1)

whenever E=Y"" | E; € E with E; € € fori=1,2,...,n < oo.

2. p is o — additive (or countable additive) on & if Fq. holds even
when n = 0.

3. p is sub-additive (finitely sub-additive) on & if

SZM(E)

whenever E =] E; € € withn € NU{oo} (n € N).

4. i is a finitely additive measure if € = A is an algebra, 1 (0) =0, and p
18 finitely additive on A.

5. 1 is a premeasure if p is a finitely additive measure which is o — additive
on A.

6. 1 is a measure if u is a premeasure on a o — algebra. Furthermore if
w(X) =1, we say u is a probability measure on X.

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose i is a finitely additive measure on an algebra, A C 2%, A, B € A with
A C Band {A;};_, C A, then :

1. (1 is monotone) p(A) < u(B) if A C B.
2. For A, B € A, the following strong additivity formula holds;

W(AUB) + u(ANB) = p(A) + u(B). (4.2)

3. (u is finitely subbadditive) j((U7_; A;) < 377, u(A;).
4. p is sub-additive on A iff

p(A) <Y p(Ay) for A= ZA (4.3)

=1

where A € A and {A;};2, C A are pairwise disjoint sets.

5. (w is countably superadditive) If A =>"°, A; with A;, A € A, then

It (Z Ai) > Zu (4;). (4.4)

(See Remark for example where this inequality is strict.)
6. A finitely additive measure, i, is a premeasure iff p is subadditive.

Proof.

1. Since B is the disjoint union of A and (B\ A) and B\ A=BNA°e€ Ait

follows that
w(B) = p(A) + n(B\ A) = p(A).

2. Since

AUB=[A\(ANB)]Y [B\(ANB)]Y ANB,

p(AUB)=p(AUB\ (ANB))+un(ANB)
=n(A\N(ANB))+pu(B\(ANB))+pu(ANB).
Addlng 1 (AN B) to both sides of this equatlon proves Eq. .

3. Let E; = E; \ (B, U---UE;_) so that the E; ’s are pair-wise disjoint and

E=U; 1E Since E; C Ej it follows from the monotonicity of y that

E) =3 pE;) < Zu(En

4. If A=J2, B; with A € Aand B; € A, then A = >, A; where A; :=

B;\ (B1U...B;_1) € A and By = (). Therefore using the monotonicity of

w and Eq.
<ZM <Z,u

5. Suppose that 4 = Y 00, A, w1th A A€ .A, then > 1" | A; C A for all n

and so by the monotonicity and finite additivity of p, >~ &, 1 (A;) < p(A).
Letting n — oo in this equation shows u is superadditive.

6. This is a combination of items 5. and 6.
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4.1 Examples of Measures

Most o — algebras and o -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.
Ezxample 4.3. Suppose that 2 is a finite set, B := 2% and p : 2 — [0,1] is a
function such that

Y opw) =1

wes?

Then
P(A):=> p(w) forall AC Q2
weA

defines a measure on 2.
Example 4.4. Suppose that X is any set and x € X is a point. For A C X, let

1if z€ A
5'T(A){0ifx¢A.

Then p = §, is a measure on X called the Dirac delta measure at x.

Example 4.5. Suppose B C 2% is a ¢ algebra, i is a measure on B, and A > 0,
then X - p is also a measure on B. Moreover, if J is an index set and {u;}ecs
are all measures on B, then p = »772 | py, i.e.

w(A) = Z,uj(A) for all A € B,
j=1

defines another measure on B. To prove this we must show that p is countably
additive. Suppose that A = >"°, A; with A; € B, then (using Tonelli for sums,

Proposition [1.7]),

(A) =D mi(A) =3 > mi(A)
= : i (Ai) = ZH(AZ)

Ezample 4.6. Suppose that X is a countable set and A : X — [0, 00] is a func-
tion. Let X = {x,},—, be an enumeration of X and then we may define a
measure 4 on 2% by,
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We will now show this measure is independent of our choice of enumeration of
X by showing,

p(A)=> Mz):= sup ¥ Aax)VACX. (4.5)

zeA ACCAxeA

Here we are using the notation, A CC A to indicate that A is a finite subset of
A

To verify Eq. (4.5)), let M :=sup, cca > ,c4A(2) and for each N € N let
Ay ={zp,:2p, € Aand 1 <n < N}.

Then by definition of p,

9] N
n(A) = Z AM@p)0z, (A) = ngnoo Mxn)le,ea
n=1 =1
= lim Ax) < M.
N—o00
TEAN

On the other hand if A CC A, then

SA@ = Y Aea) = u(4) < u(4)

z€A n: x, €A

from which it follows that M < p (A). This shows that p is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and A : X — [0, 00] is any function. In this setting we simply may define
w: 2% — [0, 00] using Eq. . We leave it to the reader to verify that this is
indeed a measure on 2%.

We will construct many more measure in Chapter [5| below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 4.7 (Construction of Finitely Additive Measures). Sup-
pose S C 2% is a semi-algebra (see Definition and A = A(S) is the
algebra generated by S. Then every additive function p: S — [0, 00| such that
w1 (D) =0 extends uniquely to an additive measure (which we still denote by p)

on A.

Proof. Since (by Proposition [3.25) every element A € A is of the form
A = )", E; for a finite collection of E; € S, it is clear that if ;1 extends to a
measure then the extension is unique and must be given by

macro: svmonob.cls date/time: 24-Nov-2009/13:23



u(A) =D (B, (4.6)

To prove existence, the main point is to show that p(A) in Eq. (4.6)) is well
defined; i.e. if we also have A =3 F; with F; € S, then we must show

S u(E) =3 ulF). (4.7)

But E; =}, (E; N F}) and the additivity of p on S implies pu(E;) = 3, p(E; N
F;) and hence

Don(E) =3 Y BN ) =3 (BN Ey).
Similarly,
ZM(Fj) = ZM(Ei N Fj)

which combined with the previous equation shows that Eq. (4.7) holds. It is
now easy to verify that u extended to A as in Eq. (4.6]) is an additive measure
on A. ]

Proposition 4.8. Let X =R, S be the semi-algebra,
S={(a,))NR: —00 <a<b< oo}, (4.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition[3.25 To each finitely additive probability measures i :
A — [0,00], there is a unique increasing function F : R —[0,1] such that

F(—00) =0, F(c0) =1 and
w((a,b)NR) = F(b) — F(a) ¥V a < b in R. (4.9)

Conversely, given an increasing function F : R — [0,1] such that F(—o0) = 0,
F(o0) =1 there is a unique finitely additive measure p = pp on A such that
the relation in Eq. (@) holds. (Eventually we will only be interested in the case
where F' (—o0) = lim,| o F (a) and F (00) = limpjeo F' (D) .)

Proof. Given a finitely additive probability measure p, let
F(z) = p((—oo,z] NR) for all x € R.
Then F (c0) =1, F (—o0) = 0 and for b > a,

F(b) = F(a) = p((=00,b] NR) — p((=00,a]) = pu((a,b] NR).
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Conversely, suppose F' : R —[0,1] as in the statement of the theorem is
given. Define p on § using the formula in Eq. . The argument will be
completed by showing y is additive on S and hence, by Proposition [£.7] has a
unique extension to a finitely additive measure on A. Suppose that

n

(a, b] = Z(ai, bz]

i=1
By reordering (a;, b;] if necessary, we may assume that
a = aj <b1=a2<b2:a3<-~-<bn_1:an<bn:b.
Therefore, by the telescoping series argument,

u((a,b)VR) = F(b) — F(a) = 3" [F(b) — F(a)] = 3 pl(ai, bl N R).

i=1 =1

Remark 4.9. Suppose that F': R — R is any non-decreasing function such that
F (R) C R. Then the same methods used in the proof of Proposition shows
that there exists a unique finitely additive measure, 4 = pr, on A = A (S) such
that Eq. holds. If F'(00) > limp1ee F'(b) and A; = (i,i 4 1] for ¢ € N, then

0 [e'S) N
ZMF(Ai) ZZ(F(HU—F(Z')) ZJJEHOOZ(F(HU—F(@'))
= Jim (F(N+1) = F (1)) < F (00) = F (1) = pr (U2, A1),

This shows that strict inequality can hold in Eq. and that pp is not
a premeasure. Similarly one shows pp is not a premeasure if F (—o00) <
limg) oo F'(a) or if F' is not right continuous at some point ¢ € R. Indeed,
in the latter case consider

1 Jr1]
a4+ —].
n+1’ n

(aa+1= (a+

n=1

Working as above we find,
i (a+L a+l] =F(a+1)—F(a+)
— e n+1’ n)

while pp ((a,a + 1)) = F (a + 1) — F (a) . We will eventually show in Chapter
below that pp extends uniquely to a ¢ — additive measure on Bg whenever F'
is increasing, right continuous, and F (£o00) = lim, 1o F ().
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32 4 Finitely Additive Measures / Integration

Before constructing o — additive measures (see Chapter [5| below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are allowed to integrate.

4.2 Simple Random Variables

Definition 4.10 (Simple random variables). A function, f : 2 — Y is said
to be simple if f (2) C Y is a finite set. If A C 2 is an algebra, we say that a
simple function f: 2 — Y is measurable if {f =y} = f~1 ({y}) € A for all
y € Y. A measurable simple function, f : 2 — C, is called a simple random
variable relative to A.

Notation 4.11 Given an algebra, A C 27, let S(A) denote the collection of
stmple random variables from (2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 4.12. Let A C 2? be an algebra, then;

1. S(A) is a sub-algebra of all functions from §2 to C.
2.f: 802 — C, is a A - simple random variable iff there exists a; € C and
A; € A for1 <i<n for somen €N such that

f=Y aila, (4.10)
=1

3. For any function, F : C — C, Fo f € S(A) for all f € S(A). In particular,
Ifl€S(A) if feS(A).

Proof. 1. Let us observe that 1, =1 and 1y = 0 arein S (A) . If f,g € S(A)
and ¢ € C\ {0}, then

{(freg=M= | (f=anfg=theAa (4.11)

a,beC:a+cb=X\

and

{frg=M= U W=anfg=thea (4.12)
a,beC:a-b=X\
from which it follows that f + cg and f - g are back in S(A).
2. Since S (A) is an algebra, every f of the form in Eq. isin S(A).
Conversely if f € S(A) it follows by definition that f = 3 ¢ ) @l{s=a}
which is of the form in Eq. .
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3.If F:C — C, then
Fof: Z F(Oz)-l{f:a}ES(A).
a€f(£2)

Exercise 4.1 (A — measurable simple functions). As in Example[3.19] let
A C 2% be a finite algebra and {Bj, ..., By} be the partition of X associated to
A. Show that a function, f: X — C, is an A — simple function iff f is constant
on B; for each . Thus any A — simple function is of the form,

k
f= ZailBi (4.13)
i=1

for some «a; € C.

Corollary 4.13. Suppose that A is a finite set and Z : X — A is a function.
Let
A=AZ)=2"2Y={Z(E):EC A}.

Then A is an algebra and f: X — C is an A — simple function iff f = F o Z
for some function F : A — C.

Proof. For A € A, let
Ay ={Z=X}={zeX:Z(z)=\}.

The {Ax},c, is the partition of X determined by A. Therefore f is an A —
simple function iff f|4, is constant for each A € A. Let us denote this constant
value by F'(A\). As Z =X on Ay, F: A — C is a function such that f = F o Z.

Conversely if F': A — C is a function and f = Fo Z, then f = F (\) on Aj,
i.e. fis an A — simple function. ]

4.2.1 The algebraic structure of simple functions*

Definition 4.14. A simple function algebra, S, is a subalgebnﬂ of the
bounded complex functions on X such that 1 € S and each function in S is
a simple function. If S is a simple function algebra, let

AS)={ACX:14€S}.
(It is easily checked that A(S) is a sub-algebra of 2°X.)

! To be more explicit we are assuming that S is a linear subspace of bounded functions
which is closed under pointwise multiplication.
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Lemma 4.15. Suppose thatS is a simple function algebra, f € S anda € f (X)
— the range of f. Then {f =a} € A(S).

Proof. Let {\;},_, be an enumeration of f (X) with Ao = a. Then

= lH(a—m} I =2

i=1

Moreover, we see that g = 0 on U™, {f = A\;} while g =1 on {f =a}. So we
have shown g = 1;;_,) € S and therefore that {f=a}e A(S). [

Exercise 4.2. Continuing the notation introduced above:

1. Show A(S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 2¥} — S(A) € {simple function algebras on X}

is bijective and the map, S — A (S), is the inverse map.

Solution to Exercise (4.2).

1. Since 0 = 1p,1 = 1x €S, it follows that ) and X arein A (S).If A € A(S),
then 14c =1—14 € S and so A° € A(S). Finally, if A, B € A(S) then
lang =14-1p € S and thus AQBGA(S)

2. If f,g €S(A) and ¢ € F, then

{(f+eg=X= |J {f=aln{g=bhecAa

a,beF:a+cb=A

and
{rra=x= | {r=an{g=tphe4
a,beF:a-b=A\
from which it follows that f + cg and f - g are back in S (A).

3. If f: 62 — Cis asimple function such that 1;;_; € S for all A € C,
then f = > ccAlis=x} € S. Conversely, by Lemma if f €S then
1{y=x} € S for all A € C. Therefore, a simple function, f : X — Cisin §
iff 1;y—x) € S for all A € C. With this preparation, we are now ready to
complete the verification.

First off,
Ac AS(A) <= 1,€S(A) < Ac A
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which shows that A (S (A)) = A. Similarly,
FES(A(S) < {f=Al€AS)VreC
<~ 1{f=)\} esSvieC
<~ feS

which shows S (A(S)) =S.

4.3 Simple Integration

Definition 4.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A C 2%. For f € S(A) the integral or
expectation, E(f) = Ep(f), is defined by

/ fdP =Y "yP(f (4.14)
yeC
Ezample 4.17. Suppose that A € A, then
Ely =0-P(A°)+1-P(A)=P(A). (4.15)

Remark 4.18. Let us recall that our intuitive notion of P (A) was given as in

Eq. (2.1) by

where w (k) € 2 was the result of the k' “independent” experiment. If we use
this interpretation back in Eq. (4.14)) we arrive at,

N
1
E(f) =) vP(f=9= vy Jim &> 1wu)—y
yeC yeC k=1
= ngﬂoof D Zlf(w(k)) y
yeC k=1
=NlijﬂmNZZf ) L=y
k=1yeC
1 N
ZA}EHOON;JC(W(/@)-

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.
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34 4 Finitely Additive Measures / Integration

Proposition 4.19. The expectation operator, E =Ep : S(A) — C, satisfies:
1. If f € S(A) and A € C, then

E(\f) = AE(f). (4.16)

2.If f,g € S(A), then
E(f +9) = E(g) + E(f). (4.17)

Items 1. and 2. say that E(-) is a linear functional on S (A).
3 If f= Zj\le Ajla; for some \j € C and some A; € C, then

N
=> NP (4;). (4.18)
j=1

4. E is positive, i.e. E(f) > 0 for all 0 < f € S(A). More generally, if
f,9€S(A) and f < g, then E(f) <E(g).
5. For all f € S(A),
Ef| <E|f]. (4.19)

Proof.
1. If A # 0, then

=Yy POf=y)=> y P(f=y/N

yeC yeC
=> Xz P(f = AE(f).
zeC

The case A = 0 is trivial.
2. Writing {f = a,g = b} for f~*({a}) Ng~t({b}), then

E(f+9)=> zP(f+g=2)

zeC

:ZzP<Z {fza,g:b}>

zeC a+b=z

=Y 2 > P({f=a g=b)

zeC  a+b=z

=3 Y @+ P{f=a g=b})

z€Ca+b==z

=Y (a+b)P({f=a, g=1}).
a,b
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But

Y aP({f=a,g=b) =) a) P({f=0g=0}

a,b a b
:ZGP(Ub{f:aa g ="b})
=Y aP({f=a}) =Ef

and similarly,

Y bP({f=a,g=b})=E

a,b

Equation (4.17)) is now a consequence of the last three displayed equations.
3. If f= ijl Ajla;, then

N N N
Ef=E [ZAlej] => NEla, =Y MNP (4))
j=1 j=1

j=1

4. If f > 0 then

£)=Y aP(f =

a>0
and if f < g, then g — f > 0 so that

E(g)—E(f)=E(g—f)>0.

5. By the triangle inequality,

D OAP(f =)

xeC

<Y P =N =E|f],

AeC

|Ef| =

wherein the last equality we have used Eq. (4.18)) and the fact that |f| =
2onec A=

[ ]
Remark 4.20.If £2 is a finite set and A = 22, then
=3 fw) 1w
wen
and hence
Epf =Y f(w)P{w}).
wes
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Remark 4.21. All of the results in Proposition and Remark remain
valid when P is replaced by a finite measure, p : A — [0,00), i.e. it is enough
to assume p (X) < 0.

Exercise 4.3. Let P is a finitely additive probability measure on an algebra
A C 2% and for A, B € Alet p(A,B) := P(AAB) where AAB = (A\ B) U
(B\ A). Show;

1. p(A,B) =E|14 — 15| and then use this (or not) to show
2.p(A,C)<p(A B)+p(B,C) forall A,B,C € A.

Remark: it is now easy to see that p : A x A — [0, 1] satisfies the axioms of
a metric except for the condition that p (A, B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.22 (Chebyshev’s Inequality). Suppose that f € S(A), e > 0, and

p > 0, then
|fI”

Lize € 5rlipze < € PUAIT

and therefore, see item 4. of Proposition

P{|fl=e}) =E [y <E ['Qhﬂze} <ePE|f|P. (4.20)

Observe that
FP =D I 1oy

AeC
is a simple random variable and {|f[=¢e} = >\ {f =A} € A as well.
Therefore, E%hflzs is still a simple random variable.

Lemma 4.23 (Inclusion Exclusion Formula). If A, € A for n =
1,2,..., M such that p (Uﬁ/[:lAn) < 00, then

M
p(UAL AL) =) (-1 > p(An, N NAL).  (4.21)
k=1 1<ni<no<---<nip<M

Proof. This may be proved inductively from Eq. (4.2)). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := UM | A,,.
Since A¢ = (Uﬁ/[:lAn)c =M, A¢, we have
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M M
1—Ia=1a = [[1as =] 0 -14,)
n=1 n=1
M
=13 DT Ly lay,
k=1 1<ni<no<---<nip <M
M
=1+ (—1)k Z 1Anlﬁ---ﬁAnk
k=1 1<ni<ng<---<nip <M

from which it follows that

M
k+1
o~ L= e G2)
k=1 1<ni<ne<---<nip <M
Integrating this identity with respect to p gives Eq. (4.21]). ]

Remark 4.24. The following identity holds even when p (UﬂleAn) = 00,

M
pUld)+ > > p(An, NN A,
k=2 & k even 1<ni<no<---<np <M
M
= > (A, N--NAL).  (4.23)

=1 k odd 1<ni<ng<---<np <M

o

This can be proved by moving every term with a negative sign on the right
side of Eq. (4.22) to the left side and then integrate the resulting identity.

Alternatively, Eq. 1) follows directly from Eq. 1) if p (Uﬁ/leAn < 00
and when g (UanlAn) = oo one easily verifies that both sides of Eq. 1D are
infinite.

To better understand Eq. (4.22)), consider the case M = 3 where,
I=1a=(1-14)1—1a,)(1—1a,)

=1- (1141 +1a4, + 1A3)
+ ]-Al ]-Ag + 1A11A3 + ]-A2 ]-A3 - 1A1 1A21A3

so that
la,uasua; =1a, +1a, +1a, — (La;na, +1a,n4s + Layna,s) + 1anasna,

Here is an alternate proof of Eq. (4.22). Let w € {2 and by relabeling the
sets {A,} if necessary, we may assume that w € 41N---NA, andw ¢ A1 U
-« U A for some 0 < m < M. (When m = 0, both sides of Eq. (4.22)) are zero
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36 4 Finitely Additive Measures / Integration

and so we will only consider the case where 1 < m < M.) With this notation
we have

M

k
o=yt > L, nend,, (@)
k=1 1<ni<ne<---<npg<M

S

1a,,nna,, (W)

k=1 1<ni<na<--<np<m
_ i it ( )
k=1
—1— 1k1n—k<m>
>ty (]

=1-(1-1)"=1.
This verifies Eq. (4.22) since 1yn 4, (w) = 1.

Example 4.25 (Coincidences). Let {2 be the set of permutations (think of card
shuffling), w: {1,2,...,n} — {1,2,...,n}, and define P (A) := #(A) to be the
uniform distribution (Haar measure) on (2. We wish to compute the probability
of the event, B, that a random permutation fixes some index 7. To do this, let
A; = {w € 2 :w(i) =i} and observe that B = U ; A;. So by the Inclusion
Exclusion Formula, we have

:zn:(_nk*l > P(Ay,N--NAy).

k=1 1<i1<i2<ig< - <ip<n
Since
PA,Nn-NA,)=P{{weR:w(ir) =1i1,...,w(ix) =ir})
(k!
o n!
and
#{1§i1<i2<i3<--~<ik§n}= (Z),
we find

B= Y0 ()T e

k=1
For large n this gives,

Ezample 4.26 (Expected number of coincidences). Continue the notation in Ex-
ample We now wish to compute the expected number of fixed points of
a random permutation, w, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi=1a,

and observe that

N(w):ZX (w)

denote the number of fixed points of w. Hence we have

EN:iEXi:iP(Ai):i(n_

i=1

:lem:i:#{i:w(i):i}'

Let us check the above formulas when n = 3. In this case we have

w N{(
123 3
132 1
213 1
231 0
312 0
321 1

and so 4 9
P (3 a fixed point) = §=3 >~ (.67 = 0.632

while

1 1 1 2

k+1
7_1_, -z
2+6 3

Mw

k:l
and 1
]EN:6<3+1+1+0+0+1):1

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (£2, A, P) is a finitely additive probability space, so P (§2) =1,
2. Aje Afori=1,2,...,n,
3. N(w) =37 114, (w)=#{i:we A}, and
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4. {Sk}i_, are given by

Sc= Y P N-nAy)

1<) < <ixg<n

= > P (Nieads).

AC{1,2,...,n}>|A|=k
Exercise 4.4. For 1 < k < n, show;
1. (as functions on 2) that
N
()= = e (429
AC{1,2,...,n}>|A|=k

where by definition

m 0 if k>m
(k) ) i ifl<k<m . (4.26)
1 k=0

2. Conclude from Eq. (4.25) that for all z € C,

(1+ 2) _1+Zz > La, nna,, (4.27)

1<ii<ig< - <ip<n

provided (1 + 2)° = 1 even when z = —1.
3. Conclude from Eq. (4.25) that Sy, = Ep(}).

Exercise 4.5. Taking expectations of Eq. (4.27) implies,
]E[(l—l—z :|—1+ZS]€Z (4.28)

Show that setting z = —1 in Eq. (4.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out

E {(1 + Z)N} explicitly.

Exercise 4.6. Let 1 < m < n. In this problem you are asked to compute the
probability that there are exactly m — coincidences. Namely you should show,

=3 o (H)a

k=m

n(1)km(k) > P4, n-NA4y)

m . )
k=m 1<i1 << <n
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Hint: differentiate Eq. (4.28) m times with respect to z and then evaluate the

result at z = —1. In order to do this you will find it useful to derive formulas
for;

dm n dam

dzi'm"'z:_l (1 + Z) and dzim|’z:_lzk'

Ezample 4.27. Let us again go back to Example where we computed,

s ()

Therefore it follows from Exercise [4.6] that

P (3 exactly m fixed points) = P (N = m)

So if n is much bigger than m we may conclude that

>~ ~ ol
m

P (3 exactly m fixed points) '

Let us check our results are consistent with Eq. (4.24);

P (3 a fixed point) = Z P(N =m)

1<m<k<n m
n k
=SS o ()
k=1m=1 m
n k
_ k sl 1
— k- — (-1
S| e (5)-¢ >],€,
- 1
. k
e
k=1
wherein we have used,
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38 4 Finitely Additive Measures / Integration
k
- k
> (-f m( ):(1—1)’“:0.
m
m=0

4.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 4.28. Let n € Ng and 0 < k < n, then

ZZ;H)I (7) = (-1 (n N 1) Ln>0 + Lo (4.29)

Proof. The case n = 0 is trivial. We give two proofs for when n € N.
First proof. Just use induction on k. When k = 0, Eq. (4.29) holds since
1 = 1. The induction step is as follows,

S (5= () ()

k+1
(( D =D (= k) = (4 D (= 1) (= )
k+1 _
((kjl) (n—1)...(n—k)(n—(k+1))] = (=1F" (ZJ)

Second proof. Let X = {1,2,...,n} and observe that

k n k
=> (-1 (l) = (1) # (A2 i H#(A)=1)
=0

1=

0
= Y (-pFW (4.30)

A€2X: #(A)<k
Define T : 2X — 2% by

Su{1lif1¢s
T(S)_{S\{{l]]:iflzb”'

Observe that T is a bijection of 2% such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let
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Iy={Ae2¥ :#(A) <kand 1€ Aif #(A) =k},

then T'(I}) = I for all 1 < k < n. Since

Z (_1)#(/1) _ Z (_1)#(T(/1)) _ Z _(_1)#(A)

A€l A€Ty, A€ETY,

we see that ZAGFk (—1)#(/1) = 0. Using this observation with Eq. 1l implies
A A k(T — 1
mp= Y ()P4 S (—)FW =04 (-1 ( B )
A€Ty, #(A)=k & 1¢A

Corollary 4.29 (Bonferroni Inequalitites). Let p : A — [0,u(X)] be a
finitely additive finite measure on A C 2%, A, € A forn =1,2,...,M, N :=
224:1 la,, and

Sy = > M(Ailﬁ“-ﬂAik):]Eu[(]Z)]

1<ii <<, <M

Then for 1 <k < M,

Ek: ) S+ (1) E, [(Nk_ 1)} : (4.31)

=1

This leads to the Bonferroni inequalities;

k

<> (-1 8y if k is odd
=1

and

k
1A Z l+1 Sy if k is even.

Proof. By Lemma [1.28]

g(—l)l (le) = (-1)* (Nk_ 1) 1ns0 + Lv—o.

Therefore integrating this equation with respect to p gives,

k

=1
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and therefore,

p(Upli4,) = (N >0) = p(X) = u(N =0)
k

N -1
B )
=1
The Bonferroni inequalities are a simple consequence of Eq. (4.31]) and the fact

that N1 N1
() 0 = m (V) 20

4.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A C 2% be an algebra of sets, and P := p :
A — [0,00) be a finitely additive measure with p (X) < oo. As above let

]Euf::/deu::Z)\u(f:A)erS(A).

AeC

(4.32)

Notation 4.30 For any function, f : X — C let ||f|, = sup,ex |f ().

Further, let S := S (A) denote those functions, f : X — C such that there exists
fn € S(A) such that lim, .o ||f — full, = 0.

Exercise 4.7. Prove the following statements.

1. For all f €S (A),
B f| < p (X)L, - (4.33)

2.If f € Sand f, € S := S(A) such that lim, .o ||f — fall, = 0, show
lim,, o E,, f, exists. Also show that defining E, f := lim,, . E, f,, is well
defined, i.e. you must show that lim, .. E,f, = lim, . E,g, if g, € S
such that lim, . ||f = gnll,, = 0.

3. Show E,, : S — C is still linear and still satisfies Eq. .

4. Show |f| € Sif f € S and that Eq. is still valid, i.e. [E,f| < E,|f|
for all f €S.

Let us now specialize the above results to the case where X = [0,7] for
some T' < 00. Let § :={(a,b] : 0 < a <b<T}U{0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 4.31 (Riemann Stieljtes integral). Let F': [0,7] — R be an

increasing function, then;
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1. there exists a unique finitely additive measure, pp, on A := A(S) such that
pr ((a,b)) = F (b) — F(a) for all0<a<b<T and pr ({0}) =0. (In fact
one could allow for pp ({0}) = A for any A > 0, but we would then have to
write (g Tather than pp.)

2. Show C([0,1],C) <  S(A). More precisely, suppose w =

{0=tg <ty < - <tn,=T} is a partition of [0,T] and ¢ = (c1,...,cn) €
[0, 7" with t;—1 < ¢; < t; for each i. Then for f € C([0,1],C), let
fre = F(0)Lioy + D F () Lty (4.34)

i=1

Show that || f — fx.cll,, is small provided, |r| := max {|t; —t;_1]:i=1,2,...,n}
is small.

3. Using the above results, show

/[O,T] Jdir = Iii\rgoiz:;f (i) (F (t:) = F (ti-1))

where the ¢; may be chosen arbitrarily subject to the constraint that t;_1 <
C; é ti.

It is customary to write fOT fdF for f[o ] fdpp. This integral satisfies the

estimates,

fdpr ]Ifldup < |Ifll, (F(T) = F(0)) V f € S(A).

<
[0,T

)

| [0,7]

When F (t) = t,

/Odeszon@)dt,

is the usual Riemann integral.

Exercise 4.8. Let a € (0,7), A > 0, and

macro:

Nifz>a

G(m):A‘1x>f‘:{01fx<a'

1. Explicitly compute f[o ) fduc for all f € C ([0,1],C).

2.If F(x) =x+ X 1;>4 describe f[o 7] fdup for all f € C([0,1],C). Hint:

if F(x) = G(z) + H (z) where G and H are two increasing functions on

[0,T], show
/ fdup = / fdua + / fdps.
0.7] [0,7] [0,7]
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40 4 Finitely Additive Measures / Integration

Exercise 4.9. Suppose that F,G : [0,T] — R are two increasing functions such
that F(0) = G(0), F(T) = G(T), and F (z) # G (z) for at most countably
many points, z € (0,T) . Show

fdup = / fdug for all f € C([0,1],C). (4.35)
[0,7] [0,7]

Note well, given F (0) = G (0), pr = pug on Aiff F = G.

One of the points of the previous exercise is to show that Eq. holds
when G (z) := F (z+) — the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps ,see
Remark ?7. So if we only want to integrate continuous functions, we may always
assume that F': [0,7] — R is right continuous.

4.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {ay }r; C A1 and
{ﬂk}zozl C As where A; and Ay are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent experiments, suppose that one experiment
is the outcome of spinning a roulette wheel and the second is the outcome of
rolling a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice — one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 4.32 (Heuristic). Suppose that {ax}ro; C A1 and {Bx}req C A2 are
the outcomes of repeatedly running two experiments independent of each other
and for x € Ay and y € Asg,
1
p(x,y) = A}im N#{l <k<N:ap=z and By =y},
. 1
p1 (x) := ngnooﬁ#{l <k<N:ap=z}, and

1
p2(y) = lim —#{l<k<N:G =y} (4.36)
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Then p(z,y) = p1 (z) p2 (y) . In particular this then implies for any h : Ay X
Ay — R we have,

N
1
Eh = lim NZ (g, Bk) = Z h(x,y)p1 (z) p2 (y) -
=1 (z,y)EAL X Ag

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as, {af;}:o:l , where ¢ € N indicates the £t —
run of the experiment. Then we have postulated that, independent of ¢,

p (x,y) - ]\}E»noo N Z l{ae =z and Bx= 'u} lim —= Z 1{0/ —a:} 1{5k =y}

N—oo N

1< 1< 1Y
p(r,y) = 7 Zp(r,y) = ZN“E},O N Z Leae—ay - Lpe=yy
k=1

L
=1 /=1
N 1 L
ZJJEHOONZLzl{ [—w} l{ﬁk y}
k=1 =1

Taking the limit of this equation as L — oo and interchanging the order of the
limits (this is faith based) implies,

N L
. 1 . 1
plz,y) = lim ,;1 Lipmyy - Jim —+ ; Lfag=a}- (4.37)

Since for fixed k, {o/,;};il is just another run of the first experiment, by our
postulate, we conclude that

lim iezzl 1{%:3:} =p1 (2) (4.38)

L—oo

independent of the choice of k. Therefore combining Eqs. (4.36]), (4.37)), and
[-38) implies,

N
1
p(z,y) = N;L{ﬁk y} p1(x) =p2 (y) 1 ().

]
To understand this “Lemma” in another but equivalent way, let X : A; x
Ay — A; and X5 : Ay X Ay — As be the projection maps, X; (z,y) = x and
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Xo (z,y) = y respectively. Further suppose that f: 43 — Rand g: 42 — R
are functions, then using the heuristics Lemma [£.32] implies,

E[f(X1)g(X2)]= >, [f@)g@p ()p2(y)

(z,y)EAL X As

= Z f (@) p1(2) - Z 9(y)p2(y) =Ef (X1) - Eg (X2).

TEAN, yEN2

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
— independent experiments. For notational simplicity we will now assume that
N =N=---=A,=A

Let A be a finite set, n € N, 2 = A™ and X; : 2 — A be defined by
Xi(w)=w; forwe 2 and i =1,2,...,n. We further suppose p: 2 — [0,1] is
a function such that

d pw) =1

wes?
and P :2? —[0,1] is the probability measure defined by
P(A):=) p(w) forall Ac2 (4.39)
w€eA

Exercise 4.10 (Simple Independence 1.). Suppose ¢; : A — [0,1] are
functions such that > . ,¢(\) = 1 for i = 1,2,...,n and now define
p(w) =TI ¢ (w;). Show for any functions, f; : A — R that

Ep

11+ (XZ-)] = [1Er(f: (X)) = [[ Eq. f:
i=1 =1 =1

where @; is the measure on A defined by, Q; (v) = >_5c, @ (A) for all v C A

Exercise 4.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

Ep lH fi (Xz)] = [1Er i (X)) (4.40)
i=1 i=1

for any functions, f; : A — R, then there exists functions ¢; : A — [0,1] with
> aea i (A) =1, such that p(w) = []i-; ¢ (wi).

Definition 4.33 (Independence). We say simple random wvariables,
X1,..., Xy with values in A on some probability space, (2, A, P) are indepen-
dent (more precisely P — independent) if Eq. holds for all functions,
fi: A—=R.
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Exercise 4.12 (Simple Independence 3.). Let X;,..., X, : 2 — A and
P : 22 — [0,1] be as described before Exercise Show Xji,...,X, are
independent iff

P(X1€A;,...,.X,€A,)=P(X;1€4)...P(X, € 4,) (4.41)

for all choices of A; C A. Also explain why it is enough to restrict the A; to
single point subsets of A.

Exercise 4.13 (A Weak Law of Large Numbers). Suppose that 4 C R
is a finite set, n € N, 2 = A", p(w) = [, ¢(w;) where ¢ : A — [0,1]
such that >°,.,¢(A) = 1, and let P : 2 — [0,1] be the probability measure
defined as in Eq. (4.39)). Further let X; (w) = w; for i = 1,2,...,n, £ := EX,,
o2 :=E(X; —¢)?, and

1
Sn:ﬁ(X1+~~+Xn).

1. Show, £ = > 34 A q(A) and

=Y (A=%q(N) =D Nq() - & (4.42)

AeA AeA

2. Show, ES,, = €.

E[(Xi - €) (X; — §)] = di0°.
4. Using S,, — £ may be expressed as, % St (Xs =€), show
1
E (S, —£)* = 502. (4.43)
5. Conclude using Eq. (4.43]) and Remark that
Ly
P (1S, —¢&l>¢) < @U . (4.44)

So for large n, S, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 4.34 (Covariance). Let ({2, 8, P) is a finitely additive probability.
The covariance, Cov (X,Y), of X,Y € S(B) is defined by

Cov(X,Y)=E[(X —€x) (Y — &) =E[XY] - EX -EY

where {x == EX and & :=EY. The variance of X,
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42 4 Finitely Additive Measures / Integration
Var (X) := Cov (X, X) = E [X?] — (EX)”
We say that X andY are uncorrelated if Cov (X,Y) =0, i.e. E[XY] =EX -

EY. More generally we say {Xy},_, C S (B) are uncorrelated iff Cov (X;, X;) =
0 for all i # j.

Remark 4.85. 1. Observe that X and Y are independent iff f (X) and g (V) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
you will see that it suffices to assume that {X;}!_, are uncorrelated rather
than the stronger condition of being independent.

Exercise 4.14 (Bernoulli Random Variables). Let A = {0,1}, X : 4 - R
be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define Q@ = zd; +
(1 —2)dp, 1e. Q({0}) =1—= and Q ({1}) = x. Verity,
&(z) :=EgX =z and
o (z)=FEg (X —2)’=(1—z)z<1/4

Theorem 4.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

pu () = kX_% (s (%) a-or
Then
lim sup [f (z) — pn ()| = 0.

n=0 4e0,1]

Proof. Let x € [0,1], A={0,1},¢(0) =1—2,q(1) =z, 2= A", and
Pr({w}) = g (@1) g (wn) = 22 (1= 2) "2

As above, let S,, = = (X1 +---+ X,,), where X; (w) = w; and observe that

P, (sn = i) = <Z)xk (1—2)"".

Therefore, writing E,, for Ep,, we have

1
n

E. [/ (5] = g:f (5) (1) a0 =pua.

0

Hence we find
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lpn (z) = f(2)| = [Eof (Sn) — f (2)] = [Ex [f (Sn) — f (2)]]
S Eg [f (Sn) = f (2)]
=E; [|f (Sn) = f(@)] : [Sn — x| 2 €]
+Eo [[f (Sn) = f ()] |Sh — 2] <g]
<2M - P (|Sp —z| >e)+ 6 (e)

where

M = d
e |f (y)] an

6 (¢) :==sup{|f(y) = f(z) : 2,y € [0,1] and |y — 2| < ¢}

is the modulus of continuity of f. Now by the above exercises,

1
Py (|Sn — | >¢) < dne?

(see Figure (4.45)

and hence we may conclude that

— <
e Ipn (z) — f ()] < T

and therefore, that

limsup max |p, () — f (z)| <0 (e).

n—oo 16[0,1] -

This completes the proof, since by uniform continuity of f, d(¢) |0 ase | 0. m

4.4.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem which states that
any continuous 27w — periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem All of the results in this section have
natural generalization to higher dimensions as well , see Theorem ?7.

Theorem 4.37 (Weierstrass Approximation Theorem). Suppose that
K =[0,1*, f € C(K,C), and

p= 3 7 (5L (1) (1) a-ar ot e

k,1=0

Then p, — [ uniformly on K.
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Fig. 4.1. Plots of P, (S, = k/n) versus k/n for n = 100 with z = 1/4 (black), z = 1/2
(red), and = = 5/6 (green).

Proof. We are going to follow the argument given in the proof of Theorem
4.36l By considering the real and imaginary parts of f separately, it suffices
to assume f € C([0,1]*,R). For (z,y) € K and n € N we may choose a
collection of independent Bernoulli surnple random variables {X;,Y;} | such
that P(X; =1) = x and P(Y;=1) = y for all 1 < ¢ < n. Then letting
S, = }L St X and T, := %Z?:l Y;, we have

E[f (Sn, )] Zf( > (n-Sp=kn-Tn=1)=pn(z,y)

k,1=0

where p,, (z,y) is the polynomial given in Eq. (4.46) wherein the assumed in-
dependence is needed to show,

P(n-Sy=kn T,=1)= (Z) @xk (1—2)" "y 1=y
Thus if M =sup{|f(z,y)|: (z,y) € K}, e >0,

0 = sup {|f (2", ¢") = f(2,)| : (w,9), (,¢/) € K and [,y — (2,y)]| <€},

and
A= {||(Sn7Tn) - (w,y)H > 5}7

we have,
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|f(z,y) = pn(2,9)| =E(f(2,y) — £ ((Sn, T0)))I
<E |f(:c,y) —f ((San))|
=E[|f(z,y) = f (Sn, Tn)| : A]
+E[[f(z,y) — f (Sn, Tp)| : A°]
<2M - P (A) + 6. - P(A°)
< 2M - P(A) +6.. (4.47)

To estimate P (A), observe that if
[[(Sny Tn) — (CC,:Z/)H2 = (Sn — 33>2 + (T — y)2 > €%,
then either,
(Sp —z)? > e%/2 or (T, —y)° >e2/2
and therefore by sub-additivity and Eq. (4.45) we know

P(A) <P (|Sn — x| > s/\/i) +P (ITn -yl > 5/\@)
1 1 1
S R i (4.48)

Using this estimate in Eq. (4.47)) gives,

1
|f(z,y) = pa(2,y)] <2M - —5 + 0.
ne
and as right is independent of (z,y) € K we may conclude,

hmsup sup |f (xvy) — Pn (‘ray)| S 65
n— oo (w’y)eK

which completes the proof since §. | 0 ase | 0 because f is uniformly continuous
on K. [ |

Remark 4.38. We can easily improve our estimate on P (A) in Eq. (4.48) by a
factor of two as follows. As in the proof of Theorem [£.30]

E [ I(Sns To) = @ 9)I*| = E[ (S0 —2)° + (T = v)?]

= Var (S,) + Var (T,,)
1
Zr(l— 1—
=-r(l-z)+y(l-y) <
Therefore by Chebyshev’s inequality,

1 2 1
P(4) = P (|50, Ta) = (@) > £) £ B[S0, o) = (,9) < 5.
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44 4 Finitely Additive Measures / Integration

Corollary 4.39. Suppose that K = [a, b] x [c,d] is any compact rectangle in R?.
Then every function, f € C(K,C), may be uniformly approximated by polyno-
mial functions in (z,y) € R%.

Proof. Let F (z,y) :== f(a+2(b—a),c+y(d—c)) — a continuous func-
tion of (z,y) € [0,1]>. Given & > 0, we may use Theorem Theorem to find
a polynomial, p (z,y), such that sup(, ,ye0.172 [¥ (,¥) — p(z,y)| < e. Letting
E=a+xz(b—a)and n:=c+y(d—c), it now follows that

sup ’f(€,n)—p(§_a n_c>’§e

(£.meK b—a’d—c

§—a n—c
b—a’ d—c

Here is a version of the complex Weierstrass approximation theorem.

which completes the proof since p ( ) is a polynomial in (£, 7). ]

Theorem 4.40 (Complex Weierstrass Approximation Theorem).
Suppose that K C C is a compact rectangle. Then there exists poly-
nomials in (z=c+iy,zZ=x—1y), pn(z,zZ) for z € C, such that
SUp.cx |gn(2,2) — f(2)] = 0 as n — oo for every f € C (K,C).

Proof. The mapping (z,y) € R xR — z = x + iy € C is an isomorphism
of vector spaces. Letting Z = = — iy as usual, we have z = # and y = Zz_f.
Therefore under this identification any polynomial p(x,y) on R x R may be

written as a polynomial ¢ in (z, Z), namely

(z 2)_ z24+z z—z
q\z,z) =p 5 ' 9 .

Conversely a polynomial ¢ in (z,Z) may be thought of as a polynomial p in
(x,y), namely p(z,y) = q(x + iy,x — iy). Hence the result now follows from
Theorem 4.37] [

Example 4.41. Let K = S' = {2 € C: |z| = 1} and A be the set of polynomials
in (z, 2) restricted to S'. Then A is dense in C(S'). To prove this first observe
if f € C(S') then F(z) =|z| f (ﬁ) for z # 0 and F(0) = 0 defines F' € C(C)
such that F|s1 = f. By applying Theorem to F restricted to a compact
rectangle containing S! we may find ¢, (2, %) converging uniformly to F on K

and hence on S'. Since Z on S, we have shown polynomials in z and 2! are
dense in C(S1).

Theorem 4.42 (Density of Trigonometric Polynomials). Any 2w — pe-
riodic continuous function, f : R — C, may be uniformly approximated by a
trigonometric polynomial of the form

Page: 44 job: prob

p(x) _ Z a/\eikvw

where A is a finite subset of Z and ay € C for all A € A.

Proof. For z € S!, define F(z) := f(0) where § € R is chosen so that
z =€, Since f is 21 — periodic, F is well defined since if 6 solves e’ = 2 then
all other solutions are of the form {f + 27n :n € Z}. Since the map 6 — e
is a local homeomorphism, i.e. for any J = (a,b) with b — a < 27, the map
et .= {e?:0 € J} C S*is a homeomorphism, it follows that F(z) =
fo¢ 1(z) for z € J. This shows F is continuous when restricted to .J. Since
such sets cover S!, it follows that F' is continuous.

By Example the polynomials in 2z and z = z~! are dense in C(S%).
Hence for any € > 0 there exists

p(z,2) = Z A2 2"

0<m,n<N
such that |F(z) — p(z,2)| < ¢ for all z € S1. Taking z = €%’ then implies

sup |f(0) —p (eie, e_i9)| <e
0

where
p (61'497 e—z’@) — Z am nei(m,—n)G
0<m,n<N
is the desired trigonometry polynomial. [

4.4.2 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X, A, 1), where X is a set, A C 2% is an algebra, and
A —[0,00] is a finitely additive measure. Let (Y, B,v) be another finitely
additive measure space.

Definition 4.43. Let A® B be the smallest sub-algebra of 2X*Y containing all
sets of the form S .= {Ax B: A€ A and B € B}. As we have seen in Exercise
S is a semi-algebra and therefore A ® B consists of subsets, C C X XY,
which may be written as;

C = ZAZ x B; with A; x B; € S. (449)
i=1
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Theorem 4.44 (Product Measure and Fubini’s Theorem). Assume that
w(X) < oo and v(Y) < oo for simplicity. Then there is a unique finitely
additive measure, p @ v, on A® B such that u©v (A x B) = u(A)v (B) for all
A€ A and B € B. Moreover if f € S(A® B) then;

1.y — f(x,y) isin S(B) for allx € X and © — f(x,y) is in S(A) for all
yevy.

2.x— [y f(z,y)dv(y) is in S(A) and y — [y f(x,y)dp(x) is in S (B).

3. we have,

/X {/Yf(x,y) dv (y)} dp (z)

:/Xxyf(x,y)d(,u@l/) (z,y)

:/Y{/Xf(x,y)d,u(ac)}dl/(y)-

We will refer to 4 ® v as the product measure of u and v.

Proof. According to Eq. (4.49),

ZleB z,y) ZlA

from which it follows that 1¢ (z,-) € S (B) for each z € X and

/lc(xydy ZIA
Y

It now follows from this equation that = — [, 1¢ (2,y) dv (y) € S (A) and that

n

/X [/Y 1o (:E,y)du(y)} dp (z) :ZM(Ai)V(BZ‘).

i=1

Similarly one shows that

/Y [/X lo (z,y)du (fff)] dv (y) = ;,u(Ai)u(Bi).

In particular this shows that we may define
=D n(4
i=1
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and with this definition we have,

/X [/Y 1o (z,y) dz/(y)] dp (z)

=(rov)(C)

:/Y{/ch(x,y)du(x)} dv (y) -

From either of these representations it is easily seen that u ® v is a finitely
additive measure on A ©® B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1¢ with C € A ®
B. Since the general element, f € S(A® B), is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S(A) and S (B) are vector spaces that the theorem is true in general. |

Ezample 4.45. Suppose that f € S(A) and g € S(B). Let f ® g(z,y) =
f(x)g(y). Since we have,

fog(xy) = (mea )(ngb )

= Z abl{f:a}x{g:b} (‘T7 y)
a,b

it follows that f ® ¢ € S(A® B). Moreover, using Fubini’s Theorem it

follows that
foo roaten= [ san][[aa]

4.5 Simple Conditional Expectation

In this section, B is a sub-algebra of 2, P : B — [0,1] is a finitely additive
probability measure, and A4 C B is a finite sub-algebra. As in Example for
each w € 2, let A, :=N{A € A:w e A} and recall that either A, = A, or
Ay, NAy =0 for all w,w’ € 2. In particular there is a partition, {By,..., By},
of €2 such that A, € {By,...,B,} for all w € §2.

Definition 4.46 (Conditional expectation). Let X : 2 — R be a B — simple
random variable, i.e. X € S(B), and

VR (14, X] for allw € £, (4.50)
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46 4 Finitely Additive Measures / Integration

where by convention, X (w) = 0 if P(A,) = 0. We will denote X by E[X|A]
for E4X and call it the conditional expectation of X given A. Alternatively we
may write X as

El X
—Z B 131, (4.51)

again with the convention that E [131, ]/P( ;) =0 if P(B;) =0.

It should be noted, from Exercise that X = E4X € S(A). Heuristi-
cally, if (w(1),w (2),w(3),...) is the sequence of outcomes of “independently”
running our “experiment” repeatedly, then

K|, = Bl ol & Sy L (0 () X (0 ()
P (B) My o0 & Soney 1a, (@ (0))
e Tl (0 () X (@ ()
Nox o il (@ ()
So to compute X |, “empirically,” we remove all experimental outcomes from
the list, (w(1),w(2),w(3),...) € 2% which are not in B; to form a new

list, (@(1),@(2),@(3),...) € BY. We then compute X|p, using the empirical
formula for the expectation of X relative to the “bar” list, i.e.

N
meg&N;wa>

Exercise 4.15 (Simple conditional expectation). Let X € S(B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

1. (Orthogonal Projection Property 1.) If Z € S(A), then

E[XZ]=E[XZ] =E[E4X - 7] (4.52)
and
(EaZ) (W) = { Z(()‘*’) e Eizg 0. (4.53)

In particular, E4 [E4Z] = E4Z.
This basically says that E 4 is orthogonal projection from S (B) onto S (.A)
relative to the inner product

(f,9) =E[fg] for all f,g€S(B).

2. (Orthogonal Projection Property 2.) If Y € S (A) satisfies, E[X Z] =
E[YZ] for all Z € S(A), then Y (w) = X (w) whenever P(A4,) > 0. In

particular, P (Y #+ X) = 0. Hint: use item 1. to compute E [(X' — Y)2} .
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3. (Best Approximation Property.) For any Y € S(A),
E [(X - X)Q} <E [(X - Y)2] (4.54)

with equality iff X = Y almost surely (a.s. for short), where X =Y a.s. iff
P (X' + Y) = 0. In words, X = E4X is the best (“L?”) approximation to
X by an A — measurable random variable.

4. (Contraction Property.) E |)_(’ < E|X]|. (It is typically not true that
!X' (w)| < |X (w)] for all w.)

5. (Pull Out Property.) If Z € S(A), then

E4[ZX] = ZE4X.

Example 4.47 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Ay ={1,2,...,10} and rolling a die with values in Ay = {1,2,3,4,5,6}. So
the outcome of an experiment is represented by a point, w = (z,y) € 2 =
Ay x Ay Let X (z,y) =2, Y (2,y) =y, B=2%, and
A=AX)=X"12")={X"1(A):AC A} CB,

so that A is the smallest algebra of subsets of {2 such that {X =z} € A for all
x € Ay. Notice that the partition associated to A is precisely

(X =1},{X=2},...,

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
produce a sequence of results, w,, = (Zn,yn) for alln e N. If g: 49 —» Ris a
function, we have (heuristically) that

N
Zn:l g (Y (w (TL))) 1X(w(n))=x
N
Zn:l 1X(UJ(7L))=;E
N
— hm Zn:l g (yn) lrn:z

N
N—oo Zn:l ]‘wn:T

As the {y, } sequence of results are independent of the {x,, } sequence, we should
expect by the usual mantraﬂ that

(X =10}}.

Ealg(Y)](z,y) = lim

N—o0

SV g ()1 =

. n=1 n)le,=x R S\ —

lim S I T T Y g(m) =E[g(V)],
n=1 "Tn=2 n=1

2 That is it should not matter which sequence of independent experiments are used
to compute the time averages.
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where M (N) = ZnNzl 1z, =2 and (§1,72,...) = {1 : lpy=z}. (We are also
assuming here that P (X = z) > 0 so that we expect, M (N) ~ P(X =z) N
for N large, in particular M (N) — oo.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced

that E4 [g (Y)] : £2 — R is the constant function;
Ealg(Y)](2,y) =E[g (V)] for all (z,y) € 2. (4.55)

Let us further observe that if f : A; — R is any other function, then f(X) is
an A — simple function and therefore by Eq. (4.55) and Exercise

Elf (XIElgY)]=E[f(X)-ElgM]=E[f(X)-Ealg(¥V)]=E[f(X)-g(Y)].
This observation along with Exercise |4.12| gives another “proof” of Lemma|4.32

Lemma 4.48 (Conditional Expectation and Independence). Let {2 =
Ay x Ay, X, Y, B =29 and A=X""! (2A1), be as in Example above.
Assume that P : B — [0,1] is a probability measure. If X and Y are P -
independent, then Fq. holds.

Proof. From the definitions of conditional expectation and of independence
we have,

Elly—rg(Y)] _E[lx_d]-Elg(Y)]
P (X =ux) P (X =ux)

Ealg (V)] (z,y) = =E[g(Y)].
]
The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

Theorem 4.49 (Independence result summary). Let (2,B,P) be a
finitely additive probability space, A be a finite set, and X,Y : 2 — A be two
B — measurable simple functions, i.e. {X =x} € B and {Y =y} € B for all
z,y € A. Further let A= A(X) := A{X =z} :2 € A). Then the following
are equivalent;

1.P(X=2Y=y)=P(X=x)-PY =y) forallz € Aandy € 4,

2E[f(X)g(Y)] =E[f (X)]E[g(Y)] for all functions, f : A — R and g :
A — R,

3. Eaxylg(Y)]=E[g(Y)] forallg: A — R, and

4 Foagr |f (O] =E[f (X)] for all f - 4— R

We say that X andY are P — independent if any one (and hence all) of the
above conditions holds.






5

Countably Additive Measures

Let A C 2 be an algebra and 1 : A — [0, 0c] be a finitely additive measure.
Recall that p is a premeasure on A if p is ¢ — additive on A. If u is a
premeasure on A and A is a o — algebra (Definition , we say that u is a
measure on (§2, A) and that ({2, 4) is a measurable space.

Definition 5.1. Let (£2,B) be a measurable space. We say that P : B —[0,1] is
a probability measure on (12, B) if P is a measure on B such that P (§2) = 1.
In this case we say that (2,8, P) a probability space.

5.1 Overview

The goal of this chapter is develop methods for proving the existence of proba-
bility measures with desirable properties. The main results of this chapter may
are summarized in the following theorem.

Theorem 5.2. A finitely additive probability measure P on an algebra, A C 29,
extends to o — additive measure on o (A) iff P is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition below. The ex-
istence assertion of the theorem in the content of Theorem ]

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 5.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A C 2. Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is 0 — additive on A.
2. For all A, € A such that A, 1 A€ A, P(A,) 1 P(A).
3. For all A,, € A such that A, | Aec A, P(A,) | P(A).
4. For all A, € A such that A, T 2, P(4,) 1 1.

5. For all A,, € A such that A, | 0, P(A,) | 0.

Proof. We will start by showing 1 <— 2 <= 3.

1. = 2. Suppose A,, € A such that 4,, T A € A. Let A}, := A, \ 4,1
with A := (. Then {4} } >~ are disjoint, 4, = Uy_; A} and A = U, A].
Therefore,

P(A) =3 P(A}) = lim Y P(A) = lim P(Ui_,4;) = lim P(A,).
k=1 k=1

2. = 1.If {4,};2, C A are disjoint and A := U2, A4, € A, then
UN_, A, T A. Therefore,

N—o0

P(A) = lim P(UTJLV_IA”):NhinoozN:P(An)zip(An).

n=1
2. = 3.If A, € Asuch that A4, | A € A, then AS T A° and therefore,

lim (1— P (A,)) = lim P(AS) = P(A%) =1— P(A).

n—oo n—oo

3. = 2.If A, € Asuch that A, T A € A, then A% | A° and therefore we
again have,

lim (1 —P(A,)) = lim P(AS) =P (A°) =1-P(A).
The same proof used for 2. <= 3. shows 4. <= 5 and it is clear that
3. = 5. To finish the proof we will show 5. = 2.
5. = 2.If A,, € A such that A, T A € A, then A\ A, | 0 and therefore

Jim [P (A) = P(4,)] = lim P(A\A,)=0.

Remark 5.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (£2) = 1 and in fact P (£2) = oo may
be allowed for this equivalence.

Lemma 5.5. If u: A — [0, 00] is a premeasure, then p is countably sub-additive

on A.
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Proof. Suppose that A, € A with U2 A, € A. Let A} := Ay and for
n > 2 let A = A, \ (A1 U...4,_1) € A Then U2, A4, = > A and
therefore by the countable additivity and monotonicity of p we have,

) = () = Xt < o,
= n=1
]
Let us now specialize to the case where 2 = R and A =
A{(a, )] NR: —co<a<b<oo}). In this case we will describe proba-
bility measures, P, on Bg by their “cumulative distribution functions.”

Definition 5.6. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = Fp : R — [0, 1]
given as

F(z):= P ((—o0,x]). (5.1)

Ezxample 5.7. Suppose that
P=pé_1+4+qb + 76
with p,q,7 > 0 and p + ¢ + r = 1. In this case,

0 for xz< -1

p for-1<z<1
ptgfor 1<zx<m’

1 forn<z<oo

F(z)=

A plot of F (x) with p=.2, ¢ = .3, and r = .5.

Lemma 5.8. If F = Fp : R —[0,1] 4s a distribution function for a probability
measure, P, on Bg, then:
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1. F is non-decreasing,
2. F is right continuous,
3. F(—00):=limy—_oo F (2) =0, and F (00) := lim,; . F (x) = 1.

Proof. The monotonicity of P shows that F (z) in Eq. . is non-
decreasing. For b € R let A,, = (—00,b,] with b, | b as n — oo. The continuity
of P implies

F(bn) = P((—00,bn]) | p((=00,b]) = F(b).
Since {b,},>, was an arbitrary sequence such that b, | b, we have shown
F (b+) := lim, ), F(y) = F(b). This show that F is right continuous. Similar
arguments show that F (co) =1 and F (—o0) = 0. |

It turns out that Lemma [5.§ has the following important converse.

Theorem 5.9. To each function F : R — [0,1] satisfying properties 1. — 3.. in
Lemmal[5.8 there exists a unique probability measure, Pg, on Br such that

Pr ((a,b]) = F (b) — F (a) for all —oo <a<b< 0.

Proof. The uniqueness assertion is proved in Corollary [5.17) below or see
Exercises and below. The existence portion of the theorem is a special
case of Theorem [£.33] below. m

Ezample 5.10 (Uniform Distribution). The function,

0for <0
F(zx):=qafor 0<z<1),
lforl<zxz< o

is the distribution function for a measure, m on Br which is concentrated on
(0,1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem

5.2 m — X Theorem

Recall that a collection, P C 2, is a m — class or m — system if it is closed
under finite intersections. We also need the notion of a A —system.

Definition 5.11 (A — system). A collection of sets, L C 2, is A — class or
A — system if

a. 2L
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Fig. 5.1. The cumulative distribution function for the uniform distribution.

b. If A,B € L and A C B, then B\ A € L. (Closed under proper differences.)
c. If A, € L and A, 1 A, then A € L. (Closed under countable increasing
unions.)

Remark 5.12. If L is a collection of subsets of {2 which is both a A — class and
a 7 — system then L is a o — algebra. Indeed, since A° = 2\ A, we see that
any A - system is closed under complementation. If £ is also a w — system, it is
closed under intersections and therefore £ is an algebra. Since L is also closed
under increasing unions, £ is a o — algebra.

Lemma 5.13 (Alternate Axioms for a A — System*). Suppose that L C 2%
is a collection of subsets 2. Then L is a A — class iff X satisfies the following
postulates:

1.2el

2. A € L implies A° € L. (Closed under complementation.)

3. If {An},, C L are disjoint, then Y .~ | A, € L. (Closed under disjoint
unions.)

Proof. Suppose that L satisfies a. — c¢. above. Clearly then postulates 1. and
2. hold. Suppose that A, B € £ such that AN B =, then A C B° and

A°NB=B°\ A€ L.

Taking complements of this result shows AU B € £ as well. So by induction,
By, =Y | A, € L. Since By, T Y07, Ay, it follows from postulate c. that
Yo Ay €L
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5.2 ® — A Theorem 51

Now suppose that £ satisfies postulates 1. — 3. above. Notice that § € £
and by postulate 3., £ is closed under finite disjoint unions. Therefore if A, B €
L with A C B, then B¢ € £ and AN B° = () allows us to conclude that
AU B¢ € L. Taking complements of this result shows B\ A = A°NB € L as
well, i.e. postulate b. holds. If A,, € £ with A,, T A, then B,, := A, \ A,,-1 € L
for all n, where by convention Ay = (). Hence it follows by postulate 3 that
U A, =37 B, € L. ]

Theorem 5.14 (Dynkin’s 7 — A Theorem). If L is a A class which contains
a contains a m — class, P, then o(P) C L.

Proof. We start by proving the following assertion; for any element C' € L,
the collection of sets,

LC:={DecL:CnDeL},

is a A\ — system. To prove this claim, observe that: a. 2 € £%, b. if A C B with
A, Be £ then ANC, BNC € £ with ANC C BN C and therefore,

(B\A)NC=[BNC]\A=[BNC]\[ANC] € L.

This shows that £¢ is closed under proper differences. c. If A, € £¢ with
A, TA then A,NC e Land A,NC TANC € L, ie. A€ L. Hence we have
verified £ is still a A — system.

For the rest of the proof, we may assume without loss of generality that £
is the smallest A — class containing P — if not just replace £ by the intersection
of all A — classes containing P. Then for C € P we know that £& C L is a A
- class containing P and hence £ = L. Since C' € P was arbitrary, we have
shown, CND € L for all C € P and D € L. We may now conclude that if
C € L, then P C LY C £ and hence again L& = L. Since C € L is arbitrary,
we have shown CND € Lforall C,D € L, i.e. Lisam—system. So by Remark
L is a o algebra. Since o (P) is the smallest o — algebra containing P it
follows that o (P) C L. [

As an immediate corollary, we have the following uniqueness result.

Proposition 5.15. Suppose that P C 2 is a m — system. If P and Q are two
probabz'lz'tgﬂ measures on o (P) such that P = Q on P, then P =Q on o (P).

Proof. Let L:={A€c(P): P(A) =Q(A)}. One easily shows L is a A —
class which contains P by assumption. Indeed, 2 € P C L, if A, B € L with
A C B, then

P(B\A)=P(B)-P(4)=Q(B)-Q(4) =Q(B\4)

! More generally, P and @ could be two measures such that P (£2) = Q () < co.
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so that B\ A € L, and if A,, € £ with A, T A, then P (A) =1lim, . P (A,) =
lim;, o Q (4,) = Q (A) which shows A € L. Therefore o (P) C L = o (P) and
the proof is complete. [

Ezample 5.16. Let (2 := {a,b,c,d} and let p and v be the probability measure
on 29 determined by, p ({z}) = 1 for all z € 2 and v ({a}) = v ({d}) = % and
v ({b}) = v ({c}) = 3/8. In this example,

L:={Ae2”:P(A)=Q(A)}

is A — system which is not an algebra. Indeed, A = {a,b} and B = {a,c} are in
Lbut ANB ¢ L.

Exercise 5.1. Suppose that 1 and v are two measures (not assumed to be
finite) on a measure space, ({2, B) such that p = v on a 7 — system, P. Further
assume B = o (P) and there exists £2,, € P such that; 1) p(£2,,) = v (£2,,) < o0
for all n and ii) £2,, T 2 as n 1 co. Show = v on B.

Hint: Consider the measures, p,(A) = p(ANL2,) and v, (A) =
v(AN{2,).

Solution to Exercise (5.1). Let u,(A4) = p(AN£,) and v, (A) =
v(AN{2,) for all A € B. Then p,, and v, are finite measure such pu, (2) =
v (£2) and p,, = v, on P. Therefore by Proposition ln = Vpn on B. So by
the continuity properties of p and v, it follows that

w(A)= lim p(AN§2,) = lim p, (A) = lim v, (A) = lim v(AN,) =v(4)

n—oo n—oo n—oo n—oo

for all A € B.

Corollary 5.17. A probability measure, P, on (R, Bgr) is uniquely determined
by its cumulative distribution function,

F(z):=P((—o0,x]).

Proof. This follows from Proposition wherein we use the fact that
P :={(—o0,z] : x € R} is a m — system such that Bg = o (P). [

Remark 5.18. Corollary generalizes to R™. Namely a probability measure,
P, on (R™, Bgn) is uniquely determined by its CDF,

F (z):= P((—o0,z]) for all z € R"
where now

(—o00, 2] := (=00, x1] X (—00,xa] X + -+ X (—00, Ty].
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5.2.1 A Density Result*

Exercise 5.2 (Density of A in o (A)). Suppose that A C 2 is an algebra,
B :=0(A), and P is a probability measure on B. Let p (A, B) := P(AAB).
The goal of this exercise is to use the m — A theorem to show that A4 is dense in
B relative to the “metric,” p. More precisely you are to show using the following
outline that for every B € B there exists A € A such that that P (A A B) < e.

1. Recall from Exercise [4.3| that p (a,B) = P(AAB) =E |14 — 1p|.
2. Observe; if B =UB; and A = U;A;, then
A\B:UZ [AZ\B] CUl(AZ\BZ) C U;A; A B;
so that
3. We also have
(B2\ B1) \ (A2 \ A1) = B N BN (A2 \ A)°
=By N B{N(AyN AS)°
=ByNB{N (AU Ay)
= [BaN BN AS] U [Bs N Bf N Aq]
C (B2 \ A2) U (41 \ By)
and similarly,
(A2 \ A1) \ (B2 \ B1) C (A2\ B2) U (B1\ A1)
so that

(A2\ A1) & (B2 \ B1) C (B2 \ A2) U (A1 \ B1) U (A2 \ B2) U (B1\ 41)
— (A1 A B U(4s A By).

4. Observe that A, € B and A, T A, then
— P(B\A)+P(A\B)=P(AAB).

5. Let £ be the collection of sets B € B for which the assertion of the theorem
holds. Show £ is a A — system which contains A.
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Solution to Exercise ([5.2]). Since £ contains the 7 — system, .4 it suffices by
the m — A theorem to show L is a A — system. Clearly, 2 € £ since 2 € A C L.
If By C By with B; € £ and € > 0, there exists A; € A such that P (B; A A;) =
Ep |14, — 1p,| < €/2 and therefore,

P((B2\ B1) A (A2 \ A1) < P((A1 A By) U (A2 A By))
< P((A) AB)) + P ((As A By)) < e

Alsoif B,, 1 B with B,, € L, there exists A,, € A such that P (B,, A A,) <e2™"
and therefore,

NE

P([UpBn] A [UnAL) < ST P(B, A A) < e.

1

3
Il

Moreover, if we let B := U, B,, and AN := UﬁleAn, then
P(BAAN) =P (B\AN)+P (AN\ B) — P(B\ A)+P(A\ B) =P (B A A)

where A := U, A,. Hence it follows for N large enough that P (B A AN) <.
Since € > 0 was arbitrary we have shown B € L as desired.

5.3 Construction of Measures

Definition 5.19. Given a collection of subsets, £, of {2, let £, denote the col-
lection of subsets of {2 which are finite or countable unions of sets from E.
Similarly let Es denote the collection of subsets of 2 which are finite or count-
able intersections of sets from €. We also write E,5 = (E5)5 and Esoe = (Es), ,
etc.

Lemma 5.20. Suppose that A C 2 is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. As is closed under taking countable intersections and finite unions.

3. {A°: Ac A} = As and {A°: A€ As} = A,.

Proof. By construction A, is closed under countable unions. Moreover if
A=U2,A; and B = U2, B; with A;, B; € A, then
ANB=U_1AiNB; € Ay,

which shows that A, is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3. ]
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Remark 5.21. Let us recall from Proposition [5.3] and Remark [5.4] that a finitely
additive measure g : A — [0, 00] is a premeasure on A iff u (A4,) T p(A) for all
{A,}72, C A such that A, 1 A € A. Furthermore if p (£2) < oo, then y is a

n=1

premeasure on A iff (A,) | 0 for all {A4,} 7, C A such that A4, | 0.

Proposition 5.22. Given a premeasure, p : A — [0,00], we extend p to A,
by defining
w(B):=sup{u(4): A>AC B}. (5.2)

This function p: A, — [0,00] then satisfies;

1. (Monotonicity) If A, B € A, with A C B then u(A) < u(B).
2. (Continuity) If A, € Aand A, 1 A € Ay, then u(Ay) T 1 (4) asn — .
3. (Strong Additivity) If A, B € A,, then

pn(AUB) +p(ANB) = p(A) + p(B). (5.3)

4. (Sub-Additivity on A,) The function p is sub-additive on A, i.e. if
{A, 302, C Ay, then

5. (o - Additivity on A,) The function p is countably additive on A,.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.2) which then
implies p (Ay,) < p(B) for all n. Therefore M := lim,_,o 1t (Ay) < u(B). To
prove the reverse inequality, let A 3 A C B. Then by the continuity of u on
A and the fact that 4, N A T A we have pu (4, NA) T u(A4). As p(A,) >
w(A, NA) for all n it then follows that M := lim, oo (4,) > p(A). As
A € A with A C B was arbitrary we may conclude,

u(B)=sup{n(4): A>ACB}<M.

3. Suppose that A, B € A, and {A,,},~, and {B,}, -, are sequences in A
such that A, T A and B, T B as n — oo. Then passing to the limit as n — oo
in the identity,

1 (AnUBy) +p(An N By) = p(An) + 1 (Bn)

proves Eq. (5.3). In particular, it follows that pu is finitely additive on A, .
4 and 5. Let {A,},”; be any sequence in A, and choose {A,;};-, C A
such that A, ; T A, as i — co. Then we have,

N N oo
p(UAnn) €D p(Ann) <> n(An) <Y u(4n).  (5.5)
n=1 n=1 n=1
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54 5 Countably Additive Measures

Since A > UY A, v T U, A, € A,, we may let N — oo in Eq. (5.5)) to
conclude Eq. (5.4) holds. If we further assume that {A,} -, C A, are pairwise
disjoint, by the finite additivity and monotonicity of y on A,, we have

) N
s T N 0o
HEZI/J(An)f lim n§=1u(An) = Jim g (Ui An) < p (U321 An)

N—o0

This inequality along with Eq. shows that p is o — additive on A,. [

Suppose 4 is a finite premeasure on an algebra, A C 22, and A € As N A,.
Since A, A° € A, and 2 = AU A€, it follows that pu (£2) = p (A) + p (A€) . From
this observation we may extend p to a function on 45 U A, by defining

p(A) :=p(2)—p(A°) for all A € As. (5.6)

Lemma 5.23. Suppose p is a finite premeasure on an algebra, A C 29, and p
has been extended to As U A, as described in Proposition and Eq. (@

above.

1.If A€ As then p(A) =inf{u(B): AC Be A}.

2. If A€ As and A, € A such that A,, | A, then p(A) =] lim, oo pt (4y) .
3. p is strongly additive when restricted to As.

4. If A€ As and C € A, such that A C C, then u(C\ A) = u(C) — p(A).

Proof.
1. Since 4 (B) = p(£2) — p(B€) and A C B iff B¢ C A, it follows that
inf{pu(B):AC Be Ay =inf{u(2) — pn(B°) : A> B C A%}
=pu(2) —sup{p(B): A> B C A}
() 1 (4%) = p (4).

2. Similarly, since A 1 A° € A,, by the definition of y(A) and Proposition
E23] it follows that

p(A) = p(2) = p(A) = p(2) =1 lim p (A7)
=1 lim [p(2) = p(A7)] =1 lim 0 (A).

3. Suppose A, B € As and A, B, € A such that A,, | A and B, | B, then
A,UB, | AUB and A, N B, | AN B and therefore,

p(AUB) +pu(ANB) = lim [u(A, U By) + p (A, N By)]

n—oo

= lim [ (4,) + p(Bn)] = p(A) + p(B).

n—oo
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All we really need is the finite additivity of u which can be proved as follows.
Suppose that A, B € As are disjoint, then AN B = () implies A°U B¢ = 2.
So by the strong additivity of u on A, it follows that

(1 (82) + p (AN BY) = p (A°) + p (B°)
from which it follows that
n(AUB) = pu(82) — p(A°NB°)

= () = [ (A) + p (B) — (2]
— 1 (A) +u(B).

4. Since A¢,C € A, we may use the strong additivity of u on A, to conclude,
p(A°UC) +p(ANC) = p(A%) +pn(C).

Because 2 = A°UC, and p(A°) = u(§2) — 1 (A), the above equation may
be written as

1n(2) +p(C\NA) = p(2) = p(A) + 1 (C)
which finishes the proof.
]

Notation 5.24 (Inner and outer measures) Let pu: A — [0,00) be a finite
premeasure extended to A, U As as above. The for any B C {2 let

tx (B) :=sup{pu(A): As > AC B} and
p (B) :=inf{u(C): BCCeA,}.

We refer to . (B) and p* (B) as the inner and outer content of B respec-
tively.

If B C {2 has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem below, this
extension becomes a o — additive measure on a o — algebra of subsets of (2.

Definition 5.25 (Measurable Sets). Suppose p is a finite premeasure on an
algebra A C 2. We say that B C §2 is measurable if ju. (B) = p* (B). We
will denote the collection of measurable subsets of 2 by B = B(u) and define
i B — (0,1 (2)] by

i (B) = u« (B) = p* (B) for all B € B. (5.7)
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Remark 5.26. Observe that . (B) = p* (B) iff for all € > 0 there exists A € Aj
and C € A, such that A C B C C and

p(C\A)=p(C)—p(4) <e,

wherein we have used Lemma for the first equality. Moreover we will use
below that if B€ Band As > AC BC C € A,, then

#(A) < . (B) = i (B) = p* (B) < u (C). (5.8)

Theorem 5.27 (Finite Premeasure Extension Theorem). Suppose y is a
finite premeasure on an algebra A C 2% and i : B := B (u) — [0, 1 (£2)] be as
in Definition[5.25. Then B is a o — algebra on 2 which contains A and fi is a
o — additive measure on B. Moreover, i is the unique measure on B such that
fila = p.

Proof. It is clear that A C B and that B is closed under complementation.
Now suppose that B; € B for ¢ = 1,2 and € > 0 is given. We may then
choose A; C B; C C; such that 4; € As, C; € Ay, and pu(C; \ A;) < ¢ for
i = 1,2. Then with A = A U Ay, B = B UB; and C = C7 UCy, we have
As>AcCc Bc C e A,. Since

C\A=(C1\A)U(C2\A) C(C1\ A1) U(C2\ A2),
it follows from the sub-additivity of u that with
p(C\NA) <p(Cr\ A1) +p(Co\ Az) < 2e.

Since € > 0 was arbitrary, we have shown that B € B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a ¢ — algebra it suffices to show
that B =Y ", B, € B whenever {B,} -, is a disjoint sequence in B. To prove
B € B, let ¢ > 0 be given and choose A; C B; C C; such that A; € As, C; € A,,
and p (C; \ A;) < 27" for all 7. Since the {A;};°, are pairwise disjoint we may
use Lemma to show,

i=1

)+ 1 (Ci\ A))

(U Ay) +ZMC\A < (R +Zgz—l

i=1

Passing to the limit, n — oo, in this equation then shows

o0

D pu(C) < p()+e < oo (5.9)

i=1
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Let B=U2,B;, C:=U2,C; € A, and forn € Nlet A" := 3"  A; € As.
ThenAgBA"CBCCGAU,C\A”EA and

O\NA™ = U, (G \ A™) € ULy (C:\ AD] U [UR 1G] € Ao

Therefore, using the sub-additivity of u on A, and the estimate in Eq. (5.9),

p(C\A") < Z (Ci\NA)+ Y p(Cy)

1=n—+1

o0
<e+ Z w(C;) — € as n — oc.
i=n+1

Since € > 0 is arbitrary, it follows that B € B and that

S n(A) = p(4") < 3 (B) <Xoul

Letting n — oo in this equation then shows,

Z (A Z (5.10)

On the other hand, since A; C B; C C;, it follows (see Eq. (5.8]) that

IIEEE SICAES Wle (5.11)

7;\
I/\

As
Zu( Zu ZuC\A <252’:

we may conclude from Egs. ) and ( - ) that
i(B) =Y (B
i=1

Since € > 0 is arbitrary, we have shown i (B) = Y5, i (B;). This completes
the proof that B is a ¢ - algebra and that i is a measure on B.

Since we really had no choice as to how to extend p, it is to be expected
that the extension is unique. You are asked to supply the details in Exercise
below. ]
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56 5 Countably Additive Measures

Exercise 5.3. Let u, fi, A, and B := B(u) be as in Theorem Further
suppose that By C 2 is a o — algebra such that A C By C B and v : By —
[0, (£2)] is a 0 — additive measure on By such that v = p on A. Show that
v = [ on By as well. (When By = o (A) this exercise is of course a consequence
of Proposition It is not necessary to use this information to complete the
exercise. )

Corollary 5.28. Suppose that A C 2% is an algebra and p : By = o (A) —
[0, 1 (£2)] is a 0 — additive measure. Then for every B € o (A) and e > 0;

1. there exists As > AC B C C € Ayand € > 0 such that 4 (C'\ A) < e and
2. there exists A € A such that 1 (AAB) < e.

Exercise 5.4. Prove corollary by considering v where v := u|4. Hint:
you may find Exercise [£.9] useful here.

Theorem 5.29. Suppose that pu is a o — finite premeasure on an algebra A.
Then
g(B)=inf{u(C):BCcCeA,} YVBeo(A (5.12)

defines a measure on o (A) and this measure is the unique extension of u on A
to a measure on o (A).

Proof. Let {£2,}~, C A be chosen so that x (£2,) < oo for all n and £2,, 1
{2 as n — oo and let

tn (A) = pn (AN $2,) for all A€ A.

Each i, is a premeasure (as is easily verified) on .4 and hence by Theorem
each p,, has an extension, fi,, to a measure on o (A) . Since the measure fi,, are
increasing, fi := lim,,_ o fi, is a measure which extends pu.

The proof will be completed by verifying that Eq. (5.12)) holds. Let B €
o(A), Bp = 2, N B and € > 0 be given. By Theo there exists
Cm € Ay such that By, C Cy, C 2., and a(C, \ Bpn) = i (Cry \ Bi) < €27™.
Then C := UX_,Cy, € A, and

ﬁ(C\B)§ﬂ<U <cm\B>> <3 BC\B) < Y O\ B) < <.

m=1 m=1 m=1

Thus
f(B) <p(C)=np(B)+mC\B) <j(B)+e

which, since & > 0 is arbitrary, shows [ satisfies Eq. (5.12]). The uniqueness of
the extension [ is proved in Exercise [5.11 [ |
The following slight reformulation of Theorem can be useful.
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Corollary 5.30. Let A be an algebra of sets, {2, },-_, C Ais a given sequence
of sets such that 2, T 2 as m — oo. Let

A ={Ae A: AC (2, for some m € N}.

Notice that Ay is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that i : Ay — [0,00) is an additive
set function such that 1 (Ay,) | 0 for any sequence, {An} C Ay such that Ay, | 0
as n — 0o. Then u extends uniquely to a o — finite measure on A.

Proof. Existence. By assumption, g, = pla, : Ag, — [0,00) is a
premeasure on ({2,,, A ) and hence by Theorem extends to a measure
o on (2,0 (Ap, ) =DBgn, ). Let fm (B) = pu, (BN§2y,) for all B € B.
Then {fim},._, is an increasing sequence of measure on ({2, B) and hence ji :=
lim,, oo flm defines a measure on ({2, B) such that fi|4, = pu.

Uniqueness. If pq and po are two such extensions, then pq (£2,, N B) =
w2 (2, N B) for all B € A and therefore by Proposition or Exercise
we know that pq (2, N B) = ua (2, N B) for all B € B. We may now let
m — 0o to see that in fact py (B) = g (B) for all B € B, i.e. u1 = uo. ]

5.4 Radon Measures on R

We say that a measure, u, on (R, Bg) is a Radon measure if x ([a,b]) < oo
for all —co < a < b < oco. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 5.31. Suppose that S C 2% is a semi-algebra, A = A(S) and
w: A —[0,00] is a finitely additive measure. Then u is a premeasure on A iff
1 1s countably sub-additive on S.

Proof. Clearly if u is a premeasure on A then u is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of © on & implies the sub-additivity of u on A.

So suppose A =3 ° A, € A with each A,, € A . By Proposition we

may write A = Z?Zl E; and A, = ZZV:WI E,; with E;, E, ; € S. Intersecting
the identity, A = >"° | A,, with E; implies

00 oo Np
Ej=ANE; =) A,NE; =Y > E,iNE;.

n=1 n=1 i=1

By the assumed sub-additivity of x4 on S,
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|
Suppose now that u is a Radon measure on (R, Bg) and F' : R — R is chosen

so that
i (b)) = F (o)~ F
For example if x4 (R) < oo we can take F' () = p ((—o0, z]) while if u (R) = oo

we might take
_J n((02]) ifzx=0
Fz) = {—ﬂu((x,O]) ife <0’

The function F' is uniquely determined modulo translation by a constant.

(a) forall —oo<a<b<oo. (5.13)

Lemma 5.32. If i is a Radon measure on (R,Br) and F : R — R is chosen
so that p((a,b)) = F (b) — F (a), then F is increasing and right continuous.

Proof. The function F' is increasing by the monotonicity of u. To see that
F is right continuous, let b € R and choose a € (—o00,b) and any sequence
{b,}>2, C (b,o0) such that b, | b as n — oo. Since p((a,b1]) < oo and
(a,by] | (a,b] as n — oo, it follows that

bn]) | p((a, b))

Since {bn}zoz1 was an arbitrary sequence such that b, | b, we have shown
limylb F(y) = F(b) u
The key result of this section is the converse to this lemma.

F(b) - F(a) = p((a, — F(b) - F(a).

Theorem 5.33. Suppose F': R — R is a right continuous increasing function.
Then there exists a unique Radon measure, p = pp, on (R, Bgr) such that Eq.

holds.

Proof. Let S := {(a,b]NR: —c0 <a <b< o0}, and A = A(S) consists
of those sets, A C R which may be written as finite disjoint unions of sets
from S as in Example Recall that Bg = 0 (A) = 0 (S). Further define
F(£o00) := lim;— 100 F'(x) and let u = pp be the finitely additive measure
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on (R,.A) described in Proposition and Remark To finish the proof it
suffices by Theorem to show that u is a premeasure on A = A(S) where
S :={(a,))NR: —00 <a<b<oo}. So in light of Proposition to finish
the proof it suffices to show pu is sub-additive on S, i.e. we must show

< p(Ja)
n=1

where J = Y7 | J, with J = (a,b] "R and J,, = (an,b,] N R. Recall from
Proposition [£.2] that the finite additivity of x4 implies

D ildn) < p(J)
n=1

We begin with the special case where —co < a < b < 0o. Our proof will be
by “continuous induction.” The strategy is to show a € A where

A::{ae[a,b] (J N (e, b]) Zu]ﬂab}

As b € J, there exists an k such that b € Jj, and hence (ay, bx] = (ax, b] for this
k. It now easily follows that J, C A so that A is not empty. To finish the proof
we are going to show @ :=inf A € A and that a = a.

(5.14)

(5.15)

(5.16)

o Ifaé¢ A, there would exist o, € A such that a,, | a, i.e.

w(J N (m, b)) < w(Jn N (g, b]). (5.17)

WK

Il
-

n

Since (N (s b)) < p(Jn) and S5 1 (Ja) < 0 (J) < o0 by Eq. (B.19),
we may use the right continuity of F' and the dominated convergence the-
orem for sums in order to pass to the limit as m — oo in Eq. (5.17)) to
learn,

uw(JN(a

) < ) pul(Jn 0 (a,0]).

M8

Il
-

n

This shows a € A which is a contradiction to the original assumption that
a¢ A

o Ifa> a,then ae J; = (a, ] for some . Letting @ = a; < @, we have,
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58 5 Countably Additive Measures
(01 (b)) = (T 0 (@ a]) + (I 0 (@,5)

< (N () + 3 pld 0 (@)

n=1

= p(Ji 0 (@) + p (Ji0 (@) + Y pl(Jn N (@, )
n#l

— (0 (@b + 3 a0 (@,5)
n#l

i (Jn N (a, b))

This shows a@ € A and « < a which violates the definition of a. Thus we
must conclude that a = a.

The hard work is now done but we still have to check the cases where
a = —oo or b = co. For example, suppose that b = oo so that

J = (a,00) = i‘]"
n=1

with J,, = (an,b,] NR. Then

o0
Ing = (a, M =J NIy =Y JuN Iy

n=1

and so by what we have already proved,
FOM) = F(a) = u(Tan) < 3 il 0 1) < 3 ()
n=1 n=1
Now let M — oo in this last inequality to find that
((a,00)) = Floo) — Fla) < 3 (.
n=1

The other cases where a = —occ and b € R and a = —oo and b = oo are handled
similarly. ]

5.4.1 Lebesgue Measure

If F (x) =« for all x € R, we denote pp by m and call m Lebesgue measure on
(R7 B]R) .
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Theorem 5.34. Lebesgue measure m is invariant under translations, i.e. for
B € Bg and x € R,
m(z + B) = m(B). (5.18)

Lebesgue measure, m, is the unique measure on Bgr such that m((0,1]) =1 and
Eq. holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |\|m(B) (5.19)
where A € R, B € Bg and AB := {A\z : x € B}.

Proof. Let m,(B) := m(x+ B), then one easily shows that m,, is a measure
on Bg such that m,((a,b]) = b — a for all a < b. Therefore, m, = m by
the uniqueness assertion in Exercise [5.11] For the converse, suppose that m is
translation invariant and m((0,1]) = 1. Given n € N, we have

T N )

n n

Therefore,

That is to say
1
0,-])=1/n.
m((0, ) =1/n

Similarly, m((0, £]) = I/n for all I,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a <b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an T a, then (an,by,] | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—aq,
i.e. m is Lebesgue measure. To prove Eq. (5.19) we may assume that A # 0

since this case is trivial to prove. Now let my(B) := |A|”' m(AB). It is easily
checked that my is again a measure on Bg which satisfies

mx((a, b)) = A7 m (Aa, \b)) = A™H(Ab— Xa) = b —a
if A > 0 and
ma((a,8]) = |\ 7 m (b, Aa)) = — A 7P (Ab—Xa) =b—a

if A < 0. Hence my = m. [
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5.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let .S be a finite or countable set (we refer to S as state space),
2 := 8% := SN (think of N as time and (2 as path space)

A, :={Bx2:BCS"} foralln €N,

A= U2 A, and B := o (A). We call the elements, A C {2, the cylinder
subsets of (2. Notice that A C {2 is a cylinder set iff there exists n € N and
B C S™ such that

A=Bx2:={weNR:(w,...,w,) € B}.

Also observe that we may write A as A = B’ x {2 where B’ = B x §¥ ¢ §»t*
for any k£ > 0.

Exercise 5.5. Show;

1. A, is a o0 — algebra for each n € N,

2. A, C A,y for all n, and

3. A C 2? is an algebra of subsets of 2. (In fact, you might show that
A = U2, A, is an algebra whenever {4, } 2 is an increasing sequence
of algebras.)

Lemma 5.35 (Baby Tychonov Theorem). Suppose {Cy,},—; C A is a de-
creasing sequence of non-empty cylinder sets. Further assume there ezists
N, € N and B,, cC S™» such that C,, = B,, x 2. (This last assumption is
vacuous when S is a finite set. Recall that we write A CC A to indicate that A
is a finite subset of A.) Then NS, C,, # 0.

Proof. Since C,, .1 C C,, if N,, > N,,,1, we would have B,, 1 x SNn+1=Nn
B,,. If S is an infinite set this would imply B,, is an infinite set and hence we
must have N, 1 > N, for all n when # (S) = oco. On the other hand, if S is
a finite set, we can always replace B, 1 by B,;1 x S* for some appropriate
k and arrange it so that N,y1 > N, for all n. So from now we assume that
Nn+1 2 Nn

Case 1. lim,, ., N,, < oo in which case there exists some N € N such that
N,, = N for all large n. Thus for large N, C,, = B,, x 2 with B,, cc SV and
B,+1 C B, and hence # (B,,) | as n — co. By assumption, lim,, o # (Bp) # 0
and therefore # (By,) = k > 0 for all n large. It then follows that there exists
no € N such that B, = By, for all n > ng. Therefore N2 ,C,, = By, x 2 # 0.

Case 2. lim,.o N, = oo. By assumption, there exists w(n) =
(w1 (n),w2(n),...) € £2 such that w(n) € C, for all n. Moreover, since
w(n) € C, C Cy, for all k < n, it follows that
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(w1 (n),w2(n),...,wn, (n)) € By for all n >k (5.20)

and as By, is a finite set {w; (n)} —, must be a finite set for all 1 < i < Nj.
As Nj, — o0 as k — oo it follows that {w; (n)},—; is a finite set for all i € N.
Using this observation, we may find, s; € S and an infinite subset, I7 C N such
that wy (n) = s; for all n € Iy, Similarly, there exists sy € S and an infinite
set, I» C I7, such that wy (n) = sy for all n € I'. Continuing this procedure
inductively, there exists (for all j € N) infinite subsets, I; C N and points
sj€Ssuchthat I1 D I3 D I5D ... and w; (n) =s; for all n € I.

We are now going to complete the proof by showing s := (s1,89,...) €
N2, C,. By the construction above, for all N € N we have

(wi(n),...,wn (n)) =(s1,...,sn) foralln e I'y.
Taking N = Nj, and n € 'y, with n > k, we learn from Eq. (5.20]) that
($1,---58n,) = (w1 (n),...,wn, (n)) € By.

But this is equivalent to showing s € C}. Since k € N was arbitrary it follows
that s € N2, Cy. ]

Let S := S is S is a finite set and S = S U {oo} if S is an infinite set. Here,
00, is simply another point not in S which we call infinity Let {z,} -, C S
be a sequence, then we way lim,,_,o, z, = oo if for every A CC S, =z,, ¢ A for
almost all n and we say that lim, ... x, = s € S if z,, = s for almost all n.
For example this is the usual notion of convergence for S = {% 'n € N} and
S =SU{0} C[0,1], where 0 is playing the role of infinity here. Observe that
either lim,, . x,, = oo or there exists a finite subset F' C S such that z,, € F
infinitely often. Moreover, there must be some point, s € F' such that z,, = s
infinitely often. Thus if we let {n; < ng < ...} C N be chosen such that z,,, = s
for all k, then limy_,o Zy, = s. Thus we have shown that every sequence in S
has a convergent subsequence.

Lemma 5.36 (Baby Tychonov Theorem L.). Let 2 := 5" and {w (n)},_,
be a sequence in (2. Then there is a subsequence, {ny},—, of {n},_, such that
limg 00 w (ng) exists in 2 by which we mean, limy_, o w; (ng) exists in S for

all i € N.

Proof. This follows by the usual cantor’s diagonalization argument. Indeed,
let {n,lc}:;l C {n},;2, be chosen so that lim;_.o w1 (n}) = s1 € S exists. Then
choose {ni}:il C {n,lc};il so that limy_, oo wo (n%) = 35 € S exists. Continue
on this way to inductively choose

{nllf}i?; = {”E};oﬂ A {ngc};oﬂ SRR

such that limy_, o w; (n%) = s5; € S. The subsequence, {ni}re, of {n} >~ , may
now be defined by, ny = nf. ]
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60 5 Countably Additive Measures

Corollary 5.37 (Baby Tychonov Theorem II.). Suppose that {F,},~, C
(2 is decreasing sequence of non-empty sets which are closed under taking se-
quential limits, then NS F,, # ().

Proof. Since F,, # () there exists w (n) € F), for all n. Using Lemma [5.36]
there exists {ny},—; C {n}r—, such that w := limy_,c w (ng) exits in £2. Since
w(ng) € F, for all k > n, it follows that w € F,, for all n, i.e. w € N2, F), and
hence NS, F,, # 0. [

Example 5.38. Suppose that 1 < Ny < Ny < N3 < ..., F, = K,, x {2 with
K, cC SN» such that {F,}.~, C Risa decreasmg sequence of non-empty sets.
Then N3, F,, # (). To prove this, let F,, := K,, x {2 in which case F,, are non —
empty sets closed under taking limits. T herefore by Corollary [5.37] - N, wEn # 0.
This completes the proof since it is easy to check that NS, F,, = N, F, # 0.

Corollary 5.39. If S is a finite set and {A,},~, C A is a decreasing sequence
of non-empty cylinder sets, then NS, A, # 0.

Proof. This follows directly from Example [5.3§ since necessarily, A, =
K, x £2, for some K, cC SN~. [

Theorem 5.40 (Kolmogorov’s Extension Theorem 1.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A — [0,1], has a unique extension to
a probability measure on B := o (A).

Proof. From Theorem it suffices to show lim,, o P (A,) = 0 whenever
{A,}.2, € Awith A, | 0. However, by Lemma with C,, = A,, A, € A
and A, | ), we must have that A, = 0 for a.a. n and in particular P (4,) =0
for a.a. n. This certainly implies lim,,_,, P (4,) = 0. [

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : o (A) — [0, 1] is a probability
measure and for n € N and (s1,...,s,) € S™, let

P (S15--58n) =P ({w € N w1 =81,...,wn = Sn}). (5.21)
Exercise 5.6 (Consistency Conditions). If p,, is defined as above, show:

LY cgpi(s)=1and
2. for all n € N and (s1,...,8,) € S™,

pn(sla-“a E Pn+1 517-- ySny S )
seS

Exercise 5.7 (Converse to . Suppose for each n € N we are given func-
tions, p,, : S™ — [0, 1] such that the consistency conditions in Exercise hold.
Then there exists a unique probability measure, P on o (A) such that Eq.
holds for all n € N and (s1,...,s,) € S™.
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Ezample 5.41 (Existence of iid simple R.V.s). Suppose now that ¢ : S — [0,1]
is a function such that ) _¢q(s) = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (s1,...,s,) € S™, we have

PHwe N :wi =81,...,wn=5p}) =q(s1)...q(sn).
This is a special case of Exercise [5.7 with py, (s1,...,8,) :=q(s1)...q(sn).

Theorem 5.42 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A — [0,1] is a finitely additive measure such
that P|a, is a 0 — additive measure for each n € N. Then P extends uniquely
to a probability measure on B := o (A).

Proof. From Theorem it suffice to show; if {A4,,},~, C A is a decreas-
ing sequence of subsets such that ¢ := inf,, P (A4,,) > 0, then N%_, A,, # 0.
You are asked to verify this property of P in the next couple of exercises. m

For the next couple of exercises the hypothesis of Theorem [5.42] are to be
assumed.

Exercise 5.8. Show for each n € N, A € A,,, and € > 0 are given. Show there
exists F' € A, such that FF C A, F = K x 2 with K cC S™,and P (A\ F) < e.

Exercise 5.9. Let {A4,,},~, C A be a decreasing sequence of subsets such that

= inf,, P (A,,) > 0. Using Exercise choose F,,, = K,, x 2 C A,, with
K,, cC SN+ and P (A,, \ F,) < ¢/2™FL. Further define C,,, :== Fy N ---N F,
for each m. Show;

1. Show A, \ Cp, C (Al \ Fl) U (AQ\FQ) @]
conclude that P (A, \ Cp,) < e/2.

2. Conclude C, is not empty for m.

3. Use Lemma [5.35] to conclude that () # N_,Cp, C N1 A,

U (A \ Fin) and use this to

Exercise 5.10. Convince yourself that the results of Exercise 5.6 and [5.7] are
valid when S is a countable set. (See Example [4.6])

In summary, the main result of this section states, to any sequence of
functions, p, : S™ — [0,1], such that ) 3 cgnpn (A) =1land ) g pni1 (A, 5) =
prn (A) for all n and A € S™, there exists a unique probability measure, P, on
B := o (A) such that

P(Bx2)=Y p,(\) VBCS" andneN.
AEB

Ezxample 5.43 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S X S — [0, 1] be a Markov kernel, i.e.
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Zp(x,y) =1lforallzeS.
yeS

(5.22)

Also let m : S — [0, 1] be a probability function, i.e. Y
take

2eg T (x) = 1. We now

Q=8N = {w = (s0,51,...

and let X,, : £2 — S be given by

):s; €S}
Xn (80,81,...) = 8y for all n € Ny.
Then there exists a unique probability measure, Py, on o (A) such that

P (Xo=20,.-., Xn =x,) =7 (x0) p(0,21) ... p(Tp—1,Tn)

for all n € Ny and zg, 21,.. .,
only verify that

z, € S. To see such a measure exists, we need

Pn (To, ..., n) == T (20) p (70, T1) ... P (Tp—1,Zn)

verifies the hypothesis of Exercise taking into account a shift of the n —
index.

5.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 5.44 (Finite Regularity Result). Suppose A C 2% is an algebra,
B=o0(A) and p: B — [0,00) is a finite measure, i.e. {1 (§2) < co. Then for
every € > 0 and B € B there exists A € As and C € A, such that AC B C C
and p(C\ A) <e.

Proof. Let By denote the collection of B € B such that for every ¢ > 0
there here exists A € As and C € A, such that A C BC C and u(C\ A) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i = 1,2,... and € > 0 is given. By assumption there
exists A; € As and C; € A, such that A; C B; C C; and u (C; \ 4;) < 27 %.

Let A := U2 A;, AN .= UN A, € As, B := U2 | B;, and C = U, C; €
Agy. Then AN ¢ AC Bc C and

C\A= [Ufilci] \A= Uity

[Ofi \ A] C U?il [Cz \ Az] .
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Therefore,

p(C\A) = p (U, [Ci\ A)) Z (Ci\ A4) sz (Ci\ Ai)

Since C'\ AN | C'\ A, it also follows that u (C’ \ AN) < ¢ for sufficiently large
N and this shows B = U2, B; € By. Hence By is a sub-o-algebra of B = o (A)
which contains A which shows By = B. ]

Many theorems in the sequel will require some control on the size of a
measure y. The relevant notion for our purposes (and most purposes) is that
of a o — finite measure defined next.

Definition 5.45. Suppose 2 is a set, ECB C 2 and p : B — [0,00] is a
function. The function p is o — finite on & if there exists E,, € £ such that
WEy) < oo and 2 =UX2 E,. If B is a o — algebra and p is a measure on B
which is o — finite on B we will say (£2,B, ) is a o — finite measure space.

The reader should check that if  is a finitely additive measure on an algebra,
B, then p is o — finite on B iff there exists (2, € B such that (2, T {2 and
w(82,) < 0.

Corollary 5.46 (0 — Finite Regularity Result). Theorem continues
to hold under the weaker assumption that u : B — [0,00] is a measure which is
o — finite on A.

Proof. Let §2,, € A such that U2 ,$2,, = 2 and p(£2,,) < oo for all n.Since
A€ B—-pu,(A) = p(2,NA) is a finite measure on A € B for each n, by
Theorem [5.44] for every B € B there exists C,, € A, such that B C C,, and
w2, N[C, \ B]) = pin (Cp \ B) < 27"¢. Now let C' := U2, [£2,NC,] € A,
and observe that B C C and

u(C\B) = 21 ([2n N Ca]\ B))

[£2, N Cy]

(U7
si

Applying this result to B¢ shows there exists D € A, such that B¢ C D and

i (2, N[Cn \ B]) <

§(B\ D) = u(D\ B < ¢

So if we let A := D¢ € As, then A C B C C and
p(C\A)=p([BNAJU(C\B)\A]) <p(B\A)+p(C\B) <2

and the result is proved. ]
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62 5 Countably Additive Measures

Exercise 5.11. Suppose A C 2 is an algebra and p and v are two measures

on B=oc(A).

a. Suppose that p and v are finite measures such that 4 = v on A. Show
uw=ru.

b. Generalize the previous assertion to the case where you only assume that
i and v are o — finite on A.

Corollary 5.47. Suppose A C 2% is an algebra and p : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € As,
and C € Ays such that AC B C C and u(C\ A) =0.

Proof. By Theorem [5.44] given B € B, we may choose A, € As and
C,, € A, such that A, C B C Cy, and u(C, \ B) <1/n and u(B\ 4,,) < 1/n.
By replacing Ax by UﬁzlAn and Cy by ﬂ,ly:lCn, we may assume that A, T
and C,, | as n increases. Let A = UA, € A5, and C = NC,, € A,s, then
ACBcCC and

w(C\A) = p(C\B) +pu(B\ A) < u(Cr \ B) + (B \ An)
<2/n—0asn— .

Exercise 5.12. Let B = Bgr» = o ({open subsets of R"}) be the Borel o —
algebra on R™ and p be a probability measure on B. Further, let By denote
those sets B € B such that for every ¢ > 0 there exists I' C B C V such that
F is closed, V is open, and u (V' \ F) < e. Show:

1. By contains all closed subsets of B. Hint: given a closed subset, F' C R™ and
keN,let Vi :=UgzerB (x,1/k), where B (z,0) :={y € R" : |y — x| < §}.
Show, Vi, | F as k — oc.

2. Show By is a o — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [5.44]

3. Show for every ¢ > 0 and B € B, there exist a compact subset, X' C R™, such
that K C B and pu(B\ K) < e. Hint: take K := FN{z € R": |z| < n}
for some sufficiently large n.

5.7 Appendix: Completions of Measure Spaces*
Definition 5.48. A set E C 2 is a null set if E € B and u(E) = 0. If P is

some “property” which is either true or false for each x € 2, we will use the
terminology P a.e. (to be read P almost everywhere) to mean
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E:={z € 2:P is false for x}

is a null set. For example if f and g are two measurable functions on (§2, 8, ),
f =g a.e. means that u(f # g) = 0.

Definition 5.49. A measure space (§2,B, 1) is complete if every subset of a
null set is in B, i.e. for all F' C {2 such that F C E € B with u(E) = 0 implies
that F € B.

Proposition 5.50 (Completion of a Measure). Let (12,8, 1) be a measure
space. Set

N=Nt:={N CR:3F €Bsuch that N C F and u(F) =0},
B=B":={AUN:A€Band N € N} and
@(AUN) := u(A) for A€ B and N € N,
see Fig. , Then B_is a o - algebra, [i is a well defined measure on B, ji is the
unique measure on B which extends p on B, and (2,8, i) is complete measure

space. The o-algebra, B, is called the completion of B relative to p and [i, is
called the completion of .

Proof. Clearly 2,() € B. Let A € B and N € N and choose F € B such

Fig. 5.2. Completing a o — algebra.

that N C F and u(F) = 0. Since N = (F\ N) U F°,

(AUN)° = A°NN°® = A°N (F\ N UF°)
= [A°N (F\ N)]U[A° N F]

where [A° N (F\ N)] € N and [A° N F¢] € B. Thus B is closed under
complements. If A; € B and N; C F; € B such that u(F;) = 0 then

U(Aq; U Nz) = (UAi) U (UNz') € B since UA; € B and UN; C UF; and
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w(UE;) <5 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BU N,
with A, B € B and Ny, Ny, € N. Then AC AUN; C AUN, UF, = BUF,
which shows that

p(A) < uw(B) + p(Fz) = p(B).
Similarly, we show that u(B) < p(A) so that u(A) = p(B) and hence fi(A U
N) := u(A) is well defined. Tt is left as an exercise to show fi is a measure, i.e.
that it is countable additive. ]

5.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 5.51 (Montone Class). C C 2 is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 5.52 (Monotone Class Theorem*). Suppose A C 2% is an algebra
and C is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(C)={BeC:CNnB,CNB*,BNC*eC},

then C(C) is a monotone class. Indeed, if B,, € C(C) and B,, 1 B, then B, | B¢
and so

C>5CNB,1CNB
C>CNB: | CNB° and
C>B,NnC¢1BNC"

Since C is a monotone class, it follows that C N B,C N B¢, BN C° € C, i.e.
B € C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C € C. If A € A C C, then
ANB,ANB BN A € A C C for all B € A and hence it follows that
A C C(A) C C. Since C is the smallest monotone class containing .4 and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A € A. Let
B € C and notice that A € C(B) happens iff B € C(A). This observation and
the fact that C(A) = C for all A € Aimplies A C C(B) C C for all B € C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B € C. That is to say, if A, B € C then
A e C=C(B) and hence ANB, AN B¢, AN B € C. So C is closed under
complements (since 2 € A C C) and finite intersections and increasing unions
from which it easily follows that C is a o — algebra. [ ]






6

Random Variables

Notation 6.1 If f: X — Y is a function and € C 2Y let
frle=f1&) ={f(B)Ee&}
If G C 2%, let
.G :={Ac2Y|f1(A) g}
Definition 6.2. Let £ C 2% be a collection of sets, A C X, is: A — X be the
inclusion map (ia(x) =z for allz € A) and
Ea=i"(E)={ANE:E€c¢&}.
The following results will be used frequently (often without further refer-

ence) in the sequel.

Lemma 6.3 (A key measurability lemma). If f : X — Y is a function and
EcC2Y, then

o (f7HE) = fHa(E)). (6.1)
In particular, if A CY then
(@(€))a =0(Ea), (6.2)
(Similar assertion hold with o (-) being replaced by A(-).)
Proof. Since £ C o(£), it follows that f~1(£) C f~1(c(£)). Moreover, by
Exercise below, f~1(c(£)) is a o — algebra and therefore,
a(f7HE) C fH(a(€)).

To finish the proof we must show f~1(c(£)) C o(f~1(£)), i.e. that f~1(B) €
o(f71(€)) for all B € o (£). To do this we follow the usual measure theoretic
mantra, namely let

M:={BcY: [ (B)ea(f &)} = fo(fHE)).

We will now finish the proof by showing o (£) € M. This is easily achieved
by observing that M is a o — algebra (see Exercise which contains £ and
therefore o (£) C M.

Equation is a special case of Eq. (6.1). Indeed, f =i : A — X we

have
(@(E)a=in'(0(E)) = a(ix ' (E)) = a(Ea).

Exercise 6.1.If f : X — Y is a function and F C 2¥ and B C 2% are o —
algebras (algebras), then f~'F and f.B are o — algebras (algebras).

Ezample 6.4. Let € = {(a,b] : —00 < a <b < oo} and B = o (€) be the Borel o
— field on R. Then
Eo, =1{(a,b]: 0<a<b< 1}
and we have
B = (Eo) -
In particular, if A € B such that A C (0,1], then A € ¢ (5(0,1]) :

6.1 Measurable Functions

Definition 6.5. A measurable space is a pair (X, M), where X is a set and
M is a 0 — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, u) is a
measure space and f : X — Ry is a function. Roughly speaking, we are going

to define [ fdu as a certain limit of sums of the form,
X

o0

> aip(f~ (ai, ain])-

0<aij<az<as<...

For this to make sense we will need to require f~1((a,b]) € M for all a < b.
Because of Corollary below, this last condition is equivalent to the condition
f_l(B]R) C M.

Definition 6.6. Let (X, M) and (Y,F) be measurable spaces. A function f :

X — Y is measurable of more precisely, M/F — measurable or (M,F) -
measurable, if f~H(F) C M, i.e. if f~1(A) € M forall A€ F.

Remark 6.7. Let f: X — Y be a function. Given a o — algebra F C 2Y, the o
— algebra M := f~1(F) is the smallest o — algebra on X such that f is (M, F)
- measurable . Similarly, if M is a o - algebra on X then

F=fM={Ac2V|f1(A) € M}
is the largest o — algebra on Y such that f is (M, F) - measurable.
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Ezample 6.8 (Indicator Functions). Let (X, M) be a measurable space and A C
X. Then 1,4 is (M, Bg) — measurable iff A € M. Indeed, 1" (W) is either 0,
X, A or A¢ for any W C R with 1" ({1}) =

Ezxample 6.9. Suppose f : X — Y with Y being a finite or countable set and
F =2Y. Then f is measurable iff f~1 ({y}) € M for all y € Y.

Proposition 6.10. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume € C F generates F, i.e. F = 0o (E). Then a map, f: X - Y is
measurable iff f~1 () C M.

Proof. If f is M/F measurable, then f~! () C f~! (F) c M. Conversely
if f71(£) C M then o (f~'(£)) C M and so making use of Lemma

FUE) =0 ) = o (JHE) c M.
| |

Corollary 6.11. Suppose that (X, M) is a measurable space. Then the follow-
ing conditions on a function f: X — R are equivalent:

1 f is (M, Br) — measurable,
~((a,0)) € M for all a € R,

“((a,0)) € M for all a € Q,

“1((~o0,a]) € M for all a € R.

Exercise 6.2. Prove Corollary [6.11] Hint: See Exercise [3.7}

Exercise 6.3. If M is the ¢ — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Exercise 6.4. Let (X, M) be a measure space and f, : X — R be a sequence
of measurable functions on X. Show that {z : lim, o fn(z) exists in R} € M.
Similarly show the same holds if R is replaced by C.

Exercise 6.5. Show that every monotone function f : R — R is (Bg,Bgr) —
measurable.

Definition 6.12. Given measurable spaces (X, M) and (Y,F) and a subset
A C X. We say a function f: A —'Y is measurable iff f is Ma/F — measur-
able.

Proposition 6.13 (Localizing Measurability). Let (X, M) and (Y,F) be
measurable spaces and f: X — Y be a function.

1. If f is measurable and A C X then fla: A—Y is Ma/F — measurable.
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2. Suppose there exist A, € M such that X = U2 | A, and f|A, is Ma, |F
— measurable for all n, then f is M - measumble

Proof. 1. If f : X — Y is measurable, f~1(B) € M for all B € F and
therefore
flat(B)=Anf~Y(B) € My for all B € F.

2. If B € F, then

FHB) = Uty (fTH(B)N A) = U2y fl4, (B).

Since each A, € M, M4, C M and so the previous displayed equation shows
f~4(B) e M. [

Lemma 6.14 (Composing Measurable Functions). Suppose that
(X, M), (Y,F) and (Z,G) are measurable spaces. If f : (X, M) — (Y, F) and
g: (Y, F) — (Z,G) are measurable functions then go [ : (X, M) — (Z,G) is

measurable as well.

Proof. By assumption g71(G) C F and f~! (F) C M so that

(go /)G =F"(g7(9) C f(F)cM.
| |

Definition 6.15 (0 — Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yo,Fo) i € I} and
functions fo : X = Y, for alla € I. Let o(fy : a € I) denote the smallest o —
algebra on X such that each f. is measurable, i.e.

U(fa YOS I) = O'(Uaf(;l(fa))'

Example 6.16. Suppose that Y is a finite set, F = 2¥, and X = YV for some
N € N. Let m; : YN — Y be the projection maps, 7; (y1,-..,yn) = y;. Then,
as the reader should check,

o(m,...,mp) ={Ax AN AC A"}

Proposition 6.17. Assuming the notation in Definition (s0 fo : X —
Y, for all a € I) and additionally let (Z, M) be a measurable space. Then

g:7Z — X is (M,0(fo : « € I)) — measurable iff fo 0g (ZiX&»Ya) is
(M, Fo)-measurable for all a € I.

Proof. (=) If g is (M,0(fs : @ € I)) — measurable, then the composition
fa0gis (M, F,) — measurable by Lemma
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(<) Since o(fo : @ € I) = 0 (&) where € := U, f;'(Fa), according to
Proposition it suffices to show g=1 (A) € M for A € f(F,). But this is
true since if A = f; ! (B) for some B € F,, then g~ (A) = g7' (f71(B)) =

(fao g)_1 (B) € M because f,0g:Z — Y, is assumed to be measurable.
|

Definition 6.18. If {(Y,,F.) : @ € I} is a collection of measurable spaces, then
the product measure space, (Y, F), is Y :=[[,c; Yo, F := 0 (7o : @ € I) where
T Y — Y, is the o — component projection. We call F the product o — algebra
and denote it by, F = QqecrFa-

Let us record an important special case of Proposition [6.1

Corollary 6.19. If (Z, M) is a measure space, then g : Z — Y =[] c; Yo is
(M, F := QqcrFa) — measurable iff o0 g: Z — Yy is (M, F,) — measurable
foralla e I.

As a special case of the above corollary, if A = {1,2,...,n}, then YV =
Y1 x---xY,and g =(¢q1,-.-,9n) : Z — Y is measurable iff each component,
g; : Z —Y;, is measurable. Here is another closely related result.

Proposition 6.20. Suppose X is a set, {(Yo,Fo): a € I} is a collection of
measurable spaces, and we are given maps, fo : X — Y, for all o € 1. If
f:X =Y :=]l,c;Ya is the unique map, such that mo o f = fo, then

o(farael)=0o(f)=f""(F)

acl

where F := QuecrFa-

Proof. Since mp 0 f = fo is 0 (fo : @ € I) /F, — measurable for all « € I it
follows from Corollary that f: X —» Y is 0 (fo : « € I) /F — measurable.
Since o (f) is the smallest o — algebra on X such that f is measurable we may
conclude that o (f) C o (fo:a€l).

Conversely, for each a € I, fo = mo 0 f is 0 (f) /F — measurable for all
a € I being the composition of two measurable functions. Since o (f, : @ € I)
is the smallest o — algebra on X such that each f, : X — Y, is measurable, we
learn that o (fo: € I) Co(f). |

Exercise 6.6. Suppose that (Y1, 71) and (Y3, F2) are measurable spaces and
& is a subset of F; such that Y; € & and F; = o (&;) for ¢ = 1 and 2. Show
Fi1@Fy=0(E) where £ :={A; x Ay : A; € &; for i = 1,2} . Hints:

1. First show that if YV is a set and &1 and Sp are two non-empty sub-
sets of 2¥, then o (0 (S1) U0 (S)) = 0 (S; USs). (In fact, one has that
0 (Uaer0 (Sa)) = 0 (UaerSa) for any collection of non-empty subsets,
{Sataer €2Y)
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2. After this you might start your proof as follows;
f1®.7:2 =0 (71';1 (.71) U’lT;l (fz)) =0 (7‘(;1 (0 (52)) U’]T;l (U (52))) =....

Remark 6.21. The reader should convince herself that Exercise [6.6] admits the
following extension. If I is any finite or countable index set, {(Y3, F;)},o; are
measurable spaces and &; C F; are such that Y; € & and F; = o (&;) for all

i € I, then
®i61-7:i =0 <{HA1 : Aj S gj for all] S I})

il
and in particular,
QictFi=0 ({H A;: Aj € Fyforall je I}) .
iel
The last fact is easily verified directly without the aid of Exercise [6.6]

Exercise 6.7. Suppose that (Y1, F1) and (Y3, F») are measurable spaces and
() # B; CY; for i = 1,2. Show

[F1® Falp, w5, = [F1lp, @ [Falp, -
Hint: you may find it useful to use the result of Exercise [6.6] with
822{A1XA22Ai€fi fOI‘izl,Q}.

Definition 6.22. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 6.23. Let X and Y be two topological spaces and f: X — Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma and By = o(1y),
71 By) = fHo(ry)) = o(f 7 (1v)) C o(rx) = Bx.
[

Ezample 6.24. For i = 1,2,...,n, let m; : R® — R be defined by m; (x) = =;.
Then each 7; is continuous and therefore Bgn /Br — measurable.

Lemma 6.25. Let £ denote the collection of open rectangle in R™, then Brn =
o (€). We also have that Bgn = o (m1,...,m,) = Br®---®@Bg and in particular,
Ay X -+ X A, € Brn whenever A; € Bg fori=1,2,...,n. Therefore Bgn may
be described as the o algebra generated by {A1 X -+- X A, : A; € Br}. (Also see

Remark|6.21))
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68 6 Random Variables
Proof. Assertion 1. Since £ C Bgn, it follows that ¢ (£) C Brn. Let
& ={(a,b):a,be Q" 3 a<b},
where, for a,b € R", we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,by) . (6.3)

Since every open set, V' C R™, may be written as a (necessarily) countable
union of elements from &y, we have

Veo(&) Cco(€),

ie. 0(&) and hence o (€) contains all open subsets of R™. Hence we may
conclude that

Brr = o (open sets) C o (&) C o (E) C Bgrn.

Assertion 2. Since each 7; : R™ — R is continuous, it is Bg» /Br — measur-
able and therefore, o (71,...,7,) C Bgn. Moreover, if (a,b) is as in Eq. ,
then

(a,b) = ﬁ?zlﬂ'i_l ((as,b5)) € o (m1, .-, 70) -
Therefore, £ C o (71,...,m,) and Brn =0 (£) C o (M1, .., 70n) -
Assertion 3. If A; € Bg fori=1,2,...,n, then

Ay x - x Ay =0yt (A) € o (T, e, ) = Bgn.

Corollary 6.26. If (X, M) is a measurable space, then

f:(f17f27"'7fn):X4’Rn

is (M, Bgn) — measurable iff f; : X — R is (M,Br) — measurable for each 1i.
In particular, a function f: X — C is (M, Bc) — measurable iff Re f and Im f
are (M, Br) — measurable.

Proof. This is an application of Lemmal6.25 and Corollary .19 with ¥; = R
for each 1. ]

Corollary 6.27. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,B¢) -
measurable.
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Proof. Define FF: X - CxC, AL :CxC—->Cand M :CxC — C
by F(z) = (f(z),g9(z)), Ax(w,2z) = w £+ z and M(w,z) = wz. Then Ay and
M are continuous and hence (Bgz,Bc) — measurable. Also F is (M, Bg2) —
measurable since T o F = f and myoF = g are (M, Bc) — measurable. Therefore
AyoF = fdgand MoF = f-g, being the composition of measurable functions,
are also measurable. [

Lemma 6.28. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

is measurable.

Proof. Define i : C — C by

, Lif 240
Z(Z){Oif z=0.

For any open set V' C C we have
THV) = (VA {0h) U (V n{0})

Because i is continuous except at z = 0, i~1(V \ {0}) is an open set and hence
in Be. Moreover, i1 (V N {0}) € Be since i~1(V N {0}) is either the empty
set or the one point set {0} . Therefore i~!(7¢) C Be and hence i~1(B¢) =
i~Y(o(mc)) = o(i~Y(7¢)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

Remark 6.29. For the real case of Lemma define 7 as above but now take
z to real. From the plot of i, Figure the reader may easily verify that
i1 ((—00,a]) is an infinite half interval for all @ and therefore i is measurable.

See Example [6.34] for another proof of this fact.
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We will often deal with functions f : X — R =RU {+oc0}. When talking
about measurability in this context we will refer to the o — algebra on R defined
by

Bg := 0 ({[a,<] : a € R}). (6.4)

Proposition 6.30 (The Structure of Bg). Let Br and Bg be as above, then
Bg={ACR:ANR EBg}. (6.5)
In particular {oo},{—o0} € Bg and Bg C Bg.
Proof. Let us first observe that

{—OO} = 0;1.021[_007 —TL) = Sbo:l[_nvoo]c € B]Ra

{00} =N, [n, <] € Bg and R = R\ {+o0} € Bg.
Letting i : R — R be the inclusion map,

it (Bg) =0 (i7" ({[a,00] :a €R})) =0 ({i7" ([a,0]) : @ € R})
=0 ({la,c]NR:aeR}) =0 ({[a,) : a € R}) = Bx.

Thus we have shown
Bg=i! (Bg) ={ANR: A€ Bg}.
This implies:

1. Ae Bg = ANR eBg and

2. if A C R is such that ANR €Bg there exists B € Bg such that ANR = BNR.
Because AAB C {*oo} and {oo},{—o0} € Bz we may conclude that
A € Bz as well.

This proves Eq. (6.5). ]
The proofs of the next two corollaries are left to the reader, see Exercises

6.8 and [6.91

Corollary 6.31. Let (X, M) be a measurable space and f : X — R be a func-
tion. Then the following are equivalent

1. f is (M, Bg) - measurable,
2. f~Y((a,00]) € M for all a € R,
3. f71((—o0,a]) € M for all a € R,
4. fH{—o0}) e M, f71{oo}) € M and f°: X — R defined by
oy Jf@if flx)eR
Fi) = { 0 if f(x) € {+o0}

1s measurable.
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Corollary 6.32. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f +g) : X — R using the conventions, 0-oc = 0
and (f +g)(z) =0 if f(x) =00 and g(x) = —00 or f(z) = —oc0 and g (z) =
oo. Then f-g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.8. Prove Corollary noting that the equivalence of items 1. — 3.
is a direct analogue of Corollary [6.11] Use Proposition [6.30] to handle item 4.

Exercise 6.9. Prove Corollary

Proposition 6.33 (Closure under sups, infs ‘and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence of
M /By — measurable functions. Then

sup; f;j, inf;f;, limsup f; and lbrgérclf £

J—0

are all M /Bg — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g4 (z) :=sup; f;(z), then

{z:91(2) <ap ={z: fi(x) <aVj}
=Nj{z: fj(x) <a} e M

so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then
{z:9_(z) >a} =nj{z: fj(z) >a} € M.

Since
limsup f; =infsup{f;:j > n} and
Jj—o0 n
liminf f; =supinf{f;:j > n}
j—00 n
we are done by what we have already proved. ]

Example 6.34. As we saw in Remark i: R — R defined by

, Lif 240
Z(Z)_{Oif z=0.

is measurable by a simple direct argument. For an alternative argument, let

in (2) :=

%foraﬂneN.
21

Then 4, is continuous and lim, s i, (2) = i(z) for all z € R from which it
follows that i is Borel measurable.
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70 6 Random Variables

Ezample 6.35. Let {r,}52,; be an enumeration of the points in Q N [0,1] and
define

with the convention that

Then f: R — R is measurable. Indeed, if

gn<x>={mlf“”"

0 ifx=r,

then g, (z) = /|i (x — r,)| is measurable as the composition of measurable is
measurable. Therefore g, +5- 1y, } is measurable as well. Finally,

= lim E 2—n
T Nox v/ |x — Tl
is measurable since sums of measurable functions are measurable and limits

of measurable functions are measurable. Moral: if you can explicitly write a
function f : R — R down then it is going to be measurable.

Definition 6.36. Given a function f : X — R let fi(z) := max {f(x),0} and
f- (x) :=max (—f(x),0) = —min (f(z),0). Notice that f = f+ — f_.

Corollary 6.37. Suppose (X, M) is a measurable space and f : X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [6.33]implies fi are measurable.
Conversely if fi are measurable then sois f = f, — f_. [

Definition 6.38. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — Bg
measurable and ¢(X) contains only finitely many elements.

Any such simple functions can be written as

@ = Aila, with 4; € M and \; € F. (6.6)
i=1
Indeed, take A1, Ao,..., A, to be an enumeration of the range of ¢ and A; =

0 r({\i}). Note that this argument shows that any simple function may be
written intrinsically as
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yeF
The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.39 (Approximation Theorem). Let f : X — [0, 00] be measur-
able and define, see Figure[6.1}
22n_1 i
on () = ’;) on L (e 1) (2) + 271 o1 (2n o0)) (2)
22" —1

- Z 2n Lo <retity (@) + 2" 0y (2)

then @, < f for all n, @n(x) 1 f(x) for allz € X and v, 1 [ uniformly on the
sets Xpr i={x € X : f(x) < M} with M < cc.

Moreover, if f: X — C is a measurable function, then there exists simple
functions p,, such that im,, o, ¢, (x) = f(x) for allx and |p,| T |f] asn — oco.

Proof. Since f~1 (£, &) and f~1((2", oc]) are in M as f is measurable,

n is a measurable simple function for each n. Because

k kE+1 2k 2k+1 2k+1 2k+42
(27’ on ]:(2n+1’ on+1 ] (2n+1 > 9n+l ]’
if ¢ € ((2721&17225%11]) then LPn< ) = L)OnJrl( ) = 22% and if = €
2

I (( ktl 2’21'12}) then @, (z) = 2n+1 < gﬁﬂ = ¢p+1(x). Similarly
(2", 00] = (2", 2" U (2", o),

and so for z € f71((2"1,00]), pn(x) = 2" < 2" = ¢, 11 (x) and for = €
e, 2n ), ppai(x) > 2" = ¢, (x). Therefore ¢, < @, for all n. It is
clear by construction that 0 < ¢,(z) < f(x) for all  and that 0 < f(x) —
on(z) <27 if x € Xon = {f < 2"} . Hence we have shown that ¢, (z) T f(z)
for all x € X and ¢,, T f uniformly on bounded sets.

For the second assertion, first assume that f : X — R is a measurable
function and choose ¢; to be non-negative simple functions such that ¢ 1 fi
as n — oo and define ¢,, = @7 — ¢, . Then (using ¢} - ¢, < f+ - f- =0)

lonl = @ + ¢ <O +onir = lontl

and clearly |on| = @5 +¢n T fr+f-=|fland o = o —¢p = fr—f-=f
as n — oo. Now suppose that f : X — C is measurable. We may now choose
simple function u,, and v, such that |u,| T |Re f|, |vn| T |Im f|, u, — Re f and
v, — Im f as n — oco. Let ¢,, = u,, + vy, then

lonl® = u2 +02 1 |Re fI> + |Im f|* = | [

and ¢p, = up +iv, — Re f+ilm f = f as n — oco. ™
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Fig. 6.1. Constructing the simple function, 2, approximating a function, f : X —
[0, 00]. The graph of 2 is in red.

6.2 Factoring Random Variables

Lemma 6.40. Suppose that (Y,F) is a measurable space and Y —Yisa
map. Then to every (o(Y),Bg) — measurable function, h : 2 — R, there is a
(F,Bg) — measurable function H : Y — R such that h = HoY. More generally,

R may be replaced by any “standard Borel space, ’E| i.e. a space, (S,Bgs) which
is measure theoretic isomorphic to a Borel subset of R.

(2.0(Y)) = (V.F)
hl ) H
(5.55)

Proof. First suppose that h = 14 where A € 0(Y) =Y 1(F). Let B€ F
such that A = Y~}(B) then 14 = ly-1py = 1p oY and hence the lemma

! Standard Borel spaces include almost any measurable space that we will consider in

these notes. For example they include all complete seperable metric spaces equipped
with the Borel o — algebra, see Section
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is valid in this case with H = 1. More generally if h = > a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence h = HoY
with H := Y a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, h, from {2 — R, choose simple
functions h,, converging to h. Let H, : Y — R be simple functions such that
h, = H,, oY. Then it follows that

h = lim h, =limsuph, =limsupH,oY =HoY

n—oo n— o0 n—oo

where H := limsup H,, — a measurable function from Y to R.

n—oo

For the last assertion we may assume that S € Br and Bs = (Br)g =
{ANS: A€ Bgr}. Since ig : S — R is measurable, what we have just proved
shows there exists, H : Y — R which is (F,Bg) — measurable such that h =
igoh = HoY. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

_ [ Hlg-syon H(S)
HS_{ * on Y\ H~1(S)

where * is some fixed arbitrary point in S. It follows from Proposition [6.13| that

Hs : Y — Sis (F,Bs) — measurable and we still have h = Hg oY as the range

of Y must necessarily be in H~* (S). |
Here is how this lemma will often be used in these notes.

Corollary 6.41. Suppose that (§2,B) is a measurable space, X,, : 2 — R are
B/Bgr — measurable functions, and B, := o (Xy,...,X,) C B for each n € N.
Then h : 2 — R is B, — measurable iff there exists H : R™ — R which is
Bgn /Br — measurable such that h = H (X1,...,X,).

(2B, = o (V) Z=2 (RY Ban)
hl /,—/"/
.- H
(R7BR)

Proof. By Lemma and Corollary the map, YV := (Xy,...,X,) :
22— R"is (B,Bgr = Br ® - -+ ® Bg) — measurable and by Proposition
B, = o0(X1,...,Xy) = 0(Y). Thus we may apply Lemma to see that
there exists a Bgn /Bgr — measurable map, H : R” — R, such that h = HoY =
H(X1,...,Xn). -
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6.3 Summary of Measurability Statements 14. If X; : 2 — R are B/Bg — measurable maps and B, := o (X1,...,X,),

It may be worthwhile to gather the statements of the main measurability re-

then h : 2 — R is B,, — measurable iff h = H (X1, ..., X,) for some Bgn /Br
— measurable map, H : R — R (Corollary [6.41]).

sults of Sections and in one place. To do this let (2,8), (X, M), and 15. We also have the more general factorization Lemma [6.40]

{(Ya, Fa)}per be measurable spaces and f, : £2 — Y, be given maps for all
a € 1. Also let m,, : Y — Y, be the o — projection map,

For the most part most of our future measurability issues can be resolved

by one or more of the items on this list.

F = QaciFa:=0(nq:a €l

be the product o — algebra on Y, and f : 2 — Y be the unique map determined
by mq o f = fo for all « € I. Then the following measurability results hold;

1. For A C {2, the indicator function, 14, is (B, Bg) — measurable iff A € B.
(Example [6.8).

2. If £ C M generates M (i.e. M =0 (£)), then a map, g: 2 — X is (B, M)

— measurable iff g~ (£) C B (Lemmal6.3] and Proposition .

The notion of measurability may be localized (Proposition |6.13]).

Composition of measurable functions are measurable (Lemma .

5. Continuous functions between two topological spaces are also Borel mea-
surable (Proposition [6.23).

6. o (f) =0 (fa:a€I) (Proposition [6.20).

7. Amap, h: X — Q21is (M,0(f) =0 (fa : @ € I)) — measurable iff f, oh is
(M, F,) — measurable for all « € I (Proposition [6.17)).

8. Amap, h: X — Y is (M, F) — measurable iff m,0h is (M, F,) — measurable
for all o € I (Corollary [6.19).

9. I ={1,2,...,n}, then

w0

®a61.7:a:f1®"'®fn:0({141XAQX"'XA7LSAi€f¢f0ri€I}),

this is a special case of Remark

10. Bgn = Br ® - - ® Br (n - times) for all n € N, i.e. the Borel o — algebra on
R™ is the same as the product o — algebra. (Lemma .

11. The collection of measurable functions from (£2, B) to (R, Bg) is closed un-
der the usual pointwise algebraic operations (Corollary [6.32)). They are also
closed under the countable supremums, infimums, and limits (Proposition
6.33)).

12. The collection of measurable functions from (§2, B) to (C, Be) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
and Proposition . The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (£2,8) to (R, Bg) and from (2, B)
to (C, Bc) may be well approximated by measurable simple functions (The-

orem .
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6.4 Distributions / Laws of Random Vectors

The proof of the following proposition is routine and will be left to the reader.

Proposition 6.42. Let (X, M, ) be a measure space, (Y,F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0,00] by
v(A) = p(f~1(A)) for all A € F. Then v is a measure on (Y, F). (In the future
we will denote v by fop or o f=1 or Law,, (f) and call f.u the push-forward
of u by f or the law of f under pu.

Definition 6.43. Suppose that {X;}!_, is a sequence of random variables on a
probability space, (12,8, P). The probability measure,

p=(X1,....X,), P=Po(Xy,....,X,)"" onBg

(see Proposition is called the joint distribution (or law) of
(X1,...,X,). To be more explicit,

w(B):=P((X1,....,Xn,)€B)=P({we : (X1 (w),...,X,(w) € B})
for all B € Bgn.

Corollary 6.44. The joint distribution, p is uniquely determined from the
knowledge of

P((X1,...,Xpn) € Ay x--- X A,) for all A; € By
or from the knowledge of
P(X; <x1,...,X, <x,) forall A; € Bg
for allx = (z1,...,2,) € R™.
Proof. Apply Proposition with P being the m — systems defined by
P:={A; x -+ x A, €Bgn: A; € B}
for the first case and
P:={(—o00,x1] X -+ X (—00,x,] € Brn : z; € R}
for the second case. ]

Definition 6.45. Suppose that {X;};_, and {Y;}!", are two finite sequences of
random variables on two probability spaces, (£2,B,P) and (£2',B', P') respec-
tively. We write (X1,..., Xn) = (Y1,...,Y,) if (X1,...,Xn) and (Y1,...,Y,,)
have the same distribution / law, i.e. if

Page: 73 job: prob

6.4 Distributions / Laws of Random Vectors 73
P((X1,...,X,) € B)=P((Y1,...,Y,) € B) for all B € Bgn.
More generally, if {X;};2, and {Y;};2, are two sequences of random variables
on two probability spaces, (12,8, P) and (£2',B', P") we write {X;};-, 4 {vi} .2,
i (X1, Xn) 2 (V1,...,Y,) for alln € N.

Proposition 6.46. Let us continue using the notation in Definition [6.45 Fur-
ther let

X=(X1,Xg,...): 2 =RV and Y := (V,Ys,...): 2 — RY
and let F := ®,enBr — be the product o — algebra on RYN. Then {Xi}2, 4
{Yi}i2, iff XoP =Y, P' as measures on (RN,f) )
Proof. Let
Pi=Us {41 x Ay x -+ x Ay x RV 1 A; € B for 1 <i <m}.

Notice that P is a m — system and it is easy to show o (P) = F (see Exercise
. Therefore by Proposition X, P =Y. P iff X,P=Y,P' onP. Now
for A1 x Ay x -+ x A, x RN € P we have,

XoP(Ar x Ao x - x Ay xRY) = P((X1,...,Xn) € Ap X Ay X -+ X Ay)
and hence the condition becomes,
P((Xl,...,Xn)GAl XAQX"'XAn):P/((Yl,...,Yn)EAl X Ay X--~><An)

for all n € N and A; € Bg. Another application of Proposition [5.15| or us-
ing Corollary allows us to conclude that shows that X,P = Y,.P' iff

(X1,..., X)) 2 (Y1,...,Y,,) for all n € N. -

Corollary 6.47. Continue the notation above and assume that {X;};o, 4

{Y;}:2, . Further let
{ limsup,, o Xn if +
Xy =

liminf, .. X, if —

and define Yo similarly. Then (X_, X ) 4 (Y_,Y,) as random variables into
(RQ, Bz ® BR) . In particular,

P ( lim X, exists in ]R) =P ( lim Y exists in R) . (6.8)
n—oo n—oo
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74 6 Random Variables

Proof. First suppose that (2/,B',P') = (RN,}', P = X*P) where
Y; (a1,a2,...) :=a; = m; (a1,a2,...). Then for C' € Bz ® By we have,

XL,y el ={(Y-oX,Y,0X) e C} ={(X_,X,) € C},
since, for example,

Y_ oX =liminfY,, o X =liminf X,, = X_.

n—oo n—oo

Therefore it follows that

P((X-,X;4)€C)=PoX " ({(Y_,Yy) € C}) = P/({(Y-,Y;) € C}). (6.9)

The general result now follows by two applications of this special case.
For the last assertion, take

C={(z,x):x € R} € Bg: = Br @ Br C B ® Bg.

Then (X_, X ) e Ciff X_ = X € R which happens iff lim,,_, . X, exists in
R. Similarly, (Y_,Yy) € C iff lim, . Y, exists in R and therefore Eq. ( .
holds as a consequence of Eq. .

Exercise 6.10. Let {X }ooy and {Y;};2, be two sequences of random variables

such that {X;}2, = {Y}Z - Let {S,},2, and {T,,} _, be defined by, S, :=
Xi+--+X,and T,, := Y7 +---+Y,. Prove the followmg assertions.

1. Suppose that f : R* — RF is a B n /Brr — measurable function, then
d
f(le-“vXn) :f(YVIaayrn)
2. Use your result in item 1. to show {S,} 4 {T.} .

Hint: Apply item 1. with & = n after making a judicious choice for f :
R™ — R™.

6.5 Generating All Distributions from the Uniform
Distribution

Theorem 6.48. Given a distribution function, F: R —[0,1] let G : (0,1) = R
be defined (see Figure[6.9) by,

G(y)=inf{zx: F(z) > y}.
Then G : (0,1) — R is Borel measurable and G.m = pr where g is the unique

measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —co < a <b <
00.
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Fig. 6.2. A pictorial definition of G.

Fig. 6.3. As can be seen from this picture, G (y) < zo iff y < F (x0) and similarly,
G(y) <ziiff y <z1.

Proof. Since G : (0,1) — R is a non-decreasing function, G is measurable.
We also claim that, for all zg € R, that

G ((0,20]) = {y : G (y) < wo} = (0, F (o) NR, (6.10)

see Figure

To give a formal proof of Eq. (6.10), G (y) = inf {z : F (z) > y} < o, there
exists x,, > xo with x,, | z¢ such that F' (x,) > y. By the right continuity of F,
it follows that F' () > y. Thus we have shown

{G <20} C(0,F (z0)] N (0,1).
For the converse, if y < F(xg) then G (y) = inf{z: F(x) >y} < xo, ie.
y € {G <z} Indeed, y € G~ ((—o00, z0]) iff G (y) < xo. Observe that
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G (F (z9)) =inf{z: F(z) > F(x0)} < 29
and hence G (y) < xo whenever y < F' (z¢) . This shows that
(0, F (20)] N (0,1) € G™1((0, z]) -

As a consequence we have G,m = up. Indeed,

(Gem) ((—o00,z]) = m (G ((—o0,a])) =m({y € (0,1) : G (y) < z})
=m((0,F (2)]N(0,1)) = F(z).

See section 2.5.2 on p. 61 of Resnick for more details. [

Theorem 6.49 (Durret’s Version). Given a distribution function, F
R —[0,1] let Y : (0,1) — R be defined (see Figure by,

Y (z) :=sup{y: F(y) < x}.

Then'Y : (0,1) — R is Borel measurable and Yom = up where pup is the unique
measure on (R, Br) such that pp ((a,b]) = F (b) — F (a) for all —oo < a < b <
00.

Fig. 6.4. A pictorial definition of Y (z).

Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y <Y (x), then F (y) < z and hence,

F(Y(z)=)= lim F(y) <z

y1Y (z)
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For y > Y (x), we have F (y) > x and therefore,

F(Y (2) =F (Y (2)+) =

and so we have shown

We will now show
{SC € (0’ 1) 1Y (33) < yo} = (OvF(?JO)] N (07 1)'

For the inclusion “C,” if x € (0,1) and Y (z) < yg, then x < F (Y (x)) < F (yo),
ie. z € (0,F (yo)] N (0,1). Conversely if z € (0,1) and = < F (yo) then (by
definition of Y (2)) yo > Y (x).

From the identity in Eq. , it follows that Y is measurable and

(6.11)

(Yam) ((—00,50)) =m (Y (—00,90)) = m ((0, F (y0)] N (0,1)) = F (yo) -

Therefore, Law (Y) = pp as desired. ]
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7

Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section above. Recall there that if (£2, B, u) was
measurable space and ¢ : {2 — [0,00) was a measurable simple function, then
we let

Eupi= Y Aulp=2A).
A€E€[0,00)

The conventions being use here is that 0- (¢ = 0) = 0 even when u (¢ = 0) =
0o. This convention is necessary in order to make the integral linear — at a
minimum we will want E, [0] = 0. Please be careful not blindly apply the
0 - oo = 0 convention in other circumstances.

7.1 Integrals of positive functions

Definition 7.1. Let LT = L+ (B) = {f : 2 — [0,00] : f is measurable}. Define
| F@ ) = [ fduimsup (Bp: o is simple and ¢ < 1}

We say the f € L is integrable if fQ fdu < oo. If A € B, let

[ r@du) = [ fdu= [ 145 dn

We also use the notation,

]Ef:/nfd,u and E[f : A] ::/Afdu.

Remark 7.2. Because of item 3. of Proposition[d:19] if ¢ is a non-negative simple
function, [, pdp =E,¢ so that [, is an extension of E,,.

Lemma 7.3. Let f,g € L™ (B). Then:

/Q)\fdu:)\/ﬁfdp

wherein X [, fdp =0 if X =0, even if [, fdu = oco.

1. if A >0, then

2.if0< f <g, then

/Qfdué/ngdu~ (7.1)

iz <5 [ Migsadns 5 [ pran (7.2

3. For alle >0 and p > 0,

The inequality in Fq. 1s called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4.1f [, fdp < oo then pu(f = 00) =0 (i.e. f < 0o a.e.) and the set {f > 0}
is 0 — finite.

Proof. 1. We may assume A > 0 in which case,
/ Afdp = sup{E ¢ : ¢ is simple and ¢ < Af}
2
= sup {E,¢ : ¢ is simple and Ao < £}

= sup{E, [\Y] : ¢ is simple and ¢ < f}
= sup {AE, [¢] : ¢ is simple and ¢ < f}

:)\/Qfdu.

{¢ is simple and ¢ < f} C {p is simple and ¢ < g},

2. Since

Eq. (7.1)) follows from the definition of the integral.
3. Since 1{f>.3 < 1{f25}%f < éf we have

1N\ /1.\*
Lirzey < Lip2e) <€f> < <€f>

and by monotonicity and the multiplicative property of the integral,

u(fZE)Z/Ql{fzs}dué (i) /1{f>s}fpdﬂ<( ) /fpd“'
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4. If p(f =o0) > 0, then @, := nlfs_, is a simple function such that
pn < f for all n and hence

np(f=o00) =E, (pn) < /Qfdu

for all n. Letting n — oo shows [, fdu = oo. Thus if [, fdu < oo then

p(f =o00)=0.
Moreover,
{f >0} =L {f > 1/n}
with pu(f > 1/n) < n [, fdu < oo for each n. n

Theorem 7.4 (Monotone Convergence Theorem). Suppose f, € Lt is a
sequence of functions such that f, T f (f is necessarily in L") then

[t [sasn—c

Proof. Since f,, < f,, < f, for all n < m < oo,

JEEY RS

from which if follows f fn is increasing in n and

lim hg/ﬁ (7.3)

n—oo

For the opposite inequality, let ¢ : 2 — [0,00) be a simple function such
that 0 < ¢ < f, a € (0,1) and £2,, := {f, > ap}. Notice that 2, T {2 and
fn > alg, ¢ and so by definition of [ f,,

[ 22 Bulato,e) = aB, 10,6, (7.4)
Then using the identity

lo,p=1q, Zyl{sa:y} = Zyl{w:y}ﬂflm
y>0 y>0

and the linearity of [E,, we have,

lim B, [Lo,¢] = lim D> y-u(2 N {o=1y})

n—oo

y>0
= Z ynhf;o w(2, N {p =y}) (finite sum)
y>0
=Y yn{e =y}) = B[4,
y>0
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wherein we have used the continuity of p under increasing unions for the
third equality. This identity allows us to let n — oo in Eq. to conclude
lim, o [ fn > oE, [¢] and since a € (0,1) was arbitrary we may further con-
clude, E, [¢] < lim,_oo [ fn. The latter inequality being true for all simple
functions ¢ with ¢ < f then implies that

/f: sup E,f¢] < lim [ fp,
0<p<f n—oo

which combined with Eq. (7.3]) proves the theorem. [

Remark 7.5 (“Explicit” Integral Formula). Given f : {2 — [0, 00] measurable,
we know from the approximation Theorem on 1 f where

22n 1

k
o= D guligeaseiny T2 ey
k=0

Therefore by the monotone convergence theorem,

t/ifdu:: lim [ pnd

22n 1
k k k+1
= i E o = < 2" 2"
im 2nﬂ<2n<f )+ p(f>2")

n— o0 on
k=0

Corollary 7.6. If f, € L™ is a sequence of functions then

/ini/n

In particular, if Yo~ | [ fn < oo then Y 07 | fn < 00 a.e.

Proof. First off we show that

/(f1+f2):/f1+/f2

by choosing non-negative simple function ¢, and ), such that ¢, T f1 and

U T f2. Then (¢, + 1y,) is simple as well and (@, + ¥,) T (f1 + f2) so by the
monotone convergence theorem,

[+ = i [eonr v = m ([on+ [0.)
= Jim [ont lim [v.= [+ [
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Now to the general case. Let gy = Z fnand g = Z fn, then gy T g and so
n=1

again by monotone convergence theorem and the add1t1v1ty just proved,

Remark 7.7. It is in the proof of Corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition f fdu makes sense for all functions f: 2 — [0, o0]
not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary we use the approximation Theorem which relies heavily on
the measurability of the functions to be approximated.

Ezample 7.8 (Sums as Integrals I). Suppose, 2 = N, B := 2V 1 (A) = # (A)
for A C {2 is the counting measure on B, and f : N — [0, o¢] is a function. Since

n=1

it follows from Corollary [7.6] that

o

s Z/f 1) Lyt = Zf nnh) =31

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 7.9 (Sums as Integrals IT*). Let {2 be a set and p : 2 — [0,00] be
a function, let p =3, p(w)d, on B=2% i.e.

p(A) =" p(w).

wEA

If f: 2 — [0,00] is a function (which is necessarily measurable), then

fduw=)» fp.
=%
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Proof. Suppose that ¢ : 2 — [0,00) is a simple function, then ¢ =
ZzE[O,oo) Zl{‘P:Z} and

Z‘Pp: ZP(W) Z Zl{ga z} Z Z l{cp z} )
2

wesn? z€[0,00) z€[0,00) wE€N
= > Zu({<p=Z}):/<pdu-
z€[0,00) 2

So if ¢ : 2 — [0,00) is a simple function such that ¢ < f, then

/ pdp=> op< > fp.
2 Q Q

Taking the sup over ¢ in this last equation then shows that

[ fin<> 10
§2 7]

For the reverse inequality, let A CC {2 be a finite set and N € (0,00).
Set fV(w) = min{N, f(w)} and let ¢y be the simple function given by
onN.A(w) == 14(w) fY (w). Because oy a(w) < f(w),

ZfNP=Z<PN,Ap=/ @N,Adué/ fdp.
- > 0 0

Since fN 1 f as N — 0o, we may let N — oo in this last equation to concluded

ZA:fp < /Q fdp.

Since A is arbitrary, this implies

zﬁ:fp < /Q fdp.

Exercise 7.1. Suppose that u,, : B — [0, 0o] are measures on B for n € N. Also
suppose that u,(A) is increasing in n for all A € B. Prove that u: B — [0, o]
defined by p(A) = lim, o pn(A) is also a measure.

Proposition 7.10. Suppose that f > 0 is a measurable function. Then
fQ fdu =0 iff f =0 a.e. Also if f,g > 0 are measurable functions such that

[ <g ae then [ fdu < [ gdup. In particular if f = g a.e. then [ fdu = [ gdp.
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Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This
implies that u(¢~!({y})) = 0 for all y > 0 and hence [, pdp = 0 and therefore

Jo fdp = 0. Conversely, if [ fdu =0, then by (Lemma |7.3),
uw(f>1/n) < n/fd,u = 0 for all n.

Therefore, pu(f >0) < >°0°  u(f>1/n) =0, ie f=0ae.
For the second assertion let E be the exceptional set where f > g, i.e.

E={weR: f(w)>gw)}

By assumption E is a null set and 1gcf < 1gcg everywhere. Because g =
lgeg+1pg and 1gg =0 a.e.,

/gdu:/lEcgdqu/lEgdu:/lEcgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,
/fdu:/1Eufd,u§/1Ecgd/,L:/gd,u.

Corollary 7.11. Suppose that {f.} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

/hT/fwnHw-

Proof. Let F C {2 be a null set such that f,1gc T flge as n — oo. Then
by the monotone convergence theorem and Proposition

/fn:/fnlEcT/flECZ/fasn—u)o.

Lemma 7.12 (Fatou’s Lemma). If f,, : 2 — [0,00] is a sequence of measur-
able functions then

/ liminf f, <liminf / fn

n—oo n—oo

Proof. Define g; := H>1fk fn so that gi T liminf, .. f, as k — oo. Since
gr < fn for all k < n, -
/gkg/fnforallnzk
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and therefore

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let & — oo to find
/hm inf f, = / lim gy Mot lim /g;€ < lim inf /fn.
n—00 k—oo k—oo T—00
]

The following Corollary and the next lemma are simple applications of Corol-

lary

Corollary 7.13. Suppose that (£2,8, 1) is a measure space and {A,},~, C B
is a collection of sets such that u(A; N A;) =0 for all i # j, then

p(UpyAn) = Z p(An)-
n=1
Proof. Since

w(Un Ay = / Ly 4, dp and
2

> nan) = [ 3" 1a,du
n=1 2 =1

it suffices to show

o0
Z la, = 1u= 4, p—ae. (7.5)

n=1

Now 3707 14, > 1y a, and 3527 14, (w) # 1o

e 4, (w)iff we A;N Aj for
some i # j, that is

{w : Z la,(w) # 1= 4, (W)} = Ui Ai N A
n=1
and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (7.5 and hence the corollary. [
Lemma 7.14 (The First Borell — Cantelli Lemma). Let (2,8, ) be a
measure space, A, € B, and set
(o)
{4, i.0.} ={w € 2 :w € A, for infinitely many n’s} = ﬂ U A,

N=1n>N

If 3% u(Ay) < oo then p({A, i.0.}) =0.
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Proof. (First Proof.) Let us first observe that

{4, i.0.} = {w € : ilAn(w) = oo}.

n=1

Hence if Y | 1(A,,) < co then
oo > Zu(An):Z/ 1And,u:/ ZlAndu
n=1 n=17% 2 =1

o0
implies that > 14, (w) < oo for y - a.e. w. That is to say u({4, i.o.}) = 0.

n=1
(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

w(A, io.) = A}igloou U A,
n>N

< &
hS ngnoo Z 1(An)

n>N
and the last limit is zero since > - | pu(A,) < oo. [

Ezample 7.15. Suppose that (2,8, P) is a probability space (i.e. P(£2) = 1)
and X, : 2 — {0, 1} are Bernoulli random variables with P (X,, = 1) = p,, and
P(X,=0)=1-p,. If > p, < 0o, then P (X, =11i0.) =0 and hence
P (X, =0 a.a.) =1. In particular, P (lim,_,c X, =0) = 1.

7.2 Integrals of Complex Valued Functions

Definition 7.16. A measurable function f : 2 — R is integrable if f, =
flgpsoy and f— = —f 1gp<oy are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

/(Zfd/i:/gﬁdu—/nffdu-

To shorten notation in this chapter we may simply write [ fdu or even [ f for
dpu.
Jo fdu

Convention: If f, g : £2 — R are two measurable functions, let f + g denote
the collection of measurable functions h : £2 — R such that h(w) = f(w) + g(w)
whenever f(w)+ g(w) is well defined, i.e. is not of the form oo — 0o or —oo 4 .
We use a similar convention for f — g. Notice that if f,g € L!(u;R) and
hi,ho € f + g, then hy = hy a.e. because |f| < oo and |g] < oo a.e.
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Notation 7.17 (Abuse of notation) We will sometimes denote the integral
Jo fdp by p(f) . With this notation we have pu(A) = (14) for all A € B.

Remark 7.18. Since
J <|fI < fe + f-,

a measurable function f is integrable iff [ |f| dp < co. Hence

L' (i R) := {f:Q—>R: fismeasurablcand/|f| du<oo}.
Q

If f,g € L' (;R) and f = g a.e. then fi = g+ a.e. and so it follows from
Proposition that [ fdp = [ gdp. In particular if f,g € L' (u;R) we may

define
|+ adn= [ na

where h is any element of f + g.

Proposition 7.19. The map
fel'(wR) — | fdueR
0

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
L' (u;R) such that f < g a.e.

Proof. Let f,g € L' (1;R) and a,b € R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af +bg € L (u; R)
because

laf +bgl < lal |+ [bl|g] € L' (11:R).

If a < 0, then
(af)s = —af— and (af)- = —afy

Jar=a[sva[ti=a(ft.- [£)=a]1

A similar calculation works for ¢ > 0 and the case a = 0 is trivial so we have

shown that
/af = a/f.

Now set h = f +g. Since h =hy — h_,

so that

hy —ho=fr—f-+9+—9g-

or
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hy+f-+g9-=h_+fi+9+.

T g e e s
S S I P A I Iy

Finally if f1 — f- = f < g=g94+ —g- then fi +¢9- < gy + f- which implies

that
/f++/g,§/g++/f,
or equivalently that

1= 5% [ fore o

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [7.10] |

Therefore,

Definition 7.20. A measurable function f
Jo If] dp < co. Analogously to the real case, let

2 — C is integrable if

Ll(,u;(C):—{f:.QH(C: fismeasumbleand/\ﬂ du<oo}.
2

denote the complex valued integrable functions. Because, max (|Re f|, [Im f]) <

fI < V2max (|Re f|, [Im f]), [|f] dp < oo iff
/|Ref|du+/\1mf\du<oo.
For f € L (u;C) define

/fdu:/Refd,u—l-i/Imfdu.

It is routine to show the integral is still linear on L! (1;C) (prove!). In the
remainder of this section, let L' (i) be either L' (1;C) or L' (u;R). If A € B
and f € L' (u;C) or f: 2 — [0, 0] is a measurable function, let

/A fp = /!2 Lafdp.
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Proposition 7.21. Suppose that f € L (u;C), then

/Q fdu'< /Q fldp. (7.6)

Proof. Start by writing [, f du = Re®® with R > 0. We may assume that
R = | /. o fdu| > 0 since otherwise there is nothing to prove. Since

Rze’“’/ﬁf dMZ/Qe*“’f duz/ﬂRe(e’wf)du—i—i/Im(e’“’f)du,

9]

it must be that fQ Im [e’wf] dp = 0. Using the monotonicity in Proposition

/Qfdﬂl:/(2Re(e_i9f)d“</Q‘Re(e_wf)|du</g|f|du.

Proposition 7.22. Let f,g € L (1), then
1. The set {f # 0} is o — finite, in fact {|f| = L} 1 {f # 0} and p(|f] > L) <

oo for all n.
2. The following are equivalent

a) [of=[gp9 foral E€B
b)(];\f—m:o

¢) f=g ae

Proof. 1. By Chebyshev’s inequality, Lemma

u71= 2 < [ 1fldn < o0

for all n.
2. (a) => (c) Notice that

[Ef:/Eg@ﬁE(f—m:o

for all £ € B. Taking E = {Re(f —¢) > 0} and using 1pRe(f —g) > 0, we
learn that

OzRe/E(f—g)d,u:/lERe(f—g):>1ERe(f—g):0a.e.

This implies that 1y = 0 a.e. which happens iff
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1 ({Re(f —g) > 0}) = p(E) = 0.

Similar p(Re(f —g) < 0) = 0 so that Re(f —g) = 0 a.e. Similarly, Im(f —¢g) =0
a.e and hence f —g =0 a.e., i.e. f =g a.e.
(¢) = (b) is clear and so is (b) = (a) since

’/Ef_/Eg‘S/If—m:o.

Lemma 7.23. Suppose that h € L' (1) satisfies
/ hdup >0 for all A € B, (7.7)
A

then h > 0 a.e.

Proof. Since by assumption,
0 :Im/ hdy = / Im hdp for all A € B,
A A

we may apply Proposition to conclude that Imh = 0 a.e. Thus we may
now assume that A is real valued. Taking A = {h < 0} in Eq. (7.7) implies

/1A\h|d,u:/—1Ahd,u=—/hdu§0.
Q Q A

However 1,4 |h| > 0 and therefore it follows that [, 14 |h|dp = 0 and so Propo-
sition implies 14 |h| = 0 a.e. which then implies 0 = pu (A) = p (h < 0) = 0.
n

Lemma 7.24 (Integral Comparison). Suppose (£2,B, 1) is a o — finite mea-
sure space (i.e. there exists 2, € B such that 2, T 2 and u(£2,) < oo for all
n) and f,g: 2 — [0,00] are B — measurable functions. Then f > g a.e. iff

/ fdu > / gdu for all A € B. (7.8)
A A

In particular f = g a.e. iff equality holds in Eq. @

Proof. It was already shown in Proposition that f > g a.e. implies Eq.
(7.8)). For the converse assertion, let B, := {f <nlg, }. Then from Eq. (7.8),

00 > np (§2,,) > /lendu > /ngndu
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from which it follows that both fl1g, and glp, are in L' (1) and hence h :=
flp, —glp, € L' (). Using Eq. (7.8)) again we know that

/h:/lenmA_/ngmAZOforallAEB.
A

An application of Lemma implies h > 0 a.e., i.e. flg, > glp, a.e. Since
B, T {f < oo}, we may conclude that
flifeoey = lim flp, > lim glp, = glijco) ae.

Since f > g whenever f = co, we have shown f > g a.e.
If equality holds in Eq. (7.8)), then we know that ¢ < f and f < g a.e., i.e.

f=gae. [
Notice that we can not drop the o — finiteness assumption in Lemma
For example, let 4 be the measure on B such that u(A4) = co when A # (),
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ()
when they are both zero) in Eq. holds even though f < g everywhere.

Definition 7.25. Let (2,8, 1) be a measure space and L*(p) = LY(92,B, 1)
denote the set of L' (u) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

I£ =gl = [ 17 =gl d

and into a metric space using p1(f,g) = ||f — g1 -

Warning;: in the future we will often not make much of a distinction between
L'(u) and L (u) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 7.26. More generally we may define LP(u) = LP(£2, B, u) for p € [1,00)
as the set of measurable functions f such that

/ 1P dyt < oo
0

modulo the equivalence relation; f ~ g iff f = g a.e.

We will see in later that

1/p
e = ([ 1) for € 220
is a norm and (LP(u), ||-||.») is a Banach space in this norm and in particular,

1f +gll, < If1l, + llgll, for all f,g € LP (n).
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Theorem 7.27 (Dominated Convergence Theorem). Suppose f,, gn,g €

L' (u), fo = f ae, [fu]l < gn € L' (1), gn — g ae. and [, gndp — [, gdp.
Then f € L (u) and

fdp = lim fndp.
Q h—oo /o
(In most typical applications of this theorem g, = g € L' (i) for all n.)

Proof. Notice that |f| = limy, oo |[fn| < limpoo |gn] < g a.e. so that
f € L'(u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

[ (o D= [ timint g = fu) < timint [ (0% 1)
(9] (9} n—00 (7}

= lim gndp + lim inf (:l:/ fnd,u>

/gdu—i—liminf <:|:/ fndu)
Q n—0o0 Q

Since liminf,,_ . (—a,) = — limsup a,,, we have shown,
n—oo

liminf,, fQ fndu
dp+ du < d :
/qu /Qf u_/Qg u+{hgsogpf9fndu

and therefore

limsup/ fnd,ug/ fdu < liminf/ fndp.

n—oo

This shows that lim [, f,dp exists and is equal to [, fdp. n

Exercise 7.2. Give another proof of Proposition by first proving Eq. (7.6
with f being a simple function in which case the triangle inequality for complex
numbers will do the trick. Then use the approximation Theorem [6.39)along with
the dominated convergence Theorem [7.27] to handle the general case.

Corollary 7.28. Let {f,},-, C L'(u) be a sequence such that
ZZO:1 ||fn”Ll(H) < 00, then Zzozl n 18 convergent a.e. and

/ (i_ojl fn> dy — f}l | .
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Proof. The condition 3777, || fnll11(,) < oo is equivalent to 3572 [fu] €

L' (). Hence Y°°°, f,, is almost everywhere convergent and if Sy 1= YN f,.,
then

N [e%s)
‘SN| < Z|fn| < Z|fﬂ‘ € Ll (.u)
n=1 n=1

So by the dominated convergence theorem,

fnd:/lidezlim/Sd
A(; H n N—oo Nap N—oco Jn Nap
N 00
Jim S [ =3 [ fud
=1 n=1

n

Ezample 7.29 (Sums as integrals). Suppose, 2 = N, B := 2V 1 is counting
measure on B (see Example , and f: N — C is a function. From Example
[7.8] we have f € L' (u) iff Y07, |f (n)] < oo, ie. iff the sum, Y07 f(n) is
absolutely convergent. Moreover, if f € L (1), we may again write

n=1

and then use Corollary to conclude that

/Nfdui

n=1

/N F) Lmydn =3 F ) u(in) =3 F ().

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.
However if f(n) = (—1)" %, then

0o N
n;f(n) =ngnoo;f<n)

is perfectly well defined while fN fdp is not. In fact in this case we have,

/Nfidu = o0.

The point is that when we write Y - | f (n) the ordering of the terms in the
sum may matter. On the other hand, fN fdu knows nothing about the integer
ordering.
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The following corollary will be routinely be used in the sequel — often without
explicit mention.

Corollary 7.30 (Differentiation Under the Integral). Suppose that J C R
is an open interval and f :J x 2 — C is a function such that

1. w — f(t,w) is measurable for each t € J.
2. f§t0, ) € LY () for some to € J.
3. %t(t,w) exists for all (t,w).

4. There is a function g € L* (1)

%t(t,-)’ < g for each t € J.

Then f(t,-) € L'(u) for all t € J (ie. [,|f(t,w)]du(w) < o0), t —
fQ f(t,w)du(w) is a differentiable function on J, and

/ftwdu /a (t, w)dpu(w).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

g{(t w) = lim n(f(t+n"'w) - f(t,w))
and therefore, for w — %(t,w) is a sequential limit of measurable functions
and hence is measurable for all ¢ € J. By the mean value theorem,

lf(t,w) — f(to,w)] < g(w) |t —to| for allt € J (7.9)
and hence
[f(t,w)| < [f(t,w) = fto,w)| + | f(to, w)| < g(w) [t —to| + | f(to,w)| -
This shows f(t,-) € L' (u) for all t € J. Let G(t) := [, f(t,w)du(w), then
G(t)—G(o) _ [ f(t,w)— f(to,w)
t—to _/ t—to dp(w).

By assumption,

i L) = o) O e 0
t—to t— tO at

and by Eq. (79),

ft,w) = f(to,w)
t—to

< g(w) for all t € J and w € £2.
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Therefore, we may apply the dominated convergence theorem to conclude

lim G(tn) lim / F(tn,w) — to’w)d,u(w)

n— o0 ty 7250 tn —to

:/ lim f(t"’w)_f(to’w)du(w)
0

n— o0 tn —to

= [ Shtow)dute)

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =
G(t)—G(to)
t—to

exists and

mmzégwmwm.

limtﬂt(]

Corollary 7.31. Suppose that {an}zozo C C is a sequence of complexr numbers
such that series
o0
= Z an(z — 29)"
n=0

is convergent for |z — zo| < R, where R is some positive number. Then f :
D(zp, R) — C is complex differentiable on D(z, R) and

g nan(z — 2z0)"

By induction it follows that f*) exists for all k and that

Z nan(z — 20)" L. (7.10)

oo

f®(z) Z (n—1)...(n—k+Da,(z — 20)" .

Proof. Let p < R be given and choose r € (p, R). Since z = 29 +r €

n

D(zp, R), by assumption the series > a,r

n=0
M := sup,, |a,r™| < co. We now apply Corollary with X = NU{0}, pu
being counting measure, 2 = D(zo, p) and g(z,n) := a,(z — 29)". Since

is convergent and in particular

19'(z,1)| = [nan(z — 20)" | < nlan| p"
1 n—1 1 n—1
(&) o< o (0)
r r r r
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and the function G(n) := Xn (g)nil is summable (by the Ratio test for exam-
ple), we may use G as our dominating function. It then follows from Corollary

LL.o0
Z an(z — 20)"

is complex differentiable with the differential given as in Eq. (7.10). [

f(Z)=/X (2, m)dp(n

Definition 7.32 (Moment Generating Function). Let (§2, B, P) be a prob-
ability space and X : {2 — R a random wvariable. The moment generating
Sfunction of X is Mx : R — [0, 00| defined by

Mx (t) :==E [¢"¥].

Proposition 7.33. Suppose there exists ¢ > 0 such that E [65|X‘} < 00, then
Mx (t) is a smooth function of t € (—¢,€) and

=Y —EX" if [t| <e. (7.11)
— nl
In particular,
d n
EX" = (dt> li=oMx (t) for all n € Ny. (7.12)

Proof. If || < ¢, then

nzo ighe 1

it !X < eI for all |t| < e. Hence it follows from Corollary that, for
t| <e,

o0

E?’L
S x| - B[] <o

n=0

E

0 n X un
tX n n
Mx (t)=E[eX] =E Zn!X]: —EX".
n=0 n=0
Equation (7.12]) now is a consequence of Corollary |

Exercise 7.3. Let d € N, 2 = N&, B =29 11 : B — Ny U {oo} be counting
measure on {2, and for x € R% and w € §2, let 2% := %" ... 2. Further suppose
that f : 2 — C is function and r; > 0 for 1 <+ < d such that

S 1f @)l /|f

wes?

| ¥ dp (w) < oo,
r4) . Show;

where r := (rq,.. .,
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1. There is a constant, C' < oo such that |f (w)| < £ for all w € £2.
2. Let

U::{xERd:|xi|<n—Vi} andU:{xeRd:|xi|§riVi}

Show Y .o |f (w)a¥| < oo for all z € U and the function, F : U — R
defined by
x) = Z f (w)z* is continuous on U.
we s
3. Show, for all z € U and 1 < i < d, that

%F (x) = Z wif (w)x“ ™%

wes?

0,1,0,...,0) is the i*® — standard basis vector on R<.

« 9 L o &d | d ' .
4. For any « € {2, let 0% := (—) (—) and o! :=[];_; a;! Explain

where ¢; = (0, ...,

oz Oxq
why we may now conclude that

0°F (z) = Z alf (w)z“~ for all x € U. (7.13)
wes?
5. Conclude that f (a) = M for all o € (2.
6. If g : 2 — C is another functlon such that ) g (w)a¥ =3 .o f(w)a¥

for x in a neighborhood of 0 € R?, then g (w) = f (w) for all w € £2.

Solution to Exercise ([7.3]). We take each item in turn.

1. If no such C existed, then there would exist w(n) € {2 such that
If (w(n))|r“™ > n for all n € N and therefore, Y _,|f (W) > n
for all n € N which violates the assumption that ) g [f (w)|r* < oco.

2. If * € U, then [2¢] < r* and therefore )  ,|f(w)z¥] <
Yowen lf (W)|rY < oo. The continuity of F' now follows by the DCT
where we can take g(w) |f (w)|r as the integrable dominating
function.

3. For notational simplicity assume that ¢ = 1 and let p; €
Then for |z;| < p;, we have,

(0,7;) be chosen.

w—er

"Ulf ()

.. C
| Swip? ™ =g (W)

where p = (p1,...,pa4) . Notice that g (w) is summable since,
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w%g@ﬁ% <”i> s ()
. p\"

_0112 _n wlz—o 1(ﬁ) =

where the last sum is finite as we saw in the proof of Corollary [7.31] Thus
we may apply Corollary in order to differentiate past the integral (=
sum).

4. This is a simple matter of induction. Notice that each time we differentiate,
the resulting function is still defined and differentiable on all of U.

5. Setting z = 0 in Eq. (7.13]) shows (0*F) (0) = alf (a).
6. This follows directly from the previous item since,

olf (a (Z e ) om0 = 0" (Z g () > oo = alg ().
wen we

7.2.1 Square Integrable Random Variables and Correlations

Suppose that (2,8, P) is a probability space. We say that X : 2 — R is
integrable if X € L' (P) and square integrable if X € L?(P). When X is
integrable we let ax := EX be the mean of X.

Now suppose that X,Y : 2 — R are two square integrable random variables.
Since

0<[X —Y* =X+ |V|" —2|X]||Y],
it follows that
XY <5 \Xl +5 IYI eL'(P).

In particular by taking Y = 1, we learn that |X| < % (1 + |X2|) which shows
that every square integrable random variable is also integrable.

Definition 7.34. The covariance, Cov (X,Y), of two square integrable ran-
dom variables, X and Y, is defined by

Cov(X,)Y)=E[(X —ax)(Y —ay)]| =E[XY]-EX -EY
where ax :=EX and ay := EY. The variance of X,
Var (X) := Cov (X, X) = E[X?] — (EX)? (7.14)

We say that X and Y are uncorrelated if Cov (X,Y) = 0, i.e. E[XY] =
EX - EY. More generally we say {Xy},_, C L*(P) are uncorrelated iff
Cov (X;,X;) =0 for all i # j.
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It follows from Eq. (7.14]) that

Var (X) <E [X?] for all X € L*(P). (7.15)

Lemma 7.35. The covariance function, Cov (X,Y) is bilinear in X andY and
Cov (X,Y) =0 if either X orY is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k*Var(X). If {Xy},_, are uncorrelated L* (P) -
random variables, then

Var (5, Z Var (Xy)

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X);
Var (X + k) =Cov(X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)
=Cov(X +k,X) =Cov (X, X)+ Cov (k, X)
= Cov (X, X) = Var (X),

wherein we have used the bilinearity of Cov(:,-) and the property that
Cov (Y, k) = 0 whenever k is a constant. ]

Exercise 7.4 (A Weak Law of Large Numbers). Assume {X, }, -, is a se-
quence if uncorrelated square integrable random variables which are identically

distributed, i.e. X, 4 x,, for all m,n € N. Let S,, :=>"}_; X, p := EX}, and
2 .= Var (X}) (these are independent of k). Show;

E {S"} = i
n
2 2
E(Sn—,u> = Var (SH> :0—, and
n n n

2
Sn_M‘M)SU

n

(

for all € > 0 and n € N. (Compare this with Exercise )

7.2.2 Some Discrete Distributions

Definition 7.36 (Generating Function). Suppose that N : 2 — Ny is an
integer valued random variable on a probability space, (2,8, P). The generating
function associated to N is defined by

Gy (2): ZP =n)z" for |z| < 1. (7.16)
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By Corollary it follows that P (N =n) = %GS\?) (0) so that Gy can
be used to completely recover the distribution of N.

Proposition 7.37 (Generating Functions). The generating function satis-
fies,

GO =E[NWN-1)...(N—k+1)2¥"*] for |2 <1
and

e (1):11%111@(’“) (2) =E[N(N—=1)...(N —k+1)],

where it is possible that one and hence both sides of this equation are infinite.
In particular, G' (1) :=lim,11 G’ (2) = EN and if EN? < oo,

Var (N) =G" (1) + G (1) - [¢' (1)]°. (7.17)
Proof. By Corollary [7.31] for |2| < 1,

Gg\],c)(z):iP(N:n)~n(n—1)...(n—k+1)z”_k
n=0

=E[N(N—-1)...(N—k+1)2N"*]. (7.18)
Since, for z € (0,1),
0SN(N—-1)...(N-k+1D2N"*"TNN-1)...(N-k+1) as 2 ] 1,
we may apply the MCT to pass to the limit as z T 1 in Eq. to find,

e (1):11%1110(’“) (2) =E[N(N—=1)...(N —k+1)].

Exercise 7.5 (Some Discrete Distributions). Let p € (0,1] and A > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function, G (2), in each case and use it to verify the given
formulas for EN and Var (N).

1. Bernoulli(p) : P(N=1) = p and P(N =0) = 1 — p. You should find
EN = p and Var (N) = p — p°.

2. Binomial(n,p) : P(N=k) = (Z)pk (1 —p)n_’C for k = 0,1,...,n.
(P (N =k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n(ppr).

3. Geometric(p) : P(N=k) = p(1 —p)k*1 for k € N. (P(N =k) is the
probability that the &*™® — trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 132,

p2
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4. Poisson(\) : P(N =k) = %e‘A for all k& € Ny. You should find EN =\ =
Var (N).

Exercise 7.6. Let S, ,, 4 Binomial(n,p), k € N, p, = A\, /n where A\, = A >0
as n — o0o. Show that

)\k
lim P (S,,, = k)

=—e

A_p (Poisson (\) = k).

Thus we see that for p = O (1/n) and k not too large relative to n that for large
n’

k
()" —pn
k! '
(We will come back to the Poisson distribution and the related Poisson process
later on.)

P (Binomial (n, p) = k) = P (Poisson (pn) = k) =

Solution to Exercise ([7.6)). We have,

P(Supe =)= (1) O/t (=
S Mam-1)...(n—k+1)

n—k
The result now follows since,
-1)...(n— 1
lim "2 =D k(" E+D
n—oo n

and

lim In(1— XA, /n)" "= lim (n—k)In(1 - \,/n)

n—oo n—oo

=— lim [(n—k)A\y/n] = —A\.

n—oo

7.3 Integration on R

Notation 7.38 If m is Lebesgue measure on By, f is a mon-negative Borel
measurable function and a < b with a,b € R, we will often write f; f(z)dz or

[? fdm for Jasyrz fm.

Ezample 7.39. Suppose —oco < a < b < 00, f € C([a,b],R) and m be Lebesgue
measure on R. Given a partition,

T={a=ay<ay < <a,=b},
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let
mesh(r) := max{|a; —a;—1|:j=1,...,n}
and )
fx (‘T) = Z / (al) l(az,al+1](‘r)'
1=0

Then

b n—1 n—1

[t dm =3 1 @ m (e aal) = Y F @) o = an)
@ 1=0 1=0

is a Riemann sum. Therefore if {m;},—; is a sequence of partitions with
limy_ o, mesh(7m) = 0, we know that

b b
khﬁrgo/a frn dm:/a f(x)dx (7.19)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a,b], it easily follows that limy_ o fr, (z) = f (2) and that |f, (z)] <
g(x) == M1(gy) (v) for all z € (a,b] where M := max ¢4 |f (7)] < co. Since
fR gdm = M (b — a) < oo, we may apply D.C.T. to conclude,

b b b
klim / fra dmz/ klim fra dm:/ f dm.

This equation with Eq. (7.19)) shows

/abfdm:/abf(x)d:r

whenever f € C([a,b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem [7.68| below for a more general statement
along these lines.

Theorem 7.40 (The Fundamental Theorem of Calculus)
—00 < a<b<oo, feC((ab),R)NL ((a,b),m) and F(z) = [ f(y
Then

Suppose

1. F € C([a,b],R) N C*((a,b),R).

2. F'(z) = f(x) for allme(a,b).

3. If G € C([a,b],R) N C*((a,b),R) is an anti-derivative of f on (a,b) (i.e.
[ =G|(ap) then

b
/ F(@)dm(z) = G(b) — Gla).
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Proof. Since F(z) := [ 1(q.2)(y)f(y)dm(y), limz_. 14 2)(y) = 1(a,2)(y) for
m — a.e. y and |1(a,x) y) fy)] < 1(a7b)( )| f(y)| is an L' — function, it follows
from the dominated convergence Theorem that F is continuous on [a, b].
Simple manipulations show,

1) - s dmy)|ith >0
B |2 1) = F@)] dm(y)]| i <0
L) ~ @) dm(y) ifh > 0
= |h] fm\ (y) — f(z)|dm(y) if h <0
<sup{|f(y) — f(@)| :y € [z — ||,z + |A]]}

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F’ = f on (a,b).

For the converse direction, we have by assumption that G'(x) = F'(z) for

€ (a,b). Therefore by the mean value theorem, F' — G = C for some constant

F(zx+h)— F(x) _
T

C. Hence
b
| #@dmiz) = Fo) = F®) - F(a)
= (G(b) +C) — (G(a) + C) = G(b) — G(a).
]
We can use the above results to integrate some non-Riemann integrable

functions:

Example 7.41. For all A > 0,

e 1
/0 e Mdm(x) = A7 and /Rmdm(w) = .

The proof of these identities are similar. By the monotone convergence theorem,
Example [7.39 and the fundamental theorem of calculus for Riemann integrals
(or Theorem below),

e} N N
/ e Mdm(x) = lim e Mdm(x) = lim e Mdg
0

— — 1 Az | N Afl
Ngnoo |O
and
1 N N
1 g R oy
/R 1+ 22 dm() N N 1+22 dm() N 1+ 22
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90 7 Integration Theory

Let us also consider the functions z7P. Using the MCT and the fundamental
theorem of calculus,

1
/(0 L dm(z) = lim 1( 1]( ) L dm( )

’1] xP n—oo Jo
, ! gt
= lim —dzr = lim
n—oo [1 xP n— oo l—p l/n
1 .
oo ifp>1

If p=1 we find

1 "1
/ — dm(z) = lim —dx = lim ln(w)H/n =00

P

Exercise 7.7. Show
> 1 o ifp<1
/1 xpdm():{pllifp>1'

Ezample 7.42 (Integration of Power Series). Suppose R > 0 and {a,},, is a
sequence of complex numbers such that Y7 |a,|r™ < oo for all r € (0, R).
Then

,6 oo
[ (S ante) = Yo [ sante) = 3 P
@ n=0
for all —R < a < 8 < R. Indeed this follows from Corollary since
© B N e 18] N la N
S [ lellaldmia) < 3 [ lenllal" dmie) + [ Ja o] dm(a)
n=0"% n=0 0 0

[e'e} n+1 n+1 [e’]
18" + |af
< ng:0|an| T < 2rnE:0|an|7a" < 00

ﬁn-&-l an+1

where r = max(|4], |a|).

Ezxample 7.43. Let {r,}52, be an enumeration of the points in Q N [0,1] and
define

with the convention that
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1

|z — 7y

=bifx=r,

Since, By Theorem

/1 Ly / L d+/” L g
—dr = —dzx —dx
0 ,/\x_rn| rn VI —Tp o VIn—%

=2VE —raly, =2V —aly =2 (VI—rn — Vi)

<4,
we find
f@)dm(x) = 2=n / dzx < 27" =4 < 0.
[0,1] ; [0,1] \/ T — Ty Z

In particular, m(f = c0) = 0, i.e. that f < oo for almost every x € [0, 1] and
this implies that

< oo for a.e. z € [0,1].

1
L —
nz::l Ve —rnl

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 7.44. The following limit holds,

n

i [ (1- E)n dm(z) = 1. (7.20)
n—oo [q n
DCT Proof. To verify this, let fu(z) = (1—%)"1,(z). Then
lim,, 00 frn(x) = =% for all z > 0. Moreover by simple Calculuﬂij

l—x<e*forallz e R.

Therefore, for x < n, we have

0<1-L<ea/m — (1 . E)n < {e*z/"r — e,

3

from which it follows that

0 < fu(x) <e® forall z > 0.

! Since y = 1 — x is the tangent line to y = e~ ® at = 0 and e~ is convex up, it

follows that 1 —x < e~ 7 for all x € R.
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From Example we know
/ e fdm(z) =1 < oo,
0

so that e~ is an integrable function on [0,00). Hence by the dominated con-
vergence theorem,

n o0

lim ; (1—£) dm(z) = lim fn(x)dm(x)

n—oo

_ /O T lim £ (@)dm() = /0 " etdm(z) = 1.

MCT Proof. The limit in Eq. (7.20) may also be computed using the
monotone convergence theorem. To do this we must show that n — f, (z) is
increasing in n for each x and for this it suffices to consider n > z. But for
n>z,

where, for 0 <y < 1,

Since h (0) = 0 and

1 1
W (y) = Y

— + +
-y 1-y (1-y)°

it follows that A > 0. Thus we have shown, f, (z) 1 e~ as n — oo as claimed.

Ezample 7.45. Suppose that f, (z) = nlgi(x) for n € N. Then
lim,, o0 fr (z) = 0 for all x € R while

lim [ f,(z)dx= lim 1:1;&0:/ lim f, (z)dx.
n—oo Jr n—oo RN—>®

The problem is that the best dominating function we can take is

n+l'n

g(m)zsgpfn(x)22n~1( 11 ().

Notice that

>0 1 1 1
d: . _—— = =
Lo@ar=3n (3 -0) = g ==
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Ezample 7.46 (Jordan’s Lemma). In this example, let us consider the limit;

n—oo

g 0 .
lim cos (sin ) e~ 5@ gp.
0 n

Let 0
fn (0) = 1(0,x) (8) cos <sin n) p—nsin(0).
Then
[fal < L0m € L* (m)
and

lim f, (9) = 1(O,7r] (9) 1{7\'} (0) = 1{7r} (0) .

Therefore by the D.C.T.,
™ 9 X
lim [ cos <sin ) e~msint0) gy = / Liqy (0)dm () = m ({n}) = 0.
0 n R

n—oo

Example 7.47. Recall from Example that

A= / e~ dm(z) for all A > 0.
[0,00)
Let € > 0. For A > 2¢ > 0 and n € N there exists C),(g) < oo such that
o< _i ne_)\gg — xne—)\g; < Cn(g)e—sm.
< 5y <

Using this fact, Corollary and induction gives

d\" d\"
D\t s T -1 _ _ -z
n!\ ( d)\> A /[0’ : ( d)\) e "*dm(x)

= / z"e N dm(x).
[0,00)

nl=A\" /[0 )x"e_)‘”dm(x). (7.21)
,00

That is

Remark 7.48. Corollary may be generalized by allowing the hypothesis to
hold for € X \ E where E € B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary to g(t) =
fooo ly<idm(z),

oy d [ 2 [0
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92 7 Integration Theory

The last integral is zero since %lmgt = 0 unless t = z in which case it is not
defined. On the other hand g(t) = ¢ so that g(¢t) = 1. (The reader should decide
which hypothesis of Corollary has been violated in this example.)

Exercise 7.8 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

sin( %)
Ll Jo” g e

1 14na?
2. lim Z dx
n—oo 0 (1+12 )™

3. nlirrgo fooo %‘Z/Qg) dz

4. For all a € R compute,

oo

f(a):= lim n(1 +n?z?) " 'dz.

Exercise 7.9 (Integration by Parts). Suppose that f,¢g : R — R are two
continuously differentiable functions such that f’g, fg’, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;

[r@ s@do=- [ 1@ @ (7.22)
R R

Similarly show that if Suppose that f, g : [0,00)— [0,00) are two continuously
differentiable functions such that f’g, fg’, and fg are all Lebesgue integrable
functions on [0, c0), then

/Oo f(@)-g(x)de=—f(0)g(0) - /OO f(@)- g (z)da. (7.23)
0 0

Outline: 1. First notice that Eq. holds if f (z) = 0 for |z| > N for
some N < oo by undergraduate calculus.

2. Let ¢ : R —[0,1] be a continuously differentiable function such that
P (z) =11if || <1 and ¢ (z) = 0if |x| > 2. For any € > 0 let ¢.(x) = ¢(ex)
Write out the identity in Eq. with f (x) being replaced by f (z) ¢e ().

3. Now use the dominated convergence theorem to pass to the limit ase | 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. .

Solution to Exercise (7.9)). If f has compact support in [—N, N] for some
N < oo, then by undergraduate integration by parts,
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N
/Rf <m>-g<x>dw=[Nf (2) - g () de
N
—f<x>g<x>\f_VN—/ f (@) g () de
/ f / f
Similarly if f has compact support in [0, 00), then
o N
/0 f<x>~g<x>dx:/0 f (@) g (@) d
N
z) [N — z)-q e
)13 / f (@) g (2)d

N
==f(0)g0) = [ f(z) g (2)da

- N f(zw) ¢ () dz

For general f we may apply this identity with f (x) replaced by ¥, (z) f (x) to
learn,

[ 5 @-a@v@dot [ f@)g@ @) de =~ [ 0@ ] @) @

(7.24)
Since 9. (x) — 1 boundedly and |[¢. (x)| = |y’ (ex)| < Ce, we may use the

DCT to conclude,
leifg/f 2) e (& d:v—/f
lgfg/f 2) e (& dx—/f
W (2)dz| < Ce - /|f

Therefore passing to the limit as € | 0 in Eq. (7.24]) completes the proof of Eq.

(7.22). Equation (7.23)) is proved in the same way.

Definition 7.49 (Gamma Function). The Gamma function, I' : R} —
R4 is defined by

x)dx, and

(x)]dr —0ase]0.

I'(z):= /000 u” e du (7.25)

(The reader should check that I'(x) < oo for all x > 0.)
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Here are some of the more basic properties of this function.
Ezample 7.50 (I' — function properties). Let I" be the gamma function, then;

1. I' (1) = 1 as is easily verified.
2. I'(x +1) = al(x) for all x > 0 as follows by integration by parts;

I'(z+1) :/ e Yyt du :/ u® <d e“) du
0 u 0 du

= x/ ut e du =z I'(x).
0

In particular, it follows from items 1. and 2. and induction that

I'(n+1)=nl!for alln € N. (7.26)
(Equation as also proved in Eq. (7.21)).)

3. I'(1/2) = y/m. This last assertion is a bit trickier. One proof is to make use
of the fact (proved below in Lemma [9.29)) that

/ e dr = \/j for all @ > 0. (7.27)

Taking a = 1 and making the change of variables, u = 72 below implies,
VT = / e dr = 2/ uH2edu = I'(1/2).
—0o0 0
> 2 > 2
Iru/2) = 2/ e " dr :/ e " dr
0 —0o0
=I1(1) = /~.

4. A simple induction argument using items 2. and 3. now shows that

r(ney) =R

277,

where (—1)!l:=1and 2n—1D!!=(2n—-1)(2n—3)...3-1for n € N.

7.4 Densities and Change of Variables Theorems

Exercise 7.10 (Measures and Densities). Let (X, M,p) be a measure
space and p : X — [0,00] be a measurable function. For A € M, set

v(A) = [, pdp.
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1. Show v : M — [0, 0] is a measure.
2. Let f: X — [0, 00] be a measurable function, show

/deVZ/Xfpdu. (7.28)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — C is in L(v) iff |f|p € L'(n)
and if f € L'(v) then Eq. still holds.

Solution to Exercise ([7.10)). The fact that v is a measure follows easily from
Corollary Clearly E holds when f = 1,4 by definition of v. It then
holds for positive simple functions, f, by linearity. Finally for general f € LT,
choose simple functions, ¢,,, such that 0 < ¢, T f. Then using MCT twice we
find

/fdl/: lim ppdry = lim / @npdu:/ lim ganpd,u:/ fpdu.

By what we have just proved, for all f: X — C we have

J 1= [ 1f1pa

so that f € L' (u) iff |f]p € L' (p). If f € L (1) and f is real,

Jsavr= [ eav— [ pav= [ gt [ ropa
:/X[fw*f—p]du:/xfpdu-

The complex case easily follows from this identity.

Notation 7.51 It is customary to informally describe v defined in Ezxercise

by writing dv = pdy.

Exercise 7.11 (Abstract Change of Variables Formula). Let (X, M, )
be a measure space, (Y, F) be a measurable space and f : X — Y be a mea-
surable map. Recall that v = f.u : F — [0,00] defined by v(A) := pu(f~1(A))
for all A € F is a measure on F.

/Ygdv=/x(90f) dp (7.29)

for all measurable functions g : ¥ — [0, oo]. Hint: see the hint from Exercise

10

1. Show
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2. Show a measurable function g : ¥ — C is in L'(v) iff go f € L'(u) and
that Eq. (7.29) holds for all g € L(v).

Ezample 7.52. Suppose (12, B, P) is a probability space and {X;}!"_, are random
variables on {2 with v := Lawp (X1,...,X,), then

E[g(Xl,...,Xn)]:/ngdz/

for all ¢ : R® — R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise with f = (Xy,...,X,) :
2 —R" and p = P.

Remark 7.53. As a special case of Example [7.52] suppose that X is a random
variable on a probability space, (£2,8, P), and F (z) := P(X < z). Then

E[f (X)) = / f (z) dF (2) (7.30)

where dF (z) is shorthand for dup (x) and pp is the unique probability measure
on (R, Bg) such that pup ((—o0,z]) = F (z) for all x € R. Moreover if F': R —
[0, 1] happens to be C'-function, then

dup (x) = F' (z) dm (z) (7.31)

and Eq. may be written as
E[f (X)) = / f (@) F' (z) dm. (x) (7.32)

To verify Eq. (7.31]) it suffices to observe, by the fundamental theorem of cal-
culus, that

b
uF((a,b]):F(b)—F(a):/ F’(x)dx:/( .

From this equation we may deduce that pp (A) = [, F'dm for all A € Bg.
Equation [7.32] now follows from Exercise [7.10]

Exercise 7.12. Let F' : R — R be a C'-function such that F’(z) > 0 for all
x € R and lim, o F(2) = +o0. (Notice that F is strictly increasing so that
F~!:R — R exists and moreover, by the inverse function theorem that F~! is
a C! — function.) Let m be Lebesgue measure on Bg and

-1

v(A) =m(F(A)) =m((F~) " (4)) = (F7'm) (4)
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for all A € Bg. Show dv = F’dm. Use this result to prove the change of variable
formula,

/hoF-F’dmz/hdm (7.33)
R R

which is valid for all Borel measurable functions h : R — [0, o0].

Hint: Start by showing dv = F’dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Exercise to
conclude dv = F’'dm on all of Bg. To prove Eq. apply Exercise with
g=hoF and f=F"1

Solution to Exercise (7.12). Let du = F'dm and A = (a,b], then
v((a,b]) = m(F((a,0])) = m((F(a), F(b)]) = F(b) — F(a)

while

b
w((a, b)) :/( ’ F’dm:/ F'(z)dx = F(b) — F(a).

It follows that both 4 = v = up — where up is the measure described in
Theorem [5.33] By Exercise with g =ho F and f = F~!, we find

/hoF-F’dm:/hoFdV:/hoFd(F*_lm):/(hoF)oF_ldm
R R R R

= / hdm.
R

This result is also valid for all h € L' (m).

7.5 Some Common Continuous Distributions

Ezample 7.54 (Uniform Distribution). Suppose that X has the uniform distri-
bution in [0, 5] for some b € (0,00), i.e. X, P =1 -m on [0,b]. More explicitly,

1 b
E[f(X)] = A f (z) dz for all bounded measurable f.

The moment generating function for X is;

ee} 1 . e o] bn .
= o) 1:th :

n=1 n=0
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On the other hand (see Proposition ,

t" n
Mx (t)=>" —EX
n=0
Thus it follows that b
EX"™ =
n+1
Of course this may be calculated directly just as easily,
EX’!L 1 /b nd 1 n+1|b bn
= — T r = ——-7XT = .
b Jo b(n+1) O n+1

Definition 7.55. A random wvariable T > 0 is said to be exponential with
parameter \ € [0,00) provided, P (T >t) = e~ for allt > 0. We will write

TLE (M) for short.

If A > 0, we have

P(T>t)=e M= e dr

—~
3

from which it follows that P (T € (t,t + dt)) = A;>0e~*dt. Applying Corollary
[7-30] repeatedly implies,

> dy [~ d
ET = e Mdr =\ —— MAr =M —— AT =271
;e ( d/\)/o v ( dA)

and more generally that

) k oo k
ET" = / e adr = A [~ / e dr = A (=L} At = et
. ) Jo d\

(7.34)
In particular we see that

Var (T) =2A"2 = A2 = A2 (7.35)

Alternatively we may compute the moment generating function for 7T,

My (a) :=E[e*T] = / e Ae NMdr
0
* A 1

= TN Ndr = = 7.36
/0 @ e TTANCa T 1-axt! (7.36)

which is valid for ¢ < A. On the other hand (see Proposition [7.33]), we know
that
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E[e Z ET"] for |a| < \.
n= O
Comparing this with Eq. (7.36) again shows that Eq. (7.34)) is valid.

Here is yet another way to understand and generalize Eq. (7.36)). We simply
make the change of variables, v = A7 in the integral in Eq. (7.34)) to learn,

oo
ET* = A—’f/ ube tdr = \F0 (k4 1).
0

This last equation is valid for all k¥ € (—1,00) — in particular k£ need not be an
integer.

Theorem 7.56 (Memoryless property). A random variable, T € (0, 0] has
an exponential distribution iff it satisfies the memoryless property:

P(T>s+tT>s)=P(T>t) foralls,t >0,

P(AOB)/ (B) when p(B) > 0. (Note that T <

where as usual, P (A|B) :
> 1 1 for all t > 0 and therefore that T = oo

E (0) means that P (T
a.s.)

Proof. (The following proof is taken from [33].) Suppose first that T' ) (A)
for some A > 0. Then

0=

P(T>s+t —Als+t)
P(T>s+tT>s)= ](D(Tjs))—ee_xs —eM=P(T>1).

For the converse, let g (t) := P (T > t), then by assumption,

g(t+s)

0 =P(T>s+tT>s)=P(T>t)=g(t)

whenever g (s) # 0 and ¢ (¢) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (¢t) = 0 for all £ > s. Thus it follows that

g(t+s)=g(t)g(s) forall s,t > 0.

Since T > 0, we know that ¢g(1/n) = P (T >1/n) > 0 for some n and
therefore, g (1) = g (1/n)" > 0 and we may write g (1) = e~* for some 0 < \ <
00.

Observe for p,q € N, g(p/q) = g(1/q)" and taking p = ¢ then shows,
e =g(1) =g (1/q)?. Therefore, g (p/q) = e *P/% 5o that g (t) = e~ for all
teQy :=QNR,. Given r,s € Q4 and ¢t € R such that r <t < s we have,
since ¢ is decreasing, that
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96 7 Integration Theory
e M =g(r)2gt)2g(s)=e.

Hence letting s Tt and r | t in the above equations shows that g (t) = e~ for
all t € Ry and therefore T ) (A). |

Exercise 7.13 (Gamma Distributions). Let X be a positive random vari-
able. For k,0 > 0, we say that X gGraurnrna(k:, 0) if

(X.P) (dz) = f (z;k,0) dz for z > 0,

where
—x/0

k 0 k 1 €
Find the moment generating function (see Definition n Mx (t) =E [etx ]
for t < 6~1. Differentiate your result in ¢ to show

for x > 0, and k,0 > 0.

EX" =k(k+1)...(k+m—1)0™ for all m € Ny.

In particular, E[X] = k6 and Var (X) = k6?. (Notice that when k = 1 and
f=x21 XLEMN).)

7.5.1 Normal (Gaussian) Random Variables

Definition 7.57 (Normal / Gaussian Random Variables). 4 random
variable, Y, is normal with mean u standard deviation o? iff

P(YeB)= / ¢~ 22 W= gy for all B € Bg. (7.37)

v 271'02

We will abbreviate this by writing Y N (,u,aQ) . When =0 and 0> =1 we
will simply write N for N (0,1) and if Y £ N, we will say Y is a standard
normal random variable.

Observe that Eq. (7.37) is equivalent to writing

E[f (V)] = y)e mm 0 dy

1
V2ro? Jr
for all bounded measurable functions, f : R — R. Also observe that Y 4

N (p, 02) is equivalent to Y LN + . Indeed, by making the change of variable,
y = oz + pu, we find
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E[f (0N + )] = V%/Rf(am+u)e‘%””2dw
_L — 52 (y )2@: -
—m/Rf(y)e v Tmz/Rf(
—1/2

y) e—ﬁ(y—uﬁdy.

Lastly the constant, (27r02) is chosen so that

1 1 1 1
e L = e [ =

see Example [7.50 and Lemma [9.29]

Exercise 7.14. Suppose that X <N (0,1) and f : R — R is a C! — function
such that X f (X), f'(X) and f (X) are all integrable random variables. Show

Example 7.58. Suppose that X £ N (0,1) and define o := E [X%] for all
k € Ny. By Exercise

ok = E[X?PH . X = (2k + 1) ay, with ag = 1.
Hence it follows that
ar=a9g=1, as =301 =3, a3 =5-3
and by a simple induction argument,
EX?* = oy, = (2k — 1)1, (7.38)

where (—1)!! := 0. Actually we can use the I" — function to say more. Namely
for any 8 > —1,

1 1 2 [ 1
]E|X\'8 = 7/ |€E|ﬁ e 3 dy = 1/ f/ 2Pem2 dg.
V2 Jr T Jo

NOI)V make the change of variables, y = 22/2 (i.e. z = /2y and dz = %yil/Qdy)
to learn,

1 e -
B = o [ ey oy

R / (B+1)/20=v,~1 gy — L o8/2p ,
\f 0 Y cvwe VT 2
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Exercise 7.15. Suppose that X £ N (0,1) and A € R. Show
f [ 1)\X:| (—AQ/Z) )

Hint: Use Corollary - to show, f’(A) = iE [Xe"*X] and then use Exercise
- to see that f’ () satisfies a simple ordinary differential equation.

Solution to Exercise (|7.15)). Using Corollary and Exercise

(7.39)

. d .
/ — E X iIAX — E _ iIAX
fT(\) =B [ X ] =i [dXe
=i-(iIA)E [e**] = =Af (\) with f(0) =
Solving for the unique solution of this differential equation gives Eq. ([7.39)).

Exercise 7.16. Suppose that X £ N (0,1) and ¢t € R. Show E[etX} =

exp (t2 / 2). (You could follow the hint in Exercise or you could use a
completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 7.17. Use Exercise and Proposition to give another proof
that EX2% = (2k — 1)!! when X < N (0,1).

Exercise 7.18. Let X < N (0,1) and o € R, find p: R, — R, := (0, 00) such
that

E[f (1X]")] = p(x)de

for all continuous functions, f : Ry — R with compact support in R;..

f(x)
Ry

Lemma 7.59 (Gaussian tail estimates). Suppose that X is a standard nor-
mal random variable, i.e.

P(XeA)= \/%/Ae_ﬁ/de for all A € B,

then for all x > 0,

1 x 2 1 2 1 __»
P(X>z)<min (= — ——e * /2, e /2>< /2, 7.40
X za)< (2 V2T V2rx =3¢ ( )

Moreover (see [35, Lemma 2.5]),

T T 1 2
P(X>z)>max(1- , e_‘”/Q) 7.41
X za)2 ( Vor a2+ 1+2r (7.41)
which combined with Eq. proves Mill’s ratio (see [15]]);
 P(X>4)
2mx
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Proof. See Figure Where; the green curve is the plot of P (X > ), the
black is the plot of
6—12/2> ,

. (1 1
min | = — e
2 2mx
the red is the plot of %e"”2/2, and the blue is the plot of

(1 x x 1 _I2/2)
max | — — , e .
2 Vor 2 +1.2r

The formal proof of these estimates for the reader who is not convinced by

—I2/2 1
2rx

0125

o 1 2 3 4

1

Fig. 7.1. Plots of P (X > z) and its estimates.

Figure [7.1] is given below.
We begin by observing that

1
P(X>a)=— [ e¥/dy< /
F/ \/ﬂ
L1 g Y

Vora ™ = \/27r33

If we only want to prove Mill’s ratio (7.42)), we could proceed as follows. Let
a > 1, then for = > 0,

1 o 2
P(X>z)=— eV /2dy
S

a2
Yy /Qdy

— e, (7.43)

V2rx

/ e~V /2d 1 ie—yz/2|yio¢x
\/271' \/ 2T ax y=r
— Lie—xz/Q [1 _ e—a2x2/2
V2T ax
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98 7 Integration Theory

from which it follows,

lim inf [\/27mce’”2/2~P(X > w)} >1/atlasall.

r— 00

The estimate in Eq. (7.43) shows limsup,,_, ., [ 2rae” /2. P (X >z)| <1
To get more precise estimates, we begin by observing,

11
P(Xza)=g~ 7= eV 2qy (7.44)

xT
Lo L [eotrg,c L L a2

< — e
- 2 \/27‘(‘ 0 2 \/27T

This equation along with Eq. (7.43]) gives the first equality in Eq. (7.40)). To
prove the second equality observe that /27w > 2, so

1 1 2 1 2
e T2 et 2 > 1
e e if x .
Vor -2 -
For x <1 we must show,
1 T 2 1 2
- —x /2< - —z%/2
e e
2 /27 -2

or equivalently that f (z) := e /2 \/gx < 1for 0 <z < 1. Since f is convex
(f” (@) = (22 +1) /2 > o) L F(0) =1and f(1) =085 < 1, it follows that
f <1on[0,1]. This proves the second inequality in Eq. (7.40).
Tt follows from Eq. (7.44) that
1 1 z 2
P(X>z)==——— [ e v/%
(X 22)=7 Nzl y

1 1 z 1 1
D — ldy = = — ——ux for all z > 0.
2 o /0 4 2 \or o
So to finish the proof of Eq. (7.41)) we must show,

1

z) = ——ge~ /2 T T
F@)i= e (14 4%) P(X 2 )

1 2 2

- = —z/2 1 2 / -y /2 }

= xe +x e d <Qforall 0 <z < .
V2”|: ( ) x V| = -

This follows by observing that f (0) = —1/2 < 0, limg1o f () = 0 and

f/ (Z) _ \/% [67‘1’2/2 (1 71,2) foP(X 2 SC)+ (1+$2) 67m2/2:|
— 1 —z2/2_$
—2(\/%8 P(XZZU)>ZO7

where the last inequality is a consequence Eq. (|7.40).
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7.6 Stirling’s Formula

On occasion one is faced with estimating an integral of the form, f ; e~ G dt,
where J = (a,b) C R and G (¢) is a C! — function with a unique (for simplicity)
global minimum at some point ¢ty € J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (to — a,to + @),
of tg. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G ()2 G (to) + 50 (10) (t — 10)°

Notice that the linear term is zero since ¢ is a minimum and therefore G (ty) =
0. We will further assume that G () # 0 and hence G (tg) > 0. Under these
hypothesis we will have,

1.
/ e~ GMqt =~ e_G(tO)/ exp (—G (to) (t — t0)2> dt.
J [t—to| < 2

Making the change of variables, s = 1/ G (o) (t — to) , in the above integral then
gives,

1 1.2
—G(t) gy o~ —G(to)/ -357y
(& = ———¢€ e S
/J /é(to) ls|<y/G(to) -

:__;e_c(t") \/27r—/ ._ e_%szdsl
/G(to) VG(to) o

__ L ¢t |yam_o L -3dG0)e?

G (to) L VG (to) -

If « is sufficiently large, for example if 1/G (to) - @ = 3, then the error term is
about 0.0037 and we should be able to conclude that

/ OO gy [ 2T ~Glro) (7.45)
J G (to)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 7.60 (Stirling’s formula). The Gamma function (see Definition
7.49), satisfies Stirling’s formula,
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r 1
lim (z+1)

—_— = 7.46
z—00 /2re=rgrtl/2 (7.46)

In particular, if n € N, we have
nl=T(n+1)~2re nnt1/2
where we write a, ~ b, to mean, lim,_, Z—" =1.

Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for I'(x + 1);

I'(z+1)= / e lrdt = / e G= gy, (7.47)

0 0

where
Gy (t) .=t —zInt.

Then G, (t) = 1—z/t, G, (t) = z/t?, G, has a global minimum (since G, > 0)
at tg = x where )
Gy (x) =2 —zlnz and G, (z) = 1/x.

So if Eq. (7.45)) is valid in this case we should expect,
I(z+1) 2V 2rpe (F702) = \fope—o g2 +1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s = /G (o) (t — to) =
% (t — x) as suggested above. Then

Ga (1) = G (2) = (t— ) —wln(t/2) = ﬁm(ﬁﬂ)

vl ) ()

where
q(u):= % [u—1In(1+wu)| for u> —1 with ¢ (0) := %
Setting ¢ (0) = 1/2 makes ¢ a continuous and in fact smooth function on
(—=1,00), see Figure Using the power series expansion for In (1 +u) we
find,
q(u) = 1 + i % for |u| < 1. (7.48)
2 k
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Fig. 7.2. Plot of ¢ (u).

Making the change of variables, t = x + 1/zs in the second integral in Eq.

[T7) yields,

I(x+1)=e (@aho) f/ ds—x:”l/ze*w'f(x),

where

I(x)= / efq(\%)‘gds = / sz eiq(ﬁ)szds. (7.49)
7\/5 -

— 00

From Eq. (7.48) it follows that lim, ¢ (u) = 1/2 and therefore,
e — (i)s2 e 1.2
/ lim [152_\/5 e N\VE } ds :/ e 2% ds = V2m. (7.50)
—0o0 — o0

So if there exists a dominating function, F' € L' (R, m), such that
_ (i)s2
152_\/5-6(1@ < F(s) forall se R and z > 1,

we can apply the DCT to learn that lim, .., I (x) = v/27 which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. it follows that
q(u)>1/2for -1 <u<0.Sinceu—In(1+wu)>0foru#0(u—In(l+uwu)is
convex and has a minimum of 0 at u = 0) we may conclude that ¢ (u) > 0 for
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100 7 Integration Theory

all u > —1 therefore by compactness (on [0, M]), min_1<y<ar q(u) = (M) >0
for all M € (0,00), see Remark for more explicit estimates. Lastly, since
Ln (14 u) — 0 as u — oo, there exists M < oo (M = 3 would due) such that
1In(1+u) < & for u > M and hence,

1 1 1
=—|1——In(1 > — fi > M.
q (u) u{ » n( —|—u)} 2 oo foruz

So there exists ¢ > 0 and M < oo such that (for all z > 1),

—al—=2)s? es -
l>_ e () <1 mescme © "+ Lyspre”Vos/2
< 1—\/5<5§Me_682 + 1gsare /2

< 8—632 + e—|s|/2 - F (S) c Ll (R,ds) )
m

Remark 7.61 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C? —
function on [0, 1], then by the fundamental theorem of calculus and integration

by parts,
1. 1.
/Oh(t)dt:—/o h(t)d(1—1)

—h(t)(1—1t) |5+/01'h(t)(1—t)dt

h(1) — 1 (0)

1
= h(0) +%/0 h(t)dv (t) (7.51)

where dv (t) := 2 (1 — t) dt which is a probability measure on [0,1]. Applying

this to h(t) = F(a+t(b—a)) for a C? — function on an interval of points
between a and b in R then implies,

F(b)—F(a):(b—a)F(a)—&-%(b—a)Q/O Fla+tb—a))dv(t). (7.52)

(Similar formulas hold to any order.) Applying this result with F'(z) = x —
In(l1+z),a=0,and b=u € (—1,00) gives,

1 ! 1

i.e.
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IR
q(u):§/0 mdu(t).

From this expression for ¢ (u) it now easily follows that
1t 1
q(u 27/ ——drv(t)==-if —1<u<0
W25 [ =

and

1t 1
Q(U)Zi/o md’/@)*m~

So an explicit formula for & (M) is e (M) = (14 M)™? /2.

7.6.1 Two applications of Stirling’s formula

In this subsection suppose = € (0,1) and S, iBinomial(n, x) for all n € N, i.e.

P, (S, =k)= (Z) F1—2)" " for0<k<n. (7.53)

Recall that ES,, = na and Var (S,) = no? where 02 := 2 (1 — ). The weak
law of large numbers states (Exercise [4.13)) that

(

and therefore, % is concentrating near its mean value, x, for n large, i.e. S, &
nx for n large. The next central limit theorem describes the fluctuations of S,
about nz.

S
— -z
n

1 2
e <—0o
ne2

Theorem 7.62 (De Moivre-Laplace Central Limit Theorem). For all
—o0o < a<b<oo,

S, — 1 [
lim P<a§m§b):/ e_%yzdy
n—oo o\/n V2 Ja
=P(a<N<D)

d d
where N % N (0,1) . Informally, 507\_/%‘"” >~ N or equivalently, S, &£ nx+o+/n-N
which if valid in a neighborhood of nx whose length is order \/n.
Proof. (We are not going to cover all the technical details in this proof as

we will give much more general versions of this theorem later.) Starting with
the definition of the Binomial distribution we have,
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7.6 Stirling’s Formula 101

Sn n\ i n—k FL o)
=Pla< U\f gb (S € nx + ov/nla,b)) \/2770\/5< )m (1—x) ~ -
k (x+zk)" (1 —2—2)
= Y P(S.=k _ 1
kenx+o+/nla,b - n—k
enatay/nlab] ) (1+%zk)’“(1—ﬁzk)
— Z ( )xk (1—z)" ", 1
kenz+o+/nla,b] - (1 n 1 )n(erzk) (1 1 n(l—z—zy) = q(n’k)
z 7k - ﬂzk>
Letting k = nx+o+v/nyx, i.e. yr, = (k — nx) /o\/n we see that Ay, = yp+1—yr = (7.56)
1/ (o4/n) . Therefore we may write p,, as .
n Taking logarithms and using Taylor’s theorem we learn
Pn = Z U\/ﬁ<k> 2 (1= 2)" " Ayy. (7.54) )
vk €la,b] (x4 z) In (1 + aszk>
So to finish the proof we need to show, for k = O (1/n) (yx = O (1)), that 1 1
. (x4 21) (Z}g o 22k+0( _3/2))
n k n—k 1.2
ovn(, |z" (1 —2)" " ~ e 2% asn — 00 (7.55)
(k) 2m =nz + %zi +0 <n73/2) and
in which case the sum in Eq. (7.54) may be well approximated by the “Riemann
sum.:” (I—2z—2z)In{1- 2L
’ 1—z
1 1
eTBYE Ay — /e 39’ dy as n — oco. =n(l—z—=z — 2k — 22>+O(n7‘3/2)
ykezz;b]v . V2 ! ( k)< 1—zF 2(1—x) k
_ n 2 —3/2
By Stirling’s formula, = —nz+ 2(1— x)zk +0 (n / ) .
ovn " _, \/ﬁl n! e Vvn nrtl/2 and then adding these expressions shows
k Rl(n—k)!  2r ght1/2 (n — )"k H1/2
1
_ 1 —1nq(n,k):nz,%( +>+O(n_3/2)
NG (E)kﬂ/z (1- E)n—kﬂ/z 2 1-
n n n n=3/2) = L, —-3/2
o 1 222’k+0 —iyk—i—O n .
= NGT i k+1/2 i n—k+1/2
(I + Tyk) (1 — T Rk ) Combining this with Eq. (7.56) shows,
1 1
n—k ™\ 2k (1 n—k 1 < 1, ( 3/2))
\/ T\ T - - ~ +0
9 (e o) (12 o) V()1 -a e (—pi 4o o
— 1 - 1 —. which gives the desired estimate in Eq. ([7.55)) [
V2T (x I %yk) (1 e Tyk)n The previous central limit theorem has shown that
Sy 4
In order to shorten the notation, let zx = =y, = O (n=1/2) so that k = - >4 %N
nx + nzy = n(x + z;) . In this notation we have shown,
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102 7 Integration Theory

which implies the major fluctuations of S,,/n occur within intervals about z
of length O (ﬁ) . The next result aims to understand the rare events where

Sp/n makes a “large” deviation from its mean value, z — in this case a large
deviation is something of size O (1) as n — oo.

Theorem 7.63 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem . Then for ally € (0,2),

— X

1 1
lim —In P, <Sn §y) :ylnf—i—(l—y)ln
n Y 1

n—oo N,
Roughly speaking,
P, (S" < y> r~ e (y)
n

where I, (y) is the “rate function,”

see Figure 7.3 for the graph of I 5.

Fig. 7.3. A plot of the rate function, I /5.

Proof. By definition of the binomial distribution,
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r(B ) =rsism = X ()t a-at.

k<ny

If a, > 0, then we have the following crude estimates on ZZL:_OI ak,

m—1
maxay, < E ar < m-maxay. (7.57)
k<m P k<m

In order to apply this with a; = (Z)xk (1- :c)nik and m = [ny], we need to
find the maximum of the a; for 0 < k < ny. This is easy to do since ay is
increasing for 0 < k < ny as we now show. Consider,

o (kil)xk—i_l (1- x)n_k_l
a (Mak (1 —2)" "
Elln—k)!-x
k+1)!-(n—k-=1)!(1-2x)
(n—k) x
(k+1)-(1—2z)

Therefore, where the latter expression is greater than or equal to 1 iff

B >l = k) z>(k+1)-(1-2)
ag

= ne>k+l-z <= k<(n-—-1)z—-1.

Thus for k < (n — 1) x — 1 we may conclude that (})z* (1 — z)"F
in k.

Thus the crude bound in Eq. ((7.57)) implies,

({ n ])x[”y] (1- x)"—["y] <P, <5;: < y) < [ny] ([:y])x[ny] (1- x)n—[ny]

ny

is increasing

or equivalently,

2 (g )

<o) ()t -

By Stirling’s formula, for k£ such that k and n — k is large we have,
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n 1 nn+1/2 B \/ﬁ 1
k V2 kk+1/2 . (n — k)n—k+1/2  Vor ( )k+1/2 (1 _ E)n_kﬂ/z
lln (n) N—Eln <k> _ (1_ k) In (1_ k)
n k n n n n

So taking k = [ny], we learn that

and therefore,

n—oo M

1
lim ln< " ) =—yhhy—(1-—y)ln(l—y)
Y
and therefore,
.1 Sn
lim —In P, ?gy =—ylhy—(1-y)ln(l—-y)+ylhz+(1—-y)ln(1l—2z)

n—oo N,
x 1-—2
=yln—+ 1—yln( )
" (1—-y) -
]

As a consistency check it is worth noting, by Jensen’s inequality described
below, that

T 1—2x T 1—2x
—Imy:yln—&-l—yln()§1n<y+1—y )zlnle.
@)=y + (1 -y (= Loy ) =m0

This must be the case since

1 n 1
_Ix(y): lim *lan (i Sy) S lim —Inl1=0.

n—oo N, n—oo N,

7.7 Comparison of the Lebesgue and the Riemann
Integral*®

For the rest of this chapter, let —00 < a < b < 0o and f : [a,b] — R be a
bounded function. A partition of [a,b] is a finite subset © C [a,b] containing
{a, b}. To each partition

r={a=ty<t1<---<t,=0>} (7.58)

of [a, b] let
mesh(7) := max{|t; —t;_1|:j=1,...,n},
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Mj =sup{f(z):t; <z <tj1}, m; =inf{f(z):{; <o <t; 1}

Gr = f(a)lgay + ) Mla, 0]y 9n = f(@)lay + Y myl, ) and
1 1
Sef =Y Mj(t;

b b
Sﬁf:/ Grdm and sﬁf:/ grdm.

The upper and lower Riemann integrals are defined respectively by

tji—1) and s f = ij ti—1).
Notice that

) a
/ f(x)dx = il;Lf Srf and / f(x)dx = sup sif.
a Jp 7r

Definition 7.64. The function f is Riemann integrable iff fjff = ibf eR

and which case the Riemann integral fab f is defined to be the common value:

/ab f(x)dx = /abf(x)dac = /abf(sc)dm

The proof of the following Lemma is left to the reader as Exercise [7.29
Lemma 7.65. If 7' and m are two partitions of [a,b] and 7 C 7' then

G‘ITZGﬂ/ ZfZgn’ Zgﬂ and
SwaSn'fZSTr/fZSwf-

There exists an increasing sequence of partitions {my}r.; such that mesh(my) |
0 and

swkflff andsﬂka/bf as k — .

If we let
G:= lim G, and g := lim g, (7.59)
k—oo k—o0
then by the dominated convergence theorem,

b
/ gdm = lim [ g = lim sr f = / F(w)da (7.60)

[a,b] k=00 Jla,b] k=00 Ja_

and

b
/ Gdm = lim G, = lim Sﬁkf:/ f(z)dz. (7.61)

[a,b] k—oo [a,b] k—o0 a
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Notation 7.66 For z € [a,b], let

H(z) =limsup f(y) := lim sup{f(y) : [y — o[ < e, y € [a,b]} and

Yy—x

h(z) = liminf f(y) := 1511101 inf {f(y):|ly—x| <e, y€la,b]}.

y—w
Lemma 7.67. The functions H,h : [a,b] — R satisfy:

1. h(z) < f(z) < H(x) for all x € [a,b] and h(x) = H(z) iff f is continuous
at x.
2. If {my}rey is any increasing sequence of partitions such that mesh(my) | 0

and G and g are defined as in Eq. , then
Gx)=H(z) > f(z) > h(zx) =g(z) Va¢mr:=Up Tk (7.62)

(Note 7 is a countable set.)
3. H and h are Borel measurable.

Proof. Let G, := G, | G and gx :==gr, T g

1. Tt is clear that h(z) < f(z) < H(x) for all z and H(x) = h(x) iff lim f(y)
Yy—x

exists and is equal to f(x). That is H(z) = h(x) iff f is continuous at z.
2. For x ¢ m,
Gi(x) > H(z) > f(x) > h(x) > gi(x) V k

and letting £ — oo in this equation implies
G(z) > H(z) > f(2) > hiz) > g(2) V2 ¢ . (7.63)
Moreover, given € > 0 and z ¢ T,

sup{f(y) : ly — [ <&, y € [a,b]} > Gi(z)

for all k large enough, since eventually G (z) is the supremum of f(y) over
some interval contained in [z — €,z + €]. Again letting ¥ — oo implies

sup f(y) > G(x) and therefore, that
ly—z|<e

H(x) = limsup /(y) > G(x)
Yy—x
for all ¢ m. Combining this equation with Eq. (7.63)) then implies H(z) =
G(z) if x ¢ m. A similar argument shows that h(x) = g(z) if * ¢ 7 and

hence Eq. ((7.62) is proved.

3. The functions G and ¢ are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set ,
both H and h are also Borel measurable. (You justify this statement.)

Page: 104 job: prob

Theorem 7.68. Let f : [a,b] — R be a bounded function. Then

i b
/ f= Hdm and/ f :/ hdm (7.64)
a [a,b] Ja [a,b]

and the following statements are equivalent:

1. H(xz) = h(zx) for m -a.e. x,
2. the set
E :={x € a,b]: f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measumblfﬂ ie. fis L/B -
measurable where L is the Lebesque o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm = / f(z)dx = fdm = hdm. (7.65)
[a,b] a [a,b] [a,b]

Proof. Let {m},—, be an increasing sequence of partitions of [a,b] as de-
scribed in Lemma and let G and g be defined as in Lemma Since

m(rw) =0, H = G a.e., Eq. (7.64)) is a consequence of Egs. (7.60) and (7.61)).
From Eq. (7.64)), f is Riemann integrable iff

/ Hdm = hdm
[a,b] [a,b]

and because h < f < H this happens iff h(z) = H(x) for m - a.e. x. Since
E ={x: H(z) # h(x)}, this last condition is equivalent to F being a m — null
set. In light of these results and Eq. , the remaining assertions including
Eq. are now consequences of Lemma [

Notation 7.69 In view of this theorem we will often write ff f(z)dz for
I? fdm.

2 f need not be Borel measurable.
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7.8 Measurability on Complete Measure Spaces*

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 7.70. Suppose that (X, B, ) is a complete measure spaccﬁ and
f: X — R is measurable.

1. If g : X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If f, : X — R are measurable and f : X — R is a function such that
lim, . fn = f, u - a.e., then f is measurable as well.

Proof. 1. Let £ = {x : f(x) # g(z)} which is assumed to be in B and
w(E) =0. Then g = 1gcf + 1gg since f = g on E°. Now lgcf is measurable
so g will be measurable if we show 1gg is measurable. For this consider,

1,0 JEU(Qgg)Tt(A\{0})if0€ A
(1eg)™ (4) = {(1E9)1(A) if0¢ A (7.66)
Since (1gg)~'(B) ¢ E if 0 ¢ B and p(E) = 0, it follow by completeness
of B that (1gg)~'(B) € B if 0 ¢ B. Therefore Eq. (7.66)) shows that 1gg is
measurable. 2. Let E = {z : lim f,(z) # f(z)} by assumption E € B and

w(E) = 0. Since g := 1gf = lim, oo Lge frn, ¢ is measurable. Because f = ¢
on E¢ and u(E) =0, f = g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, B, 1) is not complete. For exam-
ple, let X = {0,1,2}, B={{0}, {1,2}, X, ¢} and p = §p. Take g(0) =0, g(1) =
1, g(2) =2, then g = 0 a.e. yet g is not measurable.

Lemma 7.71. Suppose that (X, M, ) is a measure space and M is the com-
pletion of M relative to pu and [i is the extension of i to M. Then a function
f: X —Ris (M,B=Bgr) — measurable iff there exists a function g : X — R
that is (M, B) — measurable such E = {z : f(x) # g(x)} € M and i (E) = 0,
i.e. f(x) = g(x) for i — a.e. x. Moreover for such a pair f and g, f € L*(ji) iff

g € L'(u) and in which case
/ fdp = / gdp.
X X

Proof. Suppose first that such a function g exists so that (£) = 0. Since
g is also (M, B) — measurable, we see from Proposition that fis (M, B) —
measurable. Conversely if f is (M, B) — measurable, by considering f+ we may

3 Recall this means that if N C X is a set such that N C A € M and u(A4) = 0,
then N € M as well.
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assume that f > 0. Choose (/\;I,B) — measurable simple function ¢,, > 0 such
that ¢, T f as n — oco. Writing

Pn = Z aklAk

with Ay € M, we may choose By, € M such that Bj, C A, and ji(Ax \ Bx) = 0.

Letting
D, 1= Z arlp,

we have produced a (M, B) — measurable simple function @, > 0 such that
E, = {on # &n} has zero i — measure. Since i (U,E,) < > [i(Ey), there
exists F' € M such that U,E,, C F and p(F) = 0. It now follows that

1F<)5n:1F<pnTg:1Ffabn_>oo

This shows that g = 1 f is (M, B) — measurable and that {f # g} C F has i
— measure zero. Since f = g, i — a.e., [y fdji = [, gdfi so to prove Eq. (7.67)

it suffices to prove
/ gdji = / gdj. (7.67)
X X

Because i = p on M, Eq. is easily verified for non-negative M — mea-
surable simple functions. Then by the monotone convergence theorem and
the approximation Theorem [6.39] it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by con-
sidering (Reg), and (Img), . |

7.9 More Exercises

Exercise 7.19. Let i be a measure on an algebra A C 2%, then pu(A)+u(B) =
w(AUB)+ pu(ANB) for all A, B € A.

Exercise 7.20 (From problem 12 on p. 27 of Folland.). Let (X, M, pu)
be a finite measure space and for A,B € M let p(A4, B) = u(AAB) where
AAB = (A\ B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:

1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) forall A,B,C € M.

2. Define A ~ B iff u(AAB) = 0 and notice that p (A, B) = 0 iff A ~ B. Show
“~ 7 is an equivalence relation.

3. Let M/ ~ denote M modulo the equivalence relation, ~, and let [A] :=
{B € M: B~ A}.Show that p([A], [B]) := p (4, B) is gives a well defined
metric on M/ ~ .

macro: svmonob.cls date/time: 24-Nov-2009/13:23



106 7 Integration Theory
4. Similarly show fi ([A]) = p (A) is a well defined function on M/ ~ and show
i (M/~)— Ry is p — continuous.

Exercise 7.21. Suppose that p, : M — [0, 00] are measures on M for n € N.
Also suppose that p,(A) is increasing in n for all A € M. Prove that g : M —
[0, 00] defined by p(A) := lim, o0 pin(A) is also a measure.

Exercise 7.22. Now suppose that A is some index set and for each A € A, uy :
M — [0, 00] is a measure on M. Define 1 : M — [0, 00] by u(A) = >y 4 ua(A)
for each A € M. Show that y is also a measure.

Exercise 7.23. Let (X, M, ) be a measure space and {4, } —; C M, show

n({A, a.a.}) <liminf p(A,)

n—0o0

and if g (Up>nAm) < oo for some n, then

p({An i0.}) > limsup p (Ay,) -

n—oo

Exercise 7.24 (Folland 2.13 on p. 52.). Suppose that {f,} - is a sequence
of non-negative measurable functions such that f, — f pointwise and

lim fn:/f<oo.

Then
/ f= lim fn
n—oo

for all measurable sets £ € M. The conclusion need not hold if lim,, f fn =
J f. Hint: “Fatou times two.”

Exercise 7.25. Give examples of measurable functions {f,} on R such that
fn decreases to 0 uniformly yet f fndm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0, 1] such that g, — 0 while
J gndm =1 for all n.

Exercise 7.26. Suppose {an}zo:,oo C C is a summable sequence (i.e.

S22 lan] < o0), then f(6) :== 37 a,e™™ is a continuous function for
0 € R and

%:i/f@aww
2 J_,

Exercise 7.27. For any function f € L' (m), show =« €
]R—>f(700 I]f(t) dm (t) is continuous in z. Also find a finite measure, p,

on Bg such that z — f(_oo 2] f(t)dp (t) is not continuous.
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Exercise 7.28. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is wrong
by a factor of —1 and the sum is on & =1 to co. In part (e), s should be taken
to be a. You may also freely use the Taylor series expansion

oo
_\-1/2 (2n—1)!
(1-2) Z ol Z 22’ for |z| < 1.
n=0 n=0
Exercise 7.29. Prove Lemma [7.65]
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8

Functional Forms of the m — A Theorem

In this chapter we will develop a very useful function analogue of the m — A
theorem. The results in this section will be used often in the sequel.

8.1 Multiplicative System Theorems

Notation 8.1 Let {2 be a set and H be a subset of the bounded real valued
functions on 2. We say that H is closed under bounded convergence if; for
every sequence, { f,},-, C H, satisfying:

1. there exists M < co such that |f,, (W)| < M for allw € 2 and n € N,
2. f(w):=1limy, o fn (w) exists for all w € 2, then f € H.

A subset, M, of H is called a multiplicative system if M is closed under
finite intersections.

The following result may be found in Dellacherie [7, p. 14]. The style of
proof given here may be found in Janson |20, Appendix A., p. 309].

Theorem 8.2 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from {2 to R which contains the
constant functions and is closed under bounded convergence. If M C H is a mul-
tiplicative system, then H contains all bounded o (M) — measurable functions.

Proof. In this proof, we may (and do) assume that H is the smallest sub-
space of bounded functions on {2 which contains the constant functions, contains
M, and is closed under bounded convergence. (As usual such a space exists by
taking the intersection of all such spaces.) The remainder of the proof will be
broken into four steps.

Step 1. (H is an algebra of functions.) For f € H, let Hf :=
{g € H:gf € H}. The reader will now easily verify that H/ is a linear sub-
space of H, 1 € Hf, and H/ is closed under bounded convergence. Moreover if
f €M, since M is a multiplicative system, M C H/. Hence by the definition of
H, H=H’, ie. fg € H for all f € M and g € H. Having proved this it now
follows for any f € H that M C H/ and therefore as before, Hf = H. Thus we
may conclude that fg € H whenever f,g € H, i.e. H is an algebra of functions.

Step 2. (B:={AC2:14 € H} is a 0 — algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed

under complementation, finite intersections, and contains {2, i.e. 3 is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is o — algebra.

Step 3. (H contains all bounded B — measurable functions.) Since H is a
vector space and H contains 14 for all A € B, H contains all B — measurable
simple functions. Since every bounded B — measurable function may be written
as a bounded limit of such simple functions (see Theorem [6.39)), it follows that
H contains all bounded B — measurable functions.

Step 4. (6 (M) C B.) Let ¢, () = 0V [(nz) A 1] (see Figure below)
so that ¢, (z) T 1zs0. Given f € M and a € R, let F,, := ¢, (f —a) and
M :=sup,cp|f (w) — a|. By the Weierstrass approximation Theorem 4.36] we
may find polynomial functions, p; (x) such that p; — ¢,, uniformly on [—M, M].
Since p; is a polynomial and H is an algebra, p; (f — a) € H for all I. Moreover,
pio(f —a) — F, uniformly as [ — oo, from with it follows that F,, € H for all
n. Since, Fj, T 1ifs4y it follows that 1(ssq) € H, ie. {f > a} € B. As the sets
{f > a} with a € R and f € M generate o (M), it follows that o (M) C B.

Fig. 8.1. Plots of 1, 2 and ¢s3.

Second proof.* (This proof may safely be skipped.) This proof will make
use of Dynkin’s m — A\ Theorem Let

L:={ACR:1, cH}.



108 8 Functional Forms of the m — A Theorem

We then have 2 € L since 1o =1€ H, if A,B € £ with A C Bthen B\A€ L
since 1g\4 = 1p — 14 € H, and if A,, € £ with A,, T A, then A € L because
14, € Hand 14, T 14 € H. Therefore £ is A — system.

Let ¢, () = 0V [(nx) A 1] (see Figure above) so that ¢, () T lzso.
Given f1, fo,..., fr € M and aq,...,a; € R, let

k
Fn = HQOn (fz - ai)
=1

and let
M= sup suplfi (@) - ail.
i=1,..,k w
By the Weierstrass approximation Theorem we may find polynomial func-
tions, p; (z) such that p; — ¢, uniformly on [—M, M| .Since p; is a polynomial
it is easily seen that Hle pio (f; —a;) € H. Moreover,

k
le o (fi — a;) — F, uniformly as | — oo,
i=1

from with it follows that F, € H for all n. Since,

k

Fnl H Wpizay = 1mf:1{fi>ai}
i=1

it follows that 1nr (r,,,) € H or equivalently that Nk, {fi > a;} € L. There-
fore £ contains the m — system, P, consisting of finite intersections of sets of
the form, {f > a} with f € M and a € R.

As a consequence of the above paragraphs and the m — A Theorem L
contains o (P) = o (M) . In particular it follows that 14 € H for all A € o (M).
Since any positive o (M) — measurable function may be written as a increasing
limit of simple functions (see Theorem [6.39)), it follows that H contains all non-
negative bounded o (M) — measurable functions. Finally, since any bounded
o (M) — measurable functions may be written as the difference of two such
non-negative simple functions, it follows that H contains all bounded o (M) —
measurable functions. ]

Corollary 8.3. Suppose H is a subspace of bounded real valued functions such
that 1 € H and H is closed under bounded convergence. If P C 2% is a mul-
tiplicative class such that 14 € H for all A € P, then H contains all bounded
o(P) — measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [8.2] [
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Ezample 8.4. Suppose p and v are two probability measure on ({2, B) such that

/Q Fdp = /Q fdv (8.1)

for all f in a multiplicative subset, M, of bounded measurable functions on {2.
Then g = v on o (M) . Indeed, apply Theorem with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U {14 : A € P} with P being a multiplicative class we learn that g = v on
cM)=0c(P).

Here is a complex version of Theorem [8.2

Theorem 8.5 (Complex Multiplicative System Theorem). Suppose H is
a complex linear subspace of the bounded complex functions on 2, 1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued o(M)-measurable functions.

Proof. Let My = spans(M U {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (My) = o (M) . Let

HE .= {f € H: f is real valued} and
M := {f € My : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HE. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem H® contains
all bounded o (M{§) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(erf) and Im f = %(fff) are in H or
M respectively. Therefore My = M + iM§, o (M§) = o (M) = o (M), and
H = H® + iHX. Hence if f : 2 — C is a bounded o (M) — measurable function,
then f = Re f +iIm f € H since Re f and Im f are in HE. [

Lemma 8.6. Suppose that —0o < a < b < 0o and let Trig(R) C C (R, C) be the
complez linear span of {x — ¢** : X € R} . Then there exists f, € C. (R, [0,1])
and g, €Trig(R) such that im, oo fr (2) = 1(ap) () = limy, o0 gn () for all
rzeR.

Proof. The assertion involving f, € C. (R, [0,1]) was the content of one of
your homework assignments. For the assertion involving g, €Trig(R), it will
suffice to show that any f € C. (R) may be written as f (z) = lim,— o gn ()
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for some {g,,} CTrig(R) where the limit is uniform for z in compact subsets of
R.

So suppose that f € C.(R) and L > 0 such that f(z) = 0 if |z| > L/4.
Then

fu@)= > f(z+nl)

n=—oo

is a continuous L — periodic function on R, see Figure If € > 0 is given, we

5 10

I

Fig. 8.2. This is plot of fs (z) where f (z) = (1 — r2) ljz)<1. The center hump by
itself would be the plot of f (x).

may apply Theorem to find A CC Z such that

fL <21;1_$) _ Za)\eiam

ac/

<eforall z € R,

wherein we have use the fact that  — fr (&) is a 27 — periodic function of
z. Equivalently we have,

<e.

fr(x) — Z a>\ei%Taac

acA

max
x

In particular it follows that fr, () is a uniform limit of functions from Trig(R).
Since limy, o f1 () = f (z) uniformly on compact subsets of R, it is easy to
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conclude there exists g, €Trig(R) such that lim, .o gn () = f (x) uniformly
on compact subsets of R. [ |

Corollary 8.7. Each of the following ¢ — algebras on R? are equal to Bga;

I My =0 {z— f(z): feC.(R)}),

2. My := U(.T — f1 (Il) .. ~fd (xd) : fi eC. (R))
S Mz=o0 (CC (Rd)) , and

4. My:=0 ({x — T e Rd}) .

Proof. As the functions defining each M; are continuous and hence Borel
measurable, it follows that M; C Bga for each i. So to finish the proof it suffices
to show Bra C M, for each <.

M case. Let a,b € R with —0co < a < b < oo. By Lemma there
exists f, € C.(R) such that lim, .o fn = 1(ap). Therefore it follows that
T — liap (x;) is My — measurable for each i. Moreover if —oco < a; < b; < 00
for each ¢, then we may conclude that

d
2= [ Lanba) (@) = Lay by)xex (ansba) (%)

i=1

is Mj — measurable as well and hence (aj,b1] X -+ X (aq,bq] € M;. As such
sets generate Bre we may conclude that Bra C Mj.

and therefore M; = Bga.

My case. As above, we may find f;,, — 1¢4,p,) @ n — oo for each 1 <i < d
and therefore,

Liar,ba]x - x (aa,ba] (T) = nh_)rr;O fin(@1) ... fan (xq) forall z € R%.

This shows that 14, b,]x..-x(aq,bs] 15 M2 — measurable and therefore (a1, ;] x
cee X (ad,bd] € Mo.

M3 case. This is easy since Bga = My C M3j.

My case. By Lemma here exists g, €Trig(R) such that lim, . g, =
L(a,p)- Since x — g, () is in the span {x — e\ € Rd} for each n, it follows
that 2 — 1(4) (7;) is My — measurable for all —co < a < b < oo. Therefore,
just as in the proof of case 1., we may now conclude that Bra C M. [

Corollary 8.8. Suppose that H is a subspace of complex valued functions on
R® which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

I.M:={z— fi(z1)... fa(zq) : fi € C.(R)}
2.M:=C, (Rd), or
3. M := {a:%ei)"‘r:)\ERd}
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110 8 Functional Forms of the m — A Theorem

then H contains all bounded complex Borel measurable functions on RY.

Proof. Observe that if f € C. (R) such that f(z) = 1 in a neighborhood
of 0, then f, (x) := f(z/n) — 1 as n — oo. Therefore in cases 1. and 2., H
contains the constant function, 1, since

L= B fo (). o ().

In case 3, 1 € M C H as well. The result now follows from Theorem and
Corollary m

Proposition 8.9 (Change of Variables Formula). Suppose that —oco <
a <b<ooandu: [ab — R is a continuously differentiable function. Let
[e,d] = u([a,b]) where ¢ = minu ([a,b]) and d = maxu ([a,b]). (By the interme-
diate value theorem w ([a,b]) is an interval.) Then for all bounded measurable
functions, f:[c,d] — R we have

u(b) b
/ f(@)de = / Flu ()i () dt. (8.2)
u(a) a

Moreover, Eq. is also valid if f : [c,d] — R is measurable and

/ |f (w ()] @ (t)] dt < . (8.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. holds. It is easily checked that H is a linear space closed under bounded
convergence. Next we show that M = C ([¢,d],R) C H which coupled with
Corollary [8.8| will show that H contains all bounded measurable functions from
[e,d] to R.

If f:[c,d] — R is a continuous function and let F' be an anti-derivative of
f. Then by the fundamental theorem of calculus,

b b
[ ta®yiwd= [ Fu@ioa

- /bdF(u () dt = F (u(t)) [}
. dt ‘

u(b) u(b)
:F(u(b))—F(u(a)):/() F’(a:)dx:/() f(z) da.

Thus M C H and the first assertion of the proposition is proved.

Now suppose that f : [c,d] — R is measurable and Eq. (8.3) holds. For M <
0o, let fur (x ) = f( ) - 1jf(z))<m — a bounded measurable function. Therefore
applying Eq. (8.2) with f replaced by |far| shows,
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u(b)

|far (z)] dx| = )| @ (t)dt

/UM DI i (1) dt.

u(a)

Using the MCT, we may let M T oo in the previous inequality to learn
u(b

/ x)|dx
u(a)

Now apply Eq. (8.2) with f replaced by fus to learn

/:(b dx—/ Far (u (1)) (1) dt.

Using the DCT we may now let M — oo in this equation to show that Eq. (8.2))
remains valid. [

</|f DI (t)] dt < .

Exercise 8.1. Suppose that v : R — R is a continuously differentiable function
such that @ (t) > 0 for all ¢t and lim;_, 1 o u (t) = £o0. Show that

/]R f(z)dz = /R F(u() () dt (8.4)

for all measurable functions f : R — [0, 00]. In particular applying this result
to w (t) = at + b where a > 0 implies,

/Rf(x)dxza/Rf(at—&-b)dt

Definition 8.10. The Fourier transform or characteristic function of a
finite measure, 1, on (Rd, BRd) , is the function, fi : R* — C defined by

()= / e Tdy (x) for all X € RY
Rd

Corollary 8.11. Suppose that p and v are two probability measures on
(Rd,BRd) . Then any one of the next three conditions implies that u = v;

L Joa fr(zy) . fa(za)dv(z) = [pu fi(x1)... fa(zq)dp(x) for all f; €

C’C(]R).
(z) for all f € C, ( )

2 Jpa f ( = Jra £ (

3. v=1

Item 3. asserts that the Fourier transform is injective.
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Proof. Let H be the collection of bounded complex measurable functions
from R? to C such that

du = dv. .
[ s /Rdfv (8.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary it contains all bounded Borel measurable
functions form R¢ — C. Thus we may take f = 14 with A € Bga in Eq.
to learn, u (A) = v (A) for all A € Bya. ]

In many cases we can replace the condition in item 3. of Corollary by;

/ Ny () = / eMdy (z) for all A € U, (8.6)
R4 R

where U is a neighborhood of 0 € R?. In order to do this, one must assume
at least assume that the integrals involved are finite for all A € U. The idea
is to show that Condition implies 7 = fi. You are asked to carry out this
argument in Exercise 8.2 making use of the following lemma.

Lemma 8.12 (Analytic Continuation). Let ¢ > 0 and S. :=
{z+iyeC:|z|<e} be an e strip in C about the imaginary azis. Sup-
pose that h : S — C is a function such that for each b € R, there exists
{en (b)}77y C C such that

h(z+ib) = ch

If ¢, (0) = 0 for all n € Ny, then h = 0.

2" for all |z] <e. (8.7)

Proof. It suffices to prove the following assertion; if for some b € R we know
that ¢, (b) = 0 for all n, then ¢, (y) =0 for all n and y € (b—€,b+¢). We
now prove this assertion.

Let us assume that b € R and ¢, (b) = 0 for all n € Ny. It then follows from
Eq. that h (z +ib) = 0 for all |z| < e. Thus if |y — b|] < €, we may conclude
that h (x 4+ iy) = 0 for = in a (possibly very small) neighborhood (-4, d) of 0.
Since

ch h(z+iy) =0 for all |z| <4,
it follows that 1 &
0= adﬁh (z + 1Y) [z=0 = cn (y)
and the proof is complete. [
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8.2 Exercises

Exercise 8.2. Suppose € > 0 and X and Y are two random variables such that
E [e*] =E [¢"] < oo for all |t| < e. Show;

1.E [65‘X|] and E [egm] are finite.
2. E [¢"X] = E [¢] for all t € R. Hint: Consider h (z) :=E [e*¥X] — E [e*Y]
for z € S.. Now show for |z| < e and b € R, that

h(z+ib)=E [eibxezx] —E [e®Y ZY Z en ( (8.8)

where

(e

- —E[eY"]). (8.9)

3. Conclude from item 2. that X £V, i.e. that Lawp (X) =Lawp (V).

Exercise 8.3. Let ({2, B, P) be a probability space and X,Y : {2 — R be a pair
of random variables such that

Elf(X)g (V)] =E[f(X)g(X)]

for every pair of bounded measurable functions, f, g R — R. Show
P(X =Y) = 1. Hint: Let H denote the bounded Borel measurable functions,
h:R? — R such that

E[r(X,Y)] =E[h (X, X)].
Use Theorem [8.2|to show H is the vector space of all bounded Borel measurable
functions. Then take h (z,y) = 1=y

Exercise 8.4 (Density of A — simple functions). Let ({2, 5, P) be a proba-
bility space and assume that 4 is a sub-algebra of B such that B = o (A) . Let H
denote the bounded measurable functions f : 2 — R such that for every ¢ > 0
there exists an an A — simple function, ¢ : 2 — R such that E|f — ¢| < e.
Show H consists of all bounded measurable functions, f : 2 — R. Hint: let M
denote the collection of A — simple functions.

Exercise 8.5 (Density of A in B = o (A)). Keeping the same notation as
in Exercise but now take f = 1p for some B € B and given ¢ > 0, write
0 => 1" gAila, where \g = 0, {\;}]_; is an enumeration of ¢ (£2) \ {0}, and
A; :={p = \;}. Show; 1.
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BlLs— gl = P(AsN B) + 3" (1= A P(BN A +IN P (4B (8.10)
=1

2P(AoOB)+imin{P(BmAi),P(Ai\B)}. (8.11)

=1
2. Now let ¢ = Y7 a;1a, with

o {1ifP(A,-\B)§P(BﬂAi)
YT 0if P(A;\B)>P(BNA;) "

Then show that

Ellp — 9| :P(AOQB)+Zmin{P(BﬂAi)»P(Ai\B)} <E|lp—¢l.
i=1
Observe that ¢ = 1p where D = U;.o,_, A; € A and so you have shown; for
every € > 0 there exists a D € A such that

P(BAD) =E|lg —1p| <e.

8.3 A Strengthening of the Multiplicative System
Theorem*

Notation 8.13 We say that H C £*° (£2,R) is closed under monotone con-
vergence if; for every sequence, {f,},_, C H, satisfying:

1. there exists M < 0o such that 0 < f, (W) < M for allw € 2 and n € N,
2. fn (w) is increasing in n for allw € §2, then f :=lim, o fn € H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. | learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [48| p. 365].

Proposition 8.14. *Let {2 be a set. Suppose that H is a vector subspace of
bounded real valued functions from {2 to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}ff:l cH
with sup, ey SUPyecqn | fn (W)| < 00 and f, — f, then f € H.

Proof. Let us first assume that {f,} ~, C H such that f,, converges uni-
formly to a bounded function, f : 2 — R. Let | f||, := sup,ecpn |f (w)|. Let
€ > 0 be given. By passing to a subsequence if necessary, we may assume
If = falloo < €270, Let
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n = frn—0n + M
with §,, and M constants to be determined shortly. We then have
In+1 — Gn = fn—i—l - fn + 671 - 6n+1 Z _52—(11—0—1) + 6n - 6n+1-

Taking 0,, := 27", then 6, — 0py1 =277 (1 —-1/2) = €2~ (1) in which case
gn+1 — gn = 0 for all n. By choosing M sufficiently large, we will also have
gn > 0 for all n. Since H is a vector space containing the constant functions,
gn € H and since g, T f + M, it follows that f = f + M — M € H. So we have
shown that H is closed under uniform convergence. [

This proposition immediately leads to the following strengthening of Theo-
rem

Theorem 8.15. *Suppose that H is a vector subspace of bounded real valued
functions on {2 which contains the constant functions and is closed under
monotone convergence. If M C H is multiplicative system, then H contains
all bounded o (M) — measurable functions.

Proof. Proposition reduces this theorem to Theorem [S.2 [

8.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 8.16 Given a collection of bounded functions, M, from a set, {2, to
R, let M; (M) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : 2 — R is in M;
respectively M| iff there exists f, € M such that f, T f respectively fn, | f.

Theorem 8.17 (Bounded Approximation Theorem®). Let (2,8, 1) be a
finite measure space and M be an algebra of bounded R — valued measurable
functions such that:

1.0(M) =B,
2.1eM, and
3. |f| €M for all f € M.

Then for every bounded o (M) measurable function, g : 2 — R, and every
e > 0, there exists f € M| and h € My such that f <g<handpu(h—f) < 6E|

Proof. Let us begin with a few simple observations.

! Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies
of bounded functions.
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1. M is a “lattice” —if f,g € M then

fVg=3(frgtif-g)em

and L
ng=§(f+g—|f—gD€M-

2. If f,geMjor f,g € M| then f+ g€ M; or f+ g € M| respectively.

3. IfAanndeMT (fEMl), then )\fEMT ()\fEMl)

4. If f € My then —f € M and visa versa.

5. If f, € My and f,, T f where f : {2 — R is a bounded function, then f € M;.
Indeed, by assumption there exists f,,; € M such that f,; T f, as i — occ.
By observation (1), g, := max {f;; : ¢,j < n} € M. Moreover it is clear that
gn <max{fy:k<n}=f, <fandhenceg, T g:=lim, o g, < f. Since
fij < g for all 4, j, it follows that f, = lim;_.o fn; < g and consequently
that f =lim, . fn < g < f. So we have shown that g, T f € Mj.

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M C H and in fact it is also easy
to see that My and M are contained in H as well. For example, if f € My, by
definition, there exists f, € M C M, such that f,, T f. Since M} > f, < f <
f €M and p(f — fn) — 0 by the dominated convergence theorem, it follows
that f € H. As similar argument shows M| C H. We will now show H is a
vector sub-space of the bounded B = o (M) — measurable functions.

H is closed under addition. If g, € H for ¢ = 1,2, and € > 0 is given, we
may find f; € M} and h; € My such that f; < g; < h; and pu (h; — f;) < /2 for
1=1,2.Sinceh=h;+ha eMy, fi=fi+foeM, f<g1+9g2<h,and

p(h—f)=plhe— f1) +u(he — f2) <e,

it follows that g; + go € H.

H is closed under scalar multiplication. If ¢ € H then A\g € H for all
A € R. Indeed suppose that € > 0 is given and f € M| and h € M such that
f<g<hand p(h—f)<e. Thenfor A >0, M| 5 A\f < Ag < A\h € M; and

(A = Af) = A (h — f) < e

Since ¢ > 0 was arbitrary, if follows that Ag € H for A > 0. Similarly, M| >
—h < —g < —feM;and

p(=f=(=h)=plh-f)<e

which shows —g € H as well.
Because of Theorem to complete this proof, it suffices to show H is
closed under monotone convergence. So suppose that g, € H and g, T g, where
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g : 2 — R is a bounded function. Since H is a vector space, it follows that
0 <6p = gnt1 —gn € H for all n € N. So if € > 0 is given, we can find,
M, 3 u, < 6y, < v, € My such that g (v, —u,) < 27" for all n. By replacing
Uy, by un, VO € M (by observation 1.), we may further assume that u,, > 0. Let

oo N
V= zzlvn =1 1\/1£noo Zlvn € My (using observations 2. and 5.)
n= n—

and for N € N, let

= Z U, € M (using observation 2).

n=1

Then
[e%e) N
= 1. = 1 — = —
Z:l% NEHOOZ;% NEHOO(QN-H g1)=9—%

and v < g — g1 < v. Moreover,

N oo
u(v—uN):Zu(vn—un)—i— Z 252"4— Z Up)
n=1 n=N+1 n=N+1
<e+ Z w(vy) .
n=N+1

However, since

PIITSED WAL Zu )+ e (@)
Sl

1 (g —g1) +ep(2) < oo,

HM

it follows that for N € N sufficiently large that Y7 .|yt (v,) < €. Therefore,
for this N, we have u (v —ulv ) < 2¢ and since € > 0 is arbitrary, if follows
that g — g1 € H. Since g1 € H and H is a vector space, we may conclude that
g=1(9—g)+g €H -
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9

Multiple and Iterated Integrals

9.1 Iterated Integrals

Notation 9.1 (Iterated Integrals) If (X, M, u) and (Y,N,v) are two mea-
sure spaces and f : X xY — C is a MQN — measurable function, the iterated
integrals of f (when they make sense) are:

[ auta) [ s = [ | [ senar] due)

[ vt [ autorsn = [ [ /. f(x,y>du<x>] v (y).

Notation 9.2 Suppose that f : X — C and g :' Y — C are functions, let f @ g
denote the function on X XY given by

f@g(z,y) = f(z)g(y).

Notice that if f, g are measurable, then f® g is (M @ N, Bc) — measurable.
To prove this let F(z,y) = f(x) and G(x,y) = g(y) so that f ® g = F - G will
be measurable provided that F' and G are measurable. Now F' = f o m; where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

9.2 Tonelli’s Theorem and Product Measure

Theorem 9.3. Suppose (X, M,u) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N, Br) — measurable function, then for eachy €Y,

v — f(z,y) is M — Bjg,oc)] measurable, (9.1)

for each x € X,
y — f(z,y) is N — Bjp,oc] measurable, (9.2)

x —>/ [z, y)dv(y) is M — By o] measurable, (9.3)
Y

y —>/ f(x,y)dp(z) is N~ Bg o) measurable, (9.4)
X

and

| ) [ avwren = [ avt) [ ane)f@. 03)
Proof. Suppose that E=Ax B€ £ := M x N and f = 1g. Then
f(z,y) = Laxp(z,y) = La(z)1p(y)
and one sees that Egs. and hold. Moreover
| fenav) = [ 1a@iaay) = 1a@wms),
Y Y

so that Eq. (9.3 holds and we have

/ dyu(z) / dv(y) f(z.y) = v(B)u(A). (9.6)
X Y
Similarly,
/X f(.y)dp(z) = u(A)1p(y) and
[ avtw) [ duta)f(e.) = vBIa(a)
Y X

from which it follows that Eqgs. and hold in this case as well.

For the moment let us now further assume that p(X) < oo and v(Y) < 0o
and let H be the collection of all bounded (M ® N, Bg) — measurable functions
on X X Y such that Egs. - hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1 € H
for all F in the m — class, &, it follows by Corollary that H is the space
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of all bounded (M ® N, Bgr) — measurable functions on X x Y. Moreover, if
f: X xY —[0,00] is a (M ®N,Bg) — measurable function, let foy = M A f
so that fas T f as M — oo. Then Egs. - hold with f replaced by fas
for all M € N. Repeated use of the monotone convergence theorem allows us to
pass to the limit M — oo in these equations to deduce the theorem in the case
w1 and v are finite measures.

For the o — finite case, choose X,, € M, Y,, € N such that X,, 1 X, Y, 1Y,
w(Xy) < oo and v(Y,) < oo for all m,n € N. Then define p,, (A) = pu(X,, NA)
and v,(B) = v(Y, N B) for all A € M and B € N or equivalently du,, =
1x,  dp and dv, = 1y, dv. By what we have just proved Egs. - with
u replaced by g, and v by v, for all (M ® N, Bg) — measurable functions,
f: X xY — [0,00]. The validity of Eqgs. - then follows by passing to
the limits m — oo and then n — oo making use of the monotone convergence
theorem in the following context. For all u € LT (X, M),

/ udfly, = / ulx, dp T / udp, as m — 0o,
be b b
and for all and v € LT (Y, N),

/ vdpt, = / vly, dp 7 / vdp as n — o0.
Y Y Y

Corollary 9.4. Suppose (X, M, u) and (Y,N,v) are o — finite measure spaces.
Then there exists a unique measure ™ on MQN such that m(Ax B) = u(A)v(B)
for all A€ M and B € N'. Moreover w is given by

7T(E)=/Xdu(:v)/YdV(y)lE(ﬂc,y)=/YdV(y)/Xclu(sc)lza(ﬂw) (9.7)

forall E€ M QN and 7w is o — finite.

Proof. Notice that any measure 7 such that 7(4 x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y, € N be chosen so that pu(X,) < oo, v(¥,) < 00, X;, 1 X and Y,, 1Y,
then X, xY, e MN, X, xY, 1 X xY and (X, xY,,) < oo for all n.
The uniqueness assertion is a consequence of the combination of Exercises [3.10
and Proposition with & = M x N. For the existence, it suffices to
observe, using the monotone convergence theorem, that 7w defined in Eq.
is a measure on M ® N'. Moreover this measure satisfies 7(A x B) = u(A)v(B)
for all A € M and B € N from Eq. (9.6). n

Notation 9.5 The measure 7 is called the product measure of pu and v and will
be denoted by p ® v.
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Theorem 9.6 (Tonelli’s Theorem). Suppose (X, M, ) and (Y,N,v) are o
— finite measure spaces and T = Qv is the product measure on M QN If f €
LY (X xY,M@N), then f(-,y) € LT(X, M) forally €Y, f(x,:) € LT(Y,N)
forallz e X,

/ fw)duly) € L (X, M), / f(x, () € L*(Y, N)

and

/nyf dW:/}(du(x)Ldy(y)f(z,y) (9.8)
Z/Ydlf(y)/xdu(:c)f(x,y). (9.9)

Proof. By Theorem and Corollary the theorem holds when f = 1g
with E € M®N. Using the linearity of all of the statements, the theorem is also
true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with the approximation Theorem [6.39] one deduces
the theorem for general f € LT(X x Y, M @ N). [

Ezample 9.7. In this example we are going to show, I := [, e~ 2dm (z) =
v 27. To this end we observe, using Tonelli’s theorem, that

I = [/R e 2dm (a:)}2 =/Re‘y2/2 [/Re‘ﬁ/z’dm (x)} dm (y)

where m? = m ® m is “Lebesgue measure” on (Rz, Brz = Br ® BR) . From the

monotone convergence theorem,
I? = lim e (@ +9)/2 g2 (z,9)

where D = {(as,y) cx? 4yt < RQ}. Using the change of variables theorem
described in Section belowE| we find

/ e (& +v°)/2 g (z,y) =/ e 2rdrdd
Dr (0,R) % (0,27)
R 2 2
:27r/ efr/zrdr:27r<lfe*R/2).
0

L Alternatively, you can easily show that the integral / Dr fdm? agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

12 = lim 2r (1 _ 6*32/2) — o

— 00

as desired.

9.3 Fubini’s Theorem

Notation 9.8 If (X, M, ) is a measure space and f : X — C is any measur-
able function, let

/deﬂ:_{fxé“du if [y lfldp < oo

otherwise.

Theorem 9.9 (Fubini’s Theorem). Suppose (X, M,u) and (Y,N,v) are o
— finite measure spaces, T = p ® v is the product measure on M @ N and
f:XxY —CisaM®N — measurable function. Then the following three
conditions are equivalent:

/ |f|dr < 00, d.e. f € LY(m), (9.10)
XXY
| ([ 1r@ i) dutw) < oo ana (9.11)
x \Jy
([ x1f@lanta) ) aviy) < . (9.12)
If any one (and hence all) of these condition hold, then f(z,-) € Ll( )for p-a.e.
x, f(-,y) € LY () for v-a.e. vy, fyf(-,y)dv( €L (u fX (x) € LY(v)

and FEqs. and are still valid after puttmg a bar over the integral
symbols.

Proof. The equivalence of Egs. is a direct consequence of
Tonelli’s Theorem. 9.6| Now suppose f € Ll( ) is a real valued function and let

E := {xGX:/Y|f(ac,y)|dV(y)oo}. (9.13)

Then by Tonelli’s theorem,  — [, |f (x,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/X[/Y|f($,y)|dl/(ll)] du(x):/xxy|f|dﬂ<oo
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which implies that u (F) = 0. Let f1 be the positive and negative parts of f,
then

/ f (@, y)dv (y) =
Y

Ige () f (z,y) dv (y)
Lge (z) [f4 (2,y) — f- (z,y)] dv (y)

Il
— o 5—

Lpe (&) fo (2, ) dv () — /Y Lpe (&) f- (2,y) dv (1)
(9.14)

Noting that 1ge (x) f+ (z,y) = (1ge ® 1y - f1) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem

that x — fyf (z,y)dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

@ < [ ][ 15 wniaro) e <.

which shows fyf y)dv(y) € L'(u). Integrating Eq. 1) on z and using

Tonelli’s theorem repeatedly implies,

/X l/yf(x,y) dv (y)] dp (z)
:/xd“(x)/ydl/(y) lpe (z

(«) D) [ dr)1e: @1 (@)
= [ [ auta) 15 @) £ @) - ) [ dn @16 @) £ ()

)
= [ [ au@) @~ [ avw) [ dn@ s @)

which proves Eq. holds.
Now suppose that f = u 4+ v is complex valued and again let E be as in
Eq. (9.13). Just as above we still have E € M and p (E) = 0 and

/ f (@yy)dv (y) = / L (2) f (2,y) dv (y) = / 1pe (&) [u (2, ) + v (2, )] dv (4)
Y Y Y
- / 1pe (2) u(z,y) dv (y) + i / L (2) v (2, ) dv (4).
Y Y

/fxde()

J
J

f+ (I’7y)* d:u(
X

dv (y
Y

v dp
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The last line is a measurable in z as we have just proved. Similarly one shows

[y f(Cy)dv(y) € L' (u) and Eq. still holds by a computation similar to
that done in Eq. (9.15). The assertions pertaining to Eq. may be proved
in the same way. [

The previous theorems generalize to products of any finite number of o —
finite measure spaces.

Theorem 9.10. Suppose {(X;, M;,p;)}i—, are o - finite measure spaces
and X := X1 X -+ x X,. Then there exists a unique measure (7w) on

(X, M1 ®---®@M,,) such that
(A XX An) = (A1) o (An) for all A€ M. (9.16)

(This measure and its completion will be denoted by 1 ® -+ Q pp.) If [+ X —
[0,00] is a My ® - -+ @ M,, — measurable function then

/ fdﬂ' :/ dua(l)(xa(l)) . /
X Xo(1) X

where o is any permutation of {1,2,...,n}. In particular f € L*(r), iff

/ dpto(1)(To(1)) - - / Ao (n)(Tan)) 1f (@15
Xa(l) Xa(n)

for some (and hence all) permutations, o. Furthermore, if f € L' (), then

/ fdﬂ' :/ dug(l)(mg(l)).../
X Xa(1) X

for all permutations o.

d,uo(n) (.Tg(n)) f(:l?l, ‘e ,:cn) (917)

o(n)

, Ty)| < 00

dpto(n)(Tomy) f(T1,. .. 20) (9.18)

a(n)

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems and So
let n > 3 and assume the theorem is valid for n — 1 factors or less. To simplify
notation, for 1 < i < n, let X* = 1,2 X5, M= @M, and Pt = ®j i
be the product measure on (X ‘ Mz) which is assumed to exist by the induction
hypothesis. Also let M := M; ®---®@ M,, and for z = (z1,...,2;,...,2,) € X
let

2= (21, Dy ) = (T T 1y T 1y e e e D) -
Here is an outline of the argument with some details being left to the reader.

1. If f: X —[0,00] is M -measurable, then
(zl,...,fi,...,l’n)ﬂ/ f(:cl,,x“,:rn)dul(zz)
X;

is M?* -measurable. Thus by the induction hypothesis, the right side of Eq.

(19.17) is well defined.
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. If 0 € S, (the permutations of {1,2,...,n}) we may define a measure 7 on

(X, M) by;

7 (A) = /X djio1 (1:01).../)( dton (Ton) 1a (€1, -, 20) .-

on

(9.19)
It is easy to check that 7 is a measure which satisfies Eq. (9.16)). Using the
o — finiteness assumptions and the fact that

P:={A1 x---xA,: A € M; for 1 <i<n}

is a 7 — system such that o (P) = M, it follows from Exercise[5.1] that there
is only one such measure satisfying Eq. (9.16). Thus the formula for 7 in

Eq. (9.19)) is independent of o € S,.

. From Eq. (9.19) and the usual simple function approximation arguments

we may conclude that Eq. (9.17) is valid.
Now suppose that f € L' (X, M, ).

. Using step 1 it is easy to check that

(a:l,...,i:i,...,xn)—>/X.f(xl,...,:r,-,...,zn)d,ui(xi)
is M® — measurable. Indeed,
(wl,...,:ﬁi,...,mn)aév If (1, @iy xn)| dpg (24)
is M? — measurable and therefore
E = {(xl,...,i‘i,...,xn) : /X |f (21, @iy xn) | dpg () < oo} e M.

Now let u := Re f and v := Im f and u4 and vy are the positive and
negative parts of u and v respectively, then

/Xif(af) dp; (;) =/ 1z (2%) f (2) dui (z5)

i

:/X. 1g (wl)u(a?)duz(xz)—&-z/ 1g (2%) v () dp; () .

X

Both of these later terms are M? — measurable since, for example,

X

which is M? — measurable by step 1.
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5. It now follows by induction that the right side of Eq. (9.18)) is well defined.
6. Let i :=on and T : X — X; x X? be the obvious identification;
T(xia(‘rlv"'viﬁiv"

S y)) = (T1,. .., Tn) .

One easily verifies T is M/M; ® M" — measurable (use Corollary
repeatedly) and that m o 77! = u; ® u® (see Exercise .

7. Let f € L' (7). Combining step 6. with the abstract change of variables
Theorem (Exercise implies

Jrar= [ (femya(uen).
X X x X
By Theorem we also have

(9.20)

/XixXi (foT)d (@ pu') :/ dii () /X‘d,ui(mi) FoT(us o)

i

= [ @) [t S
(9.21)

Then by the induction hypothesis,

[t [ i) s e -
X X, . X
J#
(9.22)
where the ordering the integrals in the last product are inconsequential.

Combining Egs. (9.20) — (9.22)) completes the proof.

]

Convention: We are now going to drop the bar above the integral sign
with the understanding that [, fdu = 0 whenever f: X — C is a measurable
function such that [ |f|du = oo. However if f is a non-negative function (i.e.
f: X — [0, 00]) non-integrable function we will interpret | + fdu to be infinite.

Ezxample 9.11. In this example we will show

. M gin
lim
M —oco 0

do = /2. (9.23)

To see this write % = fooo et dt and use Fubini-Tonelli to conclude that
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H/jd/ij (%)/Xidm(mi) flay,. ..
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<1
—>/ 7dt:EasM—>oo,
o 1+1¢2 2

wherein we have used the dominated convergence theorem (for instance, take
g(t) = ﬁ (1+te t+et)) to pass to the limit.

The next example is a refinement of this result.

Ezxample 9.12. We have

/ ST A7y — —x — arctan A for all A > 0 (9.24)
0 X 2
and forA, M € [0, 00),
M —MA
sinx _ 4., 1 e
—_— dr — = tan A| < C 9.25
/0 e T = o + arctan A| < 7 (9.25)
) xn)
where C' = max;>¢ 11;:—;2 = 2\/%_2 = 1.2. In particular Eq. 1| is valid.
To verify these assertions, first notice that by the fundamental theorem of
calculus,
T xr xr
|sinz| = ’/ cosydy‘ < ‘/ |c0sy|dy’ < ‘/ ldy‘ = |z|
0 0 0
so [#22] <1 for all x # 0. Making use of the identity
oo
/ e dt =1/x
0
and Fubini’s theorem,
macro: svmonob.cls date/time: 24-Nov-2009/13:23



120 9 Multiple and Iterated Integrals

M 9]
sinx _ _
/ ey = dxsmme Am/ Lt
0

T
M
/ dt/ dx sin g e~ (ATt

7/0017 (cos M + (A+t)sinM)e *M(A“)dt
0 (A + ) +1
o (A+1)P+1 0 (A+1t)* +
1
=57 arctan A — (M, A) (9.26)
where
E(M,A):/ cosM+(A+t)s1nM o~ M(A+1) gy
0 (A+1)° +
Since
cos M + (A+t)sin M < 14+ (A+7)
(A+1)°+1 T (A1
—MA

(M, A)| < / M+ g o
0

This estimate along with Eq. (9.26)) proves Eq. (9.25]) from which Eq. (9.23) fol-

lows by taking A — oo and Eq. (9.24]) follows (using the dominated convergence
theorem again) by letting M — oo.

Lemma 9.13. Suppose that X is a random wvariable and ¢ : R — R is a C!
- functions such that lim,_._o @ () = 0 and either ¢’ (x) > 0 for all x or
Jg ¢’ (x)] dz < oo. Then

Blp (0] = [ &) PX>y)dy
Similarly ifX >0 and np [ ,00) — R is a C* — function such that ¢ (0) =0

and either ¢’ >0 or [ |¢' (z)|dz < oo, then

E[¢<X>]=/0m¢'<y>P<X>y>dy.

Proof. By the fundamental theorem of calculus for all M < oo and z € R,

x

() = o (~M) + / S (9.27)
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Under the stated assumptions on ¢, we may use either the monotone or the
dominated convergence theorem to let M — oo in Eq. (9.27)) to find,

o (z) = / o' (y)dy = / ly<z¢’ (y)dy for all z € R.
—00 R

Therefore,

Efp(X)] =E [ [1exe' @) dy} - [l Was= [ P>

—0Q0

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader. ]

Example 9.1/. Here are a couple of examples involving Lemma [9.13]

1. Suppose X is a random variable, then

E[eX] = /OO P(X > y)eldy = /OOOP(X > Inu) du, (9.28)

— 00

where we made the change of variables, u = e¥, to get the second equality.
2.If X > 0and p>1, then

EXP = p/ yPIP (X > y)dy. (9.29)
0

9.4 Fubini’s Theorem and Completions*

Notation 9.15 Given E C X XY and z € X, let
E:={yeY:(x,y) € E}.
Similarly if y € Y is given let
E, ={zeX:(z,y) € E}.

If f : X xY — C is a function let f, = f(x,-) and fY := f(-,y) so that
fz: Y —=Cand f¥: X —C.

Theorem 9.16. Suppose (X, M, 1) and (Y,N,v) are complete o — finite mea-
sure spaces. Let (X X Y, L, ) be the completion of (X xY, M QN , p@v). If f
is L — measurable and (a) f >0 or (b) f € L'(\) then f, is N' — measurable
for p a.e. x and fY is M — measurable for v a.e. y and in case (b) f, € L'(v)
and f¥ € L*(pn) for p a.e. x and v a.e. y respectively. Moreover,
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(m—>/yfxd1/> € L' (u) and (y—>/Xfydu> eL'(v)
/Xxyfd)\:/ydu/xduf:/xdu/ydl/f.

Proof. f E€e M®N is a p® v null set (ie. (u®@v)(E) = 0), then

and

0= (ue)(E) = [ vGEdn(o) = [ u(E,)vty)

X X

This shows that

u({z: v(,E) #0}) = 0 and v({y : u(E,) # 0}) =0,

ie. v(xF) =0 for pae. z and u(E,) =0 for v a.e. y. If h is £ measurable and
h =0 for A - a.e., then there exists E € M ® N such that {(z,y) : h(z,y) #
0} C E and (u®@v)(E) = 0. Therefore |h(x,y)| < 1g(z,y) and (u@v)(E) = 0.
Since

{hy #0} ={y €Y : h(z,y) #0} C . FE and
{hy #0} = {z € X : hiz,y) £0} C B,

we learn that for p a.e. z and v a.e. y that {h, #0} € M, {h, #0} € N,
v({hsy #0}) = 0 and a.e. and p({h, # 0}) = 0. This implies [, h(z,y)dv(y)
exists and equals 0 for p a.e. x and similarly that [, h(x,y)du(z) exists and
equals 0 for v a.e. y. Therefore

o= = () o= ()

For general f € L'()\), we may choose g € LY(M®N, u®v) such that f(z,y) =
g(x,y) for A— a.e. (z,y). Define h := f—g. Then h = 0, A— a.e. Hence by what
we have just proved and Theorem [9.6] f = g + h has the following properties:

L. For jrae. o,y — f(a,y) = g(,y) + h(z,y) is in L'(v) and

/Y f (@ y)dv(y) = /Y o, y)dv(y).

2. For v ae. y, x — f(x,y) = g(x,y) + h(z,y) is in L'(u) and

/Xf(%y)du(SC)Z/Xg(x,y)du(m)~
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From these assertions and Theorem it follows that

[ aut) [ avwre = [ anto) [ avtwgte.n)

_ /Y () /Y dv(z)g(z, y)
:/ g(z,y)d(p @ v)(z,y)
XxXY

[ fepirey.
XxXY
Similarly it is shown that

| ) [ s = [ @iy,

9.5 Lebesgue Measure on R? and the Change of Variables
Theorem

Notation 9.17 Let

d times d times
mt=me- --Qm on Bra = Br ® -+ - ® Br
be the d — fold product of Lebesgue measure m on Br. We will also use m?
d

to denote its completion and let Ly be the completion of Bra relative to m®.
A subset A € Lg is called a Lebesque measurable set and m? is called d —
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 9.18. A function f : R? — R is Lebesgue measurable if
f~Y(Br) C Ly.

Notation 9.19 I will often be sloppy in the sequel and write m for m® and dx
for dm(z) = dm?(x), i.e.

(x)dz = [ fdm= [ fdm®.
Rd Rd Rd
Hopefully the reader will understand the meaning from the context.

Theorem 9.20. Lebesque measure m® is translation invariant. Moreover m®

is the unique translation invariant measure on Bra such that m®((0,1]¢) = 1.
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122 9 Multiple and Iterated Integrals
Proof. Let A=J; x --- x J; with J; € Bg and z € R?. Then

x4+ A= (14 J1) X (22 + J2) X -+ X (g + Ja)
and therefore by translation invariance of m on Bg we find that
m(x+ A) =m(zy + J1)...m(zq + Ja) = m(J1)...m(Jy) = mi(A)

and hence m?(z + A) = m?4(A) for all A € Bga since it holds for A in a multi-
plicative system which generates Bra. From this fact we see that the measure
m?(x + ) and m?(-) have the same null sets. Using this it is easily seen that
m(x + A) =m(A) for all A € L. The proof of the second assertion is Exercise
9. 10l ]

Exercise 9.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations and
satisfies, m(By(g)) > 0 for all € > 0. Show m(V) = oo for all non-empty open
subsets V' C H.

Theorem 9.21 (Change of Variables Theorem). Let 2 C, R? be an open
set and T : 2 — T(02) Co RY be a C! - diﬁeomorphismﬂ see Figure . Then
for any Borel measurable function, f : T(£2) — [0, 0],

/ £ (T (@) | det T () |dz = / f () dy, (9.30)
0

T(2)

where T'(z) is the linear transformation on R? defined by T'(z)v := & |oT(z +
tv). More explicitly, viewing vectors in R? as columns, T' (x) may be represented
by the matriz
81T1 (Z‘) e 6dT1 (1‘)
T () = : : ; (9.31)
ale (x) ce é)de (.I)

i.e. the i - j — matriz entry of T'(xz) is given by T'(x);; = 0;T;(x) where
T(z) = (Th(x),...,Ty(x))™ and 0; = 8/0x;.

Remark 9.22. Theorem [2.21] is best remembered as the statement: if we make
the change of variables y = T (), then dy = | det T” (z) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if x ranges through 2
then y must range through 7' (£2).

2 That is T : 2 — T(2) C, R? is a continuously differentiable bijection and the
inverse map T~ ' : T(§2) — 2 is also continuously differentiable.
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Fig. 9.1. The geometric setup of Theorem m

Note: you may skip the rest of this section!

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < a < 8 < b such that [a,b] is a compact
subinterval of (2. Then | det 7’| = |T"| and

B
/[a,b] Lr(ap) (T (2)) [T (z)| dz =/ Lo g (@) T (2)| do :/ T’ (2)| da.

[a,b] a

If 7' (x) > 0 on [a,b], then

B B
/|T’(x)|dx:/ T (x)de =T (B) — T (a)

while if 77 (z) < 0 on [a,b] , then

B8 B
/|T’(a:)|da::—/ T (&) dz =T (o) — T (8)

=m (T ((a, 8])) = Lr((a,p) (y) dy.

T([ab])
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Combining the previous three equations shows

(T @) [T (2)] da = / f () dy (9.32)

[a,b] T([ab])

whenever f is of the form f = 1p((q,g)) With a < a < 3 < b. An application
of Dynkin’s multiplicative system Theorem then implies that Eq.
holds for every bounded measurable function f : T ([a,b]) — R. (Observe that
|T" (z)| is continuous and hence bounded for z in the compact interval, [a,b] .)
Recall that 2 = YN (a,,b,) where a,,b, € RU{+o0} forn =1,2,--- < N
with N = oo possible. Hence if f : T (£2) — R ; is a Borel measurable function
and a, < ap < O < b, with ay | a, and By T b,, then by what we have
already proved and the monotone convergence theorem

/1<ambn> (foT) - |T'|dm = / (L1 ((anbuy) - f) o T - |T"|dm
2 2
= lim (1T([ak,ﬁk]) ’ f) oT: |T/| dm

k—o0
2

— lim Lr(law,pi]) - [ dm

k—oo
T(2)

= / 1T((an,bn)) . f dm.

T($2)

Summing this equality on n, then shows Eq. holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d — 1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T (x) , will always be taken to be given
as in Eq. .

Case 1. Suppose T' (z) has the form
T(x) = (z;,To (2),...,Tq(x)) (9.33)
T(x)=Ti(x),...,Ta-1(x),2;) (9.34)

for some i € {1,...,d}. For definiteness we will assume 7' is as in Eq. (9.33)), the
case of T' in Eq. (9.34) may be handled similarly. For ¢ € R, let 4; : RI-1 — R4
be the inclusion map defined by

i (W) == wy = (wr, ..o, Wi, b Wi, -, Wa—1)
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£2; be the (possibly empty) open subset of R?~! defined by

'Qt = {U) € Rdil : (wl" < 7wi—17ta Wity awd—l) € .Q}
and T : 2, — R%! be defined by
Tt (’U}) = (TQ (wt) gee ,Td (wt)) 5

see Figure Expanding det 7" (w;) along the first row of the matrix T” (w;)

Fig. 9.2. In this picture d =i = 3 and (2 is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map 7' and slicing the
set (2 along planes where x3 = t.

shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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124 9 Multiple and Iterated Integrals
/f oT|detT'|dm = /19 - foT|detT'|dm
2 Rd

_ /19 (w0) (f o T) (wy) | det T' (wy) [dwdt

Rd

:/]R /(foT) (wy) | det T (wy) |dw | dt
L2,

:/ /f(t,Tt(w))|detTt’(w) \dw | dt
R 9,

:/ / f(t,2) dz dt:/R /1T(Q)(t,z)f(t,z)dz dt

[T (£2¢) a-1

:/f ) dy

T(2)
wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;
=3 T (2) =Y {(t2):z€Ti(2)}.
teR teR

Case 2. (Eq. (9.30) is true locally.) Suppose that 7' : 2 — R? is a general
map as in the statement of the theorem and zy € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C {2 of x( such that

/foT| detT’|dm:/ fdm
P (W)

holds for all Borel measurable function, f : T(W) — [0, 00]. Let M; be the 1-4
minor of 7’ (%), i.e. the determinant of 7" (zo) with the first row and i‘h —
column removed. Since

D) a.Ty (o) - M;,

Mg

0 # det T' (xg) =

z=1
there must be some i such that M; # 0. Fix an ¢ such that M; # 0 and let,
S (2) = (@0, T3 (2) .., Ta (x). (9.35)
Observe that |det S’ (xg)| = |M;| # 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of g such that W C, 2 and S (W) c, R¢
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and S : W — S (W) is a C! — diffeomorphism. Let R : S (W) — T (W) C, R?
to be the C' — diffeomorphism defined by

R(2):=ToS ' (z) forall z€ S(W).
Because
(Ty (2),...,Tq(z)) =T (z) = R(S (2)) = R((xi, T2 (2) ..., Ty (z)))
for all z € W, if
(21,22, r2a) = S (z) = (23, To (2), ..., Ty (z))

then
R(z)= (T (57" (2)),22,...,2a) - (9.36)

Observe that S is a map of the form in Eq. (9.33)), R is a map of the form in Eq.
19.34), T' (x) = R' (S (z)) S’ (x) (by the chain rule) and (by the multiplicative
property of the determinant)

|det T" (z)| = |det R' (S (z)) | |det S (z)| V z € W.

Soif f: T(W) — [0, 00] is a Borel measurable function, two applications of the
results in Case 1. shows,

/fOT-\detT’|dm:/(fOR-\detR'|)OS-|detS’| dm
W

/foR-\detR’|dm: / fdm

S(W) R(S(W))
= / fdm
(W)
and Case 2. is proved.

Case 3. (General Case.) Let f : £2 — [0, o0] be a general non-negative Borel
measurable function and let

K, :={z € 02 :dist(z,2°) > 1/n and |z| < n}.

Then each K,, is a compact subset of {2 and K,, T {2 as n — oo. Using the
compactness of K,, and case 2, for each n € N, there is a finite open cover W,
of K, such that W C (2 and Eq - ) holds with (2 replaced by W for each
W e W,. Let {W} | be an enumeration of U, W, and set W; = W; and
W, == W, \(WiU---UW,;_y) for all § > 2. Then 2 = 21:1 W; and by repeated
use of case 2.,
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)« |det T |dm

Z
/ (i T} | det T'|dm
W

/f oT|detT'|dm =
o

n

/IT(Wi)-fdm:Z/ (i) [ dm

Lrdwy) =lr(n)

i Mg i Pllﬁg i Mg

= / fdm.
()

Remark 9.23. When d = 1, one often learns the change of variables formula as

T(b)
/ F(T (@) T (z) de = / £ (y) dy (9.37)

T(a)

where f : [a,b] — R is a continuous function and T is C' — function defined in

a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b)) and

Eq. is implies Eq. with 2 = (a,b). On the other hand if 7" < 0
n (a,b) then T ((a,b)) = (T (b),T (a)) and Eq. is equivalent to

T(a)
£ (T (@) (— T (&)]) da = —/ f(y)dy:—/T(( 1)y

(a,b) T(b)

which is again implies Eq. (9.30). On the other hand Eq. (9.37) is more general

than Eq. (9.30]) since it does not require T to be injective. The standard proof
of Eq. (9.37) is as follows. For z € T ([a, b]), let

z

F(z):= f(y)dy

T(a)

Then by the chain rule and the fundamental theorem of calculus,

b b
/f T (@)do = [ F(0@)T (w)do = [ (P (T ()] da
a b o) a
=F (T (x = dy.
(T @) It /m) 7 () dy

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(19.37) holds for all bounded measurable functions f on (a,b). Then by the
usual truncation argument, it also holds for all positive measurable functions

n (a,b) .
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Exercise 9.2. Continuing the setup in Theorem [9.21] show that
felrLt (T(Q),md) iff

/|foT\|detT’|dm<oo

and if f € L! (T (2) 7md) , then Eq. 1l holds.

Example 9.24. Continuing the setup in Theorem [9 if A€ Bg, then
m (T () = [ iy @)y = [ Lrga) (Ta) et T’ ()] da
R R
= / 14 (z)|det T (z)] dz
Rd

wherein the second equality we have made the change of variables, y = T (z).
Hence we have shown

d(moT)=|detT’ ()| dm.

Taking T € GL(d,R) = GL(R?) - the space of d x d invertible matrices in
the previous example implies m o T' = |det T'| m, i.e.

m (T (A)) = |det T|m (A) for all A € Bga. (9.38)

This equation also shows that m o T and m have the same null sets and hence
the equality in Eq. is valid for any A € L4. In particular we may conclude
that m is invariant under those T' € GL(d,R) with |det (T')| = 1. For example
if T is a rotation (i.e. T"T = I), then detT = 41 and hence m is invariant
under all rotations. This is not obvious from the definition of m? as a product
measure!

Ezample 9.25. Suppose that T (x) = x+b for some b € R%. In this case 7" () =
I and therefore it follows that

[t [rua
J J

for all measurable f : R? — [0, 00] or for any f € L (m) . In particular Lebesgue
measure is invariant under translations.

Example 9.26 (Polar Coordinates). Suppose T : (0, 00) x (0,27) — R? is defined
by
x=T(r,0) = (rcosf,rsinf),
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126 9 Multiple and Iterated Integrals

i.e. we are making the change of variable,

r1 =7rcosf and x5 = rsinf for 0 < r < oo and 0 < 6 < 2.

T'(r,0) = (cos& —rsin9>

In this case

sinf rcos6

and therefore
dr = |det T’ (r,0)| drdf = rdrdo.

Observing that
R?\ T ((0,00) x (0,27)) = £ := {(x,0) : & > 0}

has m? — measure zero, it follows from the change of variables Theorem
that

2 [es]
f(z)dz = / d9/ dr r- f(r(cosf,sinf)) (9.39)
R2 0 0
for any Borel measurable function f : R? — [0, oc].

Example 9.27 (Holomorphic Change of Variables). Suppose that f: 2 C, C &
R2— C is an injective holomorphic function such that f’(z) # 0 for all z € £2.
We may express f as

fz+iy) =U(z,y) +iV (z,y)
for all z =z + iy € 2. Hence if we make the change of variables,
w=u+iv=f(z+iy) = Uw.y)+iV (2,9)

then

dudv = dzdy = U,V — U, Vy| dzdy.

U, U,
det |:Vz VJ

Recalling that U and V satisfy the Cauchy Riemann equations, U, =V}, and
Uy = =V, with f' = U, + iV, we learn

UsVy = UyVe = U2+ V2 =|f.

Therefore
dudv = | f' (z + iy)|* dzdy.

Example 9.28. In this example we will evaluate the integral

I:= //Q (z* — y*) dzdy
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Fig. 9.3. The region {2 consists of the two curved rectangular regions shown.

where
.Q:{(a:,y):1<a:2—y2<2,O<xy<1}7

see Figure We are going to do this by making the change of variables,
(u,0) =T (z,y) = (2% —y*,2y) ,

in which case

dudv =

det {2:17 Qy}
Yy T

dedy =2 (¢ + ) dady
Notice that
(x4 - y4) _ (x2 - y2) (x2 + y2) —u (x2 + y2) = %ududv.

The function T is not injective on 2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
2=-DUD and T(£D) = (1,2) x (0,1). The change of variables theorem
then implies

1 1u? 3
Ii::// ot — oyt da:dy:f// ududv = = —13 - 1=
iD( ) 2 JJa2)x(0,1) 22" 4

and therefore I = I, +1_=2-(3/4) = 3/2.

Exercise 9.3 (Spherical Coordinates). Let T : (0,00) x (0, 7)x (0, 27) — R3
be defined by
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Fig. 9.4. The relation of z to (r, ¢, 0) in spherical coordinates.

T (r,p,0) = (rsinpcosf, rsinpsin, rcos p)

= r (singcos @, sin psin b, cos ),

see Figure By making the change of variables = T (r, ¢, 0) , show

™ 2m oo
— 2
o f(x)d:c—/o dgo/o d9/0 dr resing - f(T (r,¢,0))

for any Borel measurable function, f : R — [0, cc].

Lemma 9.29. Let a > 0 and

Ii(a) := /e*“‘mﬁdm(x).

R4
Then I4(a) = (7/a)?/2.
Proof. By Tonelli’s theorem and induction,
Ii(a) = / efa‘yFe*“tde_l(dy) dt
R4—1xR
= I4—1(a)I1(a) = I{(a).

So it suffices to compute:

I5(a) :/e*a‘zwdm(x) = / e~ =) 4o das.

R2 R2\{0}
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(9.40)
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Using polar coordinates, see Eq. (9.39)), we find,

oo 27 N 0o R
I5(a) :/ dr 7’/ do e = 27r/ re " dr
0 0 0
M

—ar M

—ar? . € 27

re” " dr =2r lim = — =7/a.
M—oo —2a Jq

=27 lim
M—oo 0

This shows that I3(a) = m/a and the result now follows from Eq. (9.40). ]

9.6 The Polar Decomposition of Lebesgue Measure*

Let
d

S ={zeR: 2 =) 2l =1}
i=1
be the unit sphere in R? equipped with its Borel ¢ — algebra, Bga—1 and & :
R\ {0} — (0,00) x §91 be defined by &(z) := (|z|,|z|" #). The inverse map,
@1 :(0,00) x S — R4\ {0}, is given by &~ !(r,w) = rw. Since ¢ and $~!
are continuous, they are both Borel measurable. For E € Bga-1 and a > 0, let
E,:={rw:r€(0,a] and w € B} = & ((0,a] x E) € Bga.

Definition 9.30. For E € Bga—1, let o(E) :=d-m(Ey). We call o the surface
measure on S471L.

It is easy to check that o is a measure. Indeed if £ € Bga—1, then E; =
@1((0,1] X E) € Bga so that m(Ey) is well defined. Moreover if E = > "° | E;,
then By = >, (E;), and

o(E)=d-m(E) =) m((E),) =) o(E).

i=1 =1

The intuition behind this definition is as follows. If E ¢ S% 1 isaset and e > 0
is a small number, then the volume of

(Ll+e-E={rw:re(l,1+¢land w € E}

should be approximately given by m ((1,1+¢]-E) = o(E)e, see Figure
below. On the other hand

m((1,1+€]E) =m (B4 \ E1) = {1+ ) — 1} m(Ey).
Therefore we expect the area of E should be given by
1+e)d—1}m(E
o(E) = lim {( e }m( D
€l0 e
The following theorem is motivated by Example [9.26 and Exercise [9.3]
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128 9 Multiple and Iterated Integrals

Fig. 9.5. Motivating the definition of surface measure for a sphere.

Theorem 9.31 (Polar Coordinates). If f : R — [0,00] is a (Bga,B)-
measurable function then

/f(x)dm(a:) = frw)r?=t drdo(w). (9.41)
R

(0,00)x Sd—1

In particular if f: Ry — Ry is measurable then

[ #ahiaa = [ " v (9.42)
R4 0

where V(r) =m (B(0,7)) = r’m (B(0,1)) = d~to (59471) ro.
Proof. By Exercise [7.11}
/fdm: / (fod ') od dm = / (fod™') d(d.m) (9.43)
R4 R4\ {0} (0,00) x Sd-1

and therefore to prove Eq. (9.41]) we must work out the measure @,m on By )®
Bga-1 defined by

®.m(A) :=m (& (A)) V A € B(g,00) ® Bga-1. (9.44)
If A=(a,b] x E with0<a<band E € Bga—1, then
oY (A)={rw:r € (a,b] and w € E} = bE; \ aE;

wherein we have used E, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,
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(®.m) ((a,b] x E) =m (bEy \ aEy) = m(bE1) — m(aFE)
= bim(E)) — a’m(Ey) = d-m(Ey) /b rd=Ydr.  (9.45)

a

Letting dp(r) = r?~ldr, i.e.

p(J) = / ri=tdr v J € B(O,OO), (9.46)
J
Eq. may be written as
(@.m) ((a,b] x E) = p((a,b]) - o(E) = (0@ 0) (@, b] x ). (9.47)

Since
E={(a,bl] x E:0<a<band E € Bga-1},

is a 7 class (in fact it is an elementary class) such that o(£) = B(g,o0) ® Bga-1,
it follows from the m — A Theorem and Eq. (9.47) that ®#,m = p ® o. Using this

result in Eq. (9.43) gives
fdm = / (fod™) d(p®o)

R4 (0,00) x Sd—1
which combined with Tonelli’s Theorem proves Eq. (9.43]). ]
Corollary 9.32. The surface area o(S?1) of the unit sphere ST~1 C RY is
27.(.d/2
Sty = 9.48

where I" is the gamma function is as in Example [T and [7.50,
Proof. Using Theorem [9.31] we find

Id(l):/ dr rile=" / dO':CT(Sdil)/ rd=te=" dr.
0 0

Sd—1

We simplify this last integral by making the change of variables w = r? so that
r=u'? and dr = %u_l/Qdu. The result is

o0 2 4 1
/ rd=le ™" dr :/ W e uT2du
0 0 2

1 [~ 1
= 7/ wt e du = =I'(d/2). (9.49)
2 Jo 2
Combing the the last two equations with Lemma which states that I;(1) =
742 we conclude that
1
w/? = L) = 3o(")I(d/2)

which proves Eq. (9.48). ]
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9.7 More Spherical Coordinates*

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r,60) € (0,00) X

[0,27) so that
z1\ _(rcosf\ _
(@) - (rsin@) =T2(6,7)-

For n = 3 we let x3 = rcos ¢; and then

<i1> = T5(0,rsinpy),

2

as can be seen from Figure [0.6] so that

Fig. 9.6. Setting up polar coordinates in two and three dimensions.

no

T . rsin o1 cos 6
T . .
o | = ( 2(677"5111901)) = | rsinpysing | =: T3(0, 01,1, ).
- T COS P1 i
3 7 COS 1

We continue to work inductively this way to define

T
T.(0,01,...,0n_2,Tsinp,_1,
zn+1

So for example,
T1 = 78in g sin 1 cos
ZTo = 7 sin s sin g sin §
T3 = rsin 2 cos Y1

T4 = T COS P2
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and more generally,
21 = 7rsin@,_s...sin pysin ¢ cosl
To = T8inY,_2 . ..sin pysin pg sinf

T3 = rsin,_o...sin e cos @1

Tp_o = Tsin @y_9Sin 3 COS Pr_4
Tp—1 = TSN Q2 COS Pp_3

Ty = T COS Pp_2. (9.50)

By the change of variables formula,

f(z)dm(z)
RTL
o An(0,01, .. Qn_2,T)
= dr/ doy ...dp,_odl by ’
/o 0< s <m,0<6<2r oL pn=2 Xf(Th(0, 01, .., Pn—2,7))
(9.51)
where
A (0,01, on_o,r) = |det T (0,01, ..., 0n_2,7)].
Proposition 9.33. The Jacobian, A, is given by
An(0,01,. .. Pn_a,T) = " lsin™ "2 @, _o...sin? posing;. (9.52)

If f is a function on rS™1 — the sphere of radius r centered at 0 inside of R™,
then

/T o f o) = / F(rw)do(w)

Sn—1
f(Tn(ea Pl Pn—2, T))An(ea Ply- s Pn—2, V”)dﬁpl cee d¢n72d9
(9.53)

/os%sﬂ,oseswr

Proof. We are going to compute 4,, inductively. Letting p := rsing,_1

and writing ag;" for 887;" (0,01, ,0n_2,p) we have

An+1(97§017 ey Pn—2,Pn—1, 7")

aT, oT, oT, 9T, OT,
80n Btpab R agoniz 6’)” T COS Pp—1 apn SN ©p—1
0 0 ... 0 —rsin,_1 COS (P —1

=7 (COS2 On_1 + sin? On-1) An(,0,01,. .., Pn—2,p)
= TATL(07 Ply- -y Pn—2, 7 sin ¢H—1)7
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130 9 Multiple and Iterated Integrals
ie.

Api1(0,01, ..oy on—2,0n—1,7) =17A,(0,01,...,Pn_o,rsinp,_1). (9.54)
To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ag(6,r) = r already derived in Example [9.26] Eq. (9.54)

implies,

As(0,01,7) = rAs(h,rsin 1) = r? sin ¢y
Ay(0, 01, p2,1) = 1rA3(0, 01, rsinps) = r3 gin? 2 sin @1

n—2

An (0,01, .., pn_a,r) = ™ lgin On_g...sin” pgsing;

which proves Eq. (9.52)). Equation (9.53) now follows from Egs. (9.41]), (9.51))
and (9.52). ]
As a simple application, Eq. (9.53) implies

o(S" 1 = / sin" "2 @, _o ...sin’ @y sin p1dy; . . . dp,_odf
0<p; <m,0<0<2mw
n—2
=27 H Ve = (S %) Yn_2 (9.55)
k=1
where v, := fow sin® odp. If k > 1, we have by integration by parts that,
Vi = / sin® pdp = —/ sin* "t dcosp = 26,1 + (k — 1)/ sin* =2 ¢ cos? pdyp
0 0 0

=201+ (k— 1)/ sin® % (1 —sin® ) dp = 20k1 + (k — 1) [ve—2 — Vi
0

and hence v, satisfies v = 7, 71 = 2 and the recursion relation

k—1
Ve = Vr—g for k > 2.
Hence we may conclude
9 1 22 31 4 22 531
= = = — = — = — =T = - — = —— =77
Yo ™ 71 y V2 27‘-’ 73 3% Y4 427" 75 537 Ve 649
and more generally by induction that
(2k — 1! (2K
=r——"" and =2——.
B O 75 TR DY 1T
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Indeed,
_ 2k+2 _2k+2_ (2k)! 5 [2(k+ 1)
TN T o T 9 3T @k + ) (2(k + 1)+ DI
and
2k+1 2k+1 (2k—1)! 2k + 1!
= = s =T .
T2 T o 1R T ok 12" 2k (2k + 2)1!
The recursion relation in Eq. (9.55) may be written as
o(S") =0 (5"") Y1 (9.56)
which combined with o (S') = 27 implies
o (Sl) = 2m,
o(S?) =21 -y =21 -2,
1 2272
2272 2272 2 2372
4y _ . — 9% _
o) =G m = T %5
1 2_ 31 2373
5 _
1 231 42 2473
6
— 9.9 . 29.2 0. 259
o(8%) =2m-2-om 32 5™ 5327 T
and more generally that
2 (2m)" (2m)" !
2n 2n+1y __
=—7 and = .
o) = G —n e = o (9:57)
which is verified inductively using Eq. (9.56)). Indeed,
202m)"  (2n—DN  (2m)"H!
2n+1 — SQ’I’L — =
() = oS e = T @ (2n)!
and
n+1 " 9 (97)" 1
(n+1)y _ 2n+2y _ 2n+1 _ (2m) 9 (2n)! _ (2m)
() = oS = o (ST ens = 5 S 2 G o T @as
Using

o)l =2n(2(n—-1))...(2-1) =2"n!

we may write o(S?"H1) = 2”;# which shows that Egs. 1) and l are in
agreement. We may also write the formula in Eq. (9.57) as

2(2m)"/?
o(sm = "L

((2:23 for n odd.

for n even
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9.8 Gaussian Random Vectors

Definition 9.34 (Gaussian Random Vectors). Let (2,8, P) be a probabil-
ity space and X : 2 — R? be a random vector. We say that X is Gaussian if
there exists an d x d — symmetric matriz Q and a vector p € R such that

) 1
E [ez/\X] = exp (—2Q)\ A )\) for all X € R%. (9.58)

We will write X £ N (Q, 1) to denote a Gaussian random vector such that Eq.

holds.

Notice that if there exists a random variable satisfying Eq. @D then its law
is uniquely determined by @ and u because of Corollary [B.11] In the exercises
below your will develop some basic properties of Gaussian random vectors — see
Theorem for a summary of what you will prove.

Exercise 9.4. Show that ) must be non-negative in Eq. (9.58).

Definition 9.35. Given a Gaussian random vector, X, we call the pair, (Q, 1)
appearing in Eq. the characteristics of X. We will also abbreviate the
statement that X is a Gaussian random vector with characteristics (Q,p) by

writing X N (Q, ) -

Lemma 9.36. Suppose that X N (Q,p) and A: R - R™ is am x d — real
matriz and o € R™, then AX + « <N (AQA™, Ap+ ). In short we might
abbreviate this by saying, AN (Q, 1) + « LNy (AQA™, Ap + ).

Proof. Let £ € R™, then
E [e/(AXT0)| — gitrap [(ATEX] — it exp (—;QA“g CATE g A%)
= e %exp (—;AQA“& EHiAp- 5)
= exp <;AQA”§ E+i(Ap+ ) - §>

from which it follows that AX + a < N (AQA™, Au+ ). |

Exercise 9.5. Let P be the probability measure on {2 := R? defined by

1 iz d 1 2
dP (z) := <2ﬂ_> e 2%y = H (me_wi/zdxi) .

i=1
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Show that N : 2 — R? defined by N (r) = x is Gaussian and satisfies Eq.
(19.58) with @ = I and p = 0. Also show

Hi = ENZ and 51']' = Cov (Ni,Nj) for all 1 < Z,j < d. (959)
Hint: use Exercise and (of course) Fubini’s theorem.

Exercise 9.6. Let A be any real m xd matrix and u € R™ and set X := AN+pu
where 2 = R?, P, and N are as in Exercise Show that X is Gaussian by
showing Eq. holds with Q = AA"™ (AY is the transpose of the matrix A)
and p = p. Also show that

i = EXZ and QU = Cov (XzaX]) for all 1 < Z,j < m. (960)

Remark 9.37 (Spectral Theorem). Recall that if @ is a real symmetric d x d
matrix, then the spectral theorem asserts there exists an orthonormal basis,
{u};l:l, such that Qu; = Aju; for some A; € R. Moreover, A; > 0 for all j is
equivalent to Q being non-negative. When Q > 0 we may define Q/2 by

Ql/guj = \//\juj for 1 S j S d.

Notice that Q/2 > 0 and Q = (Q1/2)2 and Q2 is still symmetric. If Q is
positive definite, we may also define, Q~1/2 by

1
Q Vu; = ——ujfor1<j<d

7
so that Q~1/2 = [Ql/ﬂ_l )

Exercise 9.7. Suppose that @ is a positive definite (for simplicity) d x d real
matrix and p € R? and let 2 = R¢, P, and N be as in Exercise By Exercise

we know that X = Q2N + y is a Gaussian random vector satisfying Eq.

(19.58). Use the multi-dimensional change of variables formula to show

Lawp (X) (dy) = 5O - ) dy

1
—————exp
Vdet (27Q) ( 2
Let us summarize some of what the preceding exercises have shown.

Theorem 9.38. To each positive definite d x d real symmetric matriz Q and
p € R? there exist Gaussian random vectors, X, satisfying Eq. . Moreover
for such an X,

Lawp (X) (dy) = Loy m) dy

1
——————ex
Jdet2rQ) P < 2
where Q and u may be computed from X using,

wi =EX; and Q;; = Cov (X;,X;) for alll <i,j <m. (9.61)
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132 9 Multiple and Iterated Integrals

When Q is degenerate, i.e. Nul(Q) # {0}, then X = Q2N + p is still a
Gaussian random vectors satisfying Eq. (9.58). However now the Lawp (X) is

a measure on R? which is concentrated on the non-trivial subspace, Nul (Q)l -
the details of this are left to the reader for now.

Exercise 9.8 (Gaussian random vectors are “highly” integrable.). Sup-

pose that X : 2 — R? is a Gaussian random vector, say X 4 N (Q, ). Let
|z]| := v/z - % and m := max {Qxz - z : ||| = 1} be the largest eigenvalud’| of Q.
Then E [ee”Xug} < oo for every e < ﬁ

Because of Eq. (9.61)), for all A € R? we have

d
poA=>EX; X =E(\-X)

i=1
and

QM- A= QiAid; = > Ai); Cov (X;, X;)

4,7 4,7
= Cov Z)\iXi,Z)\ij :Var()\-X).
i J

Therefore we may reformulate the definition of a Gaussian random vector as
follows.

Definition 9.39 (Gaussian Random Vectors). Let (2,8, P) be a probabil-
ity space. A random vector, X : 2 — R%, is Gaussian iff for all X € RY,

E [e*] = exp <; Var (A - X) + B () - X)) : (9.62)

In short, X is a Gaussian random vector iff A- X is a Gaussian random variable
for all A € R,

Remark 9.40. To conclude that a random vector, X : 2 — R?, is Gaussian it
is not enough to check that each of its components, {Xi}?zl, are Gaussian
random variables. The following simple counter example was provided by Nate
Eldredge. Let (X,Y) : £2 — R? be a Random vector such that (X,Y), P = u®v

where dp (z) = \/%e_%“'zdx and v =3 (0_1 +61). Then (X,YX): 2 — R?is
a random vector such that both components, X and Y X, are Gaussian random
variables but (X,Y X) is not a Gaussian random vector.

Exercise 9.9. Prove the assertion made in Remark Hint: explicitly com-
pute E [ei(Alx“‘?XY)} .

3 For those who know about operator norms observe that m = ||Q|| in this case.
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9.9 Kolmogorov’s Extension Theorems

In this section we will extend the results of Section to spaces which are not
simply products of discrete spaces. We begin with a couple of results involving
the topology on RY.

9.9.1 Regularity and compactness results

Theorem 9.41 (Inner-Outer Regularity). Suppose p is a probability mea-
sure on (RN,BRN) , then for all B € Bgxn we have

pw(B)=inf{p(V): BCV and V is open} (9.63)

and

w(B) =sup{p(K): K C B with K compact} . (9.64)

Proof. In this proof, C, and C; will always denote a closed subset of RY
and V, V; will always be open subsets of RY. Let F be the collection of sets,
A € B, such that for all € > 0 there exists an open set V and a closed set, C,
such that C C A C V and u (V' \ C) < e. The key point of the proof is to show
F = B for this certainly implies Equation and also that

w(B) =sup{u(C): C C B with C closed}. (9.65)

Moreover, by MCT, we know that if C is closed and K, :=
Cn{zeRY:|z|<n}, then p(K,) T n(C). This observation along
with Eq. shows Eq. is valid as well.

To prove F = B, it suffices to show F is a o — algebra which contains all
closed subsets of RV, To the prove the latter assertion, given a closed subset,
C CRY, and ¢ > 0, let

C. := Ugzec B (z,¢)

where B (z,¢) := {y € RV : |y — 2| < e} . Then C. is an open set and C. | C
as ¢ | 0. (You prove.) Hence by the DCT, we know that u(C:\ C) | 0 form
which it follows that C € F.

We will now show that F is an algebra. Clearly F contains the empty set
and if A € Fwith C C ACV and p(V\C) < ¢, then V¢ C A° C C° with
w(C\Ve) =pu(V\C) < e. This shows A° € F. Similarly if A, € F fori=1,2
and C; C A; C V; with ,u(V; \ Cz) < g, then

C=CiUCyCcAjUA; C VUV =V

and
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p(VANC) < p(Vi\C)+p(V2\C)

<
<Sp MG +p(Va\ Gy < 2.

This implies that A; U As € F and we have shown F is an algebra.

We now show that F is a o — algebra. To do this it suffices to show A :=
Yoo Ay € Fif A, € F with A, N A, =0for m # n. Let C, C A,, CV,, with
(Vi \ Cp) < €27 for all n and let CV := U,<nyCp, and V := U, V,,. Then
CNcCcACV and

V\CN ZN \CN ZN(VH\Cn)+ Z M(Vn)
n=0 n=N+1

<Z<52 " Z n) +e27"]
n=N+1
=+ Z

n=N+1

The last term is less that 2¢ for N sufficiently large because > oo | p(A,) =
1 (A) < oo. |

Notation 9.42 Let I := [0,1], Q = IN, m; : Q — I be the projection
map, 7j(x) = x; (where x = (x1,22,...,%,...) for all j € N, and Bg :=
o (mj: j € N) be the product o — algebra on Q. Let us further say that a sequence
{z(m)}>_, C Q, where x (m) = (z1 (m),z2(m),...), converges to x € Q iff
lim,, 00 2 (M) = ; for all j € N. (This is just pointwise convergence.)

Lemma 9.43 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)}~_, C @ has a convergent
subsequence,{x (m)} pey -

Proof. Since I is compact, it follows that for each j € N, {z; (m)}f::l has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {my};—, , of N such that limj,_, z; (my) € I exists
for all j € N. ]

Corollary 9.44 (Finite Intersection Property). Suppose that K,, C Q are
sets which are, (i) closed under taking sequential limitﬂ and (ii) have the finite
intersection property, (i.e. NI'_1K,, # 0 for allm € N), then NS_, K,,, # 0.

Proof. By assumption, for each n € N, there exists z (n) € NI, _; K,,. Hence
by Lemma there exists a subsequence, « (ny) , such that  := limg_, x (ng)

4 For example, if K,, = K/, x Q with K/, being a closed subset of I"™, then K,, is
closed under sequential limits.
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exists in Q. Since x (ng) € NI _, K, for all k large, and each K, is closed
under sequential limits, it follows that x € K, for all m. Thus we have shown,
x € NX_, K, and hence N°_, K, # 0. n

9.9.2 Kolmogorov’s Extension Theorem and Infinite Product
Measures

Theorem 9.45 (Kolmogorov’s Extension Theorem). Let I := [0,1].
For each n € N, let pu, be a probability measure on (I™,Brn) such that
tnt1 (AXI) = pn (A). Then there exists a unique measure, P on (Q,Bg)
such that

P(AXQ) = pn(4) (9.66)
for all A € Byn and n € N.

Proof. Let A := UB,, where B,, :== {AXQ:A€Bm} =o0(m,...,7n),
where m; (x) = z; if x = (z1,22,...) € Q. Then define P on A by Eq. (9.66)
which is easily seen (Exercise to be a well defined finitely additive measure
on A. So to finish the proof it suffices to show if B,, € A is a decreasing sequence
such that

i%fP(Bn) = lim P(B,)=¢>0,

n—oo
then B :=NB, # 0.
To simplify notation, we may reduce to the case where B,, € B,, for all n.
To see this is permissible, Let us choose 1 < n; < ny < ng < .... such that
By, € B,,, for all k. (This is possible since B,, is increasing in n.) We now define

. )
a new decreasing sequence of sets, {Bk} as follows,

n1—1 times ns—nj times mng—ns times nyg—ng3 times

~ ~ ——
(31,32,...): 0...0.B....B.By...B.Bs.. Ba...

We then have B,, € B,, for all n, lim, . P (Bn) =e>0,and B = ﬁ;’leén.

Hence we may replace B, by B, if necessary so as to have B,, € B,, for all n.

Since B,, € B, there exists B/, € By~ such that B, = BJ, x @ for all n.
Using the regularity Theorem there are compact sets, K], C B], C I",
such that p, (B, \ K}) < 277! for all n € N. Let K, := K/, x Q, then
P (B, \ K,) <e27""! for all n. Moreover,

P (Bu\ [Np=1Km]) = P (Upy [Bn \ K] zn:P B\ Kim)

<Y P(Bn\Kn) < 252 m-l < g/2.
m=1

m=1
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So, for all n € N,

P (Mn=1Km) = P (Bn) — P(By \ [M=1Km]) 2 e —€/2=¢/2,

and in particular, N% _, K, # 0. An application of Corollary now implies,
0 #nN,K, CN,By. m

Exercise 9.10. Show that Eq. defines a well defined finitely additive
measure on A := UB,,.

The next result is an easy corollary of Theorem

Theorem 9.46. Suppose {(X,, M)} nen are standard Borel spaces (see Ap-
pendiz [9.10) below), X = [] X, mn : X — X,, be the n'* — projection map,
neN

B, =c(m:k<n), B=o(m, :n €N), and T, := Xpt1 X Xpy2 X ....
Further suppose that for each n € N we are given a probability measure, p, on
Mi®---® M, such that

pnt1 (A X Xpi1) = pin (A) forallneNand Ae M1 @ -+ @ M,.

Then there exists a unique probability measure, P, on (X,B) such that
PAXT,) =pn(A) foralAec My Q- @ M,.

Proof. Since each (X, M,) is measure theoretic isomorphic to a Borel
subset of I, we may assume that X,, € 81 and M,, = (Br)y, for all n. Given
A€ B, let fin (A) == pn (AN[Xy X -+ x X,]) — a probability measure on
Bin. Furthermore,

Fing1 (A X T) = pg ([A X TN [Xy X - X Xgq])
= 1 (AN [Xy X x Xp]) X Xppi1)

=t (AN X7 X - % Xp])) = fin (A).
Hence by Theorem there is a unique probability measure, P, on I such

that -
P(AxIV) =i, (A) foralln € Nand A € B».

We will now check that P := P|ge a4
have

. is the desired measure. First off we

P(X)= lim P(X; x - x X, xIV) = lim i, (X1 x -+ x X,)
= lim p, (X1 X+ x Xp) =

n—oo

Secondly, if A € M; ® --- ® M,,, we have
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P(AxT,) =P(AxT,) =P((AxI)nX)
P (AxIY) = fin (A) = py (A).

Here is an example of this theorem in action.

Theorem 9.47 (Infinite Product Measures). Suppose that {v,} -, are a
sequence of probability measures on (R, Br) and B := ®,enBr is the product o
— algebra on RY. Then there exists a unique probability measure, v, on (RN, B) ,
such that
v(Ay x Ay x o x Ay x RN =0y (A1) .. v, (4,) VA € Bg §neN.
(9.67)

Moreover, this measure satisfies,

RNf(a:l,...,xn)dV (z) = flxy, .. zn)dvy (1) .. dvg () (9.68)

]Rn
foralln € N and f : R®™ — R which are bounded and measurable or non-negative

and measurable.

Proof. The measure v is created by apply Theorem with g, == 11 ®
- Q@ vy on (R™, Brn = @}_,Bgr) for each n € N. Observe that

et (A X R) = iy (A) - vy (B) = i (A),

so that {u,},. , satisfies the needed consistency conditions. Thus there exists
a unique measure v on (RN B) such that

v(AxRY) =y, (A) for all A€ Bgn and n € N.

Taking A = A; X A x --- x A, with A; € B then gives Eq. . For this
measure, it follows that Eq. holds when f = 14,x..x4,. Thus by an
application of Theorem [8.2] with Ml = {14, x...x4, : A; € Br} and H being the
set of bounded measurable functions, f : R™ — R, for which Eq. shows
that Eq. holds for all bounded and measurable functions, f : R” — R.
The statement involving non-negative functions follows by a simple limiting
argument involving the MCT. ]

9.10 Appendix: Standard Borel Spaces*

For more information along the lines of this section, see Royden [46].
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Definition 9.48. Two measurable spaces, (X, M) and (Y,N) are said to be
isomorphic if there exists a bijective map, f: X — Y such that f (M) =N
and f~1 (N) = M, i.e. both f and f=1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X =Y.

Definition 9.49. A measurable space, (X, M) is said to be a standard Borel
space if (X, M) = (B, Bg) where B is a Borel subset of ((0,1),B0.1) -

Definition 9.50 (Polish spaces). A Polish space is a separable topological
space (X, T) which admits a complete metric, p, such that T = 7,.

The main goal of this chapter is to prove every Borel subset of a Polish space
is a standard Borel space, see Corollary [9.60] belovv Along the way we will show
a number of spaces, including [0,1], (0,1], [0,1]*, R%, and RY, are all (measure
theoretic) isomorphic to (0,1). Moreover we albo will see that the a countable
product of standard Borel spaces is again a standard Borel space, see Corollary

On first reading, you may wish to skip the rest of this
section.

Lemma 9.51. Suppose (X, M) and (Y,N') are measurable spaces such that
X =% X0, ¥V = 3% Yo, with X, € M and Y, € N. If (X, Mx,)
is isomorphic to (Y, Ny, ) for all n then X =Y. Moreover, if (X,, M,) and
(Y, N,) are isomorphic measure spaces, then (X = []7_; X, ®52,M,,) are
(Y =112, Y, ®2,N,,) are isomorphic.

Proof. For each n € N, let f,, : X,, — Y, be a measure theoretic isomor-
phism. Then define f : X — Y by f = f, on X,,. Clearly, f: X — Y isa
bijection and if B € N, then

fFAB) =0, f Y (BnY,) =U, 1 (BNY,) € M.

This shows f is measurable and by similar considerations, f~! is measurable
as well. Therefore, f : X — Y is the desired measure theoretic isomorphism.

For the second assertion, let f, : X,, — Y,, be a measure theoretic isomor-
phism of all n € N and then define

f(:c):(fl (xl),fQ(xQ),...) With(E:(lL'l,(EQ,...) e X.

Again it is clear that f is bijective and measurable, since

_1<HB"> Hf n) € @nL i Nn
n=1

for all B,, € M,, and n € N. Similar reasoning shows that f~! is measurable as
well. ]
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Proposition 9.52. Let —oc0 < a < b < oo. The following measurable spaces
equipped with there Borel o — algebras are all isomorphic; (0,1), [0,1], (0,1],
[0,1), (a,b), [a,b], (a,b], [a,b), R, and (0,1)UA where A is a finite or countable
subset of R\ (0,1).

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (—1,1) 2 [—1,1]. To prove this it suffices, by Lemma to
observe that

(-L1)={0pud_((-27 -27"Jul2™" 27
n=0

and
1) = U S (22 u e 2.

Similarly (0, 1) is isomorphic to (0, 1] because

0,1)=>"[27""",27") and (0,1] = Y (27", 27"].
n=0 n=0

The assertion involving R can be proved using the bijection, tan
(—m/2,7/2) — R.

If A= {1}, then by Lemma and what we have already proved, (0,1) U
{1} = (0,1] 2 (0,1) . Similarly if N € N with N > 2 and A ={2,...,N + 1},
then

N—-1
(0. huA=(0,]Uud=(0,27"]u lZ@",wl} U4
n=1
while
N-1
(0,1) = (0,27"*) U [Z (2‘",2‘”‘1)] U{2min=12,.. N}
n=1

and so again it follows from what we have proved and Lemma that (0,1) =
(0,1) U A. Finally if A = {2,3,4,...} is a countable set, we can show (0,1) =
(0,1) U A with the aid of the identities,

o0
(0,1) = [Z (2”,2”1)] u{2™":neN}
n=1
and
0, 1DUAZ(0,1Jud= > 227" | UA
n=1
| ]
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Notation 9.53 Suppose (X, M) is a measurable space and A is a set. Let
7, : X4 — X denote projection operator onto the a' — component of X4 (i.e.
7o (W) = w(a) for all a € A) and let M®4 := o (14 : a € A) be the product o —
algebra on XA,

Lemma 9.54. If p : A — B is a bijection of sets and (X, M) is a measurable
space, then (XA,M®A) % (XB,M®B) .

Proof. The map f: X — X4 defined by f (w) =wo ¢ for all w € XB is
a bijection with f~! (a) = o~ !. Ifa € A and w € XZ, we have

X o fw) = f (W) (@) =w (9 (a) = 150 ),

XA

o, and 71'5(B are the projection operators on X4 and X respectively.

where
Thus X" o f = Ww(z) for all @ € A which shows f is measurable. Similarly,

of l=nm ,Al ®) showing f~! is measurable as well. ]

Proposition 9.55. Let 2 := {0,1}"", m; : 2 — {0,1} be projection onto the
i™" component, and B := o (11, m2,...) be the product o — algebra on 2. Then

(12,B) = ((0,1), Bo,1)) -

Proof. We will begin by using a specific binary digit expansion of a point
x € 10,1) to construct a map from [0,1) — §2. To this end, let 71 (x) = z,

1 () = 1y59-1 and 73 () := o — 271y, (z) € (0, 2_1),

then let vo :==1,,59-2 and 73 = 12 — 272y, € (0, 2_2) . Working inductively, we
construct {7y (z), 7k (x)}re; such that v (z) € {0,1}, and

P () = rg (x) =27 3 ( —x—22 I (z) € (0,27%) (9.69)

for all k. Let us now define g : [0,1) — 2 by g (z) := (1 (z),y2 (z),...). Since
each component function, m; o g =~; : [0,1) — {0,1}, is measurable it follows
that g is measurable.

By construction,

x—ZQ ]'Y] )+ e (@)

and ri41 () — 0 as k — oo, therefore

x = Z 277, (z) and 7441 ( Z 27 (z (9.70)
] j=k+1
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Hence if we define f: 2 — [0,1] by f =372, 27I7;, then f (g (x)) = z for all
€ [0,1). This shows g is injective, f is surjective, and f in injective on the
range of g.

We now claim that 2y := ¢ ([0,1)), the range of g, consists of those w € 2
such that w; = 0 for infinitely many ¢. Indeed, if there exists an k € N such
that v, (z) = 1 for all j > k, then (by Eq. (9.70)) 741 (z) = 27F which
would contradict Eq. (9.69). Hence g ([0,1)) C £2y. Conversely if w € 2y and
x = f(w) € [0,1), it is not hard to show inductively that ~, (z) = w; for all
j, i.e. g(z) = w. For example, if w; = 1 then > 27! and hence 71 (z) = 1.
Alternatively, if w; = 0, then

o0 o0
z=Y 27w <Y 277 =27"
j=2 j=2

so that 71 (z) = 0. Hence it follows that 7o (z) = > 72, 27Jw; and by similar
reasoning we learn 7o (z) > 272 iff wy = 1, i.e. 72 () = 1 iff we = 1. The full
induction argument is now left to the reader.

Since single point sets are in B and

A:=0\ =02 {we R:w;=1forj >n}

is a countable set, it follows that A € B and therefore 20 = 2\ 4 € B.
Hence we may now conclude that g : ([O, 1), 8[071)) — (20, Bg,) is a measurable
bijection with measurable inverse given by f|q,, i.e. ([0, 1), 3[0,1)) > (20,Bq,) -
An application of Lemma [0.51] and Proposition [0.52] now implies

N=02UA2[0,1)UNX[0,1) = (0,1).
]

Corollary 9.56. The following spaces are all isomorphic to ((071),[)’(071));

(0,1)* and R? for any d € N and [0,1]" and RY where both of these spaces
are equipped with their natural product o — algebras, .

Proof. In light of Lemma and Proposition we know that (0,1)% =
R? and (0,1)" 2 [0,1]" = RY. So, using Proposition it suffices to show
(0,1) = 2 = (0,1)" and to do this it suffices to show 24 2 2 and 2N = (.

To reduce the problem further, let us observe that 27 = {0, 1}NX{1’2 """ 4
and 2V = {0, 1}N2 . For example, let g : 2% — {0, I}N2 be defined by

N
g (W) (i,5) = w (i) (j) for all w € NV = [{0, 1}N} . Then g is a bijection and

since ﬂ&{zb} og(w) =y (wiﬂN (w)) , it follows that g is measurable. The in-

verse, g~ ! : {0,1}N2 — N to g is given by g7 () (i) () = a(i,7). To see
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this map is measurable, we have 7T;QN ogt:{o0, 1}N2 — 2 ={0,1}" is given

72 097 (@) = g7 (@) (i) (-) = (i, -) and hence

N o 0,1 N2
orf og(@) =a(ij) =75 (a)
2
from which it follows that 7rj907riQN og~! = 701" is measurable for all i,7 €N

N . ) .
and hence 7> o g~! is measurable for all i € N and hence g~! is measurable.

This shows 28 22 {0, 1}N2 . The proof that £2¢ = {0, 1}NX{1’2""’d} is analogous.

We may now complete the proof with a couple of applications of Lemma
Indeed N, N x {1,2,...,d}, and N? all have the same cardinality and
therefore,

1

0, 1}N><{1,2,4-~7d} =~ {0, 1}N2 ~ (0,1} =
[

Corollary 9.57. Suppose that (X,,, M,,) for n € N are standard Borel spaces,
then X := [[.2, X,, equipped with the product o — algebra, M := @22 M,, is
again a standard Borel space.

Proof. Let A, € Bjy,1) be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, fn X, — A,. Then f: X — A:=[[ 2, A, defined by
f(z1,22,...) = (fi (z1), fa (z2),...) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product o — algebra, ®5% 84, . So ac-
cording to Corollary [0.56] to finish the proof it suffice to show @52, B4, = My
where M := ®52,Bjg 1] is the product o — algebra on [0, 1N

The o — algebra, ®2,B,4,, is generated by sets of the form, B :=[[ -, B
where B,, € By, C 3[0,1 On the other hand, the ¢ — algebra, M 4 is generated
by sets of the form, AN B where B := | B,, with B,, € Bj,1)- Since

ANB= ﬁ (BnmAn) =
n=1

where B,, = B,, N A,, is the generic element in By, , we see that @52 84, and
M 4 can both be generated by the same collections of sets, we may conclude
that ®952 84, = Ma. [ |

Our next goal is to show that any Polish space with its Borel ¢ — algebra is
a standard Borel space.

3

B,

n=1

Notation 9.58 Let Q := [0,1]N denote the (infinite dimensional) unit cube
in RN, Fora,be Q let

oo oo

d(a,b) =3 2in an —bal =3 ;n im0 (@) — 70 (8)] - 9.71)

n=1 n=1
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Exercise 9.11. Show d is a metric and that the Borel o — algebra on (Q, d) is
the same as the product o — algebra.

Solution to Exercise . It is easily seen that d is a metric on @} which,
by Eq. is measurable relative to the product o — algebra, M.. There-
fore, M contains all open balls and hence contains the Borel ¢ — algebra, B.
Conversely, since

|7n (@) — mn (D) < 2"d(a,b),

each of the projection operators, m, : @ — [0,1] is continuous. Therefore each
T, is B — measurable and hence M = o ({m,},— ;) C B.

Theorem 9.59. To every separable metric space (X, p), there exists a contin-
uous injective map G : X — Q such that G : X — G(X) C Q is a homeomor-
phism. Moreover if the metric, p, is also complete, then G (X) is a G5 —set, i.e.
the G (X) is the countable intersection of open subsets of (Q,d). In short, any
separable metrizable space X is homeomorphic to a subset of (Q,d) and if X is
a Polish space then X is homeomorphic to a Gs — subset of (Q,d).

Proof. (This proof follows that in Rogers and Williams [43, Theorem 82.5
on p. 106.].) By replacing p by 1= 1f necessary, we may assume that 0 < p < 1.

Let D = {an},-, bea countable dense subset of X and define

G(x)=(p(z,a1),p(x,a2),p(z,a3),...) €Q

and

SL' Gnp _p(yvan)‘

w‘,_.

v (2,y) = d(G(z Z

for z,y € X. To prove the first assertion, we must show G is injective and -~ is
a metric on X which is compatible with the topology determined by p.

If G(x) = G(y), then p(x,a) = p(y,a) for all @ € D. Since D is a dense
subset of X, we may choose oy € D such that

0= lim p(z,a5) = lim p(y,ax) =p(y,2)

k—oo

and therefore x = y. A simple argument using the dominated convergence
theorem shows y — v (z,y) is p — continuous, i.e. v (z,y) is small if p (z,y) is
small. Conversely,

p(z,y) < p(x,an) +p (Y, an) = 2p (2, an) + p (y,an) — p (2, an)
<2p(z,an) +[p(2,an) = p (Y, an)| < 2p(2,an) + 2"y (2,y) .
Hence if € > 0 is given, we may choose n so that 2p(x,a,) < £/2 and so if

v (z,y) < 27"+ Ve it will follow that p(z,y) < e. This shows 7, = 7,. Since
G: (X,7) — (Q,d) is isometric, G is a homeomorphism.
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Now suppose that (X, p) is a complete metric space. Let S := G (X) and o
be the metric on S defined by o (G (x),G (y)) = p(x,y) for all x,y € X. Then
(S,0) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, 7, = 74,. Consequently, if u € S and £ >
0 is given, we may find ¢’ (¢) such that B, (u,d’ (¢)) C Bg (u,e) . Taking § (g) =
min (8’ (¢) ,e), we have diamg (Bg (u,d (¢))) < € and diam, (Bg (u,d(¢))) < €
where

diam, (A) := {supo (u,v) : u,v € A} and
diamy (A4) := {supd (u,v) : u,v € A}.

Let S denote the closure of S inside of (Q,d) and for each n € N let
N, :={N € 74 : diam, (N) V diam, (NN S) < 1/n}

and let U, := UN,, € 74. From the previous paragraph, it follows that S C U,
and therefore S C SN (N2, U,) .

Conversely if u € SN (N%,U,) and n € N, there exists N,, € N,, such
that u € N,,. Moreover, since Ny N---N N,, is an open neighborhood of u € S,
there exists u,, € N1 N---N N, NS for each n € N. From the definition of
Ny, we have lim,, . d (u,u,) = 0 and o (uy, up) < max (n’l,mfl) — 0 as
m,n — oo. Since (S,0) is complete, it follows that {u,} -, is convergent in
(S,0) to some element ug € S. Since (S, dg) has the same topology as (S, 0)
it follows that d(un,up) — 0 as well and thus that ©v = ug € S. We have
now shown, S = S N (N%,U,). This completes the proof because we may
write S = (N, S1/n) where S1/,, := {u € Q:d(u,S) <1/n} and therefore,
S= (Mo Un) N (Noy Siyn) is a Gy set. [

Corollary 9.60. Every Polish space, X, with its Borel o — algebra is a standard
Borel space. Consequently and Borel subset of X is also a standard Borel space.

Proof. Theorem shows that X is homeomorphic to a measurable (in
fact a Gs) subset Qg of (Q,d) and hence X = Q. Since @ is a standard Borel
space so is Qg and hence so is X. [

9.11 More Exercises

Exercise 9.12. Let (X;, M, p1;) for j = 1,2,3 be o — finite measure spaces.
Let F : (Xl X X2) X X3 — X1 X X2 X X3 be defined by

F((z1,x2),x3) = (1,22, 23).
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1. Show F is (M1 ® Ms) @ M3, M1 ® My ® M3) — measurable and F~! is
My @ Ms ® M3, (M1 ® Ms3) ® M3) — measurable. That is

F: ((X1 X XQ) XX3, (Ml ®M2)®M3) — (X1 XX2 XX3,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. 7(A) = [(u1 @ p2) @ 3] (F~1(A)) for all
A e M;® My ® Ms. Then 7 is the unique measure on M1 ® Moy ® M3
such that

m(Ar x Ay x Az) = p1 (A1) p2(A2)ps(As)

for all A; € M;. We will write 7 := 1 ® po ® 3.
3. Let f: X1 x Xg x X3 — [0,00] be a (M1 @ Mg ® Mg, Bg) — measurable
function. Verify the identity,

/ fdr = du3($3)/ dpa(z2) dpy (21) f (21, 22, 23),
X1><X2><X3 X3 X2 Xl

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible
orderings of the iterated integrals.

Exercise 9.13. Prove the second assertion of Theorem [9.20] That is show m?
is the unique translation invariant measure on Bga such that m<((0,1]%) = 1.
Hint: Look at the proof of Theorem

Exercise 9.14. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1], M =
Bip,1) be the Borel o — field on X, m be Lebesgue measure on [0,1] and v be
counting measure, v(A) = #(A). Finally let D = {(z,z) € X?: 2 € X} be the
diagonal in X?2. Show

/XUX 1D(x,y)du(y)} dm(x)#/x[/X 1D(ﬂc,y)dm(x)} dv(y)

by explicitly computing both sides of this equation.

Exercise 9.15. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 9.16. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M x Bg should be M ® Bz in this problem.)

Exercise 9.17. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.18. Folland Problem 2.56 on p. 77. Let f € Ll((07a),dm)’ g(x) =
Je @dt for 2 € (0,a), show g € L'((0,a),dm) and

/Oag(x)da: - /Oaf(t)dt.

macro: svmonob.cls date/time: 24-Nov-2009/13:23



Exercise 9.19. Show [ [#2£|dm(z) = oo. So #2Z ¢ L([0,00),m) and

fooo Si%dm(m) is not defined as a Lebesgue integral.

Exercise 9.20. Folland Problem 2.57 on p. 77.

Exercise 9.21. Folland Problem 2.58 on p. 77.

Exercise 9.22. Folland Problem 2.60 on p. 77. Properties of the I" — function.
Exercise 9.23. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.24. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on S" 1,

Exercise 9.25. Folland Problem 2.64 on p. 80. On the integrability of
|z|* [log |z||” for = near 0 and z near co in R™.

Exercise 9.26. Show, using Problem [9.24] that
1
/ wiw;do (w) = =8;;0 (ST1).
i d

Hint: show [g, , wido (w) is independent of ¢ and therefore

d
1
24 == § / 24 .
/Sdfl wl 7 (w) d j=1 Sd—l w'] 7 (W)






10

Independence

As usual, (£2,B,P) will be some fixed probability space. Recall that for
A, B € B with P (B) > 0 we let

P(ANnB)

P(A|B) := )

which is to be read as; the probability of A given B.

Definition 10.1. We say that A is independent of B is P (A|B) = P (A) or
equivalently that
P(AnB)=P(A)P(B).
We further say a finite sequence of collection of sets, {C;}.—, , are independent
if
P(NjesA;) =[] P(4)
jeJ

forall A; € C; and J C {1,2,...,n}.

10.1 Basic Properties of Independence

If {C;}!, , are independent classes then so are {C; U {£2}}!_, . Moreover, if we
assume that 2 € C; for each i, then {C;};_, , are independent iff

P 4;) =[] P(4)) forall (Ay,...,A;) €Crx -+ xCp.

j=1

Theorem 10.2. Suppose that {C;};—, is a finite sequence of independent m —
classes. Then {o (C;)};_, are also independent.

Proof. As mentioned above, we may always assume without loss of gener-
ality that 2 € C;. Fix, A; € C; for j = 2,3,...,n. We will begin by showing
that

Q(A):=P(ANAsN---NA,) =P(A) P(Ay)...P(A,) forall A€ o (Cy).
(10.1)

Since @ (-) and P (As)... P (A,) P (-) are both finite measures agreeing on (2
and A in the m — system Cq, Eq. is a direct consequence of Proposition
Since (As,..., A,) € Co X -+ X C,, were arbitrary we may now conclude
that o (C1),Ca,...,C, are independent.

By applying the result we have just proved to the sequence, Ca, . .. ,Cp, 0 (C1)
shows that o (C3),Cs,...,Cy,0 (C1) are independent. Similarly we show induc-
tively that

O'(Cj) ,Cj+1, ce ,Cn,O'(C1) yo o .,O'(Cj_l)
are independent for each j = 1,2,...,n. The desired result occurs at j =n. =
Definition 10.3. Let (£2,, B, P) be a probability space, {(S;,S;)};—, be a collec-
tion of measurable spaces and Y; : 2 — S; be a measurable map for 1 < i < n.

The maps {Y;};_, are P - independent iff {C;};_, are P — independent, where
Ci=Y ' (F)=c(Yi)CBfor1<i<n.

K3

Theorem 10.4 (Independence and Product Measures). Let (§2,3, P) be
a probability space, {(S;,S;)}i_, be a collection of measurable spaces and Y; :
2 — S; be a measurable map for 1 < i < n. Further let u; == P o Y[l =
Lawp (Y;). Then {Y;},_, are independent iff

Lawp (Y1,...,Y,) = 11 @ -+ @ fin,
where (Y1,...,Y,): 2 — 51 x--- xS, and
Lawp (Y1,...,Y,) =Po(Yy,....Y,) '8 @---®@8, — [0,1]
is the joint law of Y1,...,Y,.

Proof. Recall that the general element of C; is of the form A; = Yi_1 (By)
with B; € S;. Therefore for A; = Y[l (B;) € C; we have

P(Ain---NnA,)=P((Y1,...,Y,) € By X --- X By)
— (Yi,.. ., Yo). P) (By X -~ X By).
If (Vi,...,Y,), P = 1 ® - @ pn it follows that
PA N NAy) =1 ® @ pin (By X -+ x By)
=p1 (B1)-p(Bn) =P (Y1 € B1)--- P (Y, € By)
— P(41)...P(A)
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and therefore {C;} are P — independent and hence {Y;} are P — independent.
Conversely if {Y;} are P — independent, i.e. {C;} are P — independent, then
P((Yl,,Yn) € By x--- XBn) :P(AlﬂﬁAn)
=P(4))...P(4,)
—P(Yi€By)-- P(Y, € By)
=1 (B1)--- p(Bn)
:M1®®/~Ln(31 Xowee XBn)
Since
m:={By X+ xB,:B; €8 for1 <i<n}
is a m — system which generates S1 ® ---® S,, and
Y1,....Y), P=pm1 ® - @ pup onm,
it follows that (Y1,...,Y,), P=11 ® - Q@puuonalof §1 ®--- ® S,. n

Remark 10.5. When have a collection of not necessarily independent random
functions, Y; : 2 — S, like in Theorem it is not in general possible
to recover the joint distribution, 7 := Lawp (Y7,...,Y},), from the individual
distributions, p; = Lawp (Y;) for all 1 < ¢ < n. For example suppose that
S; = R for i = 1,2. u is a probability measure on (R, Bg), and (Y7, Ys) have
joint distribution, m, given by,

m(C) = /Rlc (z,2)dp (z) for all C' € Bg.

If we let u; = Law (Y;), then for all A € Bg we have
w (A)=P(Y1 € A)=P((}1,Y2) € AxR)

:7T(A><R):/RleR(x,x)d,u(x):,u(A).

Similarly we show that po = . On the other hand if p is not concentrated on
one point, p ® u is another probability measure on (RQ,BRz) with the same
marginals as 7, i.e. 1 (A X R) = u(A) =7 (R x A) for all A € Bg.

Lemma 10.6. Let (£2,,B8,P) be a probability space, {(S;,S;)}—, and
{(Tl-,’];)}?zl be two collection of measurable spaces, F; : S; — T; be a mea-
surable map for each i and Y; : 2 — S; be a collection of P — independent
measurable maps. Then {F; o Y;}._, are also P — independent.

Proof. Notice that
o(FoY;) = (FoY) () =Y, " (F1(T) Y, ' (S) =C..

?

The fact that {o (F; oY;)}!_, is independent now follows easily from the as-
sumption that {C;} are P — independent. ]
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Ezample 10.7. If 2 := Hl 1 Si, B:=81®--®8, Yi(s1,...,8,) = s; for all
(51,...,5,) € 2, and C; := Y, 1 (S;) for all 4. Then the probability measures, P,
on ({2, B) for which {C; } _, are independent are precisely the product measures,
P =y ®- - ® p, where y; is a probability measure on (S;,S;) for 1 < i < n.
Notice that in this setting,

Ci=Y 1 (S)={S1 x-x8_1xBxSy1x--x8,:BeS;}CB.

Proposition 10.8. Suppose that (12,8, P) is a probability space and {Zj}?zl
are independent integrable random wvariables. Then H;Zl Z; is also integrable

and
E|[]%|=]]EZ-
j=1 j=1

Proof. Let p; := PoZ; ! BR — [0,1] be the law of Z; for each j. Then we
know (Z1,...,2,), P = ® - ® pin- Therefore by Example - and Tonelli’s
theorem,

e[zl = [ 11| 4 (©m) @)
j=1 j=1
H/ 23] diy (25) HE|Z\<oo

which shows that H;.Lzl Z; is integrable. Thus again by Example and Fu-

bini’s theorem,

Theorem 10.9. Let (£2,, B, P) be a probability space, {(S;,S;)}—, be a collec-
tion of measurable spaces and Y; : {2 — S; be a measurable map for 1<i<n.
Further let p; := POYf1 = Lawp (Y;) and m := Po(Y7,... ,Ynf1 SR8,
be the joint distribution of

(Yl,...,Yn):Q—>Sl><-~><Sn.

Then the following are equivalent,
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1. {Y;}"_, are independent,

2T = QU ® - Q Uy

3. for all bounded measurable functions, f : (S1 X+ X 8,81 ® - ®S,) —
(Ra B]R) s

Ef(Yl,...,Yn):/S s flxy,.ooyxn)dpy (x1) .. dpn (), (10.2)

( where the integrals may be taken in any order),
4. BT, fi V)] = 1=, E[f; (Y;)] for all bounded (or non-negative) measur-
able functions, f; : S; — R or C.

Proof. (1 <= 2) has already been proved in Theorem The fact
that (2. = 3.) now follows from Exercise and Fubini’s theorem. Sim-
ilarly, (3. = 4.) follows from Exercise and Fubini’s theorem after taking
f(z1,...,2n) = [liey fi (zi). Lastly for (4. = 1.), let A; € S; and take
fi :=14, in 4. to learn,
=Bl ) =] P (Vi€ 4)

1=1 i=1

P(Nis {Yice Ai}) =E lH La, (Ya)
i=1

which shows that the {Y;};, are independent. [

Corollary 10.10. Suppose that (£2,B,P) is a probability space and
{¥V,: 2 — R}?:l is a sequence of random variables with countable ranges, say

A CR. Then {Y]};L:1 are independent iff

P (5= {Ys = ui}) = [T PO = w) (10.3)

for all choices of y1,...,yn € A.

Proof. If the {Y; } are independent then clearly Eq. (10.3]) holds by definition
as {Y; = y;} € Y; ' (Bg) . Conversely if Eq. (10.3) holds and f; : R —0, 00) are
measurable functions then,

Elei(Yi) = Z Hfi(yi)'P(m?:I{Yj:yj})

Y1y Yn €A T=1

= Z Hfi(yi)'HP(Yj:yj)

Y1,--Yn €A =1 j=1
=113 fiwa) - Py =)
=1y, €EA

= HE[fi (Y3)]
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wherein we have used Tonelli’s theorem for sum in the third equality. It now
follows that {Y;} are independent using item 4. of Theorem [10.9] |

Exercise 10.1. Suppose that 2 = (0,1], B = B(g,1}, and P = m is Lebesgue
measure on B. Let Y; (w) := w; be the ¥ — digit in the base two expansion of
w. To be more precise, the Y; (w) € {0,1} is chosen so that

oo
w=Y Yi(w)2"" for all w; € {0,1}.
=1

As long as w # k27" for some 0 < k < n, the above equation uniquely deter-
mines the {Y; (w)}. Owing to the fact that >°° ;27! = 27" if w = k277,
there is some ambiguity in the definitions of the Y; (w) for large ¢ which you
may resolve anyway you choose. Show the random variables, {Y;}!_, , are i.i.d.
for each n € Nwith P(Y; =1)=1/2= P (Y; =0) for all .

Hint: the idea is that knowledge of (Y7 (w),...,Y, (w)) is equivalent to
knowing for which k¥ € Ny N [0,2") that w € (27"k,27" (k + 1)] and that this
knowledge in no way helps you predict the value of Y;,11 (w). More formally,
you might start by showing,

P ((Yarr = 1@k 27" (k4 1)) = 5 = P ({Yain =0}k, 27" (k1))

See Section if you need some more help with this exercise.
Exercise 10.2. Let X,Y be two random variables on (2, B, P).

1. Show that X and Y are independent iff Cov (f (X),g(Y)) =0 (i.e. f(X)
and ¢ (V) are uncorrelated) for bounded measurable functions, f,g: R —
R.

2.If XY € L?(P) and X and Y are independent, then Cov (X,Y) = 0.

3. Show by example that if X,Y € L?(P) and Cov(X,Y) = 0 does not
necessarily imply that X and Y are independent. Hint: try taking (X,Y) =
(X, ZX) where X and Z are independent simple random variables such that
EZ = 0 similar to Remark [0.40l

Solution to Exercise . 1. Since
Cov (f(X),g(YV)=E[f(X)g(YV)]-E[f(X)]E[g(Y)]
it follows that Cov (f (X),g(Y)) =0 iff
E[f (X)g(Y)]=E[f(X)]E[g(Y)]

from which item 1. easily follows.
2. Let far (z) = 21j/<r, then by independence,
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144 10 Independence
Efa (X) far (V)] = E [far (X)]E [far (V)] (10.4)

Since
[Far () far (V)] € 1XY] < 5 (X2 4¥2) € L1 (P).

1+X?%) eL"(P), and

[l SR

[fu (X < X[ <
)|

lfu (V)| <Y< 5(1+Y2) e L' (P),
we may use the DCT three times to pass to the limit as M — oo in Eq. (10.4))
to learn that E[XY] =E[X]|E[Y], i.e. Cov (X,Y) = 0.

3. Let X and Z be independent with P (Z = +1) = 1 and take Y = XZ.
Then EZ = 0 and

Cov (X,Y)=E[X*Z] -E[X|E[XZ]

=E[X?] -EZ -E[X]|E[X]EZ = 0.
On the other hand it should be intuitively clear that X and Y are not inde-
pendent since knowledge of X typically will give some information about Y. To

verify this assertion let us suppose that X is a discrete random variable with
P(X =0)=0. Then

PX=zY=y=PX=x,2Z=y)=PX=z)-P(X=y/z)

while
PX=2)P(Y=y)=P(X=2)-P(XZ=y).
Thus for X and Y to be independent we would have to have,
P(axX=y)=P(XZ=y) for all z,y.

This is clearly not going to be true in general. For example, suppose that

P(X=1)= 1= P(X=0). Taking 2 = y = 1 in the previously displayed
equation would imply

1 1
5=PX=1)=P(XZ=1)=P(X=1,Z2=1)=P(X=1)P(Z=1)=

which is false.

Let us now specialize to the case where S; = R™ and S; = Bgm; for some
m; € N.

Theorem 10.11. Let (£2,B,P) be a probability space, m; € N, S; = R™3,
S; = Bgmy, Y 1 2 — S; be random vectors, and p; = Lawp (Y;) = P o Yj_1
S; — [0,1] for 1 < j < n. The the following are equivalent;
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1.{Y;};_, are independent,

2. LaWp(Yl,...,Yn) = U1 ®M2®®,U/n

3. for all bounded measurable functions, f : (Sq x ---
(R’ B]R) )

XSna81®®Sn) -

]Ef(Yl,...,Yn):/S . fxy, .. zn)dus (1) . dpp (z),  (10.5)

( where the integrals may be taken in any order),

4. E [H;—;l f (Yj)} == E[fj (Y;)] for all bounded (or non-negative) mea-
surable functions, f; : S — R or C.

5. P(Nr_y{Y; <y;}) = H?zlP({Y7 <wy;}) for all y; € S;, where we say
that Yy < y; iff (Y;), < (yj), for 1 <k <mj.

6.E [H}g 15 (%3)] = I}y ELf; (¥))] for all f; € C. (S5, R),
E [ei 25 Af"’f} = 1‘[?;1 E [¢X57Y5] for all A\j € S; = R™.

J

Proof. The equivalence of 1. — 4. has already been proved in Theorem [10.9
It is also clear that item 4. implies both or items 5. 7. upon noting that item
5. may be written as,

Hl( 00,51 HE —00,Yj] )]

where (—00,y;] := (=00, (y;),] x - -+ x (=00, (y5),, ] The proofs that either 5.
or 6. or 7. implies item 3. is a simple application of the multiplicative system
theorem in the form of either Corollary [8.3]or Corollary [8.8] In each case, let H
denote the linear space of bounded measurable functions such that Eq.
holds. To complete the proof I will simply give you the multiplicative system,

M, to use in each of the cases. To describe M, let N = mq + --- + m,, and
y=(1un) = (¥ y"Y) eRY and
A=A, ) = (AN LAY e RY

For showing 5. = 3.take M= {1(_oo 4 : y € RV }.

For showing 6. = 3. take M to be a those functions on R" which are of
the form, f (y) = Hl]il fi (y') with each f, € C. (R).

For showing 7. = 3. take M to be the functions of the form,

iZ)\j cy; | =exp(iA-y).
j=1

f(y) =exp
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Definition 10.12. A collection of subsets of B, {Ci},cr is said to be indepen-
dent iff {Ci},c 4 are independent for all finite subsets, A C T. More explicitly,
we are requiTing

P (Nieads) = HP (Ay)

teA
whenever A is a finite subset of T and A; € Cy for all t € A.

Corollary 10.13. If {C},.p is a collection of independent classes such that
each Cy is a m — system, then {0 (Ct)},cr are independent as well.

Lemma 10.14 (Independence of groupings). Suppose that {B;:t € T} is
an independent family of o — fields. Suppose further that {Ts}, g is a partition
of T (ie. T =3, gTs) and let

Br, = Vier,B: = 0 (Urer, Bt) -
Then {BTS}SeS s again independent family of o fields.

Proof. Let
Cs = {mOéEKBa 1By € Bom K cc Ts} .

It is now easily checked that Br, = o (Cs) and that {C,} . g is an independent
family of m — systems. Therefore {Br,} , g is an independent family of o —
algebras by Corollary [10.13 [

Definition 10.15. A collections of random variables, {X; :t € T} are inde-
pendent iff {o (X;) :t € T} are independent.

Ezample 10.16. Suppose that {u,} -, is any sequence of probability measure
on (R,Bgr). Let 2 =RY, B:= @2 Bg be the product ¢ — algebra on §2, and
P := ®22,uy, be the product measure. Then the random variables, {Y,}
defined by Y, (w) = w, for all w € 2 are independent with Lawp (Y;,) = u,, for
each n.

Corollary 10.17. Suppose that {Y,}.-| is a sequence of independent random
variables (or vectors) and Ay, ..., Ay, is a collection of pairwise disjoint subsets
of N. Further suppose that f; : R — R is a measurable function for each
1<i<m,then Z; .= f; ({Yl}leA) s again a collection of independent random
variables.

Proof. Notice that o(Z;) C o ({Yi}cs,) = 0 (Uea,o(Y1)). Since
{o (V})};2, are independent by assumption, it follows from Lemma 4f that
{o ({Yl}le/]i)}?il are independent and therefore so is {o (Z;)};", i.e. {Z by
are independent. [
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Definition 10.18 (i.i.d.). A sequences of random variables, {X,} |, on a
probability space, (12,8, P), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (X,,), P = (Xi), P for all k,n. That is
we should have

P(X,c€A)=P(X,cA) forallk,n e N and A € Bg.

Observe that {X,} - are i.i.d. random variables iff

P(X1€Ay,....,X, €Ay) H (X; € Ay) :HP(XleAi):HM(Ai)
j=1 j=1 j=1

(10.6)
where p = (X31), P. The identity in Eq. (10.6)) is to hold for all n € N and all

A; € Bg. If we choose i, = p in Example 6}, the {Yn}ff:l there are i.i.d.
with Lawp (Y,,) = PoY, ! = pfor all n € N.
The following theorem follows immediately from the definitions and Theo-

rem [TO.TT1

Theorem 10.19. Let X := {X; :t € T} be a collection of random variables.
Then the following are equivalent:

1. The collection X is independent,

2.
P (Niea{X: € As}) = H P (X, e Ay)
teA
for all finite subsets, A C T, and all {As},c, C Bg.
3.

P(Mea{Xs <m}) = [[ P(Xi < 2)
teA
for all finite subsets, A C T, and all {x¢},., C R.
4. For oll I’ CC T and f; : R"— R which are bounded an measurable for all
tel,

117 <Xt]

tel’

5. E [Hter exp (ePe )] = [Tier e (A).
6. For all ' cC T and f : (R")" =R,

E[f (Xr)] = / () T doe (20)

tel’

HEft Xi) = / Hft Tt Hdut zt) .

tel’ tel’ tel’

7. For all’ CC T, Lawp (Xr) = Qtcrpe-
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146 10 Independence
8. Lawp (X) = QteT Ut-
Moreover, if By is a sub-o - algebra of B for t € T, then {B:},., are inde-
pendent iff for all ' CC T,

E

HXt] = HIEXt for all Xy € L™ (£2,B:, P).

tel tel’

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that o (X;) = {{X, € A} : A € Br}.
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
with C; := {{X: < a} :a € R} and making use the observations that C;
is a m — system for all ¢ and that o (C;) = o (X;). The remaining equivalence
are also easy to check. [

10.2 Examples of Independence

10.2.1 An Example of Ranks

Lemma 10.20 (No Ties). Suppose that X and Y are independent random
variables on a probability space (2,8, P). If F (z) := P (X < x) is continuous,
then P(X =Y) =0.

Proof. Let 4 (A) == P(X € A) and v (A) = P(Y € A). Because F' is con-
tinuous, u ({y}) = F (y) — F (y—) = 0, and hence

P(X=Y)=E [ljxoyy] = / Lm0 @ ) (29)

~ [ [ w1y = [ ntHar)

:/R()dl/(y):o.

Second Proof. For sake of comparison, lets give a proof where we do not
allow ourselves to use Fubini’s theorem. To this end let {al = %}Z_o@ (or for

the moment any sequence such that, a; < a;41 for alll € Z, lim;_, 1o, a; = +00).
Then

{(z,2) : 2 € R} C Urez [(ar, ar1] x (ar, ar41]]
and therefore,

P(X=Y)<Y P(X € (m,anlY € (aman])=> [F(lupn)-F ()
leZ leZ

< sup [F (arr1) = F(a)] Y [F (ar1) = F ()] = sup [F (ar41) — F (ar)] -

lez le
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Since F' is continuous and F (co+) = 1 and F (co—) = 0, it is easily seen that
F is uniformly continuous on R. Therefore, if we choose a; = we have

l+1 l
P(X=Y)<limsupsup |[F|—— | —F | —

L
N>

0.

Let {X,,} 7, be ii.d. with common continuous distribution function, F. So
by Lemma [10.20] we know that

P(X; =X;) =0 for all i # j.

Let R,, denote the “rank” of X, in the list (X1,...,X,,), ie.
Ry:=> lx>x, =#{j<n:X;>X,}.
j=1

Thus R, = k if X,, is the k" — largest element in the list, (Xi,...,X,).
For example if (X1, Xa, X35, X4, X5, X6, X7,...) = (9,-8,3,7,23,0,—11,...),
WehaveR1:1,R2:27R3:2,R4:2,R5:17R6:5,andR7:
7. Observe that rank order, from lowest to highest, of (X7, X5, X3, X4, X5)
is (X2, X3, X4, X1, X5). This can be determined by the values of R; for i =
1,2,...,5 as follows. Since R = 1, we must have X5 in the last slot, i.e.
(, %, %, %, X5) . Since Ry = 2, we know out of the remaining slots, X, must be
in the second from the far most right, i.e. (x,%, X4, %, X5). Since R3 = 2, we
know that X3 is again the second from the right of the remaining slots, i.e. we
now know, (%, X3, X4, %, X5). Similarly, Ry = 2 implies (X2, X3, X4, %, X5) and
finally Ry = 1 gives, (Xa, X3, X4, X1, X5) (= (—8,4,7,9,23) in the example).
As another example, if R; =4 for i =1,2,...,n, then X,, < X,,_1 <--- < Xj.

Theorem 10.21 (Renyi Theorem). Let {X,,} 7, be i.i.d. and assume that
F (z) := P (X, <) is continuous. The {R,},_, is an independent sequence,

1
P(Rn:k):ﬁfork:LQ,...,n,

and the events, A, = {X,, is a record} = {R,, = 1} are independent as n varies
and

Proof. By Problem 6 on p. 110 of Resnick or by Fubini’s theorem,
(X1,...,Xp) and (Xs1,...,Xon) have the same distribution for any permu-
tation o.

Since F' is continuous, it now follows that up to a set of measure zero,
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Q:Z{X01<XU2<"'<XU71}

and therefore

1=P(2)=> P({Xo1 < Xo2 <+ < Xon}).

Since P ({Xs1 < X2 < -++ < X4y }) is independent of o we may now conclude

that
1

P({X01<X02<"'<Xgn}):ﬁ

for all 0. As observed before the statement of the theorem, to each realization
(€1,...,en), (here 5 € N with &; < i) of (Ry,...,R,) there is a uniquely
determined permutation, ¢ = o (£1,...,&,), such that X,1 < X0 < -+ <
Xon- (Notice that there are n! permutations of {1,2,...,n} and there are also
n! choices for the {(¢1,...,e,) : 1 <e; <i}.) From this it follows that

{(Rl,...,Rn) = (61,...,€n)} = {Xa'l < Xga <+ < Xgn}
and therefore,
P({(Rl,...,Rn>2(51,...,8n)}):P(Xgl <X0—2 < .- <Xgn>=—

Since

P{Ru=e})= >  P{(R1,....Rn) = (e1,...,n)})

(517”'5‘:”71)

1 1 1
_ R A I S
- Z n!_(n 1! nl n

(517---571—1)

we have shown that

P{(Rrve o Ro) = (e e))) = o = [T 5 = [T PRy =)

10.3 Gaussian Random Vectors
As you saw in Exercise [10.2] uncorrelated random variables are typically not

independent. However, if the random variables involved are jointly Gaussian,
then independence and uncorrelated are actually the same thing!
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Lemma 10.22. Suppose that Z = (X, Y)tr is a Gaussian random vector with
X € R* and Y € R'. Then X is independent of Y iff Cov (X;,Y;) = 0 for all

i Ly
1<i<kandl < j <I. This lemma also holds more generally. Namely if
{Xl};;l is a sequence of random vectors such that (Xl7 e ,X”) is a Gaussian

random vector. Then {Xl}7:1 are independent iff Cov (XZQX};) = 0 for all
1#1 and i and k.

Proof. We know by Exercise [I0.2] that if X; and Yj are independent, then
Cov (X;,Y;) = 0. For the converse direction, if Cov (X;,Y;) =0forall1 <i <k
andlﬁjﬁlandxeRk andyeRl,then

Var(z- X +y-Y)=Var(z-X)+ Var(y-Y)+2Cov(z-X,y-Y)
=Var(z-X)+ Var(y-Y).

Therefore using the fact that (X,Y) is a Gaussian random vector,
E [eineiyY} - F {ei(x~X+y~Y)}

1
:exp(—QVar(ac~X+y~Y)-HE(Q?'X‘HJ'Y))

= exp (—;Var(x-X)+iIE(x~X) - ;Var(y-Y)—i-i]E(yY))
=E [eiI~X] -E [eiy‘Y] ,

and because x and y were arbitrary, we may conclude from Theorem |10.11| that
X and Y are independent. [

Corollary 10.23. Suppose that X : £2 — R* and Y : 2 — R are two indepen-
dent random Gaussian vectors, then (X,Y) is also a Gaussian random vector.
This corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let € R*¥ and y € R!, then

E |:ei(m,y)'(X,Y):| -F |:ei(z~X+y-Y):| —F [eimXeiy'Y] - [ezxX] .E [eiy~Y]
1
=exp <—2Var(a:-X) +iE(x~X))
1 .
X exp (—2 Var(y-Y) +E (y - Y))
1 . 1 .
=exp (—2Var(x~X)+zE(x-X) - 2Var(y~Y)+zIE(y~Y)>

=exp <—;Var(x~X+y-Y)—Q—iIE(m-X—i—y'Y))

which shows that (X,Y) is again Gaussian. |

macro: svmonob.cls date/time: 24-Nov-2009/13:23



148 10 Independence

Notation 10.24 Suppose that {X;},_, is a collectz’on of R — valued variables or

11 11
RY - valued random vectors. We will write X, + Xo+ ...+ X, for X1+ -+ X,

under the additional assumption that the {X;};_, are mdependent.

Corollary 10.25. Suppose that {X} _, oare independent Gaussian random
variables, then Sy, := >\ | X; is a Gaussian random variables with :

Var (S ZVar ;) and ES, = ZEXi, (10.7)

7.€. L . n n
X, +X2 + . —I—Xn:N(ZVar(Xi),ZIEXi).
=1 =1

In particular if {X;};, are i.i.d. Gaussian random variables with EX; = p and
0? = Var (X;), then

2
S _ iy (o, G) and (10.8)
n n
Sn T d N0, 1). (10.9)

oy

Equation is a very special case of the central limit theorem while Eq.
leads to a very special case of the strong law of large numbers, see Corol-

lary [10.24

Proof. The fact that S, 37" — u, and Sg;\/%” are all Gaussian follows from
Corollary and Lemma[9.36] or by direct calculation. The formulas for the
variances and means of these random variables are routine to compute. [

Recall the first Borel Cantelli-Lemma states that if {A4,,} -, are mea-
surable sets, then

i ) <oo = P ({4, i0.})=0. (10.10)

Corollary 10.26. Let {X;};°, be i.i.d. Gaussian random variables with EX; =
w and 0 = Var (X;). Then lim, % = i a.s. and moreover for every a < %

there exists N : 2 — NU{oo}, such that P (N, = 00) =0 and

S,
nn—,u‘gnafornzNa.

Sn

In particular, lim,,_, 2

=/ a.s.
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Proof. Let Z < N (0,1) so that W
and Eq. (7.40),

P -uze) = r (g ze) = r (12> )
n n
1/ ne\’ e?
Taking € = n~% with 1 — 2a > 0, it follows that
— S —« = 1 12«
;P(n ‘>n ><n§_:16xp<—wn )<oo

and so by the first Borel-Cantelli lemma,

P ({‘Sﬂ —M’ >n"¢ i.o.}) =0.
n
Sn

—" ,u| <n~% a.a., and in particular lim,, ., =

z74N (0, %) . From the Eq. (10.8

Therefore, P — a.s.,
]

= [t a.s.

10.4 Summing independent random variables

Exercise 10.3. Suppose that X 2N (0,a2) and Y £ N (0,b2) and X and
Y are independent. Show by direct computation using the formulas for the
distributions of X and Y that X +Y =N (0, a’+ b2) .

Solution to Exercise ((10.3). If f : R — R be a bounded measurable func-
tion, then

Ef(X+Y) =~

= | flaty)emrte Y dady,
]RZ

where Z = 2mab. Let us make the change of variables, (z,z) = (z,z + y) and
observe that dzdy = dxdz (you check). Therefore we have,

1 S dg? L (pg)?
Ef( X+Y)== [ f(z)e 227 ¢ 22 dxdz
7 Jo
which shows, Law (X +Y') (dz) = p (2) dz where

1 b
p(2) = f/e*ﬁfze*ﬁ@*mfdx. (10.11)
R

macro: svmonob.cls date/time: 24-Nov-2009/13:23



Working the exponent, for any ¢ € R, we have

1 1 , 1 1
a—sz—l—b—Q(z—ac) :§x2+b—2(x2—2xz+z2)

11\ , 2 1,
“\etr)” pTtR?

1 1 2 1
= <aQ + 132) [(x —c2)? + 2caz — 0222} — 2t + b—222.

Let us now choose (to complete the squares) ¢ such that where ¢ must be chosen

so that
1 1 1 a®
\@t;E) "7 = T aam

in which case,

1 1 1 1 1 1 1
i Cat i (*) o=+ [b <+b>]

1 ,/1 1 1 1
e <a2+62> 9=
So making the change of variables, x — = — ¢z, in the integral in Eq. ([10.11))
implies,
1 1/1 1\ , 1 1
/ReXp (‘2 ( i b2> R P E ) dw

Z

L 11,
= = €X — "5 5

7 P 2a? + b2

1 1/ L1 1Y ey, Y !
- =—- xp| —= | — + —= = — + =
77 L\ o\ )Y )M T T\ T e
1 a?b? 1
= 27 = .
2mab a? + b? 27 (a? + b?)

1L
Thus it follows that X + Y =N (a2 + b2, O) .

S

p(z) =

Exercise 10.4. Show that the sum, N7 + N, of two independent Poisson ran-
dom variables, N; and N, with parameters A\; and As respectively is again
a Poisson random variable with parameter A1 + As. (You could use generating

1L
functions or do this by hand.) In short Pois (A1) + Pois (\2) 2 Pois (M + A2).
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Solution to Exercise ([10.4)). Let z € C, then by independence,
E [zNH'NQ} =E [lezNz} =E [le] E [zNﬂ
— eAl(Zfl) . 6)\2(271) — 6(A1+/\2)(271)
from which it follows that N; + Ny 4 Poisson(A; + Aa) .

Ezample 10.27 (Gamma Distribution Sums). We will show here that

11
Gamma(k, ) + Gamma(l,0) =Gamma(k+1,6). In Exercise [7.13] you
showed if k,6 > 0 then

E[eX] = (1—6t)" fort <67}

where X is a positive random variable with X iGamma(k, ), ie.

—x/0

(X.P) (dz) = 2*1 <

f .
ka(k)dx orxz >0

Suppose that X and Y are independent Random variables with

X iGaummau(k,@) and Y iGramma(l,@) for some | > 0. It now follows
that

E {et(XJrY)} —E [eXetY] = E [eX]E [e]
=1-0)"F (-0t =1 —or) kD

Therefore it follows from Exercise that X +Y gGamma(k +1,0).
Ezample 10.28 (Exponential Distribution Sums). If {Ty};_, are independent
random variables such that Ty < E (Ag) for all k, then

1l 11 11 1
T+ Ty + ... + Tn:Gamma(n,)\ )

This follows directly from Example [10.27] using E (A\) =Gamma(1,A™!) and
induction. We will verify this directly later on.

Example |10.27]| may also be verified using brute force. To this end, suppose
that f: Ry — Ry is a measurable function, then

—x/0 —y/0
BIF(X+Y) = [ F+ gt gy o dody
Ry

oo ()Y e ()
1

— k—1,1-1_—(z+y)/0
TR T () Rif(x—l—y)a: y' e dxdy.
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150 10 Independence

Let us now make the change of variables, x = x and z = = 4+ vy, so that dxdy =
dxdz, to find,

Elf(X+Y)] =

1 k—1 -1 —z2/6
= WW\/IOS£SZ<DOJC(Z)I (z—a) e dadsz.

(10.12)
To finish the proof we must now do that x integral and show,

F e 1, e D (R) (D)
/Oa;k (z —z)! "t do = 2+ ThiD

(In fact we already know this must be correct from our Laplace transform
computations above.) First make the change of variable, x = zt to find,

/ 21 (2 — x)l_l dz = 2*1B (k1)
0
where B (k, 1) is the beta — function defined by;
1
B (k,1) ;:/ t+=1(1 — t)'"" dt for Rek,Rel > 0. (10.13)
0

Combining these results with Eq. (10.12]) then shows,

Ef(X+Y))= (% /OOO f(z) M0z, (10.14)

Since we already know that

/ ZkJrlflefz/QdZ _ 0k+lF (k + l)
0

it follows by taking f = 1 in Eq. (10.14]) that

B (k,1)

= TR0 O (k+1)

which implies,

INGENY
I'(k+1) "
Therefore, using this back in Eq. ((10.14]) implies

B (k1) = (10.15)

1 o0
Elf(X +Y) = k+l—1,-2/0
e I e e AR A
from which it follows that X + Y <Gamma(k + 1, 0) .

Page: 150 job: prob

Let us pause to give a direct verification of Eq. (10.15)). By definition of the

gamma function,

F(k)F(l):/R

xkilef‘ryl*le*yd:rdy:/ 2Pyt e~ () dudy.

2 2
+ R

- -1 __
:/ 2 (2 — ) T e P dadz
0<z<2z<00

Making the change of variables, x = x and z = = 4 y it follows,

F(k)r(l):/

0<r<z<00

oF (2 — x)lil e *dxdz.
Now make the change of variables, x = zt to find,

00 1
F(k)F(l):/O dze*Z/O dt (2t)" ' (z —t2) 2

00 1

:/ e F Mty / - ta
0 0

=T (k+1)B (k).

Definition 10.29 (Beta distribution). The 8 — distribution is

(-t at

dptg., (1) =
Ha .y ( ) B (z,y)
Observe that
I(z+1)I"(y)
/1tdu - Bltly) Teryi) @
zy \t) = OO
0 B(z,y) Tty) Tty
and
I'(z+2)I
/1t2du (t):B@”’y):”Ty*g)): CR L
) z,y B (z,v) Flgzcggi?(;;) (z+y+1)(xz+y)

10.5 A Strong Law of Large Numbers

Theorem 10.30 (A simple form of the strong law of large numbers).
If {X,} ", is a sequence of i.i.d. random variables such that E [|Xn|4} < oo,
then

. n
lim — =p a.s.
n—oo N

where Sy, ==Y 1_; Xi and p:=EX,, = EX;.
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Exercise 10.5. Use the following outline to give a proof of Theorem [10.30)

1. First observe that for all 1 < p < 4, there exists C), < oo such that |z|” <
Cp (1 + |x|4) and therefore

EIX, " <G, (1+EX[Y) < oo
Thus v := E [\Xn - ,u|4} and the standard deviation (02) of X,, defined by,
o’ =E[X?] -1’ =E {(Xn - u)ﬂ < 00,

are finite constants independent of n.
2. Show for all n € N that

=

(Thus ‘%” — pin L*(P).)
3. Use item 2. and Chebyshev’s inequality to show

-1 1) 4
P(S” ’>€><n T+3(1—n")ot

i4 (ny +3n(n —1)0*)

% [nilfy +3 (1 — nil) 04} .

— — K
n ein?

4. Use item 3. and the first Borel Cantelli Lemma [[.14] to conclude
lim,, % = [ a.s.

10.6 A Central Limit Theorem

In this section we will give a preliminary version of the central limit theorem.
For this proof we will assume {X,,}, -, is an i.i.d sequence with third moments.
Later we will relax these conditions substantially. The only property about
normal random variables that we shall use the proof is that if {N,} - are
i.i.d. standard normal random variables, then

T, Ni+--+Np qa

ﬁ::T:N(O,l)

as was shown in Corollary
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Theorem 10.31 (A CLT proof w/o Fourier). Suppose that {X b, are

mean zero variance one i.i.d random variables such that IE|X1| < oo and
f € C3(R) with M :=sup,cg | f® (x)| < co. Then

f)‘ < \iﬁ% E[INF + %] (10.16)

where Sy, == X1+---+X,, and N 4 N (0,1). Thus % 7

e () -5

s “close” in distribution

d
to N, which we abbreviate by S—\/L = N for large n.

Proof. Let {)_(n, Nn}zozl be independent random variables such that N,, =

N (0,1) and X, £ X,. To simplify notation, we will denote X,, by X,,. Let
T,:=Ni+---+ N, and for 0 < k <n, let

Vii=(Ni4+-+ N+ Xp1 +-+ X0) /V/n

with the convention that V,, = T,,/4/n and Vy = S,,/v/n. Then by a telescoping
series argument, it follows that

F(T/VR) = f(Sa/VR) = f (Vo) = f (Vo) = D [f (Vi) = f (Va—1)] - (10.17)

k=1

We now make use of Taylor’s theorem with integral remainder the form,
1
fl@+A)—f(z)=f(x) A+ §f” (z) A% 47 (z, A) A3 (10.18)

where
r(z, A) / " (x4 tA) (1 —t)%d
Taking Eq. with A replaced by ¢ and subtracting the results then implies
fla+A) —f(x+6)=f (z) (A—é)—k%f”(x) (A% =6%) +p(z,4), (10.19)
where

o (2, A)] = |r (2, A) A® = 7 (2,8) 83| < = [|A| +|5|} (10.20)

wherein we have used the simple estimate, |r (z, A)| < M/3!.
If we define

Up:= N1+ + Ny + Xpp1 + -+ X50) [V,
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152 10 Independence

then Vi, = Uy + Ni/v/n and Vi1 = Uy + X //n. Hence, using Eq. (10.19)
with = Uy, A = Ni/+/n and 6 = X /\/n, it follows that

f Vi) = f (Vier) = f (Ui + N /v/n) — f (U + Xi/V/n)

1 1
= ﬁf/ (Ur) (Ng — X)) + %f" (Ux) (NF — X7) + Ry,
(10.21)
where
| R | = 352 [\Nk|3 + |Xk|3} . (10.22)

Taking expectations of Eq. (10.21)) using; Eq. (10.22)), EN, =1 = EX}, IEN,? =
1= IEX,%7 and the fact that Uy is independent of both X} and Nj, we find

M
B[ (Vi) = f (Ve-)ll = [BRk| < 57 [INK* + [ Xil°|

M . f
< ok [|N1| + \Xlﬂ .

Combining this estimate with Eq. (10.17)) shows,

k=1

<Y E|Ry|
h=1
1 M

<ol el ]

This completes the proof of Eq. (10.16)) since Lz N by Corollary [10.25] =

n
For more in this direction the reader is advised to look up “Stein’s method.”

In Chapters 7?7 and ?7 below, we will relax the assumptions in the above the-
orem. The proofs later will be based in the characteristic functional or equiva-
lently the Fourier transform.

[E[f (Tn/v/n) = f (Sa/ V)] | =

10.7 The Second Borel-Cantelli Lemma

Figure [10.1] below serves as motivation for the following elementary lemma on
convex functions.
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Fig. 10.1. A convex function, ¢, along with a cord and a tangent line. Notice that
the tangent line is always below ¢ and the cord lies above ¢ between the points of
intersection of the cord with the graph of .

Lemma 10.32 (Convex Functions). Suppose that ¢ € PC?((a,b) — R)E
with ¢" () > 0 for almost all x € (a,b). Then ¢ satisfies;

1. for all xp,z € (a,b),

© (z0) + ¢’ (w0) ( — m0) < (2) (10.23)
and
2. for all zy < x1 with zg,x1 € (a,b),
@ (zo + 1 (z1 = x0)) < p(w0) +1 (¢ (x1) — ¢ (x0)) V £ €[0,1].
Alternatively stated, ¢ should satisfy, for any a < xg < x1 < b,
o (x) < hei=tp(z1) + (1 —t)p(zo) for all t €[0,1], (10.24)

where xy := xo +t (1 — o) .

(This lemma applies to the functions, e’ for all X\ € R, |z|* for a > 1,
and —Inz to name a few exzamples. See Appendiz[I1.§ below for much more on
convez functions.)

! PC? denotes the space of piecewise C? — functions, i.e. ¢ € PC? ((a,b) — R) means
the ¢ is C! and there are a finite number of points,

{a=ap<a1<as < - <apn-1<an,=">b},

such that <p|[aj is C? forall j =1,2,...,n.

,1,aj]ﬂ(a,b)

macro: svmonob.cls date/time: 24-Nov-2009/13:23



Proof. 1. By Taylor’s theorem with integral remainder (see Eq. (7.52)) with
F = ¢, a = x9, and b = z) implies

¢ () = @ (x0) + ¢ (x0) (x — w0) + (z — xo)z/ O (wo+7(x—20)) (1 —7)dr
0
)

> ¢ (z0) + ¢ (xo) (x — x0) -

2. For any £ € (a,b), let he (z) := ¢ (z0) + ¢’ (20) (x — x0) . By item 1. we
know that he (x) < ¢ (z) for all £,z € (a,b) with equality when { = = and
therefore,

@ (r)= sup he ().
£€(a,b)

Since he is an affine function for each & € (a,b) , it follows that

he (21) = (1 = 1) he (o) + the (1) < (1 =) ¢ (20) + L (1)

for all ¢t € [0,1]. Thus we may conclude that

@ (ze) = sup he(z) < (1—1)¢(z0) + b (1)
£€(a,b)

as desired.
*For fun, here are three more proofs of Eq. (10.24)). Clearly these proofs may

be omitted.
2a. By Lemma below it suffices to show either

deW-v@) 4, el -¢@

> >0fora<z<y<b.
dx y—x dy y—x

For the first case,

do)—eE) ¢l —p)—¢@)y—=2)

dr  y—= (y —x)°

:/0 O (x4t (y —2)) (1—t)dt > 0.

Similarly,

do) —v@) _ ¢Wy—2)-lply) —¢@)]
dy —y-—a (y — )
where we now use,

1

w(x)—w(y)=<p’(y)(w—y)+($—y)2/o " (y+t(x—y)(1—t)dt

so that

Page: 153 job: prob

10.7 The Second Borel-Cantelli Lemma, 153

! —x)— —p (@ 2 !
¢ (y) (y ) [902(1/) ¢ (z)] =(z—vy) / o (y+t(x—y) (1 —t)dt>0
(y — ) 0

again.
2b. Let

fF(#) =) +t(p)—¢@)-@eut+t—u).
Then f(0) = f (1) = 0 with f (t) = — (v — u)* ¢” (u+t (v — u)) < 0 for almost

all t. By the mean value theorem, there exists, to € (0,1) such that f (t) = 0
and then by the fundamental theorem of calculus it follows that

_/t:f(r)dt

In particular, f(t) < 0 for t > to and f(t) > 0 for t < to and hence f (t) >
fQ)=0fort>tyand f(t) > f(0) =0 for t <tg,ie f(t)>0

2c. Let h : [0,1] — R be a piecewise C? — function. Then by the fundamental
theorem of calculus and integration by parts,

h(t):h(O)—ﬁ-/O h(T)dT:h(O)-l-th(t)—/O h(7)7dr

Thus we have shown,

h(t):h(0)+th(t)—/th(7')7'd7' and
0

/h Y(r—1)d

So if we multiply the first equation by (1 — ¢) and add to it the second equation
multiplied by ¢t shows,

h(t)=h(1)+(t—1)

h(t) = (1—)h(0) +th (1 / Gt 1) (10.25)
where ( it
T(l-t)ifr <t
Glt) = {t(l —7)ifr >t
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(The function G (t,7) is the “Green’s function” for the operator —d?/dt* on
[0,1] with Dirichlet boundary conditions. The formula in Eq. is a stan-
dard representation formula for h (¢) which appears naturally in the study of
harmonic functions.)

We now take h (t) := ¢ (zo + ¢ (x1 — x0)) in Eq. to learn
¢ (zo +1t (21 —20)) = (1 — 1) @ (o) + ty (1)
(@1 — 20)? /01 G (t,7) & (o + 7 (1 — 20)) dr
<1 =1) ¢ (o) +te (1),
because ¢ > 0 and G (¢,7) > 0. ]

Definition 10.33. Given any function, ¢ : (a,b) — R, we say that ¢ is convex
if Eq. (10.24) holds for allt € [0,1] and a < 29 < x1 <b.

Lemma 10.34. Let

¢ (21) — ¢ (20)

F (zg,21) := pa——

fora<zy<z1 <D

The convezity of v : (a,b) — R is equivalent to either (and hence both) of
the conditions that; 1) F (xg,x1) is non-decreasing in xo and 2) F (xqg, 1) is
non-decreasing in x1 for all a < xg < x1 < b.

Proof. Indeed, if we let z; := xg + ¢ (1 — x¢) and h; be as in Eq. ,
then (z, h;) is on the line segment joining (xg, ¢ (zo)) to (z1,¢ (z1)) and the
statement that ¢ is convex is then equivalent to the assertion that o (x;) < hy
for all 0 < ¢t < 1. Since (w¢,h:) lies on a straight line we always have the
following three slopes are equal;

he — ¢ (z0) _ ¢ (@1) —p(z0) _ p(21) —he

Ty — Zo T1 — Zo L1 — Tt

In light of this identity, it is now clear that the convexity of ¢ is equivalent to
either,

@ (21) — ¢ (o) < hi — ¢ (zo) _ ¢ (x1) — ¢ (0)

for all zg < zy < 3

Ty — T Tox— T T1 — Zo
or
1) — ¢ (x x1)—h 1) —@(x
p(n) = o) _ple) b _pla) =l
1 — o Ty — Tt Tl — Tt
See Theorem [I1.42] for much more about general convex functions. |
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Ezample 10.35. Taking ¢ (z) := e~ *, we learn (see Figure ,

l—z<e ®forallzeR (10.26)

2

and taking ¢ (z) = e7** we learn that

l—z>e *for0<z<1/2. (10.27)

-1 03 ] 03 1

I

Fig. 10.2. A graph of 1 — z and e~ ® showing that 1 —x < e~ ® for all z.

Fig. 10.3. A graph of 1 — z and e™2” showing that 1 —z > e™2® for all z € [0,1/2].
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Exercise 10.6. For {a,} -, C [0,1], let
H (1—-ayp):= hm H (1—ap).
n=1 R

(The limit exists since, Hn 1 (1 —ay) decreases as N increases.) Show that if
{an},2, C[0,1), then

which upon passing to the limit as N — oo gives

f[ (1—an) <exp< Zan>

Hence if >°°7 | a,, = oo then [[2, (1 —a,) =0.

Conversely, suppose that 220:1 an, < oo. In this case a,, —» 0 as n — oo
and so there exists an m € N such that a,, € [0,1/2] for all n > m. With this
notation we then have for N > m that

N m N
(1_an):H(1_an)' H (1—an)
n=1 n=1 n=m-+1
m m N
> H (1—ap) H e 20n = H (1 —ap)-exp (—2 Z an>
n=1 n=m-+1 n=1 n=m-+1
m [}
ZH(I—an)-eXp (—2 Z an>.
n=1 n=m-+1

So again letting N — oo shows,

ﬁ(l—an ﬁ 1—ay)- exp<—2 i an>>0,
n=1 n=1

n=m+1

Lemma 10.36 (Second Borel-Cantelli Lemma). Suppose that {A,} -, are
independent sets. If
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i P(A,) = oo, (10.28)
then )
P ({4, io})=1. (10.29)

Combining this with the first Borel Cantelli Lemma gives the (Borel)
Zero-One law,

04> P(A,) <
Lif 0, P(An) = 00

Proof. We are going to prove Eq. (10.29) by showing,

P (A, io.)=

= P({A, 1.0.)9) = P ({A° aa}) = P (U, Npn AS) .

Since ﬁanA% T uUse, MNi>n A% as n — oo and ﬂ};n:nAz 1 NS, Uk>n A as
m — 00,

P(UpZ Mizn A7) = lim P (Ng>nAR) = lim lim P (Npm>r>nAf) -

n—oo n—oo m—0o0

Making use of the independence of {Ax};; and hence the independence of
{Ag}72 |, we have

P (mm>k>nAk

II P4 = J[ a-PA). (10.30)

m>k>n m>k>n

Using the simple inequality in Eq. (10.26|) along with Eq. (10.30]) shows

—eXp< ZP Ak>

Using Eq. (10.28), we find from the above inequality that
lim,, oo P (ﬂm>k>nA ) = 0 and hence

P(Nmzrzndi) <[]

m>k>n

P(Uzozl Nk>n Az) = lim lim P(ﬂm>k>nAz) = lim 0=0

n—oo m—0o0 - = n—oo
as desired. -

Ezample 10.87 (Ea:ample continued). Suppose that {X,,} are now indepen-
dent Bernoulli random variables with P (X,, =1) = p, and P (X, =0) =1 —
Pr. Then P (limy, oo X, =0) = 1iff Y p,, < co. Indeed, P (lim,,—, Xn =0)=
1iff P(X,,=0aa)=1if P(X,=11i0)=0if > p,=> P(X,=1) < cc.
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Proposition 10.38 (Extremal behaviour of iid random variables). Sup-
pose that {X,,} -, is a sequence of i.i.d. random variables and ¢,, is an increas-
ing sequence of positive real numbers such that for all @ > 1 we have

Y P(X1>a7le) =00 (10.31)
n=1
while -
> P (X1>ac,) < . (10.32)
n=1
Then
. Xn
limsup — =1 a.s. (10.33)

n—oo c'n,

Proof. By the second Borel-Cantelli Lemma, Eq. (10.31}) implies
P (Xn > a~te, io. n) =1
from which it follows that

. X
hmsup—n >a !as.

n— oo Cn

Taking o = o, = 1+ 1/k, we find

Xn X, 1
P <limsup > 1) =P (ﬁzo_l {limsup > }) =1.
n—oo Cn n—oo Cn (032
Similarly, by the first Borel-Cantelli lemma, Eq. (10.32) implies
P(X, >ac, 1.0.n)=0

or equivalently,
P (X, < ac, a.a.n) = 1.

That is to say,

. X
lim sup < aas.

n—oo Cn

and hence working as above,

Xn Xn
P (hmsup < 1) =P (ﬂ,;“il {limsup < ak}> =1.
n—oo C'n, n—oo C’I’L

Hence,

Xn Xn : X
P (hmsup = 1) =P ({limsup > 1} N {hmsup < 1}) =1
n—oo Cp n—oo Cn n—oo Cp
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Ezample 10.39. Let {X,,},~, be i.i.d. standard normal random variables. Then
by Mills’ ratio (see Lemma ,

P (X, > ac,) ~ ief‘l%i/?
acy,

Now, suppose that we take ¢, so that

1
e =2 = ¢, = v2In (n).

n

It then follows that

1 1 1
efozz In(n) _

ay/21n (n) om/21n(n)ﬁ

P (Xn > OéCn) ~

and therefore -
ZP(X,L > ac,) =0 ifa<1
n=1

and

ZP(XnZozcn)<ooifoz>1.

n=1

Hence an application of Proposition [10.38| shows

=1 a.s..

lim sup
n—00 2lnn

Ezample 10.40. Let {E,}.>_, be a sequence of independent random variables
with exponential distributions determined by

P(E,>zx)= e~ @V or P (B, <x)=1- e~ (@v0)

(Observe that P (E, < 0)=0) so that E,, > 0 a.s.) Then for ¢, > 0 and a > 0,

we have
) 00 0o
S P(Ea>ac) =Y e =3 ()"
n=1 n=1 o

Hence if we choose ¢, = Inn so that e~ = 1/n, then we have

g:lp(En > alnn) :i (i)a

n=1

which is convergent iff & > 1. So by Proposition [10.38] it follows that

. E,
limsup — =1 a.s.
n—oo 1N
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Ezample 10.41. * Suppose now that {X,,} | are i.i.d. distributed by the Pois-
son distribution with intensity, A, i.e.

P(X,=k)= Ee_
In this case we have
N
= Y
P(X1>Tl)—€ Zﬁ_m
k=n
and
o0 o0
AN A Wy k—n
kz: 7'6 = H@ kz: EA

N D L IR
= G S N
k=0 k=0
Thus we have shown that
)\TL
ZerM<P(X;>n)<

n! -

)\n
H.

Thus in terms of convergence issues, we may assume that
A* A*
PXj>2a) —~ —
( ) x! V2mzxe %x®
wherein we have used Stirling’s formula,
x! ~V2mxe Tx®.
Now suppose that we wish to choose ¢,, so that

P (X1 > o)~ 1/n.

This suggests that we need to solve the equation, £ = n. Taking logarithms of
this equation implies that

_ln
 Inz
and upon iteration we find,
Inn Inn Inn
Tr = = =
In(22)  lo(n) —La(x)  Ly(n) — Ly (P2)

_ Inn

Ay (n) — L3 (n) + €3 (x)
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k - times

—
where £, =Inolno---oln. Since, x < In(n), it follows that ¢3 () < ¢3 (n) and

hence
. In (n) _In(n) (1+O<£3 (n)))
ly(n)+0 (U3 (n)) Lo(n) l(n)) )"
Thus we are lead to take ¢, := Z((Z; We then have, for « € (0,00) that

(acy,)™™ = exp (ac, [Ina + Inc,))

— exp (a Z EZ; I + € (n) — b5 (n)])

ey (o[22 )

a(l+ey, (@)

=n
where , ta ()
_Ina—t3(n
en (@) : A
Hence we have

A&en (A/e)* 1
V2Tacse=n (ac,) " /2rac, ne(tten(@)”

P(X; > ac,) ~

Since
Inn In(\/e)

In(M\e) =Inn®7m |
G V)

In(\/e)*" = ac,In(\e) =a

it follows that

ey =

Therefore,

In(X/e)
n® T 1 l3(n) 1
P (X1 > acy) ~ A\ (n) ne(1+6n(e))

/1n(n) nO‘(lJFEn(D‘))
éz (n)

where §,, (@) — 0 as n — oco. From this observation, we may show,

ZP(Xlzacn)<ooifa>1and

n=1

ZP(Xlzacn):ooifa<1

n=1

and so by Proposition [10.38| we may conclude that

lim sup =1 a.s.

n—oo In(n) /ly (n)
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10.8 Kolmogorov and Hewitt-Savage Zero-One Laws

Let {X,},—, be a sequence of random variables on a measurable space, ({2, ).
Let B, := 0 (X1,...,Xn), B :=0(X1,X0,...), Ty i= 0 (Xpnt1, Xnt2,.-- ),

and 7 := N2, 7, C Bs. We call 7 the tail o — field and events, A € 7, are
called tail events.

Ezample 10.42. Let S,, :== X1+ -+ X, and {b, }—, C (0, 00) such that b,, T co.
Here are some example of tail events and tail measurable random variables:

1. {37, X,, converges} € 7. Indeed,

{Z X converges} = { Z Xy converges} eT,

k=1 k=n+1
for all n € N.
2. Both limsup X,, and liminf,,_. ., X,, are 7 — measurable as are lim sup %
n—oo n—oo

Sn
by

and liminf,
3. {lim X,, exists in R} = {lim sup X,, = liminf, . Xn} € 7 and similarly,
lim S exists in R ¢ = { limsup S = lim inf S eT
bn n—oo bn n—oco by
and

{limf" exists in R} = {—oo < 1imsup% = liminf% < oo} e”T.

n n—oo n n—oo 0y

4. {hmn%o Sa — o} € 7. Indeed, for any k € N,

lim & = lim (Xt +b’ 4+ Xn)

from which it follows that {1imn%o Sa - 0} € T, for all k.
Definition 10.43. Let (§2,B, P) be a probability space. A o — field, F C B is

almost trivial iff P (F) ={0,1}, i.e. P(A) € {0,1} for all A € F.

Lemma 10.44. Suppose that X : 2 — R is a random wvariable which is F
measurable, where F C B is almost trivial. Then there exists ¢ € R such that
X =c a.s.
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Proof. Since {X = oo} and {X = —co} are in F, if P(X =00) > 0 or
P(X =—-00) > 0, then P(X =00) = 1 or P(X = —00) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X € R) =
1.

Foreach z € R, {X < z} € F and therefore, P (X < x) is either 0 or 1. Since
the function, F' (x) := P (X <z) € {0,1} is right continuous, non-decreasing
and F (—oo) = 0 and F' (+00) = 1, there is a unique point ¢ € R where F' (¢) = 1
and F (c—) = 0. At this point, we have P (X =¢) = 1. |

Proposition 10.45 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (£2,B) such that {X,} -, are independent random vari-
ables. Then T is almost trivial, i.e. P (A) € {0,1} for all A€ T.

Proof. Let A € T C B. Since A € 0 (Xp41, Xnt2,...) for all n and 7,
is independent of B, = o (Xy,...,X,), it follows that A is independent of
U B, for all n. Since the latter set is a multiplicative system, it follows that
A is independent of By, = o (UB,,) = V5, B,. But A € By and hence A is
independent of itself, i.e.

P(A)=P(ANA)=P(A)P(A).

Since the only x € R, such that z = 22 is = 0 or « = 1, the result is proved.
In particular the tail events in Example [10.42] have probability either O or 1. m

Corollary 10.46. Keeping the assumptions in Proposition and let
{b,}o2, C (0,00) such that b, 1 oo. Then limsupX,, liminf, . X,,

n—oo

lim sup %’:, and liminf,, _, . f—: are all constant almost surely. In particular, ei-
n—oo
ther P ({ lim % exists}) =0orP ({ lim f—” em'sts}) =1 and in the latter
n—oo “n n—oo ’n

case lim % =c a.s for some c € R.
n—oo "

Let us now suppose that 2 := R® = RY X, (w) = w, for all w € £,
and B := o (X1, Xa,...). We say a permutation (i.e. a bijective map on N),
7 : N— N is finite if 7 (n) = n for a.a. n. Define T, : 2 — 2 by Ty (w) =
(Wr1,Wr2y - )

Definition 10.47. The permutation invariant o — field, S C B, is the col-
lection of sets, A € B such that T ' (A) = A for all finite permutations 7. (You
should check that S is a o — field!)

In the proof below we will use the identities,

1AAB: |1A_IB‘ and P(AAB)Z]EHA—IB‘.
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Proposition 10.48 (Hewitt-Savage Zero-One Law). Let p be a probability

measure on (R, Br) and P = @32, be the product measure on (2 =R, B) so

that {X,},—, is an i.i.d. sequence with Lawp (X,) = p for all n. Then S is P
— almost trivial.

Proof. Let A := U2 ;0 (X1, X3,...,X,). Then Ais an algebra and o (A) =
B. By the regularity result in Corollary (or see Theorem or Exercise
for any B € B and ¢ > 0, there exists A € A such that P (AAB) < e.

Now suppose that B € S, ¢ >0, and A € 0 (X, Xo,...,X,,) C A such that
P(AAB) < e. Let m : N — N be the permutation defined by 7 (j) = j + n,
m(j+n)=jforj=1,2,...,n, and 7 (j + 2n) = j + 2n for all j € N. Since

B={(Xi,...,X,) €eB}={w: (w1,...,w,) € B'}
for some B’ € Br», we have

Tt (B) ={w: (Tx (). (Tr (w)),) € B}
={w: (Wa1y---,Wmn) € B'}
={w: (Wnt1s--+,Wnin) € B'}
={(Xns1,-- s Xnin) €EB} €0 (Xni1,-- o, Xnin),

it follows that B and T ! (B) are independent with P (B) = P (T;'(B)).
Therefore P (BNT;'B) = P (B)2 . Combining this observation with the iden-
tity, P(A) = P(ANA) = P(ANT;'A) (since T;'A = A as A € S), we
find

[P (4) = P(B)| = [P(ANT; 1 4) = P(BOT,'B)| = [E Ly 14 = L] |

<E ‘1A0T;1A - 1BmT,:lB‘

—E[laly s~ Lplyig)

:E’[lAle] 1T;1A+1B [1T;1A7 nglB”
<E|[Ly = 5]+ E |yt — Ly

= P(AAB) + P (T;'AAT;'B) < 2e.

Since |P(A) — P(B)| < P(AAB) < ¢, it follows that
‘p (A)— [P(A)+ 0O (5)}2‘ <e. (10.34)

Since € > 0 we may let € | 0 in Eq. (10.34)) in order to conclude that P (A) =
P(A)%. .
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Ezample 10.49 (Some Random Walk 0—1 Law Results). Continue the notation
in Proposition

1. As above, if S, = X7 + -+ + X,,, then P (S, € Bio.) € {0,1} for all
B € Bg. Indeed, if 7 is a finite permutation,

T-'({S, € Bio.})={S,0T, € Bio.} ={S, € Bio.}.

Hence {S,, € B i.0.} is in the permutation invariant o — field, §. The same
goes for {S,, € B a.a.}
2. If P (X; #0) > 0, then limsup S,, = co a.s. or limsup S,, = —c0 a.s. Indeed,

n—oo n—oo

TW_1 {limsupSn < x} = {limsupSn oT, < x} = {limsup S, < x}

n—oo n—oo n—oo

which shows that limsup.S,, is & — measurable. Therefore, limsup S,, = ¢

n—oo n—oo

a.s. for some ¢ € R. Since, a.s.,

¢ = limsup Sp,4+1 = limsup (S, + X;) = limsup S,, + X1 = c+ X3,
n—oo n—oo n—oo
we must have either ¢ € {£o0} or X; = 0 a.s. Since the latter is not allowed,
limsup S,, = oo or limsup S,, = —o0 a.s.

3. Now assume that P(X; #0) > 0 and X3 4 —X1, ie. P(X1€A) =
P(—X; € A) for all A € Bg. From item 2. we know that and from what
we have already proved, we know limsup S, = ¢ a.s. with ¢ € {£o0}.

Since {X,},2, and {—X,} -, are i.i.d. and —X,, 4 X,, it follows that
{Xn}0o, {—=X,} >, .The results of Exercise then imply that

limsup S, = limsup (=S5, ) and in particular limsup (—S,) = ¢ a.s. as well.
n—oo n— 00 n—:o0

Thus we have

e le

¢ =limsup (—S5,,) = —liminf S,, > —limsup S,, = —c.
n— o0 n—0o0 n— o0
Since the ¢ = —oo does not satisfy, ¢ > —c¢, we must ¢ = co. Hence in this

symmetric case we have shown,

limsup S, = oo and limsup (—=S,) = oo a.s.
n—oo n—oo

or equivalently that

limsup S, = oo and liminf S,, = —o0 a.s.

n—oo n—oo
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10.9 Another Construction of Independent Random
Variables*

This section may be skipped as the results are a special case of those given above.
The arguments given here avoid the use of Kolmogorov’s existence theorem for
product measures.

Ezample 10.50. Suppose that £2 = A™ where A is a finite set, B = 2, P ({w}) =
H;L=1 q; (wj) where g; : A — [0, 1] are functions such that » ;. , ¢; (\) = 1. Let
Ci = {A1x AxA"~": AC A}. Then {C;}]_, are independent. Indeed, if
B; := A"t x A; x A"7%, then

ﬂBi:Al XA2><~--><An

and we have

n

P(NB;) = 3 [Ha@) =D a™

WEAT XA XX A, i=1 i=1 AEA;

while

P(B;) = 3 [Ta@)=> a.

wEATTIX Ay x An—ti=1 AEA;

Ezample 10.51. Continue the notation of Example [[0.50] and further assume
that A C R and let X; : 2 — A be defined by, X; (w) = w;. Then {X;}_,
are independent random variables. Indeed, o (X;) = C; with C; as in Example
110,20

Alternatively, from Exercise we know that

Ep [H fi (Xz)] = HEP [fi (X3)]
i=1 i=1

for all f; : A — R. Taking A, C A and f; := 14, in the above identity shows
that

P(XleAl,...,XneAn):Ep

H La, (Xi>] = HEP [La, (Xi)]

i=1

=1

K2

as desired.
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Theorem 10.52 (Existence of i.i.d simple R.V.’s). Suppose that {q;};_,

is a sequence of positive numbers such thaty ., q; = 1. Then there exists a se-

quence { Xy }r | of simple random variables taking values in A = {0,1,2...,n}
n ((0,1], B,m) such that

m({X1 :ZlavXk:Zz}):q“q%

for all iy,ia,...,i, € {0,1,2,...,n} and all k € N. (See Example above
and Theorem below for the general case of this theorem.)

Proof. For ¢ = 0,1,...,m, let 0_; = 0 and o0; = Zz:o ¢; and for any
interval, (a,b], let

T; ((a,b]) :==(a+ 0i—1 (b—a),a+ o; (b —a)].
Given i1,19,...,i, € {0,1,2,...,n}, let
Jil,i27~~,ik = le (Tik—l ( . Til ((07 1])))
and define { X}, },-, on (0,1] by
X, = > S S
i1,42,...,4,€{0,1,2,...,n}

see Figure Repeated applications of Corollary shows the functions,
X : (0,1] — R are measurable.
Observe that

m (T ((a,0])) = q; (b — a) = gim ((a, b)), (10.35)

and so by induction,
M (Jiyin,sin) = Qi i1 - - - Gir -
The reader should convince herself/himself that
{X1=t1,... Xk =0} = iy io....in
and therefore, we have
m{ X1 =1, , Xk =40i}) = m (Jigi,in) = i Qig_y -+ T

as desired. ]

Corollary 10.53 (Independent variables on product spaces). Suppose
A ={0,1,2....n}, ¢ > 0 with > yqi = 1, 2 = A® = AN and for
1 €N, letY;: 2 — R be defined by Y; (w) = w; for all w € 2. Further let
B :=o0cM,Ys,...,Y,, ...). Then there exists a unique probability measure,
P : B —0,1] such that

P({Yl 221,7Yk:’tz}) :q“q“c
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Fig. 10.4. Here we suppose that po = 2/3 and p1 = 1/3 and then we construct J;
and J; i, for I,k € {0,1}.

Proof. Let {X;}" ;| be as in Theorem [10.52| and define 7" : (0,1] — £ by
T(x)= (X1 (), Xo(x),..., X (z),...).

Observe that T is measurable since Y; o T = X; is measurable for all i. We now
define, P := T,m. Then we have
P({Y1 = 2.17...,Yk = ZZ}) = m(Tfl ({Yl = 7;1,...7Y]€ = 7,7}))
Zm({YiOT:il,...,Yk OT:ii})
:m({X1 = i17...,Xk :Zl}) =iy -Gy

Theorem 10.54. Given a finite subset, A C R and a function q : A — [0,1]
such that ) \.,q(\) = 1, there exists a probability space, (£2,B,P) and an
independent sequence of random variables, {X,},—, such that P (X, = \) =
q(A) for all X € A.

Proof. Use Corollary to shows that random variables constructed in
Example [5.41] or Theorem [10.52] fit the bill. |
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Proposition 10.55. Suppose that {X,} | is a sequence of i.i.d. random
variables with distribution, P(X, =0) = P (X, =1) = . If we let U :=
S 27X, then P(U < x) = (0Vx)AL, i.e. U has the uniform distribution

n=1

on [0,1].

Proof. Let us recall that P (X, =0a.a.) = 0 = P(X,, =1 a.a.). Hence
we may, by shrinking {2 if necessary, assume that {X, =0a.a.} = =
{X,, =1 a.a.} . With this simplification, we have

{U<;}:{X1:0},

—_

}:{Xl :OaXQZO} and

}{X11,X20}

o< fredjofieo<)

:{X1:0}U{X1:1,X2:O}.

and hence that

From these identities, it follows that

1 1 1 1 3 3
More generally, we claim that if z = 77, ;279 with €; € {0,1}, then
P(U<z)==x. (10.36)

The proof is by induction on n. Indeed, we have already verified ((10.36) when
n = 1,2. Suppose we have verified (10.36) up to some n € N and let z =

> j=1€;277 and consider

P<U<x+2*(n+1)) ZP(U<x)+P<x§U<x+2*("+1))
=:c+P(x§U<a:+2—<”+1>).

Since
{m <U<az+ 2—<"+1>} — [ {X; = ;3] N {Xopr = 0}

we see that
P (:v <U<z+ 2*(”“)) — 9—(n+1)
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and hence
P (U <+ 2_("+1)) =g 427+

which completes the induction argument.

Since * — P (U < x) is left continuous we may now conclude that
P({U <) =z for all x € (0,1) and since + — z is continuous we may also
deduce that P (U < z) =z for all x € (0,1). Hence we may conclude that

PU<z)=(0Vz)Al

]
We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 10.56. Suppose that {j,},, are a sequence of probability measures
on (R,Br). Then there exists a probability space, (£2,8B,P) and a sequence
{Y,}22 | independent random variables with Law (Y,,) := P o Y,”' = p, for all
n.

Proof. By Theorem[10.54] there exists a sequence of i.i.d. random variables,
{Z.},, ,such that P(Z, = 1) = P (Z, = 0) = 1. These random variables may
be put into a two dimensional array, {X; ; : i,j € N}, see the proof of Lemma
For each i, let U; := 3772, 27X, j — o ({Xi7j};il> ~ measurable random
variable. According to Proposition [10.55] U; is uniformly distributed on [0, 1] .
Moreover by the grouping Lemma |10.14 {0 ({Xi,j };’il>} are independent

=/ )i=1
o — algebras and hence {U;};~, is a sequence of i.i.d.. random variables with
the uniform distribution.

Finally, let F;(xz) := p((—oo,z]) for all z € R and let G;(y) =
inf {z : F; (x) > y}. Then according to Theorem [6.48] Y; := G; (U;) has u; as

its distribution. Moreover each Y; is o ({Xi,j};il — measurable and therefore

the {Y;}.2, are independent random variables. ]



11

LP — spaces

Let (£2,B, 1) be a measure space and for 0 < p < oo and a measurable

function f : 2 — C let
1/p
1l = ( / Ifl”du> (1)

[flloc =inf{a >0: p(|f] > a) =0} (11.2)

and when p = oo, let

For 0 < p < o0, let
LP(02,B,1) ={f: 2 — C: f is measurable and ||f||, < oo}/ ~

where f ~ g iff f = g a.e. Notice that ||f —g||, =0 iff f ~ g and if f ~ g then
Ifll, = llgllp- In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 11.1. Suppose that ||f|lcc < M, then for all a > M, p(|f| > a) = 0 and
therefore p(|f| > M) = limy, oo (| f| > M +1/n) =0, ie. |f(w)] < M for p -
a.e. w. Conversely, if |f| < M a.e. and a > M then u(|f] > a) = 0 and hence
[I/lloc < M. This leads to the identity:

[ flloo =inf{a>0:|f(w)| <afor u—ae w}.

11.1 Modes of Convergence

Let {fn}oo; U{f} be a collection of complex valued measurable functions on
2. We have the following notions of convergence and Cauchy sequences.

Definition 11.2. 1. f, — f a.e. if there is a set E € B such that u(E) = 0
and limy, oo 1ge frn = 1ge f.
2. fn — f in p — measure if lim, oo pu(|fn— f| > ) =0 for alle > 0. We
will abbreviate this by saying f, — f in L° or by f, & f.
3. fo— fin LP iff f € LP and f, € L? for all n, and lim,, .o || fn — f], = 0.

Definition 11.3. 1. {f,} is a.e. Cauchy if there is a set E € B such that
w(E) =0 and{1ge f,} is a pointwise Cauchy sequences.
2. {fn} is Cauchy in p — measure (or L — Cauchy) if imy, oo (| fr— fm| >
g) =0 for alle > 0.
3. A fn} is Cauchy in LP if limy, pnoo | fr — finll, = 0.

When p is a probability measure, we describe, f;, L f as f, converging
to f in probability. If a sequence {f,},, is LP — convergent, then it is L? —
Cauchy. For example, when p € [1,00] and f,, — f in LP, we have

1 = Fnlly < = FIL, + 1 = Fnll, = 0 s m,m — oo,
The case where p = 0 will be handled in Theorem below.

Lemma 11.4 (L? — convergence implies convergence in probability).
Let p € [1,00). If {fn} C LP is LP? — convergent (Cauchy) then {f.} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.2)),
1 1
— p P . p I p
pf122) = nsP =) < 5 [ 1P du= 5181
and therefore if {f,} is LP? — Cauchy, then

1
wlfr = fml > €) < ;prn — fmllh — 0as m,n — oo

showing {f,} is L — Cauchy. A similar argument holds for the LP — convergent
case. |

£ oun
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. . . m
Here is a sequence of functions where f,, — 0 a.e., f,, - 0in L', f, =5 0.
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Above is a sequence of functions where f, — 0 a.e., yet f, - 0 in L'. or in
measure.

o 023 03 0.73 1 113 13

I

Here is a sequence of functions where f, — 0 a.e., f, — 0 but f,, - 0 in L.
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Above is a sequence of functions where f,, — 0 in L', f, - 0 a.e., and
m
fn—0.

Theorem 11.5 (Egoroff: a.s. convergence implies convergence in prob-
ability). Suppose u(£2) = 1 and f,, — f a.s. Then for all € > 0 there exists
E = E. € B such that u(E) < € and f, — f uniformly on E°. In particular

fo 5 Fasn — .

Proof. Let f,, — f a.e. Then for all ¢ > 0,

0=unul{|frn— fl >cio. n})

= Jim g | U {Ifa—f1>2} (11.3)

n>N

> lizrvnsupu(ﬂfN — fl>¢€})

from which it follows that f,, -~ f as n — co. To get the uniform convergence
off a small exceptional set, the equality in Eq. (11.3) allows us to choose an
increasing sequence { Ny}, , such that, if

Ey = U {fn—f>li}, then p(E;) < e27*.

n> Ny

The set, E := U2 | Ey, then satisfies the estimate, u(E) < >, e27% = e,

Moreover, for w ¢ E, we have |f, (w) — f (w)| < £ for all n > Ny and all k.

That is f, — f uniformly on E°. ]

(o]
Lemma 11.6. Suppose a, € C and |ap+1 — an| < &, and > &, < 0. Then
=1
oo n
lim a, =a € C exists and |a — ap| < 6, := > ex.

n—oo k=n
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Proof. Let m > n then

m—1 m—1 00
|am —an| = | > (g1 —ar)| < D Jaks1 —ag] < Y ep := . (11.4)
k=n k=n k=n
U — Gn| < Omin(m,n) — 0 as ,m,n — oo, i.e. {a,} is Cauchy. Let m — oo
:11.4 to find |a — ay,| < 6,. [

Theorem 11.7. Let (2,8, 1) be a measure space and {f,},-, be a sequence
of measurable functions on 2.

1.

2.
3.

[
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If f and g are measurable functions and f, % f and f, & g then f = g

a.e.

If fo 5 f then {fn},—, is Cauchy in measure.

If{fn},2 is Cauchy in measure, there exists a measurable function, f, and
a subsequence g; = fn, of {fn} such that lim; . g; := f exists a.e.

If{fn}.2, is Cauchy in measure and f is as in item 3. then f, L7
. Let us now further assume that p (§2) < co. In this case, a sequence of func-

tions, {fn},—, converges to f in probability iff every subsequence, {f}}
of {fu}yy has a further subsequence, {fl/} -, , which is almost surely con-
vergent to f.

Proof.

. Suppose that f and g are measurable functions such that f, £ g and

m . . .
fn— fasn — oo and € > 0 is given. Since

{If —gl>et={lf = fntfa—gl >} C{If = ful + [fn —gl > €}
CAlf = fal > /23 U{lg = ful > €/2},

p(lf =gl >e) <ullf — ful >€/2) + (g — ful >€/2) = 0asn — oco.

Hence

u(lf—g|>0)=u( ;”_1{f—g|>rll}> <§:lu<|f—gl>i> =0,

ie. f=ga.e.

. Suppose f, £ f, e > 0 and mn € N and w € {2 are such that

|fn (W) =
e <|fn (W) = fim (W)| < |fn (W) = (@) +|f (@) = frm ()]

from which it follows that either |f,, (w) — f (w)| > /201 |f (w) — fin (w)| >
/2. Therefore we have shown,

fm (w)] > €. Then

prob

macro:

11.1 Modes of Convergence 165

{fn = fml >} C{lfn = fI > /2y U{|fm — f] > £/2}

and hence

pfn = fml > ) <p(fo = f1>/2)+n(fm = fI > €/2) = 0 as m,n — oco.

. Suppose {f,} is L° (u) — Cauchy and let £, > 0 such that > &, < oo

n=1

o0

(en = 27" would do) and set 6, = ) . Choose g; = f,,, where {n;} is a
k=n

subsequence of N such that

p{lgj+1 — g;1 > €;}) <e;.
Let Fiy == Uj>n {lgj+1 — ;| > €;} and
E:=0F_1Fy = {lgj+1 — 95| > &j i.0.}

and observe that p (Fy) < 0y < oo. Since

oo

ZM({\QJ‘H —gjl >¢&5}) < Zej < 00,

Jj=1 j=1
it follows from the first Borel-Cantelli lemma that

0=p(E)= lim p(Fy).

N—o0

Forw ¢ E,|gj4+1 (w) — gj (w)| < ¢ for a.a. j and so by Lemmal[11.6] f (w) :=
lim g;(w) exists. For w € E we may define f (w) = 0.
j—o0

. Next we will show gy & f as N — oo where f and gn are as above. If

we Fy = Mzn{lgj — gl < &5},
then
l9j+1 (W) — gj (w)| < g forall j > N.
Another application of Lemma|11.6{shows | f(w) — g;(w)| < 6; for all j > N,

i.e.
F]f] CNj>N {UJ c: |f(w) —gj(w)\ < 53}

Taking complements of this equation shows

{lf —gn|>dn} CUjsn {lf — g5l > 0;} C Fn.

and therefore,
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u(lf = gn| > 6n) < p(Fy) <0y —0as N — o0

and in particular, gy £ fas N — oco.
With this in hand, it is straightforward to show f, % f. Indeed, since

{|fn_f| >5}:{|f_gj +gj_fn| >€}
CHlf —gil+g; — fal > €}
CAlf —gil > /2y U{lg; — ful > €/2},

we have

p{lfn = fI>e}) < u{lf —gil > €/2}) + ullg; — fnl > €/2).

Therefore, letting j — oo in this inequality gives,

p({fn — fI > e}) < limsup u(lg; — fu| >€/2) —0asn — oo

J—00

because {f,} -, was Cauchy in measure.

5. If { fn}io=1 is convergent and hence Cauchy in probability then any subse-
quence, {f,} -, is also Cauchy in probability. Hence by item 3. there is a
further subsequence, {f//} >, of {f/} >, which is convergent almost surely.
Conversely if { f,, },-_; does not converge to f in probability, then there exists
an € > 0 and a subsequence, {ny} such that infy u (| f — fn,.| =€) > 0. Any
subsequence of {f,, } would have the same property and hence can not be
almost surely convergent because of Theorem [11.5

Corollary 11.8 (Dominated Convergence Theorem). Let (£2,5, 1) be a
measure space. Suppose {fn}, {gn}, and g are in L* and f € L° are functions
such that

|fn‘§gn a.e., fni)fv gnL)gv and /gn_’/g as n — o0.

Then f € L' and lim, . ||f — foll, = 0, i.e. f,, — [ in L'. In particular

Proof. First notice that |f| < g a.e. and hence f € L! since g € L'. To see

that |f| < g, use Theorem to find subsequences {f,,} and {gn,} of {fn}
and {g,} respectively which are almost everywhere convergent. Then

Ifl = Jim | fri] < Jim_gn, = g ae.

If (for sake of contradiction) lim, .. ||f — fnl|l; # O there exists ¢ > 0 and a
subsequence {fy, } of {f.} such that
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/|f — fun| > € for all k. (11.5)

Using Theorem again, we may assume (by passing to a further subse-
quences if necessary) that f,, — f and g,, — g almost everywhere. Noting,
If = forl <94 gn,. — 29 and [ (9 + gn,) — [ 29, an application of the domi-
nated convergence Theorem implies limg_o0 [ |f — fn,.| = 0 which contra-
dicts Eq. . [

Exercise 11.1 (Fatou’s Lemma). Let ({2, B, 1) be a measure space. If f, > 0
and f, — f in measure, then [, fdu < liminf, o [, fndp.

Exercise 11.2. Let ({2, 8, 1) be a measure space, p € [1,00), {fn} C L? (n)
and f € LP (). Then f, — fin LP (u) iff fry == f and [ |f.|" — [1f]"

Solution to Exercise ((11.2)). By the triangle inequality,

11, = [1fnll,| <
|f = full, which shows [[f,[” — [[f|”if f, — f in L?. Moreover Chebyschev’s
inequality implies f,, —— f if f, — f in LP.

For the converse, let F,, := |f — fu|” and G,, := 271 [|f|" + |fn|"] . Then
F, %0, F, <G, € L', and | Gn — [ G where G := 27 |f|” € L'. Therefore,

by Corollary JIf=flf=[F,— [0=0.

Exercise 11.3. Let (£2, B, 1) be a measure space, p € [1,00), and suppose that
0< feL' (u),0< f, € L' (p) for all n, f,, X~ f, and [ f.du — [ fdu. Then
fo — fin L* (u). In particular if f, f, € L? (u) and f, — f in LP (u), then
[fal” = |fIP in L ().

Solution to Exercise (11.3). Let F,, := |f — fo| < [+ fn := gn and g :=
2f. Then u, -~ 0, g, > g, and [g.du — [ gdu. So by Corollary
J1f = faldu= [ Fodp — 0 as n — oco.

Corollary 11.9. Suppose (£2,B, 1) is a probability space, f, - f and g, -
g and ¢ : R — R and ¢ : R? — R are continuous functions. Then

1.¢(fa) = 2 (f),
2.9 (furgn) == ¥ (f.9),
3. fo+gn = f+g, and
4 fn - 9gn - [-g
Proof. Item 1., 3. and 4. all follow from item 2. by taking ¢ (x,y) = ¢ (),

Y (z,y) =x+y, and ¢ (z,y) = x - y respectively. So it suffices to prove item 2.
To do this we will make repeated use of Theorem [11.7]
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Given a subsequence, {n;}, of N there is a subsequence, {n} } of {n;} such
that f,, — f a.s. and yet a further subsequence {nj’} of {n; } such that g,» — g
a.s. Hence, by the continuity of v, it now follows that

kh_{rolow <f”§!’gn;’) = (f,9) as.

which completes the proof. ]

11.2 Jensen’s, Holder’s and Minikowski’s Inequalities

Theorem 11.10 (Jensen’s Inequality). Suppose that (2,8, 1) is a proba-
bility space, i.e. p is a positive measure and p(2) = 1. Also suppose that
f e Lip), f: 2 — (a,b), and ¢ : (a,b) — R is a convex function, (i.e.
¢ (x) >0 on (a,b).) Then

w(/gf@) S/Qw(f)du

where if ¢ o f ¢ LY(p), then @ o f is integrable in the extended sense and
Jae(f)dp = oo.

Proof. Let t = [, fdu € (a,b) and let § € R (8 = ¢ (t) when ¢ (t) exists),
be such that ¢(s) — ¢(t) > B(s —t) for all s € (a,b). (See Lemma [10.32)) and
Figure when ¢ is C! and Theorem below for the existence of such a
B in the general case.) Then integrating the inequality, p(f) — p(t) > 8(f — 1),
implies that

0< [ eDin=l) = [ etnau—s[ san)
Moreover, if ¢(f) is not integrable, then o(f) > () + B(f — t) which shows

that negative part of ¢(f) is integrable. Therefore, [, ¢(f)du = oo in this case.
|

Example 11.11. Since e® for x € R, —Inx for x > 0, and 2P forz > 0 and p > 1
are all convex functions, we have the following inequalities

exp </Qfdu> S/Qefdu, (11.6)
Amwwmbqémw)

and for p > 1,
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’/Qfdup§</nf|du>p§/g|fpdu.

As a special case of Eq. |) if pj,s;, >0fori=1,2,...,nand ), , 1% =1,
then

1 P n 1 n P

n X o1 i P -

PR DI S DAY P g —elnsit = E L. (11.7)
im1 Pi i—1 Pi

Indeed, we have applied Eq. 1} with 2 ={1,2,....n}, p=>", ]%51 and
f (i) :=Ins?". As a special case of Eq. (11.7), suppose that s,t,p,q € (1,00)

with ¢ = S5 (ie. % + % =1) then

1 1
st < —sP 4 =1, (11.8)
p q

(When p = ¢ = 1/2, the inequality in Eq. follows from the inequality,
0<(s—1)°.)

As another special case of Eq. , take p; = n and s; = ag/" with a; > 0,
then we get the arithmetic geometric mean inequality,

1 n
Yay ... an < ﬁZai. (11.9)
i=1

Theorem 11.12 (Hélder’s inequality). Suppose that 1 < p < co and q :=
ﬁ, or equivalently p~' + ¢t = 1. If f and g are measurable functions then

1fglle < W fllp - llgllg- (11.10)

Assuming p € (1,00) and || f|lp - lgllq < oo, equality holds in Eq. (11.10) iff |f|”
and |g|? are linearly dependent as elements of L' which happens iff

91?1 £ 115 = llgll 11" a-e. (11.11)

Proof. The cases p =1 and ¢ = oo or p = oo and ¢ = 1 are easy to deal
with and will be left to the reader. So we now assume that p,q € (1,00). If
Ilfllg =0 or o or ||g]l, = 0 or oo, Eq. is again easily verified. So we will
now assume that 0 < [[f[l¢, lgll, < oo. Taking s = |f[/|[f]l, and t = |g[/llgll

in Eq. (11.8]) gives,

[fgl 1171 gl
I£llpllglle = P £l g llgll®

. . . —1 —1 .
with equality iff [g/|lglly| = [fP" /IFIF™" = [P/, e lglollf]12 =
lgllZ1fI” . Integrating Eq. (11.12) implies

(11.12)
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If9ll1 Sl 1
1flpllglle 2 aq

with equality iff Eq. (11.11)) holds. The proof is finished since it is easily checked
that equality holds in Eq. (11.10) when |f|” = ¢|g|? of |g|? = c|f|" for some
constant c. [ |

Ezample 11.13. Suppose that a; € C for k =1,2,...,n and p € [1,00), then

n

>

p n
<P aglP (11.13)
k=1 k=1

Indeed, by Holder’s inequality applied using the measure space, {1,2,...,n}
equipped with counting measure, we have

n n 1/p n 1/4q n 1/p
S < (Daw’) (z ) (zaw)
k=1 k=1 k=1 k=1

where ¢ = z%' Taking the pt" — power of this inequality then gives, Eq. (11.14).

Theorem 11.14 (Generalized Holder’s inequality). Suppose that f; : {2 —
C are measurable functions for i = 1,...,n and p1,...,pn and r are positive
numbers such that Z?:l pi_1 =L then

I <IJIx
=1 =1

Proof. One may prove this theorem by induction based on Hélder’s Theo-
rem [I1.12 above. Alternatively we may give a proof along the lines of the proof
of Theorem [[T.12] which is what we will do here.

Since Eq. is easily seen to hold if [|fi||,, = 0 for some i, we will

assume that [|f;||, > 0 for all i. By assumption, S o =1, hence we may

replace s; by s! and p; by p;/r for each 7 in Eq. (11.7) to find

n

Zak-l

k=1

(11.14)

pi’

T

n (87)Pi/T n sPi
87 S’I S 7 =r 2 .
Lo ; pi/r ; pi

Now replace s; by |fi| / || fill,, in the previous inequality and integrate the result
to find

r n

1 1 /
<r) e | Ui
, sz' I fi ii o

i=1

1

[T i

11

i=1

Di

pidu:iizl.
i1

Pi
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Theorem 11.15 (Minkowski’s Inequality). If 1 < p < oo and f,g € LP
then

1+ gllp < 171> + llgllp- (11.15)

Proof. When p = oo, |f| < || fl|,, a-e. and |g| < ||g]|, a.e. so that [f + g| <
L1+ 19] < 1 fllo + 9]l a-e. and therefore

1+ 9lle < 1l + ll9llo -
When p < oo,
If +9I” < (2max (|f],]g]))" = 2" max (|f[", |g]") < 2" (|f]" + 19]"),
which impliesﬂ f+ g€ LP since
1f +gllp < 22 (I£1I5 + lgllp) < oo

Furthermore, when p = 1 we have

£+ 9l = [ 17+ gldu< [ \fldu+ [ lgidn =11 + gl
19} n 10

We now consider p € (1,00). We may assume | f + g|lp, || fll, and ||g][, are
all positive since otherwise the theorem is easily verified. Integrating

\f+ gl =1f+gllf +alP < (Fl+1gDIf +9P~*
and then applying Holder’s inequality with ¢ = p/(p — 1) gives
/ |f+g|”duS/ |f] |f+9|”’1du+/ gl |f + 9P~ dp
o) Q Q
-1
< (£ llp + lgllp) 11f + 9"~ g, (11.16)

where

07+ gl = [ (7ol du= [ 15+ glPdn= £+l (17
i0) [0}

Combining Eqgs. (11.16) and (11.17)) implies
1f + gl < 1F 1ol + glB/* + gl lLf + gll5/ (11.18)

Solving this inequality for ||f + g||, gives Eq. (11.15). ]

! In light of Example [11.13] the last 27 in the above inequality may be replaced by

or—1,
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11.3 Completeness of LP — spaces

Theorem 11.16. Let |||, be as defined in FEq. , then
(L>°(2,B, 1), |I'll.) s a Banach space. A sequence {fn},—;, C L*> con-

verges to [ € L iff there exists E € B such that u(E) = 0 and f, — f
uniformly on E°. Moreover, bounded simple functions are dense in L.

Proof. By Minkowski’s Theorem[IL.15} ||-||, satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ||| is a
norm. Suppose that {f,},—, C L is a sequence such f, — f € L*, ie.
lf = fullo — 0 as n — oo. Then for all k € N, there exists N}, < oo such that

w(lf = ful > k1) =0 for all n > N.

Let
E=U2 Upsn {If = fal >k}

Then p(E) = 0 and for z € E°, |f(z) — fu(z)] < k™! for all n > Nj. This
shows that f,, — f uniformly on E°. Conversely, if there exists E € B such that
w(E) =0 and f, — f uniformly on E°, then for any € > 0,

p(f =falze) =p({lf = ful 2} NES) =0

for all n sufficiently large. That is to say limsup ||f — fn||,, < € for all ¢ > 0.
j—o0
The density of simple functions follows from the approximation Theorem [6.39
So the last item to prove is the completeness of L.
Suppose €pmn I fm = fullo — 0 as m,n — oo. Let E,,
{Ifn — fm| > emn} and E := UE,, ,,, then u(E) =0 and

sup |fm (-T) - fn ($)| < Emn — 0 as m,n — 0.
rEE°

Therefore, f := lim,,_, fn exists on E° and the limit is uniform on F°. Letting
f =limy, o0 1ge fpn, it then follows that lim, . || fn — fl|., = 0. [

Theorem 11.17 (Completeness of LP(u)). For 1 < p < oo, LP(u) equipped
with the LP — norm, |||, (see Eq. ), is a Banach space.

Proof. By Minkowski’s Theorem [|[I,, satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure [|-[|,,
is a norm. So we are left to prove the completeness of LP(u) for 1 < p < oo, the
case p = oo being done in Theorem [11.16

Let {fn},~, C LP(u) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma , {fn} is LP-Cauchy (i.e. Cauchy in measure) and by Theorem
there exists a subsequence {g;} of {f,} such that g; — f a.e. By Fatou’s
Lemma,
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lg; — flI}y = /klim inf |g; — gi|Pdp < lim inf/lgj — g[Pdp
—00 k—oo

= lim inf|[g; — gklh — 0 as j — oo.
k—oco

In particular, || f|l, < lg; — fllp + l|lgjllp < oo so the f € LP and g; L% f. The
proof is finished because,

1 = Fllp < 0 = gillp + llgs = Fllp — 0 as j,n — oo

]
See Proposition 77 for an important example of the use of this theorem.

11.4 Density Results

Theorem 11.18 (Density Theorem). Let p € [1,00), (12,8, 1) be a measure
space and M be an algebra of bounded R — valued measurable functions such
that

1.MC L? (p,R) and o (M) = B.
2. There exists 1, € M such that ¥, — 1 boundedly.

Then to every function f € LP(u,R), there exist v, € M such that
imy, oo 1 = @nllpo(,) = 0, i-e. M is dense in LP (1, R).

Proof. Fix k € N for the moment and let H denote those bounded B —
measurable functions, f : 2 — R, for which there exists {¢,},.; C M such
that limy, oo [|¢kf — @nll s, = 0. A routine check shows H is a subspace of
the bounded measurable R — valued functions on 2, 1 € H, M C H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn € H and f,, — f boundedly. Then, by the dominated convergence theorem,
limp, oo |90k (f = fo)llpo(ny = OE| (Take the dominating function to be g =
[2C [¢x]]” where C' is a constant bounding all of the {|f,|},~,.) We may now
choose ¢, € M such that ||p, — wkanLp(“) < % then

lim sup ka - <Pn||Lp(M) <lim sup Hwk (f - f”)HLT’(M)

n—oo

+lim sup [[¢xfn — QOTL”LP(N) =0 (11.19)

n—oo

which implies f € H.
An application of Dynkin’s Multiplicative System Theorem [8.15] now shows
H contains all bounded measurable functions on £2. Let f € LP (u) be given. The

2 Tt is at this point that the proof would break down if p = oo.
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dominated convergence theorem implies limy_ o ’|¢k1{|f'\§k}f — fHLp(u) = 0.

(Take the dominating function to be g = [2C | f|]” where C is a bound on all of
the |¢k|.) Using this and what we have just proved, there exists @5 € M such
that

1
[¥rtni<erf = eell oy < 7

The same line of reasoning used in FEq. (11.19) now implies
hmkﬁoo Hf - SDkHLp(‘u) =0. u

Ezample 11.19. Let p be a measure on (R, Br) such that p([—M,M]) < oo
for all M < oco. Then, C. (R,R) (the space of continuous functions on R with
compact support) is dense in L? (u) for all 1 < p < oo. To see this, apply

Theorem [11.18| with Ml = C, (R,R) and 1, := 1[_4 i

Theorem 11.20. Suppose p € [1,00), A C B C 2% is an algebra such that
o(A) = B and p is o — finite on A. Let S(A, u) denote the measurable simple
functions, ¢ : 2 — R such {p =y} € A for ally € R and u({¢ # 0}) < oc.
Then S(A, 1) is dense subspace of LP(u).

Proof. Let M := S(A, ). By assumption there exists {2, € A such that
() <ooand 2, 1 RPask — oco. If A € A, then 2;NA € Aand (2, N A) <
oo so that 1, na € M. Therefore 14 = limg_o0 12, n4 is 0 (M) — measurable
for every A € A. So we have shown that A C o (M) C B and therefore B =
oc(A) C o (M) C B, i.e. 0 (M) = B. The theorem now follows from Theorem
[TT.18] after observing vy, := 1o, € M and 1, — 1 boundedly. [

Theorem 11.21 (Separability of LP? — Spaces). Suppose, p € [1,0), A C B
is a countable algebra such that o(A) = B and p is o — finite on A. Then LP(u)
is separable and

D={> ajla, :a; €Q+iQ, A; € A with u(A;) < o}
18 a countable dense subset.

Proof. Tt is left to reader to check D is dense in S(A, ) relative to the LP(u)
— norm. Once this is done, the proof is then complete since S(A, 1) is a dense

subspace of L? (i) by Theorem [11.20 |
11.5 Relationships between different LP — spaces
The LP(u) — norm controls two types of behaviors of f, namely the “behavior

at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point z¢ € {2, then locally near xq it is harder for f to be in LP(u)
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as p increases. On the other hand a function f € LP(u) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect LP(u) C L9(u) or LY(pn) C LP(u). However,
there are two notable exceptions. (1) If ;(§2) < oo, then there is no behavior at
infinity to worry about and L9(u) C LP(u) for all ¢ > p as is shown in Corollary
below. (2) If p is counting measure, i.e. u(A) = #(A), then all functions
in LP(u) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case LP(u) C L9(u) for all ¢ > p, see Corollary
below.

Corollary 11.22. If u(£2) < 00 and 0 < p < q¢ < 00, then Li(u) C LP(p), the
inclusion map is bounded and in fact
11
1£1l, < (@G ],
Proof. Take a € [1, 00] such that
1 1 1 .
- =—-—+—-,le.a=——.
p a gq qa—p
Then by Theorem [T1.14]
11
£, = 1F - 1, < 1Fllg - 11 = £(2) N fllg = p(D)F | f ]l

The reader may easily check this final formula is correct even when ¢ = oo
provided we interpret 1/p — 1/0c0 to be 1/p. ]

The rest of this section may be skipped.

Ezample 11.23 (Power Inequalities). Let a := (a1, ...,a,) with a; > 0 for i =
1,2,...,n and for p € R\ {0}, let

1 n l/p
o, (130
=1

Then by Corollary [11.22) p — ||a||p is increasing in p for p > 0. For p = —¢ < 0,

we have
Lo —1/q . 1/q =
= (13a) = () -
nia I (a%) @llg
where é = (1/a1,...,1/a,) . So for p < 0, as p increases, ¢ = —p decreases, so

that H%Hq is decreasing and hence Hé”;l is increasing. Hence we have shown
that p — [[al|, is increasing for p € R\ {0}.
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= {/aj...a,. To prove this, write af =
ePnai — 1 4 plna; + O (p2) for p near zero. Therefore,

I, I )
- a;,=1+p=>» Ina; +O0(p
P> " (v*)

Hence it follows that

1/p 1/p
hm||aH hm( Za) *hm <1+p ZlnalJrO( ))

=1

We now claim that lim, .o [|al|,

1 n

= en 20 ™Y = oy ay,.
So if we now define [|al|, := {/a1... @, the map p € R —|[a]|, € (0,00) is

continuous and increasing in p.
We will now show that lim,, .« [|al|,, = max; a; =: M and lim,—, o [laf, =
min; a; =: m. Indeed, for p > 0,

1 1 —
—MP < = P < MP
n _n;al_

and therefore,
1 1/p
(> M < |all, < M.
n p

Since (%)1/;3 — lasp — oo, it follows that limy, o [lal|,, = M. For p = —¢ <0,
we have

1 1 .
pl{m lall, = hm <||1|| ) = e~ = Tm =m = mina,.

Conclusion. If we extend the definition of [la[|, to p = 0o and p = —o0

by |lall,, = max;a; and |ja||__ = min;a;, then R 3p — lall, € (0,00) is a
continuous non-decreasing function of p.

Proposition 11.24. Suppose that 0 < py < p1 < oo, A € (0,1) and p) €
(Po,p1) be defined by

1 1—X A
- = + —
Px Po 21

with the interpretation that \/p1 = 0 if p1 = ooE| Then LP» C LPo + LP1| j.e.
every function f € LP> may be written as f = g+ h with g € LP° and h € LP*.

(11.20)

3 A little algebra shows that A may be computed in terms of po, px and p1 by

_Po P1—Px
P DP1—DPo
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11.5 Relationships between different L? — spaces 171
For1<py<ps <ooand f € LPo 4 LP et

11 = int {llgll,, + I8l < £ = g+h}-

Then (LPo + LPr ||-||) is a Banach space and the inclusion map from LP* to
Lo + LPt is bounded; in fact ||f|| < 2| fll,, for all f € LP>.

Proof. Let M > 0, then the local singularities of f are contained in the
set E :={|f| > M} and the behavior of f at “infinity” is solely determined by
f on E°. Hence let ¢g = flg and h = flge so that f = g + h. By our earlier
discussion we expect that g € LP° and h € LP* and this is the case since,

Po
Po __ p — f
lolls = [ 1817 Ugpoe = 217 [
fp)\
< MPo
< [|L

. 1 ) f P1
Iz = Ntpsarls = (17 peas =20 [

pr
<MP1
<am [14

Moreover this shows

If]| < M1=pr/po ”prA/po 1 MApa/m ”me/pl .

Lig>m

Ligisar < MPOTPA| P> < o0

and

Lig<m

Lipicar < MPTPA| Y < oo

Taking M = A||f|[,, then gives

£ < (/e g e g )

and then taking A = 1 shows || f|| < 2| f|,,, - The proof that (LF° + LP1,|-||) is
a Banach space is left as Exercise [I1.§] to "the reader. [

Corollary 11.25 (Interpolation of LP — norms). Suppose that 0 < pg <
p1 < 00, A € (0,1) and px € (po,p1) be defined as in Fq. (11.20), then LP° N
LPr C LP» and

A 1-A
11, < 15, 1115, " (11.21)
Further assume 1 < pg < px < p1 < 00, and for f € LPo N LP' et
1= (1 1y + N F1, -
Then (LPoNLP | ||-||) is a Banach space and the inclusion map of LP° N LP* into
LP> s bounded, in fact
171, < max (A1 0= (Ul +171,) - (1122)
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The heuristic explanation of this corollary is that if f € LPo N LP*, then f
has local singularities no worse than an LP' function and behavior at infinity
no worse than an LP° function. Hence f € LP> for any p) between py and p;.

Proof. Let A be determined as above, a = pg/A and b = p;/(1 — A), then
by Theorem [11.14

e (e

< i, =], = nug

It is easily checked that ||-|| is a norm on LP° N LP'. To show this space is
complete, suppose that {f,} C LP° N LP' is a ||| — Cauchy sequence. Then
{fn} is both LPo and LP1 Cauchy. Hence there exist f € LP° and g € LP* such
that lim, .o ||f — = 0 and lim, o [|lg = full,, = 0. By Chebyshev’s

inequality (Lemma 1 4) fn — f and f, — ¢ in measure and therefore by
Theorem [I1.7} f = g a.e. It now is clear that lim, .o ||f — ful| = 0. The
estimate in Eq. (11.22)) is left as Exercise to the reader. |

Remark 11.26. Combining Proposition [[1.24) and Corollary [T1.25] gives
LPo N LPt C LP> C LPo + Pt

for 0 < pg < p1 < o0, A € (0,1) and py € (po,p1) as in Eq. (11.20).

Corollary 11.27. Suppose now that p is counting measure on (2. Then LP(u) C
L9(u) for all 0 < p < q < o0 and |[f], < [If], -

Proof. Suppose that 0 < p < ¢ = oo, then

1115 = sup {If ()" :z € 2} < Y |f(@)" = I},

zes?

Le. [[fllo < [Ifl, for all 0 < p < co. For 0 < p < ¢ < oo, apply Corollary [11.25
with pp = p and p; = oo to find

£, < WP AP < UAIB N = N1, -

11.5.1 Summary:

LPo N LPr C L9 C LP° + LP* for any q € (po, p1)-
If p<g, then ¢/ C £% and || f]|, < | fIl,-

Since p(|f] >e) <e™? ||fH§ , LP — convergence implies L? — convergence.

=W e

L% — convergence implies almost everywhere convergence for some subse-
quence.
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5. If u(2) < oo then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L° —
convergence.

6. If u(2) < oo, then L? C LP for all p < g and L9 — convergence implies LP
— convergence.

11.6 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L° — convergent sequence is LP — convergent. This will lead us
to the notion of uniform integrability. To simplify matters a bit here, it will be
assumed that (2,5, 1) is a finite measure space for this section.

Notation 11.28 For f € L'(u) and E € B, let

u(f : E) = /E fd.

and more generally if A, B € B let

wu(f: A, B) ::/ fdu.
ANB
When p is a probability measure, we will often write E[f : E] for u(f : E) and
E[f: A, B] for u(f: A, B).

Definition 11.29. A collection of functions, A C L'(pn) is said to be uni-
formly integrable if,

lim sup p (|f|:|f| > a)=0. (11.23)
a—00 £

The condition in Eq. (11.23)) implies sup;c 4 || fll; < ooﬁ Indeed, choose a
sufficiently large so that sup e, o (|f] ¢ [f| > a) <1, then for f € A

11l = w(fF A = a) + p(f]: [f] < a) T+ ap(2).

Let us also note that if A = {f} with f € L' (u), then A is uniformly integrable.
Indeed, limg o0 (| f] : | f| > @) = 0 by the dominated convergence theorem.

Exercise 11.4. Suppose A is an index set, {fo},c4 and {ga},c4 are two col-
lections of random variables. If {gs} ¢ 4 is uniformly integrable and |fo| < [ga/|
for all @ € A, show {fa},c4 is uniformly integrable as well.

4 This is not necessarily the case if p(2) = oco. Indeed, if 2 = R and g = m is
Lebesgue measure, the sequences of functions, { fn = 1[,%”]}:’:1 are uniformly

integrable but not bounded in L' (m).
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Solution to Exercise ([11.4). For a > 0 we have

Ellfal: |fal Z a] SE[lgal : [fal = a] <E[gal : |ga] = a].
Therefore,

lim supE[|fa] : |fal = a] < lim supE[|ga| : |gal = a] = 0.

Definition 11.30. A collection of functions, A C L'(u) is said to be uni-
formly absolutely continuous if for all € > 0 there exists § > 0 such that

E) < e whenever i (E) < 6. (11.24)

sup (| f :
feA

Remark 11.31. Tt is not in general true that if {f,} C L'(u) is uniformly ab-
solutely continuous implies sup,, || f.||; < co. For example take 2 = {x} and
w({*}) = 1. Let f,(x) = n. Since for § < 1 a set E C {2 such that pu(EF) < ¢
is in fact the empty set and hence {f,},- ; is uniformly absolutely continuous.
However, for finite measure spaces without “atoms”, for every ¢ > 0 we may
find a finite partition of {2 by sets {Eg}if:l with p(Ey) < 4. If Eq. (11.24) holds
with € = 1, then

k
|fﬁ zz:ﬁ5|fn <k
=1

showing that p(|fn|) < k for all n.

Lemma 11.32 (This lemma may be skipped.). For any g € L'(u), A =
{g} is uniformly absolutely continuous.

Proof. First Proof. If the Lemma is false, there would exist € > 0 and sets
E,, such that p(E,) — 0 while u(|g| : E,,) > ¢ for all n. Since |1z, 9| < |g| € L!
and for any § > 0, u(lg, |g| > 0) < p(E,) — 0 as n — oo, the dominated
convergence theorem of Corollary implies lim, .o p(|g| : En) = 0. This
contradicts p(|g| : E,) > € for all n and the proof is complete.

Second Proof. Let ¢ = > "  ¢1p, be a simple function such that
lg —¢ll; <&/2. Then

p(lgl: E) < p(lel

<Y el n(EnB) +llg — ¢l < (Z Czl) E)+e/2.

i=1

E)+pu(lg—¢l: E)

This shows  (|g| : E) < e provided that u(E) <e(2) i, \ci|)_1 . |

Proposition 11.33. A subset A C L' (i) is uniformly integrable iff A C L* (1)
is bounded and uniformly absolutely continuous.
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Proof. (=) We have already seen that uniformly integrable subsets, A,
are bounded in L' (1) . Moreover, for f € A, and E € B,

u(f - B) = u(lf] : 1f] = M, E) + (£ | ] < M, E)
< supu(lf| : £ > M) + Mu(E),

So given ¢ > 0 choose M so large that sup,c 4 u(|f] : [f| > M) < /2 and then
take § = 557 to verify that A is uniformly absolutely continuous.
(<=) Let K :=supsc, [|f]l; < oo. Then for f € A, we have

w(lfl>a) <|fll; /a < K/afor all a > 0.

Hence given € > 0 and § > 0 as in the definition of uniform absolute continuity,
we may choose a = K/ in which case

sup (| f|: [f]| 2 a) <e
fea

Since € > 0 was arbitrary, it follows that lim,_, SUDPfep M (If| : 1f| > a)=0as
desired. [ ]

Corollary 11.34. Suppose {fo}naca nd {ga}aca are two uniformly integrable
collections of functions, then {fo + ga}aca 18 also uniformly integrable.

Proof. By Proposition {fataca and {ga},eca are both bounded
in L' (1) and are both uniformly absolutely continuous. Since ||fa + gall; <
[ fall; + llgall; it follows that {fa + ga}aca is bounded in L' (u) as well.
Moreover, for € > 0 we may choose § > 0 such that u(|fs]: E) < ¢ and
i (|ga] : E) < & whenever p (E) < 6. For this choice of € and ¢, we then have

1 (fa + 9al : E) < (| fal + |gal : E) < 2¢ whenever p(E) < 4,

showing {fo + ga},c 4 uniformly absolutely continuous. Another application of
Proposition [11.33] completes the proof. [

Exercise 11.5 (Problem 5 on p. 196 of Resnick.). Suppose that {X oy

is a sequence of integrable and i.i.d random variables. Then { n § ey 18 uni-
formly integrable.

Theorem 11.35 (Vitali Convergence Theorem). Let ({2,158, 1) be a finite
measure space, A := {fn} >, be a sequence of functions in L* (u), and f: 2 —
C be a measurable function. Then f € L' (u) and ||f — full; — 0 as n — oo iff
fn — [ in p measure and A is uniformly integrable.
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Proof. (<) If f,, — f in p measure and A = {f,},-, is uniformly inte-
grable then we know M := sup,, || fn||; < co. Hence and application of Fatou’s
lemma, see Exercise

[ \7ldn < timint [ (fldu < 01 < oo,
.Q n—oo .Q

ie. f € L*(u). One now easily checks that Ay := {f — f,},—, is bounded in

n

L' (1) and (using Lemma [11.32] and Proposition [11.33)) Ay is uniformly abso-

lutely continuous and hence Ag is uniformly integrable. Therefore,
Hf“’fn“l =p(f = fal:1f = fal = @) + u(f = fal : |f = ful < a)

<e(@+ [ Uypicald =l (11.25)

where
e(a) :==supp(|f = fml : [f = fm| =2 a) = 0 as a — oo.
Since 1j¢_y,|<a |f — fu| <a € L' (n) and

(
i (Lp—poi<alf = fal >€) Sp(lf — fu] >€) = 0asn — oo,

we may pass to the limit in Eq. (11.25]), with the aid of the dominated conver-
gence theorem (see Corollary [11.8)), to find

limsup ||f — full; <e(a) = 0 as a— oc.

n—oo

(=) If f, — fin L' (i), then by Chebyschev’s inequality it follows that
fn — f in p — measure. Since convergent sequences are bounded, to show A is

uniformly integrable it suffices to shows A is uniformly absolutely continuous.
Now for F € Band n € N,

p(lfal = E) < pllf = ful  B) + p(f: B) < |If = fally + (1f] 2 E).
Let ey :=sup, sy ||f — full;, then ex | 0 as N T oo and
sup (| fn| : E) < Sglgu(lfn\ tE)V(en+u(|fl:E)) <en+plgny: E),

(11.26)
where gy = |f| + XN, |ful € L'. Given e > 0 fix N large so that ey < £/2
and then choose § > 0 (by Lemma [11.32)) such that p(gn : E) < e if p(E) < 4.
It then follows from Eq. (11.26]) that

sup p(|fn] s F) <e/2+¢/2 =¢e when p(E) < 0.
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Ezample 11.36. Let £2 = [0,1], B = Bjg,1) and P = m be Lebesgue measure on
B. Then the collection of functions, f. (z) := 2(1 —xz/e) V0 for € € (0,1) is
bounded in L' (P), f. — 0 a.e. as ¢ | 0 but

0= [ limf.dP #1i AP =1.
[ timp.ap £1im [ 1

This is a typical example of a bounded and pointwise convergent sequence in
L' which is not uniformly integrable.

Ezample 11.37. Let 2 = [0,1], P be Lebesgue measure on B = By 1, and for
e € (0,1) let a. > 0 with lim.|ga. = oo and let f. := a.lp). Then Ef, = ca.
and so sup,~g || fe|l; = K < oo iff ea. < K for all €. Since

supE [f. : fe > M] =sup [eac - 1o, >Mm],
1> I

if { f¢} is uniformly integrable and § > 0 is given, for large M we have ea. < ¢ for
€ small enough so that a. > M. From this we conclude that lim sup; o (eae) <6
and since 0 > 0 was arbitrary, lim. g ea. = 0 if {fc} is uniformly integrable. By
reversing these steps one sees the converse is also true.

Alternatively. No matter how a. > 0 is chosen, lim. | f; = 0 a.s.. So from
Theorem if {f-} is uniformly integrable we would have to have

161%1 (eae) = IEI%I]EfE =E0=0.

Corollary 11.38. Let (£2,B, 11) be a finite measure space, p € [1,00), {fn}rey
be a sequence of functions in LP (i), and f : 2 — C be a measurable function.
Then f € LP (u) and || f — fall, = 0 as n — oo iff fn — f in p measure and

A= {|falP}0, is uniformly integrable.

oo

Proof. (<= ) Suppose that f, — f in g measure and A := {|f,|"},_;

is uniformly integrable. By Corollary |ful? & |fP in g — measure, and
B = |f — ful? £ 0, and by Theorem [11.35, |f|* € L' (1) and |f.|” — |f|” in
L' () . Since

o= 1f = ful? < (14 fal)? < 2772 (FP + 1fal?) = gn € L1 (1)

with g, — g := 2P~ |f|” in L' (), the dominated convergence theorem in

Corollary [11.8] implies
||f_fn||§:/Q|f—fn|de=/thdu—>0asn—>oo.

(=) Suppose f € L? and f, — f in LP. Again f, — f in ;1 — measure by
Lemma [I1.4] Let
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ho = (| fal? = |fIPL < |ful? + fIP =t gn € L'
and g := 2|f|P € L'. Then g, % g, h, %5 0 and [ g,du — [ gdu. Therefore
by the dominated convergence theorem in Corollary lim [ h, du =0,

ie. [ful? — |f|P in L' (u) E| Hence it follows from Theorem that A is
uniformly integrable. [ ]

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 11.39. Suppose that pu(2) < oo, and A C L°(£2) is a collection of
functions.

1. If there exists a mon decreasing function ¢ : Ry — Ry such that
lim, 00 p(z)/x = 00 and

K= sup p(p(|f]) < o0 (11.27)
fea

then A is uniformly integrable.
2. Conversely if A is uniformly integrable, there exists a non-decreasing con-
tinuous function ¢ : Ry — Ry such that p(0) = 0, lim,_o p(z)/z = 00

and Eq. is valid.

A typical example for ¢ in item 1. is p (x) = xP for some p > 1.

Proof. 1. Let ¢ be as in item 1. above and set €, := sup, >, ﬁ — 0 as
a — 0o by assumption. Then for f € A

W(lf < 1f] 2 a) = u( (f}|) GHLE ) < ulo (D) : 1] > a)ea

w(ep (|f‘))€a < Ke,

and hence

® Here is an alternative proof. By the mean value theorem,

1P = 1Fal?l < plmax(£], 1o D)P ] = 1fall < pOF A+ LD L= 1 fall

and therefore by Hoélder’s inequality,

/Ilflp 1 fal?] Sp/(lfl 1D ol Sp/(lfl 1D = fol dp

<pllf = FalloIAST+ 1D la = I LT+ LFallE S = fallo
< pUIf o+ fallo)? 911 = Fullo
where ¢ := p/(p — 1). This shows that [ ||f|” — |fa|?|dp — 0 as n — oo.
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lim sup p (|f] 1171>0) < lim Ke, =0.
a— 00 feA - a— 00

2. By assumption, g, := supfeAu(|f| 1\)‘\2&) — 0 as a — oo. Therefore we
may choose a,, T oo such that

oo

Z(n+1)<€an < 00

n=0

where by convention ag := 0. Now define ¢ so that ¢(0) = 0 and

Z 1(an,an+1]( )

n=0

i.e.
oo

o) = [ ¢ Wy =3 (04 1) @ At~ ).

n=0

By construction ¢ is continuous, ¢(0) = 0, ¢’(z) is increasing (so ¢ is convex)
and ¢'(z) > (n+1) for z > a,. In particular

o) - plan) + (n+ 1)z

> >n+1for x> a,
T T

from which we conclude lim,_,« ¢(z)/x = co. We also have ¢'(z) < (n+1) on
[0, an+1] and therefore

o) < (n+ 1z for < apeq-

So for f € A,

8

u(w(lfl))=z (@D @nsans ) (1)

< Z (n+1) 1 (If Lean,ans g (1FD)

o0

<Z (n+ )i (f1g12a,) €Y (n+1eq,
n=0
and hence -
sup 1 (@(|f1)) < Y (n+1)eq, < oo.
feA n—0
|
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11.7 Exercises

Exercise 11.6. Let f € LPNL> for some p < oo. Show || f||, = limy—.oc || f]], -
If we further assume p(X) < oo, show [|f]l, = limg.c || f|, for all mea-
surable functions f : X — C. In particular, f € L* iff limg .o || f[[, < oo.
Hints: Use Corollary to show limsup,_ . || fll, < [Ifll. and to show
liminfy oo [|fll, = [fll Tet M < [[f]l,, and make use of Chebyshev’s in-
equality.

Exercise 11.7. Prove Eq. in Corollary (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a,b > 1 with a=! +b~! = 1 chosen
appropriately,
st < Gl + i
T oa b

applied to the right side of Eq. (11.21])).

Exercise 11.8. Complete the proof of Proposition [11.24] by showing (LP +
L™, |]|]) is a Banach space.

11.8 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 11.40. A function ¢ : (a,b) — R is convex if for all a < xg <
x1 <bandtel0,1] o(x;) < tp(r1) + (1 —t)p(xo) where xy = tzy + (1 — t)xo,
see Figure 7?7 below.

Example 11.41. The functions exp(x) and —log(z) are convex and |z|” is
convex iff p > 1 as follows from Lemma [10.32] for p > 1 and by inspection
of p=1.

Theorem 11.42. Suppose that ¢ : (a,b) — R is convex and for x,y € (a,b)
with © < y, lef’]
Py —px
Fry) = 220
y—
Then;
1. F (z,y) is increasing in each of its arguments.

5 The same formula would define F (z,y) for = # y. However, since F (z,y) =
F (y,z), we would gain no new information by this extension.
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Fig. 11.1. A convex function with three cords. Notice the slope relationships; m; <
ms S mo.

2. The following limits exist,

ol (z) = F (z,24) := liInF (z,y) < 0o and (11.28)
ylz
¢ (y) = F(y—y) = lim F* (2, y) > —oo. (11.29)

3. The functions, ¢! are both increasing functions and further satisfy,
—co<¢ (1) <¢ () <y (y) <o Va<z<y<b. (11.30)
4. For any t € [@L (), ¢y (x)] ,
o) >p(x)+tly—x) for alz,y € (a,b). (11.31)
5. Fora<a<f<b,let K := max{‘wg_ ()], |2 (B)|}. Then
lo(y) =@ (@)] < K|y — x| for all z,y € [o, 5]

That is ¢ is Lipschitz continuous on [a, 3] .

6. The function @', is right continuous and ¢’ is left continuous.

7. The set of discontinuity points for @', and for ¢’ are the same as the set of
points of non-differentiability of . Moreover this set is at most countable.
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Proof. 1. and 2. If we let hy = tp(x1) + (1 — t)p(zo), then (x¢, hy) is on
the line segment joining (g, ¢ (zo)) to (21, ¢ (x1)) and the statement that ¢ is
convex is then equivalent of ¢ (x;) < hy for all 0 < ¢ < 1. Since

hi —p(x0) (1) —p(z0)  @(21) =My

Tt — X Tr1 — Xo 1 — Ty

the convexity of ¢ is equivalent to

_ he — _
p(2e) — @) e = (@o) _p@) —0(@0) ¢ o cp <o
Ty — X Ty — X 1 — Zo

and to

(@) —p @) _ wlx) =l _ p(21) = o ()
1 — X x|, — T T, — Tt

for all zg < 2 < 7.

Convexity also implies

p(x) —p(xo) _ e —p(wo) _p(z1) —he _ p(@1) = ¢ (24)
e — T Tt — T 1 — T 1 — T

These inequalities may be written more compactly as,

) —plu) _pw)—pu) _pw)—p©) (11.32)

V—U - w—1Uu - w—v

valid for all @ < uw < v < w < b, again see Figure The first (second)
inequality in Eq. shows F'(z,y) is increasing y (). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

/

—00 < ¢l (z) =F (z—,2) < F(z,2+) = ¢/, (z) <0
and
¢l (2) = F(z,04) < F(y—y) = ¢ (v)

as desired.
4. Let t € [¢_ (x),¢, (x)] . Then

t< ¢ (z) = F (2,2+) SF(x’y):W

or equivalently,
ely) > p(x)+t(y—z) fory >z

Therefore Eq. (11.31)) holds for y > x. Similarly, for y < =z,
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o) —¢(y)

tE(p’_(];):F(x—,l‘)ZF(y,x): T —y

or equivalently,

) =p@) —tl@—y) =p@) +t(y—=) fory <z

Hence we have proved Eq. (11.31)) for all z,y € (a,b).
5. Fora<a<z<y<pf<b, we have

¢l (a) < ¢l (z) = F(z,a+) < F(2,y) < F(y—y) = ¢ (y) < oL (B)
(11.33)
and in particular,

K <, () < Qp(y;_f(f) <y (B) <K.
This last inequality implies, |¢ (y) — ¢ ()] < K (y — ) which is the desired
Lipschitz bound.

6. Fora < c <z <y <b, wehave ¢, () =F (x,2+) < F (x,y) and letting
x | ¢ (using the continuity of F') we learn ¢/, (¢c+) < F' (c,y). We may now let
y | ¢ to conclude ¢/, (c+) < ¢/, (¢). Since ¢’ (¢) < ¢/, (c+), it follows that
¢’ (¢) = ¢!, (c+) and hence that ', is right continuous.

Similarly, for a < ¢ < y < ¢ < b, we have ¢’ (y) > F(x,y) and letting
y T ¢ (using the continuity of F) we learn ¢’ (¢c—) > F (z,¢). Now let « 1 ¢ to
conclude ¢’ (c—) > ¢’ (c). Since ¢’ (¢) > ¢’ (¢—), it follows that ¢’ (¢) =
¢ (c—), i.e. ¢ is left continuous.

7. Since ¢4 are increasing functions, they have at most countably many
points of discontinuity. Letting z T y in Eq. , using the left continuity
of ¢’ , shows ¢’ (y) = ¢/ (y—). Hence if ¢’ is continuous at y, ¢’ (y) =
¢ (y+) = ¢/, (y) and ¢ is differentiable at y. Conversely if ¢ is differentiable
at y, then

ol (y=) =¢- (W) =¢ (v) =¥ (v)
which shows ', is continuous at y. Thus we have shown that set of discontinuity
points of ¢/, is the same as the set of points of non-differentiability of . That
the discontinuity set of ¢’ is the same as the non-differentiability set of ¢ is
proved similarly. ™

Corollary 11.43. If ¢ : (a,b) — R is a convex function and D C (a,b) is a
dense set, then

o (y) = sup (¢ (x) + ¢ () (y — 2)] for all z,y € (a,b).
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Proof. Let ¢+ (y) = sup,ep [¢ () + ¢+ (x) (y — x)] . According to Eq.
(11.31) above, we know that ¢ (y) > ¢4 (y) for all y € (a,bd) . Now suppose that
z € (a,b) and z, € A with x,, 1 . Then passing to the limit in the estimate,

Y- (y) = @ (en) + L (xn) (y — n), shows ¥ (y) = ¢ (2) +¢" (2) (y — ).
Since = € (a,b) is arbitrary we may take x = y to discover ¥_ (y) > ¢ (y) and
hence ¢ (y) = ¥— (y) . The proof that ¢ (y) = ¥+ (y) is similar. ]

Lemma 11.44. Suppose that ¢ : (a,b) — R is a non-decreasing function such
that

o (36+0) < 5le@+e0)] forataye@n, (L3

then ¢ is convex. The result remains true if @ is assumed to be continuous
rather than non-decreasing.

Proof. Let zg, 21 € (a,b) and ; := xo +t (21 — 2¢) as above. For n € N let
D, = {% 1<k< 2”} . We are going to being by showing Eq. (|11.34]) implies

ez <(1=t)p(xg) +te(xy) foralteD:=uU,D,. (11.35)

We will do this by induction on n. For n = 1, this follows directly from Eq.

(11.34)). So now suppose that Eq. (11.35) holds for all ¢ € D,, and now let

t = 221 € D,,4q. Observing that

1
Tt = — | T_k Tk
¢ 2 ( 2n—1 + 2+"1)

we may again use Eq. (11.34) to show,

@(xt)§%<<ﬁ($2ngl)+tp<x%)).

Then use the induction hypothesis to conclude,

L[ (1= 555) @ (0) + girp (z1)
@@0f2<+u—;ﬂ)wéw+ﬁﬁwwn>
= (1 —1) ¢ (o) + 1 (z1)

as desired.
For general ¢ € (0,1), let 7 € D such that 7 > ¢. Since ¢ is increasing and

by Eq. (11.35)) we conclude,
o (xe) < p(xr) < (1—7)@(x0) + 70 (1)

We may now let 7 | ¢ to complete the proof. This same technique clearly also
works if we were to assume that ¢ is continuous rather than monotonic. ]
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Hilbert Space Basics

Definition 12.1. Let H be a complex vector space. An inner product on H is
a function, {-|-) : H x H — C, such that

1. {ax + by|z) = alx|z) + bly|z) i.e. x — (x|z) is linear.

2. (zly) = (y|z).
3. ||z||? == (z|z) > 0 with equality ||z||* = 0 iff x = 0.

Notice that combining properties (1) and (2) that x — (z|x) is conjugate
linear for fixed z € H, i.e.

(zlaz + by) = a(zla) + bizly).

The following identity will be used frequently in the sequel without further
mention,

lz +yl1* = (@ +yle +y) = |z + lyl* + (ely) + (ylz)
= [l + [lyl* + 2Re(z[y). (12.1)

Theorem 12.2 (Schwarz Inequality). Let (H,(:|-)) be an inner product
space, then for all x,y € H

[(@ly)] < [lz]l [yl
and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y # 0 and observe;
if 2 = ay for some a € C, then (z|y) = a||y||* and hence

2
[(zly)| = lad Iyl = [z ]llyll-

Now suppose that € H is arbitrary, let 2z := x — ||y||=?(z|y)y. (So z is the
“orthogonal projection” of x onto y, see Figure ) Then

) 1P el o (aly)
os||z||2=Hx— Y ]2 - 2Refa 1)
Pk TR Pk

_ ||xH2 _ |<x|y>|2

W2

from which it follows that 0 < [Jy|?||z||* — [{(z|y)|* with equality iff 2 = 0 or
equivalently iff z = ||y|| %(z|y)y. ]

Fig. 12.1. The picture behind the proof of the Schwarz inequality.

Corollary 12.3. Let (H, (:|-)) be an inner product space and ||x| = +/(z|x).
Then the Hilbertian norm, |||, is a norm on H. Moreover (-|-) is continuous
on H x H, where H is viewed as the normed space (H, ||-]|).

Proof. If z,y € H, then, using Schwarz’s inequality,

lz +yl* = [l + llyl]* + 2Re(zly)
<l ll* + llyll* + 2l [yl = (=] + ly])*-

Taking the square root of this inequality shows ||-|| satisfies the triangle inequal-

1ty.
Checking that ||-|| satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If z, 2’,y,y’ € H, then

(z + Azly + Ay) — (z|y)| = [(z|Ay) + (Az|y) + (Az|Ay)|
< lzl[l1Ay|l + [yl Az]| + | Az]||| Ayl
— 0 as Az, Ay — 0,

from which it follows that (-|-) is continuous. |

Definition 12.4. Let (H, (:|-)) be an inner product space, we say x,y € H are
orthogonal and write x L y iff (x|y) = 0. More generally if A C H is a set,
x € H is orthogonal to A (write v L A) iff (x|y) = 0 for ally € A. Let
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At ={x € H:x L A} be the set of vectors orthogonal to A. A subset S C H
is an orthogonal set if x L y for all distinct elements x,y € S. If S further
satisfies, ||z|| = 1 for all x € S, then S is said to be an orthonormal set.

Proposition 12.5. Let (H, (:|-)) be an inner product space then
1. (Parallelogram Law)
lz + l” + Il — yl* = 2[J]* + 2]ly|I* (12.2)

forallz,y € H.
2. (Pythagorean Theorem) If S CC H is a finite orthogonal set, then
2

Soal| =Dl (12.3)

€S zeS

3. If A C H is a set, then A is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;
[+ gl + |z =y
= ||z]|* + [lyll* + 2Re(z|y) + [[z]|* + [ly]|* — 2Re(z[y)
= 2| + 2]y,

and
2

Sal| =S =3 (aly)

€S zeS yeS z,y€S
=Y (alz) = ll=|*
€S zes

Item 3. is a consequence of the continuity of (-|-) and the fact that
At = Ngea Nul((]z))
where Nul((-|z)) = {y € H : (y|x) = 0} — a closed subspace of H. ]

Definition 12.6. A Hilbert space is an inner product space (H,({:|-)) such
that the induced Hilbertian norm is complete.

Ezample 12.7. For any measure space, (2,8, ), H := L? (u) with inner prod-
uct,

mmzéfwwwmmw

is a Hilbert space — see Theorem [I1.17] for the completeness assertion.
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Definition 12.8. A subset C' of a vector space X is said to be convex if for all
x,y € C the line segment [z,y] == {tx + (1 —t)y : 0 <t < 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 12.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M C H is a closed conver subset of H. Then for any x € H
there exists a unique y € M such that

lz = yll = d(w, M) = inf |z — 2.

Moreover, if M is a vector subspace of H, then the point y may also be charac-
terized as the unique point in M such that (x —y) L M.

Proof. Uniqueness. By replacing M by M —z :={m —x : m € M} we
may assume x = 0. Let ¢ := d(0, M) = inf,,,epr ||m|| and y, z € M, see Figure
L2.2

Fig. 12.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

20yl + 2ll2l” = lly + 21 + lly — 2
2

+ z
Y +ly — 2 > 46% + [ly — 2|1 (12.4)

2

-4

Hence if ||y|| = ||z]| = 4, then 262 + 262 > 452 + ||y — 2|2, so that ||y — z||? = 0.
Therefore, if a minimizer for d(0, -)|ar exists, it is unique.
Existence. Let y, € M be chosen such that |y,| = 4, — ¢ = d(0, M).

Taking y = ¥, and z = y,, in Eq. (12.4)) shows

2672n + 2672L 2 46° + Hyn - ym||2-
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Passing to the limit m,n — oo in this equation implies,

20% 4+ 26% > 46% + limsup ||yn — Yo |?,

m,n— o0

ie. imsup,, , o lYn — Ym|[> = 0. Therefore, by completeness of H, {yn},_,
is convergent. Because M is closed, y := lim y, € M and because the norm is
continuous, e
Iyl = lim [jyn] =6 = d(0, M).
n—oo

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and = € H. Let y € M be the
closest point in M to x. Then for w € M, the function

g(t) = llz = (y + tw)|* = [lo = y|I* - 2tRe(z — ylw) + *[Jw]*

has a minimum at ¢ = 0 and therefore 0 = ¢’(0) = —2Re(x —y|w). Since w € M
is arbitrary, this implies that (x —y) L M.

Finally suppose y € M is any point such that (z —y) L M. Then for z € M,
by Pythagorean’s theorem,

lo = 21* = llo —y +y — 2> = llz = ylI* + ly — 2lI* > = -yl

which shows d(x, M)? > ||z — y||?. That is to say y is the point in M closest to
x. |

Definition 12.10. Suppose that A : H — H is a bounded operator, i.e.
|A|| :=sup {||Az| : x € H with ||z|| =1} < oc.

The adjoint of A, denoted A*, is the unique operator A* : H — H such that
(Az|y) = (z|A*y). (The proof that A* exists and is unique will be given in
Propositz'on below.) A bounded operator A : H — H is self - adjoint or
Hermitian if A = A*.

Definition 12.11. Let H be a Hilbert space and M C H be a closed subspace.
The orthogonal projection of H onto M is the function Py : H — H such that
for x € H, Py(x) is the unique element in M such that (x — Py(x)) L M, i.e.
Pys(x) is the unique element in M such that

(x|m) = (Pp(z)|m) for allm € M. (12.5)

Given a linear transformation A, we will let Ran (A) and Nul (A) denote the
range and the null-space of A respectively.

Theorem 12.12 (Projection Theorem). Let H be a Hilbert space and M C
H be a closed subspace. The orthogonal projection Py satisfies:
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Py is linear and hence we will write Py rather than Pyy(x).

P2, = Py (Pu is a projection).

Pf; = Py (Pu is self-adjoint).

Ran(Py) = M and Nul(Py) = M+,

If N C M C H is another closed subspace, the Py Py = Py Py = Py

Crds o do =

Proof.
1. Let x1,29 € H and « € C, then Pyz1 + aPyxe € M and

Pyzy 4+ aPyag — (21 + axg) = [Pyxy — 21 + a(Pyay — 22)] € Mt

showing Pprxq + aPyxs = Py(x1 + axs), i.e. Py is linear.
2. Obviously Ran(Py) = M and Pyx = x for all v € M. Therefore Py, = Pyy.
3. Let o,y € H, then since (z — Py/r) and (y — Pyy) are in M+,

(Pyzly) = (Puz|Puy +y — Puy) = (Puz|Puy)
= (Pyz + (x — Py)|Payy) = (@] Pary).
4. We have already seen, Ran(Py;) = M and Pyz =0iff 1 =2 -0 € M+,
i.e. Nul(Py) = M+.
5 f N ¢ M C H it is clear that PyyPy = Py since Py, = Id on

N = Ran(Py) C M. Taking adjoints gives the other identity, namely that
Py Py = Py. More directly, if x € H and n € N, we have

(PnPyrx|n) = (Pyx|Pyn) = (Payxln) = (x| Pyn) = (z|n) .
Since this holds for all n we may conclude that Py Py;x = Pyz.
]

Corollary 12.13. If M C H is a proper closed subspace of a Hilbert space H,
then H=M @& M*.

Proof. Given z € H, let y = Pyywsothat z—y € M+. Thenz = y+(z—y) €
M+M~+.1fz € MNM*, then z L x, ie. ||z]|> = (z|z) = 0. So MNM+ = {0}.
[

Exercise 12.1. Suppose M is a subset of H, then M+ = span(M).

Theorem 12.14 (Riesz Theorem). Let H* be the dual space of H (i.e. that
linear space of continuous linear functionals on H). The map

se H -1 (|2) e HY (12.6)
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is a conjugate linemﬂ isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for z,z € H,

[(z[2)] < flz[|[]z]| for all z € H

with equality when = = z. This implies that ||[jz[ ;. = ||(:|2)|| z~ = ||2|| . There-
fore j is isometric and this implies j is injective. To finish the proof we must
show that j is surjective. So let f € H* which we assume, without loss of gener-
ality, is non-zero. Then M =Nul(f) — a closed proper subspace of H. Since, by
Corollary H=Ma&M*+, f: H/M = M+ — F is a linear isomorphism.
This shows that dim(M~*) = 1 and hence H = M @ Fzo where 7o € M1\ {0}
Choose z = Azg € ML such that f(zq) = (x0]2), i.e. A = f(x0)/ ||zol|”> . Then
for x = m + Axg with m € M and A € T,

f(@) = Af (o) = Mwolz) = (Azo|2) = (m + Axo|z) = (x]2)
which shows that f = jz. ]

Proposition 12.15 (Adjoints). Let H and K be Hilbert spaces and A : H —
K be a bounded operator. Then there exists a unique bounded operator A* :
K — H such that

(Azly) g = (x|A*y)gr for allxz € H and y € K. (12.7)

Moreover, for all A,B € L(H,K) and \ € C,

1. (A4 AB)* = A* + \B*,

2. A = (A*)* = A,

3. A%l = [|All and

AT Al = 1A)7

5.If K = H, then (AB)" = B*A*. In particular A € L(H) has a bounded
inverse iff A* has a bounded inverse and (A*)"' = (A’l)* .

Proof. For each y € K, the map x — (Azx|y)k is in H* and therefore there
exists, by Theorem [12.14] a unique vector z € H (we will denote this z by
A* (y)) such that

! Recall that j is conjugate linear if
J(z1 4+ az) =jz1 + ajze

for all z1,22 € H and a € C.

2 Alternatively, choose xg € M= \ {0} such that f(xo) = 1. For x € M+ we have
f(x — Azo) = 0 provided that X := f(x). Therefore x — Axo € M N M+ = {0}, i.e.
x = Axo. This again shows that M~ is spanned by zo.
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(Az|y) ik = (z|z) g for all x € H.

This shows there is a unique map A* : K — H such that (Az|y)x = (z|A*(y))u
forall z € H and y € K.
To see A* is linear, let y1,y2 € K and A € C, then for any = € H,
(Azlyr + My2) e = (Azfyr) k- + MAz|y2) x
= (@[A" (1)) k + Mz|A™(y2))
= (@[ A%(y1) + A" (y2)) 1

and by the uniqueness of A*(y; + A\yz) we find
A" (y1 + Ay2) = A% (y1) + AA™(2).

This shows A* is linear and so we will now write A*y instead of A*(y).
Since

(Aylz)n = (2|A*y)n = (Azly)x = (y|Az)k
it follows that A** = A. The assertion that (4 + AB)" = A* 4+ AB* is Exercise
2.2

Items 3. and 4. Making use of Schwarz’s inequality (Theorem [12.2]), we
have

[A*| = sup [|A7K]|
kEK:||k|=1
= sup sup  [(A"k[h)]
ke€K:||k||=1 heH:||h||=1
= sup sup  [(k[AR)[ = sup [l Ah[| = [|A]
heH:||h||=1 keK:||k||=1 heH:||h||=1

so that ||A*|| = || Al . Since

1A= Al < AT | 1A] = [lAl”°

and
JA|*=  sup [AR|*= sup [(Ah|Ah)]
hEH:||h||=1 heH:||h||=1
= sup [(h|A*AR)| < sup ||A*AR| = ||A*A]| (12.8)
REH:||h||=1 heH:||h||=1

we also have || A*A|| < ||A||*> < ||A* A|| which shows ||A||*> = ||A*A]|.
Alternatively, from Eq. (12.8]),

1AI* < (A=Al < [l A] )47 (12.9)
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which then implies ||A|| < ||A*||. Replacing A by A* in this last inequality
shows [|[A*|| < ||A]| and hence that ||A*|| = ||A| . Using this identity back in
Eq. (12.9) proves ||A]* = |A*A| .

Now suppose that K = H. Then

(ABh|k) = (Bh|A*k) = (h|B*A™k)
which shows (AB)" = B*A*. If A~! exists then

(A7) A" = (A4 =TI" =1 and

A (AT =(A7A) =" =1

This shows that A* is invertible and (4*)™' = (A_l)*. Similarly if A* is
invertible then so is A = A**. |

Exercise 12.2. Let H, K, M be Hilbert spaces, A, B € L(H,K), C € L(K, M)
and A € C. Show (A + AB)" = A* + AB* and (CA)" = A*C* € L(M, H).

Exercise 12.3. Let H = C"™ and K = C™ equipped with the usual inner
products, i.e. (z|w)yg = z-w for z,w € H. Let A be an m x n matrix thought of
as a linear operator from H to K. Show the matrix associated to A* : K — H
is the conjugate transpose of A.

Lemma 12.16. Suppose A: H — K is a bounded operator, then:

1. Nul(A*) = Ran(A)*.

2. Ran(A) = Nul(4*)*.

3. if K=H and V C H is an A — invariant subspace (i.e. A(V) C V), then
V4 is A* — invariant.

Proof. An element y € K is in Nul(A4*) iff 0 = (A*y|z) = (y|Ax) for all
x € H which happens iff y € Ran(A)L. Because, by Exercise Ran(4) =
Ran(A)*+, and so by the first item, Ran(A) = Nul(A*)+. Now suppose A(V) C
V and y € V+, then

(A*y|z) = (y|Az) =0 for allz € V

which shows A*y € V. ]
The next elementary theorem (referred to as the bounded linear transfor-
mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 12.17 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banac/ﬂ space, and S C Z s a dense linear subspace of Z. If T : S — X is a

3 A Banach space is a complete normed space. The main examples for us are Hilbert
spaces.
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bounded linear transformation (i.e. there exists C' < oo such that | Tz|| < C'| z||
for all z € 8), then T has a unique extension to an element T € L(Z,X) and
this extension still satisfies

|Tz|| < Cllz|| for all z € S.
Proof. Let z € Z and choose z, € S such that 2z, — z. Since
ITzm — Tzn|| < Cllzm — 20|l — 0 as m,n — oo,

it follows by the completeness of X that lim, ., Tz, =: Tz exists. Moreover,
if w, € § is another sequence converging to z, then

T2 — Twn|| < Cllzn —wn| = Cllz =2 =0

and therefore Tz is well defined. It is now a simple matter to check that T :
Z — X is still linear and that

|Tz|| = lim [|Tz,] < lim C||z,| = C|lz| for all z € Z.

Thus T is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader. [

12.1 Compactness Results for LP — Spaces*

In this section we are going to identify the sequentially “weak” compact subsets
of LP (§2,B, P) for 1 < p < oo, where ({2, B, P) is a probability space. The key
to our proofs will be the following Hilbert space compactness result.

Theorem 12.18. Suppose {xz,},., is a bounded sequence in H (i.e. C :=
sup,, ||zn| < o0), then there ewxists a sub-sequence, yy = xn, and an x € H
such that imy o (yx|h) = (z|h) for all h € H. We say that yi, converges to
weakly in this case and denote this by yj, — .

Proof. Let Hy := span(zy, : k € N). Then Hy is a closed separable Hilbert
subspace of H and {zy},.,; C Hy. Let {h,, },-; be a countable dense subset of
Hy. Since [{zg|hy)| < |2kl |hn ]l < C ||hy|| < oo, the sequence, {(@k|hn)}re, C
C, is bounded and hence has a convergent sub-sequence for all n € N. By the
Cantor’s diagonalization argument we can find a a sub-sequence, yi := xy, , of
{z,,} such that limy_, o (yg|hn) exists for all n € N.

We now show ¢ (2) := limy_c0 (Y |2) exists for all z € Hy. Indeed, for any
k,l,n € N, we have

macro: svmonob.cls date/time: 24-Nov-2009/13:23



184 12 Hilbert Space Basics

[(yl2) = il = [y = wl2)] < 1k — gl |+ e = 9]z = )|
< Hyk — vilhn)| +2C ||z — ho |-

Letting k£, — oo in this estimate then shows

limsup [(yx|2) — (wi]2)| < 2C ||z = |-

k,l—o0

Since we may choose n € N such that ||z — k|| is as small as we please, we may
conclude that limsupy, ;.. [(yx|2) — (v1]2)], i.e. ¢ (2) := limg oo (yx|2) exists.

The function, @ (z) = limg_ (2|yx) is a bounded linear functional on H
because

% ()] = liminf [(zlye)] < Cl2]

Therefore by the Riesz Theorem [12.14] there exists © € Hy such that @ (z) =
(z|x) for all z € Hy. Thus, for this € Hy we have shown

klim (yk|z) = (z|z) for all z € Hy. (12.10)

To finish the proof we need only observe that Eq. (12.10]) is valid for all
z € H. Indeed if z € H, then z = 29 + 21 where 290 = Py,z € Hy and 2z, =
z — Pp,z € Hy . Since yi, x € Hy, we have

klirn (yk|2) = klim (yk)2z0) = (z|z0) = (z|z) for all z € H.

]

Since unbounded subsets of H are clearly not sequentially weakly compact,

Theorem [12.18]states that a set is sequentially precompact in H iff it is bounded.

Let us now use Theorem [I2.18] to identify the sequentially compact subsets of
L? (£2,B, P) for all 1 < p < oco. We begin with the case p = 1.

Theorem 12.19. If {X,,},7, is a uniformly integrable subset of L* (2,8, P),
there ezists a subsequence Yy, := X, of {X,},—, and X € L' (£2,B, P) such
that

klim E[Yi;h] =E[Xh] for all h € By. (12.11)
Proof. For each m € N let X" := X, 1|x, |<m- The truncated sequence

{Xm}> | is a bounded subset of the Hilbert space, L? (£2, B, P), for all m € N.
Therefore by Theorem [12.18] {Xﬁl}zozl has a weakly convergent sub-sequence
for all m € N. By Cantor’s diagonalization argument, we can find Y;* := X"

and X™ € L? ({2, B, P) such that Y;™ L X™ as m — oo and in particular

lim E[Y{"h] = E[X™}] for all h € By.
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Our next goal is to show X™ — X in L (£2, B, P). To this end, for m < M
and h € B, we have

E (X — x™) ]

i &[5 =¥ R)| < i ing B [0 = v )

IN

17l o ~likrninfE[|Yk| s M > Y| > m]

< [ - liminf B ([¥i] : [Y] > m).

Taking h = sgn(XM — X™) in this inequality shows
E[|xM-Xxm] < lim inf B [[Yy] : [Yi| > m]

with the right member of this inequality going to zero as m, M — oo with
M > m by the assumed uniform integrability of the {X,}. Therefore there
exists X € L' (£2, B, P) such that lim,,.. E|X — X™| = 0.
We are now ready to verify Eq. (12.11]) is valid. For h € B,
[E[(X = Yi) h]| < [E[(X™ = Y™) [+ [E[(X — X™) R]| + |E[(Yy — Y;™) Al
< B[O — Y Bl + bl - (BX = X7 +E (¥ : Vel > m)

< BCE = V) AlL+ [l - (EIX = X7+ sup B (¥ < ] > ]
Passing to the limit as £ — oo in the above inequality shows
imsup B0~ ) ] < [l (E X = X"+ supE (V] ] > ] )
—00

Since X™ — X in L! and sup, E[|Y}| : |Y;| > m] — 0 by uniform integrability,
it follows that, limsup,_, . |[E[(X — Y%) h]| = 0. m

Ezample 12.20. Let (2,8, P) = ((O7 1), Bo,1), m) where m is Lebesgue measure
and let X, (w) = 2"1p~,<9-n. Then EX,, = 1 for all n and hence {X,} -, is
bounded in L' (£2, B, P) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X € L' (2, B, P) and subsequence, Y} := X,,,

such that Y3 = X. Then for h € By, and any € > 0 we would have
E [Xhl. ] = Jim B [Yihl 1] =0.
Then by DCT it would follow that E[Xh] = 0 for all h € B, and hence that
X =0. On the other hand we would also have
0=E[X-1] :kILII;OE[Yk'l]Zl
and we have reached the desired contradiction. Hence we must conclude that

bounded subset of L! (£2, B, P) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem [I2.19]
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When 1 < p < 0o, the situation is simpler.

Theorem 12.21. Let p € (1,00) and ¢ =p(p — 1)71 € (1,00) be its conjugate
exponent. If {X,} 2 | is a bounded sequence in LP (£2,B, P), there exists X €
L? (2,8, P) and a subsequence Yy, := X,,, of {X,},—, such that

klirr;oE [Yih] = E[Xh] for allh € L (2,8, P). (12.12)
Proof. Let C' := sup,cy[|Xn|, < co and recall that Lemma guar-
antees that {X,} 7, is a uniformly integrable subset of L' (£2, B, P). There-
fore by Theorem there exists X € L' (2,B,P) and a subsequence,
Y := X,,, such that Eq. (12.11)) holds. We will complete the proof by showing;
a) X € LP (§2,B, P) and b) and Eq. (12.12)) is valid.
a) For h € B, we have

£ [XH]| < liminf B[] < limint [, - 4], < C A1)
For M < oo, taking h = sgn(X) |X|p*1 1) x)<nm in the previous inequality shows
E [IX]" 1jxj<u] < € [[sen(X) X7 1|X\sMHq

_ 1/
=c (E [|X|(" v 1\X|SMD "< OE[XP 1xeu])

from which it follows that

1-1/q

(E [1XP 1xiza])) " < (B [1XP Lxi<n]) <C.

Using the monotone convergence theorem, we may let M — oo in this equation
to find | X[, = (E[X]")"/" < C < oo.

b) Now that we know X € LP(£2,B,P), in make sense to consider
E[(X —Yy)h] for all h € L? (2, B, P) . For M < oo, let h™ := h1j,j<pr, then

E[(X = Yi) bl < [E[(X = Yi) Y]] + B [(X = Yi) hljpjs ] |
< |E[(X =) AM]| + X = Yall, [[hL s ],
< |E[(X = Ya) hM][ +2C ||l a ], -
Since h™ € By, we may pass to the limit & — oo in the previous inequality to

find,
limsup |E [(X — Y%) h]| < 2C ||h1‘h|>MHq.

k—o0

This completes the proof, since th\h\>MHq — 0 as M — oo by DCT. [

Page: 185 job: prob

12.2 Exercises 185

12.2 Exercises

Exercise 12.4. Suppose that {M,,} 7, is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of My := U5, M,,. Show
limy,— 00 Py, x = Py for all x € H. Hint: first prove this for x € My and then
for x € M. Also consider the case where z € M+.

Solution to Exercise (12.4)). Let P, := Py, and P = Pyy. If y € My, then
P,y = y = Py for all n sufficiently large. and therefore, lim,, .., P,y = Py.
Now suppose that x € M and y € My. Then
[Pz — Ppx| < [Pz — Pyl + [Py — Payll + || Py — Pz
<2z —yll + [Py — Payll

and passing to the limit as n — oo then shows

limsup | Pz — Poz| < 2|z — v

n—oo

The left hand side may be made as small as we like by choosing y € M,
arbitrarily close to z € M = M.

For the general case, if x € H, then = Px +y where y = x — Pz € M C
M- for all n. Therefore,

P,x = P,Pxr — Pxr asn — o

by what we have just proved.
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13

Conditional Expectation

In this section let (£2,8, P) be a probability space and G C B be a sub —
sigma algebra of B. We will write f € G iff f : {2 — C is bounded and f is
(G, Bc) — measurable. If A € B and P (A) > 0, we will let

(AN B)

E[X]|4] := E[X: A] and P (B|A) :=E[15]4] := PP(A)

P(4)
for all integrable random variables, X, and B € B. We will often use the fac-
torization Lemma in this section. Because of this let us repeat it here.

Lemma 13.1. Suppose that (Y,F) is a measurable space and 'Y 2 —Yisa
map. Then to every (o(Y),Bg) — measurable function, H : 2 — R, there is a
(F,Bg) — measurable function h:Y — R such that H =ho.

Proof. First suppose that H = 14 where A € o(Y) =Y " 1(F). Let B€ F
such that A = Y~(B) then 14 = 1y-1(p) = 1 oY and hence the lemma
is valid in this case with h = 1. More generally if H = 3" a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence H = hoY
with h := 3" a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, H, from {2 — R, choose simple
functions H,, converging to H. Let h, : Y — R be simple functions such that
H, = h, oY. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—0o0 n— o0 n— 0o

where h := limsup h,, — a measurable function from Y to R. [

n—oo

Definition 13.2 (Conditional Expectation). Let Eg : L?(2,B,P) —
L?(2,G, P) denote orthogonal projection of L*(£2,B,P) onto the closed sub-
space L?(£2,G, P). For f € L*(2,B, P), we say that Egf € L*(£2,G, P) is the
conditional expectation of f.

Remark 13.3 (Basic Properties of Eg). Let f € L?(£2,B, P). By the orthogonal
projection Theorem [12.12| we know that F' € L?(£2,G, P) is Egf a.s. iff either
of the following two conditions hold;

LIf = Flly < [If = gll, for all g € L*(£2,G, P) or

2. E[fh] = E[Fh] for all h € L%(2,G, P).

Moreover if Go C G1 C B then L?(2,Gy, P) C L*(£2,G1, P) C L*(£2,B, P)
and therefore,

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L?(£2,B,P). (13.1)
It is also useful to observe that condition 2. above may expressed as
E[f: A|=E[F:A] forall Aeg (13.2)

or
E[fh] = E[Fh)] for all h € Gy. (13.3)

Indeed, if Eq. (13.2) holds, then by linearity we have E[fh] = E[Fh] for all
G — measurable simple functions, h and hence by the approximation Theorem

and the DCT for all h € Gy. Therefore Eq. (13.2)) implies Eq. (13.3). If Eq.
(13.3) holds and h € L?(£2,G, P), we may use DCT to show

. 13.3) ..
E[f] =" lim E [fhlp<n] Tim E [Fhlj<,] "= E[Fh],

which is condition 2. in Remark Taking h = 14 with A € G in condition
2. or Remark [13.3] we learn that Eq. (13.2)) is satisfied as well.

Theorem 13.4. Let (2,8, P) and G C B be as above and let f,g € L' (2, B, P).
The operator Eg : L?(§2, B, P) — L?(02,G, P) extends uniquely to a linear con-
traction from L'(£2,B, P) to L*(£2,G, P). This estension enjoys the following
properties;

LIff>0, P —a.e then Egf >0, P — a.e.

. Monotonicity. If f > g, P — a.e. there Egf > Egg, P — a.e.

. L — contraction property. |Egf| <Eg|f|, P — a.e.

. Averaging Property. If f € LY (Q2,B,P) then F = Egf iff F €
LY(02,G,P) and

Bl WO DO~

E(Fh) = E(fh) for all h € G,. (13.4)

5. Pull out property or product rule. If g € G, and f € L*($2,B, P), then
Eg(gf) =9 -Egf, P - a.e.
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6. Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s. for all f € L' (22,8, P). (13.5)
Proof. By the definition of orthogonal projection, f € L?(§2,B,P) and
h e gba
E(fh) = E(f - Egh) = E(Egf - h). (13.6)
Taking
— _ Egf
h=sgn(Egf) := @1|ng|>o (13.7)

in Eq. shows
E([Eg f[) = E(Egf - h) = E(fh) <E(|fh]) < E(|f]). (13.8)

It follows from this equation and the BLT (Theorem that Eg extends
uniquely to a contraction form L (2, B, P) to L*(£2,G, P). Moreover, by a sim-
ple limiting argument, Eq. remains valid for all f € L' (£2,B,P) and
h € Gp. Indeed, (without reference to Theorem if fn = flifj<n €
L?(£2,B,P), then f, — f in L'(£2,B, P) and hence

E[|Egfn — Egfml] = E[|[Eg (fn — fi)l]l L E[|fn — fml] — 0 as m,n — oc.

By the completeness of L(£2,G, P), F = L'(£2,G, P)-lim, . Egf, exists.
Moreover the function F satisfies,

E(F - h) = E( lim Egf,-h) = lim E(f,-h) =E(f - h) (13.9)

for all h € G, and by Proposition there is at most one, F' € L'(£2,G, P),
which satisfies Eq. . We will again denote F' by Egf. This proves the
existence and uniqueness of F' satisfying the defining relation in Eq. of
item 4. The same argument used in Eq. (13.8) again shows E |F| < E|f| and
therefore that Eg : L' (2,8, P) — L' (2,G, P) is a contraction.

Items 1 and 2. If f € L' (2, B, P) with f > 0, then

E(Egf - h) = E(fh) > 0V h € G, with h > 0. (13.10)

An application of Lemmathen shows that Egf > 0 a.sE The proof of item
2. follows by applying item 1. with f replaced by f —¢g > 0.

Ttem 3. If f is real, £f < |f| and so by Item 2., £Egf < Eg|f], i.e.
[Egfl < Eg|f|, P — a.e. For complex f, let h > 0 be a bounded and G —
measurable function. Then

! This can also easily be proved directly here by taking h = 1gg <o in Eq. (13.10).
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E([Eqf|h] = E Eqf -sen (Eg/)h| =E |f -sen (B )]
<E[|f|n] =E[Eg|f| - h].

Since h > 0 is an arbitrary G — measurable function, it follows, by Lemma [7.24]
that |Egf| <Eg|f|, P — a.s. Recall the item 4. has already been proved.
Item 5. If h,g € Gy and f € L (2, B, P), then

E[(9Egf)h] =E[Egf-hgl =E[f-hgl =E[gf - h] = E[Eg (9f) - h].

Thus Eg (9f) =g -Egf, P — a.e.

Item 6., by the item 5. of the projection Theorem Eq. holds
on L?(£2,B, P). By continuity of conditional expectation on L' (2, B, P) and
the density of L' probability spaces in L? — probability spaces shows that Eq.
(13.5) continues to hold on L(£2, B, P).

Second Proof. For h € (Gy), , we have

E[Eg,Eg, f-h] =E[Eg, f-h] =E[f-h] =E[Eg, [ - h]

which shows Eg Eg, f = Eg, f a.s. By the product rule in item 5., it also follows
that

Eg, [Eg, f] = Eg, [Eg, [ - 1] = Eg, f - Eg, [1] = Eg, [ a.s.
Notice that Eg, [Eg, f] need only be G; — measurable. What the statement says
there are representatives of Eg, [Eg, f] which is Gy — measurable and any such
representative is also a representative of Eg, f. [ |

Remark 13.5. There is another standard construction of Eg f based on the char-
acterization in Eq. (13.4) and the Radon Nikodym Theorem It goes as
follows, for 0 < f € L' (P), let Q := fP and observe that Q|g < P|g and
hence there exists 0 < g € L' (£2,G, P) such that dQ|g = gdP|g. This then
implies that

/fdP:Q(A):/gdeorallAEQ,
A A

i.e. g = Egf. For general real valued, f € L' (P), define Egf = Egf, — Egf_
and then for complex f € L' (P) let Egf = Eg Re f + iEg Im f.

Notation 13.6 In the future, we will often write Egf as E[f|G]. Moreover,
if (X, M) is a measurable space and X : 2 — X is a measurable map.
We will often simply denote E[flo (X)] simply by E[f|X]. We will further
let P(A|G) := E[14]G] be the conditional probability of A given G, and
P(A|X):= P(A|o (X)) be conditional probability of A given X.

Exercise 13.1. Suppose f € L' (2,B,P) and f > 0 a.s. Show E[f|G] > 0
a.s. Use this result to conclude if f € (a,b) a.s. for some a,b such that —oo <
a < b < oo, then E[f|G] € (a,b) a.s. More precisely you are to show that any
version, g, of E[f|G] satisfies, g € (a, b) a.s.
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FEzample 13.7. Suppose G is the trivial o — algebra, i.e. G = {0}, 2} . In this case
Egf =Ef as.

Example 13.8. On the opposite extreme, if G = B, then Egf = f a.s.

Lemma 13.9. Suppose (X, M) is a measurable space, X : 2 — X is a mea-
surable function, and G is a sub-o-algebra of B. If X is independent of G and
f : X — R is a measurable function such that f(X) € L' (2,B,P), then
Eg[f(X)] = E[f(X)] a.s.. Conversely if Eg[f (X)] = E[f (X)] a.s. for all
bounded measurable functions, f : X — R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X — R is a measurable
function such that f(X) € L($2,B,P), p:=E[f(X)], and A € G. Then, by
independence,

E(f(X): A] = E[f (X)14] = E[f (X)]E[14] = E[ila] =E[u: A].
Therefore Bg [f (X)) = j = E[f (X)] a
Conversely if Eg [f( |=E[f (X )} pand A € G, then

E[f (X)14] = =E[f (X)]E[1a].
Since this last equation is assumed to hold true for all A € G and all bounded
measurable functions, f : X — R, X is independent of G. ]

The following remark is often useful in computing conditional expectations.
The following Exercise should help you gain some more intuition about condi-
tional expectations.

E[f(X): A]=E[u: Al = pE[14]

Remark 13.10 (Note well.). According to Lemma E(f|X) = f( ) a
for some measurable function, f : X — R So computlng E(fIX) = f(X )
equivalent to finding a function, f : X — R, such that

E[f-h(X)] =E[f(X)h(X)] (13.11)

for all bounded and measurable functions, i : X — R.

Exercise 13.2. Suppose (12, B, P) is a probability space and P := {4;};=, C B
is a partition of £2. (Recall this means 2 =Y 7, A;.) Let G be the o — algebra
generated by P. Show:

1. Be G ift B=U;cpA; for some A C N.
2.¢g: 2 — Ris G — measurable iff g = Y7, \;14, for some \; € R.
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3.For f € LY(2,B,P), let E[f|A;] := E[la,f]/P(A;) if P(A;) # 0 and

E [f|A;] = 0 otherwise. Show

Egf =» E[f|Ai]l4, as.

i=1

Solution to Exercise ((13.2]). We will only prove part 3. here. To do this,
suppose that Eg f = Ef; Aila, for some A\; € R. Then

lZA 14, :

which holds automatically if P (A;) = 0 no matter how \; is chosen. Therefore,
we must take
Elf: 4] _

P (4;)

(13.12)

E[f: A)) = E[Eg/ : 4;] — AP (4))

Aj = E[f14;]

which verifies Eq. (13.12)).

Proposition 13.11. Suppose that (£2,B, P) is a probability space, (X, M, )
and (Y,N,v) are two o - finite measure spaces, X : 2 - X andY : 2 - Y
are measurable functions, and there exists 0 < p € LY (2,B,u @ v) such that

P((X,Y)eU) = [,p(z,y)du(x)dv(y) for allU e M@N. Let
pla)i= [ plam)dv ) (13.13)
and x € X and B € N, let
1 .
L T ) i (@) € (0,00
Q(x,B): { Béyo ) 52 € {0.00) (13.14)

where yo is some arbitrary but fized point in'Y. Then for any bounded (or non-
negative) measurable function, f : X x Y — R, we have

E[f (X.Y)|X] = Q(X. [ (X,)) = / f(X,9)Q (X, dy) = g (X) a5 (13.15)

where,
:/Yf(z,y)Q(x,dy):Q(I,f(x,'))-

As usual we use the notation,

e [ eodey = | 7 Jev @ (@ y)dv (y) if p(x) € (0,00)
Qo) = f[awaean = {7 O .

for all bounded measurable functions, v:Y — R,
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Proof. Our goal is to compute E [f (X,Y") | X]. According to Remark [13.10
we are searching for a bounded measurable function, g : X — R, such that

E[f(X,Y)h(X)] =E[g(X)h(X)] forall h € M. (13.16)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (13.16));

E[f (X,Y)h(X)] = / (@) £ @) p (o) a2 dv ()

- [1@ | [ 1@ m]ae s

E[Q(X)h(X)F/ h(x) g () p(z,y)du(z)dv (y)

XxY

/ h(@ (@) d (). (13.18)

Since the right sides of Eqs. (13.17)) and ([13.18)) must be equal for all h € My,
we must demand,

/Y £ (@,9) p () dv () = g () 5 () for p - ace. . (13.19)

There are two possible problems in solving this equation for g (x) at a particular
point x; the first is when p () = 0 and the second is when p () = co. Since

[o@ant) = [ | [ oaiv)] e =1

we know that p(x) < oo for 1 — a.e. x and therefore

P(Xe{p=0)=Pp(X)=0) = [ 10pdn =0
Hence the points where p (z) = oo will not cause any problems.

For the first problem, namely points x where p(x) = 0, we know that
p(x,y) =0 for v — a.e. y and therefore

/Y £ (@,y) p(z,y) dv (4) = 0. (13.20)

Hence at such points, x where p(z) = 0, Eq. (13.19) will be valid no matter
how we choose g (x) . Therefore, if we let yo € Y be an arbitrary but fixed point
and then define
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A S @ ey ) (@) € (0.50)
9(@): { ) if 5 (z) € {0,00) "

then we have shown E [f (X,Y) | X] =g (X ) =Q((X f) a.s. as desired. (Observe
where that when p(x) < oo, p(x,-) € L' (v) and hence the integral in the
definition of g is well defined.)

Just for added security, let us check directly that ¢ (X) = E[f(X,Y)|X]
a.s.. According to Eq. we have

Elg (X /h (z) du (x)

- / h(2) g («) p () du ()
Xn{0<p<oo}

p
-/ o M@ (56 | F ol w) dua)
-/ @) ([r@noenae) e

= [ v ([ o) i

=E[f(X,Y)h(X)]  (by Eq. (13.017)),

wherein we have repeatedly used p(p = o00) = 0 and Eq. (13.20) holds when
p () = 0. This completes the verification that g (X) =E[f(X,Y)|X] a.s.. =
This proposition shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. It also gives an example of regular conditional probabilities.

Definition 13.12. Let (X, M) and (Y,N) be measurable spaces. A function,
Q:Xx N —0,1] is a probability kernel on X x Y iff

1.Q(z,-) : N —[0,1] is a probability measure on (Y,N) for each x € X and
2.Q(-,B): X —[0,1] is M/Bg — measurable for all B € N.

If @ is a probability kernel on X x Y and f : Y — R is a bounded
measurable function or a positive measurable function, then z — Q (x, f) :=
Jy f () Q (x,dy) is M/Bg — measurable. This is clear for simple functions and
then for general functions via simple limiting arguments.

Definition 13.13. Let (X, M) and (Y,N') be measurable spaces and X : 2 —
XandY : 2 — Y be measurable functions. A probability kernel, @, on X X Y
is said to be a regular conditional distribution of Y given X iff Q (X, B)
is a version of P(Y € B|X) for each B € N. Equivalently, we should have
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QX,f) =E[f(Y)|X] as. for all f € Ny. When X = 2 and M = G is a
sub-o — algebra of B, we say that Q is the regular conditional distribution
of Y given G.

The probability kernel, @, defined in Eq. is an example of a regular
conditional distribution of Y given X. In general if G is a sub-o-algebra of B.
Letting Pg (A) = P (A|G) := E[14|G] € L*(2,B, P) for all A € B, then Py :
B — L?(£2,G, P) is a map such that whenever 4, A,, € B with A =" A,,
we have (by ¢cDCT) that

Pg(A) =Y Pg(Ay) (equality in L (£2,G, P). (13.21)
n=1

Now suppose that we have chosen a representative, Pg (A) : 2 — [0,1], of
Pg (A) for each A € B. From Eq. (13.21) it follows that

Py (A) (w) =Y Py (A,) (w) for P -ae. w. (13.22)

However, note well, the exceptional set of w’s depends on the sets A, A, €
B. The goal of regular conditioning is to carefully choose the representative,
Pg (A) : 2 — [0,1], such that Eq. holds for allw € 2 and all A, A, € B
with A =3 A,.

Remark 13.14. Unfortunately, regular conditional distributions do not always
exists. However, if we require Y to be a “standard Borel space,” (i.e. Y is iso-
morphic to a Borel subset of R), then a conditional distribution of Y given X
will always exists. See Theorem Moreover, it is known that all “reason-
able” measure spaces are standard Borel spaces, see Section [0.10] below for more
details. So in most instances of interest a regular conditional distribution of Y’
given X will exist.

Exercise 13.3. Suppose that (X, M) and (Y, N) are measurable spaces, X :
2 — Xand Y : 2 — Y are measurable functions, and there exists a regular
conditional distribution, @, of Y given X. Show:

1. For all bounded measurable functions, f: (X x Y, M ® N') — R, the func-
tion X 3>z — @ (x, f (x,)) is measurable and

QX,f(X,)=E[f(X,Y)|X] as. (13.23)

Hint: let H denote the set of bounded measurable functions, f, on X x Y
such that the two assertions are valid.

Page: 191 job: prob

13.2 Additional Properties of Conditional Expectations 191
2.If A€ M®N and p:= Po X! be the law of X, then

P((X,Y)€4)= / Q (2,14 (2, ) dp (x) = / dps (2) / La (2,9) Q (z,dy)
(13.24)

Exercise 13.4. Keeping the same notation as in Exercise [[3.3] and further as-
sume that X and Y are independent. Find a regular conditional distribution of
Y given X and prove

E[f(X,Y)|X] = hy(X) a.s. V bounded measurable f : X x Y — R,

where
hy(z) =E[f(z,Y)] for all z € X,

B E[f (X,Y)[X] = E[f (2.Y)] |aex as.

Exercise 13.5. Suppose (2, B, P) and ({2, 8, P’) are two probability spaces,
(X, M) and (Y,N) are measurable spaces, X : 2 — X, X' : ' - X, YV :
2 — Yand Y : 2 — Y are measurable functions such that P o (X,Y) ™" =
Plo(X.Y'), ie. (X,Y) 2 (X, Y).If f: (Xx Y, M®AN) — R is a bounded
measurable function and f : (X, M) — R is a measurable function such that
f(X)=E[f(X,Y)|X] P - a.s. then

E'[f (X, Y)|X'] = f(X') P as.

13.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expectations
to all non-negative functions and to proving conditional versions of the MCT,
DCT, and Fatou’s lemma.

Theorem 13.15 (Extending Eg). If f : 2 — [0,00] is B — measurable, the
function F :=1 lim, oo Eg [f An] exists a.s. and is, up to sets of measure
zero, uniquely determined by as the G — measurable function, F : 2 — [0, 00],
satisfying

E[f: A|=E[F: A] forall A€g. (13.25)

Hence it is consistent to denote F' by Egf. In addition we now have;

1. Properties 2., 5. (with 0 < g € Gp), and 6. of Theorem still hold for
any B — measurable functions such that 0 < f < g. Namely;

a) Order Preserving. Egf <Egg a.s. when 0 < f < g,
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192 13 Conditional Expectation

b) Pull out Property. Eg[hf] = hEg|[f] a.s. for all h > 0 and G —
measurable.
¢) Tower or smoothing property. If Go C G C B. Then

Eg,Eg, f = Eg,Eg, f = Eg, f a.s.

2. Conditional Monotone Convergence (¢cMCT). Suppose that, almost
surely, 0 < f, < fny1 for all n, then then lim,, oo Eg f, = Eg [limy,— oo fn]
a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 < f,, €
L' (2,B,P) a.s., then

n—oo

Eg [nm inf fn] <liminfEg [f,] a.s (13.26)

4. Conditional Dominated Convergence (¢cDCT). If f, — [ a.s. and
|ful < g€ LY(02,B,P), then Egf, — Egf a.s.

Remark 13.16. Regarding item 4. above. Suppose that f, Eit folfnl < gn €
LY(2,B,P), g» & g € L'(£2,B,P) and Eg, — Eg. Then by the DCT in
Corollary [11.8] we know that f,, — f in L' (§2, B, P). Since Eg is a contraction,
it follows that Egf,, — Egf in L' (£2, B, P) and hence in probability.

Proof. Since fAn € L' (£2, B, P) and fAn is increasing, it follows that F' :=1
lim,, o Eg [f A n] exists a.s. Moreover, by two applications of the standard
MCT, we have for any A € G, that

E[F:A]= lim E[Eg[fAn]: A= lim E[fAn:A]= lim E[f:A4].
Thus Eq. (13.25) holds and this uniquely determines F' follows from Lemma
(.24

Ttem 1. a) If 0 < f < g, then

Egf = lim Eg[f An] < lim Eg[gAn] =Egg a.s.

and so Eg still preserves order. We will prove items 1b and 1c at the end of this
proof.

Item 2. Suppose that, almost surely, 0 < f,, < f,41 for all n, then Egf,
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A € G, we have

E[lim ngn;A} = lim E[Egf, : A] = lim E[f, : 4]

n—oo n—0oo

—F [ lim f, : A] —E [Eg LILH;O fn} :A]

n—oo
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from which it follows that lim, . Egf, = Eg [lim, . fn] a.s.
Item 3. For 0 < f,,, let g; := inf,, >4 fr. Then g < fi for all k& and g; T
liminf, . f, and hence by cMCT and item 1.,
Eg [liminf fn] — lim Eggy, < liminfEgfy as.
n—oo k—o00 k—o0

Item 4. As usual it suffices to consider the real case. Let f, — f a.s. and
|fn] < g as. with g € L (£2, B, P) . Then following the proof of the Dominated
convergence theorem, we start with the fact that 0 < g+ f,, a.s. for all n. Hence
by cFatou,

Eg (9% f) = Eg [liminf (9 % /)|

liminf, o Eg (fn) in + case

< hnrgl(;l)ng (9% fn) =Egg + { —limsup,, ., Eg (f,) in — case,

where the above equations hold a.s. Cancelling Egg from both sides of the
equation then implies

limsupEg (f,) < Egf <liminfEg (f,) a.s.

n—oo

Ttem 1. b) If h > 0 is a G — measurable function and f > 0, then by ¢cMCT,

Eg [hf] =" lim Eg [(hAn)(f An)]

= lim (hAn)Eg[(f An)] =T hEgf as.

n—oo

Ttem 1. ¢) Similarly by multiple uses of cMCT,
Eg,Eg, f = Eg, lim Eg, (f An) = lim Eg,Eg, (fAn)
= lim Eg, (f An) =Eg, f
and
Eg Eg,f = Eg, lim Eg, (f An)= lim Eg,Eg, [f An]
= lim Eg, (f An) = Eg,f.

]
The next result in Lemma [13.18| shows how to localize conditional expecta-
tions. We first need the following definition.

Definition 13.17. Suppose that F and G are sub-c-fields of B and A € B.
We say that F = G on A iff A € FNG and Fa = Ga. Recall that Fa =
{BNA:BeF}.
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Notice that if F = Gon Athen F =G = FNGon A as well,i.e.if Ae FNG
and F4 = G4 then
Fa=Ga=[FNGl,. (13.27)
To prove this first observe FNG C F implies [F NG|, C Fa = Ga. Conversely,
BeFys=Ga, then BNAe FNG, ie. Be[FNG],

Lemma 13.18 (Localizing Conditional Expectations). Let (2,B,P) b
a probability space, F and G be sub-sigma-fileds of B, X,Y € L' (2,B,P) o

Y : (£2,B) — [0,00] are measurable, and A € FNG. If F =G on A and
X =Y a.s. on A, then

E]:X = ]E]:QQX = E]:mgy = EgY a.s. on A. (1328)
Alternatively put, if A€ FNG and Fg = Ga then
14Er = 14Erng = 14Eg. (13.29)

Proof. Let us start with the observation that if X is an F — measurable
random variable, then 14X is F N G measurable. This can be checked either
directly (see Remark below) or as follows. If X = 1p with B € F, then
Ialp=1lanpand ANB e Fy=Ga=[FNG|, CFNGandsoluslpis FNG
— measurable. The general X case now follows by linearity and then passing to
the limit.

Suppose X € L' (2,B,P) or X >0 and let X be a representative of ExX.
By the previous observation, 14X is F NG — measurable. Therefore,

14X =Erng [14X] = 1aErng [X] = 14Erng [ErX] = 14ErqgX as.,

ie. 14yEx X = 14ExngX a.s. This proves the first equality in Eq. while
the second follows by interchanging the roles of F and G.

Equation is now easily verified. First notice that X =Y a.s. on A
iff 14X = 14Y a.s.. Now from Eq. , the tower property of conditional
expectation, and the fact that 14 = 14 - 1 4,we find

1AEzX = 1uE£ [14X] = 14E£ [14Y] = 14E£Y = 14ExqgY
from which it follows that Ex X = Ex~gY a.s. on A. [ |

Remark 15.19. For the direct verification that 14X is F N G measurable, we
have,

{IuX#0}=AN{X #0} € Fa=Ga=(FNG), CFNG.
So for B € Bg,

{luX eB}=An{XeB}eFa,CFNGif0¢ B
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while if 0 € B,
{laX € B} ={1aX =0}"UAN{X € (B\ {0})}
={1aX #0}°UAN{X € (B\{0})} € FnG.
Theorem 13.20 (Conditional Jensen’s inequality). Let (2,8, P) be a
probability space, —o00 < a < b < 00, and ¢ : (a,b) — R be a convex func-

tion. Assume f € L*(2, B, P;R) is a random variable satisfying, f € (a,b) a.s.
and o(f) € L*(92,B, P;R). Then o(Egf) € L' (12,G, P),

o(Egf) < Eg [p(f)] a.s. (13.30)

and

E[p(Egf)] <Elp(f)] (13.31)
Proof. Let A := QN (a,b) — a countable dense subset of (a, ). By Theorem

(also see Lemma [10.32) and Figure when ¢ is C1)
o(y) = (@) + ¢’ (z)(y — z) for all for all 7,y € (a,b),

where ¢’ (z) is the left hand derivative of ¢ at z. Taking y = f and then taking
conditional expectations imply,

Eg [p(f)] > Eg [¢(2) + ¢ (2)(f — 2)] = ¢(2) + ¢’ (2)(Egf — x) as. (13.32)

Since this is true for all x € (a,b) (and hence all = in the countable set, A) we
may conclude that

Eg [o(f)] > sup [p(a) + ¢ (2)(Egf — z)] as.

By Exercise|13.1) Egf € (a,b), and hence it follows from Corollarym 3 that
sup [p(x) + ¢ (2)(Bgf — 2)] = ¢ (Eg[) as
Combining the last two estimates proves Eq. .
From Egs. and we infer,
[(Egf)| < [Eg [o(N]IV |o(e) + ¢_ () (Egf — 2)| € L' (2,6, P)

and hence ¢(Egf) € L' (£2,G, P). Taking expectations of Eq. (13.30) is now
allowed and immediately gives Eq. (13.31]). [

Corollary 13.21. The conditional expectation operator, Eg maps LP (2, B, P)
into LP (£2,B, P) and the map remains a contraction for all 1 < p < co.

Proof. The case p = oo and p = 1 have already been covered in Theorem
So now suppose, 1 < p < oo, and apply Jensen’s inequality with ¢ (z) =
|z|” to find |[Egf|” < Eg|f|" a.s. Taking expectations of this inequality gives
the desired result. ]
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194 13 Conditional Expectation
13.3 Regular Conditional Distributions

Lemma 13.22. Suppose that (X, M) is a measurable space and F: X xR — R
is a function such that; 1) F (-,t) : X — R is M/Br — measurable for all t € R,
and 2) F (z,-) : R — R is right continuous for all x € X. Then F is M ® Bg/Bg
— measurable.

Proof. For n € N, the function,

oo

Fy (x,t) == Z F (2, (k+1)27") Lpg—r (ks1y2-m (1)

k=—oc0

is M ® Bg/Bgr — measurable. Using the right continuity assumption, it follows
that F (z,t) = limy, 00 F), (2,t) for all (z,t) € X x R and therefore F' is also
M ® Bg/Bgr — measurable. n

Theorem 13.23. Suppose that (X, M) is a measurable space, X : 2 — X is a
measurable function and Y : 2 — R is a random variable. Then there exists a
probability kernel, @, on X X R such that E[f (Y)|X]=Q (X, f), P - a.s., for
all bounded measurable functions, f : R — R.

Proof. For each r € Q, let ¢, : X — [0,1] be a measurable function such
that
Ely</|X]=¢- (X) as.

Let v := PoX ! be the law of X. Then using the basic properties of conditional
expectation, ¢, < ¢s v —a.s. for all 7 < s, limyo0 ¢ = 1 and lim; | oo ¢ =0, v —
a.s. Hence the set, Xy C X where ¢, (z) < g, (z) for all r < s, lim,q00 ¢ () = 1,
and lim, | ¢- (z) = 0 satisfies, v (Xy) = P (X € Xp) = 1. For t € R, let

F(x,t) := Ix, (z) -inf {gr (z) : 7 > t} + Ix\x, () - 1i>o0.

Then F' (-, t) : X — R is measurable for each t € R and F'(z,-) is a distribution
function on R for each z € X. Hence an application of Lemma shows
F : X xR —0,1] is measurable.

For each x € X and B € Bg, let Q (2, B) = pp(s,) (B) where up denotes the
probability measure on R determined by a distribution function, F': R — [0, 1].

We will now show that @) is the desired probability kernel. To prove this, let
H be the collection of bounded measurable functions, f : R — R, such that X >
z — Q(z, f) € Ris measurable and E [f (V) |X] = Q (X, f), P —a.s. It is easily
seen that H is a linear subspace which is closed under bounded convergence.
We will finish the proof by showing that H contains the multiplicative class,
M = {1(_00)15] s R} .

Notice that @ (m,l(,oo,t}) = F(x,t) is measurable. Now let r € Q and
g : X — R be a bounded measurable function, then
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Elly< - g(X)] =E[E[ly<[X]g(X)] =Elg (X) g (X)]
=E[g (X) 1x, (X) g (X)].
For t € R, we may let | ¢ in the above equality (use DCT) to learn,
Elly<:-g(X)] =E[F(X,1)1x, (X)g(X)] =E[F (X,t) g (X)].
Since g was arbitrary, we may conclude that
Q (X, 1(_00775]) =F ()(7 t) =E [1y§t|X] a.s.

This completes the proof. [
This result leads fairly immediately to the following far reaching generaliza-
tion.

Theorem 13.24. Suppose that (X, M) is a measurable space and (Y,N) is a
standard Borel space, see Appendiz [9.10. Suppose that X : 2 — X and YV :
2 — Y are measurable functions. Then there exists a probability kernel, Q, on
X xY such that E[f (V) |X] =Q (X, f), P — a.s., for all bounded measurable
functions, f:Y — R.

Proof. By definition of a standard Borel space, we may assume that Y € By
and N = By. In this case Y may also be viewed to be a measurable map form
2 — R such that Y (£2) C Y. By Theorem we may find a probability
kernel, Qg, on X x R such that

for all bounded measurable functions, f: R — R.
Taking f = 1y in Eq. (13.33) shows
1=E[ly (V) |X]=Qo(X,Y) as..
Thus if we let Xo := {z € X: Qo (z,Y) =1}, we know that P (X € Xp) = 1.
Let us now define

Q (z,B) := 1x, (x) Qo (z, B) + 1x\x, (z) §, (B) for (z,B) € X x By,

where y is an arbitrary but fixed point in Y. Then and hence @) is a probability
kernel on X x Y. Moreover if B € By C Bg, then

Q(X,B)=1x,(X)Qo (X,B) =1x, X)E[15 (V) |X]=E[15 (V) |X] as.
This shows that @ is the desired regular conditional probability. ]

Corollary 13.25. Suppose G is a sub-c — algebra, (Y,N) is a standard Borel
space, and Y : 2 — Y is a measurable function. Then there exists a probability
kernel, Q, on (22,G) x (Y, N) such that E[f (Y)|G] =Q (-, f), P - a.s. for all

bounded measurable functions, f:Y — R.

Proof. This is a special case of Theorem [13.24applied with (X, M) = (£2,G)
and Y : £2 — (2 being the identity map which is B/G — measurable. [ ]
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13.4 A little Markov Chain Theory

Lemma 13.26. Suppose that (X, M), (Y, F), and (Z,B) are measurable spaces
and Q : X xF — [0,1] and R:Y x B — [0,1] are probability kernels. Then for
every bounded measurable function, F : (Y x Z, F ® B) — (R, Bgr) , the map

ya/Zmy;dz)F(y,z)

is measurable. Moreover, if we define P (x;A) for Ac FRB and x € X by

P(x,A>:/Y@<m;dy>/ZR<y;dz>1A<y7z),

then P: X x F ® B — [0,1] is a probability kernel such that

p@,p):/YQ(x;dm/ZR(y;dz)F(%z)

for all bounded measurable functions, F : (Y x Z,F @ B) — (R, Bgr). We will
denote the kernel P by QR and write

(QR) (x;dy, dz) = Q (z;dy) R (y; dz) .
Proof. A routine exercise in using the multiplicative systems theorem. m

Ezample 13.27. Let (S, S) be a standard Borel space, 2 := SN, for all n € Ny,
let
X (W) = Xp (W0, W1, - oo, Wnye o) = Wy

and B, := o (Xo,...,X,). Further let, B := By := 0 (X, : n € Ny) and sup-
pose ¢, : S xS — [0,1] is a probability kernel for each n € Ny. Then to
each probability measure, v, on (S,S) there exists (by Theorem a unique
probability measure, P,, on (Q = SNO,B) satisfying

EPV [f (X07 B Xn)]

= / f(zo,...,zn) dv(xo) g1 (o, dx1) g2 (x1,dx2) . .. @ (1, dxy) .
Sn+1

which is supposed to hold for all n € N and all bounded measurable functions,
f: 8"t — R. That is the finite dimensional distributions of P, are the measure,

A, (oy ooy 2p) = dv (zo) 1 (20, dx1) @2 (21, dT2) . . . @ (Xp—1,dxy), (13.34)

i.e. b =Vq1G2 ... Qn.
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Notation 13.28 When x € S and v := 6, we abbreviated, Ps, simply by Py.
So for x € X,

Ep, [f (Xoy...,X5)]

= flr,z,. . zn) 1 (2,d2y) g2 (21,d22) . . gn (Tp—1, dxy) .
Sn

Exercise 13.6 (Markov Property I). Keeping then notation in Example
13.27| and letting E, denote the expectation relative to P,. Show {X,,} has
the Markov property, i.e. if f:.S — R is a bounded measurable function, then

E, [f (Xn—i-l) |Bn} = Gn+1 (Xna f) =E, [f (Xn+1) |Xn} P, —as.,

where

Gy (3, f) = /S F () g (2 dy)

In the next exercise, we will continue the notation of Example but we
will further assume that there is a fixed probability kernel, ¢ : S x & — [0,1]
such that ¢, = ¢ for all n. This is the so called time homogeneous case. Let
us also now define, for all n € Ny, the shift operator, 6, : 2 — (2, by

On (w07w17~-~7wn7wn+la-~-) = (W7Lawn+1a-~-)~

Since
Xie (On (W) = [On (W)] = Whgn = Xpgn (),
it follows that Xy 0 6, = X, 1.

Exercise 13.7 (Markov Property II). For cach bounded measurable func-
tion, F': 2 — R, show

E, [F 0 0,|Bn] = [EoF] |o—x, = Ex, F as. (13.35)

Hint: First prove Eq. (13.35) when F = f(Xy,...,X,,) for some bounded
measurable function, f: S™H — R.

Exercise 13.8 (The Strong Markov Property). Continue the notation and
assumptions in Exercise Suppose 7 : 2 — [0,00] is a stopping time as in
Definition 7?7, B, is the stopped ¢ — algebra as in 7?7, and F' : 2 — R is a
bounded measurable function. Show

E,[Fob.|B;]=Ex_F, P,as.on {T <oo}. (13.36)
More precisely you are to show
E, [Fo0;|B;]1rcoo = licos -Ex F, P, as.

Hint: Use Lemma ?7.
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The Radon-Nikodym Theorem

Theorem 14.1 (A Baby Radon-Nikodym Theorem). Suppose (X, M) is
a measurable space, X and v are two finite positive measures on M such that
v(A) < A(A) for all A € M. Then there exists a measurable function, p: X —
[0,1] such that dv = pdA.

Proof. If f is a non-negative simple function, then
v(f)=) av(f=a) <Y ar(f=a)= ().
a>0 a>0

In light of Theorem [6.39| and the MCT, this inequality continues to hold for all
non-negative measurable functions. Furthermore if f € L' (\), then v (|f]) <
A(|f]) < oo and hence f € L' (v) and

DI <v (D) S AU S A2 1 e -

Therefore, L? (\) > f — v (f) € C is a continuous linear functional on L%(\).
By the Riesz representation Theorem [12.14] there exists a unique p € L?(\)
such that

v(f) = /X fpdX for all f € L*(\).

In particular this equation holds for all bounded measurable functions, f : X —
R and for such a function we have

V(f):Reu(f)zRe/Xfpd)\:/XfRepd/\. (14.1)

Thus by replacing p by Re p if necessary we may assume p is real.

Taking f = 1,<0 in Eq. (14.1)) shows
O§V(p<0)=/ locop dX <0,
b'e

from which we conclude that 1,.9p =0, A — a.e., i.e. A(p < 0) = 0. Therefore
p >0, A —a.e. Similarly for a > 1,

A(p>a)2u(p>a):/ Lpsap dX > aX(p > «)
b's

which is possible iff A (p > «) = 0. Letting « | 1, it follows that A (p > 1) =0
and hence 0 < p <1, X - a.e. [ |

Definition 14.2. Let p and v be two positive measure on a measurable space,
(X, M). Then:

1. p and v are mutually singular (written as p L v) if there exists A € M
such that v (A) = 0 and p(A°) = 0. We say that v lives on A and p lives
on A°.

2. The measure v is absolutely continuous relative to p (written as v <
) provided v(A) = 0 whenever p(A) = 0.

As an example, suppose that u is a positive measure and p > 0 is a measur-

able function. Then the measure, v := pu is absolutely continuous relative to
w. Indeed, if ;1 (A) = 0 then

I/(A):/Apduzo.

We will eventually show that if ;4 and v are o — finite and v < p, then dv = pdu
for some measurable function, p > 0.

Definition 14.3 (Lebesgue Decomposition). Let p and v be two positive
measure on a measurable space, (X, M). Two positive measures v, and vs form
a Lebesgue decomposition of v relative to p if v = vg + vs, Vg < u, and
vs L p.

Lemma 14.4. If 1, po and v are positive measures on (X, M) such that p; L
v and py L v, then (p1 + po) L v. More generally if {p;};—, is a sequence of
positive measures such that p; L v for alli then =3 0, w; is singular relative
to v.

Proof. It suffices to prove the second assertion since we can then take p; = 0
for all j > 3. Choose A; € M such that v (A;) = 0 and p; (A5) = 0 for all 4.
Letting A := U;A; we have v (A) = 0. Moreover, since A® = N;AS C A¢, for
all m, we have p; (A°) = 0 for all i and therefore, p (A°) = 0. This shows that
ul v [ |

Lemma 14.5. Let v and u be positive measures on (X, M). If there exists a
Lebesgue decomposition, v = vs + v, of the measure v relative to u then this
decomposition is unique. Moreover: if v is a o — finite measure then so are v
and v,.
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Proof. Since v; L 1, there exists A € M such that y(A) = 0and v, (A°) =0
and because v, < 1, we also know that v, (A) = 0. So for C € M,
v(CNA) =v,(CNA)+1,(CNA)=v,(CNA)=r,(C) (14.2)
and
v(CNA) =v, (CNAS)+ 1, (CNAY) =1, (CNA®) =1, (C). (14.3)

Now suppose we have another Lebesgue decomposition, v = 7, + U5 with
vs L pand v, < u. Working as above, we may choose A € M such that
p(A) = 0 and A is 7, — null. Then B = AU A is still a g — null set and and
B¢ = A¢N A€ is a null set for both v, and ;. Therefore we may use Eqgs.
and with A being replaced by B to conclude,

vs(C) =v(C N B) =1,(C) and
va(C) = v(C'N B¢) = 7,(C) for all C € M.

Lastly if v is a o — finite measure then there exists X,, € M such that
X =" X, and v(X,) < oo for all n. Since 0o > v(X,,) = v (Xy) +vs(X5),
we must have v,(X,) < oo and v4(X,,) < oo, showing v, and v, are o — finite
as well. ]

Lemma 14.6. Suppose u is a positive measure on (X, M) and f,g : X — [0, c0]
are functions such that the measures, fdu and gdup are o — finite and further
satisfy,

/ fdu = / gdp for all A € M. (14.4)
A A
Then f(x) = g(x) for p — a.e. x.

Proof. By assumption there exists X,, € M such that X, T X and
Jx, fdp < oo and an gdp < oo for all n. Replacing A by AN X, in Eq.

(14.4) implies

/1xnfdu=/ fdu=/ gduz/ 1x, gdp
A ANX, ANX, A

for all A € M. Since 1x, f and 1x, g are in L'(p) for all n, this equation implies
1x,f =1x,9, n — a.e. Letting n — oo then shows that f =g, u — a.e. [

Remark 14.7. Lemmal[I4.0]is in general false without the o — finiteness assump-
tion. A trivial counterexample is to take M = 2% ;i(A) = oo for all non-empty

AeM, f=1x and g =2-1x. Then Eq. (14.4) holds yet f # g.
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Theorem 14.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that 1 and v are o — finite positive measures on (X, M). Then v has
a unique Lebesgue decomposition v = v, + v, relative to p and there exists
a unique (modulo sets of u — measure 0) function p : X — [0,00) such that
dv, = pdu. Moreover, vy =0 iff v < p.

Proof. The uniqueness assertions follow directly from Lemmas [I4.5] and
114,06l

Existence when p and v are both finite measures. (Von-Neumann’s
Proof. See Remark for the motivation for this proof.) First suppose that
and v are finite measures and let A\ = p + v. By Theorem dv = hd\ with
0 < h <1 and this implies, for all non-negative measurable functions f, that

v(f) = A(fh) = u(fh) +v(fh) (14.5)

or equivalently

v(f(L=h)) = p(fh). (14.6)
Taking f = 1{p—1} in Eq. (14.6]) shows that

p({h=1}) =v(lip=13(1 = h)) =0,

ie. 0<h(z)<1for pu-ae z. Let

P = L{n<1y -7
_ _1 . .
and then take f = glgn<13(1 —h)~! with ¢ > 0 in Eq. (14.6) to learn
v(glin<ty) = u(glinery(1 — h)'h) = u(pg).
Hence if we define
Vo = lperyv and vg i= 1130,

we then have vy L p (since v; “lives” on {h =1} while u(h=1) = 0) and
v, = pp and in particular v, < pu. Hence v = v, + v; is the desired Lebesgue
decomposition of v. If we further assume that v < p, then g (h = 1) = 0 implies
v (h =1) =0 and hence that v, = 0 and we conclude that v = v, = pp.

Existence when p and v are o-finite measures. Write X = > | X,
where X,, € M are chosen so that u(X,) < co and v(X,,) < oo for all n. Let
dp, = 1x, dp and dv,, = 1x, dv. Then by what we have just proved there exists
pn € LY(X, py) C LY(X, 1) and measure v¢ such that dv,, = p,du, + dvs with
vS L py. Since py, and v “live” on X, there exists 4, € Mx, such that
1 (An) = pin (An) = 0 and
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vo (X\ An) =v (Xn\ An) =0.

This shows that v L p for all n and so by Lemma [14.4]) vy := > 7 w8 is
singular relative to p. Since

v= Z Vn = Z (putin + 1) = Z (Pnlx, p+vy) = pp+vs, (14.7)
n=1 n=1 n=1

where p := > | 1x, pn, it follows that v = v, + v, with v, = pp. Hence this
is the desired Lebesgue decomposition of v relative to u. ]

Remark 14.9. Here is the motivation for the above construction. Suppose that
dv = dvs + pdu is the Radon-Nikodym decomposition and X = A>" B such
that vs(B) =0 and p(A) = 0. Then we find

v,(£) + n(pf) = U(F) = Mhf) = v(hf) + u(hf).
Letting f — 14 f then implies that
v(laf) = vs(1af) = v(1ahf)
which show that h =1, v —a.e. on A. Also letting f — 1gf implies that
wplpf) =v(hpf) + p(hlpf) = plphlsf) + p(hls f)
which implies, p = ph + h, u — a.e. on B, i.e.
p(1—h)=nh, uy—a.e. on B.

In particular it follows that h < 1, u = v — a.e. on B and that p = ﬁlha,
w — a.e. So up to sets of v — measure zero, A = {h =1} and B = {h < 1} and
therefore,

dv = l{hzl}dl/ + 1{h<1}dl/ = 1{h:1}dV + 1p<1dp.

1—-h
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