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Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

-3.1 Homework 1. Due Wednesday, September 30, 2009

• Read over Chapter 1.
• Hand in Exercises 1.1, 1.2, and 1.3.

-3.2 Homework 2. Due Wednesday, October 7, 2009

• Look at Resnick, p. 20-27: 9, 12, 17, 19, 27, 30, 36, and Exercise 3.9 from
the lecture notes.

• Hand in Resnick, p. 20-27: 5, 18, 23, 40*, 41, and Exercise 4.1 from the
lecture notes.

*Notes on Resnick’s #40: (i) B ((0, 1]) should be B ([0, 1)) in the statement
of this problem, (ii) k is an integer, (iii) r ≥ 2.

-3.3 Homework 3. Due Wednesday, October 21, 2009

• Look at Lecture note Exercises; 4.7, 4.8, 4.9
• Hand in Resnick, p. 63–70; 7* and 13.
• Hand in Lecture note Exercises: 4.3, 4.4, 4.5, 4.6, 4.10 – 4.15.

*Hint: For #7 you might label the coupons as {1, 2, . . . , N} and let Ai be
the event that the collector does not have the ith – coupon after buying n -
boxes of cereal.

-3.4 Homework 4. Due Wednesday, October 28, 2009

• Look at Lecture note Exercises; 5.5, 5.10.
• Look at Resnick, p. 63–70; 5, 14, 16, 19
• Hand in Resnick, p. 63–70; 3, 6, 11
• Hand in Lecture note Exercises: 5.6 – 5.9.

-3.5 Homework 5. Due Wednesday, November 4, 2009

• Look at Resnick, p. 85–90: 3, 7, 8, 12, 17, 21
• Hand in from Resnick, p. 85–90: 4, 6*, 9, 15, 18**.

*Note: In #6, the random variable X is understood to take values in the
extended real numbers.
** I would write the left side in terms of an expectation.

• Look at Lecture note Exercise 6.3, 6.7.
• Hand in Lecture note Exercises: 6.4, 6.6, 6.10.

-3.6 Homework 6. Due Wednesday, November 18, 2009

• Look at Lecture note Exercise 7.4, 7.9, 7.12, 7.17, 7.18, and 7.27.
• Hand in Lecture note Exercises: 7.5, 7.7, 7.8, 7.11, 7.13, 7.14, 7.16
• Look at from Resnik, p. 155–166: 6, 13, 26, 37
• Hand in from Resnick,p. 155–166: 7, 38

-3.7 Homework 7. Due Wednesday, November 25, 2009

• Look at Lecture note Exercise 9.12 – 9.14.
• Look at from Resnick§ 5.10: #18, 19, 20, 22, 31.
• Hand in Lecture note Exercises: 8.1, 8.2, 8.3, 8.4, 8.5, 9.4, 9.5, 9.6, 9.7, and

9.9.
• Hand in from Resnick § 5.10: #9, 29.

See next page!



-3.8 Homework 8. Due Monday, December 7, 2009 by
11:00AM (Put under my office door if I am not in.)

• Look at Lecture note Exercise 10.1, 10.2, 10.3, 10.4, 10.6.
• Look at from Resnick § 4.5: 3, 5, 6, 8, 19, 28, 29.
• Look at from Resnick § 5.10: #6, 7, 8, 11, 13, 16, 22, 34
• Hand in Lecture note Exercises: 9.8, 10.5.
• Hand in from Resnick § 4.5: 1, 9*, 11, 18, 25. *Exercise 10.6 may be useful

here.
• Hand in from Resnick § 5.10: #14, 26, 38

driveradmin
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1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if for
all M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for1 a.a. n, then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, then limn→∞ (can) = c limn→∞ an.
3. {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (1.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (1.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim
n→∞

an + lim
n→∞

bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (1.1) is not of form
∞−∞ is necessary in Lemma 1.2. Similarly by considering the examples an = n

1 Here we use “a.a. n” as an abbreviation for almost all n. So an ≤ bn a.a. n iff there
exists N <∞ such that an ≤ bn for all n ≥ N.

and bn = n−α with α > 0 shows the necessity for assuming right hand side of
Eq. (1.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., suppose
b = ∞ in which case we must assume a > −∞. In this case, for every M > 0,
there exists N such that bn ≥M and an ≥ a− 1 for all n ≥ N and this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since ε > 0 is arbitrary, it follows that limn→∞ (an + bn) = a+b.
Proof of Eq. (1.2). It will be left to the reader to prove the case where lim an

and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0
and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let α := min

(
a
2 , 1
)
. Given any M < ∞, there exists

N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,
anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it follows
that limn→∞ (anbn) =∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (1.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (1.4)
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We will also write lim for lim infn→∞ and lim for lim sup
n→∞

.

Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim sup
n→∞

an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim sup
n→∞

an. Similarly, there is a subsequence {ank}∞k=1 of {an}∞n=1 such that

limk→∞ ank = lim infn→∞ an.
3.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (1.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.6)

provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. 1. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim sup
n→∞

an = a ∈ R. Then for all ε > 0,

there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an =∞. The case where lim sup
n→∞

an = −∞ is handled simi-

larly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for

every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim sup
n→∞

an. If A = ∞, then for all M > 0

there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A =∞ case.
2. – 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let an = (−1)n and
bn = −an = (−1)n+1

. Then an + bn = 0 so that

0 = lim
n→∞

(an + bn) = lim inf
n→∞

(an + bn) = lim sup
n→∞

(an + bn)

while

lim inf
n→∞

an = lim inf
n→∞

bn = −1 and

lim sup
n→∞

an = lim sup
n→∞

bn = 1.

Thus in this case we have
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1 Limsups, Liminfs and Extended Limits 15

lim sup
n→∞

(an + bn) < lim sup
n→∞

an + lim sup
n→∞

bn and

lim inf
n→∞

(an + bn) > lim inf
n→∞

an + lim inf
n→∞

bn.

We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n ∈ N, {fn (i)}∞i=1

is a sequence in [0,∞] such that ↑ limn→∞ fn (i) = f (i) by which we mean
fn (i) ↑ f (i) as n→∞. Then

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

f (i) , i.e.

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

lim
n→∞

fn (i) .

We allow for the possibility that these expression may equal to +∞.

Proof. Let M :=↑ limn→∞
∑∞
i=1 fn (i) . As fn (i) ≤ f (i) for all n it follows

that
∑∞
i=1 fn (i) ≤

∑∞
i=1 f (i) for all n and therefore passing to the limit shows

M ≤
∑∞
i=1 f (i) . If N ∈ N we have,

N∑
i=1

f (i) =
N∑
i=1

lim
n→∞

fn (i) = lim
n→∞

N∑
i=1

fn (i) ≤ lim
n→∞

∞∑
i=1

fn (i) = M.

Letting N ↑ ∞ in this equation then shows
∑∞
i=1 f (i) ≤ M which completes

the proof.

Proposition 1.7 (Tonelli’s theorem for sums). If {akn}∞k,n=1 ⊂ [0,∞] ,
then

∞∑
k=1

∞∑
n=1

akn =
∞∑
n=1

∞∑
k=1

akn.

Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let SN (k) :=
∑N
n=1 akn, then by the MCT (Proposi-

tion 1.6),

lim
N→∞

∞∑
k=1

SN (k) =
∞∑
k=1

lim
N→∞

SN (k) =
∞∑
k=1

∞∑
n=1

akn.

On the other hand,

∞∑
k=1

SN (k) =
∞∑
k=1

N∑
n=1

akn =
N∑
n=1

∞∑
k=1

akn

so that

lim
N→∞

∞∑
k=1

SN (k) = lim
N→∞

N∑
n=1

∞∑
k=1

akn =
∞∑
n=1

∞∑
k=1

akn.

Second Proof. Let

M := sup

{
K∑
k=1

N∑
n=1

akn : K,N ∈ N

}
= sup

{
N∑
n=1

K∑
k=1

akn : K,N ∈ N

}

and

L :=
∞∑
k=1

∞∑
n=1

akn.

Since

L =
∞∑
k=1

∞∑
n=1

akn = lim
K→∞

K∑
k=1

∞∑
n=1

akn = lim
K→∞

lim
N→∞

K∑
k=1

N∑
n=1

akn

and
∑K
k=1

∑N
n=1 akn ≤M for all K and N, it follows that L ≤M. Conversely,

K∑
k=1

N∑
n=1

akn ≤
K∑
k=1

∞∑
n=1

akn ≤
∞∑
k=1

∞∑
n=1

akn = L

and therefore taking the supremum of the left side of this inequality over K
and N shows that M ≤ L. Thus we have shown

∞∑
k=1

∞∑
n=1

akn = M.

By symmetry (or by a similar argument), we also have that
∑∞
n=1

∑∞
k=1 akn =

M and hence the proof is complete.
You are asked to prove the next three results in the exercises.

Proposition 1.8 (Fubini for sums). Suppose {akn}∞k,n=1 ⊂ R such that

∞∑
k=1

∞∑
n=1

|akn| =
∞∑
n=1

∞∑
k=1

|akn| <∞.

Then
∞∑
k=1

∞∑
n=1

akn =
∞∑
n=1

∞∑
k=1

akn.
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16 1 Limsups, Liminfs and Extended Limits

Example 1.9 (Counter example). Let {Smn}∞m,n=1 be any sequence of complex
numbers such that limm→∞ Smn = 1 for all n and limn→∞ Smn = 0 for all n.
For example, take Smn = 1m≥n + 1

n1m<n. Then define {aij}∞i,j=1 so that

Smn =
m∑
i=1

n∑
j=1

aij .

Then
∞∑
i=1

∞∑
j=1

aij = lim
m→∞

lim
n→∞

Smn = 0 6= 1 = lim
n→∞

lim
m→∞

Smn =
∞∑
j=1

∞∑
i=1

aij .

To find aij , set Smn = 0 if m = 0 or n = 0, then

Smn − Sm−1,n =
n∑
j=1

amj

and

amn = Smn − Sm−1,n − (Sm,n−1 − Sm−1,n−1)
= Smn − Sm−1,n − Sm,n−1 + Sm−1,n−1.

Proposition 1.10 (Fatou’s Lemma for sums). Suppose that for each n ∈ N,
{hn (i)}∞i=1 is any sequence in [0,∞] , then

∞∑
i=1

lim inf
n→∞

hn (i) ≤ lim inf
n→∞

∞∑
i=1

hn (i) .

The next proposition is referred to as the dominated convergence theorem
(DCT for short) for sums.

Proposition 1.11 (DCT for sums). Suppose that for each n ∈ N,
{fn (i)}∞i=1 ⊂ R is a sequence and {gn (i)}∞i=1 is a sequence in [0,∞) such that;

1.
∑∞
i=1 gn (i) <∞ for all n,

2. f (i) = limn→∞ fn (i) and g (i) := limn→∞ gn (i) exists for each i,
3. |fn (i)| ≤ gn (i) for all i and n,
4. limn→∞

∑∞
i=1 gn (i) =

∑∞
i=1 g (i) <∞.

Then

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

lim
n→∞

fn (i) =
∞∑
i=1

f (i) .

(Often this proposition is used in the special case where gn = g for all n.)

Exercise 1.1. Prove Proposition 1.8. Hint: Let a+
kn := max (akn, 0) and a−kn =

max (−akn, 0) and observe that; akn = a+
kn − a

−
kn and

∣∣a+
kn

∣∣ +
∣∣a−kn∣∣ = |akn| .

Now apply Proposition 1.7 with akn replaced by a+
kn and a−kn.

Exercise 1.2. Prove Proposition 1.10. Hint: apply the MCT by applying the
monotone convergence theorem with fn (i) := infm≥n hm (i) .

Exercise 1.3. Prove Proposition 1.11. Hint: Apply Fatou’s lemma twice. Once
with hn (i) = gn (i) + fn (i) and once with hn (i) = gn (i)− fn (i) .
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2

Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, Ω = {0, 1} .

2. The sample space for flipping a coin N -times could be taken to be, Ω =
{0, 1}N and for flipping an infinite number of times,

Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {0, 1}} = {0, 1}N .

3. If we have a roulette wheel with 38 entries, then we might take

Ω = {00, 0, 1, 2, . . . , 36}

for one spin,
Ω = {00, 0, 1, 2, . . . , 36}N

for N spins, and
Ω = {00, 0, 1, 2, . . . , 36}N

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Ω = DR :=
{

(x, y) ∈ R2 : x2 + y2 ≤ R
}

for one throw,
Ω = DN

R

for N throws, and
Ω = DN

R

for an infinite number of throws.
5. Suppose we release a perfume particle at location x ∈ R3 and follow its

motion for all time, 0 ≤ t <∞. In this case, we might take,

Ω =
{
ω ∈ C ([0,∞) ,R3) : ω (0) = x

}
.

Definition 2.3. An event, A, is a subset of Ω. Given A ⊂ Ω we also define
the indicator function of A by

1A (ω) :=
{

1 if ω ∈ A
0 if ω /∈ A.

Example 2.4. Suppose that Ω = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here ωn = 1 represents the fact that a head was
thrown on the nth – toss, while ωn = 0 represents a tail on the nth – toss.

1. A = {ω ∈ Ω : ω3 = 1} represents the event that the third toss was a head.
2. A = ∪∞i=1 {ω ∈ Ω : ωi = ωi+1 = 1} represents the event that (at least) two

heads are tossed twice in a row at some time.
3. A = ∩∞N=1 ∪n≥N {ω ∈ Ω : ωn = 1} is the event where there are infinitely

many heads tossed in the sequence.
4. A = ∪∞N=1 ∩n≥N {ω ∈ Ω : ωn = 1} is the event where heads occurs from

some time onwards, i.e. ω ∈ A iff there exists, N = N (ω) such that ωn = 1
for all n ≥ N.

Ideally we would like to assign a probability, P (A) , to all events A ⊂ Ω.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, ω (n) ∈ Ω for each n ∈ N,
then try to “define” P (A) by

P (A) = lim
N→∞

1
N

N∑
k=1

1A (ω (k)) (2.1)

= lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A} . (2.2)
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That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {ω (k)}∞k=1 .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we know that B has occurred. Thus we would
like to compute:

P (A|B) = lim
N→∞

# {k : 1 ≤ k ≤ N and ωk ∈ A ∩B}
# {k : 1 ≤ k ≤ N and ωk ∈ B}

,

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

P (A|B) = lim
N→∞

1
N# {k : 1 ≤ k ≤ N and ωk ∈ A ∩B}

1
N# {k : 1 ≤ k ≤ N and ωk ∈ B}

=
P (A ∩B)
P (B)

.

Definition 2.5. If B is a non-null event, i.e. P (B) > 0, define the condi-
tional probability of A given B by,

P (A|B) :=
P (A ∩B)
P (B)

.

There are of course a number of problems with this definition of P in Eq.
(2.1) including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P (A) ∈ [0, 1] for all A ⊂ Ω.
2. P (∅) = 0 and P (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩ B = AB = ∅, then

1A∪B = 1A + 1B so that

P (A ∪B) = lim
N→∞

1
N

N∑
k=1

1A∪B (ω (k)) = lim
N→∞

1
N

N∑
k=1

[1A (ω (k)) + 1B (ω (k))]

= lim
N→∞

[
1
N

N∑
k=1

1A (ω (k)) +
1
N

N∑
k=1

1B (ω (k))

]
= P (A) + P (B) .

4. Countable Additivity. If {Aj}∞j=1 are pairwise disjoint events (i.e. Aj ∩
Ak = ∅ for all j 6= k), then again, 1∪∞

j=1Aj
=
∑∞
j=1 1Aj and therefore we

might hope that,

P
(
∪∞j=1Aj

)
= lim
N→∞

1
N

N∑
k=1

1∪∞
j=1Aj

(ω (k)) = lim
N→∞

1
N

N∑
k=1

∞∑
j=1

1Aj (ω (k))

= lim
N→∞

∞∑
j=1

1
N

N∑
k=1

1Aj (ω (k))

?=
∞∑
j=1

lim
N→∞

1
N

N∑
k=1

1Aj (ω (k)) (by a leap of faith)

=
∞∑
j=1

P (Aj) .

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every ω ∈ Ω is equally likely, i.e. P ({ω}) = 1

2N
.

Assuming this we are then forced to define

P (A) =
1

2N
# (A) .

Observe that this probability has the following property. Suppose that σ ∈
{0, 1}k is a given sequence, then

P ({ω : (ω1, . . . , ωk) = σ}) =
1

2N
· 2N−k =

1
2k
.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now Ω = {0, 1}N , then we should define

P ({ω ∈ Ω : (ω1, . . . , ωk) = σ}) =
1
2k

(2.3)

for any k ≥ 1 and σ ∈ {0, 1}k . Assuming there exists a probability, P : 2Ω →
[0, 1] such that Eq. (2.3) holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

An = {ω ∈ Ω : ωn = 1} = {heads at time n}
BN := ∪n≥NAn = {at least one heads at time N or later}

and
B = ∩∞N=1BN = {An i.o.} = ∩∞N=1 ∪n≥N An.

Since
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BcN = ∩n≥NAcn ⊂ ∩M≥n≥NAcn = {ω ∈ Ω : ωN = ωN+1 = · · · = ωM = 0} ,

we see that
P (BcN ) ≤ 1

2M−N
→ 0 as M →∞.

Therefore, P (BN ) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using BN ↓ B, that

P (B) = lim
N→∞

P (BN ) = 1.

Without this continuity assumption we would not be able to compute P (B) .

The unfortunate fact is that we can not always assign a desired probability
function, P (A) , for all A ⊂ Ω. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z ∈ C : |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 2S → [0, 1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limits.

Proof. We are going to use the fact proved below in Proposition 5.3, that
the continuity condition on P is equivalent to the σ – additivity of P. For z ∈ S
and N ⊂ S let

zN := {zn ∈ S : n ∈ N}, (2.4)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that

P (zN) = P (N) (2.5)

for all z ∈ S and N ⊂ S.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z, w ∈ S are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ S be the set of these representative
points. Then every point z ∈ S may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

S =
∑
r∈R

(rN) (2.6)

where
∑
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (2.5) and (2.6),

1 = P (S) =
∑
r∈R

P (rN) =
∑
r∈R

P (N). (2.7)

We have thus arrived at a contradiction, since the right side of Eq. (2.7) is either
equal to 0 or to ∞ depending on whether P (N) = 0 or P (N) > 0.

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2Ω . So we are going to only define P on
particular subsets, B ⊂ 2Ω . We will developed this below.
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3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative integers
and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N
by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 3.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏
α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 3.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = B ∩Ac.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 3.4 We will also write
∑
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk,

sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := {An i.o.} := {x ∈ X : # {n : x ∈ An} =∞}

and
lim inf
n→∞

An := {An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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Definition 3.5. Given a set A ⊂ X, let

1A (x) =
{

1 if x ∈ A
0 if x /∈ A

be the indicator function of A.

Lemma 3.6. We have:

1. (∪nAn)c = ∩nAcn,
2. {An i.o.}c = {Acn a.a.} ,
3. lim sup

n→∞
An = {x ∈ X :

∑∞
n=1 1An (x) =∞} ,

4. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Acn (x) <∞

}
,

5. supk≥n 1Ak (x) = 1∪k≥nAk = 1supk≥n Ak ,
6. infk≥n 1Ak (x) = 1∩k≥nAk = 1infk≥n Ak ,
7. 1lim sup

n→∞
An = lim sup

n→∞
1An , and

8. 1lim infn→∞ An = lim infn→∞ 1An .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N→ X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item

2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is
injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N×N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N→X and g : N→Y are
surjective functions, then the function (f × g) ◦ h : N→X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N→ ∪∞m=1Am, where h : N→ N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of
contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as
(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X0 is uncountable then so
is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

3.2 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (∩i∈IAi)c = ∪i∈IAci .
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Exercise 3.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 3.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 3.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 3.5. Find a counterexample which shows that f(C ∩ D) = f(C) ∩
f(D) need not hold.

Example 3.9. Let X = {a, b, c} and Y = {1, 2} and define f (a) = f (b) = 1
and f (c) = 2. Then ∅ = f ({a} ∩ {b}) 6= f ({a}) ∩ f ({b}) = {1} and {1, 2} =
f ({a}c) 6= f ({a})c = {2} .

3.3 Algebraic sub-structures of sets

Definition 3.10. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.11. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
3′. A is closed under finite intersections.

Definition 3.12. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.13. Here are some examples of algebras.

1. B = 2X , then B is a σ – algebra.
2. B = {∅, X} is a σ – algebra called the trivial σ – field.
3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

Proposition 3.14. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M :M is a σ – algebra such that E ⊂M}.

Example 3.15. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
3.1. Then

Fig. 3.1. A collection of subsets.

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that Ei ⊂ 2X for i = 1, 2. Show that A (E1) = A (E2)
iff E1 ⊂ A (E2) and E2 ⊂ A (E1) . Similarly show, σ (E1) = σ (E2) iff E1 ⊂ σ (E2)
and E2 ⊂ σ (E1) . Give a simple example where A (E1) = A (E2) while E1 6= E2.

In this course we will often be interested in the Borel σ – algebra on a
topological space.

Definition 3.16 (Borel σ – field). The Borel σ – algebra, B = BR =
B (R) , on R is the smallest σ -field containing all of the open subsets of R.
More generally if (X, τ) is a topological space, the Borel σ – algebra on X is
BX := σ (τ) – i.e. the smallest σ – algebra containing all open (closed) subsets
of X.
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Exercise 3.7. Verify the Borel σ – algebra, BR, is generated by any of the
following collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Hint: make use of Exercise 3.6.

We will postpone a more in depth study of σ – algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 3.17. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F .

Example 3.18. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.

Example 3.19. Suppose that X is a set and that A ⊂ 2X is a finite algebra, i.e.
# (A) <∞. For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest set
in A which contains x.

Now suppose that y ∈ X. If x ∈ Ay then Ax ⊂ Ay so that Ax ∩ Ay = Ax.
On the other hand, if x /∈ Ay then x ∈ Ax \Ay and therefore Ax ⊂ Ax \Ay, i.e.
Ax ∩ Ay = ∅. Therefore we have shown, either Ax ∩ Ay = ∅ or Ax ∩ Ay = Ax.
By reversing the roles of x and y it also follows that either Ay ∩ Ax = ∅ or
Ay ∩Ax = Ay. Therefore we may conclude, either Ax = Ay or Ax ∩Ay = ∅ for
all x, y ∈ X.

Let us now define {Bi}ki=1 to be an enumeration of {Ax}x∈X . It is a straight-
forward to conclude that

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

For example observe that for any A ∈ A, we have A = ∪x∈AAx = ∪i∈ΛBi where
Λ := {i : Bi ⊂ A} .

Proposition 3.20. Suppose that B ⊂ 2X is a σ – algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂ B and every element B ∈ B is of the form

B = ∪{A ∈ F : A ⊂ B} . (3.1)

In particular B is actually a finite set and # (B) = 2n for some n ∈ N.

Proof. We proceed as in Example 3.19. For each x ∈ X let

Ax = ∩{A ∈ B : x ∈ A} ∈ B,

wherein we have used B is a countable σ – algebra to insure Ax ∈ B. Just as
above either Ax ∩Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ B is a
(necessarily countable) partition of X for which Eq. (3.1) holds for all B ∈ B.

Enumerate the elements of F as F = {Pn}Nn=1 where N ∈ N or N = ∞. If
N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ B

is bijective and therefore, by Lemma 3.8, B is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 3.21 (Countable/Co-countable σ – Field). Let X = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A is
countable or Ac is countable. Similarly, A (E) consists of those subsets, A ⊂ R,
such that A is finite or Ac is finite. More generally we have the following exercise.

Exercise 3.8. Let X be a set, I be an infinite index set, and E = {Ai}i∈I be a
partition of X. Prove the algebra, A (E) , and that σ – algebra, σ (E) , generated
by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) <∞ or # (Λc) <∞}

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable}

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.
In particular if I is countable, then

σ(E) = {∪i∈ΛAi : Λ ⊂ I} .

Proposition 3.22. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (3.2)
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Proof. Let A denote the right member of Eq. (3.2). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z ∈ A be expressed as

Z =
N⋃
i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Acij ∈ Ec, we find that

Zc =
N⋂
i=1

K⋃
j=1

Bij =
K⋃

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1∩B2j2∩· · ·∩BNjN is a finite intersection
of sets from Ec.

Remark 3.23. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =
∞⋃
i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞⋃

j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac`,j`

)

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe σ(E), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition 3.20.

Exercise 3.9. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

Solution to Exercise (3.9). In this case τc is the collection of sets which are
either open or closed. Now if Vi ⊂o X and Fj @ X for each j, then (∩ni=1Vi) ∩(
∩mj=1Fj

)
is simply a set of the form V ∩F where V ⊂o X and F @ X. Therefore

the result is an immediate consequence of Proposition 3.22.

Definition 3.24. A set S ⊂ 2X is said to be an semialgebra or elementary
class provided that

• ∅ ∈ S
• S is closed under finite intersections
• if E ∈ S, then Ec is a finite disjoint union of sets from S. (In particular

X = ∅c is a finite disjoint union of elements from S.)

Proposition 3.25. Suppose S ⊂ 2X is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition 3.22, it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S ⊂ A ⊂ A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that ∅, X ∈ A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that Ai =
∑
F∈Λi F ∈ A

where, for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets from S. Then

n⋂
i=1

Ai =
n⋂
i=1

(∑
F∈Λi

F

)
=

⋃
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (A is closed under complementation.) IfA =
∑
F∈Λ F with Λ being a finite

collection of disjoint sets from S, then Ac =
⋂
F∈Λ F

c. Since, by assumption,
F c ∈ A for all F ∈ Λ ⊂ S and A is closed under finite intersections by step 1.,
it follows that Ac ∈ A.

Example 3.26. Let X = R, then

S :=
{

(a, b] ∩ R : a, b ∈ R̄
}

= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is a semi-field. The algebra, A(S), generated by S consists of finite disjoint
unions of sets from S. For example,

A = (0, π] ∪ (2π, 7] ∪ (11,∞) ∈ A (S) .

Exercise 3.10. Let A ⊂ 2X and B ⊂ 2Y be semi-fields. Show the collection

S := {A×B : A ∈ A and B ∈ B}

is also a semi-field.
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Solution to Exercise (3.10). Clearly ∅ = ∅ × ∅ ∈ E = A × B. Let Ai ∈ A
and Bi ∈ B, then

∩ni=1(Ai ×Bi) = (∩ni=1Ai)× (∩ni=1Bi) ∈ A× B

showing E is closed under finite intersections. For A×B ∈ E ,

(A×B)c = (Ac ×Bc)
∑

(Ac ×B)
∑

(A×Bc)

and by assumption Ac =
∑n
i=1Ai with Ai ∈ A and Bc =

∑m
j=1Bi with Bj ∈ B.

Therefore

Ac ×Bc =

(
n∑
i=1

Ai

)
×

 m∑
j=1

Bi

 =
n,m∑

i=1,j=1

Ai ×Bi,

Ac ×B =
n∑
i=1

Ai ×B, and A×Bc =
m∑
j=1

A×Bi

showing (A×B)c may be written as finite disjoint union of elements from S.



4

Finitely Additive Measures / Integration

Definition 4.1. Suppose that E ⊂ 2X is a collection of subsets of X and µ :
E → [0,∞] is a function. Then

1. µ is additive or finitely additive on E if

µ(E) =
n∑
i=1

µ(Ei) (4.1)

whenever E =
∑n
i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n <∞.

2. µ is σ – additive (or countable additive) on E if Eq. (4.1) holds even
when n =∞.

3. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑
i=1

µ(Ei)

whenever E =
⋃n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).

4. µ is a finitely additive measure if E = A is an algebra, µ (∅) = 0, and µ
is finitely additive on A.

5. µ is a premeasure if µ is a finitely additive measure which is σ – additive
on A.

6. µ is a measure if µ is a premeasure on a σ – algebra. Furthermore if
µ (X) = 1, we say µ is a probability measure on X.

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose µ is a finitely additive measure on an algebra, A ⊂ 2X , A,B ∈ A with
A ⊂ Band {Aj}nj=1 ⊂ A, then :

1. (µ is monotone) µ (A) ≤ µ(B) if A ⊂ B.
2. For A,B ∈ A, the following strong additivity formula holds;

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (4.2)

3. (µ is finitely subbadditive) µ(∪nj=1Aj) ≤
∑n
j=1 µ(Aj).

4. µ is sub-additive on A iff

µ(A) ≤
∞∑
i=1

µ(Ai) for A =
∞∑
i=1

Ai (4.3)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets.

5. (µ is countably superadditive) If A =
∑∞
i=1Ai with Ai, A ∈ A, then

µ

( ∞∑
i=1

Ai

)
≥
∞∑
i=1

µ (Ai) . (4.4)

(See Remark 4.9 for example where this inequality is strict.)
6. A finitely additive measure, µ, is a premeasure iff µ is subadditive.

Proof.

1. Since B is the disjoint union of A and (B \ A) and B \ A = B ∩ Ac ∈ A it
follows that

µ(B) = µ(A) + µ(B \A) ≥ µ(A).
2. Since

A ∪B = [A \ (A ∩B)]
∑

[B \ (A ∩B)]
∑

A ∩B,

µ (A ∪B) = µ (A ∪B \ (A ∩B)) + µ (A ∩B)
= µ (A \ (A ∩B)) + µ (B \ (A ∩B)) + µ (A ∩B) .

Adding µ (A ∩B) to both sides of this equation proves Eq. (4.2).
3. Let Ẽj = Ej \ (E1 ∪ · · · ∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and
E = ∪nj=1Ẽj . Since Ẽj ⊂ Ej it follows from the monotonicity of µ that

µ(E) =
n∑
j=1

µ(Ẽj) ≤
n∑
j=1

µ(Ej).

4. If A =
⋃∞
i=1Bi with A ∈ A and Bi ∈ A, then A =

∑∞
i=1Ai where Ai :=

Bi \ (B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of
µ and Eq. (4.3)

µ(A) ≤
∞∑
i=1

µ(Ai) ≤
∞∑
i=1

µ(Bi).

5. Suppose that A =
∑∞
i=1Ai with Ai, A ∈ A, then

∑n
i=1Ai ⊂ A for all n

and so by the monotonicity and finite additivity of µ,
∑n
i=1 µ (Ai) ≤ µ (A) .

Letting n→∞ in this equation shows µ is superadditive.
6. This is a combination of items 5. and 6.
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4.1 Examples of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Example 4.3. Suppose that Ω is a finite set, B := 2Ω , and p : Ω → [0, 1] is a
function such that ∑

ω∈Ω
p (ω) = 1.

Then
P (A) :=

∑
ω∈A

p (ω) for all A ⊂ Ω

defines a measure on 2Ω .

Example 4.4. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =
{

1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 4.5. Suppose B ⊂ 2X is a σ algebra, µ is a measure on B, and λ > 0,
then λ · µ is also a measure on B. Moreover, if J is an index set and {µj}j∈J
are all measures on B, then µ =

∑∞
j=1 µj , i.e.

µ(A) :=
∞∑
j=1

µj(A) for all A ∈ B,

defines another measure on B. To prove this we must show that µ is countably
additive. Suppose that A =

∑∞
i=1Ai with Ai ∈ B, then (using Tonelli for sums,

Proposition 1.7),

µ(A) =
∞∑
j=1

µj(A) =
∞∑
j=1

∞∑
i=1

µj(Ai)

=
∞∑
i=1

∞∑
j=1

µj(Ai) =
∞∑
i=1

µ(Ai).

Example 4.6. Suppose that X is a countable set and λ : X → [0,∞] is a func-
tion. Let X = {xn}∞n=1 be an enumeration of X and then we may define a
measure µ on 2X by,

µ = µλ :=
∞∑
n=1

λ(xn)δxn .

We will now show this measure is independent of our choice of enumeration of
X by showing,

µ(A) =
∑
x∈A

λ(x) := sup
Λ⊂⊂A

∑
x∈Λ

λ (x) ∀ A ⊂ X. (4.5)

Here we are using the notation, Λ ⊂⊂ A to indicate that Λ is a finite subset of
A.

To verify Eq. (4.5), let M := supΛ⊂⊂A
∑
x∈Λ λ (x) and for each N ∈ N let

ΛN := {xn : xn ∈ A and 1 ≤ n ≤ N} .

Then by definition of µ,

µ (A) =
∞∑
n=1

λ(xn)δxn (A) = lim
N→∞

N∑
n=1

λ(xn)1xn∈A

= lim
N→∞

∑
x∈ΛN

λ (x) ≤M.

On the other hand if Λ ⊂⊂ A, then∑
x∈Λ

λ(x) =
∑

n: xn∈Λ
λ(xn) = µ (Λ) ≤ µ (A)

from which it follows that M ≤ µ (A) . This shows that µ is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and λ : X → [0,∞] is any function. In this setting we simply may define
µ : 2X → [0,∞] using Eq. (4.5). We leave it to the reader to verify that this is
indeed a measure on 2X .

We will construct many more measure in Chapter 5 below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 4.7 (Construction of Finitely Additive Measures). Sup-
pose S ⊂ 2X is a semi-algebra (see Definition 3.24) and A = A(S) is the
algebra generated by S. Then every additive function µ : S → [0,∞] such that
µ (∅) = 0 extends uniquely to an additive measure (which we still denote by µ)
on A.

Proof. Since (by Proposition 3.25) every element A ∈ A is of the form
A =

∑
iEi for a finite collection of Ei ∈ S, it is clear that if µ extends to a

measure then the extension is unique and must be given by
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µ(A) =
∑
i

µ(Ei). (4.6)

To prove existence, the main point is to show that µ(A) in Eq. (4.6) is well
defined; i.e. if we also have A =

∑
j Fj with Fj ∈ S, then we must show∑

i

µ(Ei) =
∑
j

µ(Fj). (4.7)

But Ei =
∑
j (Ei ∩ Fj) and the additivity of µ on S implies µ(Ei) =

∑
j µ(Ei∩

Fj) and hence ∑
i

µ(Ei) =
∑
i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, ∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (4.7) holds. It is
now easy to verify that µ extended to A as in Eq. (4.6) is an additive measure
on A.

Proposition 4.8. Let X = R, S be the semi-algebra,

S = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (4.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition 3.25. To each finitely additive probability measures µ :
A → [0,∞], there is a unique increasing function F : R̄→ [0, 1] such that
F (−∞) = 0, F (∞) = 1 and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (4.9)

Conversely, given an increasing function F : R̄→ [0, 1] such that F (−∞) = 0,
F (∞) = 1 there is a unique finitely additive measure µ = µF on A such that
the relation in Eq. (4.9) holds. (Eventually we will only be interested in the case
where F (−∞) = lima↓−∞ F (a) and F (∞) = limb↑∞ F (b) .)

Proof. Given a finitely additive probability measure µ, let

F (x) := µ ((−∞, x] ∩ R) for all x ∈ R̄.

Then F (∞) = 1, F (−∞) = 0 and for b > a,

F (b)− F (a) = µ ((−∞, b] ∩ R)− µ ((−∞, a]) = µ ((a, b] ∩ R) .

Conversely, suppose F : R̄→ [0, 1] as in the statement of the theorem is
given. Define µ on S using the formula in Eq. (4.9). The argument will be
completed by showing µ is additive on S and hence, by Proposition 4.7, has a
unique extension to a finitely additive measure on A. Suppose that

(a, b] =
n∑
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b] ∩ R) = F (b)− F (a) =
n∑
i=1

[F (bi)− F (ai)] =
n∑
i=1

µ((ai, bi] ∩ R).

Remark 4.9. Suppose that F : R̄→ R̄ is any non-decreasing function such that
F (R) ⊂ R. Then the same methods used in the proof of Proposition 4.8 shows
that there exists a unique finitely additive measure, µ = µF , on A = A (S) such
that Eq. (4.9) holds. If F (∞) > limb↑∞ F (b) and Ai = (i, i+ 1] for i ∈ N, then

∞∑
i=1

µF (Ai) =
∞∑
i=1

(F (i+ 1)− F (i)) = lim
N→∞

N∑
i=1

(F (i+ 1)− F (i))

= lim
N→∞

(F (N + 1)− F (1)) < F (∞)− F (1) = µF (∪∞i=1Ai) .

This shows that strict inequality can hold in Eq. (4.4) and that µF is not
a premeasure. Similarly one shows µF is not a premeasure if F (−∞) <
lima↓−∞ F (a) or if F is not right continuous at some point a ∈ R. Indeed,
in the latter case consider

(a, a+ 1] =
∞∑
n=1

(a+
1

n+ 1
, a+

1
n

].

Working as above we find,

∞∑
n=1

µF

(
(a+

1
n+ 1

, a+
1
n

]
)

= F (a+ 1)− F (a+)

while µF ((a, a+ 1]) = F (a+ 1)−F (a) . We will eventually show in Chapter 5
below that µF extends uniquely to a σ – additive measure on BR whenever F
is increasing, right continuous, and F (±∞) = limx→±∞ F (x) .
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Before constructing σ – additive measures (see Chapter 5 below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are allowed to integrate.

4.2 Simple Random Variables

Definition 4.10 (Simple random variables). A function, f : Ω → Y is said
to be simple if f (Ω) ⊂ Y is a finite set. If A ⊂ 2Ω is an algebra, we say that a
simple function f : Ω → Y is measurable if {f = y} := f−1 ({y}) ∈ A for all
y ∈ Y. A measurable simple function, f : Ω → C, is called a simple random
variable relative to A.

Notation 4.11 Given an algebra, A ⊂ 2Ω , let S(A) denote the collection of
simple random variables from Ω to C. For example if A ∈ A, then 1A ∈ S (A)
is a measurable simple function.

Lemma 4.12. Let A ⊂ 2Ω be an algebra, then;

1. S (A) is a sub-algebra of all functions from Ω to C.
2. f : Ω → C, is a A – simple random variable iff there exists αi ∈ C and
Ai ∈ A for 1 ≤ i ≤ n for some n ∈ N such that

f =
n∑
i=1

αi1Ai . (4.10)

3. For any function, F : C→ C, F ◦f ∈ S (A) for all f ∈ S (A) . In particular,
|f | ∈ S (A) if f ∈ S (A) .

Proof. 1. Let us observe that 1Ω = 1 and 1∅ = 0 are in S (A) . If f, g ∈ S (A)
and c ∈ C\ {0} , then

{f + cg = λ} =
⋃

a,b∈C:a+cb=λ

({f = a} ∩ {g = b}) ∈ A (4.11)

and
{f · g = λ} =

⋃
a,b∈C:a·b=λ

({f = a} ∩ {g = b}) ∈ A (4.12)

from which it follows that f + cg and f · g are back in S (A) .
2. Since S (A) is an algebra, every f of the form in Eq. (4.10) is in S (A) .

Conversely if f ∈ S (A) it follows by definition that f =
∑
α∈f(Ω) α1{f=α}

which is of the form in Eq. (4.10).

3. If F : C→ C, then

F ◦ f =
∑

α∈f(Ω)

F (α) · 1{f=α} ∈ S (A) .

Exercise 4.1 (A – measurable simple functions). As in Example 3.19, let
A ⊂ 2X be a finite algebra and {B1, . . . , Bk} be the partition of X associated to
A. Show that a function, f : X → C, is an A – simple function iff f is constant
on Bi for each i. Thus any A – simple function is of the form,

f =
k∑
i=1

αi1Bi (4.13)

for some αi ∈ C.

Corollary 4.13. Suppose that Λ is a finite set and Z : X → Λ is a function.
Let

A := A (Z) := Z−1
(
2Λ
)

:=
{
Z−1 (E) : E ⊂ Λ

}
.

Then A is an algebra and f : X → C is an A – simple function iff f = F ◦ Z
for some function F : Λ→ C.

Proof. For λ ∈ Λ, let

Aλ := {Z = λ} = {x ∈ X : Z (x) = λ} .

The {Aλ}λ∈Λ is the partition of X determined by A. Therefore f is an A –
simple function iff f |Aλ is constant for each λ ∈ Λ. Let us denote this constant
value by F (λ) . As Z = λ on Aλ, F : Λ→ C is a function such that f = F ◦Z.

Conversely if F : Λ→ C is a function and f = F ◦Z, then f = F (λ) on Aλ,
i.e. f is an A – simple function.

4.2.1 The algebraic structure of simple functions*

Definition 4.14. A simple function algebra, S, is a subalgebra1 of the
bounded complex functions on X such that 1 ∈ S and each function in S is
a simple function. If S is a simple function algebra, let

A (S) := {A ⊂ X : 1A ∈ S} .

(It is easily checked that A (S) is a sub-algebra of 2X .)
1 To be more explicit we are assuming that S is a linear subspace of bounded functions

which is closed under pointwise multiplication.
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Lemma 4.15. Suppose that S is a simple function algebra, f ∈ S and α ∈ f (X)
– the range of f. Then {f = α} ∈ A (S) .

Proof. Let {λi}ni=0 be an enumeration of f (X) with λ0 = α. Then

g :=

[
n∏
i=1

(α− λi)

]−1 n∏
i=1

(f − λi1) ∈ S.

Moreover, we see that g = 0 on ∪ni=1 {f = λi} while g = 1 on {f = α} . So we
have shown g = 1{f=α} ∈ S and therefore that {f = α} ∈ A (S) .

Exercise 4.2. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A ∈
{

Algebras ⊂ 2X
}
→ S (A) ∈ {simple function algebras on X}

is bijective and the map, S→ A (S) , is the inverse map.

Solution to Exercise (4.2).

1. Since 0 = 1∅, 1 = 1X ∈ S, it follows that ∅ and X are in A (S) . If A ∈ A (S) ,
then 1Ac = 1 − 1A ∈ S and so Ac ∈ A (S) . Finally, if A,B ∈ A (S) then
1A∩B = 1A · 1B ∈ S and thus A ∩B ∈ A (S) .

2. If f, g ∈ S (A) and c ∈ F, then

{f + cg = λ} =
⋃

a,b∈F:a+cb=λ

({f = a} ∩ {g = b}) ∈ A

and
{f · g = λ} =

⋃
a,b∈F:a·b=λ

({f = a} ∩ {g = b}) ∈ A

from which it follows that f + cg and f · g are back in S (A) .
3. If f : Ω → C is a simple function such that 1{f=λ} ∈ S for all λ ∈ C,

then f =
∑
λ∈C λ1{f=λ} ∈ S. Conversely, by Lemma 4.15, if f ∈ S then

1{f=λ} ∈ S for all λ ∈ C. Therefore, a simple function, f : X → C is in S
iff 1{f=λ} ∈ S for all λ ∈ C. With this preparation, we are now ready to
complete the verification.
First off,

A ∈ A (S (A)) ⇐⇒ 1A ∈ S (A) ⇐⇒ A ∈ A

which shows that A (S (A)) = A. Similarly,

f ∈ S (A (S)) ⇐⇒ {f = λ} ∈ A (S) ∀ λ ∈ C
⇐⇒ 1{f=λ} ∈ S ∀ λ ∈ C
⇐⇒ f ∈ S

which shows S (A (S)) = S.

4.3 Simple Integration

Definition 4.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A ⊂ 2X . For f ∈ S (A) the integral or
expectation, E(f) = EP (f), is defined by

EP (f) =
∫
X

fdP =
∑
y∈C

yP (f = y). (4.14)

Example 4.17. Suppose that A ∈ A, then

E1A = 0 · P (Ac) + 1 · P (A) = P (A) . (4.15)

Remark 4.18. Let us recall that our intuitive notion of P (A) was given as in
Eq. (2.1) by

P (A) = lim
N→∞

1
N

∑
1A (ω (k))

where ω (k) ∈ Ω was the result of the kth “independent” experiment. If we use
this interpretation back in Eq. (4.14) we arrive at,

E(f) =
∑
y∈C

yP (f = y) =
∑
y∈C

y · lim
N→∞

1
N

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1
N

∑
y∈C

y
N∑
k=1

1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

∑
y∈C

f (ω (k)) · 1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

f (ω (k)) .

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.
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Proposition 4.19. The expectation operator, E = EP : S (A)→ C, satisfies:

1. If f ∈ S(A) and λ ∈ C, then

E(λf) = λE(f). (4.16)

2. If f, g ∈ S (A) , then
E(f + g) = E(g) + E(f). (4.17)

Items 1. and 2. say that E (·) is a linear functional on S (A) .
3. If f =

∑N
j=1 λj1Aj for some λj ∈ C and some Aj ∈ C, then

E (f) =
N∑
j=1

λjP (Aj) . (4.18)

4. E is positive, i.e. E(f) ≥ 0 for all 0 ≤ f ∈ S (A) . More generally, if
f, g ∈ S (A) and f ≤ g, then E (f) ≤ E (g) .

5. For all f ∈ S (A) ,
|Ef | ≤ E |f | . (4.19)

Proof.

1. If λ 6= 0, then

E(λf) =
∑
y∈C

y P (λf = y) =
∑
y∈C

y P (f = y/λ)

=
∑
z∈C

λz P (f = z) = λE(f).

The case λ = 0 is trivial.
2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), then

E(f + g) =
∑
z∈C

z P (f + g = z)

=
∑
z∈C

z P

( ∑
a+b=z

{f = a, g = b}

)
=
∑
z∈C

z
∑
a+b=z

P ({f = a, g = b})

=
∑
z∈C

∑
a+b=z

(a+ b)P ({f = a, g = b})

=
∑
a,b

(a+ b)P ({f = a, g = b}) .

But ∑
a,b

aP ({f = a, g = b}) =
∑
a

a
∑
b

P ({f = a, g = b})

=
∑
a

aP (∪b {f = a, g = b})

=
∑
a

aP ({f = a}) = Ef

and similarly, ∑
a,b

bP ({f = a, g = b}) = Eg.

Equation (4.17) is now a consequence of the last three displayed equations.
3. If f =

∑N
j=1 λj1Aj , then

Ef = E

 N∑
j=1

λj1Aj

 =
N∑
j=1

λjE1Aj =
N∑
j=1

λjP (Aj) .

4. If f ≥ 0 then
E(f) =

∑
a≥0

aP (f = a) ≥ 0

and if f ≤ g, then g − f ≥ 0 so that

E (g)− E (f) = E (g − f) ≥ 0.

5. By the triangle inequality,

|Ef | =

∣∣∣∣∣∑
λ∈C

λP (f = λ)

∣∣∣∣∣ ≤∑
λ∈C
|λ|P (f = λ) = E |f | ,

wherein the last equality we have used Eq. (4.18) and the fact that |f | =∑
λ∈C |λ| 1f=λ.

Remark 4.20. If Ω is a finite set and A = 2Ω , then

f (·) =
∑
ω∈Ω

f (ω) 1{ω}

and hence
EP f =

∑
ω∈Ω

f (ω)P ({ω}) .
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Remark 4.21. All of the results in Proposition 4.19 and Remark 4.20 remain
valid when P is replaced by a finite measure, µ : A → [0,∞), i.e. it is enough
to assume µ (X) <∞.

Exercise 4.3. Let P is a finitely additive probability measure on an algebra
A ⊂ 2X and for A,B ∈ A let ρ (A,B) := P (A∆B) where A∆B = (A \B) ∪
(B \A) . Show;

1. ρ (A,B) = E |1A − 1B | and then use this (or not) to show
2. ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈ A.

Remark: it is now easy to see that ρ : A×A → [0, 1] satisfies the axioms of
a metric except for the condition that ρ (A,B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.22 (Chebyshev’s Inequality). Suppose that f ∈ S(A), ε > 0, and
p > 0, then

1|f |≥ε ≤
|f |p

εp
1|f |≥ε ≤ ε−p |f |

p

and therefore, see item 4. of Proposition 4.19,

P ({|f | ≥ ε}) = E
[
1|f |≥ε

]
≤ E

[
|f |p

εp
1|f |≥ε

]
≤ ε−pE |f |p . (4.20)

Observe that
|f |p =

∑
λ∈C
|λ|p 1{f=λ}

is a simple random variable and {|f | ≥ ε} =
∑
|λ|≥ε {f = λ} ∈ A as well.

Therefore, |f |
p

εp 1|f |≥ε is still a simple random variable.

Lemma 4.23 (Inclusion Exclusion Formula). If An ∈ A for n =
1, 2, . . . ,M such that µ

(
∪Mn=1An

)
<∞, then

µ
(
∪Mn=1An

)
=

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (4.21)

Proof. This may be proved inductively from Eq. (4.2). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := ∪Mn=1An.

Since Ac =
(
∪Mn=1An

)c = ∩Mn=1A
c
n, we have

1− 1A = 1Ac =
M∏
n=1

1Acn =
M∏
n=1

(1− 1An)

= 1 +
M∑
k=1

(−1)k
∑

1≤n1<n2<···<nk≤M

1An1
· · · 1Ank

= 1 +
M∑
k=1

(−1)k
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank

from which it follows that

1∪Mn=1An
= 1A =

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank . (4.22)

Integrating this identity with respect to µ gives Eq. (4.21).

Remark 4.24. The following identity holds even when µ
(
∪Mn=1An

)
=∞,

µ
(
∪Mn=1An

)
+

M∑
k=2 & k even

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank)

=
M∑

k=1 & k odd

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (4.23)

This can be proved by moving every term with a negative sign on the right
side of Eq. (4.22) to the left side and then integrate the resulting identity.
Alternatively, Eq. (4.23) follows directly from Eq. (4.21) if µ

(
∪Mn=1An

)
< ∞

and when µ
(
∪Mn=1An

)
=∞ one easily verifies that both sides of Eq. (4.23) are

infinite.

To better understand Eq. (4.22), consider the case M = 3 where,

1− 1A = (1− 1A1) (1− 1A2) (1− 1A3)
= 1− (1A1 + 1A2 + 1A3)
+ 1A11A2 + 1A11A3 + 1A21A3 − 1A11A21A3

so that

1A1∪A2∪A3 = 1A1 + 1A2 + 1A3 − (1A1∩A2 + 1A1∩A3 + 1A2∩A3) + 1A1∩A2∩A3

Here is an alternate proof of Eq. (4.22). Let ω ∈ Ω and by relabeling the
sets {An} if necessary, we may assume that ω ∈ A1 ∩ · · · ∩Am and ω /∈ Am+1 ∪
· · · ∪AM for some 0 ≤ m ≤M. (When m = 0, both sides of Eq. (4.22) are zero
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and so we will only consider the case where 1 ≤ m ≤ M.) With this notation
we have

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank (ω)

=
m∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤m

1An1∩···∩Ank (ω)

=
m∑
k=1

(−1)k+1

(
m

k

)

= 1−
m∑
k=0

(−1)k (1)n−k
(
m

k

)
= 1− (1− 1)m = 1.

This verifies Eq. (4.22) since 1∪Mn=1An
(ω) = 1.

Example 4.25 (Coincidences). Let Ω be the set of permutations (think of card
shuffling), ω : {1, 2, . . . , n} → {1, 2, . . . , n} , and define P (A) := #(A)

n! to be the
uniform distribution (Haar measure) on Ω. We wish to compute the probability
of the event, B, that a random permutation fixes some index i. To do this, let
Ai := {ω ∈ Ω : ω (i) = i} and observe that B = ∪ni=1Ai. So by the Inclusion
Exclusion Formula, we have

P (B) =
n∑
k=1

(−1)k+1
∑

1≤i1<i2<i3<···<ik≤n

P (Ai1 ∩ · · · ∩Aik) .

Since

P (Ai1 ∩ · · · ∩Aik) = P ({ω ∈ Ω : ω (i1) = i1, . . . , ω (ik) = ik})

=
(n− k)!
n!

and

# {1 ≤ i1 < i2 < i3 < · · · < ik ≤ n} =
(
n

k

)
,

we find

P (B) =
n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!
n!

=
n∑
k=1

(−1)k+1 1
k!
. (4.24)

For large n this gives,

P (B) = −
n∑
k=1

1
k!

(−1)k ∼= 1−
∞∑
k=0

1
k!

(−1)k = 1− e−1 ∼= 0.632.

Example 4.26 (Expected number of coincidences). Continue the notation in Ex-
ample 4.25. We now wish to compute the expected number of fixed points of
a random permutation, ω, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi = 1Ai

and observe that

N (ω) =
n∑
i=1

Xi (ω) =
n∑
i=1

1ω(i)=i = # {i : ω (i) = i} .

denote the number of fixed points of ω. Hence we have

EN =
n∑
i=1

EXi =
n∑
i=1

P (Ai) =
n∑
i=1

(n− 1)!
n!

= 1.

Let us check the above formulas when n = 3. In this case we have

ω N (ω)
1 2 3 3
1 3 2 1
2 1 3 1
2 3 1 0
3 1 2 0
3 2 1 1

and so
P (∃ a fixed point) =

4
6

=
2
3
∼= 0.67 ∼= 0.632

while
3∑
k=1

(−1)k+1 1
k!

= 1− 1
2

+
1
6

=
2
3

and
EN =

1
6

(3 + 1 + 1 + 0 + 0 + 1) = 1.

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (Ω,A, P ) is a finitely additive probability space, so P (Ω) = 1,
2. Ai ∈ A for i = 1, 2, . . . , n,
3. N (ω) :=

∑n
i=1 1Ai (ω) = # {i : ω ∈ Ai} , and
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4. {Sk}nk=1 are given by

Sk :=
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

=
∑

Λ⊂{1,2,...,n}3|Λ|=k

P (∩i∈ΛAi) .

Exercise 4.4. For 1 ≤ k ≤ n, show;

1. (as functions on Ω) that(
N

k

)
=

∑
Λ⊂{1,2,...,n}3|Λ|=k

1∩i∈ΛAi , (4.25)

where by definition (
m

k

)
=


0 if k > m
m!

k!·(m−k)! if 1 ≤ k ≤ m
1 if k = 0

. (4.26)

2. Conclude from Eq. (4.25) that for all z ∈ C,

(1 + z)N = 1 +
n∑
k=1

zk
∑

1≤i1<i2<···<ik≤n

1Ai1∩···∩Aik (4.27)

provided (1 + z)0 = 1 even when z = −1.
3. Conclude from Eq. (4.25) that Sk = EP

(
N
k

)
.

Exercise 4.5. Taking expectations of Eq. (4.27) implies,

E
[
(1 + z)N

]
= 1 +

n∑
k=1

Skz
k. (4.28)

Show that setting z = −1 in Eq. (4.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out
E
[
(1 + z)N

]
explicitly.

Exercise 4.6. Let 1 ≤ m ≤ n. In this problem you are asked to compute the
probability that there are exactly m – coincidences. Namely you should show,

P (N = m) =
n∑

k=m

(−1)k−m
(
k

m

)
Sk

=
n∑

k=m

(−1)k−m
(
k

m

) ∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

Hint: differentiate Eq. (4.28) m times with respect to z and then evaluate the
result at z = −1. In order to do this you will find it useful to derive formulas
for;

dm

dzm
|z=−1 (1 + z)n and

dm

dzm
|z=−1z

k.

Example 4.27. Let us again go back to Example 4.26 where we computed,

Sk =
(
n

k

)
(n− k)!
n!

=
1
k!
.

Therefore it follows from Exercise 4.6 that

P (∃ exactly m fixed points) = P (N = m)

=
n∑

k=m

(−1)k−m
(
k

m

)
1
k!

=
1
m!

n∑
k=m

(−1)k−m
1

(k −m)!
.

So if n is much bigger than m we may conclude that

P (∃ exactly m fixed points) ∼=
1
m!
e−1.

Let us check our results are consistent with Eq. (4.24);

P (∃ a fixed point) =
n∑

m=1

P (N = m)

=
n∑

m=1

n∑
k=m

(−1)k−m
(
k

m

)
1
k!

=
∑

1≤m≤k≤n

(−1)k−m
(
k

m

)
1
k!

=
n∑
k=1

k∑
m=1

(−1)k−m
(
k

m

)
1
k!

=
n∑
k=1

[
k∑

m=0

(−1)k−m
(
k

m

)
− (−1)k

]
1
k!

= −
n∑
k=1

(−1)k
1
k!

wherein we have used,
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k∑
m=0

(−1)k−m
(
k

m

)
= (1− 1)k = 0.

4.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma 4.23. In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 4.28. Let n ∈ N0 and 0 ≤ k ≤ n, then

k∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1
k

)
1n>0 + 1n=0. (4.29)

Proof. The case n = 0 is trivial. We give two proofs for when n ∈ N.
First proof. Just use induction on k. When k = 0, Eq. (4.29) holds since

1 = 1. The induction step is as follows,

k+1∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1
k

)
+
(

n

k + 1

)

=
(−1)k+1

(k + 1)!
[n (n− 1) . . . (n− k)− (k + 1) (n− 1) . . . (n− k)]

=
(−1)k+1

(k + 1)!
[(n− 1) . . . (n− k) (n− (k + 1))] = (−1)k+1

(
n− 1
k + 1

)
.

Second proof. Let X = {1, 2, . . . , n} and observe that

mk :=
k∑
l=0

(−1)l
(
n

l

)
=

k∑
l=0

(−1)l ·#
(
Λ ∈ 2X : # (Λ) = l

)
=

∑
Λ∈2X : #(Λ)≤k

(−1)#(Λ) (4.30)

Define T : 2X → 2X by

T (S) =
{
S ∪ {1} if 1 /∈ S
S \ {1} if 1 ∈ S .

Observe that T is a bijection of 2X such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let

Γk :=
{
Λ ∈ 2X : # (Λ) ≤ k and 1 ∈ Λ if # (Λ) = k

}
,

then T (Γk) = Γk for all 1 ≤ k ≤ n. Since∑
Λ∈Γk

(−1)#(Λ) =
∑
Λ∈Γk

(−1)#(T (Λ)) =
∑
Λ∈Γk

− (−1)#(Λ)

we see that
∑
Λ∈Γk (−1)#(Λ) = 0. Using this observation with Eq. (4.30) implies

mk =
∑
Λ∈Γk

(−1)#(Λ) +
∑

#(Λ)=k & 1/∈Λ

(−1)#(Λ) = 0 + (−1)k
(
n− 1
k

)
.

Corollary 4.29 (Bonferroni Inequalitites). Let µ : A → [0, µ (X)] be a
finitely additive finite measure on A ⊂ 2X , An ∈ A for n = 1, 2, . . . ,M, N :=∑M
n=1 1An , and

Sk :=
∑

1≤i1<···<ik≤M

µ (Ai1 ∩ · · · ∩Aik) = Eµ
[(
N

k

)]
.

Then for 1 ≤ k ≤M,

µ
(
∪Mn=1An

)
=

k∑
l=1

(−1)l+1
Sl + (−1)k Eµ

[(
N − 1
k

)]
. (4.31)

This leads to the Bonferroni inequalities;

µ
(
∪Mn=1An

)
≤

k∑
l=1

(−1)l+1
Sl if k is odd

and

µ
(
∪Mn=1An

)
≥

k∑
l=1

(−1)l+1
Sl if k is even.

Proof. By Lemma 4.28,

k∑
l=0

(−1)l
(
N

l

)
= (−1)k

(
N − 1
k

)
1N>0 + 1N=0.

Therefore integrating this equation with respect to µ gives,

µ (X) +
k∑
l=1

(−1)l Sl = µ (N = 0) + (−1)k Eµ
(
N − 1
k

)
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and therefore,

µ
(
∪Mn=1An

)
= µ (N > 0) = µ (X)− µ (N = 0)

= −
k∑
l=1

(−1)l Sl + (−1)k Eµ
(
N − 1
k

)
.

The Bonferroni inequalities are a simple consequence of Eq. (4.31) and the fact
that (

N − 1
k

)
≥ 0 =⇒ Eµ

(
N − 1
k

)
≥ 0.

4.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A ⊂ 2X be an algebra of sets, and P := µ :
A → [0,∞) be a finitely additive measure with µ (X) <∞. As above let

Eµf :=
∫
X

fdµ :=
∑
λ∈C

λµ(f = λ) ∀ f ∈ S (A) . (4.32)

Notation 4.30 For any function, f : X → C let ‖f‖u := supx∈X |f (x)| .
Further, let S̄ := S (A) denote those functions, f : X → C such that there exists
fn ∈ S (A) such that limn→∞ ‖f − fn‖u = 0.

Exercise 4.7. Prove the following statements.

1. For all f ∈ S (A) ,
|Eµf | ≤ µ (X) ‖f‖u . (4.33)

2. If f ∈ S̄ and fn ∈ S := S (A) such that limn→∞ ‖f − fn‖u = 0, show
limn→∞ Eµfn exists. Also show that defining Eµf := limn→∞ Eµfn is well
defined, i.e. you must show that limn→∞ Eµfn = limn→∞ Eµgn if gn ∈ S
such that limn→∞ ‖f − gn‖u = 0.

3. Show Eµ : S̄→ C is still linear and still satisfies Eq. (4.33).
4. Show |f | ∈ S̄ if f ∈ S̄ and that Eq. (4.19) is still valid, i.e. |Eµf | ≤ Eµ |f |

for all f ∈ S̄.

Let us now specialize the above results to the case where X = [0, T ] for
some T <∞. Let S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 4.31 (Riemann Stieljtes integral). Let F : [0, T ] → R be an
increasing function, then;

1. there exists a unique finitely additive measure, µF , on A := A (S) such that
µF ((a, b]) = F (b)− F (a) for all 0 ≤ a ≤ b ≤ T and µF ({0}) = 0. (In fact
one could allow for µF ({0}) = λ for any λ ≥ 0, but we would then have to
write µF,λ rather than µF .)

2. Show C ([0, 1] ,C) ⊂ S (A). More precisely, suppose π :=
{0 = t0 < t1 < · · · < tn = T} is a partition of [0, T ] and c = (c1, . . . , cn) ∈
[0, T ]n with ti−1 ≤ ci ≤ ti for each i. Then for f ∈ C ([0, 1] ,C) , let

fπ,c := f (0) 1{0} +
n∑
i=1

f (ci) 1(ti−1,ti]. (4.34)

Show that ‖f − fπ,c‖u is small provided, |π| := max {|ti − ti−1| : i = 1, 2, . . . , n}
is small.

3. Using the above results, show∫
[0,T ]

fdµF = lim
|π|→0

n∑
i=1

f (ci) (F (ti)− F (ti−1))

where the ci may be chosen arbitrarily subject to the constraint that ti−1 ≤
ci ≤ ti.

It is customary to write
∫ T

0
fdF for

∫
[0,T ]

fdµF . This integral satisfies the
estimates,∣∣∣∣∣

∫
[0,T ]

fdµF

∣∣∣∣∣ ≤
∫

[0,T ]

|f | dµF ≤ ‖f‖u (F (T )− F (0)) ∀ f ∈ S (A).

When F (t) = t, ∫ T

0

fdF =
∫ T

0

f (t) dt,

is the usual Riemann integral.

Exercise 4.8. Let a ∈ (0, T ) , λ > 0, and

G (x) = λ · 1x≥a =
{
λ if x ≥ a
0 if x < a

.

1. Explicitly compute
∫

[0,T ]
fdµG for all f ∈ C ([0, 1] ,C) .

2. If F (x) = x + λ · 1x≥a describe
∫

[0,T ]
fdµF for all f ∈ C ([0, 1] ,C) . Hint:

if F (x) = G (x) + H (x) where G and H are two increasing functions on
[0, T ] , show ∫

[0,T ]

fdµF =
∫

[0,T ]

fdµG +
∫

[0,T ]

fdµH .
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Exercise 4.9. Suppose that F,G : [0, T ]→ R are two increasing functions such
that F (0) = G (0) , F (T ) = G (T ) , and F (x) 6= G (x) for at most countably
many points, x ∈ (0, T ) . Show∫

[0,T ]

fdµF =
∫

[0,T ]

fdµG for all f ∈ C ([0, 1] ,C) . (4.35)

Note well, given F (0) = G (0) , µF = µG on A iff F = G.

One of the points of the previous exercise is to show that Eq. (4.35) holds
when G (x) := F (x+) – the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps ,see
Remark ??. So if we only want to integrate continuous functions, we may always
assume that F : [0, T ]→ R is right continuous.

4.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {αk}∞k=1 ⊂ Λ1 and
{βk}∞k=1 ⊂ Λ2 where Λ1 and Λ2 are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent experiments, suppose that one experiment
is the outcome of spinning a roulette wheel and the second is the outcome of
rolling a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice – one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 4.32 (Heuristic). Suppose that {αk}∞k=1 ⊂ Λ1 and {βk}∞k=1 ⊂ Λ2 are
the outcomes of repeatedly running two experiments independent of each other
and for x ∈ Λ1 and y ∈ Λ2,

p (x, y) := lim
N→∞

1
N

# {1 ≤ k ≤ N : αk = x and βk = y} ,

p1 (x) := lim
N→∞

1
N

# {1 ≤ k ≤ N : αk = x} , and

p2 (y) := lim
N→∞

1
N

# {1 ≤ k ≤ N : βk = y} . (4.36)

Then p (x, y) = p1 (x) p2 (y) . In particular this then implies for any h : Λ1 ×
Λ2 → R we have,

Eh = lim
N→∞

1
N

N∑
k=1

h (αk, βk) =
∑

(x,y)∈Λ1×Λ2

h (x, y) p1 (x) p2 (y) .

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as,

{
α`k
}∞
k=1

, where ` ∈ N indicates the `th –
run of the experiment. Then we have postulated that, independent of `,

p (x, y) := lim
N→∞

1
N

N∑
k=1

1{α`k=x and βk=y} = lim
N→∞

1
N

N∑
k=1

1{α`k=x} · 1{βk=y}

So for any L ∈ N we must also have,

p (x, y) =
1
L

L∑
`=1

p (x, y) =
1
L

L∑
`=1

lim
N→∞

1
N

N∑
k=1

1{α`k=x} · 1{βk=y}

= lim
N→∞

1
N

N∑
k=1

1
L

L∑
`=1

1{α`k=x} · 1{βk=y}.

Taking the limit of this equation as L→∞ and interchanging the order of the
limits (this is faith based) implies,

p (x, y) = lim
N→∞

1
N

N∑
k=1

1{βk=y} · lim
L→∞

1
L

L∑
`=1

1{α`k=x}. (4.37)

Since for fixed k,
{
α`k
}∞
`=1

is just another run of the first experiment, by our
postulate, we conclude that

lim
L→∞

1
L

L∑
`=1

1{α`k=x} = p1 (x) (4.38)

independent of the choice of k. Therefore combining Eqs. (4.36), (4.37), and
(4.38) implies,

p (x, y) = lim
N→∞

1
N

N∑
k=1

1{βk=y} · p1 (x) = p2 (y) p1 (x) .

To understand this “Lemma” in another but equivalent way, let X1 : Λ1 ×
Λ2 → Λ1 and X2 : Λ1 × Λ2 → Λ2 be the projection maps, X1 (x, y) = x and
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X2 (x, y) = y respectively. Further suppose that f : Λ1 → R and g : Λ2 → R
are functions, then using the heuristics Lemma 4.32 implies,

E [f (X1) g (X2)] =
∑

(x,y)∈Λ1×Λ2

f (x) g (y) p1 (x) p2 (y)

=
∑
x∈Λ1

f (x) p1 (x) ·
∑
y∈Λ2

g (y) p2 (y) = Ef (X1) · Eg (X2) .

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
– independent experiments. For notational simplicity we will now assume that
Λ1 = Λ2 = · · · = Λn = Λ.

Let Λ be a finite set, n ∈ N, Ω = Λn, and Xi : Ω → Λ be defined by
Xi (ω) = ωi for ω ∈ Ω and i = 1, 2, . . . , n. We further suppose p : Ω → [0, 1] is
a function such that ∑

ω∈Ω
p (ω) = 1

and P : 2Ω → [0, 1] is the probability measure defined by

P (A) :=
∑
ω∈A

p (ω) for all A ∈ 2Ω . (4.39)

Exercise 4.10 (Simple Independence 1.). Suppose qi : Λ → [0, 1] are
functions such that

∑
λ∈Λ qi (λ) = 1 for i = 1, 2, . . . , n and now define

p (ω) =
∏n
i=1 qi (ωi) . Show for any functions, fi : Λ→ R that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] =
n∏
i=1

EQifi

where Qi is the measure on Λ defined by, Qi (γ) =
∑
λ∈γ qi (λ) for all γ ⊂ Λ.

Exercise 4.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] (4.40)

for any functions, fi : Λ → R, then there exists functions qi : Λ → [0, 1] with∑
λ∈Λ qi (λ) = 1, such that p (ω) =

∏n
i=1 qi (ωi) .

Definition 4.33 (Independence). We say simple random variables,
X1, . . . , Xn with values in Λ on some probability space, (Ω,A, P ) are indepen-
dent (more precisely P – independent) if Eq. (4.40) holds for all functions,
fi : Λ→ R.

Exercise 4.12 (Simple Independence 3.). Let X1, . . . , Xn : Ω → Λ and
P : 2Ω → [0, 1] be as described before Exercise 4.10. Show X1, . . . , Xn are
independent iff

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) . . . P (Xn ∈ An) (4.41)

for all choices of Ai ⊂ Λ. Also explain why it is enough to restrict the Ai to
single point subsets of Λ.

Exercise 4.13 (A Weak Law of Large Numbers). Suppose that Λ ⊂ R
is a finite set, n ∈ N, Ω = Λn, p (ω) =

∏n
i=1 q (ωi) where q : Λ → [0, 1]

such that
∑
λ∈Λ q (λ) = 1, and let P : 2Ω → [0, 1] be the probability measure

defined as in Eq. (4.39). Further let Xi (ω) = ωi for i = 1, 2, . . . , n, ξ := EXi,

σ2 := E (Xi − ξ)2
, and

Sn =
1
n

(X1 + · · ·+Xn) .

1. Show, ξ =
∑
λ∈Λ λ q (λ) and

σ2 =
∑
λ∈Λ

(λ− ξ)2
q (λ) =

∑
λ∈Λ

λ2q (λ)− ξ2. (4.42)

2. Show, ESn = ξ.
3. Let δij = 1 if i = j and δij = 0 if i 6= j. Show

E [(Xi − ξ) (Xj − ξ)] = δijσ
2.

4. Using Sn − ξ may be expressed as, 1
n

∑n
i=1 (Xi − ξ) , show

E (Sn − ξ)2 =
1
n
σ2. (4.43)

5. Conclude using Eq. (4.43) and Remark 4.22 that

P (|Sn − ξ| ≥ ε) ≤
1
nε2

σ2. (4.44)

So for large n, Sn is concentrated near ξ = EXi with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 4.34 (Covariance). Let (Ω,B, P ) is a finitely additive probability.
The covariance, Cov (X,Y ) , of X,Y ∈ S (B) is defined by

Cov (X,Y ) = E [(X − ξX) (Y − ξY )] = E [XY ]− EX · EY

where ξX := EX and ξY := EY. The variance of X,
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Var (X) := Cov (X,X) = E
[
X2
]
− (EX)2

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] = EX ·
EY. More generally we say {Xk}nk=1 ⊂ S (B) are uncorrelated iff Cov (Xi, Xj) =
0 for all i 6= j.

Remark 4.35. 1. Observe that X and Y are independent iff f (X) and g (Y ) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y ) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
4.13 you will see that it suffices to assume that {Xi}ni=1 are uncorrelated rather
than the stronger condition of being independent.

Exercise 4.14 (Bernoulli Random Variables). Let Λ = {0, 1} , X : Λ→ R
be defined by X (0) = 0 and X (1) = 1, x ∈ [0, 1] , and define Q = xδ1 +
(1− x) δ0, i.e. Q ({0}) = 1− x and Q ({1}) = x. Verify,

ξ (x) := EQX = x and

σ2 (x) := EQ (X − x)2 = (1− x)x ≤ 1/4.

Theorem 4.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f ∈ C([0, 1] ,C) and

pn (x) :=
n∑
k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k .

Then
lim
n→∞

sup
x∈[0,1]

|f (x)− pn (x)| = 0.

Proof. Let x ∈ [0, 1] , Λ = {0, 1} , q (0) = 1− x, q (1) = x, Ω = Λn, and

Px ({ω}) = q (ω1) . . . q (ωn) = x
∑n

i=1
ωi · (1− x)1−

∑n

i=1
ωi .

As above, let Sn = 1
n (X1 + · · ·+Xn) , where Xi (ω) = ωi and observe that

Px

(
Sn =

k

n

)
=
(
n

k

)
xk (1− x)n−k .

Therefore, writing Ex for EPx , we have

Ex [f (Sn)] =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k = pn (x) .

Hence we find

|pn (x)− f (x)| = |Exf (Sn)− f (x)| = |Ex [f (Sn)− f (x)]|
≤ Ex |f (Sn)− f (x)|
= Ex [|f (Sn)− f (x)| : |Sn − x| ≥ ε]

+ Ex [|f (Sn)− f (x)| : |Sn − x| < ε]
≤ 2M · Px (|Sn − x| ≥ ε) + δ (ε)

where

M := max
y∈[0,1]

|f (y)| and

δ (ε) := sup {|f(y)− f(x)| : x, y ∈ [0, 1] and |y − x| ≤ ε}

is the modulus of continuity of f. Now by the above exercises,

Px (|Sn − x| ≥ ε) ≤
1

4nε2
(see Figure 4.1) (4.45)

and hence we may conclude that

max
x∈[0,1]

|pn (x)− f (x)| ≤ M

2nε2
+ δ (ε)

and therefore, that

lim sup
n→∞

max
x∈[0,1]

|pn (x)− f (x)| ≤ δ (ε) .

This completes the proof, since by uniform continuity of f, δ (ε) ↓ 0 as ε ↓ 0.

4.4.1 Complex Weierstrass Approximation Theorem

The main goal of this subsection is to prove Theorem 4.42 which states that
any continuous 2π – periodic function on R may be well approximated by
trigonometric polynomials. The main ingredient is the following two dimen-
sional generalization of Theorem 4.36. All of the results in this section have
natural generalization to higher dimensions as well , see Theorem ??.

Theorem 4.37 (Weierstrass Approximation Theorem). Suppose that
K = [0, 1]2 , f ∈ C(K,C), and

pn (x, y) :=
n∑

k,l=0

f

(
k

n
,
l

n

)(
n

k

)(
n

l

)
xk (1− x)n−k yl (1− y)n−l . (4.46)

Then pn → f uniformly on K.
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4.4 Simple Independence and the Weak Law of Large Numbers 43

Fig. 4.1. Plots of Px (Sn = k/n) versus k/n for n = 100 with x = 1/4 (black), x = 1/2
(red), and x = 5/6 (green).

Proof. We are going to follow the argument given in the proof of Theorem
4.36. By considering the real and imaginary parts of f separately, it suffices
to assume f ∈ C([0, 1]2 ,R). For (x, y) ∈ K and n ∈ N we may choose a
collection of independent Bernoulli simple random variables {Xi, Yi}ni=1 such
that P (Xi = 1) = x and P (Yi = 1) = y for all 1 ≤ i ≤ n. Then letting
Sn := 1

n

∑n
i=1Xi and Tn := 1

n

∑n
i=1 Yi, we have

E [f (Sn, Tn)] =
n∑

k,l=0

f

(
k

n
,
l

n

)
P (n · Sn = k, n · Tn = l) = pn (x, y)

where pn (x, y) is the polynomial given in Eq. (4.46) wherein the assumed in-
dependence is needed to show,

P (n · Sn = k, n · Tn = l) =
(
n

k

)(
n

l

)
xk (1− x)n−k yl (1− y)n−l .

Thus if M = sup {|f(x, y)| : (x, y) ∈ K} , ε > 0,

δε = sup {|f(x′, y′)− f(x, y)| : (x, y) , (x′, y′) ∈ K and ‖x′, y′ − (x, y)‖ ≤ ε} ,

and
A := {‖(Sn, Tn)− (x, y)‖ > ε} ,

we have,

|f(x, y)− pn(x, y)| = |E (f(x, y)− f ((Sn, Tn)))|
≤ E |f(x, y)− f ((Sn, Tn))|

=E [|f(x, y)− f (Sn, Tn)| : A]
+ E [|f(x, y)− f (Sn, Tn)| : Ac]

≤2M · P (A) + δε · P (Ac)
≤ 2M · P (A) + δε. (4.47)

To estimate P (A) , observe that if

‖(Sn, Tn)− (x, y)‖2 = (Sn − x)2 + (Tn − y)2
> ε2,

then either,
(Sn − x)2

> ε2/2 or (Tn − y)2
> ε2/2

and therefore by sub-additivity and Eq. (4.45) we know

P (A) ≤ P
(
|Sn − x| > ε/

√
2
)

+ P
(
|Tn − y| > ε/

√
2
)

≤ 1
2nε2

+
1

2nε2
=

1
nε2

. (4.48)

Using this estimate in Eq. (4.47) gives,

|f(x, y)− pn(x, y)| ≤ 2M · 1
nε2

+ δε

and as right is independent of (x, y) ∈ K we may conclude,

lim sup
n→∞

sup
(x,y)∈K

|f (x, y)− pn (x, y)| ≤ δε

which completes the proof since δε ↓ 0 as ε ↓ 0 because f is uniformly continuous
on K.

Remark 4.38. We can easily improve our estimate on P (A) in Eq. (4.48) by a
factor of two as follows. As in the proof of Theorem 4.36,

E
[
‖(Sn, Tn)− (x, y)‖2

]
= E

[
(Sn − x)2 + (Tn − y)2

]
= Var (Sn) + Var (Tn)

=
1
n
x (1− x) + y (1− y) ≤ 1

2n
.

Therefore by Chebyshev’s inequality,

P (A) = P (‖(Sn, Tn)− (x, y)‖ > ε) ≤ 1
ε2

E ‖(Sn, Tn)− (x, y)‖2 ≤ 1
2nε2

.

Page: 43 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



44 4 Finitely Additive Measures / Integration

Corollary 4.39. Suppose that K = [a, b]× [c, d] is any compact rectangle in R2.
Then every function, f ∈ C(K,C), may be uniformly approximated by polyno-
mial functions in (x, y) ∈ R2.

Proof. Let F (x, y) := f (a+ x (b− a) , c+ y (d− c)) – a continuous func-
tion of (x, y) ∈ [0, 1]2 . Given ε > 0, we may use Theorem Theorem 4.37 to find
a polynomial, p (x, y) , such that sup(x,y)∈[0,1]2 |F (x, y)− p (x, y)| ≤ ε. Letting
ξ = a+ x (b− a) and η := c+ y (d− c) , it now follows that

sup
(ξ.η)∈K

∣∣∣∣f (ξ, η)− p
(
ξ − a
b− a

,
η − c
d− c

)∣∣∣∣ ≤ ε
which completes the proof since p

(
ξ−a
b−a ,

η−c
d−c

)
is a polynomial in (ξ, η) .

Here is a version of the complex Weierstrass approximation theorem.

Theorem 4.40 (Complex Weierstrass Approximation Theorem).
Suppose that K ⊂ C is a compact rectangle. Then there exists poly-
nomials in (z = x+ iy, z̄ = x− iy) , pn(z, z̄) for z ∈ C, such that
supz∈K |qn(z, z̄)− f(z)| → 0 as n→∞ for every f ∈ C (K,C) .

Proof. The mapping (x, y) ∈ R × R → z = x + iy ∈ C is an isomorphism
of vector spaces. Letting z̄ = x − iy as usual, we have x = z+z̄

2 and y = z−z̄
2i .

Therefore under this identification any polynomial p(x, y) on R × R may be
written as a polynomial q in (z, z̄), namely

q(z, z̄) = p

(
z + z̄

2
,
z − z̄

2i

)
.

Conversely a polynomial q in (z, z̄) may be thought of as a polynomial p in
(x, y), namely p(x, y) = q(x + iy, x − iy). Hence the result now follows from
Theorem 4.37.

Example 4.41. Let K = S1 = {z ∈ C : |z| = 1} and A be the set of polynomials
in (z, z̄) restricted to S1. Then A is dense in C(S1). To prove this first observe
if f ∈ C

(
S1
)

then F (z) = |z| f
(
z
|z|

)
for z 6= 0 and F (0) = 0 defines F ∈ C(C)

such that F |S1 = f. By applying Theorem 4.40 to F restricted to a compact
rectangle containing S1 we may find qn (z, z̄) converging uniformly to F on K
and hence on S1. Since z̄ on S1, we have shown polynomials in z and z−1 are
dense in C(S1).

Theorem 4.42 (Density of Trigonometric Polynomials). Any 2π – pe-
riodic continuous function, f : R → C, may be uniformly approximated by a
trigonometric polynomial of the form

p (x) =
∑
λ∈Λ

aλe
iλ·x

where Λ is a finite subset of Z and aλ ∈ C for all λ ∈ Λ.

Proof. For z ∈ S1, define F (z) := f(θ) where θ ∈ R is chosen so that
z = eiθ. Since f is 2π – periodic, F is well defined since if θ solves eiθ = z then
all other solutions are of the form {θ + 2πn : n ∈ Z} . Since the map θ → eiθ

is a local homeomorphism, i.e. for any J = (a, b) with b − a < 2π, the map

θ ∈ J φ→ J̃ :=
{
eiθ : θ ∈ J

}
⊂ S1 is a homeomorphism, it follows that F (z) =

f ◦ φ−1(z) for z ∈ J̃ . This shows F is continuous when restricted to J̃ . Since
such sets cover S1, it follows that F is continuous.

By Example 4.41, the polynomials in z and z̄ = z−1 are dense in C(S1).
Hence for any ε > 0 there exists

p(z, z̄) =
∑

0≤m,n≤N

am,nz
mz̄n

such that |F (z)− p(z, z̄)| ≤ ε for all z ∈ S1. Taking z = eiθ then implies

sup
θ

∣∣f(θ)− p
(
eiθ, e−iθ

)∣∣ ≤ ε
where

p
(
eiθ, e−iθ

)
=

∑
0≤m,n≤N

am,ne
i(m−n)θ

is the desired trigonometry polynomial.

4.4.2 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X,A, µ), where X is a set, A ⊂ 2X is an algebra, and
µ : A → [0,∞] is a finitely additive measure. Let (Y,B, ν) be another finitely
additive measure space.

Definition 4.43. Let A�B be the smallest sub-algebra of 2X×Y containing all
sets of the form S := {A×B : A ∈ A and B ∈ B} . As we have seen in Exercise
3.10, S is a semi-algebra and therefore A� B consists of subsets, C ⊂ X × Y,
which may be written as;

C =
n∑
i=1

Ai ×Bi with Ai ×Bi ∈ S. (4.49)
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Theorem 4.44 (Product Measure and Fubini’s Theorem). Assume that
µ (X) < ∞ and ν (Y ) < ∞ for simplicity. Then there is a unique finitely
additive measure, µ� ν, on A�B such that µ� ν (A×B) = µ (A) ν (B) for all
A ∈ A and B ∈ B. Moreover if f ∈ S (A� B) then;

1. y → f (x, y) is in S (B) for all x ∈ X and x → f (x, y) is in S (A) for all
y ∈ Y.

2. x→
∫
Y
f (x, y) dν (y) is in S (A) and y →

∫
X
f (x, y) dµ (x) is in S (B) .

3. we have,∫
X

[∫
Y

f (x, y) dν (y)
]
dµ (x)

=
∫
X×Y

f (x, y) d (µ� ν) (x, y)

=
∫
Y

[∫
X

f (x, y) dµ (x)
]
dν (y) .

We will refer to µ� ν as the product measure of µ and ν.

Proof. According to Eq. (4.49),

1C (x, y) =
n∑
i=1

1Ai×Bi (x, y) =
n∑
i=1

1Ai (x) 1Bi (y)

from which it follows that 1C (x, ·) ∈ S (B) for each x ∈ X and∫
Y

1C (x, y) dν (y) =
n∑
i=1

1Ai (x) ν (Bi) .

It now follows from this equation that x→
∫
Y

1C (x, y) dν (y) ∈ S (A) and that∫
X

[∫
Y

1C (x, y) dν (y)
]
dµ (x) =

n∑
i=1

µ (Ai) ν (Bi) .

Similarly one shows that∫
Y

[∫
X

1C (x, y) dµ (x)
]
dν (y) =

n∑
i=1

µ (Ai) ν (Bi) .

In particular this shows that we may define

(µ� ν) (C) =
n∑
i=1

µ (Ai) ν (Bi)

and with this definition we have,∫
X

[∫
Y

1C (x, y) dν (y)
]
dµ (x)

= (µ� ν) (C)

=
∫
Y

[∫
X

1C (x, y) dµ (x)
]
dν (y) .

From either of these representations it is easily seen that µ � ν is a finitely
additive measure on A � B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1C with C ∈ A �
B. Since the general element, f ∈ S (A� B) , is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general.

Example 4.45. Suppose that f ∈ S (A) and g ∈ S (B) . Let f ⊗ g (x, y) :=
f (x) g (y) . Since we have,

f ⊗ g (x, y) =

(∑
a

a1f=a (x)

)(∑
b

b1g=b (y)

)
=
∑
a,b

ab1{f=a}×{g=b} (x, y)

it follows that f ⊗ g ∈ S (A� B) . Moreover, using Fubini’s Theorem 4.44 it
follows that ∫

X×Y
f ⊗ g d (µ� ν) =

[∫
X

f dµ

] [∫
Y

g dν

]
.

4.5 Simple Conditional Expectation

In this section, B is a sub-algebra of 2Ω , P : B → [0, 1] is a finitely additive
probability measure, and A ⊂ B is a finite sub-algebra. As in Example 3.19, for
each ω ∈ Ω, let Aω := ∩{A ∈ A : ω ∈ A} and recall that either Aω = Aω′ or
Aω ∩Aω′ = ∅ for all ω, ω′ ∈ Ω. In particular there is a partition, {B1, . . . , Bn} ,
of Ω such that Aω ∈ {B1, . . . , Bn} for all ω ∈ Ω.

Definition 4.46 (Conditional expectation). Let X : Ω → R be a B – simple
random variable, i.e. X ∈ S (B) , and

X̄ (ω) :=
1

P (Aω)
E [1AωX] for all ω ∈ Ω, (4.50)
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where by convention, X̄ (ω) = 0 if P (Aω) = 0. We will denote X̄ by E [X|A]
for EAX and call it the conditional expectation of X given A. Alternatively we
may write X̄ as

X̄ =
n∑
i=1

E [1BiX]
P (Bi)

1Bi , (4.51)

again with the convention that E [1BiX] /P (Bi) = 0 if P (Bi) = 0.

It should be noted, from Exercise 4.1, that X̄ = EAX ∈ S (A) . Heuristi-
cally, if (ω (1) , ω (2) , ω (3) , . . . ) is the sequence of outcomes of “independently”
running our “experiment” repeatedly, then

X̄|Bi =
E [1BiX]
P (Bi)

“ = ”
limN→∞

1
N

∑N
n=1 1Bi (ω (n))X (ω (n))

limN→∞
1
N

∑N
n=1 1Bi (ω (n))

= lim
N→∞

∑N
n=1 1Bi (ω (n))X (ω (n))∑N

n=1 1Bi (ω (n))
.

So to compute X̄|Bi “empirically,” we remove all experimental outcomes from
the list, (ω (1) , ω (2) , ω (3) , . . . ) ∈ ΩN, which are not in Bi to form a new
list, (ω̄ (1) , ω̄ (2) , ω̄ (3) , . . . ) ∈ BN

i . We then compute X̄|Bi using the empirical
formula for the expectation of X relative to the “bar” list, i.e.

X̄|Bi = lim
N→∞

1
N

N∑
n=1

X (ω̄ (n)) .

Exercise 4.15 (Simple conditional expectation). Let X ∈ S (B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

1. (Orthogonal Projection Property 1.) If Z ∈ S (A), then

E [XZ] = E
[
X̄Z

]
= E [EAX · Z] (4.52)

and

(EAZ) (ω) =
{
Z (ω) if P (Aω) > 0

0 if P (Aω) = 0 . (4.53)

In particular, EA [EAZ] = EAZ.
This basically says that EA is orthogonal projection from S (B) onto S (A)
relative to the inner product

(f, g) = E [fg] for all f, g ∈ S (B) .

2. (Orthogonal Projection Property 2.) If Y ∈ S (A) satisfies, E [XZ] =
E [Y Z] for all Z ∈ S (A) , then Y (ω) = X̄ (ω) whenever P (Aω) > 0. In
particular, P

(
Y 6= X̄

)
= 0. Hint: use item 1. to compute E

[(
X̄ − Y

)2]
.

3. (Best Approximation Property.) For any Y ∈ S (A) ,

E
[(
X − X̄

)2] ≤ E
[
(X − Y )2

]
(4.54)

with equality iff X̄ = Y almost surely (a.s. for short), where X̄ = Y a.s. iff
P
(
X̄ 6= Y

)
= 0. In words, X̄ = EAX is the best (“L2”) approximation to

X by an A – measurable random variable.
4. (Contraction Property.) E

∣∣X̄∣∣ ≤ E |X| . (It is typically not true that∣∣X̄ (ω)
∣∣ ≤ |X (ω)| for all ω.)

5. (Pull Out Property.) If Z ∈ S (A) , then

EA [ZX] = ZEAX.

Example 4.47 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Λ1 = {1, 2, . . . , 10} and rolling a die with values in Λ2 = {1, 2, 3, 4, 5, 6} . So
the outcome of an experiment is represented by a point, ω = (x, y) ∈ Ω =
Λ1 × Λ2. Let X (x, y) = x, Y (x, y) = y, B = 2Ω , and

A = A (X) = X−1
(
2Λ1
)

=
{
X−1 (A) : A ⊂ Λ1

}
⊂ B,

so that A is the smallest algebra of subsets of Ω such that {X = x} ∈ A for all
x ∈ Λ1. Notice that the partition associated to A is precisely

{{X = 1} , {X = 2} , . . . , {X = 10}} .

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
produce a sequence of results, ωn = (xn, yn) for all n ∈ N. If g : Λ2 → R is a
function, we have (heuristically) that

EA [g (Y )] (x, y) = lim
N→∞

∑N
n=1 g (Y (ω (n))) 1X(ω(n))=x∑N

n=1 1X(ω(n))=x

= lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

.

As the {yn} sequence of results are independent of the {xn} sequence, we should
expect by the usual mantra2 that

lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

= lim
N→∞

1
M (N)

M(N)∑
n=1

g (ȳn) = E [g (Y )] ,

2 That is it should not matter which sequence of independent experiments are used
to compute the time averages.
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where M (N) =
∑N
n=1 1xn=x and (ȳ1, ȳ2, . . . ) = {yl : 1xl=x} . (We are also

assuming here that P (X = x) > 0 so that we expect, M (N) ∼ P (X = x)N
for N large, in particular M (N) → ∞.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced
that EA [g (Y )] : Ω → R is the constant function;

EA [g (Y )] (x, y) = E [g (Y )] for all (x, y) ∈ Ω. (4.55)

Let us further observe that if f : Λ1 → R is any other function, then f (X) is
an A – simple function and therefore by Eq. (4.55) and Exercise 4.15

E [f (X)]·E [g (Y )] = E [f (X) · E [g (Y )]] = E [f (X) · EA [g (Y )]] = E [f (X) · g (Y )] .

This observation along with Exercise 4.12 gives another “proof” of Lemma 4.32.

Lemma 4.48 (Conditional Expectation and Independence). Let Ω =
Λ1 × Λ2, X, Y, B = 2Ω , and A =X−1

(
2Λ1
)
, be as in Example 4.47 above.

Assume that P : B → [0, 1] is a probability measure. If X and Y are P –
independent, then Eq. (4.55) holds.

Proof. From the definitions of conditional expectation and of independence
we have,

EA [g (Y )] (x, y) =
E [1X=x · g (Y )]
P (X = x)

=
E [1X=x] · E [g (Y )]

P (X = x)
= E [g (Y )] .

The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

Theorem 4.49 (Independence result summary). Let (Ω,B, P ) be a
finitely additive probability space, Λ be a finite set, and X,Y : Ω → Λ be two
B – measurable simple functions, i.e. {X = x} ∈ B and {Y = y} ∈ B for all
x, y ∈ Λ. Further let A = A (X) := A ({X = x} : x ∈ Λ) . Then the following
are equivalent;

1. P (X = x, Y = y) = P (X = x) · P (Y = y) for all x ∈ Λ and y ∈ Λ,
2. E [f (X) g (Y )] = E [f (X)] E [g (Y )] for all functions, f : Λ → R and g :
Λ→ R,

3. EA(X) [g (Y )] = E [g (Y )] for all g : Λ→ R, and
4. EA(Y ) [f (X)] = E [f (X)] for all f : Λ→ R.

We say that X and Y are P – independent if any one (and hence all) of the
above conditions holds.





5

Countably Additive Measures

Let A ⊂ 2Ω be an algebra and µ : A → [0,∞] be a finitely additive measure.
Recall that µ is a premeasure on A if µ is σ – additive on A. If µ is a
premeasure on A and A is a σ – algebra (Definition 3.12), we say that µ is a
measure on (Ω,A) and that (Ω,A) is a measurable space.

Definition 5.1. Let (Ω,B) be a measurable space. We say that P : B → [0, 1] is
a probability measure on (Ω,B) if P is a measure on B such that P (Ω) = 1.
In this case we say that (Ω,B, P ) a probability space.

5.1 Overview

The goal of this chapter is develop methods for proving the existence of proba-
bility measures with desirable properties. The main results of this chapter may
are summarized in the following theorem.

Theorem 5.2. A finitely additive probability measure P on an algebra, A ⊂ 2Ω ,
extends to σ – additive measure on σ (A) iff P is a premeasure on A. If the
extension exists it is unique.

Proof. The uniqueness assertion is proved Proposition 5.15 below. The ex-
istence assertion of the theorem in the content of Theorem 5.27.

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 5.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A ⊂ 2Ω . Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is σ – additive on A.
2. For all An ∈ A such that An ↑ A ∈ A, P (An) ↑ P (A) .
3. For all An ∈ A such that An ↓ A ∈ A, P (An) ↓ P (A) .
4. For all An ∈ A such that An ↑ Ω, P (An) ↑ 1.
5. For all An ∈ A such that An ↓ ∅, P (An) ↓ 0.

Proof. We will start by showing 1 ⇐⇒ 2 ⇐⇒ 3.
1. =⇒ 2. Suppose An ∈ A such that An ↑ A ∈ A. Let A′n := An \ An−1

with A0 := ∅. Then {A′n}
∞
n=1 are disjoint, An = ∪nk=1A

′
k and A = ∪∞k=1A

′
k.

Therefore,

P (A) =
∞∑
k=1

P (A′k) = lim
n→∞

n∑
k=1

P (A′k) = lim
n→∞

P (∪nk=1A
′
k) = lim

n→∞
P (An) .

2. =⇒ 1. If {An}∞n=1 ⊂ A are disjoint and A := ∪∞n=1An ∈ A, then
∪Nn=1An ↑ A. Therefore,

P (A) = lim
N→∞

P
(
∪Nn=1An

)
= lim
N→∞

N∑
n=1

P (An) =
∞∑
n=1

P (An) .

2. =⇒ 3. If An ∈ A such that An ↓ A ∈ A, then Acn ↑ Ac and therefore,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

3. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then Acn ↓ Ac and therefore we
again have,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

The same proof used for 2. ⇐⇒ 3. shows 4. ⇐⇒ 5 and it is clear that
3. =⇒ 5. To finish the proof we will show 5. =⇒ 2.

5. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then A \An ↓ ∅ and therefore

lim
n→∞

[P (A)− P (An)] = lim
n→∞

P (A \An) = 0.

Remark 5.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (Ω) = 1 and in fact P (Ω) =∞ may
be allowed for this equivalence.

Lemma 5.5. If µ : A → [0,∞] is a premeasure, then µ is countably sub-additive
on A.
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Proof. Suppose that An ∈ A with ∪∞n=1An ∈ A. Let A
′

1 := A1 and for
n ≥ 2, let A′n := An \ (A1 ∪ . . . An−1) ∈ A. Then ∪∞n=1An =

∑∞
n=1A

′
n and

therefore by the countable additivity and monotonicity of µ we have,

µ (∪∞n=1An) = µ

( ∞∑
n=1

A′n

)
=
∞∑
n=1

µ (A′n) ≤
∞∑
n=1

µ (An) .

Let us now specialize to the case where Ω = R and A =
A ({(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}) . In this case we will describe proba-
bility measures, P, on BR by their “cumulative distribution functions.”

Definition 5.6. Given a probability measure, P on BR, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = FP : R→ [0, 1]
given as

F (x) := P ((−∞, x]) . (5.1)

Example 5.7. Suppose that

P = pδ−1 + qδ1 + rδπ

with p, q, r > 0 and p+ q + r = 1. In this case,

F (x) =


0 for x < −1
p for −1 ≤ x < 1

p+ q for 1 ≤ x < π
1 for π ≤ x <∞

.

A plot of F (x) with p = .2, q = .3, and r = .5.

Lemma 5.8. If F = FP : R→ [0, 1] is a distribution function for a probability
measure, P, on BR, then:

1. F is non-decreasing,
2. F is right continuous,
3. F (−∞) := limx→−∞ F (x) = 0, and F (∞) := limx→∞ F (x) = 1.

Proof. The monotonicity of P shows that F (x) in Eq. (5.1) is non-
decreasing. For b ∈ R let An = (−∞, bn] with bn ↓ b as n→∞. The continuity
of P implies

F (bn) = P ((−∞, bn]) ↓ µ((−∞, b]) = F (b).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
F (b+) := limy↓b F (y) = F (b). This show that F is right continuous. Similar
arguments show that F (∞) = 1 and F (−∞) = 0.

It turns out that Lemma 5.8 has the following important converse.

Theorem 5.9. To each function F : R→ [0, 1] satisfying properties 1. – 3.. in
Lemma 5.8, there exists a unique probability measure, PF , on BR such that

PF ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Proof. The uniqueness assertion is proved in Corollary 5.17 below or see
Exercises 5.2 and 5.11 below. The existence portion of the theorem is a special
case of Theorem 5.33 below.

Example 5.10 (Uniform Distribution). The function,

F (x) :=

 0 for x ≤ 0
x for 0 ≤ x < 1
1 for 1 ≤ x <∞

,

is the distribution function for a measure, m on BR which is concentrated on
(0, 1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem 5.2.

5.2 π – λ Theorem

Recall that a collection, P ⊂ 2Ω , is a π – class or π – system if it is closed
under finite intersections. We also need the notion of a λ –system.

Definition 5.11 (λ – system). A collection of sets, L ⊂ 2Ω , is λ – class or
λ – system if

a. Ω ∈ L
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Fig. 5.1. The cumulative distribution function for the uniform distribution.

b. If A,B ∈ L and A ⊂ B, then B \A ∈ L. (Closed under proper differences.)
c. If An ∈ L and An ↑ A, then A ∈ L. (Closed under countable increasing

unions.)

Remark 5.12. If L is a collection of subsets of Ω which is both a λ – class and
a π – system then L is a σ – algebra. Indeed, since Ac = Ω \ A, we see that
any λ - system is closed under complementation. If L is also a π – system, it is
closed under intersections and therefore L is an algebra. Since L is also closed
under increasing unions, L is a σ – algebra.

Lemma 5.13 (Alternate Axioms for a λ – System*). Suppose that L ⊂ 2Ω

is a collection of subsets Ω. Then L is a λ – class iff λ satisfies the following
postulates:

1. Ω ∈ L
2. A ∈ L implies Ac ∈ L. (Closed under complementation.)
3. If {An}∞n=1 ⊂ L are disjoint, then

∑∞
n=1An ∈ L. (Closed under disjoint

unions.)

Proof. Suppose that L satisfies a. – c. above. Clearly then postulates 1. and
2. hold. Suppose that A,B ∈ L such that A ∩B = ∅, then A ⊂ Bc and

Ac ∩Bc = Bc \A ∈ L.

Taking complements of this result shows A ∪ B ∈ L as well. So by induction,
Bm :=

∑m
n=1An ∈ L. Since Bm ↑

∑∞
n=1An it follows from postulate c. that∑∞

n=1An ∈ L.

Now suppose that L satisfies postulates 1. – 3. above. Notice that ∅ ∈ L
and by postulate 3., L is closed under finite disjoint unions. Therefore if A,B ∈
L with A ⊂ B, then Bc ∈ L and A ∩ Bc = ∅ allows us to conclude that
A ∪ Bc ∈ L. Taking complements of this result shows B \ A = Ac ∩ B ∈ L as
well, i.e. postulate b. holds. If An ∈ L with An ↑ A, then Bn := An \An−1 ∈ L
for all n, where by convention A0 = ∅. Hence it follows by postulate 3 that
∪∞n=1An =

∑∞
n=1Bn ∈ L.

Theorem 5.14 (Dynkin’s π – λ Theorem). If L is a λ class which contains
a contains a π – class, P, then σ(P) ⊂ L.

Proof. We start by proving the following assertion; for any element C ∈ L,
the collection of sets,

LC := {D ∈ L : C ∩D ∈ L} ,

is a λ – system. To prove this claim, observe that: a. Ω ∈ LC , b. if A ⊂ B with
A,B ∈ LC , then A ∩ C, B ∩ C ∈ L with A ∩ C ⊂ B ∩ C and therefore,

(B \A) ∩ C = [B ∩ C] \A = [B ∩ C] \ [A ∩ C] ∈ L.

This shows that LC is closed under proper differences. c. If An ∈ LC with
An ↑ A, then An ∩C ∈ L and An ∩C ↑ A∩C ∈ L, i.e. A ∈ LC . Hence we have
verified LC is still a λ – system.

For the rest of the proof, we may assume without loss of generality that L
is the smallest λ – class containing P – if not just replace L by the intersection
of all λ – classes containing P. Then for C ∈ P we know that LC ⊂ L is a λ
- class containing P and hence LC = L. Since C ∈ P was arbitrary, we have
shown, C ∩ D ∈ L for all C ∈ P and D ∈ L. We may now conclude that if
C ∈ L, then P ⊂ LC ⊂ L and hence again LC = L. Since C ∈ L is arbitrary,
we have shown C∩D ∈ L for all C,D ∈ L, i.e. L is a π – system. So by Remark
5.12, L is a σ algebra. Since σ (P) is the smallest σ – algebra containing P it
follows that σ (P) ⊂ L.

As an immediate corollary, we have the following uniqueness result.

Proposition 5.15. Suppose that P ⊂ 2Ω is a π – system. If P and Q are two
probability1 measures on σ (P) such that P = Q on P, then P = Q on σ (P) .

Proof. Let L := {A ∈ σ (P) : P (A) = Q (A)} . One easily shows L is a λ –
class which contains P by assumption. Indeed, Ω ∈ P ⊂ L, if A,B ∈ L with
A ⊂ B, then

P (B \A) = P (B)− P (A) = Q (B)−Q (A) = Q (B \A)

1 More generally, P and Q could be two measures such that P (Ω) = Q (Ω) <∞.
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so that B \A ∈ L, and if An ∈ L with An ↑ A, then P (A) = limn→∞ P (An) =
limn→∞Q (An) = Q (A) which shows A ∈ L. Therefore σ (P) ⊂ L = σ (P) and
the proof is complete.

Example 5.16. Let Ω := {a, b, c, d} and let µ and ν be the probability measure
on 2Ω determined by, µ ({x}) = 1

4 for all x ∈ Ω and ν ({a}) = ν ({d}) = 1
8 and

ν ({b}) = ν ({c}) = 3/8. In this example,

L :=
{
A ∈ 2Ω : P (A) = Q (A)

}
is λ – system which is not an algebra. Indeed, A = {a, b} and B = {a, c} are in
L but A ∩B /∈ L.

Exercise 5.1. Suppose that µ and ν are two measures (not assumed to be
finite) on a measure space, (Ω,B) such that µ = ν on a π – system, P. Further
assume B = σ (P) and there exists Ωn ∈ P such that; i) µ (Ωn) = ν (Ωn) <∞
for all n and ii) Ωn ↑ Ω as n ↑ ∞. Show µ = ν on B.

Hint: Consider the measures, µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) .

Solution to Exercise (5.1). Let µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) for all A ∈ B. Then µn and νn are finite measure such µn (Ω) =
νn (Ω) and µn = νn on P. Therefore by Proposition 5.15, µn = νn on B. So by
the continuity properties of µ and ν, it follows that

µ (A) = lim
n→∞

µ (A ∩Ωn) = lim
n→∞

µn (A) = lim
n→∞

νn (A) = lim
n→∞

ν (A ∩Ωn) = ν (A)

for all A ∈ B.

Corollary 5.17. A probability measure, P, on (R,BR) is uniquely determined
by its cumulative distribution function,

F (x) := P ((−∞, x]) .

Proof. This follows from Proposition 5.15 wherein we use the fact that
P := {(−∞, x] : x ∈ R} is a π – system such that BR = σ (P) .

Remark 5.18. Corollary 5.17 generalizes to Rn. Namely a probability measure,
P, on (Rn,BRn) is uniquely determined by its CDF,

F (x) := P ((−∞, x]) for all x ∈ Rn

where now

(−∞, x] := (−∞, x1]× (−∞, x2]× · · · × (−∞, xn].

5.2.1 A Density Result*

Exercise 5.2 (Density of A in σ (A)). Suppose that A ⊂ 2Ω is an algebra,
B := σ (A) , and P is a probability measure on B. Let ρ (A,B) := P (A∆B) .
The goal of this exercise is to use the π – λ theorem to show that A is dense in
B relative to the “metric,” ρ. More precisely you are to show using the following
outline that for every B ∈ B there exists A ∈ A such that that P (A4B) < ε.

1. Recall from Exercise 4.3 that ρ (a,B) = P (A4B) = E |1A − 1B | .
2. Observe; if B = ∪Bi and A = ∪iAi, then

B \A = ∪i [Bi \A] ⊂ ∪i (Bi \Ai) ⊂ ∪iAi 4Bi and
A \B = ∪i [Ai \B] ⊂ ∪i (Ai \Bi) ⊂ ∪iAi 4Bi

so that
A4B ⊂ ∪i (Ai 4Bi) .

3. We also have

(B2 \B1) \ (A2 \A1) = B2 ∩Bc1 ∩ (A2 \A1)c

= B2 ∩Bc1 ∩ (A2 ∩Ac1)c

= B2 ∩Bc1 ∩ (Ac2 ∪A1)
= [B2 ∩Bc1 ∩Ac2] ∪ [B2 ∩Bc1 ∩A1]
⊂ (B2 \A2) ∪ (A1 \B1)

and similarly,

(A2 \A1) \ (B2 \B1) ⊂ (A2 \B2) ∪ (B1 \A1)

so that

(A2 \A1)4 (B2 \B1) ⊂ (B2 \A2) ∪ (A1 \B1) ∪ (A2 \B2) ∪ (B1 \A1)
= (A1 4B1) ∪ (A2 4B2) .

4. Observe that An ∈ B and An ↑ A, then

P (B 4An) = P (B \An) + P (An \B)
→ P (B \A) + P (A \B) = P (A4B) .

5. Let L be the collection of sets B ∈ B for which the assertion of the theorem
holds. Show L is a λ – system which contains A.
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Solution to Exercise (5.2). Since L contains the π – system, A it suffices by
the π – λ theorem to show L is a λ – system. Clearly, Ω ∈ L since Ω ∈ A ⊂ L.
If B1 ⊂ B2 with Bi ∈ L and ε > 0, there exists Ai ∈ A such that P (Bi 4Ai) =
EP |1Ai − 1Bi | < ε/2 and therefore,

P ((B2 \B1)4 (A2 \A1)) ≤ P ((A1 4B1) ∪ (A2 4B2))
≤ P ((A1 4B1)) + P ((A2 4B2)) < ε.

Also if Bn ↑ B with Bn ∈ L, there exists An ∈ A such that P (Bn 4An) < ε2−n

and therefore,

P ([∪nBn]4 [∪nAn]) ≤
∞∑
n=1

P (Bn 4An) < ε.

Moreover, if we let B := ∪nBn and AN := ∪Nn=1An, then

P
(
B 4AN

)
= P

(
B \AN

)
+P

(
AN \B

)
→ P (B \A)+P (A \B) = P (B 4A)

where A := ∪nAn. Hence it follows for N large enough that P
(
B 4AN

)
< ε.

Since ε > 0 was arbitrary we have shown B ∈ L as desired.

5.3 Construction of Measures

Definition 5.19. Given a collection of subsets, E , of Ω, let Eσ denote the col-
lection of subsets of Ω which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of Ω which are finite or count-
able intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ ,
etc.

Lemma 5.20. Suppose that A ⊂ 2Ω is an algebra. Then:

1. Aσ is closed under taking countable unions and finite intersections.
2. Aδ is closed under taking countable intersections and finite unions.
3. {Ac : A ∈ Aσ} = Aδ and {Ac : A ∈ Aδ} = Aσ.

Proof. By construction Aσ is closed under countable unions. Moreover if
A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3.

Remark 5.21. Let us recall from Proposition 5.3 and Remark 5.4 that a finitely
additive measure µ : A → [0,∞] is a premeasure on A iff µ (An) ↑ µ(A) for all
{An}∞n=1 ⊂ A such that An ↑ A ∈ A. Furthermore if µ (Ω) < ∞, then µ is a
premeasure on A iff µ(An) ↓ 0 for all {An}∞n=1 ⊂ A such that An ↓ ∅.

Proposition 5.22. Given a premeasure, µ : A → [0,∞] , we extend µ to Aσ
by defining

µ (B) := sup {µ (A) : A 3 A ⊂ B} . (5.2)

This function µ : Aσ → [0,∞] then satisfies;

1. (Monotonicity) If A,B ∈ Aσ with A ⊂ B then µ (A) ≤ µ (B) .
2. (Continuity) If An ∈ A and An ↑ A ∈ Aσ, then µ (An) ↑ µ (A) as n→∞.
3. (Strong Additivity) If A,B ∈ Aσ, then

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (5.3)

4. (Sub-Additivity on Aσ) The function µ is sub-additive on Aσ, i.e. if
{An}∞n=1 ⊂ Aσ, then

µ (∪∞n=1An) ≤
∞∑
n=1

µ (An) . (5.4)

5. (σ - Additivity on Aσ) The function µ is countably additive on Aσ.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.2) which then
implies µ (An) ≤ µ (B) for all n. Therefore M := limn→∞ µ (An) ≤ µ (B) . To
prove the reverse inequality, let A 3 A ⊂ B. Then by the continuity of µ on
A and the fact that An ∩ A ↑ A we have µ (An ∩A) ↑ µ (A) . As µ (An) ≥
µ (An ∩A) for all n it then follows that M := limn→∞ µ (An) ≥ µ (A) . As
A ∈ A with A ⊂ B was arbitrary we may conclude,

µ (B) = sup {µ (A) : A 3 A ⊂ B} ≤M.

3. Suppose that A,B ∈ Aσ and {An}∞n=1 and {Bn}∞n=1 are sequences in A
such that An ↑ A and Bn ↑ B as n→∞. Then passing to the limit as n→∞
in the identity,

µ (An ∪Bn) + µ (An ∩Bn) = µ (An) + µ (Bn)

proves Eq. (5.3). In particular, it follows that µ is finitely additive on Aσ.
4 and 5. Let {An}∞n=1 be any sequence in Aσ and choose {An,i}∞i=1 ⊂ A

such that An,i ↑ An as i→∞. Then we have,

µ
(
∪Nn=1An,N

)
≤

N∑
n=1

µ (An,N ) ≤
N∑
n=1

µ (An) ≤
∞∑
n=1

µ (An) . (5.5)
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Since A 3 ∪Nn=1An,N ↑ ∪∞n=1An ∈ Aσ, we may let N → ∞ in Eq. (5.5) to
conclude Eq. (5.4) holds. If we further assume that {An}∞n=1 ⊂ Aσ are pairwise
disjoint, by the finite additivity and monotonicity of µ on Aσ, we have

∞∑
n=1

µ (An) = lim
N→∞

N∑
n=1

µ (An) = lim
N→∞

µ
(
∪Nn=1An

)
≤ µ (∪∞n=1An) .

This inequality along with Eq. (5.4) shows that µ is σ – additive on Aσ.
Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and A ∈ Aδ ∩Aσ.

Since A,Ac ∈ Aσ and Ω = A∪Ac, it follows that µ (Ω) = µ (A)+µ (Ac) . From
this observation we may extend µ to a function on Aδ ∪ Aσ by defining

µ (A) := µ (Ω)− µ (Ac) for all A ∈ Aδ. (5.6)

Lemma 5.23. Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and µ
has been extended to Aδ ∪ Aσ as described in Proposition 5.22 and Eq. (5.6)
above.

1. If A ∈ Aδ then µ (A) = inf {µ (B) : A ⊂ B ∈ A} .
2. If A ∈ Aδ and An ∈ A such that An ↓ A, then µ (A) =↓ limn→∞ µ (An) .
3. µ is strongly additive when restricted to Aδ.
4. If A ∈ Aδ and C ∈ Aσ such that A ⊂ C, then µ (C \A) = µ (C)− µ (A) .

Proof.

1. Since µ (B) = µ (Ω)− µ (Bc) and A ⊂ B iff Bc ⊂ Ac, it follows that

inf {µ (B) : A ⊂ B ∈ A} = inf {µ (Ω)− µ (Bc) : A 3 Bc ⊂ Ac}
= µ (Ω)− sup {µ (B) : A 3 B ⊂ Ac}
= µ (Ω)− µ (Ac) = µ (A) .

2. Similarly, since Acn ↑ Ac ∈ Aσ, by the definition of µ (A) and Proposition
5.22 it follows that

µ (A) = µ (Ω)− µ (Ac) = µ (Ω)− ↑ lim
n→∞

µ (Acn)

=↓ lim
n→∞

[µ (Ω)− µ (Acn)] =↓ lim
n→∞

µ (An) .

3. Suppose A,B ∈ Aδ and An, Bn ∈ A such that An ↓ A and Bn ↓ B, then
An ∪Bn ↓ A ∪B and An ∩Bn ↓ A ∩B and therefore,

µ (A ∪B) + µ (A ∩B) = lim
n→∞

[µ (An ∪Bn) + µ (An ∩Bn)]

= lim
n→∞

[µ (An) + µ (Bn)] = µ (A) + µ (B) .

All we really need is the finite additivity of µ which can be proved as follows.
Suppose that A,B ∈ Aδ are disjoint, then A∩B = ∅ implies Ac ∪Bc = Ω.
So by the strong additivity of µ on Aσ it follows that

µ (Ω) + µ (Ac ∩Bc) = µ (Ac) + µ (Bc)

from which it follows that

µ (A ∪B) = µ (Ω)− µ (Ac ∩Bc)
= µ (Ω)− [µ (Ac) + µ (Bc)− µ (Ω)]
= µ (A) + µ (B) .

4. Since Ac, C ∈ Aσ we may use the strong additivity of µ on Aσ to conclude,

µ (Ac ∪ C) + µ (Ac ∩ C) = µ (Ac) + µ (C) .

Because Ω = Ac ∪C, and µ (Ac) = µ (Ω)− µ (A) , the above equation may
be written as

µ (Ω) + µ (C \A) = µ (Ω)− µ (A) + µ (C)

which finishes the proof.

Notation 5.24 (Inner and outer measures) Let µ : A → [0,∞) be a finite
premeasure extended to Aσ ∪ Aδ as above. The for any B ⊂ Ω let

µ∗ (B) := sup {µ (A) : Aδ 3 A ⊂ B} and
µ∗ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} .

We refer to µ∗ (B) and µ∗ (B) as the inner and outer content of B respec-
tively.

If B ⊂ Ω has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem 5.27 below, this
extension becomes a σ – additive measure on a σ – algebra of subsets of Ω.

Definition 5.25 (Measurable Sets). Suppose µ is a finite premeasure on an
algebra A ⊂ 2Ω . We say that B ⊂ Ω is measurable if µ∗ (B) = µ∗ (B) . We
will denote the collection of measurable subsets of Ω by B = B (µ) and define
µ̄ : B → [0, µ (Ω)] by

µ̄ (B) := µ∗ (B) = µ∗ (B) for all B ∈ B. (5.7)
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Remark 5.26. Observe that µ∗ (B) = µ∗ (B) iff for all ε > 0 there exists A ∈ Aδ
and C ∈ Aσ such that A ⊂ B ⊂ C and

µ (C \A) = µ (C)− µ (A) < ε,

wherein we have used Lemma 5.23 for the first equality. Moreover we will use
below that if B ∈ B and Aδ 3 A ⊂ B ⊂ C ∈ Aσ, then

µ (A) ≤ µ∗ (B) = µ̄ (B) = µ∗ (B) ≤ µ (C) . (5.8)

Theorem 5.27 (Finite Premeasure Extension Theorem). Suppose µ is a
finite premeasure on an algebra A ⊂ 2Ω and µ̄ : B := B (µ) → [0, µ (Ω)] be as
in Definition 5.25. Then B is a σ – algebra on Ω which contains A and µ̄ is a
σ – additive measure on B. Moreover, µ̄ is the unique measure on B such that
µ̄|A = µ.

Proof. It is clear that A ⊂ B and that B is closed under complementation.
Now suppose that Bi ∈ B for i = 1, 2 and ε > 0 is given. We may then
choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε for
i = 1, 2. Then with A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, we have
Aδ 3 A ⊂ B ⊂ C ∈ Aσ. Since

C \A = (C1 \A) ∪ (C2 \A) ⊂ (C1 \A1) ∪ (C2 \A2) ,

it follows from the sub-additivity of µ that with

µ (C \A) ≤ µ (C1 \A1) + µ (C2 \A2) < 2ε.

Since ε > 0 was arbitrary, we have shown that B ∈ B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a σ – algebra it suffices to show
that B =

∑∞
n=1Bn ∈ B whenever {Bn}∞n=1 is a disjoint sequence in B. To prove

B ∈ B, let ε > 0 be given and choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ,
and µ (Ci \Ai) < ε2−i for all i. Since the {Ai}∞i=1 are pairwise disjoint we may
use Lemma 5.23 to show,

n∑
i=1

µ (Ci) =
n∑
i=1

(µ (Ai) + µ (Ci \Ai))

= µ (∪ni=1Ai) +
n∑
i=1

µ (Ci \Ai) ≤ µ (Ω) +
n∑
i=1

ε2−i.

Passing to the limit, n→∞, in this equation then shows

∞∑
i=1

µ (Ci) ≤ µ (Ω) + ε <∞. (5.9)

Let B = ∪∞i=1Bi, C := ∪∞i=1Ci ∈ Aσ and for n ∈ N let An :=
∑n
i=1Ai ∈ Aδ.

Then Aδ 3 An ⊂ B ⊂ C ∈ Aσ, C \An ∈ Aσ and

C \An = ∪∞i=1 (Ci \An) ⊂ [∪ni=1 (Ci \Ai)] ∪
[
∪∞i=n+1Ci

]
∈ Aσ.

Therefore, using the sub-additivity of µ on Aσ and the estimate in Eq. (5.9),

µ (C \An) ≤
n∑
i=1

µ (Ci \Ai) +
∞∑

i=n+1

µ (Ci)

≤ ε+
∞∑

i=n+1

µ (Ci)→ ε as n→∞.

Since ε > 0 is arbitrary, it follows that B ∈ B and that

n∑
i=1

µ (Ai) = µ (An) ≤ µ̄ (B) ≤ µ (C) ≤
∞∑
i=1

µ (Ci) .

Letting n→∞ in this equation then shows,

∞∑
i=1

µ (Ai) ≤ µ̄ (B) ≤
∞∑
i=1

µ (Ci) . (5.10)

On the other hand, since Ai ⊂ Bi ⊂ Ci, it follows (see Eq. (5.8) that

∞∑
i=1

µ (Ai) ≤
∞∑
i=1

µ̄ (Bi) ≤
∞∑
i=1

µ (Ci) . (5.11)

As
∞∑
i=1

µ (Ci)−
∞∑
i=1

µ (Ai) =
∞∑
i=1

µ (Ci \Ai) ≤
∞∑
i=1

ε2−i = ε,

we may conclude from Eqs. (5.10) and (5.11) that∣∣∣∣∣µ̄ (B)−
∞∑
i=1

µ̄ (Bi)

∣∣∣∣∣ ≤ ε.
Since ε > 0 is arbitrary, we have shown µ̄ (B) =

∑∞
i=1 µ̄ (Bi) . This completes

the proof that B is a σ - algebra and that µ̄ is a measure on B.
Since we really had no choice as to how to extend µ, it is to be expected

that the extension is unique. You are asked to supply the details in Exercise 5.3
below.
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Exercise 5.3. Let µ, µ̄, A, and B := B (µ) be as in Theorem 5.27. Further
suppose that B0 ⊂ 2Ω is a σ – algebra such that A ⊂ B0 ⊂ B and ν : B0 →
[0, µ (Ω)] is a σ – additive measure on B0 such that ν = µ on A. Show that
ν = µ̄ on B0 as well. (When B0 = σ (A) this exercise is of course a consequence
of Proposition 5.15. It is not necessary to use this information to complete the
exercise.)

Corollary 5.28. Suppose that A ⊂ 2Ω is an algebra and µ : B0 := σ (A) →
[0, µ (Ω)] is a σ – additive measure. Then for every B ∈ σ (A) and ε > 0;

1. there exists Aδ 3 A ⊂ B ⊂ C ∈ Aσand ε > 0 such that µ (C \A) < ε and
2. there exists A ∈ A such that µ (A∆B) < ε.

Exercise 5.4. Prove corollary 5.28 by considering ν̄ where ν := µ|A. Hint:
you may find Exercise 4.3 useful here.

Theorem 5.29. Suppose that µ is a σ – finite premeasure on an algebra A.
Then

µ̄ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ∈ σ (A) (5.12)

defines a measure on σ (A) and this measure is the unique extension of µ on A
to a measure on σ (A) .

Proof. Let {Ωn}∞n=1 ⊂ A be chosen so that µ (Ωn) <∞ for all n and Ωn ↑
Ω as n→∞ and let

µn (A) := µn (A ∩Ωn) for all A ∈ A.

Each µn is a premeasure (as is easily verified) on A and hence by Theorem 5.27
each µn has an extension, µ̄n, to a measure on σ (A) . Since the measure µ̄n are
increasing, µ̄ := limn→∞ µ̄n is a measure which extends µ.

The proof will be completed by verifying that Eq. (5.12) holds. Let B ∈
σ (A) , Bm = Ωm ∩ B and ε > 0 be given. By Theorem 5.27, there exists
Cm ∈ Aσ such that Bm ⊂ Cm ⊂ Ωm and µ̄(Cm \Bm) = µ̄m(Cm \Bm) < ε2−n.
Then C := ∪∞m=1Cm ∈ Aσ and

µ̄(C \B) ≤ µ̄

( ∞⋃
m=1

(Cm \B)

)
≤
∞∑
m=1

µ̄(Cm \B) ≤
∞∑
m=1

µ̄(Cm \Bm) < ε.

Thus
µ̄ (B) ≤ µ̄ (C) = µ̄ (B) + µ̄(C \B) ≤ µ̄ (B) + ε

which, since ε > 0 is arbitrary, shows µ̄ satisfies Eq. (5.12). The uniqueness of
the extension µ̄ is proved in Exercise 5.11.

The following slight reformulation of Theorem 5.29 can be useful.

Corollary 5.30. Let A be an algebra of sets, {Ωm}∞m=1 ⊂ A is a given sequence
of sets such that Ωm ↑ Ω as m→∞. Let

Af := {A ∈ A : A ⊂ Ωm for some m ∈ N} .

Notice that Af is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that µ : Af → [0,∞) is an additive
set function such that µ (An) ↓ 0 for any sequence, {An} ⊂ Af such that An ↓ ∅
as n→∞. Then µ extends uniquely to a σ – finite measure on A.

Proof. Existence. By assumption, µm := µ|AΩm : AΩm → [0,∞) is a
premeasure on (Ωm,AΩm) and hence by Theorem 5.29 extends to a measure
µ′m on (Ωm, σ (AΩm) = BΩm) . Let µ̄m (B) := µ′m (B ∩Ωm) for all B ∈ B.
Then {µ̄m}∞m=1 is an increasing sequence of measure on (Ω,B) and hence µ̄ :=
limm→∞ µ̄m defines a measure on (Ω,B) such that µ̄|Af = µ.

Uniqueness. If µ1 and µ2 are two such extensions, then µ1 (Ωm ∩B) =
µ2 (Ωm ∩B) for all B ∈ A and therefore by Proposition 5.15 or Exercise 5.11
we know that µ1 (Ωm ∩B) = µ2 (Ωm ∩B) for all B ∈ B. We may now let
m→∞ to see that in fact µ1 (B) = µ2 (B) for all B ∈ B, i.e. µ1 = µ2.

5.4 Radon Measures on R

We say that a measure, µ, on (R,BR) is a Radon measure if µ ([a, b]) < ∞
for all −∞ < a < b < ∞. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 5.31. Suppose that S ⊂ 2Ω is a semi-algebra, A = A(S) and
µ : A → [0,∞] is a finitely additive measure. Then µ is a premeasure on A iff
µ is countably sub-additive on S.

Proof. Clearly if µ is a premeasure on A then µ is σ - additive and hence
sub-additive on S. Because of Proposition 4.2, to prove the converse it suffices
to show that the sub-additivity of µ on S implies the sub-additivity of µ on A.

So suppose A =
∑∞
n=1An ∈ A with each An ∈ A . By Proposition 3.25 we

may write A =
∑k
j=1Ej and An =

∑Nn
i=1En,i with Ej , En,i ∈ S. Intersecting

the identity, A =
∑∞
n=1An, with Ej implies

Ej = A ∩ Ej =
∞∑
n=1

An ∩ Ej =
∞∑
n=1

Nn∑
i=1

En,i ∩ Ej .

By the assumed sub-additivity of µ on S,
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µ(Ej) ≤
∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =
k∑
j=1

µ(Ej) ≤
k∑
j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=
∞∑
n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =
∞∑
n=1

Nn∑
i=1

µ (En,i) =
∞∑
n=1

µ (An) .

Suppose now that µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that

µ ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞. (5.13)

For example if µ (R) <∞ we can take F (x) = µ ((−∞, x]) while if µ (R) =∞
we might take

F (x) =
{
µ ((0, x]) if x ≥ 0
−µ ((x, 0]) if x ≤ 0 .

The function F is uniquely determined modulo translation by a constant.

Lemma 5.32. If µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that µ ((a, b]) = F (b)− F (a) , then F is increasing and right continuous.

Proof. The function F is increasing by the monotonicity of µ. To see that
F is right continuous, let b ∈ R and choose a ∈ (−∞, b) and any sequence
{bn}∞n=1 ⊂ (b,∞) such that bn ↓ b as n → ∞. Since µ ((a, b1]) < ∞ and
(a, bn] ↓ (a, b] as n→∞, it follows that

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b).

The key result of this section is the converse to this lemma.

Theorem 5.33. Suppose F : R→ R is a right continuous increasing function.
Then there exists a unique Radon measure, µ = µF , on (R,BR) such that Eq.
(5.13) holds.

Proof. Let S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} , and A = A (S) consists
of those sets, A ⊂ R which may be written as finite disjoint unions of sets
from S as in Example 3.26. Recall that BR = σ (A) = σ (S) . Further define
F (±∞) := limx→±∞ F (x) and let µ = µF be the finitely additive measure

on (R,A) described in Proposition 4.8 and Remark 4.9. To finish the proof it
suffices by Theorem 5.29 to show that µ is a premeasure on A = A (S) where
S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} . So in light of Proposition 5.31, to finish
the proof it suffices to show µ is sub-additive on S, i.e. we must show

µ(J) ≤
∞∑
n=1

µ(Jn). (5.14)

where J =
∑∞
n=1 Jn with J = (a, b] ∩ R and Jn = (an, bn] ∩ R. Recall from

Proposition 4.2 that the finite additivity of µ implies

∞∑
n=1

µ(Jn) ≤ µ (J) . (5.15)

We begin with the special case where −∞ < a < b <∞. Our proof will be
by “continuous induction.” The strategy is to show a ∈ Λ where

Λ :=

{
α ∈ [a, b] : µ(J ∩ (α, b]) ≤

∞∑
n=1

µ(Jn ∩ (α, b])

}
. (5.16)

As b ∈ J, there exists an k such that b ∈ Jk and hence (ak, bk] = (ak, b] for this
k. It now easily follows that Jk ⊂ Λ so that Λ is not empty. To finish the proof
we are going to show ā := inf Λ ∈ Λ and that ā = a.

• If ā /∈ Λ, there would exist αm ∈ Λ such that αm ↓ ā, i.e.

µ(J ∩ (αm, b]) ≤
∞∑
n=1

µ(Jn ∩ (αm, b]). (5.17)

Since µ(Jn ∩ (αm, b]) ≤ µ(Jn) and
∑∞
n=1 µ (Jn) ≤ µ (J) <∞ by Eq. (5.15),

we may use the right continuity of F and the dominated convergence the-
orem for sums in order to pass to the limit as m → ∞ in Eq. (5.17) to
learn,

µ(J ∩ (ā, b]) ≤
∞∑
n=1

µ(Jn ∩ (ā, b]).

This shows ā ∈ Λ which is a contradiction to the original assumption that
ā /∈ Λ.

• If ā > a, then ā ∈ Jl = (al, bl] for some l. Letting α = al < ā, we have,
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µ(J ∩ (α, b]) = µ(J ∩ (α, ā]) + µ(J ∩ (ā, b])

≤ µ(Jl ∩ (α, ā]) +
∞∑
n=1

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, ā]) + µ (Jl ∩ (ā, b]) +
∑
n6=l

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, b]) +
∑
n6=l

µ(Jn ∩ (ā, b])

≤
∞∑
n=1

µ(Jn ∩ (α, b]).

This shows α ∈ Λ and α < ā which violates the definition of ā. Thus we
must conclude that ā = a.

The hard work is now done but we still have to check the cases where
a = −∞ or b =∞. For example, suppose that b =∞ so that

J = (a,∞) =
∞∑
n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =
∞∑
n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑
n=1

µ(Jn ∩ IM ) ≤
∞∑
n=1

µ(Jn).

Now let M →∞ in this last inequality to find that

µ((a,∞)) = F (∞)− F (a) ≤
∞∑
n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b =∞ are handled
similarly.

5.4.1 Lebesgue Measure

If F (x) = x for all x ∈ R, we denote µF by m and call m Lebesgue measure on
(R,BR) .

Theorem 5.34. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (5.18)

Lebesgue measure, m, is the unique measure on BR such that m((0, 1]) = 1 and
Eq. (5.18) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (5.19)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x+B), then one easily shows that mx is a measure

on BR such that mx((a, b]) = b − a for all a < b. Therefore, mx = m by
the uniqueness assertion in Exercise 5.11. For the converse, suppose that m is
translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

(
k − 1
n

+ (0,
1
n

]
)
.

Therefore,

1 = m((0, 1]) =
n∑
k=1

m

(
k − 1
n

+ (0,
1
n

]
)

=
n∑
k=1

m((0,
1
n

]) = n ·m((0,
1
n

]).

That is to say

m((0,
1
n

]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (5.19) we may assume that λ 6= 0
since this case is trivial to prove. Now let mλ(B) := |λ|−1

m(λB). It is easily
checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
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5.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let S be a finite or countable set (we refer to S as state space),
Ω := S∞ := SN (think of N as time and Ω as path space)

An := {B ×Ω : B ⊂ Sn} for all n ∈ N,

A := ∪∞n=1An, and B := σ (A) . We call the elements, A ⊂ Ω, the cylinder
subsets of Ω. Notice that A ⊂ Ω is a cylinder set iff there exists n ∈ N and
B ⊂ Sn such that

A = B ×Ω := {ω ∈ Ω : (ω1, . . . , ωn) ∈ B} .

Also observe that we may write A as A = B′ ×Ω where B′ = B × Sk ⊂ Sn+k

for any k ≥ 0.

Exercise 5.5. Show;

1. An is a σ – algebra for each n ∈ N,
2. An ⊂ An+1 for all n, and
3. A ⊂ 2Ω is an algebra of subsets of Ω. (In fact, you might show that
A = ∪∞n=1An is an algebra whenever {An}∞n=1 is an increasing sequence
of algebras.)

Lemma 5.35 (Baby Tychonov Theorem). Suppose {Cn}∞n=1 ⊂ A is a de-
creasing sequence of non-empty cylinder sets. Further assume there exists
Nn ∈ N and Bn ⊂⊂ SNn such that Cn = Bn × Ω. (This last assumption is
vacuous when S is a finite set. Recall that we write Λ ⊂⊂ A to indicate that Λ
is a finite subset of A.) Then ∩∞n=1Cn 6= ∅.

Proof. Since Cn+1 ⊂ Cn, if Nn > Nn+1, we would have Bn+1×SNn+1−Nn ⊂
Bn. If S is an infinite set this would imply Bn is an infinite set and hence we
must have Nn+1 ≥ Nn for all n when # (S) = ∞. On the other hand, if S is
a finite set, we can always replace Bn+1 by Bn+1 × Sk for some appropriate
k and arrange it so that Nn+1 ≥ Nn for all n. So from now we assume that
Nn+1 ≥ Nn.

Case 1. limn→∞Nn <∞ in which case there exists some N ∈ N such that
Nn = N for all large n. Thus for large N, Cn = Bn × Ω with Bn ⊂⊂ SN and
Bn+1 ⊂ Bn and hence # (Bn) ↓ as n→∞. By assumption, limn→∞# (Bn) 6= 0
and therefore # (Bn) = k > 0 for all n large. It then follows that there exists
n0 ∈ N such that Bn = Bn0 for all n ≥ n0. Therefore ∩∞n=1Cn = Bn0 ×Ω 6= ∅.

Case 2. limn→∞Nn = ∞. By assumption, there exists ω (n) =
(ω1 (n) , ω2 (n) , . . . ) ∈ Ω such that ω (n) ∈ Cn for all n. Moreover, since
ω (n) ∈ Cn ⊂ Ck for all k ≤ n, it follows that

(ω1 (n) , ω2 (n) , . . . , ωNk (n)) ∈ Bk for all n ≥ k (5.20)

and as Bk is a finite set {ωi (n)}∞n=1 must be a finite set for all 1 ≤ i ≤ Nk.
As Nk → ∞ as k → ∞ it follows that {ωi (n)}∞n=1 is a finite set for all i ∈ N.
Using this observation, we may find, s1 ∈ S and an infinite subset, Γ1 ⊂ N such
that ω1 (n) = s1 for all n ∈ Γ1. Similarly, there exists s2 ∈ S and an infinite
set, Γ2 ⊂ Γ1, such that ω2 (n) = s2 for all n ∈ Γ2. Continuing this procedure
inductively, there exists (for all j ∈ N) infinite subsets, Γj ⊂ N and points
sj ∈ S such that Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . and ωj (n) = sj for all n ∈ Γj .

We are now going to complete the proof by showing s := (s1, s2, . . . ) ∈
∩∞n=1Cn. By the construction above, for all N ∈ N we have

(ω1 (n) , . . . , ωN (n)) = (s1, . . . , sN ) for all n ∈ ΓN .

Taking N = Nk and n ∈ ΓNk with n ≥ k, we learn from Eq. (5.20) that

(s1, . . . , sNk) = (ω1 (n) , . . . , ωNk (n)) ∈ Bk.

But this is equivalent to showing s ∈ Ck. Since k ∈ N was arbitrary it follows
that s ∈ ∩∞n=1Cn.

Let S̄ := S is S is a finite set and S̄ = S ∪ {∞} if S is an infinite set. Here,
∞, is simply another point not in S which we call infinity Let {xn}∞n=1 ⊂ S̄
be a sequence, then we way limn→∞ xn = ∞ if for every A ⊂⊂ S, xn /∈ A for
almost all n and we say that limn→∞ xn = s ∈ S if xn = s for almost all n.
For example this is the usual notion of convergence for S =

{
1
n : n ∈ N

}
and

S̄ = S ∪ {0} ⊂ [0, 1] , where 0 is playing the role of infinity here. Observe that
either limn→∞ xn = ∞ or there exists a finite subset F ⊂ S such that xn ∈ F
infinitely often. Moreover, there must be some point, s ∈ F such that xn = s
infinitely often. Thus if we let {n1 < n2 < . . . } ⊂ N be chosen such that xnk = s
for all k, then limk→∞ xnk = s. Thus we have shown that every sequence in S̄
has a convergent subsequence.

Lemma 5.36 (Baby Tychonov Theorem I.). Let Ω̄ := S̄N and {ω (n)}∞n=1

be a sequence in Ω̄. Then there is a subsequence, {nk}∞k=1 of {n}∞n=1 such that
limk→∞ ω (nk) exists in Ω̄ by which we mean, limk→∞ ωi (nk) exists in S̄ for
all i ∈ N.

Proof. This follows by the usual cantor’s diagonalization argument. Indeed,
let
{
n1
k

}∞
k=1
⊂ {n}∞n=1 be chosen so that limk→∞ ω1

(
n1
k

)
= s1 ∈ S̄ exists. Then

choose
{
n2
k

}∞
k=1
⊂
{
n1
k

}∞
k=1

so that limk→∞ ω2

(
n2
k

)
= s2 ∈ S̄ exists. Continue

on this way to inductively choose{
n1
k

}∞
k=1
⊃
{
n2
k

}∞
k=1
⊃ · · · ⊃

{
nlk
}∞
k=1
⊃ . . .

such that limk→∞ ωl
(
nlk
)

= sl ∈ S̄. The subsequence, {nk}∞k=1 of {n}∞n=1 , may
now be defined by, nk = nkk.
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Corollary 5.37 (Baby Tychonov Theorem II.). Suppose that {Fn}∞n=1 ⊂
Ω̄ is decreasing sequence of non-empty sets which are closed under taking se-
quential limits, then ∩∞n=1Fn 6= ∅.

Proof. Since Fn 6= ∅ there exists ω (n) ∈ Fn for all n. Using Lemma 5.36,
there exists {nk}∞k=1 ⊂ {n}

∞
n=1 such that ω := limk→∞ ω (nk) exits in Ω̄. Since

ω (nk) ∈ Fn for all k ≥ n, it follows that ω ∈ Fn for all n, i.e. ω ∈ ∩∞n=1Fn and
hence ∩∞n=1Fn 6= ∅.

Example 5.38. Suppose that 1 ≤ N1 < N2 < N3 < . . . , Fn = Kn × Ω with
Kn ⊂⊂ SNn such that {Fn}∞n=1 ⊂ Ω is a decreasing sequence of non-empty sets.
Then ∩∞n=1Fn 6= ∅. To prove this, let F̄n := Kn × Ω̄ in which case F̄n are non –
empty sets closed under taking limits. Therefore by Corollary 5.37, ∩nF̄n 6= ∅.
This completes the proof since it is easy to check that ∩∞n=1Fn = ∩nF̄n 6= ∅.

Corollary 5.39. If S is a finite set and {An}∞n=1 ⊂ A is a decreasing sequence
of non-empty cylinder sets, then ∩∞n=1An 6= ∅.

Proof. This follows directly from Example 5.38 since necessarily, An =
Kn ×Ω, for some Kn ⊂⊂ SNn .

Theorem 5.40 (Kolmogorov’s Extension Theorem I.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A → [0, 1] , has a unique extension to
a probability measure on B := σ (A) .

Proof. From Theorem 5.27, it suffices to show limn→∞ P (An) = 0 whenever
{An}∞n=1 ⊂ A with An ↓ ∅. However, by Lemma 5.35 with Cn = An, An ∈ A
and An ↓ ∅, we must have that An = ∅ for a.a. n and in particular P (An) = 0
for a.a. n. This certainly implies limn→∞ P (An) = 0.

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : σ (A) → [0, 1] is a probability
measure and for n ∈ N and (s1, . . . , sn) ∈ Sn, let

pn (s1, . . . , sn) := P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) . (5.21)

Exercise 5.6 (Consistency Conditions). If pn is defined as above, show:

1.
∑
s∈S p1 (s) = 1 and

2. for all n ∈ N and (s1, . . . , sn) ∈ Sn,

pn (s1, . . . , sn) =
∑
s∈S

pn+1 (s1, . . . , sn, s) .

Exercise 5.7 (Converse to 5.6). Suppose for each n ∈ N we are given func-
tions, pn : Sn → [0, 1] such that the consistency conditions in Exercise 5.6 hold.
Then there exists a unique probability measure, P on σ (A) such that Eq. (5.21)
holds for all n ∈ N and (s1, . . . , sn) ∈ Sn.

Example 5.41 (Existence of iid simple R.V.s). Suppose now that q : S → [0, 1]
is a function such that

∑
s∈S q (s) = 1. Then there exists a unique probability

measure P on σ (A) such that, for all n ∈ N and (s1, . . . , sn) ∈ Sn, we have

P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) = q (s1) . . . q (sn) .

This is a special case of Exercise 5.7 with pn (s1, . . . , sn) := q (s1) . . . q (sn) .

Theorem 5.42 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A → [0, 1] is a finitely additive measure such
that P |An is a σ – additive measure for each n ∈ N. Then P extends uniquely
to a probability measure on B := σ (A) .

Proof. From Theorem 5.27 it suffice to show; if {Am}∞n=1 ⊂ A is a decreas-
ing sequence of subsets such that ε := infm P (Am) > 0, then ∩∞m=1Am 6= ∅.
You are asked to verify this property of P in the next couple of exercises.

For the next couple of exercises the hypothesis of Theorem 5.42 are to be
assumed.

Exercise 5.8. Show for each n ∈ N, A ∈ An, and ε > 0 are given. Show there
exists F ∈ An such that F ⊂ A, F = K×Ω with K ⊂⊂ Sn, and P (A \ F ) < ε.

Exercise 5.9. Let {Am}∞n=1 ⊂ A be a decreasing sequence of subsets such that
ε := infm P (Am) > 0. Using Exercise 5.8, choose Fm = Km × Ω ⊂ Am with
Km ⊂⊂ SNn and P (Am \ Fm) ≤ ε/2m+1. Further define Cm := F1 ∩ · · · ∩ Fm
for each m. Show;

1. Show Am \ Cm ⊂ (A1 \ F1) ∪ (A2 \ F2) ∪ · · · ∪ (Am \ Fm) and use this to
conclude that P (Am \ Cm) ≤ ε/2.

2. Conclude Cm is not empty for m.
3. Use Lemma 5.35 to conclude that ∅ 6= ∩∞m=1Cm ⊂ ∩∞m=1Am.

Exercise 5.10. Convince yourself that the results of Exercise 5.6 and 5.7 are
valid when S is a countable set. (See Example 4.6.)

In summary, the main result of this section states, to any sequence of
functions, pn : Sn → [0, 1] , such that

∑
λ∈Sn pn (λ) = 1 and

∑
s∈S pn+1 (λ, s) =

pn (λ) for all n and λ ∈ Sn, there exists a unique probability measure, P, on
B := σ (A) such that

P (B ×Ω) =
∑
λ∈B

pn (λ) ∀ B ⊂ Sn and n ∈ N.

Example 5.43 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S × S → [0, 1] be a Markov kernel, i.e.
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y∈S

p (x, y) = 1 for all x ∈ S. (5.22)

Also let π : S → [0, 1] be a probability function, i.e.
∑
x∈S π (x) = 1. We now

take
Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S}

and let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn for all n ∈ N0.

Then there exists a unique probability measure, Pπ, on σ (A) such that

Pπ (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn)

for all n ∈ N0 and x0, x1, . . . , xn ∈ S. To see such a measure exists, we need
only verify that

pn (x0, . . . , xn) := π (x0) p (x0, x1) . . . p (xn−1, xn)

verifies the hypothesis of Exercise 5.6 taking into account a shift of the n –
index.

5.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 5.44 (Finite Regularity Result). Suppose A ⊂ 2Ω is an algebra,
B = σ (A) and µ : B → [0,∞) is a finite measure, i.e. µ (Ω) < ∞. Then for
every ε > 0 and B ∈ B there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C
and µ (C \A) < ε.

Proof. Let B0 denote the collection of B ∈ B such that for every ε > 0
there here exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε.
It is now clear that A ⊂ B0 and that B0 is closed under complementation. Now
suppose that Bi ∈ B0 for i = 1, 2, . . . and ε > 0 is given. By assumption there
exists Ai ∈ Aδ and Ci ∈ Aσ such that Ai ⊂ Bi ⊂ Ci and µ (Ci \Ai) < 2−iε.

Let A := ∪∞i=1Ai, A
N := ∪Ni=1Ai ∈ Aδ, B := ∪∞i=1Bi, and C := ∪∞i=1Ci ∈

Aσ. Then AN ⊂ A ⊂ B ⊂ C and

C \A = [∪∞i=1Ci] \A = ∪∞i=1 [Ci \A] ⊂ ∪∞i=1 [Ci \Ai] .

Therefore,

µ (C \A) = µ (∪∞i=1 [Ci \A]) ≤
∞∑
i=1

µ (Ci \A) ≤
∞∑
i=1

µ (Ci \Ai) < ε.

Since C \ AN ↓ C \ A, it also follows that µ
(
C \AN

)
< ε for sufficiently large

N and this shows B = ∪∞i=1Bi ∈ B0. Hence B0 is a sub-σ-algebra of B = σ (A)
which contains A which shows B0 = B.

Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.

Definition 5.45. Suppose Ω is a set, E ⊂ B ⊂ 2Ω and µ : B → [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) < ∞ and Ω = ∪∞n=1En. If B is a σ – algebra and µ is a measure on B
which is σ – finite on B we will say (Ω,B, µ) is a σ – finite measure space.

The reader should check that if µ is a finitely additive measure on an algebra,
B, then µ is σ – finite on B iff there exists Ωn ∈ B such that Ωn ↑ Ω and
µ(Ωn) <∞.

Corollary 5.46 (σ – Finite Regularity Result). Theorem 5.44 continues
to hold under the weaker assumption that µ : B → [0,∞] is a measure which is
σ – finite on A.

Proof. Let Ωn ∈ A such that ∪∞n=1Ωn = Ω and µ(Ωn) <∞ for all n.Since
A ∈ B →µn (A) := µ (Ωn ∩A) is a finite measure on A ∈ B for each n, by
Theorem 5.44, for every B ∈ B there exists Cn ∈ Aσ such that B ⊂ Cn and
µ (Ωn ∩ [Cn \B]) = µn (Cn \B) < 2−nε. Now let C := ∪∞n=1 [Ωn ∩ Cn] ∈ Aσ
and observe that B ⊂ C and

µ (C \B) = µ (∪∞n=1 ([Ωn ∩ Cn] \B))

≤
∞∑
n=1

µ ([Ωn ∩ Cn] \B) =
∞∑
n=1

µ (Ωn ∩ [Cn \B]) < ε.

Applying this result to Bc shows there exists D ∈ Aσ such that Bc ⊂ D and

µ (B \Dc) = µ (D \Bc) < ε.

So if we let A := Dc ∈ Aδ, then A ⊂ B ⊂ C and

µ (C \A) = µ ([B \A] ∪ [(C \B) \A]) ≤ µ (B \A) + µ (C \B) < 2ε

and the result is proved.
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Exercise 5.11. Suppose A ⊂ 2Ω is an algebra and µ and ν are two measures
on B = σ (A) .

a. Suppose that µ and ν are finite measures such that µ = ν on A. Show
µ = ν.

b. Generalize the previous assertion to the case where you only assume that
µ and ν are σ – finite on A.

Corollary 5.47. Suppose A ⊂ 2Ω is an algebra and µ : B = σ (A) → [0,∞] is
a measure which is σ – finite on A. Then for all B ∈ B, there exists A ∈ Aδσ
and C ∈ Aσδ such that A ⊂ B ⊂ C and µ (C \A) = 0.

Proof. By Theorem 5.44, given B ∈ B, we may choose An ∈ Aδ and
Cn ∈ Aσ such that An ⊂ B ⊂ Cn and µ(Cn \B) ≤ 1/n and µ(B \ An) ≤ 1/n.
By replacing AN by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑
and Cn ↓ as n increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then
A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)
≤ 2/n→ 0 as n→∞.

Exercise 5.12. Let B = BRn = σ ({open subsets of Rn}) be the Borel σ –
algebra on Rn and µ be a probability measure on B. Further, let B0 denote
those sets B ∈ B such that for every ε > 0 there exists F ⊂ B ⊂ V such that
F is closed, V is open, and µ (V \ F ) < ε. Show:

1. B0 contains all closed subsets of B. Hint: given a closed subset, F ⊂ Rn and
k ∈ N, let Vk := ∪x∈FB (x, 1/k) , where B (x, δ) := {y ∈ Rn : |y − x| < δ} .
Show, Vk ↓ F as k →∞.

2. Show B0 is a σ – algebra and use this along with the first part of this
exercise to conclude B = B0. Hint: follow closely the method used in the
first step of the proof of Theorem 5.44.

3. Show for every ε > 0 and B ∈ B, there exist a compact subset,K ⊂ Rn, such
that K ⊂ B and µ (B \K) < ε. Hint: take K := F ∩ {x ∈ Rn : |x| ≤ n}
for some sufficiently large n.

5.7 Appendix: Completions of Measure Spaces*

Definition 5.48. A set E ⊂ Ω is a null set if E ∈ B and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ Ω, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ Ω : P is false for x}

is a null set. For example if f and g are two measurable functions on (Ω,B, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 5.49. A measure space (Ω,B, µ) is complete if every subset of a
null set is in B, i.e. for all F ⊂ Ω such that F ⊂ E ∈ B with µ(E) = 0 implies
that F ∈ B.

Proposition 5.50 (Completion of a Measure). Let (Ω,B, µ) be a measure
space. Set

N = N µ := {N ⊂ Ω : ∃ F ∈ B such that N ⊂ F and µ(F ) = 0} ,
B = B̄µ := {A ∪N : A ∈ B and N ∈ N} and

µ̄(A ∪N) := µ(A) for A ∈ B and N ∈ N ,

see Fig. 5.2. Then B̄ is a σ – algebra, µ̄ is a well defined measure on B̄, µ̄ is the
unique measure on B̄ which extends µ on B, and (Ω, B̄, µ̄) is complete measure
space. The σ-algebra, B̄, is called the completion of B relative to µ and µ̄, is
called the completion of µ.

Proof. Clearly Ω, ∅ ∈ B̄. Let A ∈ B and N ∈ N and choose F ∈ B such

Fig. 5.2. Completing a σ – algebra.

that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ B. Thus B̄ is closed under
complements. If Ai ∈ B and Ni ⊂ Fi ∈ B such that µ(Fi) = 0 then
∪(Ai ∪ Ni) = (∪Ai) ∪ (∪Ni) ∈ B̄ since ∪Ai ∈ B and ∪Ni ⊂ ∪Fi and
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µ(∪Fi) ≤
∑
µ(Fi) = 0. Therefore, B̄ is a σ – algebra. Suppose A∪N1 = B∪N2

with A,B ∈ B and N1, N2,∈ N . Then A ⊂ A ∪ N1 ⊂ A ∪ N1 ∪ F2 = B ∪ F2

which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure, i.e.
that it is countable additive.

5.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 5.51 (Montone Class). C ⊂ 2Ω is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 5.52 (Monotone Class Theorem*). Suppose A ⊂ 2Ω is an algebra
and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then Bcn ↓ Bc
and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bcn ↓ C ∩Bc and
C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C, i.e.
B ∈ C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C, then
A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows that
A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A ∈ A. Let
B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observation and
the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all B ∈ C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B ∈ C. That is to say, if A,B ∈ C then
A ∈ C = C(B) and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C is closed under
complements (since Ω ∈ A ⊂ C) and finite intersections and increasing unions
from which it easily follows that C is a σ – algebra.
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Random Variables

Notation 6.1 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 6.2. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A→ X be the
inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

The following results will be used frequently (often without further refer-
ence) in the sequel.

Lemma 6.3 (A key measurability lemma). If f : X → Y is a function and
E ⊂ 2Y , then

σ
(
f−1(E)

)
= f−1(σ(E)). (6.1)

In particular, if A ⊂ Y then

(σ(E))A = σ(EA), (6.2)

(Similar assertion hold with σ (·) being replaced by A (·) .)

Proof. Since E ⊂ σ(E), it follows that f−1(E) ⊂ f−1(σ(E)). Moreover, by
Exercise 6.1 below, f−1(σ(E)) is a σ – algebra and therefore,

σ(f−1(E)) ⊂ f−1(σ(E)).

To finish the proof we must show f−1(σ(E)) ⊂ σ(f−1(E)), i.e. that f−1 (B) ∈
σ(f−1(E)) for all B ∈ σ (E) . To do this we follow the usual measure theoretic
mantra, namely let

M :=
{
B ⊂ Y : f−1 (B) ∈ σ(f−1(E))

}
= f∗σ(f−1(E)).

We will now finish the proof by showing σ (E) ⊂ M. This is easily achieved
by observing that M is a σ – algebra (see Exercise 6.1) which contains E and
therefore σ (E) ⊂M.

Equation (6.2) is a special case of Eq. (6.1). Indeed, f = iA : A → X we
have

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).

Exercise 6.1. If f : X → Y is a function and F ⊂ 2Y and B ⊂ 2X are σ –
algebras (algebras), then f−1F and f∗B are σ – algebras (algebras).

Example 6.4. Let E = {(a, b] : −∞ < a < b <∞} and B = σ (E) be the Borel σ
– field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}
and we have

B(0,1] = σ
(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.

6.1 Measurable Functions

Definition 6.5. A measurable space is a pair (X,M), where X is a set and
M is a σ – algebra on X.

To motivate the notion of a measurable function, suppose (X,M, µ) is a
measure space and f : X → R+ is a function. Roughly speaking, we are going
to define

∫
X

fdµ as a certain limit of sums of the form,

∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈ M for all a < b.
Because of Corollary 6.11 below, this last condition is equivalent to the condition
f−1(BR) ⊂M.

Definition 6.6. Let (X,M) and (Y,F) be measurable spaces. A function f :
X → Y is measurable of more precisely, M/F – measurable or (M,F) –
measurable, if f−1(F) ⊂M, i.e. if f−1 (A) ∈M for all A ∈ F .

Remark 6.7. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y , the σ
– algebraM := f−1(F) is the smallest σ – algebra on X such that f is (M,F)
- measurable . Similarly, if M is a σ - algebra on X then

F = f∗M ={A ∈ 2Y |f−1(A) ∈M}

is the largest σ – algebra on Y such that f is (M,F) - measurable.
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Example 6.8 (Indicator Functions). Let (X,M) be a measurable space and A ⊂
X. Then 1A is (M,BR) – measurable iff A ∈ M. Indeed, 1−1

A (W ) is either ∅,
X, A or Ac for any W ⊂ R with 1−1

A ({1}) = A.

Example 6.9. Suppose f : X → Y with Y being a finite or countable set and
F = 2Y . Then f is measurable iff f−1 ({y}) ∈M for all y ∈ Y.

Proposition 6.10. Suppose that (X,M) and (Y,F) are measurable spaces and
further assume E ⊂ F generates F , i.e. F = σ (E) . Then a map, f : X → Y is
measurable iff f−1 (E) ⊂M.

Proof. If f is M/F measurable, then f−1 (E) ⊂ f−1 (F) ⊂M. Conversely
if f−1 (E) ⊂M then σ

(
f−1 (E)

)
⊂M and so making use of Lemma 6.3,

f−1 (F) = f−1 (σ (E)) = σ
(
f−1 (E)

)
⊂M.

Corollary 6.11. Suppose that (X,M) is a measurable space. Then the follow-
ing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Exercise 6.2. Prove Corollary 6.11. Hint: See Exercise 3.7.

Exercise 6.3. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 6.4. Let (X,M) be a measure space and fn : X → R be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in R} ∈ M.
Similarly show the same holds if R is replaced by C.

Exercise 6.5. Show that every monotone function f : R→ R is (BR,BR) –
measurable.

Definition 6.12. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A→ Y is measurable iff f is MA/F – measur-
able.

Proposition 6.13 (Localizing Measurability). Let (X,M) and (Y,F) be
measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is MA/F – measurable.

2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn/F
– measurable for all n, then f is M – measurable.

Proof. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F and
therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈ M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

Lemma 6.14 (Composing Measurable Functions). Suppose that
(X,M), (Y,F) and (Z,G) are measurable spaces. If f : (X,M) → (Y,F) and
g : (Y,F) → (Z,G) are measurable functions then g ◦ f : (X,M) → (Z,G) is
measurable as well.

Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
(
g−1 (G)

)
⊂ f−1 (F) ⊂M.

Definition 6.15 (σ – Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ I} and
functions fα : X → Yα for all α ∈ I. Let σ(fα : α ∈ I) denote the smallest σ –
algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ I) = σ(∪αf−1
α (Fα)).

Example 6.16. Suppose that Y is a finite set, F = 2Y , and X = Y N for some
N ∈ N. Let πi : Y N → Y be the projection maps, πi (y1, . . . , yN ) = yi. Then,
as the reader should check,

σ (π1, . . . , πn) =
{
A× ΛN−n : A ⊂ Λn

}
.

Proposition 6.17. Assuming the notation in Definition 6.15 (so fα : X →
Yα for all α ∈ I) and additionally let (Z,M) be a measurable space. Then

g : Z → X is (M, σ(fα : α ∈ I)) – measurable iff fα ◦ g
(
Z

g→ X
fα→ Yα

)
is

(M,Fα)–measurable for all α ∈ I.

Proof. (⇒) If g is (M, σ(fα : α ∈ I)) – measurable, then the composition
fα ◦ g is (M,Fα) – measurable by Lemma 6.14.
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(⇐) Since σ(fα : α ∈ I) = σ (E) where E := ∪αf−1
α (Fα), according to

Proposition 6.10, it suffices to show g−1 (A) ∈M for A ∈ f−1
α (Fα). But this is

true since if A = f−1
α (B) for some B ∈ Fα, then g−1 (A) = g−1

(
f−1
α (B)

)
=

(fα ◦ g)−1 (B) ∈M because fα ◦ g : Z → Yα is assumed to be measurable.

Definition 6.18. If {(Yα,Fα) : α ∈ I} is a collection of measurable spaces, then
the product measure space, (Y,F) , is Y :=

∏
α∈I Yα, F := σ (πα : α ∈ I) where

πα : Y → Yα is the α – component projection. We call F the product σ – algebra
and denote it by, F = ⊗α∈IFα.

Let us record an important special case of Proposition 6.17.

Corollary 6.19. If (Z,M) is a measure space, then g : Z → Y =
∏
α∈I Yα is

(M,F := ⊗α∈IFα) – measurable iff πα ◦ g : Z → Yα is (M,Fα) – measurable
for all α ∈ I.

As a special case of the above corollary, if A = {1, 2, . . . , n} , then Y =
Y1 × · · · × Yn and g = (g1, . . . , gn) : Z → Y is measurable iff each component,
gi : Z → Yi, is measurable. Here is another closely related result.

Proposition 6.20. Suppose X is a set, {(Yα,Fα) : α ∈ I} is a collection of
measurable spaces, and we are given maps, fα : X → Yα, for all α ∈ I. If
f : X → Y :=

∏
α∈I Yα is the unique map, such that πα ◦ f = fα, then

σ (fα : α ∈ I) = σ (f) = f−1 (F)

where F := ⊗α∈IFα.

Proof. Since πα ◦ f = fα is σ (fα : α ∈ I) /Fα – measurable for all α ∈ I it
follows from Corollary 6.19 that f : X → Y is σ (fα : α ∈ I) /F – measurable.
Since σ (f) is the smallest σ – algebra on X such that f is measurable we may
conclude that σ (f) ⊂ σ (fα : α ∈ I) .

Conversely, for each α ∈ I, fα = πα ◦ f is σ (f) /Fα – measurable for all
α ∈ I being the composition of two measurable functions. Since σ (fα : α ∈ I)
is the smallest σ – algebra on X such that each fα : X → Yα is measurable, we
learn that σ (fα : α ∈ I) ⊂ σ (f) .

Exercise 6.6. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
Ei is a subset of Fi such that Yi ∈ Ei and Fi = σ (Ei) for i = 1 and 2. Show
F1 ⊗F2 = σ (E) where E := {A1 ×A2 : Ai ∈ Ei for i = 1, 2} . Hints:

1. First show that if Y is a set and S1 and S2 are two non-empty sub-
sets of 2Y , then σ (σ (S1) ∪ σ (S2)) = σ (S1 ∪ S2) . (In fact, one has that
σ (∪α∈Iσ (Sα)) = σ (∪α∈ISα) for any collection of non-empty subsets,
{Sα}α∈I ⊂ 2Y .)

2. After this you might start your proof as follows;

F1⊗F2 := σ
(
π−1

1 (F1) ∪ π−1
2 (F2)

)
= σ

(
π−1

1 (σ (E2)) ∪ π−1
2 (σ (E2))

)
= . . . .

Remark 6.21. The reader should convince herself that Exercise 6.6 admits the
following extension. If I is any finite or countable index set, {(Yi,Fi)}i∈I are
measurable spaces and Ei ⊂ Fi are such that Yi ∈ Ei and Fi = σ (Ei) for all
i ∈ I, then

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Ej for all j ∈ I

})
and in particular,

⊗i∈IFi = σ

({∏
i∈I

Ai : Aj ∈ Fj for all j ∈ I

})
.

The last fact is easily verified directly without the aid of Exercise 6.6.

Exercise 6.7. Suppose that (Y1,F1) and (Y2,F2) are measurable spaces and
∅ 6= Bi ⊂ Yi for i = 1, 2. Show

[F1 ⊗F2]B1×B2
= [F1]B1

⊗ [F2]B2
.

Hint: you may find it useful to use the result of Exercise 6.6 with

E := {A1 ×A2 : Ai ∈ Fi for i = 1, 2} .

Definition 6.22. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .

Proposition 6.23. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 6.3 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Example 6.24. For i = 1, 2, . . . , n, let πi : Rn → R be defined by πi (x) = xi.
Then each πi is continuous and therefore BRn/BR – measurable.

Lemma 6.25. Let E denote the collection of open rectangle in Rn, then BRn =
σ (E) . We also have that BRn = σ (π1, . . . , πn) = BR⊗· · ·⊗BR and in particular,
A1 × · · · × An ∈ BRn whenever Ai ∈ BR for i = 1, 2, . . . , n. Therefore BRn may
be described as the σ algebra generated by {A1 × · · · ×An : Ai ∈ BR} . (Also see
Remark 6.21.)
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Proof. Assertion 1. Since E ⊂ BRn , it follows that σ (E) ⊂ BRn . Let

E0 := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) . (6.3)

Since every open set, V ⊂ Rn, may be written as a (necessarily) countable
union of elements from E0, we have

V ∈ σ (E0) ⊂ σ (E) ,

i.e. σ (E0) and hence σ (E) contains all open subsets of Rn. Hence we may
conclude that

BRn = σ (open sets) ⊂ σ (E0) ⊂ σ (E) ⊂ BRn .

Assertion 2. Since each πi : Rn → R is continuous, it is BRn/BR – measur-
able and therefore, σ (π1, . . . , πn) ⊂ BRn . Moreover, if (a, b) is as in Eq. (6.3),
then

(a, b) = ∩ni=1π
−1
i ((ai, bi)) ∈ σ (π1, . . . , πn) .

Therefore, E ⊂ σ (π1, . . . , πn) and BRn = σ (E) ⊂ σ (π1, . . . , πn) .
Assertion 3. If Ai ∈ BR for i = 1, 2, . . . , n, then

A1 × · · · ×An = ∩ni=1π
−1
i (Ai) ∈ σ (π1, . . . , πn) = BRn .

Corollary 6.26. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each i.
In particular, a function f : X → C is (M,BC) – measurable iff Re f and Im f
are (M,BR) – measurable.

Proof. This is an application of Lemma 6.25 and Corollary 6.19 with Yi = R
for each i.

Corollary 6.27. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C
by F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and
M are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC2) –
measurable since π1◦F = f and π2◦F = g are (M,BC) – measurable. Therefore
A±◦F = f±g and M ◦F = f ·g, being the composition of measurable functions,
are also measurable.

Lemma 6.28. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) – measurable function. Then

F (x) :=
{ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \ {0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

Remark 6.29. For the real case of Lemma 6.28, define i as above but now take
z to real. From the plot of i, Figure 6.29, the reader may easily verify that
i−1 ((−∞, a]) is an infinite half interval for all a and therefore i is measurable.
See Example 6.34 for another proof of this fact.
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We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄ defined
by

BR̄ := σ ({[a,∞] : a ∈ R}) . (6.4)

Proposition 6.30 (The Structure of BR̄). Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (6.5)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.

Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,

{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
(
i−1

({
[a,∞] : a ∈ R̄

}))
= σ

({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.

This implies:

1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A∩R ∈BR there exists B ∈ BR̄ such that A∩R = B∩R.

Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude that
A ∈ BR̄ as well.

This proves Eq. (6.5).
The proofs of the next two corollaries are left to the reader, see Exercises

6.8 and 6.9.

Corollary 6.31. Let (X,M) be a measurable space and f : X → R̄ be a func-
tion. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) :=
{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Corollary 6.32. Let (X,M) be a measurable space, f, g : X → R̄ be functions
and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions, 0 ·∞ = 0
and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞ and g (x) =
∞. Then f · g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.8. Prove Corollary 6.31 noting that the equivalence of items 1. – 3.
is a direct analogue of Corollary 6.11. Use Proposition 6.30 to handle item 4.

Exercise 6.9. Prove Corollary 6.32.

Proposition 6.33 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M)→ R for j ∈ N is a sequence of
M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are allM/BR – measurable functions. (Note that this result is in generally false
when (X,M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g+(x) := sup j fj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.

Example 6.34. As we saw in Remark 6.29, i : R→ R defined by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

is measurable by a simple direct argument. For an alternative argument, let

in (z) :=
z

z2 + 1
n

for all n ∈ N.

Then in is continuous and limn→∞ in (z) = i (z) for all z ∈ R from which it
follows that i is Borel measurable.
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Example 6.35. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Then f : R→ R̄ is measurable. Indeed, if

gn (x) =

{
1√
|x−rn|

if x 6= rn

0 if x = rn

then gn (x) =
√
|i (x− rn)| is measurable as the composition of measurable is

measurable. Therefore gn + 5 · 1{rn} is measurable as well. Finally,

f (x) = lim
N→∞

N∑
n=1

2−n
1√
|x− rn|

is measurable since sums of measurable functions are measurable and limits
of measurable functions are measurable. Moral: if you can explicitly write a
function f : R̄→ R̄ down then it is going to be measurable.

Definition 6.36. Given a function f : X → R̄ let f+(x) := max {f(x), 0} and
f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 6.37. Suppose (X,M) is a measurable space and f : X → R̄ is a
function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 6.33 implies f± are measurable.
Conversely if f± are measurable then so is f = f+ − f−.

Definition 6.38. Let (X,M) be a measurable space. A function ϕ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if ϕ is M – BF
measurable and ϕ(X) contains only finitely many elements.

Any such simple functions can be written as

ϕ =
n∑
i=1

λi1Ai with Ai ∈M and λi ∈ F. (6.6)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of ϕ and Ai =
ϕ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

ϕ =
∑
y∈F

y1ϕ−1({y}). (6.7)

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.39 (Approximation Theorem). Let f : X → [0,∞] be measur-
able and define, see Figure 6.1,

ϕn(x) :=
22n−1∑
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + 2n1f−1((2n,∞])(x)

=
22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n }(x) + 2n1{f>2n}(x)

then ϕn ≤ f for all n, ϕn(x) ↑ f(x) for all x ∈ X and ϕn ↑ f uniformly on the
sets XM := {x ∈ X : f(x) ≤M} with M <∞.

Moreover, if f : X → C is a measurable function, then there exists simple
functions ϕn such that limn→∞ ϕn(x) = f(x) for all x and |ϕn| ↑ |f | as n→∞.

Proof. Since f−1
(
( k

2n ,
k+1
2n ]
)

and f−1((2n,∞]) are inM as f is measurable,
ϕn is a measurable simple function for each n. Because

(
k

2n
,
k + 1

2n
] = (

2k
2n+1

,
2k + 1
2n+1

] ∪ (
2k + 1
2n+1

,
2k + 2
2n+1

],

if x ∈ f−1
(
( 2k

2n+1 ,
2k+1
2n+1 ]

)
then ϕn(x) = ϕn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then ϕn(x) = 2k

2n+1 <
2k+1
2n+1 = ϕn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

and so for x ∈ f−1((2n+1,∞]), ϕn(x) = 2n < 2n+1 = ϕn+1(x) and for x ∈
f−1((2n, 2n+1]), ϕn+1(x) ≥ 2n = ϕn(x). Therefore ϕn ≤ ϕn+1 for all n. It is
clear by construction that 0 ≤ ϕn(x) ≤ f(x) for all x and that 0 ≤ f(x) −
ϕn(x) ≤ 2−n if x ∈ X2n = {f ≤ 2n} . Hence we have shown that ϕn(x) ↑ f(x)
for all x ∈ X and ϕn ↑ f uniformly on bounded sets.

For the second assertion, first assume that f : X → R is a measurable
function and choose ϕ±n to be non-negative simple functions such that ϕ±n ↑ f±
as n→∞ and define ϕn = ϕ+

n − ϕ−n . Then (using ϕ+
n · ϕ−n ≤ f+ · f− = 0)

|ϕn| = ϕ+
n + ϕ−n ≤ ϕ+

n+1 + ϕ−n+1 = |ϕn+1|

and clearly |ϕn| = ϕ+
n +ϕ−n ↑ f+ + f− = |f | and ϕn = ϕ+

n −ϕ−n → f+− f− = f
as n → ∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and
vn → Im f as n→∞. Let ϕn = un + ivn, then

|ϕn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and ϕn = un + ivn → Re f + i Im f = f as n→∞.
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Fig. 6.1. Constructing the simple function, ϕ2, approximating a function, f : X →
[0,∞]. The graph of ϕ2 is in red.

6.2 Factoring Random Variables

Lemma 6.40. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, h : Ω → R̄, there is a
(F ,BR̄) – measurable function H : Y→ R̄ such that h = H ◦Y. More generally,
R̄ may be replaced by any “standard Borel space,”1 i.e. a space, (S,BS) which
is measure theoretic isomorphic to a Borel subset of R.

(Ω, σ(Y ))
Y- (Y,F)

(S,BS)

h
? H�

Proof. First suppose that h = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma

1 Standard Borel spaces include almost any measurable space that we will consider in
these notes. For example they include all complete seperable metric spaces equipped
with the Borel σ – algebra, see Section 9.10.

is valid in this case with H = 1B . More generally if h =
∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence h = H ◦Y
with H :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, h, from Ω → R̄, choose simple
functions hn converging to h. Let Hn : Y → R̄ be simple functions such that
hn = Hn ◦ Y. Then it follows that

h = lim
n→∞

hn = lim sup
n→∞

hn = lim sup
n→∞

Hn ◦ Y = H ◦ Y

where H := lim sup
n→∞

Hn – a measurable function from Y to R̄.

For the last assertion we may assume that S ∈ BR and BS = (BR)S =
{A ∩ S : A ∈ BR} . Since iS : S → R is measurable, what we have just proved
shows there exists, H : Y → R̄ which is (F ,BR̄) – measurable such that h =
iS ◦ h = H ◦ Y. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

HS =
{
H|H−1(S) on H−1 (S)
∗ on Y \H−1 (S)

where ∗ is some fixed arbitrary point in S. It follows from Proposition 6.13 that
HS : Y→ S is (F ,BS) – measurable and we still have h = HS ◦ Y as the range
of Y must necessarily be in H−1 (S) .

Here is how this lemma will often be used in these notes.

Corollary 6.41. Suppose that (Ω,B) is a measurable space, Xn : Ω → R are
B/BR – measurable functions, and Bn := σ (X1, . . . , Xn) ⊂ B for each n ∈ N.
Then h : Ω → R is Bn – measurable iff there exists H : Rn → R which is
BRn/BR – measurable such that h = H (X1, . . . , Xn) .

(Ω,Bn = σ (Y ))
Y :=(X1,...,Xn)- (Rn,BRn)

(R,BR)

h
? H�

Proof. By Lemma 6.25 and Corollary 6.19, the map, Y := (X1, . . . , Xn) :
Ω → Rn is (B,BRn = BR ⊗ · · · ⊗ BR) – measurable and by Proposition 6.20,
Bn = σ (X1, . . . , Xn) = σ (Y ) . Thus we may apply Lemma 6.40 to see that
there exists a BRn/BR – measurable map, H : Rn → R, such that h = H ◦ Y =
H (X1, . . . , Xn) .
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6.3 Summary of Measurability Statements

It may be worthwhile to gather the statements of the main measurability re-
sults of Sections 6.1 and 6.2 in one place. To do this let (Ω,B) , (X,M), and
{(Yα,Fα)}α∈I be measurable spaces and fα : Ω → Yα be given maps for all
α ∈ I. Also let πα : Y → Yα be the α – projection map,

F := ⊗α∈IFα := σ (πα : α ∈ I)

be the product σ – algebra on Y, and f : Ω → Y be the unique map determined
by πα ◦ f = fα for all α ∈ I. Then the following measurability results hold;

1. For A ⊂ Ω, the indicator function, 1A, is (B,BR) – measurable iff A ∈ B.
(Example 6.8).

2. If E ⊂M generatesM (i.e.M = σ (E)), then a map, g : Ω → X is (B,M)
– measurable iff g−1 (E) ⊂ B (Lemma 6.3 and Proposition 6.10).

3. The notion of measurability may be localized (Proposition 6.13).
4. Composition of measurable functions are measurable (Lemma 6.14).
5. Continuous functions between two topological spaces are also Borel mea-

surable (Proposition 6.23).
6. σ (f) = σ (fα : α ∈ I) (Proposition 6.20).
7. A map, h : X → Ω is (M, σ (f) = σ (fα : α ∈ I)) – measurable iff fα ◦ h is

(M,Fα) – measurable for all α ∈ I (Proposition 6.17).
8. A map, h : X → Y is (M,F) – measurable iff πα◦h is (M,Fα) – measurable

for all α ∈ I (Corollary 6.19).
9. If I = {1, 2, . . . , n} , then

⊗α∈IFα = F1 ⊗ · · · ⊗ Fn = σ ({A1 ×A2 × · · · ×An : Ai ∈ Fi for i ∈ I}) ,

this is a special case of Remark 6.21.
10. BRn = BR ⊗ · · · ⊗ BR (n - times) for all n ∈ N, i.e. the Borel σ – algebra on

Rn is the same as the product σ – algebra. (Lemma 6.25).
11. The collection of measurable functions from (Ω,B) to

(
R̄,BR̄

)
is closed un-

der the usual pointwise algebraic operations (Corollary 6.32). They are also
closed under the countable supremums, infimums, and limits (Proposition
6.33).

12. The collection of measurable functions from (Ω,B) to (C,BC) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
6.27 and Proposition 6.33). The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (Ω,B) to
(
R̄,BR̄

)
and from (Ω,B)

to (C,BC) may be well approximated by measurable simple functions (The-
orem 6.39).

14. If Xi : Ω → R are B/BR – measurable maps and Bn := σ (X1, . . . , Xn) ,
then h : Ω → R is Bn – measurable iff h = H (X1, . . . , Xn) for some BRn/BR
– measurable map, H : Rn → R (Corollary 6.41).

15. We also have the more general factorization Lemma 6.40.

For the most part most of our future measurability issues can be resolved
by one or more of the items on this list.
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6.4 Distributions / Laws of Random Vectors

The proof of the following proposition is routine and will be left to the reader.

Proposition 6.42. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞] by
ν(A) := µ(f−1(A)) for all A ∈ F . Then ν is a measure on (Y,F) . (In the future
we will denote ν by f∗µ or µ◦f−1 or Lawµ (f) and call f∗µ the push-forward
of µ by f or the law of f under µ.

Definition 6.43. Suppose that {Xi}ni=1 is a sequence of random variables on a
probability space, (Ω,B, P ) . The probability measure,

µ = (X1, . . . , Xn)∗ P = P ◦ (X1, . . . , Xn)−1 on BR

(see Proposition 6.42) is called the joint distribution (or law) of
(X1, . . . , Xn) . To be more explicit,

µ (B) := P ((X1, . . . , Xn) ∈ B) := P ({ω ∈ Ω : (X1 (ω) , . . . , Xn (ω)) ∈ B})

for all B ∈ BRn .

Corollary 6.44. The joint distribution, µ is uniquely determined from the
knowledge of

P ((X1, . . . , Xn) ∈ A1 × · · · ×An) for all Ai ∈ BR

or from the knowledge of

P (X1 ≤ x1, . . . , Xn ≤ xn) for all Ai ∈ BR

for all x = (x1, . . . , xn) ∈ Rn.

Proof. Apply Proposition 5.15 with P being the π – systems defined by

P := {A1 × · · · ×An ∈ BRn : Ai ∈ BR}

for the first case and

P := {(−∞, x1]× · · · × (−∞, xn] ∈ BRn : xi ∈ R}

for the second case.

Definition 6.45. Suppose that {Xi}ni=1 and {Yi}ni=1 are two finite sequences of
random variables on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) respec-
tively. We write (X1, . . . , Xn) d= (Y1, . . . , Yn) if (X1, . . . , Xn) and (Y1, . . . , Yn)
have the same distribution / law, i.e. if

P ((X1, . . . , Xn) ∈ B) = P ′ ((Y1, . . . , Yn) ∈ B) for all B ∈ BRn .

More generally, if {Xi}∞i=1 and {Yi}∞i=1 are two sequences of random variables

on two probability spaces, (Ω,B, P ) and (Ω′,B′, P ′) we write {Xi}∞i=1
d= {Yi}∞i=1

iff (X1, . . . , Xn) d= (Y1, . . . , Yn) for all n ∈ N.

Proposition 6.46. Let us continue using the notation in Definition 6.45. Fur-
ther let

X = (X1, X2, . . . ) : Ω → RN and Y := (Y1, Y2, . . . ) : Ω′ → RN

and let F := ⊗n∈NBR – be the product σ – algebra on RN. Then {Xi}∞i=1
d=

{Yi}∞i=1 iff X∗P = Y∗P
′ as measures on

(
RN,F

)
.

Proof. Let

P := ∪∞n=1

{
A1 ×A2 × · · · ×An × RN : Ai ∈ BR for 1 ≤ i ≤ n

}
.

Notice that P is a π – system and it is easy to show σ (P) = F (see Exercise
6.6). Therefore by Proposition 5.15, X∗P = Y∗P

′ iff X∗P = Y∗P
′ on P. Now

for A1 ×A2 × · · · ×An × RN ∈ P we have,

X∗P
(
A1 ×A2 × · · · ×An × RN) = P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An)

and hence the condition becomes,

P ((X1, . . . , Xn) ∈ A1 ×A2 × · · · ×An) = P ′ ((Y1, . . . , Yn) ∈ A1 ×A2 × · · · ×An)

for all n ∈ N and Ai ∈ BR. Another application of Proposition 5.15 or us-
ing Corollary 6.44 allows us to conclude that shows that X∗P = Y∗P

′ iff
(X1, . . . , Xn) d= (Y1, . . . , Yn) for all n ∈ N.

Corollary 6.47. Continue the notation above and assume that {Xi}∞i=1
d=

{Yi}∞i=1 . Further let

X± =
{

lim supn→∞Xn if +
lim infn→∞Xn if −

and define Y± similarly. Then (X−, X+) d= (Y−, Y+) as random variables into(
R̄2,BR̄ ⊗ BR̄

)
. In particular,

P
(

lim
n→∞

Xn exists in R
)

= P ′
(

lim
n→∞

Y exists in R
)
. (6.8)
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Proof. First suppose that (Ω′,B′, P ′) =
(
RN,F , P ′ := X∗P

)
where

Yi (a1, a2, . . . ) := ai = πi (a1, a2, . . . ) . Then for C ∈ BR̄ ⊗ BR̄ we have,

X−1 ({(Y−, Y+) ∈ C}) = {(Y− ◦X,Y+ ◦X) ∈ C} = {(X−, X+) ∈ C} ,

since, for example,

Y− ◦X = lim inf
n→∞

Yn ◦X = lim inf
n→∞

Xn = X−.

Therefore it follows that

P ((X−, X+) ∈ C) = P ◦X−1 ({(Y−, Y+) ∈ C}) = P ′ ({(Y−, Y+) ∈ C}) . (6.9)

The general result now follows by two applications of this special case.
For the last assertion, take

C = {(x, x) : x ∈ R} ∈ BR2 = BR ⊗ BR ⊂ BR̄ ⊗ BR̄.

Then (X−, X+) ∈ C iff X− = X+ ∈ R which happens iff limn→∞Xn exists in
R. Similarly, (Y−, Y+) ∈ C iff limn→∞ Yn exists in R and therefore Eq. (6.8)
holds as a consequence of Eq. (6.9).

Exercise 6.10. Let {Xi}∞i=1 and {Yi}∞i=1 be two sequences of random variables

such that {Xi}∞i=1
d= {Yi}∞i=1 . Let {Sn}∞n=1 and {Tn}∞n=1 be defined by, Sn :=

X1 + · · ·+Xn and Tn := Y1 + · · ·+ Yn. Prove the following assertions.

1. Suppose that f : Rn → Rk is a BRn/BRk – measurable function, then
f (X1, . . . , Xn) d= f (Y1, . . . , Yn) .

2. Use your result in item 1. to show {Sn}∞n=1
d= {Tn}∞n=1 .

Hint: Apply item 1. with k = n after making a judicious choice for f :
Rn → Rn.

6.5 Generating All Distributions from the Uniform
Distribution

Theorem 6.48. Given a distribution function, F : R→ [0, 1] let G : (0, 1)→ R
be defined (see Figure 6.2) by,

G (y) := inf {x : F (x) ≥ y} .

Then G : (0, 1)→ R is Borel measurable and G∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Fig. 6.2. A pictorial definition of G.

Fig. 6.3. As can be seen from this picture, G (y) ≤ x0 iff y ≤ F (x0) and similarly,
G (y) ≤ x1 iff y ≤ x1.

Proof. Since G : (0, 1)→ R is a non-decreasing function, G is measurable.
We also claim that, for all x0 ∈ R, that

G−1 ((0, x0]) = {y : G (y) ≤ x0} = (0, F (x0)] ∩ R, (6.10)

see Figure 6.3.
To give a formal proof of Eq. (6.10), G (y) = inf {x : F (x) ≥ y} ≤ x0, there

exists xn ≥ x0 with xn ↓ x0 such that F (xn) ≥ y. By the right continuity of F,
it follows that F (x0) ≥ y. Thus we have shown

{G ≤ x0} ⊂ (0, F (x0)] ∩ (0, 1) .

For the converse, if y ≤ F (x0) then G (y) = inf {x : F (x) ≥ y} ≤ x0, i.e.
y ∈ {G ≤ x0} . Indeed, y ∈ G−1 ((−∞, x0]) iff G (y) ≤ x0. Observe that
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G (F (x0)) = inf {x : F (x) ≥ F (x0)} ≤ x0

and hence G (y) ≤ x0 whenever y ≤ F (x0) . This shows that

(0, F (x0)] ∩ (0, 1) ⊂ G−1 ((0, x0]) .

As a consequence we have G∗m = µF . Indeed,

(G∗m) ((−∞, x]) = m
(
G−1 ((−∞, x])

)
= m ({y ∈ (0, 1) : G (y) ≤ x})

= m ((0, F (x)] ∩ (0, 1)) = F (x) .

See section 2.5.2 on p. 61 of Resnick for more details.

Theorem 6.49 (Durret’s Version). Given a distribution function, F :
R→ [0, 1] let Y : (0, 1)→ R be defined (see Figure 6.4) by,

Y (x) := sup {y : F (y) < x} .

Then Y : (0, 1)→ R is Borel measurable and Y∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Fig. 6.4. A pictorial definition of Y (x) .

Proof. Since Y : (0, 1)→ R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (x) , then F (y) < x and hence,

F (Y (x)−) = lim
y↑Y (x)

F (y) ≤ x.

For y > Y (x) , we have F (y) ≥ x and therefore,

F (Y (x)) = F (Y (x) +) = lim
y↓Y (x)

F (y) ≥ x

and so we have shown

F (Y (x)−) ≤ x ≤ F (Y (x)) .

We will now show

{x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . (6.11)

For the inclusion “⊂,” if x ∈ (0, 1) and Y (x) ≤ y0, then x ≤ F (Y (x)) ≤ F (y0),
i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely if x ∈ (0, 1) and x ≤ F (y0) then (by
definition of Y (x)) y0 ≥ Y (x) .

From the identity in Eq. (6.11), it follows that Y is measurable and

(Y∗m) ((−∞, y0)) = m
(
Y −1(−∞, y0)

)
= m ((0, F (y0)] ∩ (0, 1)) = F (y0) .

Therefore, Law (Y ) = µF as desired.
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Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section 4.3 above. Recall there that if (Ω,B, µ) was
measurable space and ϕ : Ω → [0,∞) was a measurable simple function, then
we let

Eµϕ :=
∑

λ∈[0,∞)

λµ (ϕ = λ) .

The conventions being use here is that 0 · µ (ϕ = 0) = 0 even when µ (ϕ = 0) =
∞. This convention is necessary in order to make the integral linear – at a
minimum we will want Eµ [0] = 0. Please be careful not blindly apply the
0 · ∞ = 0 convention in other circumstances.

7.1 Integrals of positive functions

Definition 7.1. Let L+ = L+ (B) = {f : Ω → [0,∞] : f is measurable}. Define∫
Ω

f (ω) dµ (ω) =
∫
Ω

fdµ := sup {Eµϕ : ϕ is simple and ϕ ≤ f} .

We say the f ∈ L+ is integrable if
∫
Ω
fdµ <∞. If A ∈ B, let∫

A

f (ω) dµ (ω) =
∫
A

fdµ :=
∫
Ω

1Af dµ.

We also use the notation,

Ef =
∫
Ω

fdµ and E [f : A] :=
∫
A

fdµ.

Remark 7.2. Because of item 3. of Proposition 4.19, if ϕ is a non-negative simple
function,

∫
Ω
ϕdµ = Eµϕ so that

∫
Ω

is an extension of Eµ.

Lemma 7.3. Let f, g ∈ L+ (B) . Then:

1. if λ ≥ 0, then ∫
Ω

λfdµ = λ

∫
Ω

fdµ

wherein λ
∫
Ω
fdµ ≡ 0 if λ = 0, even if

∫
Ω
fdµ =∞.

2. if 0 ≤ f ≤ g, then ∫
Ω

fdµ ≤
∫
Ω

gdµ. (7.1)

3. For all ε > 0 and p > 0,

µ(f ≥ ε) ≤ 1
εp

∫
Ω

fp1{f≥ε}dµ ≤
1
εp

∫
Ω

fpdµ. (7.2)

The inequality in Eq. (7.2) is called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. If
∫
Ω
fdµ < ∞ then µ(f = ∞) = 0 (i.e. f < ∞ a.e.) and the set {f > 0}

is σ – finite.

Proof. 1. We may assume λ > 0 in which case,∫
Ω

λfdµ = sup {Eµϕ : ϕ is simple and ϕ ≤ λf}

= sup
{
Eµϕ : ϕ is simple and λ−1ϕ ≤ f

}
= sup {Eµ [λψ] : ψ is simple and ψ ≤ f}
= sup {λEµ [ψ] : ψ is simple and ψ ≤ f}

= λ

∫
Ω

fdµ.

2. Since

{ϕ is simple and ϕ ≤ f} ⊂ {ϕ is simple and ϕ ≤ g} ,

Eq. (7.1) follows from the definition of the integral.
3. Since 1{f≥ε} ≤ 1{f≥ε} 1

εf ≤
1
εf we have

1{f≥ε} ≤ 1{f≥ε}

(
1
ε
f

)p
≤
(

1
ε
f

)p
and by monotonicity and the multiplicative property of the integral,

µ(f ≥ ε) =
∫
Ω

1{f≥ε}dµ ≤
(

1
ε

)p ∫
Ω

1{f≥ε}fpdµ ≤
(

1
ε

)p ∫
Ω

fpdµ.
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4. If µ (f =∞) > 0, then ϕn := n1{f=∞} is a simple function such that
ϕn ≤ f for all n and hence

nµ (f =∞) = Eµ (ϕn) ≤
∫
Ω

fdµ

for all n. Letting n → ∞ shows
∫
Ω
fdµ = ∞. Thus if

∫
Ω
fdµ < ∞ then

µ (f =∞) = 0.
Moreover,

{f > 0} = ∪∞n=1 {f > 1/n}
with µ (f > 1/n) ≤ n

∫
Ω
fdµ <∞ for each n.

Theorem 7.4 (Monotone Convergence Theorem). Suppose fn ∈ L+ is a
sequence of functions such that fn ↑ f (f is necessarily in L+) then∫

fn ↑
∫
f as n→∞.

Proof. Since fn ≤ fm ≤ f, for all n ≤ m <∞,∫
fn ≤

∫
fm ≤

∫
f

from which if follows
∫
fn is increasing in n and

lim
n→∞

∫
fn ≤

∫
f. (7.3)

For the opposite inequality, let ϕ : Ω → [0,∞) be a simple function such
that 0 ≤ ϕ ≤ f, α ∈ (0, 1) and Ωn := {fn ≥ αϕ} . Notice that Ωn ↑ Ω and
fn ≥ α1Ωnϕ and so by definition of

∫
fn,∫

fn ≥ Eµ [α1Ωnϕ] = αEµ [1Ωnϕ] . (7.4)

Then using the identity

1Ωnϕ = 1Ωn
∑
y>0

y1{ϕ=y} =
∑
y>0

y1{ϕ=y}∩Ωn ,

and the linearity of Eµ we have,

lim
n→∞

Eµ [1Ωnϕ] = lim
n→∞

∑
y>0

y · µ(Ωn ∩ {ϕ = y})

=
∑
y>0

y lim
n→∞

µ(Ωn ∩ {ϕ = y}) (finite sum)

=
∑
y>0

yµ({ϕ = y}) = Eµ [ϕ] ,

wherein we have used the continuity of µ under increasing unions for the
third equality. This identity allows us to let n → ∞ in Eq. (7.4) to conclude
limn→∞

∫
fn ≥ αEµ [ϕ] and since α ∈ (0, 1) was arbitrary we may further con-

clude, Eµ [ϕ] ≤ limn→∞
∫
fn. The latter inequality being true for all simple

functions ϕ with ϕ ≤ f then implies that∫
f = sup

0≤ϕ≤f
Eµ [ϕ] ≤ lim

n→∞

∫
fn,

which combined with Eq. (7.3) proves the theorem.

Remark 7.5 (“Explicit” Integral Formula). Given f : Ω → [0,∞] measurable,
we know from the approximation Theorem 6.39 ϕn ↑ f where

ϕn :=
22n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n } + 2n1{f>2n}.

Therefore by the monotone convergence theorem,∫
Ω

fdµ = lim
n→∞

∫
Ω

ϕndµ

= lim
n→∞

22n−1∑
k=0

k

2n
µ

(
k

2n
< f ≤ k + 1

2n

)
+ 2nµ (f > 2n)

 .
Corollary 7.6. If fn ∈ L+ is a sequence of functions then∫ ∞∑

n=1

fn =
∞∑
n=1

∫
fn.

In particular, if
∑∞
n=1

∫
fn <∞ then

∑∞
n=1 fn <∞ a.e.

Proof. First off we show that∫
(f1 + f2) =

∫
f1 +

∫
f2

by choosing non-negative simple function ϕn and ψn such that ϕn ↑ f1 and
ψn ↑ f2. Then (ϕn + ψn) is simple as well and (ϕn + ψn) ↑ (f1 + f2) so by the
monotone convergence theorem,∫

(f1 + f2) = lim
n→∞

∫
(ϕn + ψn) = lim

n→∞

(∫
ϕn +

∫
ψn

)
= lim
n→∞

∫
ϕn + lim

n→∞

∫
ψn =

∫
f1 +

∫
f2.
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Now to the general case. Let gN :=
N∑
n=1

fn and g =
∞∑
1
fn, then gN ↑ g and so

again by monotone convergence theorem and the additivity just proved,

∞∑
n=1

∫
fn := lim

N→∞

N∑
n=1

∫
fn = lim

N→∞

∫ N∑
n=1

fn

= lim
N→∞

∫
gN =

∫
g =:

∫ ∞∑
n=1

fn.

Remark 7.7. It is in the proof of Corollary 7.6 (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition

∫
fdµ makes sense for all functions f : Ω → [0,∞]

not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary 7.6, we use the approximation Theorem 6.39 which relies heavily on
the measurability of the functions to be approximated.

Example 7.8 (Sums as Integrals I). Suppose, Ω = N, B := 2N, µ (A) = # (A)
for A ⊂ Ω is the counting measure on B, and f : N→ [0,∞] is a function. Since

f =
∞∑
n=1

f (n) 1{n},

it follows from Corollary 7.6 that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =
∞∑
n=1

f (n) .

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 7.9 (Sums as Integrals II*). Let Ω be a set and ρ : Ω → [0,∞] be
a function, let µ =

∑
ω∈Ω ρ(ω)δω on B = 2Ω , i.e.

µ(A) =
∑
ω∈A

ρ(ω).

If f : Ω → [0,∞] is a function (which is necessarily measurable), then∫
Ω

fdµ =
∑
Ω

fρ.

Proof. Suppose that ϕ : Ω → [0,∞) is a simple function, then ϕ =∑
z∈[0,∞) z1{ϕ=z} and∑

Ω

ϕρ =
∑
ω∈Ω

ρ(ω)
∑

z∈[0,∞)

z1{ϕ=z}(ω) =
∑

z∈[0,∞)

z
∑
ω∈Ω

ρ(ω)1{ϕ=z}(ω)

=
∑

z∈[0,∞)

zµ({ϕ = z}) =
∫
Ω

ϕdµ.

So if ϕ : Ω → [0,∞) is a simple function such that ϕ ≤ f, then∫
Ω

ϕdµ =
∑
Ω

ϕρ ≤
∑
Ω

fρ.

Taking the sup over ϕ in this last equation then shows that∫
Ω

fdµ ≤
∑
Ω

fρ.

For the reverse inequality, let Λ ⊂⊂ Ω be a finite set and N ∈ (0,∞).
Set fN (ω) = min {N, f(ω)} and let ϕN,Λ be the simple function given by
ϕN,Λ(ω) := 1Λ(ω)fN (ω). Because ϕN,Λ(ω) ≤ f(ω),∑

Λ

fNρ =
∑
Ω

ϕN,Λρ =
∫
Ω

ϕN,Λdµ ≤
∫
Ω

fdµ.

Since fN ↑ f as N →∞, we may let N →∞ in this last equation to concluded∑
Λ

fρ ≤
∫
Ω

fdµ.

Since Λ is arbitrary, this implies∑
Ω

fρ ≤
∫
Ω

fdµ.

Exercise 7.1. Suppose that µn : B → [0,∞] are measures on B for n ∈ N. Also
suppose that µn(A) is increasing in n for all A ∈ B. Prove that µ : B → [0,∞]
defined by µ(A) := limn→∞ µn(A) is also a measure.

Proposition 7.10. Suppose that f ≥ 0 is a measurable function. Then∫
Ω
fdµ = 0 iff f = 0 a.e. Also if f, g ≥ 0 are measurable functions such that

f ≤ g a.e. then
∫
fdµ ≤

∫
gdµ. In particular if f = g a.e. then

∫
fdµ =

∫
gdµ.

Page: 79 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



80 7 Integration Theory

Proof. If f = 0 a.e. and ϕ ≤ f is a simple function then ϕ = 0 a.e. This
implies that µ(ϕ−1({y})) = 0 for all y > 0 and hence

∫
Ω
ϕdµ = 0 and therefore∫

Ω
fdµ = 0. Conversely, if

∫
fdµ = 0, then by (Lemma 7.3),

µ(f ≥ 1/n) ≤ n
∫
fdµ = 0 for all n.

Therefore, µ(f > 0) ≤
∑∞
n=1 µ(f ≥ 1/n) = 0, i.e. f = 0 a.e.

For the second assertion let E be the exceptional set where f > g, i.e.

E := {ω ∈ Ω : f(ω) > g(ω)}.

By assumption E is a null set and 1Ecf ≤ 1Ecg everywhere. Because g =
1Ecg + 1Eg and 1Eg = 0 a.e.,∫

gdµ =
∫

1Ecgdµ+
∫

1Egdµ =
∫

1Ecgdµ

and similarly
∫
fdµ =

∫
1Ecfdµ. Since 1Ecf ≤ 1Ecg everywhere,∫

fdµ =
∫

1Ecfdµ ≤
∫

1Ecgdµ =
∫
gdµ.

Corollary 7.11. Suppose that {fn} is a sequence of non-negative measurable
functions and f is a measurable function such that fn ↑ f off a null set, then∫

fn ↑
∫
f as n→∞.

Proof. Let E ⊂ Ω be a null set such that fn1Ec ↑ f1Ec as n → ∞. Then
by the monotone convergence theorem and Proposition 7.10,∫

fn =
∫
fn1Ec ↑

∫
f1Ec =

∫
f as n→∞.

Lemma 7.12 (Fatou’s Lemma). If fn : Ω → [0,∞] is a sequence of measur-
able functions then ∫

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn

Proof. Define gk := inf
n≥k

fn so that gk ↑ lim infn→∞ fn as k → ∞. Since

gk ≤ fn for all k ≤ n, ∫
gk ≤

∫
fn for all n ≥ k

and therefore ∫
gk ≤ lim inf

n→∞

∫
fn for all k.

We may now use the monotone convergence theorem to let k →∞ to find∫
lim inf

n→∞
fn =

∫
lim
k→∞

gk
MCT= lim

k→∞

∫
gk ≤ lim inf

n→∞

∫
fn.

The following Corollary and the next lemma are simple applications of Corol-
lary 7.6.

Corollary 7.13. Suppose that (Ω,B, µ) is a measure space and {An}∞n=1 ⊂ B
is a collection of sets such that µ(Ai ∩Aj) = 0 for all i 6= j, then

µ (∪∞n=1An) =
∞∑
n=1

µ(An).

Proof. Since

µ (∪∞n=1An) =
∫
Ω

1∪∞n=1An
dµ and

∞∑
n=1

µ(An) =
∫
Ω

∞∑
n=1

1Andµ

it suffices to show
∞∑
n=1

1An = 1∪∞n=1An
µ – a.e. (7.5)

Now
∑∞
n=1 1An ≥ 1∪∞n=1An

and
∑∞
n=1 1An(ω) 6= 1∪∞n=1An

(ω) iff ω ∈ Ai ∩Aj for
some i 6= j, that is{

ω :
∞∑
n=1

1An(ω) 6= 1∪∞n=1An
(ω)

}
= ∪i<jAi ∩Aj

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (7.5) and hence the corollary.

Lemma 7.14 (The First Borell – Cantelli Lemma). Let (Ω,B, µ) be a
measure space, An ∈ B, and set

{An i.o.} = {ω ∈ Ω : ω ∈ An for infinitely many n’s} =
∞⋂
N=1

⋃
n≥N

An.

If
∑∞
n=1 µ(An) <∞ then µ({An i.o.}) = 0.
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Proof. (First Proof.) Let us first observe that

{An i.o.} =

{
ω ∈ Ω :

∞∑
n=1

1An(ω) =∞

}
.

Hence if
∑∞
n=1 µ(An) <∞ then

∞ >

∞∑
n=1

µ(An) =
∞∑
n=1

∫
Ω

1An dµ =
∫
Ω

∞∑
n=1

1An dµ

implies that
∞∑
n=1

1An(ω) <∞ for µ - a.e. ω. That is to say µ({An i.o.}) = 0.

(Second Proof.) Of course we may give a strictly measure theoretic proof of
this fact:

µ(An i.o.) = lim
N→∞

µ

 ⋃
n≥N

An


≤ lim
N→∞

∑
n≥N

µ(An)

and the last limit is zero since
∑∞
n=1 µ(An) <∞.

Example 7.15. Suppose that (Ω,B, P ) is a probability space (i.e. P (Ω) = 1)
and Xn : Ω → {0, 1} are Bernoulli random variables with P (Xn = 1) = pn and
P (Xn = 0) = 1 − pn. If

∑∞
n=1 pn < ∞, then P (Xn = 1 i.o.) = 0 and hence

P (Xn = 0 a.a.) = 1. In particular, P (limn→∞Xn = 0) = 1.

7.2 Integrals of Complex Valued Functions

Definition 7.16. A measurable function f : Ω → R̄ is integrable if f+ :=
f1{f≥0} and f− = −f 1{f≤0} are integrable. We write L1 (µ; R) for the space
of real valued integrable functions. For f ∈ L1 (µ; R) , let∫

Ω

fdµ =
∫
Ω

f+dµ−
∫
Ω

f−dµ.

To shorten notation in this chapter we may simply write
∫
fdµ or even

∫
f for∫

Ω
fdµ.

Convention: If f, g : Ω → R̄ are two measurable functions, let f+g denote
the collection of measurable functions h : Ω → R̄ such that h(ω) = f(ω) + g(ω)
whenever f(ω) +g(ω) is well defined, i.e. is not of the form∞−∞ or −∞+∞.
We use a similar convention for f − g. Notice that if f, g ∈ L1 (µ; R) and
h1, h2 ∈ f + g, then h1 = h2 a.e. because |f | <∞ and |g| <∞ a.e.

Notation 7.17 (Abuse of notation) We will sometimes denote the integral∫
Ω
fdµ by µ (f) . With this notation we have µ (A) = µ (1A) for all A ∈ B.

Remark 7.18. Since
f± ≤ |f | ≤ f+ + f−,

a measurable function f is integrable iff
∫
|f | dµ <∞. Hence

L1 (µ; R) :=
{
f : Ω → R̄ : f is measurable and

∫
Ω

|f | dµ <∞
}
.

If f, g ∈ L1 (µ; R) and f = g a.e. then f± = g± a.e. and so it follows from
Proposition 7.10 that

∫
fdµ =

∫
gdµ. In particular if f, g ∈ L1 (µ; R) we may

define ∫
Ω

(f + g) dµ =
∫
Ω

hdµ

where h is any element of f + g.

Proposition 7.19. The map

f ∈ L1 (µ; R)→
∫
Ω

fdµ ∈ R

is linear and has the monotonicity property:
∫
fdµ ≤

∫
gdµ for all f, g ∈

L1 (µ; R) such that f ≤ g a.e.

Proof. Let f, g ∈ L1 (µ; R) and a, b ∈ R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af + bg ∈ L1 (µ; R)
because

|af + bg| ≤ |a| |f |+ |b| |g| ∈ L1 (µ; R) .

If a < 0, then
(af)+ = −af− and (af)− = −af+

so that ∫
af = −a

∫
f− + a

∫
f+ = a(

∫
f+ −

∫
f−) = a

∫
f.

A similar calculation works for a > 0 and the case a = 0 is trivial so we have
shown that ∫

af = a

∫
f.

Now set h = f + g. Since h = h+ − h−,

h+ − h− = f+ − f− + g+ − g−

or
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h+ + f− + g− = h− + f+ + g+.

Therefore, ∫
h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+

and hence∫
h =

∫
h+ −

∫
h− =

∫
f+ +

∫
g+ −

∫
f− −

∫
g− =

∫
f +

∫
g.

Finally if f+ − f− = f ≤ g = g+ − g− then f+ + g− ≤ g+ + f− which implies
that ∫

f+ +
∫
g− ≤

∫
g+ +

∫
f−

or equivalently that∫
f =

∫
f+ −

∫
f− ≤

∫
g+ −

∫
g− =

∫
g.

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f ≤ g a.e. implies 0 ≤ g − f a.e. and Proposition 7.10.

Definition 7.20. A measurable function f : Ω → C is integrable if∫
Ω
|f | dµ <∞. Analogously to the real case, let

L1 (µ; C) :=
{
f : Ω → C : f is measurable and

∫
Ω

|f | dµ <∞
}
.

denote the complex valued integrable functions. Because, max (|Re f | , |Im f |) ≤
|f | ≤

√
2 max (|Re f | , |Im f |) ,

∫
|f | dµ <∞ iff∫

|Re f | dµ+
∫
|Im f | dµ <∞.

For f ∈ L1 (µ; C) define∫
f dµ =

∫
Re f dµ+ i

∫
Im f dµ.

It is routine to show the integral is still linear on L1 (µ; C) (prove!). In the
remainder of this section, let L1 (µ) be either L1 (µ; C) or L1 (µ; R) . If A ∈ B
and f ∈ L1 (µ; C) or f : Ω → [0,∞] is a measurable function, let∫

A

fdµ :=
∫
Ω

1Afdµ.

Proposition 7.21. Suppose that f ∈ L1 (µ; C) , then∣∣∣∣∫
Ω

fdµ

∣∣∣∣ ≤ ∫
Ω

|f | dµ. (7.6)

Proof. Start by writing
∫
Ω
f dµ = Reiθ with R ≥ 0. We may assume that

R =
∣∣∫
Ω
fdµ

∣∣ > 0 since otherwise there is nothing to prove. Since

R = e−iθ
∫
Ω

f dµ =
∫
Ω

e−iθf dµ =
∫
Ω

Re
(
e−iθf

)
dµ+ i

∫
Ω

Im
(
e−iθf

)
dµ,

it must be that
∫
Ω

Im
[
e−iθf

]
dµ = 0. Using the monotonicity in Proposition

7.10, ∣∣∣∣∫
Ω

fdµ

∣∣∣∣ =
∫
Ω

Re
(
e−iθf

)
dµ ≤

∫
Ω

∣∣Re
(
e−iθf

)∣∣ dµ ≤ ∫
Ω

|f | dµ.

Proposition 7.22. Let f, g ∈ L1 (µ) , then

1. The set {f 6= 0} is σ – finite, in fact {|f | ≥ 1
n} ↑ {f 6= 0} and µ(|f | ≥ 1

n ) <
∞ for all n.

2. The following are equivalent
a)
∫
E
f =

∫
E
g for all E ∈ B

b)
∫
Ω

|f − g| = 0

c) f = g a.e.

Proof. 1. By Chebyshev’s inequality, Lemma 7.3,

µ(|f | ≥ 1
n

) ≤ n
∫
Ω

|f | dµ <∞

for all n.
2. (a) =⇒ (c) Notice that∫

E

f =
∫
E

g ⇔
∫
E

(f − g) = 0

for all E ∈ B. Taking E = {Re(f − g) > 0} and using 1E Re(f − g) ≥ 0, we
learn that

0 = Re
∫
E

(f − g)dµ =
∫

1E Re(f − g) =⇒ 1E Re(f − g) = 0 a.e.

This implies that 1E = 0 a.e. which happens iff
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µ ({Re(f − g) > 0}) = µ(E) = 0.

Similar µ(Re(f−g) < 0) = 0 so that Re(f−g) = 0 a.e. Similarly, Im(f−g) = 0
a.e and hence f − g = 0 a.e., i.e. f = g a.e.

(c) =⇒ (b) is clear and so is (b) =⇒ (a) since∣∣∣∣∫
E

f −
∫
E

g

∣∣∣∣ ≤ ∫ |f − g| = 0.

Lemma 7.23. Suppose that h ∈ L1 (µ) satisfies∫
A

hdµ ≥ 0 for all A ∈ B, (7.7)

then h ≥ 0 a.e.

Proof. Since by assumption,

0 = Im
∫
A

hdµ =
∫
A

Imhdµ for all A ∈ B,

we may apply Proposition 7.22 to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (7.7) implies∫

Ω

1A |h| dµ =
∫
Ω

−1Ahdµ = −
∫
A

hdµ ≤ 0.

However 1A |h| ≥ 0 and therefore it follows that
∫
Ω

1A |h| dµ = 0 and so Propo-
sition 7.22 implies 1A |h| = 0 a.e. which then implies 0 = µ (A) = µ (h < 0) = 0.

Lemma 7.24 (Integral Comparison). Suppose (Ω,B, µ) is a σ – finite mea-
sure space (i.e. there exists Ωn ∈ B such that Ωn ↑ Ω and µ (Ωn) < ∞ for all
n) and f, g : Ω → [0,∞] are B – measurable functions. Then f ≥ g a.e. iff∫

A

fdµ ≥
∫
A

gdµ for all A ∈ B. (7.8)

In particular f = g a.e. iff equality holds in Eq. (7.8).

Proof. It was already shown in Proposition 7.10 that f ≥ g a.e. implies Eq.
(7.8). For the converse assertion, let Bn := {f ≤ n1Ωn} . Then from Eq. (7.8),

∞ > nµ (Ωn) ≥
∫
f1Bndµ ≥

∫
g1Bndµ

from which it follows that both f1Bn and g1Bn are in L1 (µ) and hence h :=
f1Bn − g1Bn ∈ L1 (µ) . Using Eq. (7.8) again we know that∫

A

h =
∫
f1Bn∩A −

∫
g1Bn∩A ≥ 0 for all A ∈ B.

An application of Lemma 7.23 implies h ≥ 0 a.e., i.e. f1Bn ≥ g1Bn a.e. Since
Bn ↑ {f <∞} , we may conclude that

f1{f<∞} = lim
n→∞

f1Bn ≥ lim
n→∞

g1Bn = g1{f<∞} a.e.

Since f ≥ g whenever f =∞, we have shown f ≥ g a.e.
If equality holds in Eq. (7.8), then we know that g ≤ f and f ≤ g a.e., i.e.

f = g a.e.
Notice that we can not drop the σ – finiteness assumption in Lemma 7.24.

For example, let µ be the measure on B such that µ (A) = ∞ when A 6= ∅,
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ∅
when they are both zero) in Eq. (7.8) holds even though f < g everywhere.

Definition 7.25. Let (Ω,B, µ) be a measure space and L1(µ) = L1(Ω,B, µ)
denote the set of L1 (µ) functions modulo the equivalence relation; f ∼ g iff
f = g a.e. We make this into a normed space using the norm

‖f − g‖L1 =
∫
|f − g| dµ

and into a metric space using ρ1(f, g) = ‖f − g‖L1 .

Warning: in the future we will often not make much of a distinction between
L1(µ) and L1 (µ) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 7.26. More generally we may define Lp(µ) = Lp(Ω,B, µ) for p ∈ [1,∞)
as the set of measurable functions f such that∫

Ω

|f |p dµ <∞

modulo the equivalence relation; f ∼ g iff f = g a.e.

We will see in later that

‖f‖Lp =
(∫
|f |p dµ

)1/p

for f ∈ Lp(µ)

is a norm and (Lp(µ), ‖·‖Lp) is a Banach space in this norm and in particular,

‖f + g‖p ≤ ‖f‖p + ‖g‖p for all f, g ∈ Lp (µ) .
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Theorem 7.27 (Dominated Convergence Theorem). Suppose fn, gn, g ∈
L1 (µ) , fn → f a.e., |fn| ≤ gn ∈ L1 (µ) , gn → g a.e. and

∫
Ω
gndµ →

∫
Ω
gdµ.

Then f ∈ L1 (µ) and ∫
Ω

fdµ = lim
h→∞

∫
Ω

fndµ.

(In most typical applications of this theorem gn = g ∈ L1 (µ) for all n.)

Proof. Notice that |f | = limn→∞ |fn| ≤ limn→∞ |gn| ≤ g a.e. so that
f ∈ L1 (µ) . By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,∫

Ω

(g ± f)dµ =
∫
Ω

lim inf
n→∞

(gn ± fn) dµ ≤ lim inf
n→∞

∫
Ω

(gn ± fn) dµ

= lim
n→∞

∫
Ω

gndµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
=
∫
Ω

gdµ+ lim inf
n→∞

(
±
∫
Ω

fndµ

)
Since lim infn→∞(−an) = − lim sup

n→∞
an, we have shown,

∫
Ω

gdµ±
∫
Ω

fdµ ≤
∫
Ω

gdµ+

{
lim infn→∞

∫
Ω
fndµ

− lim sup
n→∞

∫
Ω
fndµ

and therefore

lim sup
n→∞

∫
Ω

fndµ ≤
∫
Ω

fdµ ≤ lim inf
n→∞

∫
Ω

fndµ.

This shows that lim
n→∞

∫
Ω
fndµ exists and is equal to

∫
Ω
fdµ.

Exercise 7.2. Give another proof of Proposition 7.21 by first proving Eq. (7.6)
with f being a simple function in which case the triangle inequality for complex
numbers will do the trick. Then use the approximation Theorem 6.39 along with
the dominated convergence Theorem 7.27 to handle the general case.

Corollary 7.28. Let {fn}∞n=1 ⊂ L1 (µ) be a sequence such that∑∞
n=1 ‖fn‖L1(µ) <∞, then

∑∞
n=1 fn is convergent a.e. and

∫
Ω

( ∞∑
n=1

fn

)
dµ =

∞∑
n=1

∫
Ω

fndµ.

Proof. The condition
∑∞
n=1 ‖fn‖L1(µ) < ∞ is equivalent to

∑∞
n=1 |fn| ∈

L1 (µ) . Hence
∑∞
n=1 fn is almost everywhere convergent and if SN :=

∑N
n=1 fn,

then

|SN | ≤
N∑
n=1

|fn| ≤
∞∑
n=1

|fn| ∈ L1 (µ) .

So by the dominated convergence theorem,∫
Ω

( ∞∑
n=1

fn

)
dµ =

∫
Ω

lim
N→∞

SNdµ = lim
N→∞

∫
Ω

SNdµ

= lim
N→∞

N∑
n=1

∫
Ω

fndµ =
∞∑
n=1

∫
Ω

fndµ.

Example 7.29 (Sums as integrals). Suppose, Ω = N, B := 2N, µ is counting
measure on B (see Example 7.8), and f : N→ C is a function. From Example
7.8 we have f ∈ L1 (µ) iff

∑∞
n=1 |f (n)| < ∞, i.e. iff the sum,

∑∞
n=1 f (n) is

absolutely convergent. Moreover, if f ∈ L1 (µ) , we may again write

f =
∞∑
n=1

f (n) 1{n}

and then use Corollary 7.28 to conclude that∫
N
fdµ =

∞∑
n=1

∫
N
f (n) 1{n}dµ =

∞∑
n=1

f (n)µ ({n}) =
∞∑
n=1

f (n) .

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.

However if f (n) = (−1)n 1
n , then

∞∑
n=1

f (n) := lim
N→∞

N∑
n=1

f (n)

is perfectly well defined while
∫

N fdµ is not. In fact in this case we have,∫
N
f±dµ =∞.

The point is that when we write
∑∞
n=1 f (n) the ordering of the terms in the

sum may matter. On the other hand,
∫

N fdµ knows nothing about the integer
ordering.
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The following corollary will be routinely be used in the sequel – often without
explicit mention.

Corollary 7.30 (Differentiation Under the Integral). Suppose that J ⊂ R
is an open interval and f : J ×Ω → C is a function such that

1. ω → f(t, ω) is measurable for each t ∈ J.
2. f(t0, ·) ∈ L1(µ) for some t0 ∈ J.
3. ∂f

∂t (t, ω) exists for all (t, ω).

4. There is a function g ∈ L1 (µ) such that
∣∣∣∂f∂t (t, ·)

∣∣∣ ≤ g for each t ∈ J.

Then f(t, ·) ∈ L1 (µ) for all t ∈ J (i.e.
∫
Ω
|f(t, ω)| dµ(ω) < ∞), t →∫

Ω
f(t, ω)dµ(ω) is a differentiable function on J, and

d

dt

∫
Ω

f(t, ω)dµ(ω) =
∫
Ω

∂f

∂t
(t, ω)dµ(ω).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

∂f

∂t
(t, ω) = lim

n→∞
n(f(t+ n−1, ω)− f(t, ω))

and therefore, for ω → ∂f
∂t (t, ω) is a sequential limit of measurable functions

and hence is measurable for all t ∈ J. By the mean value theorem,

|f(t, ω)− f(t0, ω)| ≤ g(ω) |t− t0| for all t ∈ J (7.9)

and hence

|f(t, ω)| ≤ |f(t, ω)− f(t0, ω)|+ |f(t0, ω)| ≤ g(ω) |t− t0|+ |f(t0, ω)| .

This shows f(t, ·) ∈ L1 (µ) for all t ∈ J. Let G(t) :=
∫
Ω
f(t, ω)dµ(ω), then

G(t)−G(t0)
t− t0

=
∫
Ω

f(t, ω)− f(t0, ω)
t− t0

dµ(ω).

By assumption,

lim
t→t0

f(t, ω)− f(t0, ω)
t− t0

=
∂f

∂t
(t, ω) for all ω ∈ Ω

and by Eq. (7.9),∣∣∣∣f(t, ω)− f(t0, ω)
t− t0

∣∣∣∣ ≤ g(ω) for all t ∈ J and ω ∈ Ω.

Therefore, we may apply the dominated convergence theorem to conclude

lim
n→∞

G(tn)−G(t0)
tn − t0

= lim
n→∞

∫
Ω

f(tn, ω)− f(t0, ω)
tn − t0

dµ(ω)

=
∫
Ω

lim
n→∞

f(tn, ω)− f(t0, ω)
tn − t0

dµ(ω)

=
∫
Ω

∂f

∂t
(t0, ω)dµ(ω)

for all sequences tn ∈ J \ {t0} such that tn → t0. Therefore, Ġ(t0) =
limt→t0

G(t)−G(t0)
t−t0 exists and

Ġ(t0) =
∫
Ω

∂f

∂t
(t0, ω)dµ(ω).

Corollary 7.31. Suppose that {an}∞n=0 ⊂ C is a sequence of complex numbers
such that series

f(z) :=
∞∑
n=0

an(z − z0)n

is convergent for |z − z0| < R, where R is some positive number. Then f :
D(z0, R)→ C is complex differentiable on D(z0, R) and

f ′(z) =
∞∑
n=0

nan(z − z0)n−1 =
∞∑
n=1

nan(z − z0)n−1. (7.10)

By induction it follows that f (k) exists for all k and that

f (k)(z) =
∞∑
n=0

n(n− 1) . . . (n− k + 1)an(z − z0)n−1.

Proof. Let ρ < R be given and choose r ∈ (ρ,R). Since z = z0 + r ∈
D(z0, R), by assumption the series

∞∑
n=0

anr
n is convergent and in particular

M := supn |anrn| < ∞. We now apply Corollary 7.30 with X = N∪{0} , µ
being counting measure, Ω = D(z0, ρ) and g(z, n) := an(z − z0)n. Since

|g′(z, n)| = |nan(z − z0)n−1| ≤ n |an| ρn−1

≤ 1
r
n
(ρ
r

)n−1

|an| rn ≤
1
r
n
(ρ
r

)n−1

M
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and the function G(n) := M
r n
(
ρ
r

)n−1 is summable (by the Ratio test for exam-
ple), we may use G as our dominating function. It then follows from Corollary
7.30

f(z) =
∫
X

g(z, n)dµ(n) =
∞∑
n=0

an(z − z0)n

is complex differentiable with the differential given as in Eq. (7.10).

Definition 7.32 (Moment Generating Function). Let (Ω,B, P ) be a prob-
ability space and X : Ω → R a random variable. The moment generating
function of X is MX : R→ [0,∞] defined by

MX (t) := E
[
etX
]
.

Proposition 7.33. Suppose there exists ε > 0 such that E
[
eε|X|

]
< ∞, then

MX (t) is a smooth function of t ∈ (−ε, ε) and

MX (t) =
∞∑
n=0

tn

n!
EXn if |t| ≤ ε. (7.11)

In particular,

EXn =
(
d

dt

)n
|t=0MX (t) for all n ∈ N0. (7.12)

Proof. If |t| ≤ ε, then

E

[ ∞∑
n=0

|t|n

n!
|X|n

]
≤ E

[ ∞∑
n=0

εn

n!
|X|n

]
= E

[
eε|X|

]
<∞.

it etX ≤ eε|X| for all |t| ≤ ε. Hence it follows from Corollary 7.28 that, for
|t| ≤ ε,

MX (t) = E
[
etX
]

= E

[ ∞∑
n=0

tn

n!
Xn

]
=
∞∑
n=0

tn

n!
EXn.

Equation (7.12) now is a consequence of Corollary 7.31.

Exercise 7.3. Let d ∈ N, Ω = Nd0, B = 2Ω , µ : B → N0 ∪ {∞} be counting
measure on Ω, and for x ∈ Rd and ω ∈ Ω, let xω := xω1

1 . . . xωnn . Further suppose
that f : Ω → C is function and ri > 0 for 1 ≤ i ≤ d such that∑

ω∈Ω
|f (ω)| rω =

∫
Ω

|f (ω)| rωdµ (ω) <∞,

where r := (r1, . . . , rd) . Show;

1. There is a constant, C <∞ such that |f (ω)| ≤ C
rω for all ω ∈ Ω.

2. Let

U :=
{
x ∈ Rd : |xi| < ri ∀ i

}
and Ū =

{
x ∈ Rd : |xi| ≤ ri ∀ i

}
Show

∑
ω∈Ω |f (ω)xω| < ∞ for all x ∈ Ū and the function, F : U → R

defined by
F (x) =

∑
ω∈Ω

f (ω)xω is continuous on Ū .

3. Show, for all x ∈ U and 1 ≤ i ≤ d, that

∂

∂xi
F (x) =

∑
ω∈Ω

ωif (ω)xω−ei

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the ith – standard basis vector on Rd.
4. For any α ∈ Ω, let ∂α :=

(
∂
∂x1

)α1

. . .
(

∂
∂xd

)αd
and α! :=

∏d
i=1 αi! Explain

why we may now conclude that

∂αF (x) =
∑
ω∈Ω

α!f (ω)xω−α for all x ∈ U. (7.13)

5. Conclude that f (α) = (∂αF )(0)
α! for all α ∈ Ω.

6. If g : Ω → C is another function such that
∑
ω∈Ω g (ω)xω =

∑
ω∈Ω f (ω)xω

for x in a neighborhood of 0 ∈ Rd, then g (ω) = f (ω) for all ω ∈ Ω.

Solution to Exercise (7.3). We take each item in turn.

1. If no such C existed, then there would exist ω (n) ∈ Ω such that
|f (ω (n))| rω(n) ≥ n for all n ∈ N and therefore,

∑
ω∈Ω |f (ω)| rω ≥ n

for all n ∈ N which violates the assumption that
∑
ω∈Ω |f (ω)| rω <∞.

2. If x ∈ Ū , then |xω| ≤ rω and therefore
∑
ω∈Ω |f (ω)xω| ≤∑

ω∈Ω |f (ω)| rω < ∞. The continuity of F now follows by the DCT
where we can take g (ω) := |f (ω)| rω as the integrable dominating
function.

3. For notational simplicity assume that i = 1 and let ρi ∈ (0, ri) be chosen.
Then for |xi| < ρi, we have,∣∣ω1f (ω)xω−e1

∣∣ ≤ ω1ρ
ω−e1 C

rω
=: g (ω)

where ρ = (ρ1, . . . , ρd) . Notice that g (ω) is summable since,
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7.2 Integrals of Complex Valued Functions 87∑
ω∈Ω

g (ω) ≤ C

ρ1

∞∑
ω1=0

ω1

(
ρ1

r1

)ω1

·
d∏
i=2

∞∑
ωi=0

(
ρi
ri

)ωi

≤ C

ρ1

d∏
i=2

1
1− ρi

ri

·
∞∑

ω1=0

ω1

(
ρ1

r1

)ω1

<∞

where the last sum is finite as we saw in the proof of Corollary 7.31. Thus
we may apply Corollary 7.30 in order to differentiate past the integral (=
sum).

4. This is a simple matter of induction. Notice that each time we differentiate,
the resulting function is still defined and differentiable on all of U.

5. Setting x = 0 in Eq. (7.13) shows (∂αF ) (0) = α!f (α) .
6. This follows directly from the previous item since,

α!f (α) = ∂α

(∑
ω∈Ω

f (ω)xω
)
|x=0 = ∂α

(∑
ω∈Ω

g (ω)xω
)
|x=0 = α!g (α) .

7.2.1 Square Integrable Random Variables and Correlations

Suppose that (Ω,B, P ) is a probability space. We say that X : Ω → R is
integrable if X ∈ L1 (P ) and square integrable if X ∈ L2 (P ) . When X is
integrable we let aX := EX be the mean of X.

Now suppose that X,Y : Ω → R are two square integrable random variables.
Since

0 ≤ |X − Y |2 = |X|2 + |Y |2 − 2 |X| |Y | ,

it follows that
|XY | ≤ 1

2
|X|2 +

1
2
|Y |2 ∈ L1 (P ) .

In particular by taking Y = 1, we learn that |X| ≤ 1
2

(
1 +

∣∣X2
∣∣) which shows

that every square integrable random variable is also integrable.

Definition 7.34. The covariance, Cov (X,Y ) , of two square integrable ran-
dom variables, X and Y, is defined by

Cov (X,Y ) = E [(X − aX) (Y − aY )] = E [XY ]− EX · EY

where aX := EX and aY := EY. The variance of X,

Var (X) := Cov (X,X) = E
[
X2
]
− (EX)2 (7.14)

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] =
EX · EY. More generally we say {Xk}nk=1 ⊂ L2 (P ) are uncorrelated iff
Cov (Xi, Xj) = 0 for all i 6= j.

It follows from Eq. (7.14) that

Var (X) ≤ E
[
X2
]

for all X ∈ L2 (P ) . (7.15)

Lemma 7.35. The covariance function, Cov (X,Y ) is bilinear in X and Y and
Cov (X,Y ) = 0 if either X or Y is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k2 Var (X) . If {Xk}nk=1 are uncorrelated L2 (P ) –
random variables, then

Var (Sn) =
n∑
k=1

Var (Xk) .

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X) ;

Var (X + k) = Cov (X + k,X + k) = Cov (X + k,X) + Cov (X + k, k)
= Cov (X + k,X) = Cov (X,X) + Cov (k,X)
= Cov (X,X) = Var (X) ,

wherein we have used the bilinearity of Cov (·, ·) and the property that
Cov (Y, k) = 0 whenever k is a constant.

Exercise 7.4 (A Weak Law of Large Numbers). Assume {Xn}∞n=1 is a se-
quence if uncorrelated square integrable random variables which are identically
distributed, i.e. Xn

d= Xm for all m,n ∈ N. Let Sn :=
∑n
k=1Xk, µ := EXk and

σ2 := Var (Xk) (these are independent of k). Show;

E
[
Sn
n

]
= µ,

E
(
Sn
n
− µ

)2

= Var
(
Sn
n

)
=
σ2

n
, and

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤ σ2

nε2

for all ε > 0 and n ∈ N. (Compare this with Exercise 4.13.)

7.2.2 Some Discrete Distributions

Definition 7.36 (Generating Function). Suppose that N : Ω → N0 is an
integer valued random variable on a probability space, (Ω,B, P ) . The generating
function associated to N is defined by

GN (z) := E
[
zN
]

=
∞∑
n=0

P (N = n) zn for |z| ≤ 1. (7.16)
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By Corollary 7.31, it follows that P (N = n) = 1
n!G

(n)
N (0) so that GN can

be used to completely recover the distribution of N.

Proposition 7.37 (Generating Functions). The generating function satis-
fies,

G
(k)
N (z) = E

[
N (N − 1) . . . (N − k + 1) zN−k

]
for |z| < 1

and
G(k) (1) = lim

z↑1
G(k) (z) = E [N (N − 1) . . . (N − k + 1)] ,

where it is possible that one and hence both sides of this equation are infinite.
In particular, G′ (1) := limz↑1G

′ (z) = EN and if EN2 <∞,

Var (N) = G′′ (1) +G′ (1)− [G′ (1)]2 . (7.17)

Proof. By Corollary 7.31 for |z| < 1,

G
(k)
N (z) =

∞∑
n=0

P (N = n) · n (n− 1) . . . (n− k + 1) zn−k

= E
[
N (N − 1) . . . (N − k + 1) zN−k

]
. (7.18)

Since, for z ∈ (0, 1) ,

0 ≤ N (N − 1) . . . (N − k + 1) zN−k ↑ N (N − 1) . . . (N − k + 1) as z ↑ 1,

we may apply the MCT to pass to the limit as z ↑ 1 in Eq. (7.18) to find,

G(k) (1) = lim
z↑1

G(k) (z) = E [N (N − 1) . . . (N − k + 1)] .

Exercise 7.5 (Some Discrete Distributions). Let p ∈ (0, 1] and λ > 0. In
the four parts below, the distribution of N will be described. You should work
out the generating function, GN (z) , in each case and use it to verify the given
formulas for EN and Var (N) .

1. Bernoulli(p) : P (N = 1) = p and P (N = 0) = 1 − p. You should find
EN = p and Var (N) = p− p2.

2. Binomial(n, p) : P (N = k) =
(
n
k

)
pk (1− p)n−k for k = 0, 1, . . . , n.

(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) = n

(
p− p2

)
.

3. Geometric(p) : P (N = k) = p (1− p)k−1 for k ∈ N. (P (N = k) is the
probability that the kth – trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN = 1/p and Var (N) = 1−p

p2 .

4. Poisson(λ) : P (N = k) = λk

k! e
−λ for all k ∈ N0. You should find EN = λ =

Var (N) .

Exercise 7.6. Let Sn,p
d= Binomial(n, p) , k ∈ N, pn = λn/n where λn → λ > 0

as n→∞. Show that

lim
n→∞

P (Sn,pn = k) =
λk

k!
e−λ = P (Poisson (λ) = k) .

Thus we see that for p = O (1/n) and k not too large relative to n that for large
n,

P (Binomial (n, p) = k) ∼= P (Poisson (pn) = k) =
(pn)k

k!
e−pn.

(We will come back to the Poisson distribution and the related Poisson process
later on.)

Solution to Exercise (7.6). We have,

P (Sn,pn = k) =
(
n

k

)
(λn/n)k (1− λn/n)n−k

=
λkn
k!
n (n− 1) . . . (n− k + 1)

nk
(1− λn/n)n−k .

The result now follows since,

lim
n→∞

n (n− 1) . . . (n− k + 1)
nk

= 1

and

lim
n→∞

ln (1− λn/n)n−k = lim
n→∞

(n− k) ln (1− λn/n)

= − lim
n→∞

[(n− k)λn/n] = −λ.

7.3 Integration on R

Notation 7.38 If m is Lebesgue measure on BR, f is a non-negative Borel
measurable function and a < b with a, b ∈ R̄, we will often write

∫ b
a
f (x) dx or∫ b

a
fdm for

∫
(a,b]∩R fdm.

Example 7.39. Suppose −∞ < a < b <∞, f ∈ C([a, b],R) and m be Lebesgue
measure on R. Given a partition,

π = {a = a0 < a1 < · · · < an = b},

Page: 88 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23
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let
mesh(π) := max{|aj − aj−1| : j = 1, . . . , n}

and

fπ (x) :=
n−1∑
l=0

f (al) 1(al,al+1](x).

Then ∫ b

a

fπ dm =
n−1∑
l=0

f (al)m ((al, al+1]) =
n−1∑
l=0

f (al) (al+1 − al)

is a Riemann sum. Therefore if {πk}∞k=1 is a sequence of partitions with
limk→∞mesh(πk) = 0, we know that

lim
k→∞

∫ b

a

fπk dm =
∫ b

a

f (x) dx (7.19)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a, b] , it easily follows that limk→∞ fπk (x) = f (x) and that |fπk (x)| ≤
g (x) := M1(a,b] (x) for all x ∈ (a, b] where M := maxx∈[a,b] |f (x)| < ∞. Since∫

R gdm = M (b− a) <∞, we may apply D.C.T. to conclude,

lim
k→∞

∫ b

a

fπk dm =
∫ b

a

lim
k→∞

fπk dm =
∫ b

a

f dm.

This equation with Eq. (7.19) shows∫ b

a

f dm =
∫ b

a

f (x) dx

whenever f ∈ C([a, b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem 7.68 below for a more general statement
along these lines.

Theorem 7.40 (The Fundamental Theorem of Calculus). Suppose
−∞ < a < b < ∞, f ∈ C((a, b),R)∩L1((a, b),m) and F (x) :=

∫ x
a
f(y)dm(y).

Then

1. F ∈ C([a, b],R) ∩ C1((a, b),R).
2. F ′(x) = f(x) for all x ∈ (a, b).
3. If G ∈ C([a, b],R) ∩ C1((a, b),R) is an anti-derivative of f on (a, b) (i.e.
f = G′|(a,b)) then ∫ b

a

f(x)dm(x) = G(b)−G(a).

Proof. Since F (x) :=
∫

R 1(a,x)(y)f(y)dm(y), limx→z 1(a,x)(y) = 1(a,z)(y) for
m – a.e. y and

∣∣1(a,x)(y)f(y)
∣∣ ≤ 1(a,b)(y) |f(y)| is an L1 – function, it follows

from the dominated convergence Theorem 7.27 that F is continuous on [a, b].
Simple manipulations show,∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ =
1
|h|


∣∣∣∫ x+h

x
[f(y)− f(x)] dm(y)

∣∣∣ if h > 0∣∣∣∫ xx+h
[f(y)− f(x)] dm(y)

∣∣∣ if h < 0

≤ 1
|h|

{∫ x+h

x
|f(y)− f(x)| dm(y) if h > 0∫ x

x+h
|f(y)− f(x)| dm(y) if h < 0

≤ sup {|f(y)− f(x)| : y ∈ [x− |h| , x+ |h|]}

and the latter expression, by the continuity of f, goes to zero as h → 0 . This
shows F ′ = f on (a, b).

For the converse direction, we have by assumption that G′(x) = F ′(x) for
x ∈ (a, b). Therefore by the mean value theorem, F −G = C for some constant
C. Hence ∫ b

a

f(x)dm(x) = F (b) = F (b)− F (a)

= (G(b) + C)− (G(a) + C) = G(b)−G(a).

We can use the above results to integrate some non-Riemann integrable
functions:

Example 7.41. For all λ > 0,∫ ∞
0

e−λxdm(x) = λ−1 and
∫

R

1
1 + x2

dm(x) = π.

The proof of these identities are similar. By the monotone convergence theorem,
Example 7.39 and the fundamental theorem of calculus for Riemann integrals
(or Theorem 7.40 below),∫ ∞

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdm(x) = lim
N→∞

∫ N

0

e−λxdx

= − lim
N→∞

1
λ
e−λx|N0 = λ−1

and ∫
R

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dm(x) = lim
N→∞

∫ N

−N

1
1 + x2

dx

= lim
N→∞

[
tan−1(N)− tan−1(−N)

]
= π.
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Let us also consider the functions x−p. Using the MCT and the fundamental
theorem of calculus,∫

(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

0

1( 1
n ,1](x)

1
xp
dm(x)

= lim
n→∞

∫ 1

1
n

1
xp
dx = lim

n→∞

x−p+1

1− p

∣∣∣∣1
1/n

=
{ 1

1−p if p < 1
∞ if p > 1

If p = 1 we find∫
(0,1]

1
xp

dm(x) = lim
n→∞

∫ 1

1
n

1
x
dx = lim

n→∞
ln(x)|11/n =∞.

Exercise 7.7. Show ∫ ∞
1

1
xp
dm (x) =

{
∞ if p ≤ 1
1
p−1 if p > 1 .

Example 7.42 (Integration of Power Series). Suppose R > 0 and {an}∞n=0 is a
sequence of complex numbers such that

∑∞
n=0 |an| rn < ∞ for all r ∈ (0, R).

Then∫ β

α

( ∞∑
n=0

anx
n

)
dm(x) =

∞∑
n=0

an

∫ β

α

xndm(x) =
∞∑
n=0

an
βn+1 − αn+1

n+ 1

for all −R < α < β < R. Indeed this follows from Corollary 7.28 since

∞∑
n=0

∫ β

α

|an| |x|n dm(x) ≤
∞∑
n=0

(∫ |β|
0

|an| |x|n dm(x) +
∫ |α|

0

|an| |x|n dm(x)

)

≤
∞∑
n=0

|an|
|β|n+1 + |α|n+1

n+ 1
≤ 2r

∞∑
n=0

|an| rn <∞

where r = max(|β| , |α|).

Example 7.43. Let {rn}∞n=1 be an enumeration of the points in Q ∩ [0, 1] and
define

f(x) =
∞∑
n=1

2−n
1√
|x− rn|

with the convention that

1√
|x− rn|

= 5 if x = rn.

Since, By Theorem 7.40,∫ 1

0

1√
|x− rn|

dx =
∫ 1

rn

1√
x− rn

dx+
∫ rn

0

1√
rn − x

dx

= 2
√
x− rn|1rn − 2

√
rn − x|rn0 = 2

(√
1− rn −

√
rn
)

≤ 4,

we find∫
[0,1]

f(x)dm(x) =
∞∑
n=1

2−n
∫

[0,1]

1√
|x− rn|

dx ≤
∞∑
n=1

2−n4 = 4 <∞.

In particular, m(f = ∞) = 0, i.e. that f < ∞ for almost every x ∈ [0, 1] and
this implies that

∞∑
n=1

2−n
1√
|x− rn|

<∞ for a.e. x ∈ [0, 1].

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Example 7.44. The following limit holds,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = 1. (7.20)

DCT Proof. To verify this, let fn(x) :=
(
1− x

n

)n 1[0,n](x). Then
limn→∞ fn(x) = e−x for all x ≥ 0. Moreover by simple calculus1

1− x ≤ e−x for all x ∈ R.

Therefore, for x < n, we have

0 ≤ 1− x

n
≤ e−x/n =⇒

(
1− x

n

)n
≤
[
e−x/n

]n
= e−x,

from which it follows that

0 ≤ fn(x) ≤ e−x for all x ≥ 0.

1 Since y = 1 − x is the tangent line to y = e−x at x = 0 and e−x is convex up, it
follows that 1− x ≤ e−x for all x ∈ R.
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From Example 7.41, we know∫ ∞
0

e−xdm(x) = 1 <∞,

so that e−x is an integrable function on [0,∞). Hence by the dominated con-
vergence theorem,

lim
n→∞

∫ n

0

(
1− x

n

)n
dm(x) = lim

n→∞

∫ ∞
0

fn(x)dm(x)

=
∫ ∞

0

lim
n→∞

fn(x)dm(x) =
∫ ∞

0

e−xdm(x) = 1.

MCT Proof. The limit in Eq. (7.20) may also be computed using the
monotone convergence theorem. To do this we must show that n → fn (x) is
increasing in n for each x and for this it suffices to consider n > x. But for
n > x,

d

dn
ln fn (x) =

d

dn

[
n ln

(
1− x

n

)]
= ln

(
1− x

n

)
+

n

1− x
n

x

n2

= ln
(

1− x

n

)
+

x
n

1− x
n

= h (x/n)

where, for 0 ≤ y < 1,
h (y) := ln(1− y) +

y

1− y
.

Since h (0) = 0 and

h′ (y) = − 1
1− y

+
1

1− y
+

y

(1− y)2 > 0

it follows that h ≥ 0. Thus we have shown, fn (x) ↑ e−x as n→∞ as claimed.

Example 7.45. Suppose that fn (x) := n1(0, 1n ] (x) for n ∈ N. Then
limn→∞ fn (x) = 0 for all x ∈ R while

lim
n→∞

∫
R
fn (x) dx = lim

n→∞
1 = 1 6= 0 =

∫
R

lim
n→∞

fn (x) dx.

The problem is that the best dominating function we can take is

g (x) = sup
n
fn (x) =

∞∑
n=1

n · 1( 1
n+1 ,

1
n ] (x) .

Notice that ∫
R
g (x) dx =

∞∑
n=1

n ·
(

1
n
− 1
n+ 1

)
=
∞∑
n=1

1
n+ 1

=∞.

Example 7.46 (Jordan’s Lemma). In this example, let us consider the limit;

lim
n→∞

∫ π

0

cos
(

sin
θ

n

)
e−n sin(θ)dθ.

Let

fn (θ) := 1(0,π] (θ) cos
(

sin
θ

n

)
e−n sin(θ).

Then
|fn| ≤ 1(0,π] ∈ L1 (m)

and
lim
n→∞

fn (θ) = 1(0,π] (θ) 1{π} (θ) = 1{π} (θ) .

Therefore by the D.C.T.,

lim
n→∞

∫ π

0

cos
(

sin
θ

n

)
e−n sin(θ)dθ =

∫
R

1{π} (θ) dm (θ) = m ({π}) = 0.

Example 7.47. Recall from Example 7.41 that

λ−1 =
∫

[0,∞)

e−λxdm(x) for all λ > 0.

Let ε > 0. For λ ≥ 2ε > 0 and n ∈ N there exists Cn(ε) <∞ such that

0 ≤
(
− d

dλ

)n
e−λx = xne−λx ≤ Cn(ε)e−εx.

Using this fact, Corollary 7.30 and induction gives

n!λ−n−1 =
(
− d

dλ

)n
λ−1 =

∫
[0,∞)

(
− d

dλ

)n
e−λxdm(x)

=
∫

[0,∞)

xne−λxdm(x).

That is
n! = λn

∫
[0,∞)

xne−λxdm(x). (7.21)

Remark 7.48. Corollary 7.30 may be generalized by allowing the hypothesis to
hold for x ∈ X \E where E ∈ B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary 7.30 to g(t) :=∫∞

0
1x≤tdm(x),

ġ(t) =
d

dt

∫ ∞
0

1x≤tdm(x) ?=
∫ ∞

0

∂

∂t
1x≤tdm(x).
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The last integral is zero since ∂
∂t1x≤t = 0 unless t = x in which case it is not

defined. On the other hand g(t) = t so that ġ(t) = 1. (The reader should decide
which hypothesis of Corollary 7.30 has been violated in this example.)

Exercise 7.8 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim
n→∞

∫∞
0

sin( xn )

(1+ x
n )n dx.

2. lim
n→∞

∫ 1

0
1+nx2

(1+x2)n dx

3. lim
n→∞

∫∞
0

n sin(x/n)
x(1+x2) dx

4. For all a ∈ R compute,

f (a) := lim
n→∞

∫ ∞
a

n(1 + n2x2)−1dx.

Exercise 7.9 (Integration by Parts). Suppose that f, g : R→ R are two
continuously differentiable functions such that f ′g, fg′, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;∫

R
f ′ (x) · g (x) dx = −

∫
R
f (x) · g′ (x) dx. (7.22)

Similarly show that if Suppose that f, g : [0,∞)→ [0,∞) are two continuously
differentiable functions such that f ′g, fg′, and fg are all Lebesgue integrable
functions on [0,∞), then∫ ∞

0

f ′ (x) · g (x) dx = −f (0) g (0)−
∫ ∞

0

f (x) · g′ (x) dx. (7.23)

Outline: 1. First notice that Eq. (7.22) holds if f (x) = 0 for |x| ≥ N for
some N <∞ by undergraduate calculus.

2. Let ψ : R→ [0, 1] be a continuously differentiable function such that
ψ (x) = 1 if |x| ≤ 1 and ψ (x) = 0 if |x| ≥ 2. For any ε > 0 let ψε(x) = ψ(εx)
Write out the identity in Eq. (7.22) with f (x) being replaced by f (x)ψε (x) .

3. Now use the dominated convergence theorem to pass to the limit as ε ↓ 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. (7.23).

Solution to Exercise (7.9). If f has compact support in [−N,N ] for some
N <∞, then by undergraduate integration by parts,

∫
R
f ′ (x) · g (x) dx =

∫ N

−N
f ′ (x) · g (x) dx

= f (x) g (x) |N−N −
∫ N

−N
f (x) · g′ (x) dx

= −
∫ N

−N
f (x) · g′ (x) dx = −

∫
R
f (x) · g′ (x) dx.

Similarly if f has compact support in [0,∞), then∫ ∞
0

f ′ (x) · g (x) dx =
∫ N

0

f ′ (x) · g (x) dx

= f (x) g (x) |N0 −
∫ N

0

f (x) · g′ (x) dx

= −f (0) g (0)−
∫ N

0

f (x) · g′ (x) dx

= −f (0)−
∫ ∞

0

f (x) · g′ (x) dx.

For general f we may apply this identity with f (x) replaced by ψε (x) f (x) to
learn,∫

R
f ′ (x) ·g (x)ψε (x) dx+

∫
R
f (x) ·g (x)ψ′ε (x) dx = −

∫
R
ψε (x) f (x) ·g′ (x) dx.

(7.24)
Since ψε (x) → 1 boundedly and |ψ′ε (x)| = ε |ψ′ (εx)| ≤ Cε, we may use the
DCT to conclude,

lim
ε↓0

∫
R
f ′ (x) · g (x)ψε (x) dx =

∫
R
f ′ (x) · g (x) dx,

lim
ε↓0

∫
R
f (x) · g′ (x)ψε (x) dx =

∫
R
f (x) · g′ (x) dx, and∣∣∣∣∫

R
f (x) · g (x)ψ′ε (x) dx

∣∣∣∣ ≤ Cε · ∫
R
|f (x) · g (x)| dx→ 0 as ε ↓ 0.

Therefore passing to the limit as ε ↓ 0 in Eq. (7.24) completes the proof of Eq.
(7.22). Equation (7.23) is proved in the same way.

Definition 7.49 (Gamma Function). The Gamma function, Γ : R+ →
R+ is defined by

Γ (x) :=
∫ ∞

0

ux−1e−udu (7.25)

(The reader should check that Γ (x) <∞ for all x > 0.)
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Here are some of the more basic properties of this function.

Example 7.50 (Γ – function properties). Let Γ be the gamma function, then;

1. Γ (1) = 1 as is easily verified.
2. Γ (x+ 1) = xΓ (x) for all x > 0 as follows by integration by parts;

Γ (x+ 1) =
∫ ∞

0

e−u ux+1 du

u
=
∫ ∞

0

ux
(
− d

du
e−u

)
du

= x

∫ ∞
0

ux−1 e−u du = x Γ (x).

In particular, it follows from items 1. and 2. and induction that

Γ (n+ 1) = n! for all n ∈ N. (7.26)

(Equation 7.26was also proved in Eq. (7.21).)
3. Γ (1/2) =

√
π. This last assertion is a bit trickier. One proof is to make use

of the fact (proved below in Lemma 9.29) that∫ ∞
−∞

e−ar
2
dr =

√
π

a
for all a > 0. (7.27)

Taking a = 1 and making the change of variables, u = r2 below implies,

√
π =

∫ ∞
−∞

e−r
2
dr = 2

∫ ∞
0

u−1/2e−udu = Γ (1/2) .

Γ (1/2) = 2
∫ ∞

0

e−r
2
dr =

∫ ∞
−∞

e−r
2
dr

= I1(1) =
√
π.

4. A simple induction argument using items 2. and 3. now shows that

Γ

(
n+

1
2

)
=

(2n− 1)!!
2n

√
π

where (−1)!! := 1 and (2n− 1)!! = (2n− 1) (2n− 3) . . . 3 · 1 for n ∈ N.

7.4 Densities and Change of Variables Theorems

Exercise 7.10 (Measures and Densities). Let (X,M, µ) be a measure
space and ρ : X → [0,∞] be a measurable function. For A ∈ M, set
ν(A) :=

∫
A
ρdµ.

1. Show ν :M→ [0,∞] is a measure.
2. Let f : X → [0,∞] be a measurable function, show∫

X

fdν =
∫
X

fρdµ. (7.28)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X → C is in L1(ν) iff |f | ρ ∈ L1(µ)
and if f ∈ L1(ν) then Eq. (7.28) still holds.

Solution to Exercise (7.10). The fact that ν is a measure follows easily from
Corollary 7.6. Clearly Eq. (7.28) holds when f = 1A by definition of ν. It then
holds for positive simple functions, f, by linearity. Finally for general f ∈ L+,
choose simple functions, ϕn, such that 0 ≤ ϕn ↑ f. Then using MCT twice we
find∫

X

fdν = lim
n→∞

∫
X

ϕndν = lim
n→∞

∫
X

ϕnρdµ =
∫
X

lim
n→∞

ϕnρdµ =
∫
X

fρdµ.

By what we have just proved, for all f : X → C we have∫
X

|f | dν =
∫
X

|f | ρdµ

so that f ∈ L1 (µ) iff |f | ρ ∈ L1(µ). If f ∈ L1 (µ) and f is real,∫
X

fdν =
∫
X

f+dν −
∫
X

f−dν =
∫
X

f+ρdµ−
∫
X

f−ρdµ

=
∫
X

[f+ρ− f−ρ] dµ =
∫
X

fρdµ.

The complex case easily follows from this identity.

Notation 7.51 It is customary to informally describe ν defined in Exercise
7.10 by writing dν = ρdµ.

Exercise 7.11 (Abstract Change of Variables Formula). Let (X,M, µ)
be a measure space, (Y,F) be a measurable space and f : X → Y be a mea-
surable map. Recall that ν = f∗µ : F → [0,∞] defined by ν(A) := µ(f−1(A))
for all A ∈ F is a measure on F .

1. Show ∫
Y

gdν =
∫
X

(g ◦ f) dµ (7.29)

for all measurable functions g : Y → [0,∞].Hint: see the hint from Exercise
7.10.
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2. Show a measurable function g : Y → C is in L1(ν) iff g ◦ f ∈ L1(µ) and
that Eq. (7.29) holds for all g ∈ L1(ν).

Example 7.52. Suppose (Ω,B, P ) is a probability space and {Xi}ni=1 are random
variables on Ω with ν := LawP (X1, . . . , Xn) , then

E [g (X1, . . . , Xn)] =
∫

Rn
g dν

for all g : Rn → R which are Borel measurable and either bounded or non-
negative. This follows directly from Exercise 7.11 with f := (X1, . . . , Xn) :
Ω → Rn and µ = P.

Remark 7.53. As a special case of Example 7.52, suppose that X is a random
variable on a probability space, (Ω,B, P ) , and F (x) := P (X ≤ x) . Then

E [f (X)] =
∫

R
f (x) dF (x) (7.30)

where dF (x) is shorthand for dµF (x) and µF is the unique probability measure
on (R,BR) such that µF ((−∞, x]) = F (x) for all x ∈ R. Moreover if F : R →
[0, 1] happens to be C1-function, then

dµF (x) = F ′ (x) dm (x) (7.31)

and Eq. (7.30) may be written as

E [f (X)] =
∫

R
f (x)F ′ (x) dm (x) . (7.32)

To verify Eq. (7.31) it suffices to observe, by the fundamental theorem of cal-
culus, that

µF ((a, b]) = F (b)− F (a) =
∫ b

a

F ′ (x) dx =
∫

(a,b]

F ′dm.

From this equation we may deduce that µF (A) =
∫
A
F ′dm for all A ∈ BR.

Equation 7.32 now follows from Exercise 7.10.

Exercise 7.12. Let F : R → R be a C1-function such that F ′(x) > 0 for all
x ∈ R and limx→±∞ F (x) = ±∞. (Notice that F is strictly increasing so that
F−1 : R→ R exists and moreover, by the inverse function theorem that F−1 is
a C1 – function.) Let m be Lebesgue measure on BR and

ν(A) = m(F (A)) = m(
(
F−1

)−1
(A)) =

(
F−1
∗ m

)
(A)

for all A ∈ BR. Show dν = F ′dm. Use this result to prove the change of variable
formula, ∫

R
h ◦ F · F ′dm =

∫
R
hdm (7.33)

which is valid for all Borel measurable functions h : R→ [0,∞].
Hint: Start by showing dν = F ′dm on sets of the form A = (a, b] with

a, b ∈ R and a < b. Then use the uniqueness assertions in Exercise 5.11 to
conclude dν = F ′dm on all of BR. To prove Eq. (7.33) apply Exercise 7.11 with
g = h ◦ F and f = F−1.

Solution to Exercise (7.12). Let dµ = F ′dm and A = (a, b], then

ν((a, b]) = m(F ((a, b])) = m((F (a), F (b)]) = F (b)− F (a)

while

µ((a, b]) =
∫

(a,b]

F ′dm =
∫ b

a

F ′(x)dx = F (b)− F (a).

It follows that both µ = ν = µF – where µF is the measure described in
Theorem 5.33. By Exercise 7.11 with g = h ◦ F and f = F−1, we find∫

R
h ◦ F · F ′dm =

∫
R
h ◦ Fdν =

∫
R
h ◦ Fd

(
F−1
∗ m

)
=
∫

R
(h ◦ F ) ◦ F−1dm

=
∫

R
hdm.

This result is also valid for all h ∈ L1(m).

7.5 Some Common Continuous Distributions

Example 7.54 (Uniform Distribution). Suppose that X has the uniform distri-
bution in [0, b] for some b ∈ (0,∞) , i.e. X∗P = 1

b ·m on [0, b] . More explicitly,

E [f (X)] =
1
b

∫ b

0

f (x) dx for all bounded measurable f.

The moment generating function for X is;

MX (t) =
1
b

∫ b

0

etxdx =
1
bt

(
etb − 1

)
=
∞∑
n=1

1
n!

(bt)n−1 =
∞∑
n=0

bn

(n+ 1)!
tn.
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On the other hand (see Proposition 7.33),

MX (t) =
∞∑
n=0

tn

n!
EXn.

Thus it follows that
EXn =

bn

n+ 1
.

Of course this may be calculated directly just as easily,

EXn =
1
b

∫ b

0

xndx =
1

b (n+ 1)
xn+1|b0 =

bn

n+ 1
.

Definition 7.55. A random variable T ≥ 0 is said to be exponential with
parameter λ ∈ [0,∞) provided, P (T > t) = e−λt for all t ≥ 0. We will write
T

d= E (λ) for short.

If λ > 0, we have

P (T > t) = e−λt =
∫ ∞
t

λe−λτdτ

from which it follows that P (T ∈ (t, t+ dt)) = λ1t≥0e
−λtdt. Applying Corollary

7.30 repeatedly implies,

ET =
∫ ∞

0

τλe−λτdτ = λ

(
− d

dλ

)∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)
λ−1 = λ−1

and more generally that

ET k =
∫ ∞

0

τke−λτλdτ = λ

(
− d

dλ

)k ∫ ∞
0

e−λτdτ = λ

(
− d

dλ

)k
λ−1 = k!λ−k.

(7.34)
In particular we see that

Var (T ) = 2λ−2 − λ−2 = λ−2. (7.35)

Alternatively we may compute the moment generating function for T,

MT (a) := E
[
eaT
]

=
∫ ∞

0

eaτλe−λτdτ

=
∫ ∞

0

eaτλe−λτdτ =
λ

λ− a
=

1
1− aλ−1

(7.36)

which is valid for a < λ. On the other hand (see Proposition 7.33), we know
that

E
[
eaT
]

=
∞∑
n=0

an

n!
E [Tn] for |a| < λ.

Comparing this with Eq. (7.36) again shows that Eq. (7.34) is valid.
Here is yet another way to understand and generalize Eq. (7.36). We simply

make the change of variables, u = λτ in the integral in Eq. (7.34) to learn,

ET k = λ−k
∫ ∞

0

uke−udτ = λ−kΓ (k + 1) .

This last equation is valid for all k ∈ (−1,∞) – in particular k need not be an
integer.

Theorem 7.56 (Memoryless property). A random variable, T ∈ (0,∞] has
an exponential distribution iff it satisfies the memoryless property:

P (T > s+ t|T > s) = P (T > t) for all s, t ≥ 0,

where as usual, P (A|B) := P (A ∩B) /P (B) when p (B) > 0. (Note that T d=
E (0) means that P (T > t) = e0t = 1 for all t > 0 and therefore that T = ∞
a.s.)

Proof. (The following proof is taken from [33].) Suppose first that T d= E (λ)
for some λ > 0. Then

P (T > s+ t|T > s) =
P (T > s+ t)
P (T > s)

=
e−λ(s+t)

e−λs
= e−λt = P (T > t) .

For the converse, let g (t) := P (T > t) , then by assumption,

g (t+ s)
g (s)

= P (T > s+ t|T > s) = P (T > t) = g (t)

whenever g (s) 6= 0 and g (t) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (t) = 0 for all t > s. Thus it follows that

g (t+ s) = g (t) g (s) for all s, t ≥ 0.

Since T > 0, we know that g (1/n) = P (T > 1/n) > 0 for some n and
therefore, g (1) = g (1/n)n > 0 and we may write g (1) = e−λ for some 0 ≤ λ <
∞.

Observe for p, q ∈ N, g (p/q) = g (1/q)p and taking p = q then shows,
e−λ = g (1) = g (1/q)q . Therefore, g (p/q) = e−λp/q so that g (t) = e−λt for all
t ∈ Q+ := Q ∩ R+. Given r, s ∈ Q+ and t ∈ R such that r ≤ t ≤ s we have,
since g is decreasing, that
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e−λr = g (r) ≥ g (t) ≥ g (s) = e−λs.

Hence letting s ↑ t and r ↓ t in the above equations shows that g (t) = e−λt for
all t ∈ R+ and therefore T d= E (λ) .

Exercise 7.13 (Gamma Distributions). Let X be a positive random vari-
able. For k, θ > 0, we say that X d=Gamma(k, θ) if

(X∗P ) (dx) = f (x; k, θ) dx for x > 0,

where

f (x; k, θ) := xk−1 e−x/θ

θkΓ (k)
for x > 0, and k, θ > 0.

Find the moment generating function (see Definition 7.32), MX (t) = E
[
etX
]

for t < θ−1. Differentiate your result in t to show

E [Xm] = k (k + 1) . . . (k +m− 1) θm for all m ∈ N0.

In particular, E [X] = kθ and Var (X) = kθ2. (Notice that when k = 1 and
θ = λ−1, X

d= E (λ) .)

7.5.1 Normal (Gaussian) Random Variables

Definition 7.57 (Normal / Gaussian Random Variables). A random
variable, Y, is normal with mean µ standard deviation σ2 iff

P (Y ∈ B) =
1√

2πσ2

∫
B

e−
1

2σ2 (y−µ)2dy for all B ∈ BR. (7.37)

We will abbreviate this by writing Y d= N
(
µ, σ2

)
. When µ = 0 and σ2 = 1 we

will simply write N for N (0, 1) and if Y d= N, we will say Y is a standard
normal random variable.

Observe that Eq. (7.37) is equivalent to writing

E [f (Y )] =
1√

2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2dy

for all bounded measurable functions, f : R→ R. Also observe that Y
d=

N
(
µ, σ2

)
is equivalent to Y d= σN+µ. Indeed, by making the change of variable,

y = σx+ µ, we find

E [f (σN + µ)] =
1√
2π

∫
R
f (σx+ µ) e−

1
2x

2
dx

=
1√
2π

∫
R
f (y) e−

1
2σ2 (y−µ)2 dy

σ
=

1√
2πσ2

∫
R
f (y) e−

1
2σ2 (y−µ)2dy.

Lastly the constant,
(
2πσ2

)−1/2 is chosen so that

1√
2πσ2

∫
R
e−

1
2σ2 (y−µ)2dy =

1√
2π

∫
R
e−

1
2y

2
dy = 1,

see Example 7.50 and Lemma 9.29.

Exercise 7.14. Suppose that X d= N (0, 1) and f : R→ R is a C1 – function
such that Xf (X) , f ′ (X) and f (X) are all integrable random variables. Show

E [Xf (X)] = − 1√
2π

∫
R
f (x)

d

dx
e−

1
2x

2
dx

=
1√
2π

∫
R
f ′ (x) e−

1
2x

2
dx = E [f ′ (X)] .

Example 7.58. Suppose that X d= N (0, 1) and define αk := E
[
X2k

]
for all

k ∈ N0. By Exercise 7.14,

αk+1 = E
[
X2k+1 ·X

]
= (2k + 1)αk with α0 = 1.

Hence it follows that

α1 = α0 = 1, α2 = 3α1 = 3, α3 = 5 · 3

and by a simple induction argument,

EX2k = αk = (2k − 1)!!, (7.38)

where (−1)!! := 0. Actually we can use the Γ – function to say more. Namely
for any β > −1,

E |X|β =
1√
2π

∫
R
|x|β e− 1

2x
2
dx =

√
2
π

∫ ∞
0

xβe−
1
2x

2
dx.

Now make the change of variables, y = x2/2 (i.e. x =
√

2y and dx = 1√
2
y−1/2dy)

to learn,

E |X|β =
1√
π

∫ ∞
0

(2y)β/2 e−yy−1/2dy

=
1√
π

2β/2
∫ ∞

0

y(β+1)/2e−yy−1dy =
1√
π

2β/2Γ
(
β + 1

2

)
.
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Exercise 7.15. Suppose that X d= N (0, 1) and λ ∈ R. Show

f (λ) := E
[
eiλX

]
= exp

(
−λ2/2

)
. (7.39)

Hint: Use Corollary 7.30 to show, f ′ (λ) = iE
[
XeiλX

]
and then use Exercise

7.14 to see that f ′ (λ) satisfies a simple ordinary differential equation.

Solution to Exercise (7.15). Using Corollary 7.30 and Exercise 7.14,

f ′ (λ) = iE
[
XeiλX

]
= iE

[
d

dX
eiλX

]
= i · (iλ) E

[
eiλX

]
= −λf (λ) with f (0) = 1.

Solving for the unique solution of this differential equation gives Eq. (7.39).

Exercise 7.16. Suppose that X
d= N (0, 1) and t ∈ R. Show E

[
etX
]

=
exp

(
t2/2

)
. (You could follow the hint in Exercise 7.15 or you could use a

completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 7.17. Use Exercise 7.16 and Proposition 7.33 to give another proof
that EX2k = (2k − 1)!! when X

d= N (0, 1) .

Exercise 7.18. Let X d= N (0, 1) and α ∈ R, find ρ : R+ → R+ := (0,∞) such
that

E [f (|X|α)] =
∫

R+

f (x) ρ (x) dx

for all continuous functions, f : R+ → R with compact support in R+.

Lemma 7.59 (Gaussian tail estimates). Suppose that X is a standard nor-
mal random variable, i.e.

P (X ∈ A) =
1√
2π

∫
A

e−x
2/2dx for all A ∈ BR,

then for all x ≥ 0,

P (X ≥ x) ≤ min
(

1
2
− x√

2π
e−x

2/2,
1√
2πx

e−x
2/2

)
≤ 1

2
e−x

2/2. (7.40)

Moreover (see [35, Lemma 2.5]),

P (X ≥ x) ≥ max
(

1− x√
2π
,

x

x2 + 1
1√
2π
e−x

2/2

)
(7.41)

which combined with Eq. (7.40) proves Mill’s ratio (see [15]);

lim
x→∞

P (X ≥ x)
1√
2πx

e−x2/2
= 1. (7.42)

Proof. See Figure 7.1 where; the green curve is the plot of P (X ≥ x) , the
black is the plot of

min
(

1
2
− 1√

2πx
e−x

2/2,
1√
2πx

e−x
2/2

)
,

the red is the plot of 1
2e
−x2/2, and the blue is the plot of

max
(

1
2
− x√

2π
,

x

x2 + 1
1√
2π
e−x

2/2

)
.

The formal proof of these estimates for the reader who is not convinced by

Fig. 7.1. Plots of P (X ≥ x) and its estimates.

Figure 7.1 is given below.
We begin by observing that

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy ≤ 1√

2π

∫ ∞
x

y

x
e−y

2/2dy

≤ − 1√
2π

1
x
e−y

2/2|−∞x =
1√
2π

1
x
e−x

2/2. (7.43)

If we only want to prove Mill’s ratio (7.42), we could proceed as follows. Let
α > 1, then for x > 0,

P (X ≥ x) =
1√
2π

∫ ∞
x

e−y
2/2dy

≥ 1√
2π

∫ αx

x

y

αx
e−y

2/2dy = − 1√
2π

1
αx

e−y
2/2|y=αx

y=x

=
1√
2π

1
αx

e−x
2/2
[
1− e−α

2x2/2
]
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from which it follows,

lim inf
x→∞

[√
2πxex

2/2 · P (X ≥ x)
]
≥ 1/α ↑ 1 as α ↓ 1.

The estimate in Eq. (7.43) shows lim supx→∞
[√

2πxex
2/2 · P (X ≥ x)

]
≤ 1.

To get more precise estimates, we begin by observing,

P (X ≥ x) =
1
2
− 1√

2π

∫ x

0

e−y
2/2dy (7.44)

≤ 1
2
− 1√

2π

∫ x

0

e−x
2/2dy ≤ 1

2
− 1√

2π
e−x

2/2x.

This equation along with Eq. (7.43) gives the first equality in Eq. (7.40). To
prove the second equality observe that

√
2π > 2, so

1√
2π

1
x
e−x

2/2 ≤ 1
2
e−x

2/2 if x ≥ 1.

For x ≤ 1 we must show,
1
2
− x√

2π
e−x

2/2 ≤ 1
2
e−x

2/2

or equivalently that f (x) := ex
2/2 −

√
2
πx ≤ 1 for 0 ≤ x ≤ 1. Since f is convex(

f ′′ (x) =
(
x2 + 1

)
ex

2/2 > 0
)
, f (0) = 1 and f (1) ∼= 0.85 < 1, it follows that

f ≤ 1 on [0, 1] . This proves the second inequality in Eq. (7.40).
It follows from Eq. (7.44) that

P (X ≥ x) =
1
2
− 1√

2π

∫ x

0

e−y
2/2dy

≥ 1
2
− 1√

2π

∫ x

0

1dy =
1
2
− 1√

2π
x for all x ≥ 0.

So to finish the proof of Eq. (7.41) we must show,

f (x) :=
1√
2π
xe−x

2/2 −
(
1 + x2

)
P (X ≥ x)

=
1√
2π

[
xe−x

2/2 −
(
1 + x2

) ∫ ∞
x

e−y
2/2dy

]
≤ 0 for all 0 ≤ x <∞.

This follows by observing that f (0) = −1/2 < 0, limx↑∞ f (x) = 0 and

f ′ (x) =
1√
2π

[
e−x

2/2
(
1− x2

)
− 2xP (X ≥ x) +

(
1 + x2

)
e−x

2/2
]

= 2
(

1√
2π
e−x

2/2 − xP (X ≥ y)
)
≥ 0,

where the last inequality is a consequence Eq. (7.40).

7.6 Stirling’s Formula

On occasion one is faced with estimating an integral of the form,
∫
J
e−G(t)dt,

where J = (a, b) ⊂ R and G (t) is a C1 – function with a unique (for simplicity)
global minimum at some point t0 ∈ J. The idea is that the majority contribu-
tion of the integral will often come from some neighborhood, (t0 − α, t0 + α) ,
of t0. Moreover, it may happen that G (t) can be well approximated on this
neighborhood by its Taylor expansion to order 2;

G (t) ∼= G (t0) +
1
2
G̈ (t0) (t− t0)2

.

Notice that the linear term is zero since t0 is a minimum and therefore Ġ (t0) =
0. We will further assume that G̈ (t0) 6= 0 and hence G̈ (t0) > 0. Under these
hypothesis we will have,∫

J

e−G(t)dt ∼= e−G(t0)

∫
|t−t0|<α

exp
(
−1

2
G̈ (t0) (t− t0)2

)
dt.

Making the change of variables, s =
√
G̈ (t0) (t− t0) , in the above integral then

gives,∫
J

e−G(t)dt ∼=
1√
G̈ (t0)

e−G(t0)

∫
|s|<
√
G̈(t0)·α

e−
1
2 s

2
ds

=
1√
G̈ (t0)

e−G(t0)

[
√

2π −
∫ ∞
√
G̈(t0)·α

e−
1
2 s

2
ds

]

=
1√
G̈ (t0)

e−G(t0)

√2π −O

 1√
G̈ (t0) · α

e−
1
2 G̈(t0)·α2

 .
If α is sufficiently large, for example if

√
G̈ (t0) · α = 3, then the error term is

about 0.0037 and we should be able to conclude that∫
J

e−G(t)dt ∼=

√
2π

G̈ (t0)
e−G(t0). (7.45)

The proof of the next theorem (Stirling’s formula for the Gamma function) will
illustrate these ideas and what one has to do to carry them out rigorously.

Theorem 7.60 (Stirling’s formula). The Gamma function (see Definition
7.49), satisfies Stirling’s formula,
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7.6 Stirling’s Formula 99

lim
x→∞

Γ (x+ 1)√
2πe−xxx+1/2

= 1. (7.46)

In particular, if n ∈ N, we have

n! = Γ (n+ 1) ∼
√

2πe−nnn+1/2

where we write an ∼ bn to mean, limn→∞
an
bn

= 1.

Proof. (The following proof is an elaboration of the proof found on page
236-237 in Krantz’s Real Analysis and Foundations.) We begin with the formula
for Γ (x+ 1) ;

Γ (x+ 1) =
∫ ∞

0

e−ttxdt =
∫ ∞

0

e−Gx(t)dt, (7.47)

where
Gx (t) := t− x ln t.

Then Ġx (t) = 1−x/t, G̈x (t) = x/t2, Gx has a global minimum (since G̈x > 0)
at t0 = x where

Gx (x) = x− x lnx and G̈x (x) = 1/x.

So if Eq. (7.45) is valid in this case we should expect,

Γ (x+ 1) ∼=
√

2πxe−(x−x ln x) =
√

2πe−xxx+1/2

which would give Stirling’s formula. The rest of the proof will be spent on
rigorously justifying the approximations involved.

Let us begin by making the change of variables s =
√
G̈ (t0) (t− t0) =

1√
x

(t− x) as suggested above. Then

Gx (t)−Gx (x) = (t− x)− x ln (t/x) =
√
xs− x ln

(
x+
√
xs

x

)
= x

[
s√
x
− ln

(
1 +

s√
x

)]
= s2q

(
s√
x

)
where

q (u) :=
1
u2

[u− ln (1 + u)] for u > −1 with q (0) :=
1
2
.

Setting q (0) = 1/2 makes q a continuous and in fact smooth function on
(−1,∞) , see Figure 7.2. Using the power series expansion for ln (1 + u) we
find,

q (u) =
1
2

+
∞∑
k=3

(−u)k−2

k
for |u| < 1. (7.48)

Fig. 7.2. Plot of q (u) .

Making the change of variables, t = x +
√
xs in the second integral in Eq.

(7.47) yields,

Γ (x+ 1) = e−(x−x ln x)
√
x

∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds = xx+1/2e−x · I (x) ,

where

I (x) =
∫ ∞
−
√
x

e
−q
(
s√
x

)
s2
ds =

∫ ∞
−∞

1s≥−√x · e
−q
(
s√
x

)
s2
ds. (7.49)

From Eq. (7.48) it follows that limu→0 q (u) = 1/2 and therefore,∫ ∞
−∞

lim
x→∞

[
1s≥−√x · e

−q
(
s√
x

)
s2
]
ds =

∫ ∞
−∞

e−
1
2 s

2
ds =

√
2π. (7.50)

So if there exists a dominating function, F ∈ L1 (R,m) , such that

1s≥−√x · e
−q
(
s√
x

)
s2 ≤ F (s) for all s ∈ R and x ≥ 1,

we can apply the DCT to learn that limx→∞ I (x) =
√

2π which will complete
the proof of Stirling’s formula.

We now construct the desired function F. From Eq. (7.48) it follows that
q (u) ≥ 1/2 for −1 < u ≤ 0. Since u− ln (1 + u) > 0 for u 6= 0 (u− ln (1 + u) is
convex and has a minimum of 0 at u = 0) we may conclude that q (u) > 0 for
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all u > −1 therefore by compactness (on [0,M ]), min−1<u≤M q (u) = ε (M) > 0
for all M ∈ (0,∞) , see Remark 7.61 for more explicit estimates. Lastly, since
1
u ln (1 + u)→ 0 as u→∞, there exists M <∞ (M = 3 would due) such that
1
u ln (1 + u) ≤ 1

2 for u ≥M and hence,

q (u) =
1
u

[
1− 1

u
ln (1 + u)

]
≥ 1

2u
for u ≥M.

So there exists ε > 0 and M <∞ such that (for all x ≥ 1),

1s≥−√xe
−q
(
s√
x

)
s2 ≤ 1−√x<s≤Me

−εs2 + 1s≥Me−
√
xs/2

≤ 1−√x<s≤Me
−εs2 + 1s≥Me−s/2

≤ e−εs
2

+ e−|s|/2 =: F (s) ∈ L1 (R, ds) .

Remark 7.61 (Estimating q (u) by Taylor’s Theorem). Another way to estimate
q (u) is to use Taylor’s theorem with integral remainder. In general if h is C2 –
function on [0, 1] , then by the fundamental theorem of calculus and integration
by parts,

h (1)− h (0) =
∫ 1

0

ḣ (t) dt = −
∫ 1

0

ḣ (t) d (1− t)

= −ḣ (t) (1− t) |10 +
∫ 1

0

ḧ (t) (1− t) dt

= ḣ (0) +
1
2

∫ 1

0

ḧ (t) dν (t) (7.51)

where dν (t) := 2 (1− t) dt which is a probability measure on [0, 1] . Applying
this to h (t) = F (a+ t (b− a)) for a C2 – function on an interval of points
between a and b in R then implies,

F (b)− F (a) = (b− a) Ḟ (a) +
1
2

(b− a)2
∫ 1

0

F̈ (a+ t (b− a)) dν (t) . (7.52)

(Similar formulas hold to any order.) Applying this result with F (x) = x −
ln (1 + x) , a = 0, and b = u ∈ (−1,∞) gives,

u− ln (1 + u) =
1
2
u2

∫ 1

0

1
(1 + tu)2 dν (t) ,

i.e.

q (u) =
1
2

∫ 1

0

1
(1 + tu)2 dν (t) .

From this expression for q (u) it now easily follows that

q (u) ≥ 1
2

∫ 1

0

1
(1 + 0)2 dν (t) =

1
2

if − 1 < u ≤ 0

and

q (u) ≥ 1
2

∫ 1

0

1
(1 + u)2 dν (t) =

1
2 (1 + u)2 .

So an explicit formula for ε (M) is ε (M) = (1 +M)−2
/2.

7.6.1 Two applications of Stirling’s formula

In this subsection suppose x ∈ (0, 1) and Sn
d=Binomial(n, x) for all n ∈ N, i.e.

Px (Sn = k) =
(
n

k

)
xk (1− x)n−k for 0 ≤ k ≤ n. (7.53)

Recall that ESn = nx and Var (Sn) = nσ2 where σ2 := x (1− x) . The weak
law of large numbers states (Exercise 4.13) that

P

(∣∣∣∣Snn − x
∣∣∣∣ ≥ ε) ≤ 1

nε2
σ2

and therefore, Snn is concentrating near its mean value, x, for n large, i.e. Sn ∼=
nx for n large. The next central limit theorem describes the fluctuations of Sn
about nx.

Theorem 7.62 (De Moivre-Laplace Central Limit Theorem). For all
−∞ < a < b <∞,

lim
n→∞

P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

=
1√
2π

∫ b

a

e−
1
2y

2
dy

= P (a ≤ N ≤ b)

where N d= N (0, 1) . Informally, Sn−nx
σ
√
n

d∼= N or equivalently, Sn
d∼= nx+σ

√
n·N

which if valid in a neighborhood of nx whose length is order
√
n.

Proof. (We are not going to cover all the technical details in this proof as
we will give much more general versions of this theorem later.) Starting with
the definition of the Binomial distribution we have,
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pn := P

(
a ≤ Sn − nx

σ
√
n
≤ b
)

= P
(
Sn ∈ nx+ σ

√
n [a, b]

)
=

∑
k∈nx+σ

√
n[a,b]

P (Sn = k)

=
∑

k∈nx+σ
√
n[a,b]

(
n

k

)
xk (1− x)n−k .

Letting k = nx+σ
√
nyk, i.e. yk = (k − nx) /σ

√
n we see that ∆yk = yk+1−yk =

1/ (σ
√
n) . Therefore we may write pn as

pn =
∑

yk∈[a,b]

σ
√
n

(
n

k

)
xk (1− x)n−k∆yk. (7.54)

So to finish the proof we need to show, for k = O (
√
n) (yk = O (1)), that

σ
√
n

(
n

k

)
xk (1− x)n−k ∼ 1√

2π
e−

1
2y

2
k as n→∞ (7.55)

in which case the sum in Eq. (7.54) may be well approximated by the “Riemann
sum;”

pn ∼
∑

yk∈[a,b]

1√
2π
e−

1
2y

2
k∆yk →

1√
2π

∫ b

a

e−
1
2y

2
dy as n→∞.

By Stirling’s formula,

σ
√
n

(
n

k

)
= σ
√
n

1
k!

n!
(n− k)!

∼ σ
√
n√

2π
nn+1/2

kk+1/2 (n− k)n−k+1/2

=
σ√
2π

1(
k
n

)k+1/2 (
1− k

n

)n−k+1/2

=
σ√
2π

1(
x+ σ√

n
yk

)k+1/2 (
1− x− σ√

n
yk

)n−k+1/2

∼ σ√
2π

1√
x (1− x)

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k
=

1√
2π

1(
x+ σ√

n
yk

)k (
1− x− σ√

n
yk

)n−k .
In order to shorten the notation, let zk := σ√

n
yk = O

(
n−1/2

)
so that k =

nx+ nzk = n (x+ zk) . In this notation we have shown,

√
2πσ
√
n

(
n

k

)
xk (1− x)n−k ∼ xk (1− x)n−k

(x+ zk)k (1− x− zk)n−k

=
1(

1 + 1
xzk
)k (1− 1

1−xzk

)n−k
=

1(
1 + 1

xzk
)n(x+zk)

(
1− 1

1−xzk

)n(1−x−zk)
=: q (n, k) .

(7.56)

Taking logarithms and using Taylor’s theorem we learn

n (x+ zk) ln
(

1 +
1
x
zk

)
= n (x+ zk)

(
1
x
zk −

1
2x2

z2
k +O

(
n−3/2

))
= nzk +

n

2x
z2
k +O

(
n−3/2

)
and

n (1− x− zk) ln
(

1− 1
1− x

zk

)
= n (1− x− zk)

(
− 1

1− x
zk −

1
2 (1− x)2 z

2
k +O

(
n−3/2

))
= −nzk +

n

2 (1− x)
z2
k +O

(
n−3/2

)
.

and then adding these expressions shows,

− ln q (n, k) =
n

2
z2
k

(
1
x

+
1

1− x

)
+O

(
n−3/2

)
=

n

2σ2
z2
k +O

(
n−3/2

)
=

1
2
y2
k +O

(
n−3/2

)
.

Combining this with Eq. (7.56) shows,

σ
√
n

(
n

k

)
xk (1− x)n−k ∼ 1√

2π
exp

(
−1

2
y2
k +O

(
n−3/2

))
which gives the desired estimate in Eq. (7.55).

The previous central limit theorem has shown that

Sn
n

d∼= x+
σ√
n
N
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which implies the major fluctuations of Sn/n occur within intervals about x
of length O

(
1√
n

)
. The next result aims to understand the rare events where

Sn/n makes a “large” deviation from its mean value, x – in this case a large
deviation is something of size O (1) as n→∞.

Theorem 7.63 (Binomial Large Deviation Bounds). Let us continue to
use the notation in Theorem 7.62. Then for all y ∈ (0, x) ,

lim
n→∞

1
n

lnPx

(
Sn
n
≤ y
)

= y ln
x

y
+ (1− y) ln

1− x
1− y

.

Roughly speaking,

Px

(
Sn
n
≤ y
)
≈ e−nIx(y)

where Ix (y) is the “rate function,”

Ix (y) := y ln
y

x
+ (1− y) ln

1− y
1− x

,

see Figure 7.3 for the graph of I1/2.

Fig. 7.3. A plot of the rate function, I1/2.

Proof. By definition of the binomial distribution,

Px

(
Sn
n
≤ y
)

= Px (Sn ≤ ny) =
∑
k≤ny

(
n

k

)
xk (1− x)n−k .

If ak ≥ 0, then we have the following crude estimates on
∑m−1
k=0 ak,

max
k<m

ak ≤
m−1∑
k=0

ak ≤ m ·max
k<m

ak. (7.57)

In order to apply this with ak =
(
n
k

)
xk (1− x)n−k and m = [ny] , we need to

find the maximum of the ak for 0 ≤ k ≤ ny. This is easy to do since ak is
increasing for 0 ≤ k ≤ ny as we now show. Consider,

ak+1

ak
=

(
n
k+1

)
xk+1 (1− x)n−k−1(
n
k

)
xk (1− x)n−k

=
k! (n− k)! · x

(k + 1)! · (n− k − 1)! · (1− x)

=
(n− k) · x

(k + 1) · (1− x)
.

Therefore, where the latter expression is greater than or equal to 1 iff

ak+1

ak
≥ 1 ⇐⇒ (n− k) · x ≥ (k + 1) · (1− x)

⇐⇒ nx ≥ k + 1− x ⇐⇒ k < (n− 1)x− 1.

Thus for k < (n− 1)x− 1 we may conclude that
(
n
k

)
xk (1− x)n−k is increasing

in k.
Thus the crude bound in Eq. (7.57) implies,(
n

[ny]

)
x[ny] (1− x)n−[ny] ≤ Px

(
Sn
n
≤ y
)
≤ [ny]

(
n

[ny]

)
x[ny] (1− x)n−[ny]

or equivalently,

1
n

ln
[(

n

[ny]

)
x[ny] (1− x)n−[ny]

]
≤ 1
n

lnPx

(
Sn
n
≤ y
)

≤ 1
n

ln
[
(ny)

(
n

[ny]

)
x[ny] (1− x)n−[ny]

]
.

By Stirling’s formula, for k such that k and n− k is large we have,
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n

k

)
∼ 1√

2π
nn+1/2

kk+1/2 · (n− k)n−k+1/2
=
√
n√
2π

1(
k
n

)k+1/2 ·
(
1− k

n

)n−k+1/2

and therefore,

1
n

ln
(
n

k

)
∼ −k

n
ln
(
k

n

)
−
(

1− k

n

)
ln
(

1− k

n

)
.

So taking k = [ny] , we learn that

lim
n→∞

1
n

ln
(
n

[ny]

)
= −y ln y − (1− y) ln (1− y)

and therefore,

lim
n→∞

1
n

lnPx

(
Sn
n
≤ y
)

= −y ln y − (1− y) ln (1− y) + y lnx+ (1− y) ln (1− x)

= y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
.

As a consistency check it is worth noting, by Jensen’s inequality described
below, that

−Ix (y) = y ln
x

y
+ (1− y) ln

(
1− x
1− y

)
≤ ln

(
y
x

y
+ (1− y)

1− x
1− y

)
= ln (1) = 0.

This must be the case since

−Ix (y) = lim
n→∞

1
n

lnPx

(
Sn
n
≤ y
)
≤ lim
n→∞

1
n

ln 1 = 0.

7.7 Comparison of the Lebesgue and the Riemann
Integral*

For the rest of this chapter, let −∞ < a < b < ∞ and f : [a, b] → R be a
bounded function. A partition of [a, b] is a finite subset π ⊂ [a, b] containing
{a, b}. To each partition

π = {a = t0 < t1 < · · · < tn = b} (7.58)

of [a, b] let
mesh(π) := max{|tj − tj−1| : j = 1, . . . , n},

Mj = sup{f(x) : tj ≤ x ≤ tj−1}, mj = inf{f(x) : tj ≤ x ≤ tj−1}

Gπ = f(a)1{a} +
n∑
1

Mj1(tj−1,tj ], gπ = f(a)1{a} +
n∑
1

mj1(tj−1,tj ] and

Sπf =
∑

Mj(tj − tj−1) and sπf =
∑

mj(tj − tj−1).

Notice that

Sπf =
∫ b

a

Gπdm and sπf =
∫ b

a

gπdm.

The upper and lower Riemann integrals are defined respectively by∫ b

a

f(x)dx = inf
π
Sπf and

∫ a

b

f(x)dx = sup
π

sπf.

Definition 7.64. The function f is Riemann integrable iff
∫ b
a
f =

∫ b
a
f ∈ R

and which case the Riemann integral
∫ b
a
f is defined to be the common value:∫ b

a

f(x)dx =
∫ b

a

f(x)dx =
∫ b

a

f(x)dx.

The proof of the following Lemma is left to the reader as Exercise 7.29.

Lemma 7.65. If π′ and π are two partitions of [a, b] and π ⊂ π′ then

Gπ ≥ Gπ′ ≥ f ≥ gπ′ ≥ gπ and
Sπf ≥ Sπ′f ≥ sπ′f ≥ sπf.

There exists an increasing sequence of partitions {πk}∞k=1 such that mesh(πk) ↓
0 and

Sπkf ↓
∫ b

a

f and sπkf ↑
∫ b

a

f as k →∞.

If we let
G := lim

k→∞
Gπk and g := lim

k→∞
gπk (7.59)

then by the dominated convergence theorem,∫
[a,b]

gdm = lim
k→∞

∫
[a,b]

gπk = lim
k→∞

sπkf =
∫ b

a

f(x)dx (7.60)

and∫
[a,b]

Gdm = lim
k→∞

∫
[a,b]

Gπk = lim
k→∞

Sπkf =
∫ b

a

f(x)dx. (7.61)
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Notation 7.66 For x ∈ [a, b], let

H(x) = lim sup
y→x

f(y) := lim
ε↓0

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} and

h(x) = lim inf
y→x

f(y) := lim
ε↓0

inf {f(y) : |y − x| ≤ ε, y ∈ [a, b]}.

Lemma 7.67. The functions H,h : [a, b]→ R satisfy:

1. h(x) ≤ f(x) ≤ H(x) for all x ∈ [a, b] and h(x) = H(x) iff f is continuous
at x.

2. If {πk}∞k=1 is any increasing sequence of partitions such that mesh(πk) ↓ 0
and G and g are defined as in Eq. (7.59), then

G(x) = H(x) ≥ f(x) ≥ h(x) = g(x) ∀ x /∈ π := ∪∞k=1πk. (7.62)

(Note π is a countable set.)
3. H and h are Borel measurable.

Proof. Let Gk := Gπk ↓ G and gk := gπk ↑ g.

1. It is clear that h(x) ≤ f(x) ≤ H(x) for all x and H(x) = h(x) iff lim
y→x

f(y)

exists and is equal to f(x). That is H(x) = h(x) iff f is continuous at x.
2. For x /∈ π,

Gk(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ gk(x) ∀ k

and letting k →∞ in this equation implies

G(x) ≥ H(x) ≥ f(x) ≥ h(x) ≥ g(x) ∀ x /∈ π. (7.63)

Moreover, given ε > 0 and x /∈ π,

sup{f(y) : |y − x| ≤ ε, y ∈ [a, b]} ≥ Gk(x)

for all k large enough, since eventually Gk(x) is the supremum of f(y) over
some interval contained in [x − ε, x + ε]. Again letting k → ∞ implies

sup
|y−x|≤ε

f(y) ≥ G(x) and therefore, that

H(x) = lim sup
y→x

f(y) ≥ G(x)

for all x /∈ π. Combining this equation with Eq. (7.63) then implies H(x) =
G(x) if x /∈ π. A similar argument shows that h(x) = g(x) if x /∈ π and
hence Eq. (7.62) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set π,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 7.68. Let f : [a, b]→ R be a bounded function. Then∫ b

a

f =
∫

[a,b]

Hdm and
∫ b

a

f =
∫

[a,b]

hdm (7.64)

and the following statements are equivalent:

1. H(x) = h(x) for m -a.e. x,
2. the set

E := {x ∈ [a, b] : f is discontinuous at x}

is an m̄ – null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measurable2, i.e. f is L/B –
measurable where L is the Lebesgue σ – algebra and B is the Borel σ – algebra
on [a, b]. Moreover if we let m̄ denote the completion of m, then∫

[a,b]

Hdm =
∫ b

a

f(x)dx =
∫

[a,b]

fdm̄ =
∫

[a,b]

hdm. (7.65)

Proof. Let {πk}∞k=1 be an increasing sequence of partitions of [a, b] as de-
scribed in Lemma 7.65 and let G and g be defined as in Lemma 7.67. Since
m(π) = 0, H = G a.e., Eq. (7.64) is a consequence of Eqs. (7.60) and (7.61).
From Eq. (7.64), f is Riemann integrable iff∫

[a,b]

Hdm =
∫

[a,b]

hdm

and because h ≤ f ≤ H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {x : H(x) 6= h(x)}, this last condition is equivalent to E being a m – null
set. In light of these results and Eq. (7.62), the remaining assertions including
Eq. (7.65) are now consequences of Lemma 7.71.

Notation 7.69 In view of this theorem we will often write
∫ b
a
f(x)dx for∫ b

a
fdm.

2 f need not be Borel measurable.
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7.8 Measurability on Complete Measure Spaces*

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 7.70. Suppose that (X,B, µ) is a complete measure space3 and
f : X → R is measurable.

1. If g : X → R is a function such that f(x) = g(x) for µ – a.e. x, then g is
measurable.

2. If fn : X → R are measurable and f : X → R is a function such that
limn→∞ fn = f, µ - a.e., then f is measurable as well.

Proof. 1. Let E = {x : f(x) 6= g(x)} which is assumed to be in B and
µ(E) = 0. Then g = 1Ecf + 1Eg since f = g on Ec. Now 1Ecf is measurable
so g will be measurable if we show 1Eg is measurable. For this consider,

(1Eg)−1(A) =
{
Ec ∪ (1Eg)−1(A \ {0}) if 0 ∈ A
(1Eg)−1(A) if 0 /∈ A (7.66)

Since (1Eg)−1(B) ⊂ E if 0 /∈ B and µ(E) = 0, it follow by completeness
of B that (1Eg)−1(B) ∈ B if 0 /∈ B. Therefore Eq. (7.66) shows that 1Eg is
measurable. 2. Let E = {x : lim

n→∞
fn(x) 6= f(x)} by assumption E ∈ B and

µ(E) = 0. Since g := 1Ef = limn→∞ 1Ecfn, g is measurable. Because f = g
on Ec and µ(E) = 0, f = g a.e. so by part 1. f is also measurable.

The above results are in general false if (X,B, µ) is not complete. For exam-
ple, let X = {0, 1, 2}, B = {{0}, {1, 2}, X, ϕ} and µ = δ0. Take g(0) = 0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 7.71. Suppose that (X,M, µ) is a measure space and M̄ is the com-
pletion of M relative to µ and µ̄ is the extension of µ to M̄. Then a function
f : X → R is (M̄,B = BR) – measurable iff there exists a function g : X → R
that is (M,B) – measurable such E = {x : f(x) 6= g(x)} ∈ M̄ and µ̄ (E) = 0,
i.e. f(x) = g(x) for µ̄ – a.e. x. Moreover for such a pair f and g, f ∈ L1(µ̄) iff
g ∈ L1(µ) and in which case ∫

X

fdµ̄ =
∫
X

gdµ.

Proof. Suppose first that such a function g exists so that µ̄(E) = 0. Since
g is also (M̄,B) – measurable, we see from Proposition 7.70 that f is (M̄,B) –
measurable. Conversely if f is (M̄,B) – measurable, by considering f± we may

3 Recall this means that if N ⊂ X is a set such that N ⊂ A ∈ M and µ(A) = 0,
then N ∈M as well.

assume that f ≥ 0. Choose (M̄,B) – measurable simple function ϕn ≥ 0 such
that ϕn ↑ f as n→∞. Writing

ϕn =
∑

ak1Ak

with Ak ∈ M̄, we may choose Bk ∈M such that Bk ⊂ Ak and µ̄(Ak \Bk) = 0.
Letting

ϕ̃n :=
∑

ak1Bk

we have produced a (M,B) – measurable simple function ϕ̃n ≥ 0 such that
En := {ϕn 6= ϕ̃n} has zero µ̄ – measure. Since µ̄ (∪nEn) ≤

∑
n µ̄ (En) , there

exists F ∈M such that ∪nEn ⊂ F and µ(F ) = 0. It now follows that

1F · ϕ̃n = 1F · ϕn ↑ g := 1F f as n→∞.

This shows that g = 1F f is (M,B) – measurable and that {f 6= g} ⊂ F has µ̄
– measure zero. Since f = g, µ̄ – a.e.,

∫
X
fdµ̄ =

∫
X
gdµ̄ so to prove Eq. (7.67)

it suffices to prove ∫
X

gdµ̄ =
∫
X

gdµ. (7.67)

Because µ̄ = µ on M, Eq. (7.67) is easily verified for non-negative M – mea-
surable simple functions. Then by the monotone convergence theorem and
the approximation Theorem 6.39 it holds for all M – measurable functions
g : X → [0,∞]. The rest of the assertions follow in the standard way by con-
sidering (Re g)± and (Im g)± .

7.9 More Exercises

Exercise 7.19. Let µ be a measure on an algebra A ⊂ 2X , then µ(A)+µ(B) =
µ(A ∪B) + µ(A ∩B) for all A,B ∈ A.

Exercise 7.20 (From problem 12 on p. 27 of Folland.). Let (X,M, µ)
be a finite measure space and for A,B ∈ M let ρ(A,B) = µ(A∆B) where
A∆B = (A \B) ∪ (B \A) . It is clear that ρ (A,B) = ρ (B,A) . Show:

1. ρ satisfies the triangle inequality:

ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈M.

2. Define A ∼ B iff µ(A∆B) = 0 and notice that ρ (A,B) = 0 iff A ∼ B. Show
“∼ ” is an equivalence relation.

3. Let M/ ∼ denote M modulo the equivalence relation, ∼, and let [A] :=
{B ∈M : B ∼ A} . Show that ρ̄ ([A] , [B]) := ρ (A,B) is gives a well defined
metric on M/ ∼ .
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4. Similarly show µ̃ ([A]) = µ (A) is a well defined function onM/ ∼ and show
µ̃ : (M/ ∼)→ R+ is ρ̄ – continuous.

Exercise 7.21. Suppose that µn :M→ [0,∞] are measures on M for n ∈ N.
Also suppose that µn(A) is increasing in n for all A ∈M. Prove that µ :M→
[0,∞] defined by µ(A) := limn→∞ µn(A) is also a measure.

Exercise 7.22. Now suppose that Λ is some index set and for each λ ∈ Λ, µλ :
M→ [0,∞] is a measure onM. Define µ :M→ [0,∞] by µ(A) =

∑
λ∈Λ µλ(A)

for each A ∈M. Show that µ is also a measure.

Exercise 7.23. Let (X,M, µ) be a measure space and {An}∞n=1 ⊂M, show

µ({An a.a.}) ≤ lim inf
n→∞

µ (An)

and if µ (∪m≥nAm) <∞ for some n, then

µ({An i.o.}) ≥ lim sup
n→∞

µ (An) .

Exercise 7.24 (Folland 2.13 on p. 52.). Suppose that {fn}∞n=1 is a sequence
of non-negative measurable functions such that fn → f pointwise and

lim
n→∞

∫
fn =

∫
f <∞.

Then ∫
E

f = lim
n→∞

∫
E

fn

for all measurable sets E ∈M. The conclusion need not hold if limn→∞
∫
fn =∫

f. Hint: “Fatou times two.”

Exercise 7.25. Give examples of measurable functions {fn} on R such that
fn decreases to 0 uniformly yet

∫
fndm = ∞ for all n. Also give an example

of a sequence of measurable functions {gn} on [0, 1] such that gn → 0 while∫
gndm = 1 for all n.

Exercise 7.26. Suppose {an}∞n=−∞ ⊂ C is a summable sequence (i.e.∑∞
n=−∞ |an| < ∞), then f(θ) :=

∑∞
n=−∞ ane

inθ is a continuous function for
θ ∈ R and

an =
1

2π

∫ π

−π
f(θ)e−inθdθ.

Exercise 7.27. For any function f ∈ L1 (m) , show x ∈
R→

∫
(−∞,x]

f (t) dm (t) is continuous in x. Also find a finite measure, µ,
on BR such that x→

∫
(−∞,x]

f (t) dµ (t) is not continuous.

Exercise 7.28. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is wrong
by a factor of −1 and the sum is on k = 1 to ∞. In part (e), s should be taken
to be a. You may also freely use the Taylor series expansion

(1− z)−1/2 =
∞∑
n=0

(2n− 1)!!
2nn!

zn =
∞∑
n=0

(2n)!
4n (n!)2 z

n for |z| < 1.

Exercise 7.29. Prove Lemma 7.65.
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8

Functional Forms of the π – λ Theorem

In this chapter we will develop a very useful function analogue of the π – λ
theorem. The results in this section will be used often in the sequel.

8.1 Multiplicative System Theorems

Notation 8.1 Let Ω be a set and H be a subset of the bounded real valued
functions on Ω. We say that H is closed under bounded convergence if; for
every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that |fn (ω)| ≤M for all ω ∈ Ω and n ∈ N,
2. f (ω) := limn→∞ fn (ω) exists for all ω ∈ Ω, then f ∈ H.

A subset, M, of H is called a multiplicative system if M is closed under
finite intersections.

The following result may be found in Dellacherie [7, p. 14]. The style of
proof given here may be found in Janson [20, Appendix A., p. 309].

Theorem 8.2 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from Ω to R which contains the
constant functions and is closed under bounded convergence. If M ⊂ H is a mul-
tiplicative system, then H contains all bounded σ (M) – measurable functions.

Proof. In this proof, we may (and do) assume that H is the smallest sub-
space of bounded functions onΩ which contains the constant functions, contains
M, and is closed under bounded convergence. (As usual such a space exists by
taking the intersection of all such spaces.) The remainder of the proof will be
broken into four steps.

Step 1. (H is an algebra of functions.) For f ∈ H, let Hf :=
{g ∈ H : gf ∈ H} . The reader will now easily verify that Hf is a linear sub-
space of H, 1 ∈ Hf , and Hf is closed under bounded convergence. Moreover if
f ∈M, since M is a multiplicative system, M ⊂ Hf . Hence by the definition of
H, H = Hf , i.e. fg ∈ H for all f ∈ M and g ∈ H. Having proved this it now
follows for any f ∈ H that M ⊂ Hf and therefore as before, Hf = H. Thus we
may conclude that fg ∈ H whenever f, g ∈ H, i.e. H is an algebra of functions.

Step 2. (B := {A ⊂ Ω : 1A ∈ H} is a σ – algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed

under complementation, finite intersections, and contains Ω, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is σ – algebra.

Step 3. (H contains all bounded B – measurable functions.) Since H is a
vector space and H contains 1A for all A ∈ B, H contains all B – measurable
simple functions. Since every bounded B – measurable function may be written
as a bounded limit of such simple functions (see Theorem 6.39), it follows that
H contains all bounded B – measurable functions.

Step 4. (σ (M) ⊂ B.) Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 8.1 below)
so that ϕn (x) ↑ 1x>0. Given f ∈ M and a ∈ R, let Fn := ϕn (f − a) and
M := supω∈Ω |f (ω)− a| . By the Weierstrass approximation Theorem 4.36, we
may find polynomial functions, pl (x) such that pl → ϕn uniformly on [−M,M ] .
Since pl is a polynomial and H is an algebra, pl (f − a) ∈ H for all l. Moreover,
pl ◦ (f − a)→ Fn uniformly as l→∞, from with it follows that Fn ∈ H for all
n. Since, Fn ↑ 1{f>a} it follows that 1{f>a} ∈ H, i.e. {f > a} ∈ B. As the sets
{f > a} with a ∈ R and f ∈M generate σ (M) , it follows that σ (M) ⊂ B.

Fig. 8.1. Plots of ϕ1, ϕ2 and ϕ3.

Second proof.* (This proof may safely be skipped.) This proof will make
use of Dynkin’s π – λ Theorem 5.14. Let

L := {A ⊂ Ω : 1A ∈ H} .
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We then have Ω ∈ L since 1Ω = 1 ∈ H, if A,B ∈ L with A ⊂ B then B \A ∈ L
since 1B\A = 1B − 1A ∈ H, and if An ∈ L with An ↑ A, then A ∈ L because
1An ∈ H and 1An ↑ 1A ∈ H. Therefore L is λ – system.

Let ϕn (x) = 0 ∨ [(nx) ∧ 1] (see Figure 8.1 above) so that ϕn (x) ↑ 1x>0.
Given f1, f2, . . . , fk ∈M and a1, . . . , ak ∈ R, let

Fn :=
k∏
i=1

ϕn (fi − ai)

and let
M := sup

i=1,...,k
sup
ω
|fi (ω)− ai| .

By the Weierstrass approximation Theorem 4.36, we may find polynomial func-
tions, pl (x) such that pl → ϕn uniformly on [−M,M ] .Since pl is a polynomial
it is easily seen that

∏k
i=1 pl ◦ (fi − ai) ∈ H. Moreover,

k∏
i=1

pl ◦ (fi − ai)→ Fn uniformly as l→∞,

from with it follows that Fn ∈ H for all n. Since,

Fn ↑
k∏
i=1

1{fi>ai} = 1∩k
i=1{fi>ai}

it follows that 1∩k
i=1{fi>ai}

∈ H or equivalently that ∩ki=1 {fi > ai} ∈ L. There-
fore L contains the π – system, P, consisting of finite intersections of sets of
the form, {f > a} with f ∈M and a ∈ R.

As a consequence of the above paragraphs and the π – λ Theorem 5.14, L
contains σ (P) = σ (M) . In particular it follows that 1A ∈ H for all A ∈ σ (M) .
Since any positive σ (M) – measurable function may be written as a increasing
limit of simple functions (see Theorem 6.39)), it follows that H contains all non-
negative bounded σ (M) – measurable functions. Finally, since any bounded
σ (M) – measurable functions may be written as the difference of two such
non-negative simple functions, it follows that H contains all bounded σ (M) –
measurable functions.

Corollary 8.3. Suppose H is a subspace of bounded real valued functions such
that 1 ∈ H and H is closed under bounded convergence. If P ⊂ 2Ω is a mul-
tiplicative class such that 1A ∈ H for all A ∈ P, then H contains all bounded
σ(P) – measurable functions.

Proof. Let M = {1}∪{1A : A ∈ P} . Then M ⊂ H is a multiplicative system
and the proof is completed with an application of Theorem 8.2.

Example 8.4. Suppose µ and ν are two probability measure on (Ω,B) such that∫
Ω

fdµ =
∫
Ω

fdν (8.1)

for all f in a multiplicative subset, M, of bounded measurable functions on Ω.
Then µ = ν on σ (M) . Indeed, apply Theorem 8.2 with H being the bounded
measurable functions on Ω such that Eq. (8.1) holds. In particular if M =
{1} ∪ {1A : A ∈ P} with P being a multiplicative class we learn that µ = ν on
σ (M) = σ (P) .

Here is a complex version of Theorem 8.2.

Theorem 8.5 (Complex Multiplicative System Theorem). Suppose H is
a complex linear subspace of the bounded complex functions on Ω, 1 ∈ H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M ⊂ H is multiplicative system which is closed under conjugation, then H
contains all bounded complex valued σ(M)-measurable functions.

Proof. Let M0 = spanC(M∪ {1}) be the complex span of M. As the reader
should verify, M0 is an algebra, M0 ⊂ H, M0 is closed under complex conjuga-
tion and σ (M0) = σ (M) . Let

HR := {f ∈ H : f is real valued} and

MR
0 := {f ∈M0 : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and MR

0 ⊂ HR. Moreover, MR
0 is a multiplicative

system (as the reader should check) and therefore by Theorem 8.2, HR contains
all bounded σ

(
MR

0

)
– measurable real valued functions. Since H and M0 are

complex linear spaces closed under complex conjugation, for any f ∈ H or
f ∈ M0, the functions Re f = 1

2

(
f + f̄

)
and Im f = 1

2i

(
f − f̄

)
are in H or

M0 respectively. Therefore M0 = MR
0 + iMR

0 , σ
(
MR

0

)
= σ (M0) = σ (M) , and

H = HR + iHR. Hence if f : Ω → C is a bounded σ (M) – measurable function,
then f = Re f + i Im f ∈ H since Re f and Im f are in HR.

Lemma 8.6. Suppose that −∞ < a < b <∞ and let Trig(R) ⊂ C (R,C) be the
complex linear span of

{
x→ eiλx : λ ∈ R

}
. Then there exists fn ∈ Cc (R, [0, 1])

and gn ∈Trig(R) such that limn→∞ fn (x) = 1(a,b] (x) = limn→∞ gn (x) for all
x ∈ R.

Proof. The assertion involving fn ∈ Cc (R, [0, 1]) was the content of one of
your homework assignments. For the assertion involving gn ∈Trig(R) , it will
suffice to show that any f ∈ Cc (R) may be written as f (x) = limn→∞ gn (x)
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8.1 Multiplicative System Theorems 109

for some {gn} ⊂Trig(R) where the limit is uniform for x in compact subsets of
R.

So suppose that f ∈ Cc (R) and L > 0 such that f (x) = 0 if |x| ≥ L/4.
Then

fL (x) :=
∞∑

n=−∞
f (x+ nL)

is a continuous L – periodic function on R, see Figure 8.2. If ε > 0 is given, we

Fig. 8.2. This is plot of f8 (x) where f (x) =
(
1− x2

)
1|x|≤1. The center hump by

itself would be the plot of f (x) .

may apply Theorem 4.42 to find Λ ⊂⊂ Z such that∣∣∣∣∣fL
(
L

2π
x

)
−
∑
α∈Λ

aλe
iαx

∣∣∣∣∣ ≤ ε for all x ∈ R,

wherein we have use the fact that x → fL
(
L
2πx
)

is a 2π – periodic function of
x. Equivalently we have,

max
x

∣∣∣∣∣fL (x)−
∑
α∈Λ

aλe
i 2παL x

∣∣∣∣∣ ≤ ε.
In particular it follows that fL (x) is a uniform limit of functions from Trig(R) .
Since limL→∞ fL (x) = f (x) uniformly on compact subsets of R, it is easy to

conclude there exists gn ∈Trig(R) such that limn→∞ gn (x) = f (x) uniformly
on compact subsets of R.

Corollary 8.7. Each of the following σ – algebras on Rd are equal to BRd ;

1.M1 := σ (∪ni=1 {x→ f (xi) : f ∈ Cc (R)}) ,
2.M2 := σ (x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R))
3.M3 = σ

(
Cc
(
Rd
))
, and

4.M4 := σ
({
x→ eiλ·x : λ ∈ Rd

})
.

Proof. As the functions defining each Mi are continuous and hence Borel
measurable, it follows thatMi ⊂ BRd for each i. So to finish the proof it suffices
to show BRd ⊂Mi for each i.
M1 case. Let a, b ∈ R with −∞ < a < b < ∞. By Lemma 8.6, there

exists fn ∈ Cc (R) such that limn→∞ fn = 1(a,b]. Therefore it follows that
x → 1(a,b] (xi) is M1 – measurable for each i. Moreover if −∞ < ai < bi < ∞
for each i, then we may conclude that

x→
d∏
i=1

1(ai,bi] (xi) = 1(a1,b1]×···×(ad,bd] (x)

is M1 – measurable as well and hence (a1, b1] × · · · × (ad, bd] ∈ M1. As such
sets generate BRd we may conclude that BRd ⊂M1.

and therefore M1 = BRd .
M2 case. As above, we may find fi,n → 1(ai,bi] as n→∞ for each 1 ≤ i ≤ d

and therefore,

1(a1,b1]×···×(ad,bd] (x) = lim
n→∞

f1,n (x1) . . . fd,n (xd) for all x ∈ Rd.

This shows that 1(a1,b1]×···×(ad,bd] is M2 – measurable and therefore (a1, b1] ×
· · · × (ad, bd] ∈M2.
M3 case. This is easy since BRd =M2 ⊂M3.
M4 case. By Lemma 8.6 here exists gn ∈Trig(R) such that limn→∞ gn =

1(a,b]. Since x→ gn (xi) is in the span
{
x→ eiλ·x : λ ∈ Rd

}
for each n, it follows

that x → 1(a,b] (xi) is M4 – measurable for all −∞ < a < b < ∞. Therefore,
just as in the proof of case 1., we may now conclude that BRd ⊂M4.

Corollary 8.8. Suppose that H is a subspace of complex valued functions on
Rd which is closed under complex conjugation and bounded convergence. If H
contains any one of the following collection of functions;

1. M := {x→ f1 (x1) . . . fd (xd) : fi ∈ Cc (R)}
2. M := Cc

(
Rd
)
, or

3. M :=
{
x→ eiλ·x : λ ∈ Rd

}
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110 8 Functional Forms of the π – λ Theorem

then H contains all bounded complex Borel measurable functions on Rd.

Proof. Observe that if f ∈ Cc (R) such that f (x) = 1 in a neighborhood
of 0, then fn (x) := f (x/n) → 1 as n → ∞. Therefore in cases 1. and 2., H
contains the constant function, 1, since

1 = lim
n→∞

fn (x1) . . . fn (xd) .

In case 3, 1 ∈ M ⊂ H as well. The result now follows from Theorem 8.5 and
Corollary 8.7.

Proposition 8.9 (Change of Variables Formula). Suppose that −∞ <
a < b < ∞ and u : [a, b] → R is a continuously differentiable function. Let
[c, d] = u ([a, b]) where c = minu ([a, b]) and d = maxu ([a, b]). (By the interme-
diate value theorem u ([a, b]) is an interval.) Then for all bounded measurable
functions, f : [c, d]→ R we have∫ u(b)

u(a)

f (x) dx =
∫ b

a

f (u (t)) u̇ (t) dt. (8.2)

Moreover, Eq. (8.2) is also valid if f : [c, d]→ R is measurable and∫ b

a

|f (u (t))| |u̇ (t)| dt <∞. (8.3)

Proof. Let H denote the space of bounded measurable functions such that
Eq. (8.2) holds. It is easily checked that H is a linear space closed under bounded
convergence. Next we show that M = C ([c, d] ,R) ⊂ H which coupled with
Corollary 8.8 will show that H contains all bounded measurable functions from
[c, d] to R.

If f : [c, d] → R is a continuous function and let F be an anti-derivative of
f. Then by the fundamental theorem of calculus,∫ b

a

f (u (t)) u̇ (t) dt =
∫ b

a

F ′ (u (t)) u̇ (t) dt

=
∫ b

a

d

dt
F (u (t)) dt = F (u (t)) |ba

= F (u (b))− F (u (a)) =
∫ u(b)

u(a)

F ′ (x) dx =
∫ u(b)

u(a)

f (x) dx.

Thus M ⊂ H and the first assertion of the proposition is proved.
Now suppose that f : [c, d]→ R is measurable and Eq. (8.3) holds. For M <

∞, let fM (x) = f (x) · 1|f(x)|≤M – a bounded measurable function. Therefore
applying Eq. (8.2) with f replaced by |fM | shows,

∣∣∣∣∣
∫ u(b)

u(a)

|fM (x)| dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

|fM (u (t))| u̇ (t) dt

∣∣∣∣∣ ≤
∫ b

a

|fM (u (t))| |u̇ (t)| dt.

Using the MCT, we may let M ↑ ∞ in the previous inequality to learn∣∣∣∣∣
∫ u(b)

u(a)

|f (x)| dx

∣∣∣∣∣ ≤
∫ b

a

|f (u (t))| |u̇ (t)| dt <∞.

Now apply Eq. (8.2) with f replaced by fM to learn∫ u(b)

u(a)

fM (x) dx =
∫ b

a

fM (u (t)) u̇ (t) dt.

Using the DCT we may now let M →∞ in this equation to show that Eq. (8.2)
remains valid.

Exercise 8.1. Suppose that u : R→ R is a continuously differentiable function
such that u̇ (t) ≥ 0 for all t and limt→±∞ u (t) = ±∞. Show that∫

R
f (x) dx =

∫
R
f (u (t)) u̇ (t) dt (8.4)

for all measurable functions f : R→ [0,∞] . In particular applying this result
to u (t) = at+ b where a > 0 implies,∫

R
f (x) dx = a

∫
R
f (at+ b) dt.

Definition 8.10. The Fourier transform or characteristic function of a
finite measure, µ, on

(
Rd,BRd

)
, is the function, µ̂ : Rd → C defined by

µ̂ (λ) :=
∫

Rd
eiλ·xdµ (x) for all λ ∈ Rd

Corollary 8.11. Suppose that µ and ν are two probability measures on(
Rd,BRd

)
. Then any one of the next three conditions implies that µ = ν;

1.
∫

Rd f1 (x1) . . . fd (xd) dν (x) =
∫

Rd f1 (x1) . . . fd (xd) dµ (x) for all fi ∈
Cc (R) .

2.
∫

Rd f (x) dν (x) =
∫

Rd f (x) dµ (x) for all f ∈ Cc
(
Rd
)
.

3. ν̂ = µ̂.

Item 3. asserts that the Fourier transform is injective.
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8.2 Exercises 111

Proof. Let H be the collection of bounded complex measurable functions
from Rd to C such that ∫

Rd
fdµ =

∫
Rd
fdν. (8.5)

It is easily seen that H is a linear space closed under complex conjugation and
bounded convergence (by the DCT). Since H contains one of the multiplicative
systems appearing in Corollary 8.8, it contains all bounded Borel measurable
functions form Rd → C. Thus we may take f = 1A with A ∈ BRd in Eq. (8.5)
to learn, µ (A) = ν (A) for all A ∈ BRd .

In many cases we can replace the condition in item 3. of Corollary 8.11 by;∫
Rd
eλ·xdµ (x) =

∫
Rd
eλ·xdν (x) for all λ ∈ U, (8.6)

where U is a neighborhood of 0 ∈ Rd. In order to do this, one must assume
at least assume that the integrals involved are finite for all λ ∈ U. The idea
is to show that Condition 8.6 implies ν̂ = µ̂. You are asked to carry out this
argument in Exercise 8.2 making use of the following lemma.

Lemma 8.12 (Analytic Continuation). Let ε > 0 and Sε :=
{x+ iy ∈ C : |x| < ε} be an ε strip in C about the imaginary axis. Sup-
pose that h : Sε → C is a function such that for each b ∈ R, there exists
{cn (b)}∞n=0 ⊂ C such that

h (z + ib) =
∞∑
n=0

cn (b) zn for all |z| < ε. (8.7)

If cn (0) = 0 for all n ∈ N0, then h ≡ 0.

Proof. It suffices to prove the following assertion; if for some b ∈ R we know
that cn (b) = 0 for all n, then cn (y) = 0 for all n and y ∈ (b− ε, b+ ε) . We
now prove this assertion.

Let us assume that b ∈ R and cn (b) = 0 for all n ∈ N0. It then follows from
Eq. (8.7) that h (z + ib) = 0 for all |z| < ε. Thus if |y − b| < ε, we may conclude
that h (x+ iy) = 0 for x in a (possibly very small) neighborhood (−δ, δ) of 0.
Since

∞∑
n=0

cn (y)xn = h (x+ iy) = 0 for all |x| < δ,

it follows that
0 =

1
n!

dn

dxn
h (x+ iy) |x=0 = cn (y)

and the proof is complete.

8.2 Exercises

Exercise 8.2. Suppose ε > 0 and X and Y are two random variables such that
E
[
etX
]

= E
[
etY
]
<∞ for all |t| ≤ ε. Show;

1. E
[
eε|X|

]
and E

[
eε|Y |

]
are finite.

2. E
[
eitX

]
= E

[
eitY

]
for all t ∈ R. Hint: Consider h (z) := E

[
ezX

]
−E

[
ezY
]

for z ∈ Sε. Now show for |z| ≤ ε and b ∈ R, that

h (z + ib) = E
[
eibXezX

]
− E

[
eibY ezY

]
=
∞∑
n=0

cn (b) zn (8.8)

where
cn (b) :=

1
n!
(
E
[
eibXXn

]
− E

[
eibY Y n

])
. (8.9)

3. Conclude from item 2. that X d= Y, i.e. that LawP (X) = LawP (Y ) .

Exercise 8.3. Let (Ω,B, P ) be a probability space and X,Y : Ω → R be a pair
of random variables such that

E [f (X) g (Y )] = E [f (X) g (X)]

for every pair of bounded measurable functions, f, g : R→ R. Show
P (X = Y ) = 1. Hint: Let H denote the bounded Borel measurable functions,
h : R2 → R such that

E [h (X,Y )] = E [h (X,X)] .

Use Theorem 8.2 to show H is the vector space of all bounded Borel measurable
functions. Then take h (x, y) = 1{x=y}.

Exercise 8.4 (Density of A – simple functions). Let (Ω,B, P ) be a proba-
bility space and assume that A is a sub-algebra of B such that B = σ (A) . Let H
denote the bounded measurable functions f : Ω → R such that for every ε > 0
there exists an an A – simple function, ϕ : Ω → R such that E |f − ϕ| < ε.
Show H consists of all bounded measurable functions, f : Ω → R. Hint: let M
denote the collection of A – simple functions.

Exercise 8.5 (Density of A in B = σ (A)). Keeping the same notation as
in Exercise 8.4 but now take f = 1B for some B ∈ B and given ε > 0, write
ϕ =

∑n
i=0 λi1Ai where λ0 = 0, {λi}ni=1 is an enumeration of ϕ (Ω) \ {0} , and

Ai := {ϕ = λi} . Show; 1.
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112 8 Functional Forms of the π – λ Theorem

E |1B − ϕ| = P (A0 ∩B) +
n∑
i=1

[|1− λi|P (B ∩Ai) + |λi|P (Ai \B)] (8.10)

≥ P (A0 ∩B) +
n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} . (8.11)

2. Now let ψ =
∑n
i=0 αi1Ai with

αi =
{

1 if P (Ai \B) ≤ P (B ∩Ai)
0 if P (Ai \B) > P (B ∩Ai)

.

Then show that

E |1B − ψ| = P (A0 ∩B) +
n∑
i=1

min {P (B ∩Ai) , P (Ai \B)} ≤ E |1B − ϕ| .

Observe that ψ = 1D where D = ∪i:αi=1Ai ∈ A and so you have shown; for
every ε > 0 there exists a D ∈ A such that

P (B∆D) = E |1B − 1D| < ε.

8.3 A Strengthening of the Multiplicative System
Theorem*

Notation 8.13 We say that H ⊂ `∞ (Ω,R) is closed under monotone con-
vergence if; for every sequence, {fn}∞n=1 ⊂ H, satisfying:

1. there exists M <∞ such that 0 ≤ fn (ω) ≤M for all ω ∈ Ω and n ∈ N,
2. fn (ω) is increasing in n for all ω ∈ Ω, then f := limn→∞ fn ∈ H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. I learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [48, p. 365].

Proposition 8.14. *Let Ω be a set. Suppose that H is a vector subspace of
bounded real valued functions from Ω to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn}∞n=1 ⊂ H
with supn∈N supω∈Ω |fn (ω)| <∞ and fn → f, then f ∈ H.

Proof. Let us first assume that {fn}∞n=1 ⊂ H such that fn converges uni-
formly to a bounded function, f : Ω → R. Let ‖f‖∞ := supω∈Ω |f (ω)| . Let
ε > 0 be given. By passing to a subsequence if necessary, we may assume
‖f − fn‖∞ ≤ ε2−(n+1). Let

gn := fn − δn +M

with δn and M constants to be determined shortly. We then have

gn+1 − gn = fn+1 − fn + δn − δn+1 ≥ −ε2−(n+1) + δn − δn+1.

Taking δn := ε2−n, then δn − δn+1 = ε2−n (1− 1/2) = ε2−(n+1) in which case
gn+1 − gn ≥ 0 for all n. By choosing M sufficiently large, we will also have
gn ≥ 0 for all n. Since H is a vector space containing the constant functions,
gn ∈ H and since gn ↑ f +M, it follows that f = f +M −M ∈ H. So we have
shown that H is closed under uniform convergence.

This proposition immediately leads to the following strengthening of Theo-
rem 8.2.

Theorem 8.15. *Suppose that H is a vector subspace of bounded real valued
functions on Ω which contains the constant functions and is closed under
monotone convergence. If M ⊂ H is multiplicative system, then H contains
all bounded σ (M) – measurable functions.

Proof. Proposition 8.14 reduces this theorem to Theorem 8.2.

8.4 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 8.16 Given a collection of bounded functions, M, from a set, Ω, to
R, let M↑ (M↓) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : Ω → R is in M↑
respectively M↓ iff there exists fn ∈M such that fn ↑ f respectively fn ↓ f.

Theorem 8.17 (Bounded Approximation Theorem*). Let (Ω,B, µ) be a
finite measure space and M be an algebra of bounded R – valued measurable
functions such that:

1. σ (M) = B,
2. 1 ∈M, and
3. |f | ∈M for all f ∈M.

Then for every bounded σ (M) measurable function, g : Ω → R, and every
ε > 0, there exists f ∈M↓ and h ∈M↑ such that f ≤ g ≤ h and µ (h− f) < ε.1

Proof. Let us begin with a few simple observations.
1 Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies

of bounded functions.
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1. M is a “lattice” – if f, g ∈M then

f ∨ g =
1
2

(f + g + |f − g|) ∈M

and
f ∧ g =

1
2

(f + g − |f − g|) ∈M.

2. If f, g ∈M↑ or f, g ∈M↓ then f + g ∈M↑ or f + g ∈M↓ respectively.
3. If λ ≥ 0 and f ∈M↑ (f ∈M↓), then λf ∈M↑ (λf ∈M↓) .
4. If f ∈M↑ then −f ∈M↓ and visa versa.
5. If fn ∈M↑ and fn ↑ f where f : Ω → R is a bounded function, then f ∈M↑.

Indeed, by assumption there exists fn,i ∈ M such that fn,i ↑ fn as i→∞.
By observation (1), gn := max {fij : i, j ≤ n} ∈M. Moreover it is clear that
gn ≤ max {fk : k ≤ n} = fn ≤ f and hence gn ↑ g := limn→∞ gn ≤ f. Since
fij ≤ g for all i, j, it follows that fn = limj→∞ fnj ≤ g and consequently
that f = limn→∞ fn ≤ g ≤ f. So we have shown that gn ↑ f ∈M↑.

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M ⊂ H and in fact it is also easy
to see that M↑ and M↓ are contained in H as well. For example, if f ∈ M↑, by
definition, there exists fn ∈ M ⊂ M↓ such that fn ↑ f. Since M↓ 3 fn ≤ f ≤
f ∈ M↑ and µ (f − fn) → 0 by the dominated convergence theorem, it follows
that f ∈ H. As similar argument shows M↓ ⊂ H. We will now show H is a
vector sub-space of the bounded B = σ (M) – measurable functions.

H is closed under addition. If gi ∈ H for i = 1, 2, and ε > 0 is given, we
may find fi ∈M↓ and hi ∈M↑ such that fi ≤ gi ≤ hi and µ (hi − fi) < ε/2 for
i = 1, 2. Since h = h1 + h2 ∈M↑, f := f1 + f2 ∈M↓, f ≤ g1 + g2 ≤ h, and

µ (h− f) = µ (h1 − f1) + µ (h2 − f2) < ε,

it follows that g1 + g2 ∈ H.
H is closed under scalar multiplication. If g ∈ H then λg ∈ H for all

λ ∈ R. Indeed suppose that ε > 0 is given and f ∈ M↓ and h ∈ M↑ such that
f ≤ g ≤ h and µ (h− f) < ε. Then for λ ≥ 0, M↓ 3 λf ≤ λg ≤ λh ∈M↑ and

µ (λh− λf) = λµ (h− f) < λε.

Since ε > 0 was arbitrary, if follows that λg ∈ H for λ ≥ 0. Similarly, M↓ 3
−h ≤ −g ≤ −f ∈M↑ and

µ (−f − (−h)) = µ (h− f) < ε.

which shows −g ∈ H as well.
Because of Theorem 8.15, to complete this proof, it suffices to show H is

closed under monotone convergence. So suppose that gn ∈ H and gn ↑ g, where

g : Ω → R is a bounded function. Since H is a vector space, it follows that
0 ≤ δn := gn+1 − gn ∈ H for all n ∈ N. So if ε > 0 is given, we can find,
M↓ 3 un ≤ δn ≤ vn ∈ M↑ such that µ (vn − un) ≤ 2−nε for all n. By replacing
un by un∨0 ∈M↓ (by observation 1.), we may further assume that un ≥ 0. Let

v :=
∞∑
n=1

vn =↑ lim
N→∞

N∑
n=1

vn ∈M↑ (using observations 2. and 5.)

and for N ∈ N, let

uN :=
N∑
n=1

un ∈M↓ (using observation 2).

Then
∞∑
n=1

δn = lim
N→∞

N∑
n=1

δn = lim
N→∞

(gN+1 − g1) = g − g1

and uN ≤ g − g1 ≤ v. Moreover,

µ
(
v − uN

)
=

N∑
n=1

µ (vn − un) +
∞∑

n=N+1

µ (vn) ≤
N∑
n=1

ε2−n +
∞∑

n=N+1

µ (vn)

≤ ε+
∞∑

n=N+1

µ (vn) .

However, since

∞∑
n=1

µ (vn) ≤
∞∑
n=1

µ
(
δn + ε2−n

)
=
∞∑
n=1

µ (δn) + εµ (Ω)

=
∞∑
n=1

µ (g − g1) + εµ (Ω) <∞,

it follows that for N ∈ N sufficiently large that
∑∞
n=N+1 µ (vn) < ε. Therefore,

for this N, we have µ
(
v − uN

)
< 2ε and since ε > 0 is arbitrary, if follows

that g − g1 ∈ H. Since g1 ∈ H and H is a vector space, we may conclude that
g = (g − g1) + g1 ∈ H.
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9

Multiple and Iterated Integrals

9.1 Iterated Integrals

Notation 9.1 (Iterated Integrals) If (X,M, µ) and (Y,N , ν) are two mea-
sure spaces and f : X×Y → C is aM⊗N – measurable function, the iterated
integrals of f (when they make sense) are:∫

X

dµ(x)
∫
Y

dν(y)f(x, y) :=
∫
X

[∫
Y

f(x, y)dν(y)
]
dµ(x)

and ∫
Y

dν(y)
∫
X

dµ(x)f(x, y) :=
∫
Y

[∫
X

f(x, y)dµ(x)
]
dν(y).

Notation 9.2 Suppose that f : X → C and g : Y → C are functions, let f ⊗ g
denote the function on X × Y given by

f ⊗ g(x, y) = f(x)g(y).

Notice that if f, g are measurable, then f ⊗ g is (M⊗N ,BC) – measurable.
To prove this let F (x, y) = f(x) and G(x, y) = g(y) so that f ⊗ g = F ·G will
be measurable provided that F and G are measurable. Now F = f ◦ π1 where
π1 : X × Y → X is the projection map. This shows that F is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

9.2 Tonelli’s Theorem and Product Measure

Theorem 9.3. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces
and f is a nonnegative (M⊗N ,BR) – measurable function, then for each y ∈ Y,

x→ f(x, y) is M – B[0,∞] measurable, (9.1)

for each x ∈ X,
y → f(x, y) is N – B[0,∞] measurable, (9.2)

x→
∫
Y

f(x, y)dν(y) is M – B[0,∞] measurable, (9.3)

y →
∫
X

f(x, y)dµ(x) is N – B[0,∞] measurable, (9.4)

and ∫
X

dµ(x)
∫
Y

dν(y)f(x, y) =
∫
Y

dν(y)
∫
X

dµ(x)f(x, y). (9.5)

Proof. Suppose that E = A×B ∈ E :=M×N and f = 1E . Then

f(x, y) = 1A×B(x, y) = 1A(x)1B(y)

and one sees that Eqs. (9.1) and (9.2) hold. Moreover∫
Y

f(x, y)dν(y) =
∫
Y

1A(x)1B(y)dν(y) = 1A(x)ν(B),

so that Eq. (9.3) holds and we have∫
X

dµ(x)
∫
Y

dν(y)f(x, y) = ν(B)µ(A). (9.6)

Similarly, ∫
X

f(x, y)dµ(x) = µ(A)1B(y) and∫
Y

dν(y)
∫
X

dµ(x)f(x, y) = ν(B)µ(A)

from which it follows that Eqs. (9.4) and (9.5) hold in this case as well.
For the moment let us now further assume that µ(X) < ∞ and ν(Y ) < ∞

and let H be the collection of all bounded (M⊗N ,BR) – measurable functions
on X × Y such that Eqs. (9.1) – (9.5) hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1E ∈ H
for all E in the π – class, E , it follows by Corollary 8.3 that H is the space
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of all bounded (M⊗N ,BR) – measurable functions on X × Y. Moreover, if
f : X × Y → [0,∞] is a (M⊗N ,BR̄) – measurable function, let fM = M ∧ f
so that fM ↑ f as M →∞. Then Eqs. (9.1) – (9.5) hold with f replaced by fM
for all M ∈ N. Repeated use of the monotone convergence theorem allows us to
pass to the limit M →∞ in these equations to deduce the theorem in the case
µ and ν are finite measures.

For the σ – finite case, choose Xn ∈M, Yn ∈ N such that Xn ↑ X, Yn ↑ Y,
µ(Xn) <∞ and ν(Yn) <∞ for all m,n ∈ N. Then define µm(A) = µ(Xm ∩A)
and νn(B) = ν(Yn ∩ B) for all A ∈ M and B ∈ N or equivalently dµm =
1Xmdµ and dνn = 1Yndν. By what we have just proved Eqs. (9.1) – (9.5) with
µ replaced by µm and ν by νn for all (M⊗N ,BR̄) – measurable functions,
f : X×Y → [0,∞]. The validity of Eqs. (9.1) – (9.5) then follows by passing to
the limits m → ∞ and then n → ∞ making use of the monotone convergence
theorem in the following context. For all u ∈ L+(X,M),∫

X

udµm =
∫
X

u1Xmdµ ↑
∫
X

udµ as m→∞,

and for all and v ∈ L+(Y,N ),∫
Y

vdµn =
∫
Y

v1Yndµ ↑
∫
Y

vdµ as n→∞.

Corollary 9.4. Suppose (X,M, µ) and (Y,N , ν) are σ – finite measure spaces.
Then there exists a unique measure π onM⊗N such that π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N . Moreover π is given by

π(E) =
∫
X

dµ(x)
∫
Y

dν(y)1E(x, y) =
∫
Y

dν(y)
∫
X

dµ(x)1E(x, y) (9.7)

for all E ∈M⊗N and π is σ – finite.

Proof. Notice that any measure π such that π(A × B) = µ(A)ν(B) for
all A ∈ M and B ∈ N is necessarily σ – finite. Indeed, let Xn ∈ M and
Yn ∈ N be chosen so that µ(Xn) < ∞, ν(Yn) < ∞, Xn ↑ X and Yn ↑ Y,
then Xn × Yn ∈ M ⊗ N , Xn × Yn ↑ X × Y and π(Xn × Yn) < ∞ for all n.
The uniqueness assertion is a consequence of the combination of Exercises 3.10
and 5.11 Proposition 3.25 with E = M×N . For the existence, it suffices to
observe, using the monotone convergence theorem, that π defined in Eq. (9.7)
is a measure onM⊗N . Moreover this measure satisfies π(A×B) = µ(A)ν(B)
for all A ∈M and B ∈ N from Eq. (9.6).

Notation 9.5 The measure π is called the product measure of µ and ν and will
be denoted by µ⊗ ν.

Theorem 9.6 (Tonelli’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are σ
– finite measure spaces and π = µ⊗ν is the product measure on M⊗N . If f ∈
L+(X × Y,M⊗N ), then f(·, y) ∈ L+(X,M) for all y ∈ Y, f(x, ·) ∈ L+(Y,N )
for all x ∈ X,∫

Y

f(·, y)dν(y) ∈ L+(X,M),
∫
X

f(x, ·)dµ(x) ∈ L+(Y,N )

and ∫
X×Y

f dπ =
∫
X

dµ(x)
∫
Y

dν(y)f(x, y) (9.8)

=
∫
Y

dν(y)
∫
X

dµ(x)f(x, y). (9.9)

Proof. By Theorem 9.3 and Corollary 9.4, the theorem holds when f = 1E
with E ∈M⊗N . Using the linearity of all of the statements, the theorem is also
true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with the approximation Theorem 6.39, one deduces
the theorem for general f ∈ L+(X × Y,M⊗N ).

Example 9.7. In this example we are going to show, I :=
∫

R e
−x2/2dm (x) =√

2π. To this end we observe, using Tonelli’s theorem, that

I2 =
[∫

R
e−x

2/2dm (x)
]2

=
∫

R
e−y

2/2

[∫
R
e−x

2/2dm (x)
]
dm (y)

=
∫

R2
e−(x2+y2)/2dm2 (x, y)

where m2 = m⊗m is “Lebesgue measure” on
(
R2,BR2 = BR ⊗ BR

)
. From the

monotone convergence theorem,

I2 = lim
R→∞

∫
DR

e−(x2+y2)/2dm2 (x, y)

where DR =
{

(x, y) : x2 + y2 < R2
}
. Using the change of variables theorem

described in Section 9.5 below,1 we find∫
DR

e−(x2+y2)/2dπ (x, y) =
∫

(0,R)×(0,2π)

e−r
2/2rdrdθ

= 2π
∫ R

0

e−r
2/2rdr = 2π

(
1− e−R

2/2
)
.

1 Alternatively, you can easily show that the integral
∫
DR

fdm2 agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

I2 = lim
R→∞

2π
(

1− e−R
2/2
)

= 2π

as desired.

9.3 Fubini’s Theorem

Notation 9.8 If (X,M, µ) is a measure space and f : X → C is any measur-
able function, let∫

X

fdµ :=
{∫

X
fdµ if

∫
X
|f | dµ <∞

0 otherwise.

Theorem 9.9 (Fubini’s Theorem). Suppose (X,M, µ) and (Y,N , ν) are σ
– finite measure spaces, π = µ ⊗ ν is the product measure on M ⊗ N and
f : X × Y → C is a M⊗N – measurable function. Then the following three
conditions are equivalent:∫

X×Y
|f | dπ <∞, i.e. f ∈ L1(π), (9.10)∫

X

(∫
Y

|f(x, y)| dν(y)
)
dµ(x) <∞ and (9.11)∫

Y

(∫
X |f(x, y)| dµ(x)

)
dν(y) <∞. (9.12)

If any one (and hence all) of these condition hold, then f(x, ·) ∈ L1(ν) for µ-a.e.
x, f(·, y) ∈ L1(µ) for ν-a.e. y,

∫
Y
f(·, y)dv(y) ∈ L1(µ),

∫
X
f(x, ·)dµ(x) ∈ L1(ν)

and Eqs. (9.8) and (9.9) are still valid after putting a bar over the integral
symbols.

Proof. The equivalence of Eqs. (9.10) – (9.12) is a direct consequence of
Tonelli’s Theorem 9.6. Now suppose f ∈ L1(π) is a real valued function and let

E :=
{
x ∈ X :

∫
Y

|f (x, y)| dν (y) =∞
}
. (9.13)

Then by Tonelli’s theorem, x →
∫
Y
|f (x, y)| dν (y) is measurable and hence

E ∈M. Moreover Tonelli’s theorem implies∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) =

∫
X×Y

|f | dπ <∞

which implies that µ (E) = 0. Let f± be the positive and negative parts of f,
then∫

Y

f (x, y) dν (y) =
∫
Y

1Ec (x) f (x, y) dν (y)

=
∫
Y

1Ec (x) [f+ (x, y)− f− (x, y)] dν (y)

=
∫
Y

1Ec (x) f+ (x, y) dν (y)−
∫
Y

1Ec (x) f− (x, y) dν (y) .

(9.14)

Noting that 1Ec (x) f± (x, y) = (1Ec ⊗ 1Y · f±) (x, y) is a positive M ⊗ N –
measurable function, it follows from another application of Tonelli’s theorem
that x →

∫
Y
f (x, y) dν (y) is M – measurable, being the difference of two

measurable functions. Moreover∫
X

∣∣∣∣∣
∫
Y

f (x, y) dν (y)

∣∣∣∣∣ dµ (x) ≤
∫
X

[∫
Y

|f (x, y)| dν (y)
]
dµ (x) <∞,

which shows
∫
Y
f(·, y)dv(y) ∈ L1(µ). Integrating Eq. (9.14) on x and using

Tonelli’s theorem repeatedly implies,∫
X

[∫
Y

f (x, y) dν (y)

]
dµ (x)

=
∫
X

dµ (x)
∫
Y

dν (y) 1Ec (x) f+ (x, y)−
∫
X

dµ (x)
∫
Y

dν (y) 1Ec (x) f− (x, y)

=
∫
Y

dν (y)
∫
X

dµ (x) 1Ec (x) f+ (x, y)−
∫
Y

dν (y)
∫
X

dµ (x) 1Ec (x) f− (x, y)

=
∫
Y

dν (y)
∫
X

dµ (x) f+ (x, y)−
∫
Y

dν (y)
∫
X

dµ (x) f− (x, y)

=
∫
X×Y

f+dπ −
∫
X×Y

f−dπ =
∫
X×Y

(f+ − f−) dπ =
∫
X×Y

fdπ (9.15)

which proves Eq. (9.8) holds.
Now suppose that f = u + iv is complex valued and again let E be as in

Eq. (9.13). Just as above we still have E ∈M and µ (E) = 0 and∫
Y

f (x, y) dν (y) =
∫
Y

1Ec (x) f (x, y) dν (y) =
∫
Y

1Ec (x) [u (x, y) + iv (x, y)] dν (y)

=
∫
Y

1Ec (x)u (x, y) dν (y) + i

∫
Y

1Ec (x) v (x, y) dν (y) .
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The last line is a measurable in x as we have just proved. Similarly one shows∫
Y
f (·, y) dν (y) ∈ L1 (µ) and Eq. (9.8) still holds by a computation similar to

that done in Eq. (9.15). The assertions pertaining to Eq. (9.9) may be proved
in the same way.

The previous theorems generalize to products of any finite number of σ –
finite measure spaces.

Theorem 9.10. Suppose {(Xi,Mi, µi)}ni=1 are σ – finite measure spaces
and X := X1 × · · · × Xn. Then there exists a unique measure (π) on
(X,M1 ⊗ · · · ⊗Mn) such that

π(A1 × · · · ×An) = µ1(A1) . . . µn(An) for all Ai ∈Mi. (9.16)

(This measure and its completion will be denoted by µ1 ⊗ · · · ⊗ µn.) If f : X →
[0,∞] is a M1 ⊗ · · · ⊗Mn – measurable function then∫

X

fdπ =
∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (9.17)

where σ is any permutation of {1, 2, . . . , n}. In particular f ∈ L1(π), iff∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) |f(x1, . . . , xn)| <∞

for some (and hence all) permutations, σ. Furthermore, if f ∈ L1 (π) , then∫
X

fdπ =
∫
Xσ(1)

dµσ(1)(xσ(1)) . . .
∫
Xσ(n)

dµσ(n)(xσ(n)) f(x1, . . . , xn) (9.18)

for all permutations σ.

Proof. (* I would consider skipping this tedious proof.) The proof will be by
induction on n with the case n = 2 being covered in Theorems 9.6 and 9.9. So
let n ≥ 3 and assume the theorem is valid for n− 1 factors or less. To simplify
notation, for 1 ≤ i ≤ n, let Xi =

∏
j 6=iXj ,Mi := ⊗j 6=iMi, and µi := ⊗j 6=iµj

be the product measure on
(
Xi,Mi

)
which is assumed to exist by the induction

hypothesis. Also letM :=M1⊗· · ·⊗Mn and for x = (x1, . . . , xi, . . . , xn) ∈ X
let

xi := (x1, . . . , x̂i, . . . , xn) := (x1, . . . , xi−1, xi+1, . . . , xn) .

Here is an outline of the argument with some details being left to the reader.

1. If f : X → [0,∞] is M -measurable, then

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi -measurable. Thus by the induction hypothesis, the right side of Eq.
(9.17) is well defined.

2. If σ ∈ Sn (the permutations of {1, 2, . . . , n}) we may define a measure π on
(X,M) by;

π (A) :=
∫
Xσ1

dµσ1 (xσ1) . . .
∫
Xσn

dµσn (xσn) 1A (x1, . . . , xn) . (9.19)

It is easy to check that π is a measure which satisfies Eq. (9.16). Using the
σ – finiteness assumptions and the fact that

P := {A1 × · · · ×An : Ai ∈Mi for 1 ≤ i ≤ n}

is a π – system such that σ (P) =M, it follows from Exercise 5.1 that there
is only one such measure satisfying Eq. (9.16). Thus the formula for π in
Eq. (9.19) is independent of σ ∈ Sn.

3. From Eq. (9.19) and the usual simple function approximation arguments
we may conclude that Eq. (9.17) is valid.
Now suppose that f ∈ L1 (X,M, π) .

4. Using step 1 it is easy to check that

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

f (x1, . . . , xi, . . . , xn) dµi (xi)

is Mi – measurable. Indeed,

(x1, . . . , x̂i, . . . , xn)→
∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi)

is Mi – measurable and therefore

E :=
{

(x1, . . . , x̂i, . . . , xn) :
∫
Xi

|f (x1, . . . , xi, . . . , xn)| dµi (xi) <∞
}
∈Mi.

Now let u := Re f and v := Im f and u± and v± are the positive and
negative parts of u and v respectively, then∫

Xi

f (x) dµi (xi) =
∫
Xi

1E
(
xi
)
f (x) dµi (xi)

=
∫
Xi

1E
(
xi
)
u (x) dµi (xi) + i

∫
Xi

1E
(
xi
)
v (x) dµi (xi) .

Both of these later terms are Mi – measurable since, for example,∫
Xi

1E
(
xi
)
u (x) dµi (xi) =

∫
Xi

1E
(
xi
)
u+ (x) dµi (xi)−

∫
Xi

1E
(
xi
)
u− (x) dµi (xi)

which is Mi – measurable by step 1.
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5. It now follows by induction that the right side of Eq. (9.18) is well defined.
6. Let i := σn and T : X → Xi ×Xi be the obvious identification;

T (xi, (x1, . . . , x̂i, . . . , xn)) = (x1, . . . , xn) .

One easily verifies T is M/Mi ⊗ Mi – measurable (use Corollary 6.19
repeatedly) and that π ◦ T−1 = µi ⊗ µi (see Exercise 5.1).

7. Let f ∈ L1 (π) . Combining step 6. with the abstract change of variables
Theorem (Exercise 7.11) implies∫

X

fdπ =
∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
. (9.20)

By Theorem 9.9, we also have∫
Xi×Xi

(f ◦ T ) d
(
µi ⊗ µi

)
=
∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f ◦ T (xi, xi)

=
∫
Xi
dµi

(
xi
) ∫

Xi

dµi(xi) f(x1, . . . , xn).

(9.21)

Then by the induction hypothesis,∫
Xi
dµi (xi)

∫
Xi

dµi(xi) f(x1, . . . , xn) =
∏
j 6=i

∫
Xj

dµj (xj)
∫
Xi

dµi(xi) f(x1, . . . , xn)

(9.22)
where the ordering the integrals in the last product are inconsequential.
Combining Eqs. (9.20) – (9.22) completes the proof.

Convention: We are now going to drop the bar above the integral sign
with the understanding that

∫
X
fdµ = 0 whenever f : X → C is a measurable

function such that
∫
X
|f | dµ =∞. However if f is a non-negative function (i.e.

f : X → [0,∞]) non-integrable function we will interpret
∫
X
fdµ to be infinite.

Example 9.11. In this example we will show

lim
M→∞

∫ M

0

sinx
x

dx = π/2. (9.23)

To see this write 1
x =

∫∞
0
e−txdt and use Fubini-Tonelli to conclude that

∫ M

0

sinx
x

dx =
∫ M

0

[∫ ∞
0

e−tx sinx dt
]
dx

=
∫ ∞

0

[∫ M

0

e−tx sinx dx

]
dt

=
∫ ∞

0

1
1 + t2

(
1− te−Mt sinM − e−Mt cosM

)
dt

→
∫ ∞

0

1
1 + t2

dt =
π

2
as M →∞,

wherein we have used the dominated convergence theorem (for instance, take
g (t) := 1

1+t2 (1 + te−t + e−t)) to pass to the limit.

The next example is a refinement of this result.

Example 9.12. We have∫ ∞
0

sinx
x

e−Λxdx =
1
2
π − arctanΛ for all Λ > 0 (9.24)

and forΛ,M ∈ [0,∞),∣∣∣∣∣
∫ M

0

sinx
x

e−Λxdx− 1
2
π + arctanΛ

∣∣∣∣∣ ≤ C e−MΛ

M
(9.25)

where C = maxx≥0
1+x
1+x2 = 1

2
√

2−2
∼= 1.2. In particular Eq. (9.23) is valid.

To verify these assertions, first notice that by the fundamental theorem of
calculus,

|sinx| =
∣∣∣∣∫ x

0

cos ydy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

|cos y| dy
∣∣∣∣ ≤ ∣∣∣∣∫ x

0

1dy
∣∣∣∣ = |x|

so
∣∣ sin x
x

∣∣ ≤ 1 for all x 6= 0. Making use of the identity∫ ∞
0

e−txdt = 1/x

and Fubini’s theorem,
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0

sinx
x

e−Λxdx =
∫ M

0

dx sinx e−Λx
∫ ∞

0

e−txdt

=
∫ ∞

0

dt

∫ M

0

dx sinx e−(Λ+t)x

=
∫ ∞

0

1− (cosM + (Λ+ t) sinM) e−M(Λ+t)

(Λ+ t)2 + 1
dt

=
∫ ∞

0

1
(Λ+ t)2 + 1

dt−
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt

=
1
2
π − arctanΛ− ε(M,Λ) (9.26)

where

ε(M,Λ) =
∫ ∞

0

cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

e−M(Λ+t)dt.

Since ∣∣∣∣∣cosM + (Λ+ t) sinM
(Λ+ t)2 + 1

∣∣∣∣∣ ≤ 1 + (Λ+ t)
(Λ+ t)2 + 1

≤ C,

|ε(M,Λ)| ≤
∫ ∞

0

e−M(Λ+t)dt = C
e−MΛ

M
.

This estimate along with Eq. (9.26) proves Eq. (9.25) from which Eq. (9.23) fol-
lows by taking Λ→∞ and Eq. (9.24) follows (using the dominated convergence
theorem again) by letting M →∞.

Lemma 9.13. Suppose that X is a random variable and ϕ : R→ R is a C1

– functions such that limx→−∞ ϕ (x) = 0 and either ϕ′ (x) ≥ 0 for all x or∫
R |ϕ

′ (x)| dx <∞. Then

E [ϕ (X)] =
∫ ∞
−∞

ϕ′ (y)P (X > y) dy.

Similarly if X ≥ 0 and ϕ : [0,∞) → R is a C1 – function such that ϕ (0) = 0
and either ϕ′ ≥ 0 or

∫∞
0
|ϕ′ (x)| dx <∞, then

E [ϕ (X)] =
∫ ∞

0

ϕ′ (y)P (X > y) dy.

Proof. By the fundamental theorem of calculus for all M <∞ and x ∈ R,

ϕ (x) = ϕ (−M) +
∫ x

−M
ϕ′ (y) dy. (9.27)

Under the stated assumptions on ϕ, we may use either the monotone or the
dominated convergence theorem to let M →∞ in Eq. (9.27) to find,

ϕ (x) =
∫ x

−∞
ϕ′ (y) dy =

∫
R

1y<xϕ′ (y) dy for all x ∈ R.

Therefore,

E [ϕ (X)] = E
[∫

R
1y<Xϕ′ (y) dy

]
=
∫

R
E [1y<X ]ϕ′ (y) dy =

∫ ∞
−∞

ϕ′ (y)P (X > y) dy,

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader.

Example 9.14. Here are a couple of examples involving Lemma 9.13.

1. Suppose X is a random variable, then

E
[
eX
]

=
∫ ∞
−∞

P (X > y) eydy =
∫ ∞

0

P (X > lnu) du, (9.28)

where we made the change of variables, u = ey, to get the second equality.
2. If X ≥ 0 and p ≥ 1, then

EXp = p

∫ ∞
0

yp−1P (X > y) dy. (9.29)

9.4 Fubini’s Theorem and Completions*

Notation 9.15 Given E ⊂ X × Y and x ∈ X, let

xE := {y ∈ Y : (x, y) ∈ E}.

Similarly if y ∈ Y is given let

Ey := {x ∈ X : (x, y) ∈ E}.

If f : X × Y → C is a function let fx = f(x, ·) and fy := f(·, y) so that
fx : Y → C and fy : X → C.

Theorem 9.16. Suppose (X,M, µ) and (Y,N , ν) are complete σ – finite mea-
sure spaces. Let (X × Y,L, λ) be the completion of (X × Y,M⊗N , µ⊗ ν). If f
is L – measurable and (a) f ≥ 0 or (b) f ∈ L1(λ) then fx is N – measurable
for µ a.e. x and fy is M – measurable for ν a.e. y and in case (b) fx ∈ L1(ν)
and fy ∈ L1(µ) for µ a.e. x and ν a.e. y respectively. Moreover,
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9.5 Lebesgue Measure on Rd and the Change of Variables Theorem 121(
x→

∫
Y

fxdν

)
∈ L1 (µ) and

(
y →

∫
X

fydµ

)
∈ L1 (ν)

and ∫
X×Y

fdλ =
∫
Y

dν

∫
X

dµ f =
∫
X

dµ

∫
Y

dν f.

Proof. If E ∈M⊗N is a µ⊗ ν null set (i.e. (µ⊗ ν)(E) = 0), then

0 = (µ⊗ ν)(E) =
∫
X

ν(xE)dµ(x) =
∫
X

µ(Ey)dν(y).

This shows that

µ({x : ν(xE) 6= 0}) = 0 and ν({y : µ(Ey) 6= 0}) = 0,

i.e. ν(xE) = 0 for µ a.e. x and µ(Ey) = 0 for ν a.e. y. If h is L measurable and
h = 0 for λ – a.e., then there exists E ∈ M⊗N such that {(x, y) : h(x, y) 6=
0} ⊂ E and (µ⊗ ν)(E) = 0. Therefore |h(x, y)| ≤ 1E(x, y) and (µ⊗ ν)(E) = 0.
Since

{hx 6= 0} = {y ∈ Y : h(x, y) 6= 0} ⊂ xE and
{hy 6= 0} = {x ∈ X : h(x, y) 6= 0} ⊂ Ey

we learn that for µ a.e. x and ν a.e. y that {hx 6= 0} ∈ M, {hy 6= 0} ∈ N ,
ν({hx 6= 0}) = 0 and a.e. and µ({hy 6= 0}) = 0. This implies

∫
Y
h(x, y)dν(y)

exists and equals 0 for µ a.e. x and similarly that
∫
X
h(x, y)dµ(x) exists and

equals 0 for ν a.e. y. Therefore

0 =
∫
X×Y

hdλ =
∫
Y

(∫
X

hdµ

)
dν =

∫
X

(∫
Y

hdν

)
dµ.

For general f ∈ L1(λ), we may choose g ∈ L1(M⊗N , µ⊗ν) such that f(x, y) =
g(x, y) for λ− a.e. (x, y). Define h := f−g. Then h = 0, λ− a.e. Hence by what
we have just proved and Theorem 9.6 f = g + h has the following properties:

1. For µ a.e. x, y → f(x, y) = g(x, y) + h(x, y) is in L1(ν) and∫
Y

f(x, y)dν(y) =
∫
Y

g(x, y)dν(y).

2. For ν a.e. y, x→ f(x, y) = g(x, y) + h(x, y) is in L1(µ) and∫
X

f(x, y)dµ(x) =
∫
X

g(x, y)dµ(x).

From these assertions and Theorem 9.6, it follows that∫
X

dµ(x)
∫
Y

dν(y)f(x, y) =
∫
X

dµ(x)
∫
Y

dν(y)g(x, y)

=
∫
Y

dν(y)
∫
Y

dν(x)g(x, y)

=
∫
X×Y

g(x, y)d(µ⊗ ν)(x, y)

=
∫
X×Y

f(x, y)dλ(x, y).

Similarly it is shown that∫
Y

dν(y)
∫
X

dµ(x)f(x, y) =
∫
X×Y

f(x, y)dλ(x, y).

9.5 Lebesgue Measure on Rd and the Change of Variables
Theorem

Notation 9.17 Let

md :=
d times︷ ︸︸ ︷

m⊗ · · · ⊗m on BRd =

d times︷ ︸︸ ︷
BR ⊗ · · · ⊗ BR

be the d – fold product of Lebesgue measure m on BR. We will also use md

to denote its completion and let Ld be the completion of BRd relative to md.
A subset A ∈ Ld is called a Lebesgue measurable set and md is called d –
dimensional Lebesgue measure, or just Lebesgue measure for short.

Definition 9.18. A function f : Rd → R is Lebesgue measurable if
f−1(BR) ⊂ Ld.

Notation 9.19 I will often be sloppy in the sequel and write m for md and dx
for dm(x) = dmd(x), i.e.∫

Rd
f (x) dx =

∫
Rd
fdm =

∫
Rd
fdmd.

Hopefully the reader will understand the meaning from the context.

Theorem 9.20. Lebesgue measure md is translation invariant. Moreover md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
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Proof. Let A = J1 × · · · × Jd with Ji ∈ BR and x ∈ Rd. Then

x+A = (x1 + J1)× (x2 + J2)× · · · × (xd + Jd)

and therefore by translation invariance of m on BR we find that

md(x+A) = m(x1 + J1) . . .m(xd + Jd) = m(J1) . . .m(Jd) = md(A)

and hence md(x+ A) = md(A) for all A ∈ BRd since it holds for A in a multi-
plicative system which generates BRd . From this fact we see that the measure
md(x + ·) and md(·) have the same null sets. Using this it is easily seen that
m(x+A) = m(A) for all A ∈ Ld. The proof of the second assertion is Exercise
9.13.

Exercise 9.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on BH which is invariant under translations and
satisfies, m(B0(ε)) > 0 for all ε > 0. Show m(V ) = ∞ for all non-empty open
subsets V ⊂ H.

Theorem 9.21 (Change of Variables Theorem). Let Ω ⊂o Rd be an open
set and T : Ω → T (Ω) ⊂o Rd be a C1 – diffeomorphism,2 see Figure 9.1. Then
for any Borel measurable function, f : T (Ω)→ [0,∞],∫

Ω

f (T (x)) |detT ′ (x) |dx =
∫

T (Ω)

f (y) dy, (9.30)

where T ′(x) is the linear transformation on Rd defined by T ′(x)v := d
dt |0T (x+

tv). More explicitly, viewing vectors in Rd as columns, T ′ (x) may be represented
by the matrix

T ′ (x) =

∂1T1 (x) . . . ∂dT1 (x)
...

. . .
...

∂1Td (x) . . . ∂dTd (x)

 , (9.31)

i.e. the i - j – matrix entry of T ′(x) is given by T ′(x)ij = ∂iTj(x) where
T (x) = (T1(x), . . . , Td(x))tr and ∂i = ∂/∂xi.

Remark 9.22. Theorem 9.21 is best remembered as the statement: if we make
the change of variables y = T (x) , then dy = |detT ′ (x) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if x ranges through Ω
then y must range through T (Ω) .
2 That is T : Ω → T (Ω) ⊂o Rd is a continuously differentiable bijection and the

inverse map T−1 : T (Ω)→ Ω is also continuously differentiable.

Fig. 9.1. The geometric setup of Theorem 9.21.

Note: you may skip the rest of this section!

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise 7.12. Nevertheless, for the sake of completeness let us give
a proof here. Suppose d = 1, a < α < β < b such that [a, b] is a compact
subinterval of Ω. Then |detT ′| = |T ′| and∫

[a,b]

1T ((α,β]) (T (x)) |T ′ (x)| dx =
∫

[a,b]

1(α,β] (x) |T ′ (x)| dx =
∫ β

α

|T ′ (x)| dx.

If T ′ (x) > 0 on [a, b] , then∫ β

α

|T ′ (x)| dx =
∫ β

α

T ′ (x) dx = T (β)− T (α)

= m (T ((α, β])) =
∫
T ([a,b])

1T ((α,β]) (y) dy

while if T ′ (x) < 0 on [a, b] , then∫ β

α

|T ′ (x)| dx = −
∫ β

α

T ′ (x) dx = T (α)− T (β)

= m (T ((α, β])) =
∫
T ([a,b])

1T ((α,β]) (y) dy.
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Combining the previous three equations shows∫
[a,b]

f (T (x)) |T ′ (x)| dx =
∫
T ([a,b])

f (y) dy (9.32)

whenever f is of the form f = 1T ((α,β]) with a < α < β < b. An application
of Dynkin’s multiplicative system Theorem 8.15 then implies that Eq. (9.32)
holds for every bounded measurable function f : T ([a, b]) → R. (Observe that
|T ′ (x)| is continuous and hence bounded for x in the compact interval, [a, b] .)
Recall that Ω =

∑N
n=1 (an, bn) where an, bn ∈ R∪{±∞} for n = 1, 2, · · · < N

with N =∞ possible. Hence if f : T (Ω)→ R + is a Borel measurable function
and an < αk < βk < bn with αk ↓ an and βk ↑ bn, then by what we have
already proved and the monotone convergence theorem∫

Ω

1(an,bn) · (f ◦ T ) · |T ′|dm =
∫
Ω

(
1T ((an,bn)) · f

)
◦ T · |T ′|dm

= lim
k→∞

∫
Ω

(
1T ([αk,βk]) · f

)
◦ T · |T ′| dm

= lim
k→∞

∫
T (Ω)

1T ([αk,βk]) · f dm

=
∫

T (Ω)

1T ((an,bn)) · f dm.

Summing this equality on n, then shows Eq. (9.30) holds.
To carry out the induction step, we now suppose d > 1 and suppose the

theorem is valid with d being replaced by d−1. For notational compactness, let
us write vectors in Rd as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T ′ (x) , will always be taken to be given
as in Eq. (9.31).

Case 1. Suppose T (x) has the form

T (x) = (xi, T2 (x) , . . . , Td (x)) (9.33)

or
T (x) = (T1 (x) , . . . , Td−1 (x) , xi) (9.34)

for some i ∈ {1, . . . , d} . For definiteness we will assume T is as in Eq. (9.33), the
case of T in Eq. (9.34) may be handled similarly. For t ∈ R, let it : Rd−1 → Rd
be the inclusion map defined by

it (w) := wt := (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ,

Ωt be the (possibly empty) open subset of Rd−1 defined by

Ωt :=
{
w ∈ Rd−1 : (w1, . . . , wi−1, t, wi+1, . . . , wd−1) ∈ Ω

}
and Tt : Ωt → Rd−1 be defined by

Tt (w) = (T2 (wt) , . . . , Td (wt)) ,

see Figure 9.2. Expanding detT ′ (wt) along the first row of the matrix T ′ (wt)

Fig. 9.2. In this picture d = i = 3 and Ω is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map T and slicing the
set Ω along planes where x3 = t.

shows
|detT ′ (wt)| = |detT ′t (w)| .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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124 9 Multiple and Iterated Integrals∫
Ω

f ◦ T |detT ′|dm =
∫
Rd

1Ω · f ◦ T |detT ′|dm

=
∫
Rd

1Ω (wt) (f ◦ T ) (wt) |detT ′ (wt) |dwdt

=
∫

R

∫
Ωt

(f ◦ T ) (wt) |detT ′ (wt) |dw

 dt
=
∫

R

∫
Ωt

f (t, Tt (w)) |detT ′t (w) |dw

 dt
=
∫

R

 ∫
Tt(Ωt)

f (t, z) dz

 dt =
∫

R

 ∫
Rd−1

1T (Ω) (t, z) f (t, z) dz

 dt
=
∫

T (Ω)

f (y) dy

wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;

T (Ω) =
∑
t∈R

T (it (Ω)) =
∑
t∈R
{(t, z) : z ∈ Tt (Ωt)} .

Case 2. (Eq. (9.30) is true locally.) Suppose that T : Ω → Rd is a general
map as in the statement of the theorem and x0 ∈ Ω is an arbitrary point. We
will now show there exists an open neighborhood W ⊂ Ω of x0 such that∫

W

f ◦ T |detT ′|dm =
∫
T (W )

fdm

holds for all Borel measurable function, f : T (W ) → [0,∞]. Let Mi be the 1-i
minor of T ′ (x0) , i.e. the determinant of T ′ (x0) with the first row and ith –
column removed. Since

0 6= detT ′ (x0) =
d∑
i=1

(−1)i+1
∂iTj (x0) ·Mi,

there must be some i such that Mi 6= 0. Fix an i such that Mi 6= 0 and let,

S (x) := (xi, T2 (x) , . . . , Td (x)) . (9.35)

Observe that |detS′ (x0)| = |Mi| 6= 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of x0 such that W ⊂o Ω and S (W ) ⊂o Rd

and S : W → S (W ) is a C1 – diffeomorphism. Let R : S (W )→ T (W ) ⊂o Rd
to be the C1 – diffeomorphism defined by

R (z) := T ◦ S−1 (z) for all z ∈ S (W ) .

Because

(T1 (x) , . . . , Td (x)) = T (x) = R (S (x)) = R ((xi, T2 (x) , . . . , Td (x)))

for all x ∈W, if

(z1, z2, . . . , zd) = S (x) = (xi, T2 (x) , . . . , Td (x))

then
R (z) =

(
T1

(
S−1 (z)

)
, z2, . . . , zd

)
. (9.36)

Observe that S is a map of the form in Eq. (9.33), R is a map of the form in Eq.
(9.34), T ′ (x) = R′ (S (x))S′ (x) (by the chain rule) and (by the multiplicative
property of the determinant)

|detT ′ (x)| = |detR′ (S (x)) | |detS′ (x)| ∀ x ∈W.

So if f : T (W )→ [0,∞] is a Borel measurable function, two applications of the
results in Case 1. shows,∫

W

f ◦ T · | detT ′|dm =
∫
W

(f ◦R · | detR′|) ◦ S · |detS′| dm

=
∫

S(W )

f ◦R · | detR′|dm =
∫

R(S(W ))

fdm

=
∫
T (W )

fdm

and Case 2. is proved.
Case 3. (General Case.) Let f : Ω → [0,∞] be a general non-negative Borel

measurable function and let

Kn := {x ∈ Ω : dist(x,Ωc) ≥ 1/n and |x| ≤ n} .

Then each Kn is a compact subset of Ω and Kn ↑ Ω as n → ∞. Using the
compactness of Kn and case 2, for each n ∈ N, there is a finite open cover Wn

of Kn such that W ⊂ Ω and Eq. (9.30) holds with Ω replaced by W for each
W ∈ Wn. Let {Wi}∞i=1 be an enumeration of ∪∞n=1Wn and set W̃1 = W1 and
W̃i := Wi \(W1 ∪ · · · ∪Wi−1) for all i ≥ 2. Then Ω =

∑∞
i=1 W̃i and by repeated

use of case 2.,
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9.5 Lebesgue Measure on Rd and the Change of Variables Theorem 125∫
Ω

f ◦ T |detT ′|dm =
∞∑
i=1

∫
Ω

1W̃i
· (f ◦ T ) · | detT ′|dm

=
∞∑
i=1

∫
Wi

[(
1T(W̃i)f

)
◦ T
]
· | detT ′|dm

=
∞∑
i=1

∫
T (Wi)

1T(W̃i) · f dm =
n∑
i=1

∫
T (Ω)

1T(W̃i) · f dm

=
∫

T (Ω)

fdm.

Remark 9.23. When d = 1, one often learns the change of variables formula as∫ b

a

f (T (x))T ′ (x) dx =
∫ T (b)

T (a)

f (y) dy (9.37)

where f : [a, b]→ R is a continuous function and T is C1 – function defined in
a neighborhood of [a, b] . If T ′ > 0 on (a, b) then T ((a, b)) = (T (a) , T (b)) and
Eq. (9.37) is implies Eq. (9.30) with Ω = (a, b) . On the other hand if T ′ < 0
on (a, b) then T ((a, b)) = (T (b) , T (a)) and Eq. (9.37) is equivalent to∫

(a,b)

f (T (x)) (− |T ′ (x)|) dx = −
∫ T (a)

T (b)

f (y) dy = −
∫
T ((a,b))

f (y) dy

which is again implies Eq. (9.30). On the other hand Eq. (9.37) is more general
than Eq. (9.30) since it does not require T to be injective. The standard proof
of Eq. (9.37) is as follows. For z ∈ T ([a, b]) , let

F (z) :=
∫ z

T (a)

f (y) dy.

Then by the chain rule and the fundamental theorem of calculus,∫ b

a

f (T (x))T ′ (x) dx =
∫ b

a

F ′ (T (x))T ′ (x) dx =
∫ b

a

d

dx
[F (T (x))] dx

= F (T (x)) |ba =
∫ T (b)

T (a)

f (y) dy.

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(9.37) holds for all bounded measurable functions f on (a, b) . Then by the
usual truncation argument, it also holds for all positive measurable functions
on (a, b) .

Exercise 9.2. Continuing the setup in Theorem 9.21, show that
f ∈ L1

(
T (Ω) ,md

)
iff ∫

Ω

|f ◦ T | |detT ′|dm <∞

and if f ∈ L1
(
T (Ω) ,md

)
, then Eq. (9.30) holds.

Example 9.24. Continuing the setup in Theorem 9.21, if A ∈ BΩ , then

m (T (A)) =
∫

Rd
1T (A) (y) dy =

∫
Rd

1T (A) (Tx) |detT ′ (x)| dx

=
∫

Rd
1A (x) |detT ′ (x)| dx

wherein the second equality we have made the change of variables, y = T (x) .
Hence we have shown

d (m ◦ T ) = |detT ′ (·)| dm.

Taking T ∈ GL(d,R) = GL(Rd) – the space of d × d invertible matrices in
the previous example implies m ◦ T = |detT |m, i.e.

m (T (A)) = |detT |m (A) for all A ∈ BRd . (9.38)

This equation also shows that m ◦ T and m have the same null sets and hence
the equality in Eq. (9.38) is valid for any A ∈ Ld. In particular we may conclude
that m is invariant under those T ∈ GL(d,R) with |det (T )| = 1. For example
if T is a rotation (i.e. T trT = I), then detT = ±1 and hence m is invariant
under all rotations. This is not obvious from the definition of md as a product
measure!

Example 9.25. Suppose that T (x) = x+b for some b ∈ Rd. In this case T ′ (x) =
I and therefore it follows that∫

Rd

f (x+ b) dx =
∫
Rd

f (y) dy

for all measurable f : Rd → [0,∞] or for any f ∈ L1 (m) . In particular Lebesgue
measure is invariant under translations.

Example 9.26 (Polar Coordinates). Suppose T : (0,∞)×(0, 2π)→ R2 is defined
by

x = T (r, θ) = (r cos θ, r sin θ) ,
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i.e. we are making the change of variable,

x1 = r cos θ and x2 = r sin θ for 0 < r <∞ and 0 < θ < 2π.

In this case

T ′(r, θ) =
(

cos θ − r sin θ
sin θ r cos θ

)
and therefore

dx = |detT ′(r, θ)| drdθ = rdrdθ.

Observing that

R2 \ T ((0,∞)× (0, 2π)) = ` := {(x, 0) : x ≥ 0}

has m2 – measure zero, it follows from the change of variables Theorem 9.21
that ∫

R2
f(x)dx =

∫ 2π

0

dθ

∫ ∞
0

dr r · f(r (cos θ, sin θ)) (9.39)

for any Borel measurable function f : R2 → [0,∞].

Example 9.27 (Holomorphic Change of Variables). Suppose that f : Ω ⊂o C ∼=
R2→ C is an injective holomorphic function such that f ′ (z) 6= 0 for all z ∈ Ω.
We may express f as

f (x+ iy) = U (x, y) + iV (x, y)

for all z = x+ iy ∈ Ω. Hence if we make the change of variables,

w = u+ iv = f (x+ iy) = U (x, y) + iV (x, y)

then

dudv =
∣∣∣∣det

[
Ux Uy
Vx Vy

]∣∣∣∣ dxdy = |UxVy − UyVx| dxdy.

Recalling that U and V satisfy the Cauchy Riemann equations, Ux = Vy and
Uy = −Vx with f ′ = Ux + iVx, we learn

UxVy − UyVx = U2
x + V 2

x = |f ′|2 .

Therefore
dudv = |f ′ (x+ iy)|2 dxdy.

Example 9.28. In this example we will evaluate the integral

I :=
∫∫

Ω

(
x4 − y4

)
dxdy

Fig. 9.3. The region Ω consists of the two curved rectangular regions shown.

where
Ω =

{
(x, y) : 1 < x2 − y2 < 2, 0 < xy < 1

}
,

see Figure 9.3. We are going to do this by making the change of variables,

(u, v) := T (x, y) =
(
x2 − y2, xy

)
,

in which case

dudv =
∣∣∣∣det

[
2x −2y
y x

]∣∣∣∣ dxdy = 2
(
x2 + y2

)
dxdy

Notice that(
x4 − y4

)
=
(
x2 − y2

) (
x2 + y2

)
= u

(
x2 + y2

)
=

1
2
ududv.

The function T is not injective on Ω but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
Ω = −D ∪ D and T (±D) = (1, 2) × (0, 1) . The change of variables theorem
then implies

I± :=
∫∫
±D

(
x4 − y4

)
dxdy =

1
2

∫∫
(1,2)×(0,1)

ududv =
1
2
u2

2
|21 · 1 =

3
4

and therefore I = I+ + I− = 2 · (3/4) = 3/2.

Exercise 9.3 (Spherical Coordinates). Let T : (0,∞)×(0, π)×(0, 2π)→ R3

be defined by
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9.6 The Polar Decomposition of Lebesgue Measure* 127

Fig. 9.4. The relation of x to (r, φ, θ) in spherical coordinates.

T (r, ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)
= r (sinϕ cos θ, sinϕ sin θ, cosϕ) ,

see Figure 9.4. By making the change of variables x = T (r, ϕ, θ) , show∫
R3
f(x)dx =

∫ π

0

dϕ

∫ 2π

0

dθ

∫ ∞
0

dr r2 sinϕ · f(T (r, ϕ, θ))

for any Borel measurable function, f : R3 → [0,∞].

Lemma 9.29. Let a > 0 and

Id(a) :=
∫
Rd

e−a|x|
2
dm(x).

Then Id(a) = (π/a)d/2.

Proof. By Tonelli’s theorem and induction,

Id(a) =
∫

Rd−1×R
e−a|y|

2
e−at

2
md−1(dy) dt

= Id−1(a)I1(a) = Id1 (a). (9.40)

So it suffices to compute:

I2(a) =
∫
R2

e−a|x|
2
dm(x) =

∫
R2\{0}

e−a(x2
1+x2

2)dx1dx2.

Using polar coordinates, see Eq. (9.39), we find,

I2(a) =
∫ ∞

0

dr r

∫ 2π

0

dθ e−ar
2

= 2π
∫ ∞

0

re−ar
2
dr

= 2π lim
M→∞

∫ M

0

re−ar
2
dr = 2π lim

M→∞

e−ar
2

−2a

∫ M

0

=
2π
2a

= π/a.

This shows that I2(a) = π/a and the result now follows from Eq. (9.40).

9.6 The Polar Decomposition of Lebesgue Measure*

Let

Sd−1 = {x ∈ Rd : |x|2 :=
d∑
i=1

x2
i = 1}

be the unit sphere in Rd equipped with its Borel σ – algebra, BSd−1 and Φ :
Rd \{0} → (0,∞)×Sd−1 be defined by Φ(x) := (|x| , |x|−1

x). The inverse map,
Φ−1 : (0,∞)× Sd−1 → Rd \ {0} , is given by Φ−1(r, ω) = rω. Since Φ and Φ−1

are continuous, they are both Borel measurable. For E ∈ BSd−1 and a > 0, let

Ea := {rω : r ∈ (0, a] and ω ∈ E} = Φ−1((0, a]× E) ∈ BRd .

Definition 9.30. For E ∈ BSd−1 , let σ(E) := d ·m(E1). We call σ the surface
measure on Sd−1.

It is easy to check that σ is a measure. Indeed if E ∈ BSd−1 , then E1 =
Φ−1 ((0, 1]× E) ∈ BRd so that m(E1) is well defined. Moreover if E =

∑∞
i=1Ei,

then E1 =
∑∞
i=1 (Ei)1 and

σ(E) = d ·m(E1) =
∞∑
i=1

m ((Ei)1) =
∞∑
i=1

σ(Ei).

The intuition behind this definition is as follows. If E ⊂ Sd−1 is a set and ε > 0
is a small number, then the volume of

(1, 1 + ε] · E = {rω : r ∈ (1, 1 + ε] and ω ∈ E}

should be approximately given by m ((1, 1 + ε] · E) ∼= σ(E)ε, see Figure 9.5
below. On the other hand

m ((1, 1 + ε]E) = m (E1+ε \ E1) =
{

(1 + ε)d − 1
}
m(E1).

Therefore we expect the area of E should be given by

σ(E) = lim
ε↓0

{
(1 + ε)d − 1

}
m(E1)

ε
= d ·m(E1).

The following theorem is motivated by Example 9.26 and Exercise 9.3.
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Fig. 9.5. Motivating the definition of surface measure for a sphere.

Theorem 9.31 (Polar Coordinates). If f : Rd → [0,∞] is a (BRd ,B)–
measurable function then∫

Rd

f(x)dm(x) =
∫

(0,∞)×Sd−1

f(rω)rd−1 drdσ(ω). (9.41)

In particular if f : R+ → R+ is measurable then∫
Rd

f(|x|)dx =
∫ ∞

0

f(r)dV (r) (9.42)

where V (r) = m (B(0, r)) = rdm (B(0, 1)) = d−1σ
(
Sd−1

)
rd.

Proof. By Exercise 7.11,∫
Rd

fdm =
∫

Rd\{0}

(
f ◦ Φ−1

)
◦ Φ dm =

∫
(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (Φ∗m) (9.43)

and therefore to prove Eq. (9.41) we must work out the measure Φ∗m on B(0,∞)⊗
BSd−1 defined by

Φ∗m(A) := m
(
Φ−1(A)

)
∀ A ∈ B(0,∞) ⊗ BSd−1 . (9.44)

If A = (a, b]× E with 0 < a < b and E ∈ BSd−1 , then

Φ−1(A) = {rω : r ∈ (a, b] and ω ∈ E} = bE1 \ aE1

wherein we have used Ea = aE1 in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Φ∗m) ((a, b]× E) = m (bE1 \ aE1) = m(bE1)−m(aE1)

= bdm(E1)− adm(E1) = d ·m(E1)
∫ b

a

rd−1dr. (9.45)

Letting dρ(r) = rd−1dr, i.e.

ρ(J) =
∫
J

rd−1dr ∀ J ∈ B(0,∞), (9.46)

Eq. (9.45) may be written as

(Φ∗m) ((a, b]× E) = ρ((a, b]) · σ(E) = (ρ⊗ σ) ((a, b]× E) . (9.47)

Since
E = {(a, b]× E : 0 < a < b and E ∈ BSd−1} ,

is a π class (in fact it is an elementary class) such that σ(E) = B(0,∞) ⊗BSd−1 ,
it follows from the π – λ Theorem and Eq. (9.47) that Φ∗m = ρ⊗ σ. Using this
result in Eq. (9.43) gives∫

Rd

fdm =
∫

(0,∞)×Sd−1

(
f ◦ Φ−1

)
d (ρ⊗ σ)

which combined with Tonelli’s Theorem 9.6 proves Eq. (9.43).

Corollary 9.32. The surface area σ(Sd−1) of the unit sphere Sd−1 ⊂ Rd is

σ(Sd−1) =
2πd/2

Γ (d/2)
(9.48)

where Γ is the gamma function is as in Example 7.47 and 7.50.

Proof. Using Theorem 9.31 we find

Id(1) =
∫ ∞

0

dr rd−1e−r
2
∫

Sd−1

dσ = σ(Sd−1)
∫ ∞

0

rd−1e−r
2
dr.

We simplify this last integral by making the change of variables u = r2 so that
r = u1/2 and dr = 1

2u
−1/2du. The result is∫ ∞

0

rd−1e−r
2
dr =

∫ ∞
0

u
d−1
2 e−u

1
2
u−1/2du

=
1
2

∫ ∞
0

u
d
2−1e−udu =

1
2
Γ (d/2). (9.49)

Combing the the last two equations with Lemma 9.29 which states that Id(1) =
πd/2, we conclude that

πd/2 = Id(1) =
1
2
σ(Sd−1)Γ (d/2)

which proves Eq. (9.48).
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9.7 More Spherical Coordinates*

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r, θ) ∈ (0,∞) ×
[0, 2π) so that (

x1

x2

)
=
(
r cos θ
r sin θ

)
= T2(θ, r).

For n = 3 we let x3 = r cosϕ1 and then(
x1

x2

)
= T2(θ, r sinϕ1),

as can be seen from Figure 9.6, so that

Fig. 9.6. Setting up polar coordinates in two and three dimensions.

x1

x2

x3

 =
(
T2(θ, r sinϕ1)

r cosϕ1

)
=

 r sinϕ1 cos θ
r sinϕ1 sin θ
r cosϕ1

 =: T3(θ, ϕ1, r, ).

We continue to work inductively this way to define
x1

...
xn
xn+1

 =
(
Tn(θ, ϕ1, . . . , ϕn−2, r sinϕn−1, )

r cosϕn−1

)
= Tn+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r).

So for example,

x1 = r sinϕ2 sinϕ1 cos θ
x2 = r sinϕ2 sinϕ1 sin θ
x3 = r sinϕ2 cosϕ1

x4 = r cosϕ2

and more generally,

x1 = r sinϕn−2 . . . sinϕ2 sinϕ1 cos θ
x2 = r sinϕn−2 . . . sinϕ2 sinϕ1 sin θ
x3 = r sinϕn−2 . . . sinϕ2 cosϕ1

...
xn−2 = r sinϕn−2 sinϕn−3 cosϕn−4

xn−1 = r sinϕn−2 cosϕn−3

xn = r cosϕn−2. (9.50)

By the change of variables formula,∫
Rn
f(x)dm(x)

=
∫ ∞

0

dr

∫
0≤ϕi≤π,0≤θ≤2π

dϕ1 . . . dϕn−2dθ

[
∆n(θ, ϕ1, . . . , ϕn−2, r)
×f(Tn(θ, ϕ1, . . . , ϕn−2, r))

]
(9.51)

where
∆n(θ, ϕ1, . . . , ϕn−2, r) := |detT ′n(θ, ϕ1, . . . , ϕn−2, r)| .

Proposition 9.33. The Jacobian, ∆n is given by

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1. (9.52)

If f is a function on rSn−1 – the sphere of radius r centered at 0 inside of Rn,
then∫
rSn−1

f(x)dσ(x) = rn−1

∫
Sn−1

f(rω)dσ(ω)

=
∫

0≤ϕi≤π,0≤θ≤2π

f(Tn(θ, ϕ1, . . . , ϕn−2, r))∆n(θ, ϕ1, . . . , ϕn−2, r)dϕ1 . . . dϕn−2dθ

(9.53)

Proof. We are going to compute ∆n inductively. Letting ρ := r sinϕn−1

and writing ∂Tn
∂ξ for ∂Tn

∂ξ (θ, ϕ1, . . . , ϕn−2, ρ) we have

∆n+1(θ,ϕ1, . . . , ϕn−2, ϕn−1, r)

=
∣∣∣∣[ ∂Tn∂θ ∂Tn

∂ϕ1

0 0
. . . ∂Tn

∂ϕn−2

. . . 0

∂Tn
∂ρ r cosϕn−1

−r sinϕn−1

∂Tn
∂ρ sinϕn−1

cosϕn−1

]∣∣∣∣
= r

(
cos2 ϕn−1 + sin2 ϕn−1

)
∆n(, θ, ϕ1, . . . , ϕn−2, ρ)

= r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1),
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i.e.

∆n+1(θ, ϕ1, . . . , ϕn−2, ϕn−1, r) = r∆n(θ, ϕ1, . . . , ϕn−2, r sinϕn−1). (9.54)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with ∆2(θ, r) = r already derived in Example 9.26, Eq. (9.54)
implies,

∆3(θ, ϕ1, r) = r∆2(θ, r sinϕ1) = r2 sinϕ1

∆4(θ, ϕ1, ϕ2, r) = r∆3(θ, ϕ1, r sinϕ2) = r3 sin2 ϕ2 sinϕ1

...

∆n(θ, ϕ1, . . . , ϕn−2, r) = rn−1 sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1

which proves Eq. (9.52). Equation (9.53) now follows from Eqs. (9.41), (9.51)
and (9.52).

As a simple application, Eq. (9.53) implies

σ(Sn−1) =
∫

0≤ϕi≤π,0≤θ≤2π

sinn−2 ϕn−2 . . . sin2 ϕ2 sinϕ1dϕ1 . . . dϕn−2dθ

= 2π
n−2∏
k=1

γk = σ(Sn−2)γn−2 (9.55)

where γk :=
∫ π

0
sink ϕdϕ. If k ≥ 1, we have by integration by parts that,

γk =
∫ π

0

sink ϕdϕ = −
∫ π

0

sink−1 ϕ d cosϕ = 2δk,1 + (k − 1)
∫ π

0

sink−2 ϕ cos2 ϕdϕ

= 2δk,1 + (k − 1)
∫ π

0

sink−2 ϕ
(
1− sin2 ϕ

)
dϕ = 2δk,1 + (k − 1) [γk−2 − γk]

and hence γk satisfies γ0 = π, γ1 = 2 and the recursion relation

γk =
k − 1
k

γk−2 for k ≥ 2.

Hence we may conclude

γ0 = π, γ1 = 2, γ2 =
1
2
π, γ3 =

2
3

2, γ4 =
3
4

1
2
π, γ5 =

4
5

2
3

2, γ6 =
5
6

3
4

1
2
π

and more generally by induction that

γ2k = π
(2k − 1)!!

(2k)!!
and γ2k+1 = 2

(2k)!!
(2k + 1)!!

.

Indeed,

γ2(k+1)+1 =
2k + 2
2k + 3

γ2k+1 =
2k + 2
2k + 3

2
(2k)!!

(2k + 1)!!
= 2

[2(k + 1)]!!
(2(k + 1) + 1)!!

and

γ2(k+1) =
2k + 1
2k + 1

γ2k =
2k + 1
2k + 2

π
(2k − 1)!!

(2k)!!
= π

(2k + 1)!!
(2k + 2)!!

.

The recursion relation in Eq. (9.55) may be written as

σ(Sn) = σ
(
Sn−1

)
γn−1 (9.56)

which combined with σ
(
S1
)

= 2π implies

σ
(
S1
)

= 2π,

σ(S2) = 2π · γ1 = 2π · 2,

σ(S3) = 2π · 2 · γ2 = 2π · 2 · 1
2
π =

22π2

2!!
,

σ(S4) =
22π2

2!!
· γ3 =

22π2

2!!
· 22

3
=

23π2

3!!

σ(S5) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π =

23π3

4!!
,

σ(S6) = 2π · 2 · 1
2
π · 2

3
2 · 3

4
1
2
π · 4

5
2
3

2 =
24π3

5!!
and more generally that

σ(S2n) =
2 (2π)n

(2n− 1)!!
and σ(S2n+1) =

(2π)n+1

(2n)!!
(9.57)

which is verified inductively using Eq. (9.56). Indeed,

σ(S2n+1) = σ(S2n)γ2n =
2 (2π)n

(2n− 1)!!
π

(2n− 1)!!
(2n)!!

=
(2π)n+1

(2n)!!

and

σ(S(n+1)) = σ(S2n+2) = σ(S2n+1)γ2n+1 =
(2π)n+1

(2n)!!
2

(2n)!!
(2n+ 1)!!

=
2 (2π)n+1

(2n+ 1)!!
.

Using
(2n)!! = 2n (2(n− 1)) . . . (2 · 1) = 2nn!

we may write σ(S2n+1) = 2πn+1

n! which shows that Eqs. (9.41) and (9.57 are in
agreement. We may also write the formula in Eq. (9.57) as

σ(Sn) =


2(2π)n/2

(n−1)!! for n even
(2π)

n+1
2

(n−1)!! for n odd.
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9.8 Gaussian Random Vectors

Definition 9.34 (Gaussian Random Vectors). Let (Ω,B, P ) be a probabil-
ity space and X : Ω → Rd be a random vector. We say that X is Gaussian if
there exists an d× d – symmetric matrix Q and a vector µ ∈ Rd such that

E
[
eiλ·X

]
= exp

(
−1

2
Qλ · λ+ iµ · λ

)
for all λ ∈ Rd. (9.58)

We will write X d= N (Q,µ) to denote a Gaussian random vector such that Eq.
(9.58) holds.

Notice that if there exists a random variable satisfying Eq. (9.58) then its law
is uniquely determined by Q and µ because of Corollary 8.11. In the exercises
below your will develop some basic properties of Gaussian random vectors – see
Theorem 9.38 for a summary of what you will prove.

Exercise 9.4. Show that Q must be non-negative in Eq. (9.58).

Definition 9.35. Given a Gaussian random vector, X, we call the pair, (Q,µ)
appearing in Eq. (9.58) the characteristics of X. We will also abbreviate the
statement that X is a Gaussian random vector with characteristics (Q,µ) by
writing X d= N (Q,µ) .

Lemma 9.36. Suppose that X d= N (Q,µ) and A : Rd → Rm is a m× d – real
matrix and α ∈ Rm, then AX + α

d= N (AQAtr, Aµ+ α) . In short we might
abbreviate this by saying, AN (Q,µ) + α

d= N (AQAtr, Aµ+ α) .

Proof. Let ξ ∈ Rm, then

E
[
eiξ·(AX+α)

]
= eiξ·αE

[
eiA

trξ·X
]

= eiξ·α exp
(
−1

2
QAtrξ ·Atrξ + iµ ·Atrξ

)
= eiξ·α exp

(
−1

2
AQAtrξ · ξ + iAµ · ξ

)
= exp

(
−1

2
AQAtrξ · ξ + i (Aµ+ α) · ξ

)
from which it follows that AX + α

d= N (AQAtr, Aµ+ α) .

Exercise 9.5. Let P be the probability measure on Ω := Rd defined by

dP (x) :=
(

1
2π

)d/2
e−

1
2x·xdx =

d∏
i=1

(
1√
2π
e−x

2
i /2dxi

)
.

Show that N : Ω → Rd defined by N (x) = x is Gaussian and satisfies Eq.
(9.58) with Q = I and µ = 0. Also show

µi = ENi and δij = Cov (Ni, Nj) for all 1 ≤ i, j ≤ d. (9.59)

Hint: use Exercise 7.15 and (of course) Fubini’s theorem.

Exercise 9.6. Let A be any real m×d matrix and µ ∈ Rm and set X := AN+µ
where Ω = Rd, P, and N are as in Exercise 9.5. Show that X is Gaussian by
showing Eq. (9.58) holds with Q = AAtr (Atr is the transpose of the matrix A)
and µ = µ. Also show that

µi = EXi and Qij = Cov (Xi, Xj) for all 1 ≤ i, j ≤ m. (9.60)

Remark 9.37 (Spectral Theorem). Recall that if Q is a real symmetric d × d
matrix, then the spectral theorem asserts there exists an orthonormal basis,
{u}dj=1 , such that Quj = λjuj for some λj ∈ R. Moreover, λj ≥ 0 for all j is
equivalent to Q being non-negative. When Q ≥ 0 we may define Q1/2 by

Q1/2uj :=
√
λjuj for 1 ≤ j ≤ d.

Notice that Q1/2 ≥ 0 and Q =
(
Q1/2

)2
and Q1/2 is still symmetric. If Q is

positive definite, we may also define, Q−1/2 by

Q−1/2uj :=
1√
λj
uj for 1 ≤ j ≤ d

so that Q−1/2 =
[
Q1/2

]−1
.

Exercise 9.7. Suppose that Q is a positive definite (for simplicity) d × d real
matrix and µ ∈ Rd and let Ω = Rd, P, and N be as in Exercise 9.5. By Exercise
9.6 we know that X = Q1/2N + µ is a Gaussian random vector satisfying Eq.
(9.58). Use the multi-dimensional change of variables formula to show

LawP (X) (dy) =
1√

det (2πQ)
exp

(
−1

2
Q−1 (y − µ) · (y − µ)

)
dy.

Let us summarize some of what the preceding exercises have shown.

Theorem 9.38. To each positive definite d × d real symmetric matrix Q and
µ ∈ Rd there exist Gaussian random vectors, X, satisfying Eq. (9.58). Moreover
for such an X,

LawP (X) (dy) =
1√

det (2πQ)
exp

(
−1

2
Q−1 (y − µ) · (y − µ)

)
dy

where Q and µ may be computed from X using,

µi = EXi and Qij = Cov (Xi, Xj) for all 1 ≤ i, j ≤ m. (9.61)

Page: 131 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



132 9 Multiple and Iterated Integrals

When Q is degenerate, i.e. Nul (Q) 6= {0} , then X = Q1/2N + µ is still a
Gaussian random vectors satisfying Eq. (9.58). However now the LawP (X) is
a measure on Rd which is concentrated on the non-trivial subspace, Nul (Q)⊥ –
the details of this are left to the reader for now.

Exercise 9.8 (Gaussian random vectors are “highly” integrable.). Sup-
pose that X : Ω → Rd is a Gaussian random vector, say X

d= N (Q,µ) . Let
‖x‖ :=

√
x · x and m := max {Qx · x : ‖x‖ = 1} be the largest eigenvalue3 of Q.

Then E
[
eε‖X‖

2
]
<∞ for every ε < 1

2m .

Because of Eq. (9.61), for all λ ∈ Rd we have

µ · λ =
d∑
i=1

EXi · λi = E (λ ·X)

and

Qλ · λ =
∑
i,j

Qijλiλj =
∑
i,j

λiλj Cov (Xi, Xj)

= Cov

∑
i

λiXi,
∑
j

λjXj

 = Var (λ ·X) .

Therefore we may reformulate the definition of a Gaussian random vector as
follows.

Definition 9.39 (Gaussian Random Vectors). Let (Ω,B, P ) be a probabil-
ity space. A random vector, X : Ω → Rd, is Gaussian iff for all λ ∈ Rd,

E
[
eiλ·X

]
= exp

(
−1

2
Var (λ ·X) + iE (λ ·X)

)
. (9.62)

In short, X is a Gaussian random vector iff λ·X is a Gaussian random variable
for all λ ∈ Rd.

Remark 9.40. To conclude that a random vector, X : Ω → Rd, is Gaussian it
is not enough to check that each of its components, {Xi}di=1 , are Gaussian
random variables. The following simple counter example was provided by Nate
Eldredge. Let (X,Y ) : Ω → R2 be a Random vector such that (X,Y )∗ P = µ⊗ν
where dµ (x) = 1√

2π
e−

1
2x

2
dx and ν = 1

2 (δ−1 + δ1) . Then (X,Y X) : Ω → R2 is
a random vector such that both components, X and Y X, are Gaussian random
variables but (X,Y X) is not a Gaussian random vector.

Exercise 9.9. Prove the assertion made in Remark 9.40. Hint: explicitly com-
pute E

[
ei(λ1X+λ2XY )

]
.

3 For those who know about operator norms observe that m = ‖Q‖ in this case.

9.9 Kolmogorov’s Extension Theorems

In this section we will extend the results of Section 5.5 to spaces which are not
simply products of discrete spaces. We begin with a couple of results involving
the topology on RN .

9.9.1 Regularity and compactness results

Theorem 9.41 (Inner-Outer Regularity). Suppose µ is a probability mea-
sure on

(
RN ,BRN

)
, then for all B ∈ BRN we have

µ (B) = inf {µ (V ) : B ⊂ V and V is open} (9.63)

and
µ (B) = sup {µ (K) : K ⊂ B with K compact} . (9.64)

Proof. In this proof, C, and Ci will always denote a closed subset of RN
and V, Vi will always be open subsets of RN . Let F be the collection of sets,
A ∈ B, such that for all ε > 0 there exists an open set V and a closed set, C,
such that C ⊂ A ⊂ V and µ (V \ C) < ε. The key point of the proof is to show
F = B for this certainly implies Equation (9.63) and also that

µ (B) = sup {µ (C) : C ⊂ B with C closed} . (9.65)

Moreover, by MCT, we know that if C is closed and Kn :=
C ∩

{
x ∈ RN : |x| ≤ n

}
, then µ (Kn) ↑ µ (C) . This observation along

with Eq. (9.65) shows Eq. (9.64) is valid as well.
To prove F = B, it suffices to show F is a σ – algebra which contains all

closed subsets of RN . To the prove the latter assertion, given a closed subset,
C ⊂ RN , and ε > 0, let

Cε := ∪x∈CB (x, ε)

where B (x, ε) :=
{
y ∈ RN : |y − x| < ε

}
. Then Cε is an open set and Cε ↓ C

as ε ↓ 0. (You prove.) Hence by the DCT, we know that µ (Cε \ C) ↓ 0 form
which it follows that C ∈ F .

We will now show that F is an algebra. Clearly F contains the empty set
and if A ∈ F with C ⊂ A ⊂ V and µ (V \ C) < ε, then V c ⊂ Ac ⊂ Cc with
µ (Cc \ V c) = µ (V \ C) < ε. This shows Ac ∈ F . Similarly if Ai ∈ F for i = 1, 2
and Ci ⊂ Ai ⊂ Vi with µ (Vi \ Ci) < ε, then

C := C1 ∪ C2 ⊂ A1 ∪A2 ⊂ V1 ∪ V2 =: V

and
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9.9 Kolmogorov’s Extension Theorems 133

µ (V \ C) ≤ µ (V1 \ C) + µ (V2 \ C)
≤ µ (V1 \ C1) + µ (V2 \ C2) < 2ε.

This implies that A1 ∪A2 ∈ F and we have shown F is an algebra.
We now show that F is a σ – algebra. To do this it suffices to show A :=∑∞
n=1An ∈ F if An ∈ F with An ∩Am = ∅ for m 6= n. Let Cn ⊂ An ⊂ Vn with

µ (Vn \ Cn) < ε2−n for all n and let CN := ∪n≤NCn and V := ∪∞n=1Vn. Then
CN ⊂ A ⊂ V and

µ
(
V \ CN

)
≤
∞∑
n=0

µ
(
Vn \ CN

)
≤

N∑
n=0

µ (Vn \ Cn) +
∞∑

n=N+1

µ (Vn)

≤
N∑
n=0

ε2−n +
∞∑

n=N+1

[
µ (An) + ε2−n

]
= ε+

∞∑
n=N+1

µ (An) .

The last term is less that 2ε for N sufficiently large because
∑∞
n=1 µ (An) =

µ (A) <∞.

Notation 9.42 Let I := [0, 1] , Q = IN, πj : Q → I be the projection
map, πj (x) = xj (where x = (x1, x2, . . . , xj , . . . ) for all j ∈ N, and BQ :=
σ (πj : j ∈ N) be the product σ – algebra on Q. Let us further say that a sequence
{x (m)}∞m=1 ⊂ Q, where x (m) = (x1 (m) , x2 (m) , . . . ) , converges to x ∈ Q iff
limm→∞ xj (m) = xj for all j ∈ N. (This is just pointwise convergence.)

Lemma 9.43 (Baby Tychonoff’s Theorem). The infinite dimensional
cube, Q, is compact, i.e. every sequence {x (m)}∞m=1 ⊂ Q has a convergent
subsequence,{x (mk)}∞k=1 .

Proof. Since I is compact, it follows that for each j ∈ N, {xj (m)}∞m=1 has
a convergent subsequence. It now follow by Cantor’s diagonalization method,
that there is a subsequence, {mk}∞k=1 , of N such that limk→∞ xj (mk) ∈ I exists
for all j ∈ N.

Corollary 9.44 (Finite Intersection Property). Suppose that Km ⊂ Q are
sets which are, (i) closed under taking sequential limits4, and (ii) have the finite
intersection property, (i.e. ∩nm=1Km 6= ∅ for all m ∈ N), then ∩∞m=1Km 6= ∅.

Proof. By assumption, for each n ∈ N, there exists x (n) ∈ ∩nm=1Km. Hence
by Lemma 9.43 there exists a subsequence, x (nk) , such that x := limk→∞ x (nk)
4 For example, if Km = K′m × Q with K′m being a closed subset of Im, then Km is

closed under sequential limits.

exists in Q. Since x (nk) ∈ ∩nm=1Km for all k large, and each Km is closed
under sequential limits, it follows that x ∈ Km for all m. Thus we have shown,
x ∈ ∩∞m=1Km and hence ∩∞m=1Km 6= ∅.

9.9.2 Kolmogorov’s Extension Theorem and Infinite Product
Measures

Theorem 9.45 (Kolmogorov’s Extension Theorem). Let I := [0, 1] .
For each n ∈ N, let µn be a probability measure on (In,BIn) such that
µn+1 (A× I) = µn (A) . Then there exists a unique measure, P on (Q,BQ)
such that

P (A×Q) = µn (A) (9.66)

for all A ∈ BIn and n ∈ N.

Proof. Let A := ∪Bn where Bn := {A×Q : A ∈ BIn} = σ (π1, . . . , πn) ,
where πi (x) = xi if x = (x1, x2, . . . ) ∈ Q. Then define P on A by Eq. (9.66)
which is easily seen (Exercise 9.10) to be a well defined finitely additive measure
on A. So to finish the proof it suffices to show if Bn ∈ A is a decreasing sequence
such that

inf
n
P (Bn) = lim

n→∞
P (Bn) = ε > 0,

then B := ∩Bn 6= ∅.
To simplify notation, we may reduce to the case where Bn ∈ Bn for all n.

To see this is permissible, Let us choose 1 ≤ n1 < n2 < n3 < . . . . such that
Bk ∈ Bnk for all k. (This is possible since Bn is increasing in n.) We now define

a new decreasing sequence of sets,
{
B̃k

}∞
k=1

as follows,

(
B̃1, B̃2, . . .

)
=

n1−1 times︷ ︸︸ ︷
Q, . . . , Q,

n2−n1 times︷ ︸︸ ︷
B1, . . . , B1 ,

n3−n2 times︷ ︸︸ ︷
B2, . . . , B2 ,

n4−n3 times︷ ︸︸ ︷
B3, . . . , B3, . . .

 .

We then have B̃n ∈ Bn for all n, limn→∞ P
(
B̃n

)
= ε > 0, and B = ∩∞n=1B̃n.

Hence we may replace Bn by B̃n if necessary so as to have Bn ∈ Bn for all n.
Since Bn ∈ Bn, there exists B′n ∈ BIn such that Bn = B′n × Q for all n.

Using the regularity Theorem 9.41, there are compact sets, K ′n ⊂ B′n ⊂ In,
such that µn (B′n \K ′n) ≤ ε2−n−1 for all n ∈ N. Let Kn := K ′n × Q, then
P (Bn \Kn) ≤ ε2−n−1 for all n. Moreover,

P (Bn \ [∩nm=1Km]) = P (∪nm=1 [Bn \Km]) ≤
n∑

m=1

P (Bn \Km)

≤
n∑

m=1

P (Bm \Km) ≤
n∑

m=1

ε2−m−1 ≤ ε/2.
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So, for all n ∈ N,

P (∩nm=1Km) = P (Bn)− P (Bn \ [∩nm=1Km]) ≥ ε− ε/2 = ε/2,

and in particular, ∩nm=1Km 6= ∅. An application of Corollary 9.44 now implies,
∅ 6= ∩nKn ⊂ ∩nBn.

Exercise 9.10. Show that Eq. (9.66) defines a well defined finitely additive
measure on A := ∪Bn.

The next result is an easy corollary of Theorem 9.45.

Theorem 9.46. Suppose {(Xn,Mn)}n∈N are standard Borel spaces (see Ap-
pendix 9.10 below), X :=

∏
n∈N

Xn, πn : X → Xn be the nth – projection map,

Bn := σ (πk : k ≤ n) , B = σ(πn : n ∈ N), and Tn := Xn+1 × Xn+2 × . . . .
Further suppose that for each n ∈ N we are given a probability measure, µn on
M1 ⊗ · · · ⊗Mn such that

µn+1 (A×Xn+1) = µn (A) for all n ∈ N and A ∈M1 ⊗ · · · ⊗Mn.

Then there exists a unique probability measure, P, on (X,B) such that
P (A× Tn) = µn (A) for all A ∈M1 ⊗ · · · ⊗Mn.

Proof. Since each (Xn,Mn) is measure theoretic isomorphic to a Borel
subset of I, we may assume that Xn ∈ BI and Mn = (BI)Xn for all n. Given
A ∈ BIn , let µ̄n (A) := µn (A ∩ [X1 × · · · ×Xn]) – a probability measure on
BIn . Furthermore,

µ̄n+1 (A× I) = µn+1 ([A× I] ∩ [X1 × · · · ×Xn+1])
= µn+1 ((A ∩ [X1 × · · · ×Xn])×Xn+1)
= µn ((A ∩ [X1 × · · · ×Xn])) = µ̄n (A) .

Hence by Theorem 9.45, there is a unique probability measure, P̄ , on IN such
that

P̄
(
A× IN) = µ̄n (A) for all n ∈ N and A ∈ BIn .

We will now check that P := P̄ |⊗∞n=1Mn
is the desired measure. First off we

have

P̄ (X) = lim
n→∞

P̄
(
X1 × · · · ×Xn × IN) = lim

n→∞
µ̄n (X1 × · · · ×Xn)

= lim
n→∞

µn (X1 × · · · ×Xn) = 1.

Secondly, if A ∈M1 ⊗ · · · ⊗Mn, we have

P (A× Tn) = P̄ (A× Tn) = P̄
((
A× IN) ∩X)

= P̄
(
A× IN) = µ̄n (A) = µn (A) .

Here is an example of this theorem in action.

Theorem 9.47 (Infinite Product Measures). Suppose that {νn}∞n=1 are a
sequence of probability measures on (R,BR) and B := ⊗n∈NBR is the product σ
– algebra on RN. Then there exists a unique probability measure, ν, on

(
RN,B

)
,

such that

ν
(
A1 ×A2 × · · · ×An × RN) = ν1 (A1) . . . νn (An) ∀ Ai ∈ BR & n ∈ N.

(9.67)
Moreover, this measure satisfies,∫

RN
f (x1, . . . , xn) dν (x) =

∫
Rn
f (x1, . . . , xn) dν1 (x1) . . . dνn (xn) (9.68)

for all n ∈ N and f : Rn → R which are bounded and measurable or non-negative
and measurable.

Proof. The measure ν is created by apply Theorem 9.46 with µn := ν1 ⊗
· · · ⊗ νn on (Rn,BRn = ⊗nk=1BR) for each n ∈ N. Observe that

µn+1 (A× R) = µn (A) · νn+1 (R) = µn (A) ,

so that {µn}∞n=1 satisfies the needed consistency conditions. Thus there exists
a unique measure ν on

(
RN,B

)
such that

ν
(
A× RN) = µn (A) for all A ∈ BRn and n ∈ N.

Taking A = A1 × A2 × · · · × An with Ai ∈ BR then gives Eq. (9.67). For this
measure, it follows that Eq. (9.68) holds when f = 1A1×···×An . Thus by an
application of Theorem 8.2 with M = {1A1×···×An : Ai ∈ BR} and H being the
set of bounded measurable functions, f : Rn → R, for which Eq. (9.68) shows
that Eq. (9.68) holds for all bounded and measurable functions, f : Rn → R.
The statement involving non-negative functions follows by a simple limiting
argument involving the MCT.

9.10 Appendix: Standard Borel Spaces*

For more information along the lines of this section, see Royden [46].
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Definition 9.48. Two measurable spaces, (X,M) and (Y,N ) are said to be
isomorphic if there exists a bijective map, f : X → Y such that f (M) = N
and f−1 (N ) = M, i.e. both f and f−1 are measurable. In this case we say f
is a measure theoretic isomorphism and we will write X ∼= Y.

Definition 9.49. A measurable space, (X,M) is said to be a standard Borel
space if (X,M) ∼= (B,BB) where B is a Borel subset of

(
(0, 1) ,B(0,1)

)
.

Definition 9.50 (Polish spaces). A Polish space is a separable topological
space (X, τ) which admits a complete metric, ρ, such that τ = τρ.

The main goal of this chapter is to prove every Borel subset of a Polish space
is a standard Borel space, see Corollary 9.60 below. Along the way we will show
a number of spaces, including [0, 1] , (0, 1], [0, 1]d , Rd, and RN, are all (measure
theoretic) isomorphic to (0, 1) . Moreover we also will see that the a countable
product of standard Borel spaces is again a standard Borel space, see Corollary
9.57.

On first reading, you may wish to skip the rest of this
section.

Lemma 9.51. Suppose (X,M) and (Y,N ) are measurable spaces such that
X =

∑∞
n=1Xn, Y =

∑∞
n=1 Yn, with Xn ∈ M and Yn ∈ N . If (Xn,MXn)

is isomorphic to (Yn,NYn) for all n then X ∼= Y. Moreover, if (Xn,Mn) and
(Yn,Nn) are isomorphic measure spaces, then (X :=

∏∞
n=1Xn,⊗∞n=1Mn) are

(Y :=
∏∞
n=1 Yn,⊗∞n=1Nn) are isomorphic.

Proof. For each n ∈ N, let fn : Xn → Yn be a measure theoretic isomor-
phism. Then define f : X → Y by f = fn on Xn. Clearly, f : X → Y is a
bijection and if B ∈ N , then

f−1 (B) = ∪∞n=1f
−1 (B ∩ Yn) = ∪∞n=1f

−1
n (B ∩ Yn) ∈M.

This shows f is measurable and by similar considerations, f−1 is measurable
as well. Therefore, f : X → Y is the desired measure theoretic isomorphism.

For the second assertion, let fn : Xn → Yn be a measure theoretic isomor-
phism of all n ∈ N and then define

f (x) = (f1 (x1) , f2 (x2) , . . . ) with x = (x1, x2, . . . ) ∈ X.

Again it is clear that f is bijective and measurable, since

f−1

( ∞∏
n=1

Bn

)
=
∞∏
n=1

f−1
n (Bn) ∈ ⊗∞n=1Nn

for all Bn ∈Mn and n ∈ N. Similar reasoning shows that f−1 is measurable as
well.

Proposition 9.52. Let −∞ < a < b < ∞. The following measurable spaces
equipped with there Borel σ – algebras are all isomorphic; (0, 1) , [0, 1] , (0, 1],
[0, 1), (a, b) , [a, b] , (a, b], [a, b), R, and (0, 1)∪Λ where Λ is a finite or countable
subset of R \ (0, 1) .

Proof. It is easy to see by that any bounded open, closed, or half open
interval is isomorphic to any other such interval using an affine transformation.
Let us now show (−1, 1) ∼= [−1, 1] . To prove this it suffices, by Lemma 9.51,to
observe that

(−1, 1) = {0} ∪
∞∑
n=0

(
(−2−n,−2−n] ∪ [2−n−1, 2−n)

)
and

[−1, 1] = {0} ∪
∞∑
n=0

(
[−2−n,−2−n−1) ∪ (2−n−1, 2−n]

)
.

Similarly (0, 1) is isomorphic to (0, 1] because

(0, 1) =
∞∑
n=0

[2−n−1, 2−n) and (0, 1] =
∞∑
n=0

(2−n−1, 2−n].

The assertion involving R can be proved using the bijection, tan :
(−π/2, π/2)→ R.

If Λ = {1} , then by Lemma 9.51 and what we have already proved, (0, 1)∪
{1} = (0, 1] ∼= (0, 1) . Similarly if N ∈ N with N ≥ 2 and Λ = {2, . . . , N + 1} ,
then

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ = (0, 2−N+1] ∪

[
N−1∑
n=1

(2−n, 2−n−1]

]
∪ Λ

while

(0, 1) =
(
0, 2−N+1

)
∪

[
N−1∑
n=1

(
2−n, 2−n−1

)]
∪
{

2−n : n = 1, 2, . . . , N
}

and so again it follows from what we have proved and Lemma 9.51 that (0, 1) ∼=
(0, 1) ∪ Λ. Finally if Λ = {2, 3, 4, . . . } is a countable set, we can show (0, 1) ∼=
(0, 1) ∪ Λ with the aid of the identities,

(0, 1) =

[ ∞∑
n=1

(
2−n, 2−n−1

)]
∪
{

2−n : n ∈ N
}

and

(0, 1) ∪ Λ ∼= (0, 1] ∪ Λ =

[ ∞∑
n=1

(2−n, 2−n−1]

]
∪ Λ.
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Notation 9.53 Suppose (X,M) is a measurable space and A is a set. Let
πa : XA → X denote projection operator onto the ath – component of XA (i.e.
πa (ω) = ω (a) for all a ∈ A) and let M⊗A := σ (πa : a ∈ A) be the product σ –
algebra on XA.

Lemma 9.54. If ϕ : A→ B is a bijection of sets and (X,M) is a measurable
space, then

(
XA,M⊗A

) ∼= (XB ,M⊗B
)
.

Proof. The map f : XB → XA defined by f (ω) = ω ◦ ϕ for all ω ∈ XB is
a bijection with f−1 (α) = α ◦ ϕ−1. If a ∈ A and ω ∈ XB , we have

πX
A

a ◦ f (ω) = f (ω) (a) = ω (ϕ (a)) = πX
B

ϕ(a) (ω) ,

where πX
A

a and πX
B

b are the projection operators on XA and XB respectively.
Thus πX

A

a ◦ f = πX
B

ϕ(a) for all a ∈ A which shows f is measurable. Similarly,

πX
B

b ◦ f−1 = πX
A

ϕ−1(b) showing f−1 is measurable as well.

Proposition 9.55. Let Ω := {0, 1}N , πi : Ω → {0, 1} be projection onto the
ith component, and B := σ (π1, π2, . . . ) be the product σ – algebra on Ω. Then
(Ω,B) ∼=

(
(0, 1) ,B(0,1)

)
.

Proof. We will begin by using a specific binary digit expansion of a point
x ∈ [0, 1) to construct a map from [0, 1)→ Ω. To this end, let r1 (x) = x,

γ1 (x) := 1x≥2−1 and r2 (x) := x− 2−1γ1 (x) ∈ (0, 2−1),

then let γ2 := 1r2≥2−2 and r3 = r2− 2−2γ2 ∈
(
0, 2−2

)
. Working inductively, we

construct {γk (x) , rk (x)}∞k=1 such that γk (x) ∈ {0, 1} , and

rk+1 (x) = rk (x)− 2−kγk (x) = x−
k∑
j=1

2−jγj (x) ∈
(
0, 2−k

)
(9.69)

for all k. Let us now define g : [0, 1)→ Ω by g (x) := (γ1 (x) , γ2 (x) , . . . ) . Since
each component function, πj ◦ g = γj : [0, 1)→ {0, 1} , is measurable it follows
that g is measurable.

By construction,

x =
k∑
j=1

2−jγj (x) + rk+1 (x)

and rk+1 (x)→ 0 as k →∞, therefore

x =
∞∑
j=1

2−jγj (x) and rk+1 (x) =
∞∑

j=k+1

2−jγj (x) . (9.70)

Hence if we define f : Ω → [0, 1] by f =
∑∞
j=1 2−jπj , then f (g (x)) = x for all

x ∈ [0, 1). This shows g is injective, f is surjective, and f in injective on the
range of g.

We now claim that Ω0 := g ([0, 1)) , the range of g, consists of those ω ∈ Ω
such that ωi = 0 for infinitely many i. Indeed, if there exists an k ∈ N such
that γj (x) = 1 for all j ≥ k, then (by Eq. (9.70)) rk+1 (x) = 2−k which
would contradict Eq. (9.69). Hence g ([0, 1)) ⊂ Ω0. Conversely if ω ∈ Ω0 and
x = f (ω) ∈ [0, 1), it is not hard to show inductively that γj (x) = ωj for all
j, i.e. g (x) = ω. For example, if ω1 = 1 then x ≥ 2−1 and hence γ1 (x) = 1.
Alternatively, if ω1 = 0, then

x =
∞∑
j=2

2−jωj <
∞∑
j=2

2−j = 2−1

so that γ1 (x) = 0. Hence it follows that r2 (x) =
∑∞
j=2 2−jωj and by similar

reasoning we learn r2 (x) ≥ 2−2 iff ω2 = 1, i.e. γ2 (x) = 1 iff ω2 = 1. The full
induction argument is now left to the reader.

Since single point sets are in B and

Λ := Ω \Ω0 = ∪∞n=1 {ω ∈ Ω : ωj = 1 for j ≥ n}

is a countable set, it follows that Λ ∈ B and therefore Ω0 = Ω \ Λ ∈ B.
Hence we may now conclude that g :

(
[0, 1),B[0,1)

)
→ (Ω0,BΩ0) is a measurable

bijection with measurable inverse given by f |Ω0 , i.e.
(
[0, 1),B[0,1)

) ∼= (Ω0,BΩ0) .
An application of Lemma 9.51 and Proposition 9.52 now implies

Ω = Ω0 ∪ Λ ∼= [0, 1) ∪ N ∼= [0, 1) ∼= (0, 1) .

Corollary 9.56. The following spaces are all isomorphic to
(
(0, 1) ,B(0,1)

)
;

(0, 1)d and Rd for any d ∈ N and [0, 1]N and RN where both of these spaces
are equipped with their natural product σ – algebras, .

Proof. In light of Lemma 9.51 and Proposition 9.52 we know that (0, 1)d ∼=
Rd and (0, 1)N ∼= [0, 1]N ∼= RN. So, using Proposition 9.55, it suffices to show
(0, 1)d ∼= Ω ∼= (0, 1)N and to do this it suffices to show Ωd ∼= Ω and ΩN ∼= Ω.

To reduce the problem further, let us observe that Ωd ∼= {0, 1}N×{1,2,...,d}

and ΩN ∼= {0, 1}N
2

. For example, let g : ΩN → {0, 1}N
2

be defined by

g (ω) (i, j) = ω (i) (j) for all ω ∈ ΩN =
[
{0, 1}N

]N
. Then g is a bijection and

since π{0,1}
N2

(i,j) ◦ g (ω) = πΩj

(
πΩ

N

i (ω)
)
, it follows that g is measurable. The in-

verse, g−1 : {0, 1}N
2

→ ΩN, to g is given by g−1 (α) (i) (j) = α (i, j) . To see
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this map is measurable, we have πΩ
N

i ◦ g−1 : {0, 1}N
2

→ Ω = {0, 1}N is given
πΩ

N

i ◦ g−1 (α) = g−1 (α) (i) (·) = α (i, ·) and hence

πΩj ◦ πΩ
N

i ◦ g (α) = α (i, j) = π
{0,1}N2

i,j (α)

from which it follows that πΩj ◦πΩ
N

i ◦g−1 = π{0,1}
N2

is measurable for all i, j ∈ N
and hence πΩ

N

i ◦ g−1 is measurable for all i ∈ N and hence g−1 is measurable.
This shows ΩN ∼= {0, 1}N

2

. The proof that Ωd ∼= {0, 1}N×{1,2,...,d} is analogous.
We may now complete the proof with a couple of applications of Lemma

9.54. Indeed N, N × {1, 2, . . . , d} , and N2 all have the same cardinality and
therefore,

{0, 1}N×{1,2,...,d} ∼= {0, 1}N
2 ∼= {0, 1}N = Ω.

Corollary 9.57. Suppose that (Xn,Mn) for n ∈ N are standard Borel spaces,
then X :=

∏∞
n=1Xn equipped with the product σ – algebra, M := ⊗∞n=1Mn is

again a standard Borel space.

Proof. Let An ∈ B[0,1] be Borel sets on [0, 1] such that there exists a mea-
surable isomorpohism, fn : Xn → An. Then f : X → A :=

∏∞
n=1An defined by

f (x1, x2, . . . ) = (f1 (x1) , f2 (x2) , . . . ) is easily seen to me a measure theoretic
isomorphism when A is equipped with the product σ – algebra, ⊗∞n=1BAn . So ac-
cording to Corollary 9.56, to finish the proof it suffice to show ⊗∞n=1BAn =MA

where M := ⊗∞n=1B[0,1] is the product σ – algebra on [0, 1]N .
The σ – algebra, ⊗∞n=1BAn , is generated by sets of the form, B :=

∏∞
n=1Bn

where Bn ∈ BAn ⊂ B[0,1]. On the other hand, the σ – algebra,MA is generated
by sets of the form, A ∩ B̃ where B̃ :=

∏∞
n=1 B̃n with B̃n ∈ B[0,1]. Since

A ∩ B̃ =
∞∏
n=1

(
B̃n ∩An

)
=
∞∏
n=1

Bn

where Bn = B̃n ∩An is the generic element in BAn , we see that ⊗∞n=1BAn and
MA can both be generated by the same collections of sets, we may conclude
that ⊗∞n=1BAn =MA.

Our next goal is to show that any Polish space with its Borel σ – algebra is
a standard Borel space.

Notation 9.58 Let Q := [0, 1]N denote the (infinite dimensional) unit cube
in RN. For a, b ∈ Q let

d(a, b) :=
∞∑
n=1

1
2n
|an − bn| =

∞∑
n=1

1
2n
|πn (a)− πn (b)| . (9.71)

Exercise 9.11. Show d is a metric and that the Borel σ – algebra on (Q, d) is
the same as the product σ – algebra.

Solution to Exercise (9.11). It is easily seen that d is a metric on Q which,
by Eq. (9.71) is measurable relative to the product σ – algebra, M.. There-
fore, M contains all open balls and hence contains the Borel σ – algebra, B.
Conversely, since

|πn (a)− πn (b)| ≤ 2nd (a, b) ,

each of the projection operators, πn : Q → [0, 1] is continuous. Therefore each
πn is B – measurable and hence M = σ ({πn}∞n=1) ⊂ B.

Theorem 9.59. To every separable metric space (X, ρ), there exists a contin-
uous injective map G : X → Q such that G : X → G(X) ⊂ Q is a homeomor-
phism. Moreover if the metric, ρ, is also complete, then G (X) is a Gδ –set, i.e.
the G (X) is the countable intersection of open subsets of (Q, d) . In short, any
separable metrizable space X is homeomorphic to a subset of (Q, d) and if X is
a Polish space then X is homeomorphic to a Gδ – subset of (Q, d).

Proof. (This proof follows that in Rogers and Williams [43, Theorem 82.5
on p. 106.].) By replacing ρ by ρ

1+ρ if necessary, we may assume that 0 ≤ ρ < 1.
Let D = {an}∞n=1 be a countable dense subset of X and define

G (x) = (ρ (x, a1) , ρ (x, a2) , ρ (x, a3) , . . . ) ∈ Q

and

γ (x, y) = d (G (x) , G (y)) =
∞∑
n=1

1
2n
|ρ (x, an)− ρ (y, an)|

for x, y ∈ X. To prove the first assertion, we must show G is injective and γ is
a metric on X which is compatible with the topology determined by ρ.

If G (x) = G (y) , then ρ (x, a) = ρ (y, a) for all a ∈ D. Since D is a dense
subset of X, we may choose αk ∈ D such that

0 = lim
k→∞

ρ (x, αk) = lim
k→∞

ρ (y, αk) = ρ (y, x)

and therefore x = y. A simple argument using the dominated convergence
theorem shows y → γ (x, y) is ρ – continuous, i.e. γ (x, y) is small if ρ (x, y) is
small. Conversely,

ρ (x, y) ≤ ρ (x, an) + ρ (y, an) = 2ρ (x, an) + ρ (y, an)− ρ (x, an)
≤ 2ρ (x, an) + |ρ (x, an)− ρ (y, an)| ≤ 2ρ (x, an) + 2nγ (x, y) .

Hence if ε > 0 is given, we may choose n so that 2ρ (x, an) < ε/2 and so if
γ (x, y) < 2−(n+1)ε, it will follow that ρ (x, y) < ε. This shows τγ = τρ. Since
G : (X, γ)→ (Q, d) is isometric, G is a homeomorphism.
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Now suppose that (X, ρ) is a complete metric space. Let S := G (X) and σ
be the metric on S defined by σ (G (x) , G (y)) = ρ (x, y) for all x, y ∈ X. Then
(S, σ) is a complete metric (being the isometric image of a complete metric
space) and by what we have just prove, τσ = τdS . Consequently, if u ∈ S and ε >
0 is given, we may find δ′ (ε) such that Bσ (u, δ′ (ε)) ⊂ Bd (u, ε) . Taking δ (ε) =
min (δ′ (ε) , ε) , we have diamd (Bd (u, δ (ε))) < ε and diamσ (Bd (u, δ (ε))) < ε
where

diamσ (A) := {supσ (u, v) : u, v ∈ A} and
diamd (A) := {sup d (u, v) : u, v ∈ A} .

Let S̄ denote the closure of S inside of (Q, d) and for each n ∈ N let

Nn := {N ∈ τd : diamd (N) ∨ diamσ (N ∩ S) < 1/n}

and let Un := ∪Nn ∈ τd. From the previous paragraph, it follows that S ⊂ Un
and therefore S ⊂ S̄ ∩ (∩∞n=1Un) .

Conversely if u ∈ S̄ ∩ (∩∞n=1Un) and n ∈ N, there exists Nn ∈ Nn such
that u ∈ Nn. Moreover, since N1 ∩ · · · ∩Nn is an open neighborhood of u ∈ S̄,
there exists un ∈ N1 ∩ · · · ∩ Nn ∩ S for each n ∈ N. From the definition of
Nn, we have limn→∞ d (u, un) = 0 and σ (un, um) ≤ max

(
n−1,m−1

)
→ 0 as

m,n → ∞. Since (S, σ) is complete, it follows that {un}∞n=1 is convergent in
(S, σ) to some element u0 ∈ S. Since (S, dS) has the same topology as (S, σ)
it follows that d (un, u0) → 0 as well and thus that u = u0 ∈ S. We have
now shown, S = S̄ ∩ (∩∞n=1Un) . This completes the proof because we may
write S̄ =

(⋂∞
n=1 S1/n

)
where S1/n :=

{
u ∈ Q : d

(
u, S̄

)
< 1/n

}
and therefore,

S = (
⋂∞
n=1 Un) ∩

(⋂∞
n=1 S1/n

)
is a Gδ set.

Corollary 9.60. Every Polish space, X, with its Borel σ – algebra is a standard
Borel space. Consequently and Borel subset of X is also a standard Borel space.

Proof. Theorem 9.59 shows that X is homeomorphic to a measurable (in
fact a Gδ) subset Q0 of (Q, d) and hence X ∼= Q0. Since Q is a standard Borel
space so is Q0 and hence so is X.

9.11 More Exercises

Exercise 9.12. Let (Xj ,Mj , µj) for j = 1, 2, 3 be σ – finite measure spaces.
Let F : (X1 ×X2)×X3 → X1 ×X2 ×X3 be defined by

F ((x1, x2), x3) = (x1, x2, x3).

1. Show F is ((M1 ⊗M2)⊗M3,M1 ⊗M2 ⊗M3) – measurable and F−1 is
(M1 ⊗M2 ⊗M3, (M1 ⊗M2)⊗M3) – measurable. That is

F : ((X1 ×X2)×X3, (M1 ⊗M2)⊗M3)→ (X1×X2×X3,M1⊗M2⊗M3)

is a “measure theoretic isomorphism.”
2. Let π := F∗ [(µ1 ⊗ µ2)⊗ µ3] , i.e. π(A) = [(µ1 ⊗ µ2)⊗ µ3] (F−1(A)) for all
A ∈ M1 ⊗M2 ⊗M3. Then π is the unique measure on M1 ⊗M2 ⊗M3

such that
π(A1 ×A2 ×A3) = µ1(A1)µ2(A2)µ3(A3)

for all Ai ∈Mi. We will write π := µ1 ⊗ µ2 ⊗ µ3.
3. Let f : X1 ×X2 ×X3 → [0,∞] be a (M1 ⊗M2 ⊗M3,BR̄) – measurable

function. Verify the identity,∫
X1×X2×X3

fdπ =
∫
X3

dµ3(x3)
∫
X2

dµ2(x2)
∫
X1

dµ1(x1)f(x1, x2, x3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible

orderings of the iterated integrals.

Exercise 9.13. Prove the second assertion of Theorem 9.20. That is show md

is the unique translation invariant measure on BRd such that md((0, 1]d) = 1.
Hint: Look at the proof of Theorem 5.34.

Exercise 9.14. (Part of Folland Problem 2.46 on p. 69.) Let X = [0, 1],M =
B[0,1] be the Borel σ – field on X, m be Lebesgue measure on [0, 1] and ν be
counting measure, ν(A) = #(A). Finally let D = {(x, x) ∈ X2 : x ∈ X} be the
diagonal in X2. Show∫

X

[∫
X

1D(x, y)dν(y)
]
dm(x) 6=

∫
X

[∫
X

1D(x, y)dm(x)
]
dν(y)

by explicitly computing both sides of this equation.

Exercise 9.15. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 9.16. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M×BR should be M⊗BR̄ in this problem.)

Exercise 9.17. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.18. Folland Problem 2.56 on p. 77. Let f ∈ L1((0, a), dm), g(x) =∫ a
x
f(t)
t dt for x ∈ (0, a), show g ∈ L1((0, a), dm) and∫ a

0

g(x)dx =
∫ a

0

f(t)dt.

Page: 138 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



Exercise 9.19. Show
∫∞

0

∣∣ sin x
x

∣∣ dm(x) = ∞. So sin x
x /∈ L1([0,∞),m) and∫∞

0
sin x
x dm(x) is not defined as a Lebesgue integral.

Exercise 9.20. Folland Problem 2.57 on p. 77.

Exercise 9.21. Folland Problem 2.58 on p. 77.

Exercise 9.22. Folland Problem 2.60 on p. 77. Properties of the Γ – function.

Exercise 9.23. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.24. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on Sn−1.

Exercise 9.25. Folland Problem 2.64 on p. 80. On the integrability of
|x|a |log |x||b for x near 0 and x near ∞ in Rn.

Exercise 9.26. Show, using Problem 9.24 that∫
Sd−1

ωiωjdσ (ω) =
1
d
δijσ

(
Sd−1

)
.

Hint: show
∫
Sd−1 ω

2
i dσ (ω) is independent of i and therefore

∫
Sd−1

ω2
i dσ (ω) =

1
d

d∑
j=1

∫
Sd−1

ω2
jdσ (ω) .





10

Independence

As usual, (Ω,B, P ) will be some fixed probability space. Recall that for
A,B ∈ B with P (B) > 0 we let

P (A|B) :=
P (A ∩B)
P (B)

which is to be read as; the probability of A given B.

Definition 10.1. We say that A is independent of B is P (A|B) = P (A) or
equivalently that

P (A ∩B) = P (A)P (B) .

We further say a finite sequence of collection of sets, {Ci}ni=1 , are independent
if

P (∩j∈JAj) =
∏
j∈J

P (Aj)

for all Ai ∈ Ci and J ⊂ {1, 2, . . . , n} .

10.1 Basic Properties of Independence

If {Ci}ni=1 , are independent classes then so are {Ci ∪ {Ω}}ni=1 . Moreover, if we
assume that Ω ∈ Ci for each i, then {Ci}ni=1 , are independent iff

P
(
∩nj=1Aj

)
=

n∏
j=1

P (Aj) for all (A1, . . . , An) ∈ C1 × · · · × Cn.

Theorem 10.2. Suppose that {Ci}ni=1 is a finite sequence of independent π –
classes. Then {σ (Ci)}ni=1 are also independent.

Proof. As mentioned above, we may always assume without loss of gener-
ality that Ω ∈ Ci. Fix, Aj ∈ Cj for j = 2, 3, . . . , n. We will begin by showing
that

Q (A) := P (A ∩A2 ∩ · · · ∩An) = P (A)P (A2) . . . P (An) for all A ∈ σ (C1) .
(10.1)

Since Q (·) and P (A2) . . . P (An)P (·) are both finite measures agreeing on Ω
and A in the π – system C1, Eq. (10.1) is a direct consequence of Proposition
5.15. Since (A2, . . . , An) ∈ C2 × · · · × Cn were arbitrary we may now conclude
that σ (C1) , C2, . . . , Cn are independent.

By applying the result we have just proved to the sequence, C2, . . . , Cn, σ (C1)
shows that σ (C2) , C3, . . . , Cn, σ (C1) are independent. Similarly we show induc-
tively that

σ (Cj) , Cj+1, . . . , Cn, σ (C1) , . . . , σ (Cj−1)

are independent for each j = 1, 2, . . . , n. The desired result occurs at j = n.

Definition 10.3. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 be a collec-
tion of measurable spaces and Yi : Ω → Si be a measurable map for 1 ≤ i ≤ n.
The maps {Yi}ni=1 are P - independent iff {Ci}ni=1 are P – independent, where
Ci := Y −1

i (Fi) = σ (Yi) ⊂ B for 1 ≤ i ≤ n.

Theorem 10.4 (Independence and Product Measures). Let (Ω,B, P ) be
a probability space, {(Si,Si)}ni=1 be a collection of measurable spaces and Yi :
Ω → Si be a measurable map for 1 ≤ i ≤ n. Further let µi := P ◦ Y −1

i =
LawP (Yi) . Then {Yi}ni=1 are independent iff

LawP (Y1, . . . , Yn) = µ1 ⊗ · · · ⊗ µn,

where (Y1, . . . , Yn) : Ω → S1 × · · · × Sn and

LawP (Y1, . . . , Yn) = P ◦ (Y1, . . . , Yn)−1 : S1 ⊗ · · · ⊗ Sn → [0, 1]

is the joint law of Y1, . . . , Yn.

Proof. Recall that the general element of Ci is of the form Ai = Y −1
i (Bi)

with Bi ∈ Si. Therefore for Ai = Y −1
i (Bi) ∈ Ci we have

P (A1 ∩ · · · ∩An) = P ((Y1, . . . , Yn) ∈ B1 × · · · ×Bn)
= ((Y1, . . . , Yn)∗ P ) (B1 × · · · ×Bn) .

If (Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn it follows that

P (A1 ∩ · · · ∩An) = µ1 ⊗ · · · ⊗ µn (B1 × · · · ×Bn)
= µ1 (B1) · · ·µ (Bn) = P (Y1 ∈ B1) · · ·P (Yn ∈ Bn)
= P (A1) . . . P (An)
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and therefore {Ci} are P – independent and hence {Yi} are P – independent.
Conversely if {Yi} are P – independent, i.e. {Ci} are P – independent, then

P ((Y1, . . . , Yn) ∈ B1 × · · · ×Bn) = P (A1 ∩ · · · ∩An)
= P (A1) . . . P (An)
= P (Y1 ∈ B1) · · ·P (Yn ∈ Bn)
= µ1 (B1) · · ·µ (Bn)
= µ1 ⊗ · · · ⊗ µn (B1 × · · · ×Bn) .

Since
π := {B1 × · · · ×Bn : Bi ∈ Si for 1 ≤ i ≤ n}

is a π – system which generates S1 ⊗ · · · ⊗ Sn and

(Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn on π,

it follows that (Y1, . . . , Yn)∗ P = µ1 ⊗ · · · ⊗ µn on all of S1 ⊗ · · · ⊗ Sn.

Remark 10.5. When have a collection of not necessarily independent random
functions, Yi : Ω → Si, like in Theorem 10.4 it is not in general possible
to recover the joint distribution, π := LawP (Y1, . . . , Yn) , from the individual
distributions, µi = LawP (Yi) for all 1 ≤ i ≤ n. For example suppose that
Si = R for i = 1, 2. µ is a probability measure on (R,BR) , and (Y1, Y2) have
joint distribution, π, given by,

π (C) =
∫

R
1C (x, x) dµ (x) for all C ∈ BR.

If we let µi = Law (Yi) , then for all A ∈ BR we have

µ1 (A) = P (Y1 ∈ A) = P ((Y1, Y2) ∈ A× R)

= π (A× R) =
∫

R
1A×R (x, x) dµ (x) = µ (A) .

Similarly we show that µ2 = µ. On the other hand if µ is not concentrated on
one point, µ ⊗ µ is another probability measure on

(
R2,BR2

)
with the same

marginals as π, i.e. π (A× R) = µ (A) = π (R×A) for all A ∈ BR.

Lemma 10.6. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 and
{(Ti, Ti)}ni=1 be two collection of measurable spaces, Fi : Si → Ti be a mea-
surable map for each i and Yi : Ω → Si be a collection of P – independent
measurable maps. Then {Fi ◦ Yi}ni=1 are also P – independent.

Proof. Notice that

σ (Fi ◦ Yi) = (Fi ◦ Yi)−1 (Ti) = Y −1
i

(
Fi
−1 (Ti)

)
⊂ Y −1

i (Si) = Ci.

The fact that {σ (Fi ◦ Yi)}ni=1 is independent now follows easily from the as-
sumption that {Ci} are P – independent.

Example 10.7. If Ω :=
∏n
i=1 Si, B := S1 ⊗ · · · ⊗ Sn, Yi (s1, . . . , sn) = si for all

(s1, . . . , sn) ∈ Ω, and Ci := Y −1
i (Si) for all i. Then the probability measures, P,

on (Ω,B) for which {Ci}ni=1 are independent are precisely the product measures,
P = µ1 ⊗ · · · ⊗ µn where µi is a probability measure on (Si,Si) for 1 ≤ i ≤ n.
Notice that in this setting,

Ci := Y −1
i (Si) = {S1 × · · · × Si−1 ×B × Si+1 × · · · × Sn : B ∈ Si} ⊂ B.

Proposition 10.8. Suppose that (Ω,B, P ) is a probability space and {Zj}nj=1

are independent integrable random variables. Then
∏n
j=1 Zj is also integrable

and

E

 n∏
j=1

Zj

 =
n∏
j=1

EZj .

Proof. Let µj := P ◦Z−1
j : BR → [0, 1] be the law of Zj for each j. Then we

know (Z1, . . . , Zn)∗ P = µ1⊗· · ·⊗µn. Therefore by Example 7.52 and Tonelli’s
theorem,

E

 n∏
j=1

|Zj |

 =
∫

Rn

 n∏
j=1

|zj |

 d (⊗nj=1µj
)

(z)

=
n∏
j=1

∫
Rn
|zj | dµj (zj) =

n∏
j=1

E |Zj | <∞

which shows that
∏n
j=1 Zj is integrable. Thus again by Example 7.52 and Fu-

bini’s theorem,

E

 n∏
j=1

Zj

 =
∫

Rn

 n∏
j=1

zj

 d (⊗nj=1µj
)

(z)

=
n∏
j=1

∫
R
zjdµj (zj) =

n∏
j=1

EZj .

Theorem 10.9. Let (Ω, ,B, P ) be a probability space, {(Si,Si)}ni=1 be a collec-
tion of measurable spaces and Yi : Ω → Si be a measurable map for 1 ≤ i ≤ n.
Further let µi := P ◦Y −1

i = LawP (Yi) and π := P ◦(Y1, . . . , Yn)−1 : S1⊗· · ·⊗Sn
be the joint distribution of

(Y1, . . . , Yn) : Ω → S1 × · · · × Sn.

Then the following are equivalent,
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1. {Yi}ni=1 are independent,
2. π = µ1 ⊗ µ2 ⊗ · · · ⊗ µn
3. for all bounded measurable functions, f : (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn) →

(R,BR) ,

Ef (Y1, . . . , Yn) =
∫
S1×···×Sn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (10.2)

( where the integrals may be taken in any order),
4. E [

∏n
i=1 fi (Yi)] =

∏n
i=1 E [fi (Yi)] for all bounded (or non-negative) measur-

able functions, fi : Si → R or C.
Proof. (1 ⇐⇒ 2) has already been proved in Theorem 10.4. The fact

that (2. =⇒ 3.) now follows from Exercise 7.11 and Fubini’s theorem. Sim-
ilarly, (3. =⇒ 4.) follows from Exercise 7.11 and Fubini’s theorem after taking
f (x1, . . . , xn) =

∏n
i=1 fi (xi) . Lastly for (4. =⇒ 1.) , let Ai ∈ Si and take

fi := 1Ai in 4. to learn,

P (∩ni=1 {Yi ∈ Ai}) = E

[
n∏
i=1

1Ai (Yi)

]
=

n∏
i=1

E [1Ai (Yi)] =
n∏
i=1

P (Yi ∈ Ai)

which shows that the {Yi}ni=1 are independent.

Corollary 10.10. Suppose that (Ω,B, P ) is a probability space and
{Yj : Ω → R}nj=1 is a sequence of random variables with countable ranges, say
Λ ⊂ R. Then {Yj}nj=1 are independent iff

P
(
∩nj=1 {Yj = yj}

)
=

n∏
j=1

P (Yj = yj) (10.3)

for all choices of y1, . . . , yn ∈ Λ.
Proof. If the {Yj} are independent then clearly Eq. (10.3) holds by definition

as {Yj = yj} ∈ Y −1
j (BR) . Conversely if Eq. (10.3) holds and fi : R→[0,∞) are

measurable functions then,

E

[
n∏
i=1

fi (Yi)

]
=

∑
y1,...,yn∈Λ

n∏
i=1

fi (yi) · P
(
∩nj=1 {Yj = yj}

)
=

∑
y1,...,yn∈Λ

n∏
i=1

fi (yi) ·
n∏
j=1

P (Yj = yj)

=
n∏
i=1

∑
yi∈Λ

fi (yi) · P (Yj = yj)

=
n∏
i=1

E [fi (Yi)]

wherein we have used Tonelli’s theorem for sum in the third equality. It now
follows that {Yi} are independent using item 4. of Theorem 10.9.

Exercise 10.1. Suppose that Ω = (0, 1], B = B(0,1], and P = m is Lebesgue
measure on B. Let Yi (ω) := ωi be the ith – digit in the base two expansion of
ω. To be more precise, the Yi (ω) ∈ {0, 1} is chosen so that

ω =
∞∑
i=1

Yi (ω) 2−i for all ωi ∈ {0, 1} .

As long as ω 6= k2−n for some 0 < k ≤ n, the above equation uniquely deter-
mines the {Yi (ω)} . Owing to the fact that

∑∞
l=n+1 2−l = 2−n, if ω = k2−n,

there is some ambiguity in the definitions of the Yi (ω) for large i which you
may resolve anyway you choose. Show the random variables, {Yi}ni=1 , are i.i.d.
for each n ∈ N with P (Yi = 1) = 1/2 = P (Yi = 0) for all i.

Hint: the idea is that knowledge of (Y1 (ω) , . . . , Yn (ω)) is equivalent to
knowing for which k ∈ N0 ∩ [0, 2n) that ω ∈ (2−nk, 2−n (k + 1)] and that this
knowledge in no way helps you predict the value of Yn+1 (ω) . More formally,
you might start by showing,

P
(
{Yn+1 = 1} |(2−nk, 2−n (k + 1)]

)
=

1
2

= P
(
{Yn+1 = 0} |(2−nk, 2−n (k + 1)]

)
.

See Section 10.9 if you need some more help with this exercise.

Exercise 10.2. Let X,Y be two random variables on (Ω,B, P ) .

1. Show that X and Y are independent iff Cov (f (X) , g (Y )) = 0 (i.e. f (X)
and g (Y ) are uncorrelated) for bounded measurable functions, f, g : R→
R.

2. If X,Y ∈ L2 (P ) and X and Y are independent, then Cov (X,Y ) = 0.
3. Show by example that if X,Y ∈ L2 (P ) and Cov (X,Y ) = 0 does not

necessarily imply that X and Y are independent. Hint: try taking (X,Y ) =
(X,ZX) where X and Z are independent simple random variables such that
EZ = 0 similar to Remark 9.40.

Solution to Exercise (10.2). 1. Since

Cov (f (X) , g (Y )) = E [f (X) g (Y )]− E [f (X)] E [g (Y )]

it follows that Cov (f (X) , g (Y )) = 0 iff

E [f (X) g (Y )] = E [f (X)] E [g (Y )]

from which item 1. easily follows.
2. Let fM (x) = x1|x|≤M , then by independence,
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E [fM (X) fM (Y )] = E [fM (X)] E [fM (Y )] . (10.4)

Since

|fM (X) fM (Y )| ≤ |XY | ≤ 1
2
(
X2 + Y 2

)
∈ L1 (P ) ,

|fM (X)| ≤ |X| ≤ 1
2
(
1 +X2

)
∈ L1 (P ) , and

|fM (Y )| ≤ |Y | ≤ 1
2
(
1 + Y 2

)
∈ L1 (P ) ,

we may use the DCT three times to pass to the limit as M →∞ in Eq. (10.4)
to learn that E [XY ] = E [X] E [Y ], i.e. Cov (X,Y ) = 0.

3. Let X and Z be independent with P (Z = ±1) = 1
2 and take Y = XZ.

Then EZ = 0 and

Cov (X,Y ) = E
[
X2Z

]
− E [X] E [XZ]

= E
[
X2
]
· EZ − E [X] E [X] EZ = 0.

On the other hand it should be intuitively clear that X and Y are not inde-
pendent since knowledge of X typically will give some information about Y. To
verify this assertion let us suppose that X is a discrete random variable with
P (X = 0) = 0. Then

P (X = x, Y = y) = P (X = x, xZ = y) = P (X = x) · P (X = y/x)

while
P (X = x)P (Y = y) = P (X = x) · P (XZ = y) .

Thus for X and Y to be independent we would have to have,

P (xX = y) = P (XZ = y) for all x, y.

This is clearly not going to be true in general. For example, suppose that
P (X = 1) = 1

2 = P (X = 0) . Taking x = y = 1 in the previously displayed
equation would imply

1
2

= P (X = 1) = P (XZ = 1) = P (X = 1, Z = 1) = P (X = 1)P (Z = 1) =
1
4

which is false.

Let us now specialize to the case where Si = Rmi and Si = BRmi for some
mi ∈ N.

Theorem 10.11. Let (Ω,B, P ) be a probability space, mj ∈ N, Sj = Rmj ,
Sj = BRmj , Yj : Ω → Sj be random vectors, and µj := LawP (Yj) = P ◦ Y −1

j :
Sj → [0, 1] for 1 ≤ j ≤ n. The the following are equivalent;

1. {Yj}nj=1 are independent,
2. LawP (Y1, . . . , Yn) = µ1 ⊗ µ2 ⊗ · · · ⊗ µn
3. for all bounded measurable functions, f : (S1 × · · · × Sn,S1 ⊗ · · · ⊗ Sn) →

(R,BR) ,

Ef (Y1, . . . , Yn) =
∫
S1×···×Sn

f (x1, . . . , xn) dµ1 (x1) . . . dµn (xn) , (10.5)

( where the integrals may be taken in any order),
4. E

[∏n
j=1 fj (Yj)

]
=
∏n
j=1 E [fj (Yj)] for all bounded (or non-negative) mea-

surable functions, fj : Sj → R or C.
5. P

(
∩nj=1 {Yj ≤ yj}

)
=
∏n
j=1 P ({Yj ≤ yj}) for all yj ∈ Sj , where we say

that Yj ≤ yj iff (Yj)k ≤ (yj)k for 1 ≤ k ≤ mj .

6. E
[∏n

j=1 fj (Yj)
]

=
∏n
j=1 E [fj (Yj)] for all fj ∈ Cc (Sj ,R) ,

7. E
[
e
i
∑n

j=1
λj ·Yj

]
=
∏n
j=1 E

[
eiλj ·Yj

]
for all λj ∈ Sj = Rmj .

Proof. The equivalence of 1. – 4. has already been proved in Theorem 10.9.
It is also clear that item 4. implies both or items 5. –7. upon noting that item
5. may be written as,

E

 n∏
j=1

1(−∞,yj ] (Yj)

 =
n∏
j=1

E
[
1(−∞,yj ] (Yj)

]
where (−∞, yj ] := (−∞, (yj)1] × · · · × (−∞, (yj)mj ]. The proofs that either 5.
or 6. or 7. implies item 3. is a simple application of the multiplicative system
theorem in the form of either Corollary 8.3 or Corollary 8.8. In each case, let H
denote the linear space of bounded measurable functions such that Eq. (10.5)
holds. To complete the proof I will simply give you the multiplicative system,
M, to use in each of the cases. To describe M, let N = m1 + · · ·+mn and

y = (y1, . . . , yn) =
(
y1, y2, . . . , yN

)
∈ RN and

λ = (λ1, . . . , λn) =
(
λ1, λ2, . . . , λN

)
∈ RN

For showing 5. =⇒ 3.take M =
{

1(−∞,y] : y ∈ RN
}
.

For showing 6. =⇒ 3. take M to be a those functions on RN which are of
the form, f (y) =

∏N
l=1 fl

(
yl
)

with each fl ∈ Cc (R) .
For showing 7. =⇒ 3. take M to be the functions of the form,

f (y) = exp

i n∑
j=1

λj · yj

 = exp (iλ · y) .
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Definition 10.12. A collection of subsets of B, {Ct}t∈T is said to be indepen-
dent iff {Ct}t∈Λ are independent for all finite subsets, Λ ⊂ T. More explicitly,
we are requiring

P (∩t∈ΛAt) =
∏
t∈Λ

P (At)

whenever Λ is a finite subset of T and At ∈ Ct for all t ∈ Λ.

Corollary 10.13. If {Ct}t∈T is a collection of independent classes such that
each Ct is a π – system, then {σ (Ct)}t∈T are independent as well.

Lemma 10.14 (Independence of groupings). Suppose that {Bt : t ∈ T} is
an independent family of σ – fields. Suppose further that {Ts}s∈S is a partition
of T (i.e. T =

∑
s∈S Ts) and let

BTs = ∨t∈TsBt = σ (∪t∈TsBt) .

Then {BTs}s∈S is again independent family of σ fields.

Proof. Let
Cs = {∩α∈KBα : Bα ∈ Bα, K ⊂⊂ Ts} .

It is now easily checked that BTs = σ (Cs) and that {Cs}s∈S is an independent
family of π – systems. Therefore {BTs}s∈S is an independent family of σ –
algebras by Corollary 10.13.

Definition 10.15. A collections of random variables, {Xt : t ∈ T} are inde-
pendent iff {σ (Xt) : t ∈ T} are independent.

Example 10.16. Suppose that {µn}∞n=1 is any sequence of probability measure
on (R,BR) . Let Ω = RN, B := ⊗∞n=1BR be the product σ – algebra on Ω, and
P := ⊗∞n=1µn be the product measure. Then the random variables, {Yn}∞n=1

defined by Yn (ω) = ωn for all ω ∈ Ω are independent with LawP (Yn) = µn for
each n.

Corollary 10.17. Suppose that {Yn}∞n=1 is a sequence of independent random
variables (or vectors) and Λ1, . . . , Λm is a collection of pairwise disjoint subsets
of N. Further suppose that fi : RΛi → R is a measurable function for each
1 ≤ i ≤ m, then Zi := fi

(
{Yl}l∈Λi

)
is again a collection of independent random

variables.

Proof. Notice that σ (Zi) ⊂ σ
(
{Yl}l∈Λi

)
= σ (∪l∈Λiσ (Yl)) . Since

{σ (Yl)}∞l=1 are independent by assumption, it follows from Lemma 10.14 that{
σ
(
{Yl}l∈Λi

)}m
i=1

are independent and therefore so is {σ (Zi)}mi=1, i.e. {Zi}mi=1

are independent.

Definition 10.18 (i.i.d.). A sequences of random variables, {Xn}∞n=1 , on a
probability space, (Ω,B, P ), are i.i.d. (= independent and identically dis-
tributed) if they are independent and (Xn)∗ P = (Xk)∗ P for all k, n. That is
we should have

P (Xn ∈ A) = P (Xk ∈ A) for all k, n ∈ N and A ∈ BR.

Observe that {Xn}∞n=1 are i.i.d. random variables iff

P (X1 ∈ A1, . . . , Xn ∈ An) =
n∏
j=1

P (Xi ∈ Ai) =
n∏
j=1

P (X1 ∈ Ai) =
n∏
j=1

µ (Ai)

(10.6)
where µ = (X1)∗ P. The identity in Eq. (10.6) is to hold for all n ∈ N and all
Ai ∈ BR. If we choose µn = µ in Example 10.16, the {Yn}∞n=1 there are i.i.d.
with LawP (Yn) = P ◦ Y −1

n = µ for all n ∈ N.
The following theorem follows immediately from the definitions and Theo-

rem 10.11.

Theorem 10.19. Let X := {Xt : t ∈ T} be a collection of random variables.
Then the following are equivalent:

1. The collection X is independent,
2.

P (∩t∈Λ {Xt ∈ At}) =
∏
t∈Λ

P (Xt ∈ At)

for all finite subsets, Λ ⊂ T, and all {At}t∈Λ ⊂ BR.
3.

P (∩t∈Λ {Xt ≤ xt}) =
∏
t∈Λ

P (Xt ≤ xt)

for all finite subsets, Λ ⊂ T, and all {xt}t∈Λ ⊂ R.
4. For all Γ ⊂⊂ T and ft : Rn→ R which are bounded an measurable for all
t ∈ Γ,

E

[∏
t∈Γ

ft (Xt)

]
=
∏
t∈Γ

Eft (Xt) =
∫

RΓ

∏
t∈Γ

ft (xt)
∏
t∈Γ

dµt (xt) .

5. E
[∏

t∈Γ exp
(
eiλt·Xt

)]
=
∏
t∈Γ µ̂t (λ) .

6. For all Γ ⊂⊂ T and f : (Rn)Γ → R,

E [f (XΓ )] =
∫

(Rn)Γ
f (x)

∏
t∈Γ

dµt (xt) .

7. For all Γ ⊂⊂ T, LawP (XΓ ) = ⊗t∈Γµt.
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8. LawP (X) = ⊗t∈Tµt.

Moreover, if Bt is a sub-σ - algebra of B for t ∈ T, then {Bt}t∈T are inde-
pendent iff for all Γ ⊂⊂ T,

E

[∏
t∈Γ

Xt

]
=
∏
t∈Γ

EXt for all Xt ∈ L∞ (Ω,Bt, P ) .

Proof. The equivalence of 1. and 2. follows almost immediately form the
definition of independence and the fact that σ (Xt) = {{Xt ∈ A} : A ∈ BR} .
Clearly 2. implies 3. holds. Finally, 3. implies 2. is an application of Corollary
10.13 with Ct := {{Xt ≤ a} : a ∈ R} and making use the observations that Ct
is a π – system for all t and that σ (Ct) = σ (Xt) . The remaining equivalence
are also easy to check.

10.2 Examples of Independence

10.2.1 An Example of Ranks

Lemma 10.20 (No Ties). Suppose that X and Y are independent random
variables on a probability space (Ω,B, P ) . If F (x) := P (X ≤ x) is continuous,
then P (X = Y ) = 0.

Proof. Let µ (A) := P (X ∈ A) and ν (A) = P (Y ∈ A) . Because F is con-
tinuous, µ ({y}) = F (y)− F (y−) = 0, and hence

P (X = Y ) = E
[
1{X=Y }

]
=
∫

R2
1{x=y}d (µ⊗ ν) (x, y)

=
∫

R
dν (y)

∫
R
dµ (x) 1{x=y} =

∫
R
µ ({y}) dν (y)

=
∫

R
0 dν (y) = 0.

Second Proof. For sake of comparison, lets give a proof where we do not
allow ourselves to use Fubini’s theorem. To this end let

{
al := l

N

}∞
l=−∞ (or for

the moment any sequence such that, al < al+1 for all l ∈ Z, liml→±∞ al = ±∞).
Then

{(x, x) : x ∈ R} ⊂ ∪l∈Z [(al, al+1]× (al, al+1]]

and therefore,

P (X = Y ) ≤
∑
l∈Z

P (X ∈ (al, al+1], Y ∈ (al, al+1]) =
∑
l∈Z

[F (al+1)− F (al)]
2

≤ sup
l∈Z

[F (al+1)− F (al)]
∑
l∈Z

[F (al+1)− F (al)] = sup
l∈Z

[F (al+1)− F (al)] .

Since F is continuous and F (∞+) = 1 and F (∞−) = 0, it is easily seen that
F is uniformly continuous on R. Therefore, if we choose al = l

N , we have

P (X = Y ) ≤ lim sup
N→∞

sup
l∈Z

[
F

(
l + 1
N

)
− F

(
l

N

)]
= 0.

Let {Xn}∞n=1 be i.i.d. with common continuous distribution function, F. So
by Lemma 10.20 we know that

P (Xi = Xj) = 0 for all i 6= j.

Let Rn denote the “rank” of Xn in the list (X1, . . . , Xn) , i.e.

Rn :=
n∑
j=1

1Xj≥Xn = # {j ≤ n : Xj ≥ Xn} .

Thus Rn = k if Xn is the kth – largest element in the list, (X1, . . . , Xn) .
For example if (X1, X2, X3, X4, X5, X6, X7, . . . ) = (9,−8, 3, 7, 23, 0,−11, . . . ) ,
we have R1 = 1, R2 = 2, R3 = 2, R4 = 2, R5 = 1, R6 = 5, and R7 =
7. Observe that rank order, from lowest to highest, of (X1, X2, X3, X4, X5)
is (X2, X3, X4, X1, X5) . This can be determined by the values of Ri for i =
1, 2, . . . , 5 as follows. Since R5 = 1, we must have X5 in the last slot, i.e.
(∗, ∗, ∗, ∗, X5) . Since R4 = 2, we know out of the remaining slots, X4 must be
in the second from the far most right, i.e. (∗, ∗, X4, ∗, X5) . Since R3 = 2, we
know that X3 is again the second from the right of the remaining slots, i.e. we
now know, (∗, X3, X4, ∗, X5) . Similarly, R2 = 2 implies (X2, X3, X4, ∗, X5) and
finally R1 = 1 gives, (X2, X3, X4, X1, X5) (= (−8, 4, 7, 9, 23) in the example).
As another example, if Ri = i for i = 1, 2, . . . , n, then Xn < Xn−1 < · · · < X1.

Theorem 10.21 (Renyi Theorem). Let {Xn}∞n=1 be i.i.d. and assume that
F (x) := P (Xn ≤ x) is continuous. The {Rn}∞n=1 is an independent sequence,

P (Rn = k) =
1
n

for k = 1, 2, . . . , n,

and the events, An = {Xn is a record} = {Rn = 1} are independent as n varies
and

P (An) = P (Rn = 1) =
1
n
.

Proof. By Problem 6 on p. 110 of Resnick or by Fubini’s theorem,
(X1, . . . , Xn) and (Xσ1, . . . , Xσn) have the same distribution for any permu-
tation σ.

Since F is continuous, it now follows that up to a set of measure zero,
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Ω =
∑
σ

{Xσ1 < Xσ2 < · · · < Xσn}

and therefore

1 = P (Ω) =
∑
σ

P ({Xσ1 < Xσ2 < · · · < Xσn}) .

Since P ({Xσ1 < Xσ2 < · · · < Xσn}) is independent of σ we may now conclude
that

P ({Xσ1 < Xσ2 < · · · < Xσn}) =
1
n!

for all σ. As observed before the statement of the theorem, to each realization
(ε1, . . . , εn) , (here εi ∈ N with εi ≤ i) of (R1, . . . , Rn) there is a uniquely
determined permutation, σ = σ (ε1, . . . , εn) , such that Xσ1 < Xσ2 < · · · <
Xσn. (Notice that there are n! permutations of {1, 2, . . . , n} and there are also
n! choices for the {(ε1, . . . , εn) : 1 ≤ εi ≤ i} .) From this it follows that

{(R1, . . . , Rn) = (ε1, . . . , εn)} = {Xσ1 < Xσ2 < · · · < Xσn}

and therefore,

P ({(R1, . . . , Rn) = (ε1, . . . , εn)}) = P (Xσ1 < Xσ2 < · · · < Xσn) =
1
n!
.

Since

P ({Rn = εn}) =
∑

(ε1,...εn−1)

P ({(R1, . . . , Rn) = (ε1, . . . , εn)})

=
∑

(ε1,...εn−1)

1
n!

= (n− 1)! · 1
n!

=
1
n

we have shown that

P ({(R1, . . . , Rn) = (ε1, . . . , εn)}) =
1
n!

=
n∏
j=1

1
j

=
n∏
j=1

P ({Rj = εj}) .

10.3 Gaussian Random Vectors

As you saw in Exercise 10.2, uncorrelated random variables are typically not
independent. However, if the random variables involved are jointly Gaussian,
then independence and uncorrelated are actually the same thing!

Lemma 10.22. Suppose that Z = (X,Y )tr is a Gaussian random vector with
X ∈ Rk and Y ∈ Rl. Then X is independent of Y iff Cov (Xi, Yj) = 0 for all
1 ≤ i ≤ k and 1 ≤ j ≤ l. This lemma also holds more generally. Namely if{
X l
}n
l=1

is a sequence of random vectors such that
(
X1, . . . , Xn

)
is a Gaussian

random vector. Then
{
X l
}n
l=1

are independent iff Cov
(
X l
i , X

l′

k

)
= 0 for all

l 6= l′ and i and k.

Proof. We know by Exercise 10.2 that if Xi and Yj are independent, then
Cov (Xi, Yj) = 0. For the converse direction, if Cov (Xi, Yj) = 0 for all 1 ≤ i ≤ k
and 1 ≤ j ≤ l and x ∈ Rk and y ∈ Rl, then

Var (x ·X + y · Y ) = Var (x ·X) + Var (y · Y ) + 2 Cov (x ·X, y · Y )
= Var (x ·X) + Var (y · Y ) .

Therefore using the fact that (X,Y ) is a Gaussian random vector,

E
[
eix·Xeiy·Y

]
= E

[
ei(x·X+y·Y )

]
= exp

(
−1

2
Var (x ·X + y · Y ) + E (x ·X + y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= E

[
eix·X

]
· E
[
eiy·Y

]
,

and because x and y were arbitrary, we may conclude from Theorem 10.11 that
X and Y are independent.

Corollary 10.23. Suppose that X : Ω → Rk and Y : Ω → Rl are two indepen-
dent random Gaussian vectors, then (X,Y ) is also a Gaussian random vector.
This corollary generalizes to multiple independent random Gaussian vectors.

Proof. Let x ∈ Rk and y ∈ Rl, then

E
[
ei(x,y)·(X,Y )

]
=E

[
ei(x·X+y·Y )

]
= E

[
eix·Xeiy·Y

]
= E

[
eix·X

]
· E
[
eiy·Y

]
= exp

(
−1

2
Var (x ·X) + iE (x ·X)

)
× exp

(
−1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X) + iE (x ·X)− 1

2
Var (y · Y ) + iE (y · Y )

)
= exp

(
−1

2
Var (x ·X + y · Y ) + iE (x ·X + y · Y )

)
which shows that (X,Y ) is again Gaussian.
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Notation 10.24 Suppose that {Xi}ni=1 is a collection of R – valued variables or

Rd – valued random vectors. We will write X1

⊥⊥
+ X2

⊥⊥
+ . . .

⊥⊥
+ Xn for X1+· · ·+Xn

under the additional assumption that the {Xi}ni=1 are independent.

Corollary 10.25. Suppose that {Xi}ni=1 are independent Gaussian random
variables, then Sn :=

∑n
i=1Xi is a Gaussian random variables with :

Var (Sn) =
n∑
i=1

Var (Xi) and ESn =
n∑
i=1

EXi, (10.7)

i.e.

X1

⊥⊥
+ X2

⊥⊥
+ . . .

⊥⊥
+ Xn = N

(
n∑
i=1

Var (Xi) ,
n∑
i=1

EXi

)
.

In particular if {Xi}∞i=1 are i.i.d. Gaussian random variables with EXi = µ and
σ2 = Var (Xi) , then

Sn
n
− µ d= N

(
0,
σ2

n

)
and (10.8)

Sn − nµ
σ
√
n

d= N (0, 1) . (10.9)

Equation (10.9) is a very special case of the central limit theorem while Eq.
(10.8) leads to a very special case of the strong law of large numbers, see Corol-
lary 10.26.

Proof. The fact that Sn, Snn − µ, and Sn−nµ
σ
√
n

are all Gaussian follows from
Corollary 10.25 and Lemma 9.36 or by direct calculation. The formulas for the
variances and means of these random variables are routine to compute.

Recall the first Borel Cantelli-Lemma 7.14 states that if {An}∞n=1 are mea-
surable sets, then

∞∑
n=1

P (An) <∞ =⇒ P ({An i.o.}) = 0. (10.10)

Corollary 10.26. Let {Xi}∞i=1 be i.i.d. Gaussian random variables with EXi =
µ and σ2 = Var (Xi) . Then limn→∞

Sn
n = µ a.s. and moreover for every α < 1

2 ,
there exists Nα : Ω → N∪{∞} , such that P (Nα =∞) = 0 and∣∣∣∣Snn − µ

∣∣∣∣ ≤ n−α for n ≥ Nα.

In particular, limn→∞
Sn
n = µ a.s.

Proof. Let Z d= N (0, 1) so that σ√
n
Z

d= N
(

0, σ
2

n

)
. From the Eq. (10.8)

and Eq. (7.40),

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ ε) = P

(∣∣∣∣ σ√nZ
∣∣∣∣ ≥ ε) = P

(
|Z| ≥

√
nε

σ

)
≤ exp

(
−1

2

(√
nε

σ

)2
)

= exp
(
− ε2

2σ2
n

)
.

Taking ε = n−α with 1− 2α > 0, it follows that

∞∑
n=1

P

(∣∣∣∣Snn − µ
∣∣∣∣ ≥ n−α) ≤ ∞∑

n=1

exp
(
− 1

2σ2
n1−2α

)
<∞

and so by the first Borel-Cantelli lemma,

P

({∣∣∣∣Snn − µ
∣∣∣∣ ≥ n−α i.o.

})
= 0.

Therefore, P – a.s.,
∣∣Sn
n − µ

∣∣ ≤ n−α a.a., and in particular limn→∞
Sn
n = µ a.s.

10.4 Summing independent random variables

Exercise 10.3. Suppose that X d= N
(
0, a2

)
and Y

d= N
(
0, b2

)
and X and

Y are independent. Show by direct computation using the formulas for the
distributions of X and Y that X + Y = N

(
0, a2 + b2

)
.

Solution to Exercise (10.3). If f : R→ R be a bounded measurable func-
tion, then

E [f (X + Y )] =
1
Z

∫
R2
f (x+ y) e−

1
2a2

x2

e−
1

2b2
y2

dxdy,

where Z = 2πab. Let us make the change of variables, (x, z) = (x, x+ y) and
observe that dxdy = dxdz (you check). Therefore we have,

E [f (X + Y )] =
1
Z

∫
R2
f (z) e−

1
2a2

x2

e−
1

2b2
(z−x)2dxdz

which shows, Law (X + Y ) (dz) = ρ (z) dz where

ρ (z) =
1
Z

∫
R
e−

1
2a2

x2

e−
1

2b2
(z−x)2dx. (10.11)

Page: 148 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



10.4 Summing independent random variables 149

Working the exponent, for any c ∈ R, we have

1
a2
x2 +

1
b2

(z − x)2 =
1
a2
x2 +

1
b2
(
x2 − 2xz + z2

)
=
(

1
a2

+
1
b2

)
x2 − 2

b2
xz +

1
b2
z2

=
(

1
a2

+
1
b2

)[
(x− cz)2 + 2cxz − c2z2

]
− 2
b2
xz +

1
b2
z2.

Let us now choose (to complete the squares) c such that where c must be chosen
so that

c

(
1
a2

+
1
b2

)
=

1
b2

=⇒ c =
a2

a2 + b2
,

in which case,

1
a2
x2 +

1
b2

(z − x)2 =
(

1
a2

+
1
b2

)[
(x− cz)2

]
+
[

1
b2
− c2

(
1
a2

+
1
b2

)]
z2

where,
1
b2
− c2

(
1
a2

+
1
b2

)
=

1
b2

(1− c) =
1

a2 + b2
.

So making the change of variables, x → x − cz, in the integral in Eq. (10.11)
implies,

ρ (z) =
1
Z

∫
R

exp
(
−1

2

(
1
a2

+
1
b2

)
w2 − 1

2
1

a2 + b2
z2

)
dw

=
1
Z̃

exp
(
−1

2
1

a2 + b2
z2

)
where,

1
Z̃

=
1
Z
·
∫

R
exp

(
−1

2

(
1
a2

+
1
b2

)
w2

)
dw =

1
2πab

√
2π
(

1
a2

+
1
b2

)−1

=
1

2πab

√
2π

a2b2

a2 + b2
=

1√
2π (a2 + b2)

.

Thus it follows that X
⊥⊥
+ Y = N

(
a2 + b2, 0

)
.

Exercise 10.4. Show that the sum, N1 +N2, of two independent Poisson ran-
dom variables, N1 and N2, with parameters λ1 and λ2 respectively is again
a Poisson random variable with parameter λ1 + λ2. (You could use generating

functions or do this by hand.) In short Pois (λ1)
⊥⊥
+ Pois (λ2) d= Pois (λ1 + λ2) .

Solution to Exercise (10.4). Let z ∈ C, then by independence,

E
[
zN1+N2

]
= E

[
zN1zN2

]
= E

[
zN1
]
E
[
zN2
]

= eλ1(z−1) · eλ2(z−1) = e(λ1+λ2)(z−1)

from which it follows that N1 +N2
d= Poisson(λ1 + λ2) .

Example 10.27 (Gamma Distribution Sums). We will show here that

Gamma(k, θ)
⊥⊥
+ Gamma(l, θ) =Gamma(k + l, θ) . In Exercise 7.13 you

showed if k, θ > 0 then

E
[
etX
]

= (1− θt)−k for t < θ−1

where X is a positive random variable with X
d=Gamma(k, θ) , i.e.

(X∗P ) (dx) = xk−1 e−x/θ

θkΓ (k)
dx for x > 0.

Suppose that X and Y are independent Random variables with
X

d=Gamma(k, θ) and Y
d=Gamma(l, θ) for some l > 0. It now follows

that

E
[
et(X+Y )

]
= E

[
etXetY

]
= E

[
etX
]
E
[
etY
]

= (1− θt)−k (1− θt)−l = (1− θt)−(k+l)
.

Therefore it follows from Exercise 8.2 that X + Y
d=Gamma(k + l, θ) .

Example 10.28 (Exponential Distribution Sums). If {Tk}nk=1 are independent

random variables such that Tk
d= E (λk) for all k, then

T1

⊥⊥
+ T2

⊥⊥
+ . . .

⊥⊥
+ Tn = Gamma

(
n, λ−1

)
.

This follows directly from Example 10.27 using E (λ) =Gamma
(
1, λ−1

)
and

induction. We will verify this directly later on.

Example 10.27 may also be verified using brute force. To this end, suppose
that f : R+ → R+ is a measurable function, then

E [f (X + Y )] =
∫

R2
+

f (x+ y)xk−1 e−x/θ

θkΓ (k)
yl−1 e

−y/θ

θlΓ (l)
dxdy

=
1

θk+lΓ (k)Γ (l)

∫
R2

+

f (x+ y)xk−1yl−1e−(x+y)/θdxdy.
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Let us now make the change of variables, x = x and z = x+ y, so that dxdy =
dxdz, to find,

E [f (X + Y )] =
1

θk+lΓ (k)Γ (l)

∫
10≤x≤z<∞f (z)xk−1 (z − x)l−1

e−z/θdxdz.

(10.12)
To finish the proof we must now do that x integral and show,∫ z

0

xk−1 (z − x)l−1
dx = zk+l−1Γ (k)Γ (l)

Γ (k + l)
.

(In fact we already know this must be correct from our Laplace transform
computations above.) First make the change of variable, x = zt to find,∫ z

0

xk−1 (z − x)l−1
dx = zk+l−1B (k, l)

where B (k, l) is the beta – function defined by;

B (k, l) :=
∫ 1

0

tk−1 (1− t)l−1
dt for Re k,Re l > 0. (10.13)

Combining these results with Eq. (10.12) then shows,

E [f (X + Y )] =
B (k, l)

θk+lΓ (k)Γ (l)

∫ ∞
0

f (z) zk+l−1e−z/θdz. (10.14)

Since we already know that∫ ∞
0

zk+l−1e−z/θdz = θk+lΓ (k + l)

it follows by taking f = 1 in Eq. (10.14) that

1 =
B (k, l)

θk+lΓ (k)Γ (l)
θk+lΓ (k + l)

which implies,

B (k, l) =
Γ (k)Γ (l)
Γ (k + l)

. (10.15)

Therefore, using this back in Eq. (10.14) implies

E [f (X + Y )] =
1

θk+lΓ (k + l)

∫ ∞
0

f (z) zk+l−1e−z/θdz

from which it follows that X + Y
d=Gamma(k + l, θ) .

Let us pause to give a direct verification of Eq. (10.15). By definition of the
gamma function,

Γ (k)Γ (l) =
∫

R2
+

xk−1e−xyl−1e−ydxdy =
∫

R2
+

xk−1yl−1e−(x+y)dxdy.

=
∫

0≤x≤z<∞
xk−1 (z − x)l−1

e−zdxdz

Making the change of variables, x = x and z = x+ y it follows,

Γ (k)Γ (l) =
∫

0≤x≤z<∞
xk−1 (z − x)l−1

e−zdxdz.

Now make the change of variables, x = zt to find,

Γ (k)Γ (l) =
∫ ∞

0

dze−z
∫ 1

0

dt (zt)k−1 (z − tz)l−1
z

=
∫ ∞

0

e−zzk+l−1dz ·
∫ 1

0

tk−1 (1− t)l−1
dt

= Γ (k + l)B (k, l) .

Definition 10.29 (Beta distribution). The β – distribution is

dµx,y (t) =
tx−1 (1− t)y−1

dt

B (x, y)
.

Observe that∫ 1

0

tdµx,y (t) =
B (x+ 1, y)
B (x, y)

=
Γ (x+1)Γ (y)
Γ (x+y+1)

Γ (x)Γ (y)
Γ (x+y)

=
x

x+ y

and ∫ 1

0

t2dµx,y (t) =
B (x+ 2, y)
B (x, y)

=
Γ (x+2)Γ (y)
Γ (x+y+2)

Γ (x)Γ (y)
Γ (x+y)

=
(x+ 1)x

(x+ y + 1) (x+ y)
.

10.5 A Strong Law of Large Numbers

Theorem 10.30 (A simple form of the strong law of large numbers).

If {Xn}∞n=1 is a sequence of i.i.d. random variables such that E
[
|Xn|4

]
< ∞,

then
lim
n→∞

Sn
n

= µ a.s.

where Sn :=
∑n
k=1Xk and µ := EXn = EX1.
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Exercise 10.5. Use the following outline to give a proof of Theorem 10.30.

1. First observe that for all 1 ≤ p ≤ 4, there exists Cp < ∞ such that |x|p ≤
Cp

(
1 + |x|4

)
and therefore

E |Xn|p ≤ Cp
(

1 + E |Xn|4
)
<∞.

Thus γ := E
[
|Xn − µ|4

]
and the standard deviation

(
σ2
)

of Xn defined by,

σ2 := E
[
X2
n

]
− µ2 = E

[
(Xn − µ)2

]
<∞,

are finite constants independent of n.
2. Show for all n ∈ N that

E

[(
Sn
n
− µ

)4
]

=
1
n4

(
nγ + 3n(n− 1)σ4

)
=

1
n2

[
n−1γ + 3

(
1− n−1

)
σ4
]
.

(Thus Sn
n → µ in L4 (P ) .)

3. Use item 2. and Chebyshev’s inequality to show

P

(∣∣∣∣Snn − µ
∣∣∣∣ > ε

)
≤
n−1γ + 3

(
1− n−1

)
σ4

ε4n2
.

4. Use item 3. and the first Borel Cantelli Lemma 7.14 to conclude
limn→∞

Sn
n = µ a.s.

10.6 A Central Limit Theorem

In this section we will give a preliminary version of the central limit theorem.
For this proof we will assume {Xn}∞n=1 is an i.i.d sequence with third moments.
Later we will relax these conditions substantially. The only property about
normal random variables that we shall use the proof is that if {Nn}∞n=1 are
i.i.d. standard normal random variables, then

Tn√
n

:=
N1 + · · ·+Nn√

n

d= N (0, 1)

as was shown in Corollary 10.25.

Theorem 10.31 (A CLT proof w/o Fourier). Suppose that {Xn}∞n=1 are
mean zero variance one i.i.d random variables such that E |X1|3 < ∞ and
f ∈ C3 (R) with M := supx∈R

∣∣f (3) (x)
∣∣ <∞. Then∣∣∣∣Ef (N)− Ef

(
Sn√
n

)∣∣∣∣ ≤ 1√
n

M

3!
· E
[
|N |3 + |X1|3

]
(10.16)

where Sn := X1+· · ·+Xn and N d= N (0, 1) . Thus Sn√
n

is “close” in distribution

to N, which we abbreviate by Sn√
n

d∼= N for large n.

Proof. Let
{
X̄n, Nn

}∞
n=1

be independent random variables such that Nn
d=

N (0, 1) and X̄n
d= X1. To simplify notation, we will denote X̄n by Xn. Let

Tn := N1 + · · ·+Nn and for 0 ≤ k ≤ n, let

Vk := (N1 + · · ·+Nk +Xk+1 + · · ·+Xn) /
√
n

with the convention that Vn = Tn/
√
n and V0 = Sn/

√
n. Then by a telescoping

series argument, it follows that

f
(
Tn/
√
n
)
− f

(
Sn/
√
n
)

= f (Vn)− f (V0) =
n∑
k=1

[f (Vk)− f (Vk−1)] . (10.17)

We now make use of Taylor’s theorem with integral remainder the form,

f (x+∆)− f (x) = f ′ (x)∆+
1
2
f ′′ (x)∆2 + r (x,∆)∆3 (10.18)

where

r (x,∆) :=
1
2

∫ 1

0

f ′′′ (x+ t∆) (1− t)2
dt.

Taking Eq. (10.18) with ∆ replaced by δ and subtracting the results then implies

f (x+∆)− f (x+ δ) = f ′ (x) (∆− δ) +
1
2
f ′′ (x)

(
∆2 − δ2

)
+ ρ (x,∆) , (10.19)

where

|ρ (x,∆)| =
∣∣r (x,∆)∆3 − r (x, δ) δ3

∣∣ ≤ M

3!

[
|∆|3 + |δ|3

]
, (10.20)

wherein we have used the simple estimate, |r (x,∆)| ≤M/3!.
If we define

Uk := (N1 + · · ·+Nk−1 +Xk+1 + · · ·+Xn) /
√
n,
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then Vk = Uk + Nk/
√
n and Vk−1 = Uk + Xk/

√
n. Hence, using Eq. (10.19)

with x = Uk, ∆ = Nk/
√
n and δ = Xk/

√
n, it follows that

f (Vk)− f (Vk−1) = f
(
Uk +Nk/

√
n
)
− f

(
Uk +Xk/

√
n
)

=
1√
n
f ′ (Uk) (Nk −Xk) +

1
2n
f ′′ (Uk)

(
N2
k −X2

k

)
+Rk

(10.21)

where
|Rk| =

M

3! · n3/2

[
|Nk|3 + |Xk|3

]
. (10.22)

Taking expectations of Eq. (10.21) using; Eq. (10.22), ENk = 1 = EXk, EN2
k =

1 = EX2
k , and the fact that Uk is independent of both Xk and Nk, we find

|E [f (Vk)− f (Vk−1)]| = |ERk| ≤
M

3! · n3/2
E
[
|Nk|3 + |Xk|3

]
≤ M

3! · n3/2
E
[
|N1|3 + |X1|3

]
.

Combining this estimate with Eq. (10.17) shows,

∣∣E [f (Tn/√n)− f (Sn/√n)]∣∣ =

∣∣∣∣∣
n∑
k=1

ERk

∣∣∣∣∣ ≤
n∑
k=1

E |Rk|

≤ 1√
n

M

3!
· E
[
|N1|3 + |X1|3

]
.

This completes the proof of Eq. (10.16) since Tn√
n

d= N by Corollary 10.25.
For more in this direction the reader is advised to look up “Stein’s method.”

In Chapters ?? and ?? below, we will relax the assumptions in the above the-
orem. The proofs later will be based in the characteristic functional or equiva-
lently the Fourier transform.

10.7 The Second Borel-Cantelli Lemma

Figure 10.1 below serves as motivation for the following elementary lemma on
convex functions.

Fig. 10.1. A convex function, ϕ, along with a cord and a tangent line. Notice that
the tangent line is always below ϕ and the cord lies above ϕ between the points of
intersection of the cord with the graph of ϕ.

Lemma 10.32 (Convex Functions). Suppose that ϕ ∈ PC2 ((a, b)→ R)1

with ϕ′′ (x) ≥ 0 for almost all x ∈ (a, b) . Then ϕ satisfies;

1. for all x0, x ∈ (a, b) ,

ϕ (x0) + ϕ′ (x0) (x− x0) ≤ ϕ (x) (10.23)

and
2. for all x0 ≤ x1 with x0, x1 ∈ (a, b) ,

ϕ (x0 + t (x1 − x0)) ≤ ϕ (x0) + t (ϕ (x1)− ϕ (x0)) ∀ t ∈ [0, 1] .

Alternatively stated, ϕ should satisfy, for any a < x0 ≤ x1 < b,

ϕ (xt) ≤ ht := tϕ(x1) + (1− t)ϕ(x0) for all t ∈ [0, 1] , (10.24)

where xt := x0 + t (x1 − x0) .

(This lemma applies to the functions, eλx for all λ ∈ R, |x|α for α > 1,
and − lnx to name a few examples. See Appendix 11.8 below for much more on
convex functions.)
1 PC2 denotes the space of piecewise C2 – functions, i.e. ϕ ∈ PC2 ((a, b)→ R) means

the ϕ is C1 and there are a finite number of points,

{a = a0 < a1 < a2 < · · · < an−1 < an = b} ,

such that ϕ|[aj−1,aj ]∩(a,b) is C2 for all j = 1, 2, . . . , n.
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Proof. 1. By Taylor’s theorem with integral remainder (see Eq. (7.52) with
F = ϕ, a = x0, and b = x) implies

ϕ (x) = ϕ (x0) + ϕ′ (x0) (x− x0) + (x− x0)2
∫ 1

0

ϕ′′ (x0 + τ (x− x0)) (1− τ) dτ

≥ ϕ (x0) + ϕ′ (x0) (x− x0) .

2. For any ξ ∈ (a, b) , let hξ (x) := ϕ (x0) + ϕ′ (x0) (x− x0) . By item 1. we
know that hξ (x) ≤ ϕ (x) for all ξ, x ∈ (a, b) with equality when ξ = x and
therefore,

ϕ (x) = sup
ξ∈(a,b)

hξ (x) .

Since hξ is an affine function for each ξ ∈ (a, b) , it follows that

hξ (xt) = (1− t)hξ (x0) + thξ (x1) ≤ (1− t)ϕ (x0) + tϕ (x1)

for all t ∈ [0, 1] . Thus we may conclude that

ϕ (xt) = sup
ξ∈(a,b)

hξ (xt) ≤ (1− t)ϕ (x0) + tϕ (x1)

as desired.
*For fun, here are three more proofs of Eq. (10.24). Clearly these proofs may

be omitted.
2a. By Lemma 10.34 below it suffices to show either

d

dx

ϕ (y)− ϕ (x)
y − x

≥ 0 or
d

dy

ϕ (y)− ϕ (x)
y − x

≥ 0 for a < x < y < b.

For the first case,

d

dx

ϕ (y)− ϕ (x)
y − x

=
ϕ (y)− ϕ (x)− ϕ′ (x) (y − x)

(y − x)2

=
∫ 1

0

ϕ′′ (x+ t (y − x)) (1− t) dt ≥ 0.

Similarly,
d

dy

ϕ (y)− ϕ (x)
y − x

=
ϕ′ (y) (y − x)− [ϕ (y)− ϕ (x)]

(y − x)2

where we now use,

ϕ (x)− ϕ (y) = ϕ′ (y) (x− y) + (x− y)2
∫ 1

0

ϕ′′ (y + t (x− y)) (1− t) dt

so that

ϕ′ (y) (y − x)− [ϕ (y)− ϕ (x)]
(y − x)2 = (x− y)2

∫ 1

0

ϕ′′ (y + t (x− y)) (1− t) dt ≥ 0

again.
2b. Let

f (t) := ϕ (u) + t (ϕ (v)− ϕ (u))− ϕ (u+ t (v − u)) .

Then f (0) = f (1) = 0 with f̈ (t) = − (v − u)2
ϕ′′ (u+ t (v − u)) ≤ 0 for almost

all t. By the mean value theorem, there exists, t0 ∈ (0, 1) such that ḟ (t0) = 0
and then by the fundamental theorem of calculus it follows that

ḟ (t) =
∫ t

t0

f̈ (τ) dt.

In particular, ḟ (t) ≤ 0 for t > t0 and ḟ (t) ≥ 0 for t < t0 and hence f (t) ≥
f (1) = 0 for t ≥ t0 and f (t) ≥ f (0) = 0 for t ≤ t0, i.e. f (t) ≥ 0.

2c. Let h : [0, 1]→ R be a piecewise C2 – function. Then by the fundamental
theorem of calculus and integration by parts,

h (t) = h (0) +
∫ t

0

h (τ) dτ = h (0) + th (t)−
∫ t

0

h (τ) τdτ

and

h (1) = h (t) +
∫ 1

t

h (τ) d (τ − 1) = h (t)− (t− 1)h (t)−
∫ 1

t

h (τ) (τ − 1) dτ.

Thus we have shown,

h (t) = h (0) + th (t)−
∫ t

0

h (τ) τdτ and

h (t) = h (1) + (t− 1)h (t) +
∫ 1

t

h (τ) (τ − 1) dτ.

So if we multiply the first equation by (1− t) and add to it the second equation
multiplied by t shows,

h (t) = (1− t)h (0) + th (1)−
∫ 1

0

G (t, τ) ḧ (τ) dτ, (10.25)

where

G (t, τ) :=
{
τ (1− t) if τ ≤ t
t (1− τ) if τ ≥ t .
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(The function G (t, τ) is the “Green’s function” for the operator −d2/dt2 on
[0, 1] with Dirichlet boundary conditions. The formula in Eq. (10.25) is a stan-
dard representation formula for h (t) which appears naturally in the study of
harmonic functions.)

We now take h (t) := ϕ (x0 + t (x1 − x0)) in Eq. (10.25) to learn

ϕ (x0 + t (x1 − x0)) = (1− t)ϕ (x0) + tϕ (x1)

− (x1 − x0)2
∫ 1

0

G (t, τ) ϕ̈ (x0 + τ (x1 − x0)) dτ

≤ (1− t)ϕ (x0) + tϕ (x1) ,

because ϕ̈ ≥ 0 and G (t, τ) ≥ 0.

Definition 10.33. Given any function, ϕ : (a, b)→ R, we say that ϕ is convex
if Eq. (10.24) holds for all t ∈ [0, 1] and a < x0 ≤ x1 < b.

Lemma 10.34. Let

F (x0, x1) :=
ϕ (x1)− ϕ (x0)

x1 − x0
for a < x0 < x1 < b.

The convexity of ϕ : (a, b) → R is equivalent to either (and hence both) of
the conditions that; 1) F (x0, x1) is non-decreasing in x0 and 2) F (x0, x1) is
non-decreasing in x1 for all a < x0 < x1 < b.

Proof. Indeed, if we let xt := x0 + t (x1 − x0) and ht be as in Eq. (10.24),
then (xt, ht) is on the line segment joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the
statement that ϕ is convex is then equivalent to the assertion that ϕ (xt) ≤ ht
for all 0 ≤ t ≤ 1. Since (xt, ht) lies on a straight line we always have the
following three slopes are equal;

ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

.

In light of this identity, it is now clear that the convexity of ϕ is equivalent to
either,

ϕ (xt)− ϕ (x0)
xt − x0

≤ ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
for all x0 ≤ xt ≤ x1

or

ϕ (x1)− ϕ (x0)
x1 − x0

=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)
x1 − xt

for all x0 ≤ xt ≤ x1.

See Theorem 11.42 for much more about general convex functions.

Example 10.35. Taking ϕ (x) := e−x, we learn (see Figure 10.2),

1− x ≤ e−x for all x ∈ R (10.26)

and taking ϕ (x) = e−2x we learn that

1− x ≥ e−2x for 0 ≤ x ≤ 1/2. (10.27)

Fig. 10.2. A graph of 1− x and e−x showing that 1− x ≤ e−x for all x.

Fig. 10.3. A graph of 1− x and e−2x showing that 1− x ≥ e−2x for all x ∈ [0, 1/2] .
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Exercise 10.6. For {an}∞n=1 ⊂ [0, 1] , let

∞∏
n=1

(1− an) := lim
N→∞

N∏
n=1

(1− an) .

(The limit exists since,
∏N
n=1 (1− an) decreases as N increases.) Show that if

{an}∞n=1 ⊂ [0, 1), then

∞∏
n=1

(1− an) = 0 iff
∞∑
n=1

an =∞.

Solution to Exercise (10.6). On one hand we have

N∏
n=1

(1− an) ≤
N∏
n=1

e−an = exp

(
−

N∑
n=1

an

)

which upon passing to the limit as N →∞ gives

∞∏
n=1

(1− an) ≤ exp

(
−
∞∑
n=1

an

)
.

Hence if
∑∞
n=1 an =∞ then

∏∞
n=1 (1− an) = 0.

Conversely, suppose that
∑∞
n=1 an < ∞. In this case an → 0 as n → ∞

and so there exists an m ∈ N such that an ∈ [0, 1/2] for all n ≥ m. With this
notation we then have for N ≥ m that

N∏
n=1

(1− an) =
m∏
n=1

(1− an) ·
N∏

n=m+1

(1− an)

≥
m∏
n=1

(1− an) ·
N∏

n=m+1

e−2an =
m∏
n=1

(1− an) · exp

(
−2

N∑
n=m+1

an

)

≥
m∏
n=1

(1− an) · exp

(
−2

∞∑
n=m+1

an

)
.

So again letting N →∞ shows,

∞∏
n=1

(1− an) ≥
m∏
n=1

(1− an) · exp

(
−2

∞∑
n=m+1

an

)
> 0.

Lemma 10.36 (Second Borel-Cantelli Lemma). Suppose that {An}∞n=1 are
independent sets. If

∞∑
n=1

P (An) =∞, (10.28)

then
P ({An i.o.}) = 1. (10.29)

Combining this with the first Borel Cantelli Lemma 7.14 gives the (Borel)
Zero-One law,

P (An i.o.) =

0 if
∑∞
n=1 P (An) <∞

1 if
∑∞
n=1 P (An) =∞

.

Proof. We are going to prove Eq. (10.29) by showing,

0 = P ({An i.o.}c) = P ({Acn a.a}) = P (∪∞n=1 ∩k≥n Ack) .

Since ∩k≥nAck ↑ ∪∞n=1 ∩k≥n Ack as n → ∞ and ∩mk=nA
c
k ↓ ∩∞n=1 ∪k≥n Ak as

m→∞,

P (∪∞n=1 ∩k≥n Ack) = lim
n→∞

P (∩k≥nAck) = lim
n→∞

lim
m→∞

P (∩m≥k≥nAck) .

Making use of the independence of {Ak}∞k=1 and hence the independence of
{Ack}

∞
k=1 , we have

P (∩m≥k≥nAck) =
∏

m≥k≥n

P (Ack) =
∏

m≥k≥n

(1− P (Ak)) . (10.30)

Using the simple inequality in Eq. (10.26) along with Eq. (10.30) shows

P (∩m≥k≥nAck) ≤
∏

m≥k≥n

e−P (Ak) = exp

(
−

m∑
k=n

P (Ak)

)
.

Using Eq. (10.28), we find from the above inequality that
limm→∞ P (∩m≥k≥nAck) = 0 and hence

P (∪∞n=1 ∩k≥n Ack) = lim
n→∞

lim
m→∞

P (∩m≥k≥nAck) = lim
n→∞

0 = 0

as desired.

Example 10.37 (Example 7.15 continued). Suppose that {Xn} are now indepen-
dent Bernoulli random variables with P (Xn = 1) = pn and P (Xn = 0) = 1 −
pn. Then P (limn→∞Xn = 0) = 1 iff

∑
pn <∞. Indeed, P (limn→∞Xn = 0) =

1 iff P (Xn = 0 a.a.) = 1 iff P (Xn = 1 i.o.) = 0 iff
∑
pn =

∑
P (Xn = 1) <∞.
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Proposition 10.38 (Extremal behaviour of iid random variables). Sup-
pose that {Xn}∞n=1 is a sequence of i.i.d. random variables and cn is an increas-
ing sequence of positive real numbers such that for all α > 1 we have

∞∑
n=1

P
(
X1 > α−1cn

)
=∞ (10.31)

while
∞∑
n=1

P (X1 > αcn) <∞. (10.32)

Then
lim sup
n→∞

Xn

cn
= 1 a.s. (10.33)

Proof. By the second Borel-Cantelli Lemma, Eq. (10.31) implies

P
(
Xn > α−1cn i.o. n

)
= 1

from which it follows that

lim sup
n→∞

Xn

cn
≥ α−1 a.s..

Taking α = αk = 1 + 1/k, we find

P

(
lim sup
n→∞

Xn

cn
≥ 1
)

= P

(
∩∞k=1

{
lim sup
n→∞

Xn

cn
≥ 1
αk

})
= 1.

Similarly, by the first Borel-Cantelli lemma, Eq. (10.32) implies

P (Xn > αcn i.o. n) = 0

or equivalently,
P (Xn ≤ αcn a.a. n) = 1.

That is to say,

lim sup
n→∞

Xn

cn
≤ α a.s.

and hence working as above,

P

(
lim sup
n→∞

Xn

cn
≤ 1
)

= P

(
∩∞k=1

{
lim sup
n→∞

Xn

cn
≤ αk

})
= 1.

Hence,

P

(
lim sup
n→∞

Xn

cn
= 1
)

= P

({
lim sup
n→∞

Xn

cn
≥ 1
}
∩
{

lim sup
n→∞

Xn

cn
≤ 1
})

= 1.

Example 10.39. Let {Xn}∞n=1 be i.i.d. standard normal random variables. Then
by Mills’ ratio (see Lemma 7.59),

P (Xn ≥ αcn) ∼ 1
αcn

e−α
2c2n/2.

Now, suppose that we take cn so that

e−c
2
n/2 =

1
n

=⇒ cn =
√

2 ln (n).

It then follows that

P (Xn ≥ αcn) ∼ 1
α
√

2 ln (n)
e−α

2 ln(n) =
1

α
√

2 ln (n)
1

n−α2

and therefore
∞∑
n=1

P (Xn ≥ αcn) =∞ if α < 1

and
∞∑
n=1

P (Xn ≥ αcn) <∞ if α > 1.

Hence an application of Proposition 10.38 shows

lim sup
n→∞

Xn√
2 lnn

= 1 a.s..

Example 10.40. Let {En}∞n=1 be a sequence of independent random variables
with exponential distributions determined by

P (En > x) = e−(x∨0) or P (En ≤ x) = 1− e−(x∨0).

(Observe that P (En ≤ 0) = 0) so that En > 0 a.s.) Then for cn > 0 and α > 0,
we have

∞∑
n=1

P (En > αcn) =
∞∑
n=1

e−αcn =
∞∑
n=1

(
e−cn

)α
.

Hence if we choose cn = lnn so that e−cn = 1/n, then we have

∞∑
n=1

P (En > α lnn) =
∞∑
n=1

(
1
n

)α
which is convergent iff α > 1. So by Proposition 10.38, it follows that

lim sup
n→∞

En
lnn

= 1 a.s.
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Example 10.41. * Suppose now that {Xn}∞n=1 are i.i.d. distributed by the Pois-
son distribution with intensity, λ, i.e.

P (X1 = k) =
λk

k!
e−λ.

In this case we have

P (X1 ≥ n) = e−λ
∞∑
k=n

λk

k!
≥ λn

n!
e−λ

and
∞∑
k=n

λk

k!
e−λ =

λn

n!
e−λ

∞∑
k=n

n!
k!
λk−n

=
λn

n!
e−λ

∞∑
k=0

n!
(k + n)!

λk ≤ λn

n!
e−λ

∞∑
k=0

1
k!
λk =

λn

n!
.

Thus we have shown that

λn

n!
e−λ ≤ P (X1 ≥ n) ≤ λn

n!
.

Thus in terms of convergence issues, we may assume that

P (X1 ≥ x) ∼ λx

x!
∼ λx√

2πxe−xxx

wherein we have used Stirling’s formula,

x! ∼
√

2πxe−xxx.

Now suppose that we wish to choose cn so that

P (X1 ≥ cn) ∼ 1/n.

This suggests that we need to solve the equation, xx = n. Taking logarithms of
this equation implies that

x =
lnn
lnx

and upon iteration we find,

x =
lnn

ln
(

lnn
ln x

) =
lnn

`2 (n)− `2 (x)
=

lnn
`2 (n)− `2

(
lnn
ln x

)
=

lnn
`2 (n)− `3 (n) + `3 (x)

.

where `k =

k - times︷ ︸︸ ︷
ln ◦ ln ◦ · · · ◦ ln. Since, x ≤ ln (n) , it follows that `3 (x) ≤ `3 (n) and

hence

x =
ln (n)

`2 (n) +O (`3 (n))
=

ln (n)
`2 (n)

(
1 +O

(
`3 (n)
`2 (n)

))
.

Thus we are lead to take cn := ln(n)
`2(n) . We then have, for α ∈ (0,∞) that

(αcn)αcn = exp (αcn [lnα+ ln cn])

= exp
(
α

ln (n)
`2 (n)

[lnα+ `2 (n)− `3 (n)]
)

= exp
(
α

[
lnα− `3 (n)

`2 (n)
+ 1
]

ln (n)
)

= nα(1+εn(α))

where

εn (α) :=
lnα− `3 (n)

`2 (n)
.

Hence we have

P (X1 ≥ αcn) ∼ λαcn√
2παcne−αcn (αcn)αcn

∼ (λ/e)αcn√
2παcn

1
nα(1+εn(α))

.

Since
ln (λ/e)αcn = αcn ln (λ/e) = α

lnn
`2 (n)

ln (λ/e) = lnnα
ln(λ/e)
`2(n) ,

it follows that
(λ/e)αcn = n

α
ln(λ/e)
`2(n) .

Therefore,

P (X1 ≥ αcn) ∼ n
α

ln(λ/e)
`2(n)√
ln(n)
`2(n)

1
nα(1+εn(α))

=

√
`2 (n)
ln (n)

1
nα(1+δn(α))

where δn (α)→ 0 as n→∞. From this observation, we may show,
∞∑
n=1

P (X1 ≥ αcn) <∞ if α > 1 and

∞∑
n=1

P (X1 ≥ αcn) =∞ if α < 1

and so by Proposition 10.38 we may conclude that

lim sup
n→∞

Xn

ln (n) /`2 (n)
= 1 a.s.
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10.8 Kolmogorov and Hewitt-Savage Zero-One Laws

Let {Xn}∞n=1 be a sequence of random variables on a measurable space, (Ω,B) .
Let Bn := σ (X1, . . . , Xn) ,B∞ := σ (X1, X2, . . . ) , Tn := σ (Xn+1, Xn+2, . . . ) ,
and T := ∩∞n=1Tn ⊂ B∞. We call T the tail σ – field and events, A ∈ T , are
called tail events.

Example 10.42. Let Sn := X1+· · ·+Xn and {bn}∞n=1 ⊂ (0,∞) such that bn ↑ ∞.
Here are some example of tail events and tail measurable random variables:

1. {
∑∞
n=1Xn converges} ∈ T . Indeed,{ ∞∑

k=1

Xk converges

}
=

{ ∞∑
k=n+1

Xk converges

}
∈ Tn

for all n ∈ N.
2. Both lim sup

n→∞
Xn and lim infn→∞Xn are T – measurable as are lim sup

n→∞

Sn
bn

and lim infn→∞ Sn
bn
.

3.
{

limXn exists in R̄
}

=
{

lim sup
n→∞

Xn = lim infn→∞Xn

}
∈ T and similarly,

{
lim

Sn
bn

exists in R̄
}

=
{

lim sup
n→∞

Sn
bn

= lim inf
n→∞

Sn
bn

}
∈ T

and{
lim

Sn
bn

exists in R
}

=
{
−∞ < lim sup

n→∞

Sn
bn

= lim inf
n→∞

Sn
bn

<∞
}
∈ T .

4.
{

limn→∞
Sn
bn

= 0
}
∈ T . Indeed, for any k ∈ N,

lim
n→∞

Sn
bn

= lim
n→∞

(Xk+1 + · · ·+Xn)
bn

from which it follows that
{

limn→∞
Sn
bn

= 0
}
∈ Tk for all k.

Definition 10.43. Let (Ω,B, P ) be a probability space. A σ – field, F ⊂ B is
almost trivial iff P (F) = {0, 1} , i.e. P (A) ∈ {0, 1} for all A ∈ F .

Lemma 10.44. Suppose that X : Ω → R̄ is a random variable which is F
measurable, where F ⊂ B is almost trivial. Then there exists c ∈ R̄ such that
X = c a.s.

Proof. Since {X =∞} and {X = −∞} are in F , if P (X =∞) > 0 or
P (X = −∞) > 0, then P (X =∞) = 1 or P (X = −∞) = 1 respectively.
Hence, it suffices to finish the proof under the added condition that P (X ∈ R) =
1.

For each x ∈ R, {X ≤ x} ∈ F and therefore, P (X ≤ x) is either 0 or 1. Since
the function, F (x) := P (X ≤ x) ∈ {0, 1} is right continuous, non-decreasing
and F (−∞) = 0 and F (+∞) = 1, there is a unique point c ∈ R where F (c) = 1
and F (c−) = 0. At this point, we have P (X = c) = 1.

Proposition 10.45 (Kolmogorov’s Zero-One Law). Suppose that P is a
probability measure on (Ω,B) such that {Xn}∞n=1 are independent random vari-
ables. Then T is almost trivial, i.e. P (A) ∈ {0, 1} for all A ∈ T .

Proof. Let A ∈ T ⊂ B∞. Since A ∈ σ (Xn+1, Xn+2, . . . ) for all n and Tn
is independent of Bn = σ (X1, . . . , Xn) , it follows that A is independent of
∪∞n=1Bn for all n. Since the latter set is a multiplicative system, it follows that
A is independent of B∞ = σ (∪Bn) = ∨∞n=1Bn. But A ∈ B∞ and hence A is
independent of itself, i.e.

P (A) = P (A ∩A) = P (A)P (A) .

Since the only x ∈ R, such that x = x2 is x = 0 or x = 1, the result is proved.
In particular the tail events in Example 10.42 have probability either 0 or 1.

Corollary 10.46. Keeping the assumptions in Proposition 10.45 and let
{bn}∞n=1 ⊂ (0,∞) such that bn ↑ ∞. Then lim sup

n→∞
Xn, lim infn→∞Xn,

lim sup
n→∞

Sn
bn
, and lim infn→∞ Sn

bn
are all constant almost surely. In particular, ei-

ther P
({

lim
n→∞

Sn
bn

exists
})

= 0 or P
({

lim
n→∞

Sn
bn

exists
})

= 1 and in the latter

case lim
n→∞

Sn
bn

= c a.s for some c ∈ R̄.

Let us now suppose that Ω := R∞ = RN, Xn (ω) = ωn for all ω ∈ Ω,
and B := σ (X1, X2, . . . ) . We say a permutation (i.e. a bijective map on N),
π : N→ N is finite if π (n) = n for a.a. n. Define Tπ : Ω → Ω by Tπ (ω) =
(ωπ1, ωπ2, . . . ) .

Definition 10.47. The permutation invariant σ – field, S ⊂ B, is the col-
lection of sets, A ∈ B such that T−1

π (A) = A for all finite permutations π. (You
should check that S is a σ – field!)

In the proof below we will use the identities,

1A4B = |1A − 1B | and P (A4B) = E |1A − 1B | .
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Proposition 10.48 (Hewitt-Savage Zero-One Law). Let µ be a probability
measure on (R,BR) and P = ⊗∞n=1µ be the product measure on

(
Ω = RN,B

)
so

that {Xn}∞n=1 is an i.i.d. sequence with LawP (Xn) = µ for all n. Then S is P
– almost trivial.

Proof. LetA := ∪∞n=1σ (X1, X2, . . . , Xn) . ThenA is an algebra and σ (A) =
B. By the regularity result in Corollary 5.28 (or see Theorem 5.44 or Exercise
8.5) for any B ∈ B and ε > 0, there exists A ∈ A such that P (A∆B) < ε.

Now suppose that B ∈ S, ε > 0, and A ∈ σ (X1, X2, . . . , Xn) ⊂ A such that
P (A∆B) < ε. Let π : N→ N be the permutation defined by π (j) = j + n,
π (j + n) = j for j = 1, 2, . . . , n, and π (j + 2n) = j + 2n for all j ∈ N. Since

B = {(X1, . . . , Xn) ∈ B′} = {ω : (ω1, . . . , ωn) ∈ B′}

for some B′ ∈ BRn , we have

T−1
π (B) = {ω : ((Tπ (ω))1 , . . . , (Tπ (ω))n) ∈ B′}

= {ω : (ωπ1, . . . , ωπn) ∈ B′}
= {ω : (ωn+1, . . . , ωn+n) ∈ B′}
= {(Xn+1, . . . , Xn+n) ∈ B′} ∈ σ (Xn+1, . . . , Xn+n) ,

it follows that B and T−1
π (B) are independent with P (B) = P

(
T−1
π (B)

)
.

Therefore P
(
B ∩ T−1

π B
)

= P (B)2
. Combining this observation with the iden-

tity, P (A) = P (A ∩A) = P
(
A ∩ T−1

π A
)

(since T−1
π A = A as A ∈ S), we

find∣∣∣P (A)− P (B)2
∣∣∣ =

∣∣P (A ∩ T−1
π A

)
− P

(
B ∩ T−1

π B
)∣∣ =

∣∣∣E [1A∩T−1
π A − 1B∩T−1

π B

]∣∣∣
≤ E

∣∣∣1A∩T−1
π A − 1B∩T−1

π B

∣∣∣
= E

∣∣∣1A1T−1
π A − 1B1T−1

π B

∣∣∣
= E

∣∣∣[1A − 1B ] 1T−1
π A + 1B

[
1T−1

π A − 1T−1
π B

]∣∣∣
≤ E |[1A − 1B ]|+ E

∣∣∣1T−1
π A − 1T−1

π B

∣∣∣
= P (A∆B) + P

(
T−1
π A∆T−1

π B
)
< 2ε.

Since |P (A)− P (B)| ≤ P (A∆B) < ε, it follows that∣∣∣P (A)− [P (A) +O (ε)]2
∣∣∣ < ε. (10.34)

Since ε > 0 we may let ε ↓ 0 in Eq. (10.34) in order to conclude that P (A) =
P (A)2

.

Example 10.49 (Some Random Walk 0−1 Law Results). Continue the notation
in Proposition 10.48.

1. As above, if Sn = X1 + · · · + Xn, then P (Sn ∈ B i.o.) ∈ {0, 1} for all
B ∈ BR. Indeed, if π is a finite permutation,

T−1
π ({Sn ∈ B i.o.}) = {Sn ◦ Tπ ∈ B i.o.} = {Sn ∈ B i.o.} .

Hence {Sn ∈ B i.o.} is in the permutation invariant σ – field, S. The same
goes for {Sn ∈ B a.a.}

2. If P (X1 6= 0) > 0, then lim sup
n→∞

Sn =∞ a.s. or lim sup
n→∞

Sn = −∞ a.s. Indeed,

T−1
π

{
lim sup
n→∞

Sn ≤ x
}

=
{

lim sup
n→∞

Sn ◦ Tπ ≤ x
}

=
{

lim sup
n→∞

Sn ≤ x
}

which shows that lim sup
n→∞

Sn is S – measurable. Therefore, lim sup
n→∞

Sn = c

a.s. for some c ∈ R̄. Since, a.s.,

c = lim sup
n→∞

Sn+1 = lim sup
n→∞

(Sn +X1) = lim sup
n→∞

Sn +X1 = c+X1,

we must have either c ∈ {±∞} or X1 = 0 a.s. Since the latter is not allowed,
lim sup
n→∞

Sn =∞ or lim sup
n→∞

Sn = −∞ a.s.

3. Now assume that P (X1 6= 0) > 0 and X1
d= −X1, i.e. P (X1 ∈ A) =

P (−X1 ∈ A) for all A ∈ BR. From item 2. we know that and from what
we have already proved, we know lim sup

n→∞
Sn = c a.s. with c ∈ {±∞} .

Since {Xn}∞n=1 and {−Xn}∞n=1 are i.i.d. and −Xn
d= Xn, it follows that

{Xn}∞n=1
d= {−Xn}∞n=1 .The results of Exercise 6.10 then imply that

lim sup
n→∞

Sn
d= lim sup

n→∞
(−Sn) and in particular lim sup

n→∞
(−Sn) = c a.s. as well.

Thus we have

c = lim sup
n→∞

(−Sn) = − lim inf
n→∞

Sn ≥ − lim sup
n→∞

Sn = −c.

Since the c = −∞ does not satisfy, c ≥ −c, we must c = ∞. Hence in this
symmetric case we have shown,

lim sup
n→∞

Sn =∞ and lim sup
n→∞

(−Sn) =∞ a.s.

or equivalently that

lim sup
n→∞

Sn =∞ and lim inf
n→∞

Sn = −∞ a.s.
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10.9 Another Construction of Independent Random
Variables*

This section may be skipped as the results are a special case of those given above.
The arguments given here avoid the use of Kolmogorov’s existence theorem for
product measures.

Example 10.50. Suppose that Ω = Λn where Λ is a finite set, B = 2Ω , P ({ω}) =∏n
j=1 qj (ωj) where qj : Λ→ [0, 1] are functions such that

∑
λ∈Λ qj (λ) = 1. Let

Ci :=
{
Λi−1 ×A× Λn−i : A ⊂ Λ

}
. Then {Ci}ni=1 are independent. Indeed, if

Bi := Λi−1 ×Ai × Λn−i, then

∩Bi = A1 ×A2 × · · · ×An

and we have

P (∩Bi) =
∑

ω∈A1×A2×···×An

n∏
i=1

qi (ωi) =
n∏
i=1

∑
λ∈Ai

qi (λ)

while

P (Bi) =
∑

ω∈Λi−1×Ai×Λn−i

n∏
i=1

qi (ωi) =
∑
λ∈Ai

qi (λ) .

Example 10.51. Continue the notation of Example 10.50 and further assume
that Λ ⊂ R and let Xi : Ω → Λ be defined by, Xi (ω) = ωi. Then {Xi}ni=1

are independent random variables. Indeed, σ (Xi) = Ci with Ci as in Example
10.50.

Alternatively, from Exercise 4.10, we know that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)]

for all fi : Λ → R. Taking Ai ⊂ Λ and fi := 1Ai in the above identity shows
that

P (X1 ∈ A1, . . . , Xn ∈ An) = EP

[
n∏
i=1

1Ai (Xi)

]
=

n∏
i=1

EP [1Ai (Xi)]

=
n∏
i=1

P (Xi ∈ Ai)

as desired.

Theorem 10.52 (Existence of i.i.d simple R.V.’s). Suppose that {qi}ni=0

is a sequence of positive numbers such that
∑n
i=0 qi = 1. Then there exists a se-

quence {Xk}∞k=1 of simple random variables taking values in Λ = {0, 1, 2 . . . , n}
on ((0, 1],B,m) such that

m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik

for all i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n} and all k ∈ N. (See Example 10.16 above
and Theorem 10.56 below for the general case of this theorem.)

Proof. For i = 0, 1, . . . , n, let σ−1 = 0 and σj :=
∑j
i=0 qi and for any

interval, (a, b], let

Ti ((a, b]) := (a+ σi−1 (b− a) , a+ σi (b− a)].

Given i1, i2, . . . , ik ∈ {0, 1, 2, . . . , n}, let

Ji1,i2,...,ik := Tik
(
Tik−1 (. . . Ti1 ((0, 1]))

)
and define {Xk}∞k=1 on (0, 1] by

Xk :=
∑

i1,i2,...,ik∈{0,1,2,...,n}

ik1Ji1,i2,...,ik ,

see Figure 10.4. Repeated applications of Corollary 6.27 shows the functions,
Xk : (0, 1]→ R are measurable.

Observe that

m (Ti ((a, b])) = qi (b− a) = qim ((a, b]) , (10.35)

and so by induction,

m (Ji1,i2,...,ik) = qikqik−1 . . . qi1 .

The reader should convince herself/himself that

{X1 = i1, . . . Xk = ii} = Ji1,i2,...,ik

and therefore, we have

m ({X1 = i1, . . . , Xk = ii}) = m (Ji1,i2,...,ik) = qikqik−1 . . . qi1

as desired.

Corollary 10.53 (Independent variables on product spaces). Suppose
Λ = {0, 1, 2 . . . , n} , qi > 0 with

∑n
i=0 qi = 1, Ω = Λ∞ = ΛN, and for

i ∈ N, let Yi : Ω → R be defined by Yi (ω) = ωi for all ω ∈ Ω. Further let
B := σ (Y1, Y2, . . . , Yn, . . . ) . Then there exists a unique probability measure,
P : B → [0, 1] such that

P ({Y1 = i1, . . . , Yk = ii}) = qi1 . . . qik .
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10.9 Another Construction of Independent Random Variables* 161

Fig. 10.4. Here we suppose that p0 = 2/3 and p1 = 1/3 and then we construct Jl
and Jl,k for l, k ∈ {0, 1} .

Proof. Let {Xi}ni=1 be as in Theorem 10.52 and define T : (0, 1]→ Ω by

T (x) = (X1 (x) , X2 (x) , . . . , Xk (x) , . . . ) .

Observe that T is measurable since Yi ◦T = Xi is measurable for all i. We now
define, P := T∗m. Then we have

P ({Y1 = i1, . . . , Yk = ii}) = m
(
T−1 ({Y1 = i1, . . . , Yk = ii})

)
= m ({Y1 ◦ T = i1, . . . , Yk ◦ T = ii})
= m ({X1 = i1, . . . , Xk = ii}) = qi1 . . . qik .

Theorem 10.54. Given a finite subset, Λ ⊂ R and a function q : Λ → [0, 1]
such that

∑
λ∈Λ q (λ) = 1, there exists a probability space, (Ω,B, P ) and an

independent sequence of random variables, {Xn}∞n=1 such that P (Xn = λ) =
q (λ) for all λ ∈ Λ.

Proof. Use Corollary 10.10 to shows that random variables constructed in
Example 5.41 or Theorem 10.52 fit the bill.

Proposition 10.55. Suppose that {Xn}∞n=1 is a sequence of i.i.d. random
variables with distribution, P (Xn = 0) = P (Xn = 1) = 1

2 . If we let U :=∑∞
n=1 2−nXn, then P (U ≤ x) = (0 ∨ x)∧1, i.e. U has the uniform distribution

on [0, 1] .

Proof. Let us recall that P (Xn = 0 a.a.) = 0 = P (Xn = 1 a.a.) . Hence
we may, by shrinking Ω if necessary, assume that {Xn = 0 a.a.} = ∅ =
{Xn = 1 a.a.} . With this simplification, we have{

U <
1
2

}
= {X1 = 0} ,{

U <
1
4

}
= {X1 = 0, X2 = 0} and{

1
2
≤ U <

3
4

}
= {X1 = 1, X2 = 0}

and hence that {
U <

3
4

}
=
{
U <

1
2

}
∪
{

1
2
≤ U <

3
4

}
= {X1 = 0} ∪ {X1 = 1, X2 = 0} .

From these identities, it follows that

P (U < 0) = 0, P
(
U <

1
4

)
=

1
4
, P

(
U <

1
2

)
=

1
2
, and P

(
U <

3
4

)
=

3
4
.

More generally, we claim that if x =
∑n
j=1 εj2

−j with εj ∈ {0, 1} , then

P (U < x) = x. (10.36)

The proof is by induction on n. Indeed, we have already verified (10.36) when
n = 1, 2. Suppose we have verified (10.36) up to some n ∈ N and let x =∑n
j=1 εj2

−j and consider

P
(
U < x+ 2−(n+1)

)
= P (U < x) + P

(
x ≤ U < x+ 2−(n+1)

)
= x+ P

(
x ≤ U < x+ 2−(n+1)

)
.

Since {
x ≤ U < x+ 2−(n+1)

}
=
[
∩nj=1 {Xj = εj}

]
∩ {Xn+1 = 0}

we see that
P
(
x ≤ U < x+ 2−(n+1)

)
= 2−(n+1)
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and hence
P
(
U < x+ 2−(n+1)

)
= x+ 2−(n+1)

which completes the induction argument.
Since x → P (U < x) is left continuous we may now conclude that

P (U < x) = x for all x ∈ (0, 1) and since x → x is continuous we may also
deduce that P (U ≤ x) = x for all x ∈ (0, 1) . Hence we may conclude that

P (U ≤ x) = (0 ∨ x) ∧ 1.

We may now show the existence of independent random variables with ar-
bitrary distributions.

Theorem 10.56. Suppose that {µn}∞n=1 are a sequence of probability measures
on (R,BR) . Then there exists a probability space, (Ω,B, P ) and a sequence
{Yn}∞n=1 independent random variables with Law (Yn) := P ◦ Y −1

n = µn for all
n.

Proof. By Theorem 10.54, there exists a sequence of i.i.d. random variables,
{Zn}∞n=1 , such that P (Zn = 1) = P (Zn = 0) = 1

2 . These random variables may
be put into a two dimensional array, {Xi,j : i, j ∈ N} , see the proof of Lemma

3.8. For each i, let Ui :=
∑∞
j=1 2−iXi,j – σ

(
{Xi,j}∞j=1

)
– measurable random

variable. According to Proposition 10.55, Ui is uniformly distributed on [0, 1] .

Moreover by the grouping Lemma 10.14,
{
σ
(
{Xi,j}∞j=1

)}∞
i=1

are independent

σ – algebras and hence {Ui}∞i=1 is a sequence of i.i.d.. random variables with
the uniform distribution.

Finally, let Fi (x) := µ ((−∞, x]) for all x ∈ R and let Gi (y) =
inf {x : Fi (x) ≥ y} . Then according to Theorem 6.48, Yi := Gi (Ui) has µi as
its distribution. Moreover each Yi is σ

(
{Xi,j}∞j=1

)
– measurable and therefore

the {Yi}∞i=1 are independent random variables.



11

Lp – spaces

Let (Ω,B, µ) be a measure space and for 0 < p < ∞ and a measurable
function f : Ω → C let

‖f‖p :=
(∫

Ω

|f |p dµ
)1/p

(11.1)

and when p =∞, let

‖f‖∞ = inf {a ≥ 0 : µ(|f | > a) = 0} (11.2)

For 0 < p ≤ ∞, let

Lp(Ω,B, µ) = {f : Ω → C : f is measurable and ‖f‖p <∞}/ ∼

where f ∼ g iff f = g a.e. Notice that ‖f − g‖p = 0 iff f ∼ g and if f ∼ g then
‖f‖p = ‖g‖p. In general we will (by abuse of notation) use f to denote both
the function f and the equivalence class containing f.

Remark 11.1. Suppose that ‖f‖∞ ≤M, then for all a > M, µ(|f | > a) = 0 and
therefore µ(|f | > M) = limn→∞ µ(|f | > M + 1/n) = 0, i.e. |f(ω)| ≤ M for µ -
a.e. ω. Conversely, if |f | ≤ M a.e. and a > M then µ(|f | > a) = 0 and hence
‖f‖∞ ≤M. This leads to the identity:

‖f‖∞ = inf {a ≥ 0 : |f(ω)| ≤ a for µ – a.e. ω} .

11.1 Modes of Convergence

Let {fn}∞n=1 ∪ {f} be a collection of complex valued measurable functions on
Ω. We have the following notions of convergence and Cauchy sequences.

Definition 11.2. 1. fn → f a.e. if there is a set E ∈ B such that µ(E) = 0
and limn→∞ 1Ecfn = 1Ecf.

2. fn → f in µ – measure if limn→∞ µ(|fn − f | > ε) = 0 for all ε > 0. We
will abbreviate this by saying fn → f in L0 or by fn

µ→ f.
3. fn → f in Lp iff f ∈ Lp and fn ∈ Lp for all n, and limn→∞ ‖fn − f‖p = 0.

Definition 11.3. 1. {fn} is a.e. Cauchy if there is a set E ∈ B such that
µ(E) = 0 and{1Ec fn} is a pointwise Cauchy sequences.

2. {fn} is Cauchy in µ – measure (or L0 – Cauchy) if limm,n→∞ µ(|fn−fm| >
ε) = 0 for all ε > 0.

3. {fn} is Cauchy in Lp if limm,n→∞ ‖fn − fm‖p = 0.

When µ is a probability measure, we describe, fn
µ→ f as fn converging

to f in probability. If a sequence {fn}∞n=1 is Lp – convergent, then it is Lp –
Cauchy. For example, when p ∈ [1,∞] and fn → f in Lp, we have

‖fn − fm‖p ≤ ‖fn − f‖p + ‖f − fm‖p → 0 as m,n→∞.

The case where p = 0 will be handled in Theorem 11.7 below.

Lemma 11.4 (Lp – convergence implies convergence in probability).
Let p ∈ [1,∞). If {fn} ⊂ Lp is Lp – convergent (Cauchy) then {fn} is also
convergent (Cauchy) in measure.

Proof. By Chebyshev’s inequality (7.2),

µ (|f | ≥ ε) = µ (|f |p ≥ εp) ≤ 1
εp

∫
Ω

|f |p dµ =
1
εp
‖f‖pp

and therefore if {fn} is Lp – Cauchy, then

µ (|fn − fm| ≥ ε) ≤
1
εp
‖fn − fm‖pp → 0 as m,n→∞

showing {fn} is L0 – Cauchy. A similar argument holds for the Lp – convergent
case.

Here is a sequence of functions where fn → 0 a.e., fn 9 0 in L1, fn
m→ 0.
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Above is a sequence of functions where fn → 0 a.e., yet fn 9 0 in L1. or in
measure.

Here is a sequence of functions where fn → 0 a.e., fn
m→ 0 but fn 9 0 in L1.

Above is a sequence of functions where fn → 0 in L1, fn 9 0 a.e., and
fn

m→ 0.

Theorem 11.5 (Egoroff: a.s. convergence implies convergence in prob-
ability). Suppose µ(Ω) = 1 and fn → f a.s. Then for all ε > 0 there exists
E = Eε ∈ B such that µ(E) < ε and fn → f uniformly on Ec. In particular
fn

µ−→ f as n→∞.

Proof. Let fn → f a.e. Then for all ε > 0,

0 = µ({|fn − f | > ε i.o. n})

= lim
N→∞

µ

 ⋃
n≥N

{|fn − f | > ε}

 (11.3)

≥ lim sup
N→∞

µ ({|fN − f | > ε})

from which it follows that fn
µ−→ f as n→∞. To get the uniform convergence

off a small exceptional set, the equality in Eq. (11.3) allows us to choose an
increasing sequence {Nk}∞k=1 , such that, if

Ek :=
⋃

n≥Nk

{
|fn − f | >

1
k

}
, then µ(Ek) < ε2−k.

The set, E := ∪∞k=1Ek, then satisfies the estimate, µ(E) <
∑
k ε2

−k = ε.
Moreover, for ω /∈ E, we have |fn (ω)− f (ω)| ≤ 1

k for all n ≥ Nk and all k.
That is fn → f uniformly on Ec.

Lemma 11.6. Suppose an ∈ C and |an+1 − an| ≤ εn and
∞∑
n=1

εn < ∞. Then

lim
n→∞

an = a ∈ C exists and |a− an| ≤ δn :=
∞∑
k=n

εk.
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Proof. Let m > n then

|am − an| =
∣∣∣∣m−1∑
k=n

(ak+1 − ak)
∣∣∣∣ ≤ m−1∑

k=n

|ak+1 − ak| ≤
∞∑
k=n

εk := δn . (11.4)

So |am − an| ≤ δmin(m,n) → 0 as ,m, n → ∞, i.e. {an} is Cauchy. Let m → ∞
in (11.4) to find |a− an| ≤ δn.

Theorem 11.7. Let (Ω,B, µ) be a measure space and {fn}∞n=1 be a sequence
of measurable functions on Ω.

1. If f and g are measurable functions and fn
µ→ f and fn

µ→ g then f = g
a.e.

2. If fn
µ→ f then {fn}∞n=1 is Cauchy in measure.

3. If {fn}∞n=1 is Cauchy in measure, there exists a measurable function, f, and
a subsequence gj = fnj of {fn} such that limj→∞ gj := f exists a.e.

4. If {fn}∞n=1 is Cauchy in measure and f is as in item 3. then fn
µ→ f.

5. Let us now further assume that µ (Ω) <∞. In this case, a sequence of func-
tions, {fn}∞n=1 converges to f in probability iff every subsequence, {f ′n}

∞
n=1

of {fn}∞n=1 has a further subsequence, {f ′′n}
∞
n=1 , which is almost surely con-

vergent to f.

Proof.

1. Suppose that f and g are measurable functions such that fn
µ→ g and

fn
µ→ f as n→∞ and ε > 0 is given. Since

{|f − g| > ε} = {|f − fn + fn − g| > ε} ⊂ {|f − fn|+ |fn − g| > ε}
⊂ {|f − fn| > ε/2} ∪ {|g − fn| > ε/2} ,

µ(|f − g| > ε) ≤ µ(|f − fn| > ε/2) + µ(|g − fn| > ε/2)→ 0 as n→∞.

Hence

µ(|f − g| > 0) = µ

(
∪∞n=1

{
|f − g| > 1

n

})
≤
∞∑
n=1

µ

(
|f − g| > 1

n

)
= 0,

i.e. f = g a.e.
2. Suppose fn

µ→ f, ε > 0 and m,n ∈ N and ω ∈ Ω are such that
|fn (ω)− fm (ω)| > ε. Then

ε < |fn (ω)− fm (ω)| ≤ |fn (ω)− f (ω)|+ |f (ω)− fm (ω)|

from which it follows that either |fn (ω)− f (ω)| > ε/2 or |f (ω)− fm (ω)| >
ε/2. Therefore we have shown,

{|fn − fm| > ε} ⊂ {|fn − f | > ε/2} ∪ {|fm − f | > ε/2}

and hence

µ (|fn − fm| > ε) ≤ µ (|fn − f | > ε/2)+µ (|fm − f | > ε/2)→ 0 as m,n→∞.

3. Suppose {fn} is L0 (µ) – Cauchy and let εn > 0 such that
∞∑
n=1

εn < ∞

(εn = 2−n would do) and set δn =
∞∑
k=n

εk. Choose gj = fnj where {nj} is a

subsequence of N such that

µ({|gj+1 − gj | > εj}) ≤ εj .

Let FN := ∪j≥N {|gj+1 − gj | > εj} and

E := ∩∞N=1FN = {|gj+1 − gj | > εj i.o.}

and observe that µ (FN ) ≤ δN <∞. Since

∞∑
j=1

µ({|gj+1 − gj | > εj}) ≤
∞∑
j=1

εj <∞,

it follows from the first Borel-Cantelli lemma that

0 = µ (E) = lim
N→∞

µ (FN ) .

For ω /∈ E, |gj+1 (ω)− gj (ω)| ≤ εj for a.a. j and so by Lemma 11.6, f (ω) :=
lim
j→∞

gj(ω) exists. For ω ∈ E we may define f (ω) ≡ 0.

4. Next we will show gN
µ→ f as N →∞ where f and gN are as above. If

ω ∈ F cN = ∩j≥N {|gj+1 − gj | ≤ εj} ,

then
|gj+1 (ω)− gj (ω)| ≤ εj for all j ≥ N.

Another application of Lemma 11.6 shows |f(ω)− gj(ω)| ≤ δj for all j ≥ N,
i.e.

F cN ⊂ ∩j≥N {ω ∈ Ω : |f(ω)− gj(ω)| ≤ δj} .

Taking complements of this equation shows

{|f − gN | > δN} ⊂ ∪j≥N {|f − gj | > δj} ⊂ FN .

and therefore,
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µ(|f − gN | > δN ) ≤ µ(FN ) ≤ δN → 0 as N →∞

and in particular, gN
µ→ f as N →∞.

With this in hand, it is straightforward to show fn
µ→ f. Indeed, since

{|fn − f | > ε} = {|f − gj + gj − fn| > ε}
⊂ {|f − gj |+ |gj − fn| > ε}
⊂ {|f − gj | > ε/2} ∪ {|gj − fn| > ε/2},

we have

µ({|fn − f | > ε}) ≤ µ({|f − gj | > ε/2}) + µ(|gj − fn| > ε/2).

Therefore, letting j →∞ in this inequality gives,

µ({|fn − f | > ε}) ≤ lim sup
j→∞

µ(|gj − fn| > ε/2)→ 0 as n→∞

because {fn}∞n=1 was Cauchy in measure.
5. If {fn}∞n=1 is convergent and hence Cauchy in probability then any subse-

quence, {f ′n}
∞
n=1 is also Cauchy in probability. Hence by item 3. there is a

further subsequence, {f ′′n}
∞
n=1 of {f ′n}

∞
n=1 which is convergent almost surely.

Conversely if {fn}∞n=1 does not converge to f in probability, then there exists
an ε > 0 and a subsequence, {nk} such that infk µ (|f − fnk | ≥ ε) > 0. Any
subsequence of {fnk} would have the same property and hence can not be
almost surely convergent because of Theorem 11.5.

Corollary 11.8 (Dominated Convergence Theorem). Let (Ω,B, µ) be a
measure space. Suppose {fn} , {gn} , and g are in L1 and f ∈ L0 are functions
such that

|fn| ≤ gn a.e., fn
µ−→ f, gn

µ−→ g, and
∫
gn →

∫
g as n→∞.

Then f ∈ L1 and limn→∞ ‖f − fn‖1 = 0, i.e. fn → f in L1. In particular
limn→∞

∫
fn =

∫
f.

Proof. First notice that |f | ≤ g a.e. and hence f ∈ L1 since g ∈ L1. To see
that |f | ≤ g, use Theorem 11.7 to find subsequences {fnk} and {gnk} of {fn}
and {gn} respectively which are almost everywhere convergent. Then

|f | = lim
k→∞

|fnk | ≤ lim
k→∞

gnk = g a.e.

If (for sake of contradiction) limn→∞ ‖f − fn‖1 6= 0 there exists ε > 0 and a
subsequence {fnk} of {fn} such that

∫
|f − fnk | ≥ ε for all k. (11.5)

Using Theorem 11.7 again, we may assume (by passing to a further subse-
quences if necessary) that fnk → f and gnk → g almost everywhere. Noting,
|f − fnk | ≤ g + gnk → 2g and

∫
(g + gnk) →

∫
2g, an application of the domi-

nated convergence Theorem 7.27 implies limk→∞
∫
|f − fnk | = 0 which contra-

dicts Eq. (11.5).

Exercise 11.1 (Fatou’s Lemma). Let (Ω,B, µ) be a measure space. If fn ≥ 0
and fn → f in measure, then

∫
Ω
fdµ ≤ lim infn→∞

∫
Ω
fndµ.

Exercise 11.2. Let (Ω,B, µ) be a measure space, p ∈ [1,∞), {fn} ⊂ Lp (µ)
and f ∈ Lp (µ) . Then fn → f in Lp (µ) iff fn

µ−→ f and
∫
|fn|p →

∫
|f |p .

Solution to Exercise (11.2). By the triangle inequality,
∣∣∣‖f‖p − ‖fn‖p∣∣∣ ≤

‖f − fn‖p which shows
∫
|fn|p →

∫
|f |p if fn → f in Lp. Moreover Chebyschev’s

inequality implies fn
µ−→ f if fn → f in Lp.

For the converse, let Fn := |f − fn|p and Gn := 2p−1 [|f |p + |fn|p] . Then
Fn

µ−→ 0, Fn ≤ Gn ∈ L1, and
∫
Gn →

∫
G where G := 2p |f |p ∈ L1. Therefore,

by Corollary 11.8,
∫
|f − fn|p =

∫
Fn →

∫
0 = 0.

Exercise 11.3. Let (Ω,B, µ) be a measure space, p ∈ [1,∞), and suppose that
0 ≤ f ∈ L1 (µ) , 0 ≤ fn ∈ L1 (µ) for all n, fn

µ−→ f, and
∫
fndµ→

∫
fdµ. Then

fn → f in L1 (µ) . In particular if f, fn ∈ Lp (µ) and fn → f in Lp (µ) , then
|fn|p → |f |p in L1 (µ) .

Solution to Exercise (11.3). Let Fn := |f − fn| ≤ f + fn := gn and g :=
2f. Then un

µ−→ 0, gn
µ−→ g, and

∫
gndµ →

∫
gdµ. So by Corollary 11.8,∫

|f − fn| dµ =
∫
Fndµ→ 0 as n→∞.

Corollary 11.9. Suppose (Ω,B, µ) is a probability space, fn
µ−→ f and gn

µ−→
g and ϕ : R→ R and ψ : R2 → R are continuous functions. Then

1. ϕ (fn)
µ−→ ϕ (f) ,

2. ψ (fn, gn)
µ−→ ψ (f, g) ,

3. fn + gn
µ−→ f + g, and

4. fn · gn
µ−→ f · g.

Proof. Item 1., 3. and 4. all follow from item 2. by taking ψ (x, y) = ϕ (x) ,
ψ (x, y) = x+ y, and ψ (x, y) = x · y respectively. So it suffices to prove item 2.
To do this we will make repeated use of Theorem 11.7.
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Given a subsequence, {nk} , of N there is a subsequence, {n′k} of {nk} such
that fn′

k
→ f a.s. and yet a further subsequence {n′′k} of {n′k} such that gn′′

k
→ g

a.s. Hence, by the continuity of ψ, it now follows that

lim
k→∞

ψ
(
fn′′

k
, gn′′

k

)
= ψ (f, g) a.s.

which completes the proof.

11.2 Jensen’s, Hölder’s and Minikowski’s Inequalities

Theorem 11.10 (Jensen’s Inequality). Suppose that (Ω,B, µ) is a proba-
bility space, i.e. µ is a positive measure and µ(Ω) = 1. Also suppose that
f ∈ L1(µ), f : Ω → (a, b), and ϕ : (a, b) → R is a convex function, (i.e.
ϕ′′ (x) ≥ 0 on (a, b) .) Then

ϕ

(∫
Ω

fdµ

)
≤
∫
Ω

ϕ(f)dµ

where if ϕ ◦ f /∈ L1(µ), then ϕ ◦ f is integrable in the extended sense and∫
Ω
ϕ(f)dµ =∞.

Proof. Let t =
∫
Ω
fdµ ∈ (a, b) and let β ∈ R (β = ϕ̇ (t) when ϕ̇ (t) exists),

be such that ϕ(s) − ϕ(t) ≥ β(s − t) for all s ∈ (a, b). (See Lemma 10.32) and
Figure 10.1 when ϕ is C1 and Theorem 11.42 below for the existence of such a
β in the general case.) Then integrating the inequality, ϕ(f)−ϕ(t) ≥ β(f − t),
implies that

0 ≤
∫
Ω

ϕ(f)dµ− ϕ(t) =
∫
Ω

ϕ(f)dµ− ϕ(
∫
Ω

fdµ).

Moreover, if ϕ(f) is not integrable, then ϕ(f) ≥ ϕ(t) + β(f − t) which shows
that negative part of ϕ(f) is integrable. Therefore,

∫
Ω
ϕ(f)dµ =∞ in this case.

Example 11.11. Since ex for x ∈ R, − lnx for x > 0, and xp for x ≥ 0 and p ≥ 1
are all convex functions, we have the following inequalities

exp
(∫

Ω

fdµ

)
≤
∫
Ω

efdµ, (11.6)∫
Ω

log(|f |)dµ ≤ log
(∫

Ω

|f | dµ
)

and for p ≥ 1,

∣∣∣∣∫
Ω

fdµ

∣∣∣∣p ≤ (∫
Ω

|f | dµ
)p
≤
∫
Ω

|f |p dµ.

As a special case of Eq. (11.6), if pi, si > 0 for i = 1, 2, . . . , n and
∑n
i=1

1
pi

= 1,
then

s1 . . . sn = e
∑n

i=1
ln si = e

∑n

i=1
1
pi

ln s
pi
i ≤

n∑
i=1

1
pi
eln s

pi
i =

n∑
i=1

spii
pi
. (11.7)

Indeed, we have applied Eq. (11.6) with Ω = {1, 2, . . . , n} , µ =
∑n
i=1

1
pi
δi and

f (i) := ln spii . As a special case of Eq. (11.7), suppose that s, t, p, q ∈ (1,∞)
with q = p

p−1 (i.e. 1
p + 1

q = 1) then

st ≤ 1
p
sp +

1
q
tq. (11.8)

(When p = q = 1/2, the inequality in Eq. (11.8) follows from the inequality,
0 ≤ (s− t)2

.)
As another special case of Eq. (11.7), take pi = n and si = a

1/n
i with ai > 0,

then we get the arithmetic geometric mean inequality,

n
√
a1 . . . an ≤

1
n

n∑
i=1

ai. (11.9)

Theorem 11.12 (Hölder’s inequality). Suppose that 1 ≤ p ≤ ∞ and q :=
p
p−1 , or equivalently p−1 + q−1 = 1. If f and g are measurable functions then

‖fg‖1 ≤ ‖f‖p · ‖g‖q. (11.10)

Assuming p ∈ (1,∞) and ‖f‖p · ‖g‖q <∞, equality holds in Eq. (11.10) iff |f |p
and |g|q are linearly dependent as elements of L1 which happens iff

|g|q‖f‖pp = ‖g‖qq |f |
p a.e. (11.11)

Proof. The cases p = 1 and q = ∞ or p = ∞ and q = 1 are easy to deal
with and will be left to the reader. So we now assume that p, q ∈ (1,∞) . If
‖f‖q = 0 or ∞ or ‖g‖p = 0 or ∞, Eq. (11.10) is again easily verified. So we will
now assume that 0 < ‖f‖q, ‖g‖p < ∞. Taking s = |f | /‖f‖p and t = |g|/‖g‖q
in Eq. (11.8) gives,

|fg|
‖f‖p‖g‖q

≤ 1
p

|f |p

‖f‖p
+

1
q

|g|q

‖g‖q
(11.12)

with equality iff |g/‖g‖q| = |f |p−1
/‖f‖(p−1)

p = |f |p/q /‖f‖p/qp , i.e. |g|q‖f‖pp =
‖g‖qq |f |

p
. Integrating Eq. (11.12) implies
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‖fg‖1
‖f‖p‖g‖q

≤ 1
p

+
1
q

= 1

with equality iff Eq. (11.11) holds. The proof is finished since it is easily checked
that equality holds in Eq. (11.10) when |f |p = c |g|q of |g|q = c |f |p for some
constant c.

Example 11.13. Suppose that ak ∈ C for k = 1, 2, . . . , n and p ∈ [1,∞), then∣∣∣∣∣
n∑
k=1

ak

∣∣∣∣∣
p

≤ np−1
n∑
k=1

|ak|p . (11.13)

Indeed, by Hölder’s inequality applied using the measure space, {1, 2, . . . , n}
equipped with counting measure, we have∣∣∣∣∣

n∑
k=1

ak

∣∣∣∣∣ =

∣∣∣∣∣
n∑
k=1

ak · 1

∣∣∣∣∣ ≤
(

n∑
k=1

|ak|p
)1/p( n∑

k=1

1q
)1/q

= n1/q

(
n∑
k=1

|ak|p
)1/p

where q = p
p−1 . Taking the pth – power of this inequality then gives, Eq. (11.14).

Theorem 11.14 (Generalized Hölder’s inequality). Suppose that fi : Ω →
C are measurable functions for i = 1, . . . , n and p1, . . . , pn and r are positive
numbers such that

∑n
i=1 p

−1
i = r−1, then∥∥∥∥∥

n∏
i=1

fi

∥∥∥∥∥
r

≤
n∏
i=1

‖fi‖pi . (11.14)

Proof. One may prove this theorem by induction based on Hölder’s Theo-
rem 11.12 above. Alternatively we may give a proof along the lines of the proof
of Theorem 11.12 which is what we will do here.

Since Eq. (11.14) is easily seen to hold if ‖fi‖pi = 0 for some i, we will
assume that ‖fi‖pi > 0 for all i. By assumption,

∑n
i=1

ri
pi

= 1, hence we may
replace si by sri and pi by pi/r for each i in Eq. (11.7) to find

sr1 . . . s
r
n ≤

n∑
i=1

(sri )
pi/r

pi/r
= r

n∑
i=1

spii
pi
.

Now replace si by |fi| / ‖fi‖pi in the previous inequality and integrate the result
to find

1∏n
i=1 ‖fi‖pi

∥∥∥∥∥
n∏
i=1

fi

∥∥∥∥∥
r

r

≤ r
n∑
i=1

1
pi

1
‖fi‖pipi

∫
Ω

|fi|pi dµ =
n∑
i=1

r

pi
= 1.

Theorem 11.15 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞ and f, g ∈ Lp

then
‖f + g‖p ≤ ‖f‖p + ‖g‖p. (11.15)

Proof. When p =∞, |f | ≤ ‖f‖∞ a.e. and |g| ≤ ‖g‖∞ a.e. so that |f + g| ≤
|f |+ |g| ≤ ‖f‖∞ + ‖g‖∞ a.e. and therefore

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ .

When p <∞,

|f + g|p ≤ (2 max (|f | , |g|))p = 2p max (|f |p , |g|p) ≤ 2p (|f |p + |g|p) ,

which implies1 f + g ∈ Lp since

‖f + g‖pp ≤ 2p
(
‖f‖pp + ‖g‖pp

)
<∞.

Furthermore, when p = 1 we have

‖f + g‖1 =
∫
Ω

|f + g|dµ ≤
∫
Ω

|f | dµ+
∫
Ω

|g|dµ = ‖f‖1 + ‖g‖1.

We now consider p ∈ (1,∞) . We may assume ‖f + g‖p, ‖f‖p and ‖g‖p are
all positive since otherwise the theorem is easily verified. Integrating

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1

and then applying Holder’s inequality with q = p/(p− 1) gives∫
Ω

|f + g|pdµ ≤
∫
Ω

|f | |f + g|p−1dµ+
∫
Ω

|g| |f + g|p−1dµ

≤ (‖f‖p + ‖g‖p) ‖ |f + g|p−1 ‖q, (11.16)

where

‖|f + g|p−1‖qq =
∫
Ω

(|f + g|p−1)qdµ =
∫
Ω

|f + g|pdµ = ‖f + g‖pp. (11.17)

Combining Eqs. (11.16) and (11.17) implies

‖f + g‖pp ≤ ‖f‖p‖f + g‖p/qp + ‖g‖p‖f + g‖p/qp (11.18)

Solving this inequality for ‖f + g‖p gives Eq. (11.15).

1 In light of Example 11.13, the last 2p in the above inequality may be replaced by
2p−1.
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11.3 Completeness of Lp – spaces

Theorem 11.16. Let ‖·‖∞ be as defined in Eq. (11.2), then
(L∞(Ω,B, µ), ‖·‖∞) is a Banach space. A sequence {fn}∞n=1 ⊂ L∞ con-
verges to f ∈ L∞ iff there exists E ∈ B such that µ(E) = 0 and fn → f
uniformly on Ec. Moreover, bounded simple functions are dense in L∞.

Proof. By Minkowski’s Theorem 11.15, ‖·‖∞ satisfies the triangle inequality.
The reader may easily check the remaining conditions that ensure ‖·‖∞ is a
norm. Suppose that {fn}∞n=1 ⊂ L∞ is a sequence such fn → f ∈ L∞, i.e.
‖f − fn‖∞ → 0 as n→∞. Then for all k ∈ N, there exists Nk <∞ such that

µ
(
|f − fn| > k−1

)
= 0 for all n ≥ Nk.

Let
E = ∪∞k=1 ∪n≥Nk

{
|f − fn| > k−1

}
.

Then µ(E) = 0 and for x ∈ Ec, |f(x)− fn(x)| ≤ k−1 for all n ≥ Nk. This
shows that fn → f uniformly on Ec. Conversely, if there exists E ∈ B such that
µ(E) = 0 and fn → f uniformly on Ec, then for any ε > 0,

µ (|f − fn| ≥ ε) = µ ({|f − fn| ≥ ε} ∩ Ec) = 0

for all n sufficiently large. That is to say lim sup
j→∞

‖f − fn‖∞ ≤ ε for all ε > 0.

The density of simple functions follows from the approximation Theorem 6.39.
So the last item to prove is the completeness of L∞.

Suppose εm,n := ‖fm − fn‖∞ → 0 as m,n → ∞. Let Em,n =
{|fn − fm| > εm,n} and E := ∪Em,n, then µ(E) = 0 and

sup
x∈Ec

|fm (x)− fn (x)| ≤ εm,n → 0 as m,n→∞.

Therefore, f := limn→∞ fn exists on Ec and the limit is uniform on Ec. Letting
f = limn→∞ 1Ecfn, it then follows that limn→∞ ‖fn − f‖∞ = 0.

Theorem 11.17 (Completeness of Lp(µ)). For 1 ≤ p ≤ ∞, Lp(µ) equipped
with the Lp – norm, ‖·‖p (see Eq. (11.1)), is a Banach space.

Proof. By Minkowski’s Theorem 11.15, ‖·‖p satisfies the triangle inequality.
As above the reader may easily check the remaining conditions that ensure ‖·‖p
is a norm. So we are left to prove the completeness of Lp(µ) for 1 ≤ p <∞, the
case p =∞ being done in Theorem 11.16.

Let {fn}∞n=1 ⊂ Lp(µ) be a Cauchy sequence. By Chebyshev’s inequality
(Lemma 11.4), {fn} is L0-Cauchy (i.e. Cauchy in measure) and by Theorem
11.7 there exists a subsequence {gj} of {fn} such that gj → f a.e. By Fatou’s
Lemma,

‖gj − f‖pp =
∫

lim
k→∞

inf |gj − gk|pdµ ≤ lim
k→∞

inf
∫
|gj − gk|pdµ

= lim
k→∞

inf ‖gj − gk‖pp → 0 as j →∞.

In particular, ‖f‖p ≤ ‖gj − f‖p + ‖gj‖p <∞ so the f ∈ Lp and gj
Lp−→ f. The

proof is finished because,

‖fn − f‖p ≤ ‖fn − gj‖p + ‖gj − f‖p → 0 as j, n→∞.

See Proposition ?? for an important example of the use of this theorem.

11.4 Density Results

Theorem 11.18 (Density Theorem). Let p ∈ [1,∞), (Ω,B, µ) be a measure
space and M be an algebra of bounded R – valued measurable functions such
that

1. M ⊂ Lp (µ,R) and σ (M) = B.
2. There exists ψk ∈M such that ψk → 1 boundedly.

Then to every function f ∈ Lp (µ,R) , there exist ϕn ∈ M such that
limn→∞ ‖f − ϕn‖Lp(µ) = 0, i.e. M is dense in Lp (µ,R) .

Proof. Fix k ∈ N for the moment and let H denote those bounded B –
measurable functions, f : Ω → R, for which there exists {ϕn}∞n=1 ⊂ M such
that limn→∞ ‖ψkf − ϕn‖Lp(µ) = 0. A routine check shows H is a subspace of
the bounded measurable R – valued functions on Ω, 1 ∈ H, M ⊂ H and H
is closed under bounded convergence. To verify the latter assertion, suppose
fn ∈ H and fn → f boundedly. Then, by the dominated convergence theorem,
limn→∞ ‖ψk (f − fn)‖Lp(µ) = 0.2 (Take the dominating function to be g =
[2C |ψk|]p where C is a constant bounding all of the {|fn|}∞n=1 .) We may now
choose ϕn ∈M such that ‖ϕn − ψkfn‖Lp(µ) ≤

1
n then

lim sup
n→∞

‖ψkf − ϕn‖Lp(µ) ≤ lim sup
n→∞

‖ψk (f − fn)‖Lp(µ)

+ lim sup
n→∞

‖ψkfn − ϕn‖Lp(µ) = 0 (11.19)

which implies f ∈ H.
An application of Dynkin’s Multiplicative System Theorem 8.15, now shows

H contains all bounded measurable functions on Ω. Let f ∈ Lp (µ) be given. The
2 It is at this point that the proof would break down if p =∞.
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dominated convergence theorem implies limk→∞
∥∥ψk1{|f |≤k}f − f

∥∥
Lp(µ)

= 0.
(Take the dominating function to be g = [2C |f |]p where C is a bound on all of
the |ψk| .) Using this and what we have just proved, there exists ϕk ∈ M such
that ∥∥ψk1{|f |≤k}f − ϕk

∥∥
Lp(µ)

≤ 1
k
.

The same line of reasoning used in Eq. (11.19) now implies
limk→∞ ‖f − ϕk‖Lp(µ) = 0.

Example 11.19. Let µ be a measure on (R,BR) such that µ ([−M,M ]) < ∞
for all M < ∞. Then, Cc (R,R) (the space of continuous functions on R with
compact support) is dense in Lp (µ) for all 1 ≤ p < ∞. To see this, apply
Theorem 11.18 with M = Cc (R,R) and ψk := 1[−k,k].

Theorem 11.20. Suppose p ∈ [1,∞), A ⊂ B ⊂ 2Ω is an algebra such that
σ(A) = B and µ is σ – finite on A. Let S(A, µ) denote the measurable simple
functions, ϕ : Ω → R such {ϕ = y} ∈ A for all y ∈ R and µ ({ϕ 6= 0}) < ∞.
Then S(A, µ) is dense subspace of Lp(µ).

Proof. Let M := S(A, µ). By assumption there exists Ωk ∈ A such that
µ(Ωk) <∞ and Ωk ↑ Ω as k →∞. If A ∈ A, then Ωk∩A ∈ A and µ (Ωk ∩A) <
∞ so that 1Ωk∩A ∈ M. Therefore 1A = limk→∞ 1Ωk∩A is σ (M) – measurable
for every A ∈ A. So we have shown that A ⊂ σ (M) ⊂ B and therefore B =
σ (A) ⊂ σ (M) ⊂ B, i.e. σ (M) = B. The theorem now follows from Theorem
11.18 after observing ψk := 1Ωk ∈M and ψk → 1 boundedly.

Theorem 11.21 (Separability of Lp – Spaces). Suppose, p ∈ [1,∞), A ⊂ B
is a countable algebra such that σ(A) = B and µ is σ – finite on A. Then Lp(µ)
is separable and

D = {
∑

aj1Aj : aj ∈ Q + iQ, Aj ∈ A with µ(Aj) <∞}

is a countable dense subset.

Proof. It is left to reader to check D is dense in S(A, µ) relative to the Lp(µ)
– norm. Once this is done, the proof is then complete since S(A, µ) is a dense
subspace of Lp (µ) by Theorem 11.20.

11.5 Relationships between different Lp – spaces

The Lp(µ) – norm controls two types of behaviors of f, namely the “behavior
at infinity” and the behavior of “local singularities.” So in particular, if f blows
up at a point x0 ∈ Ω, then locally near x0 it is harder for f to be in Lp(µ)

as p increases. On the other hand a function f ∈ Lp(µ) is allowed to decay
at “infinity” slower and slower as p increases. With these insights in mind,
we should not in general expect Lp(µ) ⊂ Lq(µ) or Lq(µ) ⊂ Lp(µ). However,
there are two notable exceptions. (1) If µ(Ω) <∞, then there is no behavior at
infinity to worry about and Lq(µ) ⊂ Lp(µ) for all q ≥ p as is shown in Corollary
11.22 below. (2) If µ is counting measure, i.e. µ(A) = #(A), then all functions
in Lp(µ) for any p can not blow up on a set of positive measure, so there are no
local singularities. In this case Lp(µ) ⊂ Lq(µ) for all q ≥ p, see Corollary 11.27
below.

Corollary 11.22. If µ(Ω) < ∞ and 0 < p < q ≤ ∞, then Lq(µ) ⊂ Lp(µ), the
inclusion map is bounded and in fact

‖f‖p ≤ [µ(Ω)](
1
p−

1
q ) ‖f‖q .

Proof. Take a ∈ [1,∞] such that

1
p

=
1
a

+
1
q
, i.e. a =

pq

q − p
.

Then by Theorem 11.14,

‖f‖p = ‖f · 1‖p ≤ ‖f‖q · ‖1‖a = µ(Ω)1/a‖f‖q = µ(Ω)( 1
p−

1
q )‖f‖q.

The reader may easily check this final formula is correct even when q = ∞
provided we interpret 1/p− 1/∞ to be 1/p.

The rest of this section may be skipped.

Example 11.23 (Power Inequalities). Let a := (a1, . . . , an) with ai > 0 for i =
1, 2, . . . , n and for p ∈ R \ {0} , let

‖a‖p :=

(
1
n

n∑
i=1

api

)1/p

.

Then by Corollary 11.22, p→ ‖a‖p is increasing in p for p > 0. For p = −q < 0,
we have

‖a‖p :=

(
1
n

n∑
i=1

a−qi

)−1/q

=

 1
1
n

∑n
i=1

(
1
ai

)q
1/q

=
∥∥∥∥1
a

∥∥∥∥−1

q

where 1
a := (1/a1, . . . , 1/an) . So for p < 0, as p increases, q = −p decreases, so

that
∥∥ 1
a

∥∥
q

is decreasing and hence
∥∥ 1
a

∥∥−1

q
is increasing. Hence we have shown

that p→ ‖a‖p is increasing for p ∈ R \ {0} .
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We now claim that limp→0 ‖a‖p = n
√
a1 . . . an. To prove this, write api =

ep ln ai = 1 + p ln ai +O
(
p2
)

for p near zero. Therefore,

1
n

n∑
i=1

api = 1 + p
1
n

n∑
i=1

ln ai +O
(
p2
)
.

Hence it follows that

lim
p→0
‖a‖p = lim

p→0

(
1
n

n∑
i=1

api

)1/p

= lim
p→0

(
1 + p

1
n

n∑
i=1

ln ai +O
(
p2
))1/p

= e
1
n

∑n

i=1
ln ai = n

√
a1 . . . an.

So if we now define ‖a‖0 := n
√
a1 . . . an, the map p ∈ R→‖a‖p ∈ (0,∞) is

continuous and increasing in p.
We will now show that limp→∞ ‖a‖p = maxi ai =: M and limp→−∞ ‖a‖p =

mini ai =: m. Indeed, for p > 0,

1
n
Mp ≤ 1

n

n∑
i=1

api ≤M
p

and therefore, (
1
n

)1/p

M ≤ ‖a‖p ≤M.

Since
(

1
n

)1/p → 1 as p→∞, it follows that limp→∞ ‖a‖p = M. For p = −q < 0,
we have

lim
p→−∞

‖a‖p = lim
q→∞

(
1∥∥ 1
a

∥∥
q

)
=

1
maxi (1/ai)

=
1

1/m
= m = min

i
ai.

Conclusion. If we extend the definition of ‖a‖p to p = ∞ and p = −∞
by ‖a‖∞ = maxi ai and ‖a‖−∞ = mini ai, then R̄ 3p → ‖a‖p ∈ (0,∞) is a
continuous non-decreasing function of p.

Proposition 11.24. Suppose that 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈
(p0, p1) be defined by

1
pλ

=
1− λ
p0

+
λ

p1
(11.20)

with the interpretation that λ/p1 = 0 if p1 = ∞.3 Then Lpλ ⊂ Lp0 + Lp1 , i.e.
every function f ∈ Lpλ may be written as f = g + h with g ∈ Lp0 and h ∈ Lp1 .
3 A little algebra shows that λ may be computed in terms of p0, pλ and p1 by

λ =
p0

pλ
· p1 − pλ
p1 − p0

.

For 1 ≤ p0 < p1 ≤ ∞ and f ∈ Lp0 + Lp1 let

‖f‖ := inf
{
‖g‖p0 + ‖h‖p1 : f = g + h

}
.

Then (Lp0 + Lp1 , ‖·‖) is a Banach space and the inclusion map from Lpλ to
Lp0 + Lp1 is bounded; in fact ‖f‖ ≤ 2 ‖f‖pλ for all f ∈ Lpλ .

Proof. Let M > 0, then the local singularities of f are contained in the
set E := {|f | > M} and the behavior of f at “infinity” is solely determined by
f on Ec. Hence let g = f1E and h = f1Ec so that f = g + h. By our earlier
discussion we expect that g ∈ Lp0 and h ∈ Lp1 and this is the case since,

‖g‖p0p0 =
∫
|f |p0 1|f |>M = Mp0

∫ ∣∣∣∣ fM
∣∣∣∣p0 1|f |>M

≤Mp0

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |>M ≤Mp0−pλ ‖f‖pλpλ <∞

and

‖h‖p1p1 =
∥∥f1|f |≤M

∥∥p1
p1

=
∫
|f |p1 1|f |≤M = Mp1

∫ ∣∣∣∣ fM
∣∣∣∣p1 1|f |≤M

≤Mp1

∫ ∣∣∣∣ fM
∣∣∣∣pλ 1|f |≤M ≤Mp1−pλ ‖f‖pλpλ <∞.

Moreover this shows

‖f‖ ≤M1−pλ/p0 ‖f‖pλ/p0pλ
+M1−pλ/p1 ‖f‖pλ/p1pλ

.

Taking M = λ ‖f‖pλ then gives

‖f‖ ≤
(
λ1−pλ/p0 + λ1−pλ/p1

)
‖f‖pλ

and then taking λ = 1 shows ‖f‖ ≤ 2 ‖f‖pλ . The proof that (Lp0 + Lp1 , ‖·‖) is
a Banach space is left as Exercise 11.8 to the reader.

Corollary 11.25 (Interpolation of Lp – norms). Suppose that 0 < p0 <
p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) be defined as in Eq. (11.20), then Lp0 ∩
Lp1 ⊂ Lpλ and

‖f‖pλ ≤ ‖f‖
λ
p0
‖f‖1−λp1

. (11.21)

Further assume 1 ≤ p0 < pλ < p1 ≤ ∞, and for f ∈ Lp0 ∩ Lp1 let

‖f‖ := ‖f‖p0 + ‖f‖p1 .

Then (Lp0 ∩Lp1 , ‖·‖) is a Banach space and the inclusion map of Lp0 ∩Lp1 into
Lpλ is bounded, in fact

‖f‖pλ ≤ max
(
λ−1, (1− λ)−1

) (
‖f‖p0 + ‖f‖p1

)
. (11.22)
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The heuristic explanation of this corollary is that if f ∈ Lp0 ∩ Lp1 , then f
has local singularities no worse than an Lp1 function and behavior at infinity
no worse than an Lp0 function. Hence f ∈ Lpλ for any pλ between p0 and p1.

Proof. Let λ be determined as above, a = p0/λ and b = p1/(1 − λ), then
by Theorem 11.14,

‖f‖pλ =
∥∥∥|f |λ |f |1−λ∥∥∥

pλ
≤
∥∥∥|f |λ∥∥∥

a

∥∥∥|f |1−λ∥∥∥
b

= ‖f‖λp0 ‖f‖
1−λ
p1

.

It is easily checked that ‖·‖ is a norm on Lp0 ∩ Lp1 . To show this space is
complete, suppose that {fn} ⊂ Lp0 ∩ Lp1 is a ‖·‖ – Cauchy sequence. Then
{fn} is both Lp0 and Lp1 – Cauchy. Hence there exist f ∈ Lp0 and g ∈ Lp1 such
that limn→∞ ‖f − fn‖p0 = 0 and limn→∞ ‖g − fn‖pλ = 0. By Chebyshev’s
inequality (Lemma 11.4) fn → f and fn → g in measure and therefore by
Theorem 11.7, f = g a.e. It now is clear that limn→∞ ‖f − fn‖ = 0. The
estimate in Eq. (11.22) is left as Exercise 11.7 to the reader.

Remark 11.26. Combining Proposition 11.24 and Corollary 11.25 gives

Lp0 ∩ Lp1 ⊂ Lpλ ⊂ Lp0 + Lp1

for 0 < p0 < p1 ≤ ∞, λ ∈ (0, 1) and pλ ∈ (p0, p1) as in Eq. (11.20).

Corollary 11.27. Suppose now that µ is counting measure on Ω. Then Lp(µ) ⊂
Lq(µ) for all 0 < p < q ≤ ∞ and ‖f‖q ≤ ‖f‖p .

Proof. Suppose that 0 < p < q =∞, then

‖f‖p∞ = sup {|f(x)|p : x ∈ Ω} ≤
∑
x∈Ω
|f(x)|p = ‖f‖pp ,

i.e. ‖f‖∞ ≤ ‖f‖p for all 0 < p <∞. For 0 < p ≤ q ≤ ∞, apply Corollary 11.25
with p0 = p and p1 =∞ to find

‖f‖q ≤ ‖f‖
p/q
p ‖f‖1−p/q∞ ≤ ‖f‖p/qp ‖f‖1−p/qp = ‖f‖p .

11.5.1 Summary:

1. Lp0 ∩ Lp1 ⊂ Lq ⊂ Lp0 + Lp1 for any q ∈ (p0, p1).
2. If p ≤ q, then `p ⊂ `q and ‖f‖q ≤ ‖f‖p .
3. Since µ(|f | > ε) ≤ ε−p ‖f‖pp , Lp – convergence implies L0 – convergence.
4. L0 – convergence implies almost everywhere convergence for some subse-

quence.

5. If µ(Ω) < ∞ then almost everywhere convergence implies uniform con-
vergence off certain sets of small measure and in particular we have L0 –
convergence.

6. If µ(Ω) < ∞, then Lq ⊂ Lp for all p ≤ q and Lq – convergence implies Lp

– convergence.

11.6 Uniform Integrability

This section will address the question as to what extra conditions are needed
in order that an L0 – convergent sequence is Lp – convergent. This will lead us
to the notion of uniform integrability. To simplify matters a bit here, it will be
assumed that (Ω,B, µ) is a finite measure space for this section.

Notation 11.28 For f ∈ L1(µ) and E ∈ B, let

µ(f : E) :=
∫
E

fdµ.

and more generally if A,B ∈ B let

µ(f : A,B) :=
∫
A∩B

fdµ.

When µ is a probability measure, we will often write E [f : E] for µ(f : E) and
E [f : A,B] for µ(f : A,B).

Definition 11.29. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly integrable if,

lim
a→∞

sup
f∈Λ

µ (|f | : |f | ≥ a) = 0. (11.23)

The condition in Eq. (11.23) implies supf∈Λ ‖f‖1 < ∞.4 Indeed, choose a
sufficiently large so that supf∈Λ µ (|f | : |f | ≥ a) ≤ 1, then for f ∈ Λ

‖f‖1 = µ (|f | : |f | ≥ a) + µ (|f | : |f | < a) ≤ 1 + aµ (Ω) .

Let us also note that if Λ = {f} with f ∈ L1 (µ) , then Λ is uniformly integrable.
Indeed, lima→∞ µ (|f | : |f | ≥ a) = 0 by the dominated convergence theorem.

Exercise 11.4. Suppose A is an index set, {fα}α∈A and {gα}α∈A are two col-
lections of random variables. If {gα}α∈A is uniformly integrable and |fα| ≤ |gα|
for all α ∈ A, show {fα}α∈A is uniformly integrable as well.

4 This is not necessarily the case if µ (Ω) = ∞. Indeed, if Ω = R and µ = m is
Lebesgue measure, the sequences of functions,

{
fn := 1[−n,n]

}∞
n=1

are uniformly

integrable but not bounded in L1 (m) .
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Solution to Exercise (11.4). For a > 0 we have

E [|fα| : |fα| ≥ a] ≤ E [|gα| : |fα| ≥ a] ≤ E [|gα| : |gα| ≥ a] .

Therefore,

lim
a→∞

sup
α

E [|fα| : |fα| ≥ a] ≤ lim
a→∞

sup
α

E [|gα| : |gα| ≥ a] = 0.

Definition 11.30. A collection of functions, Λ ⊂ L1(µ) is said to be uni-
formly absolutely continuous if for all ε > 0 there exists δ > 0 such that

sup
f∈Λ

µ (|f | : E) < ε whenever µ (E) < δ. (11.24)

Remark 11.31. It is not in general true that if {fn} ⊂ L1(µ) is uniformly ab-
solutely continuous implies supn ‖fn‖1 < ∞. For example take Ω = {∗} and
µ({∗}) = 1. Let fn(∗) = n. Since for δ < 1 a set E ⊂ Ω such that µ(E) < δ
is in fact the empty set and hence {fn}∞n=1 is uniformly absolutely continuous.
However, for finite measure spaces without “atoms”, for every δ > 0 we may
find a finite partition of Ω by sets {E`}k`=1 with µ(E`) < δ. If Eq. (11.24) holds
with ε = 1, then

µ(|fn|) =
k∑
`=1

µ(|fn| : E`) ≤ k

showing that µ(|fn|) ≤ k for all n.

Lemma 11.32 (This lemma may be skipped.). For any g ∈ L1(µ), Λ =
{g} is uniformly absolutely continuous.

Proof. First Proof. If the Lemma is false, there would exist ε > 0 and sets
En such that µ(En)→ 0 while µ(|g| : En) ≥ ε for all n. Since |1Eng| ≤ |g| ∈ L1

and for any δ > 0, µ(1En |g| > δ) ≤ µ(En) → 0 as n → ∞, the dominated
convergence theorem of Corollary 11.8 implies limn→∞ µ(|g| : En) = 0. This
contradicts µ(|g| : En) ≥ ε for all n and the proof is complete.

Second Proof. Let ϕ =
∑n
i=1 ci1Bi be a simple function such that

‖g − ϕ‖1 < ε/2. Then

µ (|g| : E) ≤ µ (|ϕ| : E) + µ (|g − ϕ| : E)

≤
n∑
i=1

|ci|µ (E ∩Bi) + ‖g − ϕ‖1 ≤

(
n∑
i=1

|ci|

)
µ (E) + ε/2.

This shows µ (|g| : E) < ε provided that µ (E) < ε (2
∑n
i=1 |ci|)

−1
.

Proposition 11.33. A subset Λ ⊂ L1 (µ) is uniformly integrable iff Λ ⊂ L1 (µ)
is bounded and uniformly absolutely continuous.

Proof. ( =⇒ ) We have already seen that uniformly integrable subsets, Λ,
are bounded in L1 (µ) . Moreover, for f ∈ Λ, and E ∈ B,

µ(|f | : E) = µ(|f | : |f | ≥M,E) + µ(|f | : |f | < M,E)
≤ sup

n
µ(|f | : |f | ≥M) +Mµ(E).

So given ε > 0 choose M so large that supf∈Λ µ(|f | : |f | ≥M) < ε/2 and then
take δ = ε

2M to verify that Λ is uniformly absolutely continuous.
(⇐=) Let K := supf∈Λ ‖f‖1 <∞. Then for f ∈ Λ, we have

µ (|f | ≥ a) ≤ ‖f‖1 /a ≤ K/a for all a > 0.

Hence given ε > 0 and δ > 0 as in the definition of uniform absolute continuity,
we may choose a = K/δ in which case

sup
f∈Λ

µ (|f | : |f | ≥ a) < ε.

Since ε > 0 was arbitrary, it follows that lima→∞ supf∈Λ µ (|f | : |f | ≥ a) = 0 as
desired.

Corollary 11.34. Suppose {fα}α∈A and {gα}α∈A are two uniformly integrable
collections of functions, then {fα + gα}α∈A is also uniformly integrable.

Proof. By Proposition 11.33, {fα}α∈A and {gα}α∈A are both bounded
in L1 (µ) and are both uniformly absolutely continuous. Since ‖fα + gα‖1 ≤
‖fα‖1 + ‖gα‖1 it follows that {fα + gα}α∈A is bounded in L1 (µ) as well.
Moreover, for ε > 0 we may choose δ > 0 such that µ (|fα| : E) < ε and
µ (|gα| : E) < ε whenever µ (E) < δ. For this choice of ε and δ, we then have

µ (|fα + gα| : E) ≤ µ (|fα|+ |gα| : E) < 2ε whenever µ (E) < δ,

showing {fα + gα}α∈A uniformly absolutely continuous. Another application of
Proposition 11.33 completes the proof.

Exercise 11.5 (Problem 5 on p. 196 of Resnick.). Suppose that {Xn}∞n=1

is a sequence of integrable and i.i.d random variables. Then
{
Sn
n

}∞
n=1

is uni-
formly integrable.

Theorem 11.35 (Vitali Convergence Theorem). Let (Ω,B, µ) be a finite
measure space,Λ := {fn}∞n=1 be a sequence of functions in L1 (µ) , and f : Ω →
C be a measurable function. Then f ∈ L1 (µ) and ‖f − fn‖1 → 0 as n→∞ iff
fn → f in µ measure and Λ is uniformly integrable.
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Proof. (⇐=) If fn → f in µ measure and Λ = {fn}∞n=1 is uniformly inte-
grable then we know M := supn ‖fn‖1 < ∞. Hence and application of Fatou’s
lemma, see Exercise 11.1,∫

Ω

|f | dµ ≤ lim inf
n→∞

∫
Ω

|fn| dµ ≤M <∞,

i.e. f ∈ L1(µ). One now easily checks that Λ0 := {f − fn}∞n=1 is bounded in
L1 (µ) and (using Lemma 11.32 and Proposition 11.33) Λ0 is uniformly abso-
lutely continuous and hence Λ0 is uniformly integrable. Therefore,

‖f − fn‖1 = µ (|f − fn| : |f − fn| ≥ a) + µ (|f − fn| : |f − fn| < a)

≤ ε (a) +
∫
Ω

1|f−fn|<a |f − fn| dµ (11.25)

where
ε (a) := sup

m
µ (|f − fm| : |f − fm| ≥ a)→ 0 as a→∞.

Since 1|f−fn|<a |f − fn| ≤ a ∈ L1 (µ) and

µ
(
1|f−fn|<a |f − fn| > ε

)
≤ µ (|f − fn| > ε)→ 0 as n→∞,

we may pass to the limit in Eq. (11.25), with the aid of the dominated conver-
gence theorem (see Corollary 11.8), to find

lim sup
n→∞

‖f − fn‖1 ≤ ε (a)→ 0 as a→∞.

( =⇒ ) If fn → f in L1 (µ) , then by Chebyschev’s inequality it follows that
fn → f in µ – measure. Since convergent sequences are bounded, to show Λ is
uniformly integrable it suffices to shows Λ is uniformly absolutely continuous.
Now for E ∈ B and n ∈ N,

µ(|fn| : E) ≤ µ(|f − fn| : E) + µ(|f | : E) ≤ ‖f − fn‖1 + µ(|f | : E).

Let εN := supn>N ‖f − fn‖1 , then εN ↓ 0 as N ↑ ∞ and

sup
n
µ(|fn| : E) ≤ sup

n≤N
µ(|fn| : E) ∨ (εN + µ(|f | : E)) ≤ εN + µ (gN : E) ,

(11.26)
where gN = |f | +

∑N
n=1 |fn| ∈ L1. Given ε > 0 fix N large so that εN < ε/2

and then choose δ > 0 (by Lemma 11.32) such that µ (gN : E) < ε if µ (E) < δ.
It then follows from Eq. (11.26) that

sup
n
µ(|fn| : E) < ε/2 + ε/2 = ε when µ (E) < δ.

Example 11.36. Let Ω = [0, 1] , B = B[0,1] and P = m be Lebesgue measure on
B. Then the collection of functions, fε (x) := 2

ε (1− x/ε) ∨ 0 for ε ∈ (0, 1) is
bounded in L1 (P ) , fε → 0 a.e. as ε ↓ 0 but

0 =
∫
Ω

lim
ε↓0

fεdP 6= lim
ε↓0

∫
Ω

fεdP = 1.

This is a typical example of a bounded and pointwise convergent sequence in
L1 which is not uniformly integrable.

Example 11.37. Let Ω = [0, 1] , P be Lebesgue measure on B = B[0,1], and for
ε ∈ (0, 1) let aε > 0 with limε↓0 aε = ∞ and let fε := aε1[0,ε]. Then Efε = εaε
and so supε>0 ‖fε‖1 =: K <∞ iff εaε ≤ K for all ε. Since

sup
ε

E [fε : fε ≥M ] = sup
ε

[εaε · 1aε≥M ] ,

if {fε} is uniformly integrable and δ > 0 is given, for large M we have εaε ≤ δ for
ε small enough so that aε ≥M. From this we conclude that lim supε↓0 (εaε) ≤ δ
and since δ > 0 was arbitrary, limε↓0 εaε = 0 if {fε} is uniformly integrable. By
reversing these steps one sees the converse is also true.

Alternatively. No matter how aε > 0 is chosen, limε↓0 fε = 0 a.s.. So from
Theorem 11.35, if {fε} is uniformly integrable we would have to have

lim
ε↓0

(εaε) = lim
ε↓0

Efε = E0 = 0.

Corollary 11.38. Let (Ω,B, µ) be a finite measure space, p ∈ [1,∞), {fn}∞n=1

be a sequence of functions in Lp (µ) , and f : Ω → C be a measurable function.
Then f ∈ Lp (µ) and ‖f − fn‖p → 0 as n → ∞ iff fn → f in µ measure and
Λ := {|fn|p}

∞
n=1 is uniformly integrable.

Proof. (⇐= ) Suppose that fn → f in µ measure and Λ := {|fn|p}
∞
n=1

is uniformly integrable. By Corollary 11.9, |fn|p
µ→ |f |p in µ – measure, and

hn := |f − fn|p
µ→ 0, and by Theorem 11.35, |f |p ∈ L1 (µ) and |fn|p → |f |p in

L1 (µ) . Since

hn := |f − fn|p ≤ (|f |+ |fn|)p ≤ 2p−1 (|f |p + |fn|p) =: gn ∈ L1 (µ)

with gn → g := 2p−1 |f |p in L1 (µ) , the dominated convergence theorem in
Corollary 11.8, implies

‖f − fn‖pp =
∫
Ω

|f − fn|p dµ =
∫
Ω

hndµ→ 0 as n→∞.

(=⇒) Suppose f ∈ Lp and fn → f in Lp. Again fn → f in µ – measure by
Lemma 11.4. Let
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hn := ||fn|p − |f |p| ≤ |fn|p + |f |p =: gn ∈ L1

and g := 2|f |p ∈ L1. Then gn
µ→ g, hn

µ→ 0 and
∫
gndµ →

∫
gdµ. Therefore

by the dominated convergence theorem in Corollary 11.8, lim
n→∞

∫
hn dµ = 0,

i.e. |fn|p → |f |p in L1 (µ) .5 Hence it follows from Theorem 11.35 that Λ is
uniformly integrable.

The following Lemma gives a concrete necessary and sufficient conditions
for verifying a sequence of functions is uniformly integrable.

Lemma 11.39. Suppose that µ(Ω) < ∞, and Λ ⊂ L0(Ω) is a collection of
functions.

1. If there exists a non decreasing function ϕ : R+ → R+ such that
limx→∞ ϕ(x)/x =∞ and

K := sup
f∈Λ

µ(ϕ(|f |)) <∞ (11.27)

then Λ is uniformly integrable.
2. Conversely if Λ is uniformly integrable, there exists a non-decreasing con-

tinuous function ϕ : R+ → R+ such that ϕ(0) = 0, limx→∞ ϕ(x)/x = ∞
and Eq. (11.27) is valid.

A typical example for ϕ in item 1. is ϕ (x) = xp for some p > 1.

Proof. 1. Let ϕ be as in item 1. above and set εa := supx≥a
x

ϕ(x) → 0 as
a→∞ by assumption. Then for f ∈ Λ

µ(|f | : |f | ≥ a) = µ

(
|f |

ϕ (|f |)
ϕ (|f |) : |f | ≥ a

)
≤ µ(ϕ (|f |) : |f | ≥ a)εa

≤ µ(ϕ (|f |))εa ≤ Kεa

and hence
5 Here is an alternative proof. By the mean value theorem,

||f |p − |fn|p| ≤ p(max(|f | , |fn|))p−1 ||f | − |fn|| ≤ p(|f |+ |fn|)p−1 ||f | − |fn||

and therefore by Hölder’s inequality,∫
||f |p − |fn|p| dµ ≤ p

∫
(|f |+ |fn|)p−1 ||f | − |fn|| dµ ≤ p

∫
(|f |+ |fn|)p−1 |f − fn| dµ

≤ p‖f − fn‖p‖(|f |+ |fn|)p−1‖q = p‖ |f |+ |fn|‖p/qp ‖f − fn‖p
≤ p(‖f‖p + ‖fn‖p)p/q‖f − fn‖p

where q := p/(p− 1). This shows that
∫
||f |p − |fn|p| dµ→ 0 as n→∞.

lim
a→∞

sup
f∈Λ

µ
(
|f | 1|f |≥a

)
≤ lim
a→∞

Kεa = 0.

2. By assumption, εa := supf∈Λ µ
(
|f | 1|f |≥a

)
→ 0 as a → ∞. Therefore we

may choose an ↑ ∞ such that

∞∑
n=0

(n+ 1) εan <∞

where by convention a0 := 0. Now define ϕ so that ϕ(0) = 0 and

ϕ′(x) =
∞∑
n=0

(n+ 1) 1(an,an+1](x),

i.e.

ϕ(x) =
∫ x

0

ϕ′(y)dy =
∞∑
n=0

(n+ 1) (x ∧ an+1 − x ∧ an) .

By construction ϕ is continuous, ϕ(0) = 0, ϕ′(x) is increasing (so ϕ is convex)
and ϕ′(x) ≥ (n+ 1) for x ≥ an. In particular

ϕ(x)
x
≥ ϕ(an) + (n+ 1)x

x
≥ n+ 1 for x ≥ an

from which we conclude limx→∞ ϕ(x)/x =∞. We also have ϕ′(x) ≤ (n+ 1) on
[0, an+1] and therefore

ϕ(x) ≤ (n+ 1)x for x ≤ an+1.

So for f ∈ Λ,

µ (ϕ(|f |)) =
∞∑
n=0

µ
(
ϕ(|f |)1(an,an+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1(an,an+1](|f |)

)
≤
∞∑
n=0

(n+ 1)µ
(
|f | 1|f |≥an

)
≤
∞∑
n=0

(n+ 1) εan

and hence

sup
f∈Λ

µ (ϕ(|f |)) ≤
∞∑
n=0

(n+ 1) εan <∞.

Page: 175 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



176 11 Lp – spaces

11.7 Exercises

Exercise 11.6. Let f ∈ Lp∩L∞ for some p <∞. Show ‖f‖∞ = limq→∞ ‖f‖q .
If we further assume µ(X) < ∞, show ‖f‖∞ = limq→∞ ‖f‖q for all mea-
surable functions f : X → C. In particular, f ∈ L∞ iff limq→∞ ‖f‖q < ∞.
Hints: Use Corollary 11.25 to show lim supq→∞ ‖f‖q ≤ ‖f‖∞ and to show
lim infq→∞ ‖f‖q ≥ ‖f‖∞ , let M < ‖f‖∞ and make use of Chebyshev’s in-
equality.

Exercise 11.7. Prove Eq. (11.22) in Corollary 11.25. (Part of Folland 6.3 on
p. 186.) Hint: Use the inequality, with a, b ≥ 1 with a−1 + b−1 = 1 chosen
appropriately,

st ≤ sa

a
+
tb

b

applied to the right side of Eq. (11.21).

Exercise 11.8. Complete the proof of Proposition 11.24 by showing (Lp +
Lr, ‖·‖) is a Banach space.

11.8 Appendix: Convex Functions

Reference; see the appendix (page 500) of Revuz and Yor.

Definition 11.40. A function ϕ : (a, b) → R is convex if for all a < x0 <
x1 < b and t ∈ [0, 1] ϕ(xt) ≤ tϕ(x1) + (1− t)ϕ(x0) where xt = tx1 + (1− t)x0,
see Figure ?? below.

Example 11.41. The functions exp(x) and − log(x) are convex and |x|p is
convex iff p ≥ 1 as follows from Lemma 10.32 for p > 1 and by inspection
of p = 1.

Theorem 11.42. Suppose that ϕ : (a, b) → R is convex and for x, y ∈ (a, b)
with x < y, let6

F (x, y) :=
ϕ (y)− ϕ (x)

y − x
.

Then;

1. F (x, y) is increasing in each of its arguments.

6 The same formula would define F (x, y) for x 6= y. However, since F (x, y) =
F (y, x) , we would gain no new information by this extension.

Fig. 11.1. A convex function with three cords. Notice the slope relationships; m1 ≤
m3 ≤ m2.

2. The following limits exist,

ϕ′+ (x) := F (x, x+) := lim
y↓x

F (x, y) <∞ and (11.28)

ϕ′− (y) := F (y−, y) := lim
x↑y

F (x, y) > −∞. (11.29)

3. The functions, ϕ′± are both increasing functions and further satisfy,

−∞ < ϕ′− (x) ≤ ϕ′+ (x) ≤ ϕ′− (y) <∞ ∀ a < x < y < b. (11.30)

4. For any t ∈
[
ϕ′− (x) , ϕ′+ (x)

]
,

ϕ (y) ≥ ϕ (x) + t (y − x) for all x, y ∈ (a, b) . (11.31)

5. For a < α < β < b, let K := max
{∣∣ϕ′+ (α)

∣∣ , ∣∣ϕ′− (β)
∣∣} . Then

|ϕ (y)− ϕ (x)| ≤ K |y − x| for all x, y ∈ [α, β] .

That is ϕ is Lipschitz continuous on [α, β] .
6. The function ϕ′+ is right continuous and ϕ′− is left continuous.
7. The set of discontinuity points for ϕ′+ and for ϕ′− are the same as the set of

points of non-differentiability of ϕ. Moreover this set is at most countable.
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Proof. 1. and 2. If we let ht = tϕ(x1) + (1 − t)ϕ(x0), then (xt, ht) is on
the line segment joining (x0, ϕ (x0)) to (x1, ϕ (x1)) and the statement that ϕ is
convex is then equivalent of ϕ (xt) ≤ ht for all 0 ≤ t ≤ 1. Since

ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
=
ϕ (x1)− ht
x1 − xt

,

the convexity of ϕ is equivalent to

ϕ (xt)− ϕ (x0)
xt − x0

≤ ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ϕ (x0)

x1 − x0
for all x0 ≤ xt ≤ x1

and to

ϕ (x1)− ϕ (x0)
x1 − x0

=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)
x1 − xt

for all x0 ≤ xt ≤ x1.

Convexity also implies

ϕ (xt)− ϕ (x0)
xt − x0

=
ht − ϕ (x0)
xt − x0

=
ϕ (x1)− ht
x1 − xt

≤ ϕ (x1)− ϕ (xt)
x1 − xt

.

These inequalities may be written more compactly as,

ϕ (v)− ϕ (u)
v − u

≤ ϕ (w)− ϕ (u)
w − u

≤ ϕ (w)− ϕ (v)
w − v

, (11.32)

valid for all a < u < v < w < b, again see Figure 11.1. The first (second)
inequality in Eq. (11.32) shows F (x, y) is increasing y (x). This then implies
the limits in item 2. are monotone and hence exist as claimed.

3. Let a < x < y < b. Using the increasing nature of F,

−∞ < ϕ′− (x) = F (x−, x) ≤ F (x, x+) = ϕ′+ (x) <∞

and
ϕ′+ (x) = F (x, x+) ≤ F (y−, y) = ϕ′− (y)

as desired.
4. Let t ∈

[
ϕ′− (x) , ϕ′+ (x)

]
. Then

t ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) =
ϕ (y)− ϕ (x)

y − x

or equivalently,
ϕ (y) ≥ ϕ (x) + t (y − x) for y ≥ x.

Therefore Eq. (11.31) holds for y ≥ x. Similarly, for y < x,

t ≥ ϕ′− (x) = F (x−, x) ≥ F (y, x) =
ϕ (x)− ϕ (y)

x− y

or equivalently,

ϕ (y) ≥ ϕ (x)− t (x− y) = ϕ (x) + t (y − x) for y ≤ x.

Hence we have proved Eq. (11.31) for all x, y ∈ (a, b) .
5. For a < α ≤ x < y ≤ β < b, we have

ϕ′+ (α) ≤ ϕ′+ (x) = F (x, x+) ≤ F (x, y) ≤ F (y−, y) = ϕ′− (y) ≤ ϕ′− (β)
(11.33)

and in particular,

−K ≤ ϕ′+ (α) ≤ ϕ (y)− ϕ (x)
y − x

≤ ϕ′− (β) ≤ K.

This last inequality implies, |ϕ (y)− ϕ (x)| ≤ K (y − x) which is the desired
Lipschitz bound.

6. For a < c < x < y < b, we have ϕ′+ (x) = F (x, x+) ≤ F (x, y) and letting
x ↓ c (using the continuity of F ) we learn ϕ′+ (c+) ≤ F (c, y) . We may now let
y ↓ c to conclude ϕ′+ (c+) ≤ ϕ′+ (c) . Since ϕ′+ (c) ≤ ϕ′+ (c+) , it follows that
ϕ′+ (c) = ϕ′+ (c+) and hence that ϕ′+ is right continuous.

Similarly, for a < x < y < c < b, we have ϕ′− (y) ≥ F (x, y) and letting
y ↑ c (using the continuity of F ) we learn ϕ′− (c−) ≥ F (x, c) . Now let x ↑ c to
conclude ϕ′− (c−) ≥ ϕ′− (c) . Since ϕ′− (c) ≥ ϕ′− (c−) , it follows that ϕ′− (c) =
ϕ′− (c−) , i.e. ϕ′− is left continuous.

7. Since ϕ± are increasing functions, they have at most countably many
points of discontinuity. Letting x ↑ y in Eq. (11.30), using the left continuity
of ϕ′−, shows ϕ′− (y) = ϕ′+ (y−) . Hence if ϕ′− is continuous at y, ϕ′− (y) =
ϕ′− (y+) = ϕ′+ (y) and ϕ is differentiable at y. Conversely if ϕ is differentiable
at y, then

ϕ′+ (y−) = ϕ′− (y) = ϕ′ (y) = ϕ′+ (y)

which shows ϕ′+ is continuous at y. Thus we have shown that set of discontinuity
points of ϕ′+ is the same as the set of points of non-differentiability of ϕ. That
the discontinuity set of ϕ′− is the same as the non-differentiability set of ϕ is
proved similarly.

Corollary 11.43. If ϕ : (a, b) → R is a convex function and D ⊂ (a, b) is a
dense set, then

ϕ (y) = sup
x∈D

[
ϕ (x) + ϕ′± (x) (y − x)

]
for all x, y ∈ (a, b) .
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Proof. Let ψ± (y) := supx∈D [ϕ (x) + ϕ± (x) (y − x)] . According to Eq.
(11.31) above, we know that ϕ (y) ≥ ψ± (y) for all y ∈ (a, b) . Now suppose that
x ∈ (a, b) and xn ∈ Λ with xn ↑ x. Then passing to the limit in the estimate,
ψ− (y) ≥ ϕ (xn) + ϕ′− (xn) (y − xn) , shows ψ− (y) ≥ ϕ (x) + ϕ′− (x) (y − x) .
Since x ∈ (a, b) is arbitrary we may take x = y to discover ψ− (y) ≥ ϕ (y) and
hence ϕ (y) = ψ− (y) . The proof that ϕ (y) = ψ+ (y) is similar.

Lemma 11.44. Suppose that ϕ : (a, b) → R is a non-decreasing function such
that

ϕ

(
1
2

(x+ y)
)
≤ 1

2
[ϕ (x) + ϕ (y)] for all x, y ∈ (a, b) , (11.34)

then ϕ is convex. The result remains true if ϕ is assumed to be continuous
rather than non-decreasing.

Proof. Let x0, x1 ∈ (a, b) and xt := x0 + t (x1 − x0) as above. For n ∈ N let
Dn =

{
k
2n : 1 ≤ k < 2n

}
. We are going to being by showing Eq. (11.34) implies

ϕ (xt) ≤ (1− t)ϕ (x0) + tϕ (x1) for all t ∈ D := ∪nDn. (11.35)

We will do this by induction on n. For n = 1, this follows directly from Eq.
(11.34). So now suppose that Eq. (11.35) holds for all t ∈ Dn and now let
t = 2k+1

2n ∈ Dn+1. Observing that

xt =
1
2

(
x k

2n−1
+ x k+1

2n

)
we may again use Eq. (11.34) to show,

ϕ (xt) ≤
1
2

(
ϕ
(
x k

2n−1

)
+ ϕ

(
x k+1

2n−1

))
.

Then use the induction hypothesis to conclude,

ϕ (xt) ≤
1
2

( (
1− k

2n−1

)
ϕ (x0) + k

2n−1ϕ (x1)
+
(
1− k+1

2n−1

)
ϕ (x0) + k+1

2n−1ϕ (x1)

)
= (1− t)ϕ (x0) + tϕ (x1)

as desired.
For general t ∈ (0, 1) , let τ ∈ D such that τ > t. Since ϕ is increasing and

by Eq. (11.35) we conclude,

ϕ (xt) ≤ ϕ (xτ ) ≤ (1− τ)ϕ (x0) + τϕ (x1) .

We may now let τ ↓ t to complete the proof. This same technique clearly also
works if we were to assume that ϕ is continuous rather than monotonic.



12

Hilbert Space Basics

Definition 12.1. Let H be a complex vector space. An inner product on H is
a function, 〈·|·〉 : H ×H → C, such that

1. 〈ax+ by|z〉 = a〈x|z〉+ b〈y|z〉 i.e. x→ 〈x|z〉 is linear.
2. 〈x|y〉 = 〈y|x〉.
3. ‖x‖2 := 〈x|x〉 ≥ 0 with equality ‖x‖2 = 0 iff x = 0.

Notice that combining properties (1) and (2) that x → 〈z|x〉 is conjugate
linear for fixed z ∈ H, i.e.

〈z|ax+ by〉 = ā〈z|x〉+ b̄〈z|y〉.

The following identity will be used frequently in the sequel without further
mention,

‖x+ y‖2 = 〈x+ y|x+ y〉 = ‖x‖2 + ‖y‖2 + 〈x|y〉+ 〈y|x〉
= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉. (12.1)

Theorem 12.2 (Schwarz Inequality). Let (H, 〈·|·〉) be an inner product
space, then for all x, y ∈ H

|〈x|y〉| ≤ ‖x‖‖y‖

and equality holds iff x and y are linearly dependent.

Proof. If y = 0, the result holds trivially. So assume that y 6= 0 and observe;
if x = αy for some α ∈ C, then 〈x|y〉 = ᾱ ‖y‖2 and hence

|〈x|y〉| = |α| ‖y‖2 = ‖x‖‖y‖.

Now suppose that x ∈ H is arbitrary, let z := x − ‖y‖−2〈x|y〉y. (So z is the
“orthogonal projection” of x onto y, see Figure 12.1.) Then

0 ≤ ‖z‖2 =
∥∥∥∥x− 〈x|y〉‖y‖2

y

∥∥∥∥2

= ‖x‖2 +
|〈x|y〉|2

‖y‖4
‖y‖2 − 2Re〈x| 〈x|y〉

‖y‖2
y〉

= ‖x‖2 − |〈x|y〉|
2

‖y‖2

from which it follows that 0 ≤ ‖y‖2‖x‖2 − |〈x|y〉|2 with equality iff z = 0 or
equivalently iff x = ‖y‖−2〈x|y〉y.

Fig. 12.1. The picture behind the proof of the Schwarz inequality.

Corollary 12.3. Let (H, 〈·|·〉) be an inner product space and ‖x‖ :=
√
〈x|x〉.

Then the Hilbertian norm, ‖ ·‖, is a norm on H. Moreover 〈·|·〉 is continuous
on H ×H, where H is viewed as the normed space (H, ‖·‖).

Proof. If x, y ∈ H, then, using Schwarz’s inequality,

‖x+ y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x|y〉
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

Taking the square root of this inequality shows ‖·‖ satisfies the triangle inequal-
ity.

Checking that ‖·‖ satisfies the remaining axioms of a norm is now routine
and will be left to the reader. If x, x′, y, y′ ∈ H, then

|〈x+∆x|y +∆y〉 − 〈x|y〉| = |〈x|∆y〉+ 〈∆x|y〉+ 〈∆x|∆y〉|
≤ ‖x‖‖∆y‖+ ‖y‖‖∆x‖+ ‖∆x‖‖∆y‖
→ 0 as ∆x,∆y → 0,

from which it follows that 〈·|·〉 is continuous.

Definition 12.4. Let (H, 〈·|·〉) be an inner product space, we say x, y ∈ H are
orthogonal and write x ⊥ y iff 〈x|y〉 = 0. More generally if A ⊂ H is a set,
x ∈ H is orthogonal to A (write x ⊥ A) iff 〈x|y〉 = 0 for all y ∈ A. Let
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A⊥ = {x ∈ H : x ⊥ A} be the set of vectors orthogonal to A. A subset S ⊂ H
is an orthogonal set if x ⊥ y for all distinct elements x, y ∈ S. If S further
satisfies, ‖x‖ = 1 for all x ∈ S, then S is said to be an orthonormal set.

Proposition 12.5. Let (H, 〈·|·〉) be an inner product space then

1. (Parallelogram Law)

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (12.2)

for all x, y ∈ H.
2. (Pythagorean Theorem) If S ⊂⊂ H is a finite orthogonal set, then∥∥∥∥∥∑

x∈S
x

∥∥∥∥∥
2

=
∑
x∈S
‖x‖2. (12.3)

3. If A ⊂ H is a set, then A⊥ is a closed linear subspace of H.

Proof. I will assume that H is a complex Hilbert space, the real case being
easier. Items 1. and 2. are proved by the following elementary computations;

‖x+ y‖2 + ‖x− y‖2

= ‖x‖2 + ‖y‖2 + 2Re〈x|y〉+ ‖x‖2 + ‖y‖2 − 2Re〈x|y〉
= 2‖x‖2 + 2‖y‖2,

and ∥∥∥∥∥∑
x∈S

x

∥∥∥∥∥
2

= 〈
∑
x∈S

x|
∑
y∈S

y〉 =
∑
x,y∈S

〈x|y〉

=
∑
x∈S
〈x|x〉 =

∑
x∈S
‖x‖2.

Item 3. is a consequence of the continuity of 〈·|·〉 and the fact that

A⊥ = ∩x∈A Nul(〈·|x〉)

where Nul(〈·|x〉) = {y ∈ H : 〈y|x〉 = 0} – a closed subspace of H.

Definition 12.6. A Hilbert space is an inner product space (H, 〈·|·〉) such
that the induced Hilbertian norm is complete.

Example 12.7. For any measure space, (Ω,B, µ) , H := L2 (µ) with inner prod-
uct,

〈f |g〉 =
∫
Ω

f (ω) ḡ (ω) dµ (ω)

is a Hilbert space – see Theorem 11.17 for the completeness assertion.

Definition 12.8. A subset C of a vector space X is said to be convex if for all
x, y ∈ C the line segment [x, y] := {tx+ (1− t)y : 0 ≤ t ≤ 1} joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)

Theorem 12.9 (Best Approximation Theorem). Suppose that H is a
Hilbert space and M ⊂ H is a closed convex subset of H. Then for any x ∈ H
there exists a unique y ∈M such that

‖x− y‖ = d(x,M) = inf
z∈M
‖x− z‖.

Moreover, if M is a vector subspace of H, then the point y may also be charac-
terized as the unique point in M such that (x− y) ⊥M.

Proof. Uniqueness. By replacing M by M − x := {m − x : m ∈ M} we
may assume x = 0. Let δ := d(0,M) = infm∈M ‖m‖ and y, z ∈ M, see Figure
12.2.

Fig. 12.2. The geometry of convex sets.

By the parallelogram law and the convexity of M,

2‖y‖2 + 2‖z‖2 = ‖y + z‖2 + ‖y − z‖2

= 4
∥∥∥∥y + z

2

∥∥∥∥2

+ ‖y − z‖2 ≥ 4δ2 + ‖y − z‖2. (12.4)

Hence if ‖y‖ = ‖z‖ = δ, then 2δ2 + 2δ2 ≥ 4δ2 + ‖y − z‖2, so that ‖y − z‖2 = 0.
Therefore, if a minimizer for d(0, ·)|M exists, it is unique.

Existence. Let yn ∈ M be chosen such that ‖yn‖ = δn → δ ≡ d(0,M).
Taking y = ym and z = yn in Eq. (12.4) shows

2δ2
m + 2δ2

n ≥ 4δ2 + ‖yn − ym‖2.
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Passing to the limit m,n→∞ in this equation implies,

2δ2 + 2δ2 ≥ 4δ2 + lim sup
m,n→∞

‖yn − ym‖2,

i.e. lim supm,n→∞ ‖yn − ym‖2 = 0. Therefore, by completeness of H, {yn}∞n=1

is convergent. Because M is closed, y := lim
n→∞

yn ∈M and because the norm is
continuous,

‖y‖ = lim
n→∞

‖yn‖ = δ = d(0,M).

So y is the desired point in M which is closest to 0.
Now suppose M is a closed subspace of H and x ∈ H. Let y ∈ M be the

closest point in M to x. Then for w ∈M, the function

g(t) := ‖x− (y + tw)‖2 = ‖x− y‖2 − 2tRe〈x− y|w〉+ t2‖w‖2

has a minimum at t = 0 and therefore 0 = g′(0) = −2Re〈x−y|w〉. Since w ∈M
is arbitrary, this implies that (x− y) ⊥M.

Finally suppose y ∈M is any point such that (x− y) ⊥M. Then for z ∈M,
by Pythagorean’s theorem,

‖x− z‖2 = ‖x− y + y − z‖2 = ‖x− y‖2 + ‖y − z‖2 ≥ ‖x− y‖2

which shows d(x,M)2 ≥ ‖x− y‖2. That is to say y is the point in M closest to
x.

Definition 12.10. Suppose that A : H → H is a bounded operator, i.e.

‖A‖ := sup {‖Ax‖ : x ∈ H with ‖x‖ = 1} <∞.

The adjoint of A, denoted A∗, is the unique operator A∗ : H → H such that
〈Ax|y〉 = 〈x|A∗y〉. (The proof that A∗ exists and is unique will be given in
Proposition 12.15 below.) A bounded operator A : H → H is self - adjoint or
Hermitian if A = A∗.

Definition 12.11. Let H be a Hilbert space and M ⊂ H be a closed subspace.
The orthogonal projection of H onto M is the function PM : H → H such that
for x ∈ H, PM (x) is the unique element in M such that (x−PM (x)) ⊥M, i.e.
PM (x) is the unique element in M such that

〈x|m〉 = 〈PM (x)|m〉 for all m ∈M. (12.5)

Given a linear transformation A, we will let Ran (A) and Nul (A) denote the
range and the null-space of A respectively.

Theorem 12.12 (Projection Theorem). Let H be a Hilbert space and M ⊂
H be a closed subspace. The orthogonal projection PM satisfies:

1. PM is linear and hence we will write PMx rather than PM (x).
2. P 2

M = PM (PM is a projection).
3. P ∗M = PM (PM is self-adjoint).
4. Ran(PM ) = M and Nul(PM ) = M⊥.
5. If N ⊂M ⊂ H is another closed subspace, the PNPM = PMPN = PN .

Proof.

1. Let x1, x2 ∈ H and α ∈ C, then PMx1 + αPMx2 ∈M and

PMx1 + αPMx2 − (x1 + αx2) = [PMx1 − x1 + α(PMx2 − x2)] ∈M⊥

showing PMx1 + αPMx2 = PM (x1 + αx2), i.e. PM is linear.
2. Obviously Ran(PM ) = M and PMx = x for all x ∈M . Therefore P 2

M = PM .
3. Let x, y ∈ H, then since (x− PMx) and (y − PMy) are in M⊥,

〈PMx|y〉 = 〈PMx|PMy + y − PMy〉 = 〈PMx|PMy〉
= 〈PMx+ (x− PMx)|PMy〉 = 〈x|PMy〉.

4. We have already seen, Ran(PM ) = M and PMx = 0 iff x = x − 0 ∈ M⊥,
i.e. Nul(PM ) = M⊥.

5. If N ⊂ M ⊂ H it is clear that PMPN = PN since PM = Id on
N = Ran(PN ) ⊂ M. Taking adjoints gives the other identity, namely that
PNPM = PN . More directly, if x ∈ H and n ∈ N, we have

〈PNPMx|n〉 = 〈PMx|PNn〉 = 〈PMx|n〉 = 〈x|PMn〉 = 〈x|n〉 .

Since this holds for all n we may conclude that PNPMx = PNx.

Corollary 12.13. If M ⊂ H is a proper closed subspace of a Hilbert space H,
then H = M ⊕M⊥.

Proof. Given x ∈ H, let y = PMx so that x−y ∈M⊥. Then x = y+(x−y) ∈
M+M⊥. If x ∈M ∩M⊥, then x ⊥ x, i.e. ‖x‖2 = 〈x|x〉 = 0. So M ∩M⊥ = {0} .

Exercise 12.1. Suppose M is a subset of H, then M⊥⊥ = span(M).

Theorem 12.14 (Riesz Theorem). Let H∗ be the dual space of H (i.e. that
linear space of continuous linear functionals on H). The map

z ∈ H j−→ 〈·|z〉 ∈ H∗ (12.6)
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is a conjugate linear1 isometric isomorphism.

Proof. The map j is conjugate linear by the axioms of the inner products.
Moreover, for x, z ∈ H,

|〈x|z〉| ≤ ‖x‖ ‖z‖ for all x ∈ H

with equality when x = z. This implies that ‖jz‖H∗ = ‖〈·|z〉‖H∗ = ‖z‖ . There-
fore j is isometric and this implies j is injective. To finish the proof we must
show that j is surjective. So let f ∈ H∗ which we assume, without loss of gener-
ality, is non-zero. Then M =Nul(f) – a closed proper subspace of H. Since, by
Corollary 12.13, H = M ⊕M⊥, f : H/M ∼= M⊥ → F is a linear isomorphism.
This shows that dim(M⊥) = 1 and hence H = M⊕Fx0 where x0 ∈M⊥ \{0} .2
Choose z = λx0 ∈ M⊥ such that f(x0) = 〈x0|z〉, i.e. λ = f̄(x0)/ ‖x0‖2 . Then
for x = m+ λx0 with m ∈M and λ ∈ F,

f(x) = λf(x0) = λ〈x0|z〉 = 〈λx0|z〉 = 〈m+ λx0|z〉 = 〈x|z〉

which shows that f = jz.

Proposition 12.15 (Adjoints). Let H and K be Hilbert spaces and A : H →
K be a bounded operator. Then there exists a unique bounded operator A∗ :
K → H such that

〈Ax|y〉K = 〈x|A∗y〉H for all x ∈ H and y ∈ K. (12.7)

Moreover, for all A,B ∈ L(H,K) and λ ∈ C,

1. (A+ λB)∗ = A∗ + λ̄B∗,
2. A∗∗ := (A∗)∗ = A,
3. ‖A∗‖ = ‖A‖ and
4. ‖A∗A‖ = ‖A‖2 .
5. If K = H, then (AB)∗ = B∗A∗. In particular A ∈ L (H) has a bounded

inverse iff A∗ has a bounded inverse and (A∗)−1 =
(
A−1

)∗
.

Proof. For each y ∈ K, the map x→ 〈Ax|y〉K is in H∗ and therefore there
exists, by Theorem 12.14, a unique vector z ∈ H (we will denote this z by
A∗ (y)) such that
1 Recall that j is conjugate linear if

j (z1 + αz2) = jz1 + ᾱjz2

for all z1, z2 ∈ H and α ∈ C.
2 Alternatively, choose x0 ∈ M⊥ \ {0} such that f(x0) = 1. For x ∈ M⊥ we have
f(x− λx0) = 0 provided that λ := f(x). Therefore x− λx0 ∈M ∩M⊥ = {0} , i.e.
x = λx0. This again shows that M⊥ is spanned by x0.

〈Ax|y〉K = 〈x|z〉H for all x ∈ H.

This shows there is a unique map A∗ : K → H such that 〈Ax|y〉K = 〈x|A∗(y)〉H
for all x ∈ H and y ∈ K.

To see A∗ is linear, let y1, y2 ∈ K and λ ∈ C, then for any x ∈ H,

〈Ax|y1 + λy2〉K = 〈Ax|y1〉K + λ̄〈Ax|y2〉K
= 〈x|A∗(y1)〉K + λ̄〈x|A∗(y2)〉H
= 〈x|A∗(y1) + λA∗(y2)〉H

and by the uniqueness of A∗(y1 + λy2) we find

A∗(y1 + λy2) = A∗(y1) + λA∗(y2).

This shows A∗ is linear and so we will now write A∗y instead of A∗(y).
Since

〈A∗y|x〉H = 〈x|A∗y〉H = 〈Ax|y〉K = 〈y|Ax〉K
it follows that A∗∗ = A. The assertion that (A+ λB)∗ = A∗ + λ̄B∗ is Exercise
12.2.

Items 3. and 4. Making use of Schwarz’s inequality (Theorem 12.2), we
have

‖A∗‖ = sup
k∈K:‖k‖=1

‖A∗k‖

= sup
k∈K:‖k‖=1

sup
h∈H:‖h‖=1

|〈A∗k|h〉|

= sup
h∈H:‖h‖=1

sup
k∈K:‖k‖=1

|〈k|Ah〉| = sup
h∈H:‖h‖=1

‖Ah‖ = ‖A‖

so that ‖A∗‖ = ‖A‖ . Since

‖A∗A‖ ≤ ‖A∗‖ ‖A‖ = ‖A‖2

and

‖A‖2 = sup
h∈H:‖h‖=1

‖Ah‖2 = sup
h∈H:‖h‖=1

|〈Ah|Ah〉|

= sup
h∈H:‖h‖=1

|〈h|A∗Ah〉| ≤ sup
h∈H:‖h‖=1

‖A∗Ah‖ = ‖A∗A‖ (12.8)

we also have ‖A∗A‖ ≤ ‖A‖2 ≤ ‖A∗A‖ which shows ‖A‖2 = ‖A∗A‖ .
Alternatively, from Eq. (12.8),

‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖ ‖A∗‖ (12.9)
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which then implies ‖A‖ ≤ ‖A∗‖ . Replacing A by A∗ in this last inequality
shows ‖A∗‖ ≤ ‖A‖ and hence that ‖A∗‖ = ‖A‖ . Using this identity back in
Eq. (12.9) proves ‖A‖2 = ‖A∗A‖ .

Now suppose that K = H. Then

〈ABh|k〉 = 〈Bh|A∗k〉 = 〈h|B∗A∗k〉

which shows (AB)∗ = B∗A∗. If A−1 exists then(
A−1

)∗
A∗ =

(
AA−1

)∗
= I∗ = I and

A∗
(
A−1

)∗
=
(
A−1A

)∗
= I∗ = I.

This shows that A∗ is invertible and (A∗)−1 =
(
A−1

)∗
. Similarly if A∗ is

invertible then so is A = A∗∗.

Exercise 12.2. Let H,K,M be Hilbert spaces, A,B ∈ L(H,K), C ∈ L(K,M)
and λ ∈ C. Show (A+ λB)∗ = A∗ + λ̄B∗ and (CA)∗ = A∗C∗ ∈ L(M,H).

Exercise 12.3. Let H = Cn and K = Cm equipped with the usual inner
products, i.e. 〈z|w〉H = z · w̄ for z, w ∈ H. Let A be an m×n matrix thought of
as a linear operator from H to K. Show the matrix associated to A∗ : K → H
is the conjugate transpose of A.

Lemma 12.16. Suppose A : H → K is a bounded operator, then:

1. Nul(A∗) = Ran(A)⊥.
2. Ran(A) = Nul(A∗)⊥.
3. if K = H and V ⊂ H is an A – invariant subspace (i.e. A(V ) ⊂ V ), then
V ⊥ is A∗ – invariant.

Proof. An element y ∈ K is in Nul(A∗) iff 0 = 〈A∗y|x〉 = 〈y|Ax〉 for all
x ∈ H which happens iff y ∈ Ran(A)⊥. Because, by Exercise 12.1, Ran(A) =
Ran(A)⊥⊥, and so by the first item, Ran(A) = Nul(A∗)⊥. Now suppose A(V ) ⊂
V and y ∈ V ⊥, then

〈A∗y|x〉 = 〈y|Ax〉 = 0 for all x ∈ V

which shows A∗y ∈ V ⊥.
The next elementary theorem (referred to as the bounded linear transfor-

mation theorem, or B.L.T. theorem for short) is often useful.

Theorem 12.17 (B. L. T. Theorem). Suppose that Z is a normed space, X
is a Banach3 space, and S ⊂ Z is a dense linear subspace of Z. If T : S → X is a
3 A Banach space is a complete normed space. The main examples for us are Hilbert

spaces.

bounded linear transformation (i.e. there exists C <∞ such that ‖Tz‖ ≤ C ‖z‖
for all z ∈ S), then T has a unique extension to an element T̄ ∈ L(Z,X) and
this extension still satisfies∥∥T̄ z∥∥ ≤ C ‖z‖ for all z ∈ S̄.

Proof. Let z ∈ Z and choose zn ∈ S such that zn → z. Since

‖Tzm − Tzn‖ ≤ C ‖zm − zn‖ → 0 as m,n→∞,

it follows by the completeness of X that limn→∞ Tzn =: T̄ z exists. Moreover,
if wn ∈ S is another sequence converging to z, then

‖Tzn − Twn‖ ≤ C ‖zn − wn‖ → C ‖z − z‖ = 0

and therefore T̄ z is well defined. It is now a simple matter to check that T̄ :
Z → X is still linear and that∥∥T̄ z∥∥ = lim

n→∞
‖Tzn‖ ≤ lim

n→∞
C ‖zn‖ = C ‖z‖ for all x ∈ Z.

Thus T̄ is an extension of T to all of the Z. The uniqueness of this extension is
easy to prove and will be left to the reader.

12.1 Compactness Results for Lp – Spaces*

In this section we are going to identify the sequentially “weak” compact subsets
of Lp (Ω,B, P ) for 1 ≤ p <∞, where (Ω,B, P ) is a probability space. The key
to our proofs will be the following Hilbert space compactness result.

Theorem 12.18. Suppose {xn}∞n=1 is a bounded sequence in H (i.e. C :=
supn ‖xn‖ < ∞), then there exists a sub-sequence, yk := xnk and an x ∈ H
such that limk→∞ 〈yk|h〉 = 〈x|h〉 for all h ∈ H. We say that yk converges to x

weakly in this case and denote this by yk
w→ x.

Proof. Let H0 := span(xk : k ∈ N). Then H0 is a closed separable Hilbert
subspace of H and {xk}∞k=1 ⊂ H0. Let {hn}∞n=1 be a countable dense subset of
H0. Since |〈xk|hn〉| ≤ ‖xk‖ ‖hn‖ ≤ C ‖hn‖ <∞, the sequence, {〈xk|hn〉}∞k=1 ⊂
C, is bounded and hence has a convergent sub-sequence for all n ∈ N. By the
Cantor’s diagonalization argument we can find a a sub-sequence, yk := xnk , of
{xn} such that limk→∞ 〈yk|hn〉 exists for all n ∈ N.

We now show ϕ (z) := limk→∞ 〈yk|z〉 exists for all z ∈ H0. Indeed, for any
k, l, n ∈ N, we have
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|〈yk|z〉 − 〈yl|z〉| = |〈yk − yl|z〉| ≤ |〈yk − yl|hn〉|+ |〈yk − yl|z − hn〉|
≤ |〈yk − yl|hn〉|+ 2C ‖z − hn‖ .

Letting k, l→∞ in this estimate then shows

lim sup
k,l→∞

|〈yk|z〉 − 〈yl|z〉| ≤ 2C ‖z − hn‖ .

Since we may choose n ∈ N such that ‖z − hn‖ is as small as we please, we may
conclude that lim supk,l→∞ |〈yk|z〉 − 〈yl|z〉| , i.e. ϕ (z) := limk→∞ 〈yk|z〉 exists.

The function, ϕ̄ (z) = limk→∞ 〈z|yk〉 is a bounded linear functional on H
because

|ϕ̄ (z)| = lim inf
k→∞

|〈z|yk〉| ≤ C ‖z‖ .

Therefore by the Riesz Theorem 12.14, there exists x ∈ H0 such that ϕ̄ (z) =
〈z|x〉 for all z ∈ H0. Thus, for this x ∈ H0 we have shown

lim
k→∞

〈yk|z〉 = 〈x|z〉 for all z ∈ H0. (12.10)

To finish the proof we need only observe that Eq. (12.10) is valid for all
z ∈ H. Indeed if z ∈ H, then z = z0 + z1 where z0 = PH0z ∈ H0 and z1 =
z − PH0z ∈ H⊥0 . Since yk, x ∈ H0, we have

lim
k→∞

〈yk|z〉 = lim
k→∞

〈yk|z0〉 = 〈x|z0〉 = 〈x|z〉 for all z ∈ H.

Since unbounded subsets of H are clearly not sequentially weakly compact,
Theorem 12.18 states that a set is sequentially precompact inH iff it is bounded.
Let us now use Theorem 12.18 to identify the sequentially compact subsets of
Lp (Ω,B, P ) for all 1 ≤ p <∞. We begin with the case p = 1.

Theorem 12.19. If {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) ,
there exists a subsequence Yk := Xnk of {Xn}∞n=1 and X ∈ L1 (Ω,B, P ) such
that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Bb. (12.11)

Proof. For each m ∈ N let Xm
n := Xn1|Xn|≤m. The truncated sequence

{Xm
n }
∞
n=1 is a bounded subset of the Hilbert space, L2 (Ω,B, P ) , for all m ∈ N.

Therefore by Theorem 12.18, {Xm
n }
∞
n=1 has a weakly convergent sub-sequence

for all m ∈ N. By Cantor’s diagonalization argument, we can find Y mk := Xm
nk

and Xm ∈ L2 (Ω,B, P ) such that Y mk
w→ Xm as m→∞ and in particular

lim
k→∞

E [Y mk h] = E [Xmh] for all h ∈ Bb.

Our next goal is to show Xm → X in L1 (Ω,B, P ) . To this end, for m < M
and h ∈ Bb we have∣∣E [(XM −Xm

)
h
]∣∣ = lim

k→∞

∣∣E [(YMk − Y mk )h]∣∣ ≤ lim inf
k→∞

E
[∣∣YMk − Y mk ∣∣ |h|]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : M ≥ |Yk| > m]

≤ ‖h‖∞ · lim inf
k→∞

E [|Yk| : |Yk| > m] .

Taking h = sgn(XM −Xm) in this inequality shows

E
[∣∣XM −Xm

∣∣] ≤ lim inf
k→∞

E [|Yk| : |Yk| > m]

with the right member of this inequality going to zero as m,M → ∞ with
M ≥ m by the assumed uniform integrability of the {Xn} . Therefore there
exists X ∈ L1 (Ω,B, P ) such that limm→∞ E |X −Xm| = 0.

We are now ready to verify Eq. (12.11) is valid. For h ∈ Bb,

|E [(X − Yk)h]| ≤ |E [(Xm − Y mk )h]|+ |E [(X −Xm)h]|+ |E [(Yk − Y mk )h]|
≤ |E [(Xm − Y mk )h]|+ ‖h‖∞ · (E [|X −Xm|] + E [|Yk| : |Yk| > m])

≤ |E [(Xm − Y mk )h]|+ ‖h‖∞ ·
(

E [|X −Xm|] + sup
l

E [|Yl| : |Yl| > m]
)
.

Passing to the limit as k →∞ in the above inequality shows

lim sup
k→∞

|E [(X − Yk)h]| ≤ ‖h‖∞ ·
(

E [|X −Xm|] + sup
l

E [|Yl| : |Yl| > m]
)
.

Since Xm → X in L1 and supl E [|Yl| : |Yl| > m] → 0 by uniform integrability,
it follows that, lim supk→∞ |E [(X − Yk)h]| = 0.

Example 12.20. Let (Ω,B, P ) =
(
(0, 1) ,B(0,1),m

)
where m is Lebesgue measure

and let Xn (ω) = 2n10<ω<2−n . Then EXn = 1 for all n and hence {Xn}∞n=1 is
bounded in L1 (Ω,B, P ) (but is not uniformly integrable). Suppose for sake of
contradiction that there existed X ∈ L1 (Ω,B, P ) and subsequence, Yk := Xnk

such that Yk
w→ X. Then for h ∈ Bb and any ε > 0 we would have

E
[
Xh1(ε,1)

]
= lim
k→∞

E
[
Ykh1(ε,1)

]
= 0.

Then by DCT it would follow that E [Xh] = 0 for all h ∈ Bb and hence that
X ≡ 0. On the other hand we would also have

0 = E [X · 1] = lim
k→∞

E [Yk · 1] = 1

and we have reached the desired contradiction. Hence we must conclude that
bounded subset of L1 (Ω,B, P ) need not be weakly compact and thus we can
not drop the uniform integrability assumption made in Theorem 12.19.
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When 1 < p <∞, the situation is simpler.

Theorem 12.21. Let p ∈ (1,∞) and q = p (p− 1)−1 ∈ (1,∞) be its conjugate
exponent. If {Xn}∞n=1 is a bounded sequence in Lp (Ω,B, P ) , there exists X ∈
Lp (Ω,B, P ) and a subsequence Yk := Xnk of {Xn}∞n=1 such that

lim
k→∞

E [Ykh] = E [Xh] for all h ∈ Lq (Ω,B, P ) . (12.12)

Proof. Let C := supn∈N ‖Xn‖p < ∞ and recall that Lemma 11.39 guar-
antees that {Xn}∞n=1 is a uniformly integrable subset of L1 (Ω,B, P ) . There-
fore by Theorem 12.19, there exists X ∈ L1 (Ω,B, P ) and a subsequence,
Yk := Xnk , such that Eq. (12.11) holds. We will complete the proof by showing;
a) X ∈ Lp (Ω,B, P ) and b) and Eq. (12.12) is valid.

a) For h ∈ Bb we have

|E [Xh]| ≤ lim inf
k→∞

E [|Ykh|] ≤ lim inf
k→∞

‖Yk‖p · ‖h‖q ≤ C ‖h‖q .

For M <∞, taking h = sgn(X) |X|p−1 1|X|≤M in the previous inequality shows

E
[
|X|p 1|X|≤M

]
≤ C

∥∥∥sgn(X) |X|p−1 1|X|≤M
∥∥∥
q

= C
(
E
[
|X|(p−1)q 1|X|≤M

])1/q

≤ C
(
E
[
|X|p 1|X|≤M

])1/q
from which it follows that(

E
[
|X|p 1|X|≤M

])1/p ≤ (E [|X|p 1|X|≤M
])1−1/q ≤ C.

Using the monotone convergence theorem, we may let M →∞ in this equation
to find ‖X‖p = (E [|X|p])1/p ≤ C <∞.

b) Now that we know X ∈ Lp (Ω,B, P ) , in make sense to consider
E [(X − Yk)h] for all h ∈ Lp (Ω,B, P ) . For M <∞, let hM := h1|h|≤M , then

|E [(X − Yk)h]| ≤
∣∣E [(X − Yk)hM

]∣∣+
∣∣E [(X − Yk)h1|h|>M

]∣∣
≤
∣∣E [(X − Yk)hM

]∣∣+ ‖X − Yk‖p
∥∥h1|h|>M

∥∥
q

≤
∣∣E [(X − Yk)hM

]∣∣+ 2C
∥∥h1|h|>M

∥∥
q
.

Since hM ∈ Bb, we may pass to the limit k → ∞ in the previous inequality to
find,

lim sup
k→∞

|E [(X − Yk)h]| ≤ 2C
∥∥h1|h|>M

∥∥
q
.

This completes the proof, since
∥∥h1|h|>M

∥∥
q
→ 0 as M →∞ by DCT.

12.2 Exercises

Exercise 12.4. Suppose that {Mn}∞n=1 is an increasing sequence of closed sub-
spaces of a Hilbert space, H. Let M be the closure of M0 := ∪∞n=1Mn. Show
limn→∞ PMn

x = PMx for all x ∈ H. Hint: first prove this for x ∈M0 and then
for x ∈M. Also consider the case where x ∈M⊥.

Solution to Exercise (12.4). Let Pn := PMn
and P = PM . If y ∈ M0, then

Pny = y = Py for all n sufficiently large. and therefore, limn→∞ Pny = Py.
Now suppose that x ∈M and y ∈M0. Then

‖Px− Pnx‖ ≤ ‖Px− Py‖+ ‖Py − Pny‖+ ‖Pny − Pnx‖
≤ 2 ‖x− y‖+ ‖Py − Pny‖

and passing to the limit as n→∞ then shows

lim sup
n→∞

‖Px− Pnx‖ ≤ 2 ‖x− y‖ .

The left hand side may be made as small as we like by choosing y ∈ M0

arbitrarily close to x ∈M = M̄0.

For the general case, if x ∈ H, then x = Px+ y where y = x− Px ∈M⊥ ⊂
M⊥n for all n. Therefore,

Pnx = PnPx→ Px as n→∞

by what we have just proved.
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Conditional Expectation

In this section let (Ω,B, P ) be a probability space and G ⊂ B be a sub –
sigma algebra of B. We will write f ∈ Gb iff f : Ω → C is bounded and f is
(G,BC) – measurable. If A ∈ B and P (A) > 0, we will let

E [X|A] :=
E [X : A]
P (A)

and P (B|A) := E [1B |A] :=
P (A ∩B)
P (A)

for all integrable random variables, X, and B ∈ B. We will often use the fac-
torization Lemma 6.40 in this section. Because of this let us repeat it here.

Lemma 13.1. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, H : Ω → R̄, there is a
(F ,BR̄) – measurable function h : Y→ R̄ such that H = h ◦ Y.

Proof. First suppose that H = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with h = 1B . More generally if H =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence H = h◦Y
with h :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, H, from Ω → R̄, choose simple
functions Hn converging to H. Let hn : Y → R̄ be simple functions such that
Hn = hn ◦ Y. Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ Y = h ◦ Y

where h := lim sup
n→∞

hn – a measurable function from Y to R̄.

Definition 13.2 (Conditional Expectation). Let EG : L2(Ω,B, P ) →
L2(Ω,G, P ) denote orthogonal projection of L2(Ω,B, P ) onto the closed sub-
space L2(Ω,G, P ). For f ∈ L2(Ω,B, P ), we say that EGf ∈ L2(Ω,G, P ) is the
conditional expectation of f.

Remark 13.3 (Basic Properties of EG). Let f ∈ L2(Ω,B, P ). By the orthogonal
projection Theorem 12.12 we know that F ∈ L2(Ω,G, P ) is EGf a.s. iff either
of the following two conditions hold;

1. ‖f − F‖2 ≤ ‖f − g‖2 for all g ∈ L2(Ω,G, P ) or

2. E [fh] = E [Fh] for all h ∈ L2(Ω,G, P ).

Moreover if G0 ⊂ G1 ⊂ B then L2(Ω,G0, P ) ⊂ L2(Ω,G1, P ) ⊂ L2(Ω,B, P )
and therefore,

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L2 (Ω,B, P ) . (13.1)

It is also useful to observe that condition 2. above may expressed as

E [f : A] = E [F : A] for all A ∈ G (13.2)

or
E [fh] = E [Fh] for all h ∈ Gb. (13.3)

Indeed, if Eq. (13.2) holds, then by linearity we have E [fh] = E [Fh] for all
G – measurable simple functions, h and hence by the approximation Theorem
6.39 and the DCT for all h ∈ Gb. Therefore Eq. (13.2) implies Eq. (13.3). If Eq.
(13.3) holds and h ∈ L2(Ω,G, P ), we may use DCT to show

E [fh] DCT= lim
n→∞

E
[
fh1|h|≤n

] (13.3)
= lim

n→∞
E
[
Fh1|h|≤n

] DCT= E [Fh] ,

which is condition 2. in Remark 13.3. Taking h = 1A with A ∈ G in condition
2. or Remark 13.3, we learn that Eq. (13.2) is satisfied as well.

Theorem 13.4. Let (Ω,B, P ) and G ⊂ B be as above and let f, g ∈ L1(Ω,B, P ).
The operator EG : L2(Ω,B, P )→ L2(Ω,G, P ) extends uniquely to a linear con-
traction from L1(Ω,B, P ) to L1(Ω,G, P ). This extension enjoys the following
properties;

1. If f ≥ 0, P – a.e. then EGf ≥ 0, P – a.e.
2. Monotonicity. If f ≥ g, P – a.e. there EGf ≥ EGg, P – a.e.
3. L∞ – contraction property. |EGf | ≤ EG |f | , P – a.e.
4. Averaging Property. If f ∈ L1(Ω,B, P ) then F = EGf iff F ∈
L1(Ω,G, P ) and

E(Fh) = E(fh) for all h ∈ Gb. (13.4)

5. Pull out property or product rule. If g ∈ Gb and f ∈ L1(Ω,B, P ), then
EG(gf) = g · EGf, P – a.e.
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6. Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0EG1f = EG1EG0f = EG0f a.s. for all f ∈ L1 (Ω,B, P ) . (13.5)

Proof. By the definition of orthogonal projection, f ∈ L2 (Ω,B, P ) and
h ∈ Gb,

E(fh) = E(f · EGh) = E(EGf · h). (13.6)

Taking

h = sgn (EGf) :=
EGf
EGf

1|EGf |>0 (13.7)

in Eq. (13.6) shows

E(|EGf |) = E(EGf · h) = E(fh) ≤ E(|fh|) ≤ E(|f |). (13.8)

It follows from this equation and the BLT (Theorem 12.17) that EG extends
uniquely to a contraction form L1(Ω,B, P ) to L1(Ω,G, P ). Moreover, by a sim-
ple limiting argument, Eq. (13.6) remains valid for all f ∈ L1 (Ω,B, P ) and
h ∈ Gb. Indeed, (without reference to Theorem 12.17) if fn := f1|f |≤n ∈
L2 (Ω,B, P ) , then fn → f in L1(Ω,B, P ) and hence

E [|EGfn − EGfm|] = E [|EG (fn − fm)|] ≤ E [|fn − fm|]→ 0 as m,n→∞.

By the completeness of L1(Ω,G, P ), F := L1(Ω,G, P )-limn→∞ EGfn exists.
Moreover the function F satisfies,

E(F · h) = E( lim
n→∞

EGfn · h) = lim
n→∞

E(fn · h) = E(f · h) (13.9)

for all h ∈ Gb and by Proposition 7.22 there is at most one, F ∈ L1(Ω,G, P ),
which satisfies Eq. (13.9). We will again denote F by EGf. This proves the
existence and uniqueness of F satisfying the defining relation in Eq. (13.4) of
item 4. The same argument used in Eq. (13.8) again shows E |F | ≤ E |f | and
therefore that EG : L1 (Ω,B, P )→ L1 (Ω,G, P ) is a contraction.

Items 1 and 2. If f ∈ L1 (Ω,B, P ) with f ≥ 0, then

E(EGf · h) = E(fh) ≥ 0 ∀ h ∈ Gb with h ≥ 0. (13.10)

An application of Lemma 7.24 then shows that EGf ≥ 0 a.s.1 The proof of item
2. follows by applying item 1. with f replaced by f − g ≥ 0.

Item 3. If f is real, ±f ≤ |f | and so by Item 2., ±EGf ≤ EG |f | , i.e.
|EGf | ≤ EG |f | , P – a.e. For complex f, let h ≥ 0 be a bounded and G –
measurable function. Then
1 This can also easily be proved directly here by taking h = 1EGf<0 in Eq. (13.10).

E [|EGf |h] = E
[
EGf · sgn (EGf)h

]
= E

[
f · sgn (EGf)h

]
≤ E [|f |h] = E [EG |f | · h] .

Since h ≥ 0 is an arbitrary G – measurable function, it follows, by Lemma 7.24,
that |EGf | ≤ EG |f | , P – a.s. Recall the item 4. has already been proved.

Item 5. If h, g ∈ Gb and f ∈ L1 (Ω,B, P ) , then

E [(gEGf)h] = E [EGf · hg] = E [f · hg] = E [gf · h] = E [EG (gf) · h] .

Thus EG (gf) = g · EGf, P – a.e.
Item 6., by the item 5. of the projection Theorem 12.12, Eq. (13.5) holds

on L2(Ω,B, P ). By continuity of conditional expectation on L1 (Ω,B, P ) and
the density of L1 probability spaces in L2 – probability spaces shows that Eq.
(13.5) continues to hold on L1(Ω,B, P ).

Second Proof. For h ∈ (G0)b , we have

E [EG0EG1f · h] = E [EG1f · h] = E [f · h] = E [EG0f · h]

which shows EG0EG1f = EG0f a.s. By the product rule in item 5., it also follows
that

EG1 [EG0f ] = EG1 [EG0f · 1] = EG0f · EG1 [1] = EG0f a.s.

Notice that EG1 [EG0f ] need only be G1 – measurable. What the statement says
there are representatives of EG1 [EG0f ] which is G0 – measurable and any such
representative is also a representative of EG0f.

Remark 13.5. There is another standard construction of EGf based on the char-
acterization in Eq. (13.4) and the Radon Nikodym Theorem 14.8. It goes as
follows, for 0 ≤ f ∈ L1 (P ) , let Q := fP and observe that Q|G � P |G and
hence there exists 0 ≤ g ∈ L1 (Ω,G, P ) such that dQ|G = gdP |G . This then
implies that ∫

A

fdP = Q (A) =
∫
A

gdP for all A ∈ G,

i.e. g = EGf. For general real valued, f ∈ L1 (P ) , define EGf = EGf+ − EGf−
and then for complex f ∈ L1 (P ) let EGf = EG Re f + iEG Im f.

Notation 13.6 In the future, we will often write EGf as E [f |G] . Moreover,
if (X,M) is a measurable space and X : Ω → X is a measurable map.
We will often simply denote E [f |σ (X)] simply by E [f |X] . We will further
let P (A|G) := E [1A|G] be the conditional probability of A given G, and
P (A|X) := P (A|σ (X)) be conditional probability of A given X.

Exercise 13.1. Suppose f ∈ L1 (Ω,B, P ) and f > 0 a.s. Show E [f |G] > 0
a.s. Use this result to conclude if f ∈ (a, b) a.s. for some a, b such that −∞ ≤
a < b ≤ ∞, then E [f |G] ∈ (a, b) a.s. More precisely you are to show that any
version, g, of E [f |G] satisfies, g ∈ (a, b) a.s.
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13.1 Examples

Example 13.7. Suppose G is the trivial σ – algebra, i.e. G = {∅, Ω} . In this case
EGf = Ef a.s.

Example 13.8. On the opposite extreme, if G = B, then EGf = f a.s.

Lemma 13.9. Suppose (X,M) is a measurable space, X : Ω → X is a mea-
surable function, and G is a sub-σ-algebra of B. If X is independent of G and
f : X → R is a measurable function such that f (X) ∈ L1 (Ω,B, P ) , then
EG [f (X)] = E [f (X)] a.s.. Conversely if EG [f (X)] = E [f (X)] a.s. for all
bounded measurable functions, f : X→ R, then X is independent of G.

Proof. Suppose that X is independent of G, f : X → R is a measurable
function such that f (X) ∈ L (Ω,B, P ) , µ := E [f (X)] , and A ∈ G. Then, by
independence,

E [f (X) : A] = E [f (X) 1A] = E [f (X)] E [1A] = E [µ1A] = E [µ : A] .

Therefore EG [f (X)] = µ = E [f (X)] a.s.
Conversely if EG [f (X)] = E [f (X)] = µ and A ∈ G, then

E [f (X) 1A] = E [f (X) : A] = E [µ : A] = µE [1A] = E [f (X)] E [1A] .

Since this last equation is assumed to hold true for all A ∈ G and all bounded
measurable functions, f : X→ R, X is independent of G.

The following remark is often useful in computing conditional expectations.
The following Exercise should help you gain some more intuition about condi-
tional expectations.

Remark 13.10 (Note well.). According to Lemma 13.1, E (f |X) = f̃ (X) a.s.
for some measurable function, f̃ : X → R. So computing E (f |X) = f̃ (X) is
equivalent to finding a function, f̃ : X→ R, such that

E [f · h (X)] = E
[
f̃ (X)h (X)

]
(13.11)

for all bounded and measurable functions, h : X→ R.

Exercise 13.2. Suppose (Ω,B, P ) is a probability space and P := {Ai}∞i=1 ⊂ B
is a partition of Ω. (Recall this means Ω =

∑∞
i=1Ai.) Let G be the σ – algebra

generated by P. Show:

1. B ∈ G iff B = ∪i∈ΛAi for some Λ ⊂ N.
2. g : Ω → R is G – measurable iff g =

∑∞
i=1 λi1Ai for some λi ∈ R.

3. For f ∈ L1(Ω,B, P ), let E [f |Ai] := E [1Aif ] /P (Ai) if P (Ai) 6= 0 and
E [f |Ai] = 0 otherwise. Show

EGf =
∞∑
i=1

E [f |Ai] 1Ai a.s. (13.12)

Solution to Exercise (13.2). We will only prove part 3. here. To do this,
suppose that EGf =

∑∞
i=1 λi1Ai for some λi ∈ R. Then

E [f : Aj ] = E [EGf : Aj ] = E

[ ∞∑
i=1

λi1Ai : Aj

]
= λjP (Aj)

which holds automatically if P (Aj) = 0 no matter how λj is chosen. Therefore,
we must take

λj =
E [f : Aj ]
P (Aj)

= E [f |Aj ]

which verifies Eq. (13.12).

Proposition 13.11. Suppose that (Ω,B, P ) is a probability space, (X,M, µ)
and (Y,N , ν) are two σ – finite measure spaces, X : Ω → X and Y : Ω → Y
are measurable functions, and there exists 0 ≤ ρ ∈ L1(Ω,B, µ ⊗ ν) such that
P ((X,Y ) ∈ U) =

∫
U
ρ (x, y) dµ (x) dν (y) for all U ∈M⊗N . Let

ρ̄ (x) :=
∫

Y
ρ (x, y) dν (y) (13.13)

and x ∈ X and B ∈ N , let

Q (x,B) :=
{ 1
ρ̄(x)

∫
B
ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)
δy0 (B) if ρ̄ (x) ∈ {0,∞} (13.14)

where y0 is some arbitrary but fixed point in Y. Then for any bounded (or non-
negative) measurable function, f : X× Y→ R, we have

E [f (X,Y ) |X] = Q (X, f (X, ·)) =:
∫

Y
f (X, y)Q (X, dy) = g (X) a.s. (13.15)

where,

g (x) :=
∫

Y
f (x, y)Q (x, dy) = Q (x, f (x, ·)) .

As usual we use the notation,

Q (x, v) :=
∫

Y
v (y)Q (x, dy) =

{ 1
ρ̄(x)

∫
Y v (y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)
δy0 (v) = v (y0) if ρ̄ (x) ∈ {0,∞} .

for all bounded measurable functions, v : Y→ R,
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Proof. Our goal is to compute E [f (X,Y ) |X] . According to Remark 13.10,
we are searching for a bounded measurable function, g : X→ R, such that

E [f (X,Y )h (X)] = E [g (X)h (X)] for all h ∈Mb. (13.16)

(Throughout this argument we are going to repeatedly use the Tonelli - Fubini
theorems.) We now explicitly write out both sides of Eq. (13.16);

E [f (X,Y )h (X)] =
∫

X×Y
h (x) f (x, y) ρ (x, y) dµ (x) dν (y)

=
∫

X
h (x)

[∫
Y
f (x, y) ρ (x, y) dν (y)

]
dµ (x) (13.17)

E [g (X)h (X)] =
∫

X×Y
h (x) g (x) ρ (x, y) dµ (x) dν (y)

=
∫

X
h (x) g (x) ρ̄ (x) dµ (x) . (13.18)

Since the right sides of Eqs. (13.17) and (13.18) must be equal for all h ∈Mb,
we must demand,∫

Y
f (x, y) ρ (x, y) dν (y) = g (x) ρ̄ (x) for µ – a.e. x. (13.19)

There are two possible problems in solving this equation for g (x) at a particular
point x; the first is when ρ̄ (x) = 0 and the second is when ρ̄ (x) =∞. Since∫

X
ρ̄ (x) dµ (x) =

∫
X

[∫
Y
ρ (x, y) dν (y)

]
dµ (x) = 1,

we know that ρ̄ (x) <∞ for µ – a.e. x and therefore

P (X ∈ {ρ̄ = 0}) = P (ρ̄ (X) = 0) =
∫

X
1ρ̄=0ρ̄dµ = 0.

Hence the points where ρ̄ (x) =∞ will not cause any problems.
For the first problem, namely points x where ρ̄ (x) = 0, we know that

ρ (x, y) = 0 for ν – a.e. y and therefore∫
Y
f (x, y) ρ (x, y) dν (y) = 0. (13.20)

Hence at such points, x where ρ̄ (x) = 0, Eq. (13.19) will be valid no matter
how we choose g (x) . Therefore, if we let y0 ∈ Y be an arbitrary but fixed point
and then define

g (x) :=
{ 1
ρ̄(x)

∫
Y f (x, y) ρ (x, y) dν (y) if ρ̄ (x) ∈ (0,∞)

f (x, y0) if ρ̄ (x) ∈ {0,∞} ,

then we have shown E [f (X,Y ) |X] = g (X) = Q (X, f) a.s. as desired. (Observe
where that when ρ̄ (x) < ∞, ρ (x, ·) ∈ L1 (ν) and hence the integral in the
definition of g is well defined.)

Just for added security, let us check directly that g (X) = E [f (X,Y ) |X]
a.s.. According to Eq. (13.18) we have

E [g (X)h (X)] =
∫

X
h (x) g (x) ρ̄ (x) dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x) g (x) ρ̄ (x) dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x) ρ̄ (x)

(
1

ρ̄ (x)

∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=
∫

X∩{0<ρ̄<∞}
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

=
∫

X
h (x)

(∫
Y
f (x, y) ρ (x, y) dν (y)

)
dµ (x)

= E [f (X,Y )h (X)] (by Eq. (13.17)),

wherein we have repeatedly used µ (ρ̄ =∞) = 0 and Eq. (13.20) holds when
ρ̄ (x) = 0. This completes the verification that g (X) = E [f (X,Y ) |X] a.s..

This proposition shows that conditional expectation is a generalization of
the notion of performing integration over a partial subset of the variables in the
integrand. Whereas to compute the expectation, one should integrate over all
of the variables. It also gives an example of regular conditional probabilities.

Definition 13.12. Let (X,M) and (Y,N ) be measurable spaces. A function,
Q : X×N → [0, 1] is a probability kernel on X× Y iff

1. Q (x, ·) : N → [0, 1] is a probability measure on (Y,N ) for each x ∈ X and
2. Q (·, B) : X→ [0, 1] is M/BR – measurable for all B ∈ N .

If Q is a probability kernel on X × Y and f : Y → R is a bounded
measurable function or a positive measurable function, then x → Q (x, f) :=∫

Y f (y)Q (x, dy) is M/BR – measurable. This is clear for simple functions and
then for general functions via simple limiting arguments.

Definition 13.13. Let (X,M) and (Y,N ) be measurable spaces and X : Ω →
X and Y : Ω → Y be measurable functions. A probability kernel, Q, on X × Y
is said to be a regular conditional distribution of Y given X iff Q (X,B)
is a version of P (Y ∈ B|X) for each B ∈ N . Equivalently, we should have

Page: 190 job: prob macro: svmonob.cls date/time: 24-Nov-2009/13:23



13.2 Additional Properties of Conditional Expectations 191

Q (X, f) = E [f (Y ) |X] a.s. for all f ∈ Nb. When X = Ω and M = G is a
sub-σ – algebra of B, we say that Q is the regular conditional distribution
of Y given G.

The probability kernel, Q, defined in Eq. (13.14) is an example of a regular
conditional distribution of Y given X. In general if G is a sub-σ-algebra of B.
Letting PG (A) = P (A|G) := E [1A|G] ∈ L2 (Ω,B, P ) for all A ∈ B, then PG :
B → L2 (Ω,G, P ) is a map such that whenever A,An ∈ B with A =

∑∞
n=1An,

we have (by cDCT) that

PG (A) =
∞∑
n=1

PG (An) (equality in L2 (Ω,G, P ) . (13.21)

Now suppose that we have chosen a representative, P̄G (A) : Ω → [0, 1] , of
PG (A) for each A ∈ B. From Eq. (13.21) it follows that

P̄G (A) (ω) =
∞∑
n=1

P̄G (An) (ω) for P -a.e. ω. (13.22)

However, note well, the exceptional set of ω’s depends on the sets A,An ∈
B. The goal of regular conditioning is to carefully choose the representative,
P̄G (A) : Ω → [0, 1] , such that Eq. (13.22) holds for all ω ∈ Ω and all A,An ∈ B
with A =

∑∞
n=1An.

Remark 13.14. Unfortunately, regular conditional distributions do not always
exists. However, if we require Y to be a “standard Borel space,” (i.e. Y is iso-
morphic to a Borel subset of R), then a conditional distribution of Y given X
will always exists. See Theorem 13.24. Moreover, it is known that all “reason-
able” measure spaces are standard Borel spaces, see Section 9.10 below for more
details. So in most instances of interest a regular conditional distribution of Y
given X will exist.

Exercise 13.3. Suppose that (X,M) and (Y,N ) are measurable spaces, X :
Ω → X and Y : Ω → Y are measurable functions, and there exists a regular
conditional distribution, Q, of Y given X. Show:

1. For all bounded measurable functions, f : (X× Y,M⊗N )→ R, the func-
tion X 3 x→ Q (x, f (x, ·)) is measurable and

Q (X, f (X, ·)) = E [f (X,Y ) |X] a.s. (13.23)

Hint: let H denote the set of bounded measurable functions, f, on X × Y
such that the two assertions are valid.

2. If A ∈M⊗N and µ := P ◦X−1 be the law of X, then

P ((X,Y ) ∈ A) =
∫

X
Q (x, 1A (x, ·)) dµ (x) =

∫
X
dµ (x)

∫
Y

1A (x, y)Q (x, dy) .

(13.24)

Exercise 13.4. Keeping the same notation as in Exercise 13.3 and further as-
sume that X and Y are independent. Find a regular conditional distribution of
Y given X and prove

E [f (X,Y ) |X] = hf (X) a.s. ∀ bounded measurable f : X× Y→ R,

where
hf (x) := E [f (x, Y )] for all x ∈ X,

i.e.
E [f (X,Y ) |X] = E [f (x, Y )] |x=X a.s.

Exercise 13.5. Suppose (Ω,B, P ) and (Ω′,B′, P ′) are two probability spaces,
(X,M) and (Y,N ) are measurable spaces, X : Ω → X, X ′ : Ω′ → X, Y :
Ω → Y,and Y ′ : Ω → Y are measurable functions such that P ◦ (X,Y )−1 =
P ′ ◦ (X ′, Y ′) , i.e. (X,Y ) d= (X ′, Y ′) . If f : (X× Y,M⊗N )→ R is a bounded
measurable function and f̃ : (X,M) → R is a measurable function such that
f̃ (X) = E [f (X,Y ) |X] P - a.s. then

E′ [f (X ′, Y ′) |X ′] = f̃ (X ′) P ′ a.s.

13.2 Additional Properties of Conditional Expectations

The next theorem is devoted to extending the notion of conditional expectations
to all non-negative functions and to proving conditional versions of the MCT,
DCT, and Fatou’s lemma.

Theorem 13.15 (Extending EG). If f : Ω → [0,∞] is B – measurable, the
function F :=↑ limn→∞ EG [f ∧ n] exists a.s. and is, up to sets of measure
zero, uniquely determined by as the G – measurable function, F : Ω → [0,∞] ,
satisfying

E [f : A] = E [F : A] for all A ∈ G. (13.25)

Hence it is consistent to denote F by EGf. In addition we now have;

1. Properties 2., 5. (with 0 ≤ g ∈ Gb), and 6. of Theorem 13.4 still hold for
any B – measurable functions such that 0 ≤ f ≤ g. Namely;
a) Order Preserving. EGf ≤ EGg a.s. when 0 ≤ f ≤ g,
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b) Pull out Property. EG [hf ] = hEG [f ] a.s. for all h ≥ 0 and G –
measurable.

c) Tower or smoothing property. If G0 ⊂ G1 ⊂ B. Then

EG0EG1f = EG1EG0f = EG0f a.s.

2. Conditional Monotone Convergence (cMCT). Suppose that, almost
surely, 0 ≤ fn ≤ fn+1 for all n, then then limn→∞ EGfn = EG [limn→∞ fn]
a.s.

3. Conditional Fatou’s Lemma (cFatou). Suppose again that 0 ≤ fn ∈
L1 (Ω,B, P ) a.s., then

EG
[
lim inf
n→∞

fn

]
≤ lim inf

n→∞
EG [fn] a.s. (13.26)

4. Conditional Dominated Convergence (cDCT). If fn → f a.s. and
|fn| ≤ g ∈ L1 (Ω,B, P ) , then EGfn → EGf a.s.

Remark 13.16. Regarding item 4. above. Suppose that fn
P→ f, |fn| ≤ gn ∈

L1 (Ω,B, P ) , gn
P→ g ∈ L1 (Ω,B, P ) and Egn → Eg. Then by the DCT in

Corollary 11.8, we know that fn → f in L1 (Ω,B, P ) . Since EG is a contraction,
it follows that EGfn → EGf in L1 (Ω,B, P ) and hence in probability.

Proof. Since f∧n ∈ L1 (Ω,B, P ) and f∧n is increasing, it follows that F :=↑
limn→∞ EG [f ∧ n] exists a.s. Moreover, by two applications of the standard
MCT, we have for any A ∈ G, that

E [F : A] = lim
n→∞

E [EG [f ∧ n] : A] = lim
n→∞

E [f ∧ n : A] = lim
n→∞

E [f : A] .

Thus Eq. (13.25) holds and this uniquely determines F follows from Lemma
7.24.

Item 1. a) If 0 ≤ f ≤ g, then

EGf = lim
n→∞

EG [f ∧ n] ≤ lim
n→∞

EG [g ∧ n] = EGg a.s.

and so EG still preserves order. We will prove items 1b and 1c at the end of this
proof.

Item 2. Suppose that, almost surely, 0 ≤ fn ≤ fn+1 for all n, then EGfn
is a.s. increasing in n. Hence, again by two applications of the MCT, for any
A ∈ G, we have

E
[

lim
n→∞

EGfn : A
]

= lim
n→∞

E [EGfn : A] = lim
n→∞

E [fn : A]

= E
[

lim
n→∞

fn : A
]

= E
[
EG
[

lim
n→∞

fn

]
: A
]

from which it follows that limn→∞ EGfn = EG [limn→∞ fn] a.s.
Item 3. For 0 ≤ fn, let gk := infn≥k fn. Then gk ≤ fk for all k and gk ↑

lim infn→∞ fn and hence by cMCT and item 1.,

EG
[
lim inf
n→∞

fn

]
= lim
k→∞

EGgk ≤ lim inf
k→∞

EGfk a.s.

Item 4. As usual it suffices to consider the real case. Let fn → f a.s. and
|fn| ≤ g a.s. with g ∈ L1 (Ω,B, P ) . Then following the proof of the Dominated
convergence theorem, we start with the fact that 0 ≤ g±fn a.s. for all n. Hence
by cFatou,

EG (g ± f) = EG
[
lim inf
n→∞

(g ± fn)
]

≤ lim inf
n→∞

EG (g ± fn) = EGg +
{

lim infn→∞ EG (fn) in + case
− lim supn→∞ EG (fn) in − case,

where the above equations hold a.s. Cancelling EGg from both sides of the
equation then implies

lim sup
n→∞

EG (fn) ≤ EGf ≤ lim inf
n→∞

EG (fn) a.s.

Item 1. b) If h ≥ 0 is a G – measurable function and f ≥ 0, then by cMCT,

EG [hf ] cMCT= lim
n→∞

EG [(h ∧ n) (f ∧ n)]

= lim
n→∞

(h ∧ n) EG [(f ∧ n)] cMCT= hEGf a.s.

Item 1. c) Similarly by multiple uses of cMCT,

EG0EG1f = EG0 lim
n→∞

EG1 (f ∧ n) = lim
n→∞

EG0EG1 (f ∧ n)

= lim
n→∞

EG0 (f ∧ n) = EG0f

and

EG1EG0f = EG1 lim
n→∞

EG0 (f ∧ n) = lim
n→∞

EG1EG0 [f ∧ n]

= lim
n→∞

EG0 (f ∧ n) = EG0f.

The next result in Lemma 13.18 shows how to localize conditional expecta-
tions. We first need the following definition.

Definition 13.17. Suppose that F and G are sub-σ-fields of B and A ∈ B.
We say that F = G on A iff A ∈ F ∩ G and FA = GA. Recall that FA =
{B ∩A : B ∈ F} .
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Notice that if F = G on A then F = G = F∩G on A as well, i.e. if A ∈ F ∩ G
and FA = GA then

FA = GA = [F ∩ G]A . (13.27)

To prove this first observe F ∩G ⊂ F implies [F ∩ G]A ⊂ FA = GA. Conversely,
B ∈ FA = GA, then B ∩A ∈ F ∩ G, i.e. B ∈ [F ∩ G]A .

Lemma 13.18 (Localizing Conditional Expectations). Let (Ω,B, P ) be
a probability space, F and G be sub-sigma-fileds of B, X, Y ∈ L1 (Ω,B, P ) or
X,Y : (Ω,B) → [0,∞] are measurable, and A ∈ F ∩ G. If F = G on A and
X = Y a.s. on A, then

EFX = EF∩GX = EF∩GY = EGY a.s. on A. (13.28)

Alternatively put, if A ∈ F ∩ G and FA = GA then

1AEF = 1AEF∩G = 1AEG . (13.29)

Proof. Let us start with the observation that if X is an F – measurable
random variable, then 1AX is F ∩ G measurable. This can be checked either
directly (see Remark 13.19 below) or as follows. If X = 1B with B ∈ F , then
1A1B = 1A∩B and A∩B ∈ FA = GA = [F ∩ G]A ⊂ F ∩G and so 1A1B is F ∩G
– measurable. The general X case now follows by linearity and then passing to
the limit.

Suppose X ∈ L1 (Ω,B, P ) or X ≥ 0 and let X̄ be a representative of EFX.
By the previous observation, 1AX̄ is F ∩ G – measurable. Therefore,

1AX̄ = EF∩G
[
1AX̄

]
= 1AEF∩G

[
X̄
]

= 1AEF∩G [EFX] = 1AEF∩GX a.s.,

i.e. 1AEFX = 1AEF∩GX a.s. This proves the first equality in Eq. (13.29) while
the second follows by interchanging the roles of F and G.

Equation (13.28) is now easily verified. First notice that X = Y a.s. on A
iff 1AX = 1AY a.s.. Now from Eq. (13.29), the tower property of conditional
expectation, and the fact that 1A = 1A · 1A,we find

1AEFX = 1AEF [1AX] = 1AEF [1AY ] = 1AEFY = 1AEF∩GY

from which it follows that EFX = EF∩GY a.s. on A.

Remark 13.19. For the direct verification that 1AX is F ∩ G measurable, we
have,

{1AX 6= 0} = A ∩ {X 6= 0} ∈ FA = GA = (F ∩ G)A ⊂ F ∩ G.

So for B ∈ BR,

{1AX ∈ B} = A ∩ {X ∈ B} ∈ FA ⊂ F ∩ G if 0 /∈ B

while if 0 ∈ B,

{1AX ∈ B} = {1AX = 0}c ∪A ∩ {X ∈ (B \ {0})}
= {1AX 6= 0}c ∪A ∩ {X ∈ (B \ {0})} ∈ F ∩ G.

Theorem 13.20 (Conditional Jensen’s inequality). Let (Ω,B, P ) be a
probability space, −∞ ≤ a < b ≤ ∞, and ϕ : (a, b) → R be a convex func-
tion. Assume f ∈ L1(Ω,B, P ; R) is a random variable satisfying, f ∈ (a, b) a.s.
and ϕ(f) ∈ L1(Ω,B, P ; R). Then ϕ(EGf) ∈ L1 (Ω,G, P ) ,

ϕ(EGf) ≤ EG [ϕ(f)] a.s. (13.30)

and
E [ϕ(EGf)] ≤ E [ϕ(f)] (13.31)

Proof. Let Λ := Q∩ (a, b) – a countable dense subset of (a, b) . By Theorem
11.42 (also see Lemma 10.32) and Figure 10.1 when ϕ is C1)

ϕ(y) ≥ ϕ(x) + ϕ′−(x)(y − x) for all for all x, y ∈ (a, b) ,

where ϕ′−(x) is the left hand derivative of ϕ at x. Taking y = f and then taking
conditional expectations imply,

EG [ϕ(f)] ≥ EG
[
ϕ(x) + ϕ′−(x)(f − x)

]
= ϕ(x) + ϕ′−(x)(EGf − x) a.s. (13.32)

Since this is true for all x ∈ (a, b) (and hence all x in the countable set, Λ) we
may conclude that

EG [ϕ(f)] ≥ sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
a.s.

By Exercise 13.1, EGf ∈ (a, b) , and hence it follows from Corollary 11.43 that

sup
x∈Λ

[
ϕ(x) + ϕ′−(x)(EGf − x)

]
= ϕ (EGf) a.s.

Combining the last two estimates proves Eq. (13.30).
From Eqs. (13.30) and (13.32) we infer,

|ϕ(EGf)| ≤ |EG [ϕ(f)]| ∨
∣∣ϕ(x) + ϕ′−(x)(EGf − x)

∣∣ ∈ L1 (Ω,G, P )

and hence ϕ(EGf) ∈ L1 (Ω,G, P ) . Taking expectations of Eq. (13.30) is now
allowed and immediately gives Eq. (13.31).

Corollary 13.21. The conditional expectation operator, EG maps Lp (Ω,B, P )
into Lp (Ω,B, P ) and the map remains a contraction for all 1 ≤ p ≤ ∞.

Proof. The case p = ∞ and p = 1 have already been covered in Theorem
13.4. So now suppose, 1 < p < ∞, and apply Jensen’s inequality with ϕ (x) =
|x|p to find |EGf |p ≤ EG |f |p a.s. Taking expectations of this inequality gives
the desired result.
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13.3 Regular Conditional Distributions

Lemma 13.22. Suppose that (X,M) is a measurable space and F : X×R→ R
is a function such that; 1) F (·, t) : X→ R is M/BR – measurable for all t ∈ R,
and 2) F (x, ·) : R→ R is right continuous for all x ∈ X. Then F isM⊗BR/BR
– measurable.

Proof. For n ∈ N, the function,

Fn (x, t) :=
∞∑

k=−∞

F
(
x, (k + 1) 2−n

)
1(k2−n,(k+1)2−n] (t) ,

is M⊗BR/BR – measurable. Using the right continuity assumption, it follows
that F (x, t) = limn→∞ Fn (x, t) for all (x, t) ∈ X × R and therefore F is also
M⊗BR/BR – measurable.

Theorem 13.23. Suppose that (X,M) is a measurable space, X : Ω → X is a
measurable function and Y : Ω → R is a random variable. Then there exists a
probability kernel, Q, on X×R such that E [f (Y ) |X] = Q (X, f) , P – a.s., for
all bounded measurable functions, f : R→ R.

Proof. For each r ∈ Q, let qr : X → [0, 1] be a measurable function such
that

E [1Y≤r|X] = qr (X) a.s.

Let ν := P ◦X−1 be the law of X. Then using the basic properties of conditional
expectation, qr ≤ qs ν – a.s. for all r ≤ s, limr↑∞ qr = 1 and limr↓∞ qr = 0, ν –
a.s. Hence the set, X0 ⊂ X where qr (x) ≤ qs (x) for all r ≤ s, limr↑∞ qr (x) = 1,
and limr↓∞ qr (x) = 0 satisfies, ν (X0) = P (X ∈ X0) = 1. For t ∈ R, let

F (x, t) := 1X0 (x) · inf {qr (x) : r > t}+ 1X\X0 (x) · 1t≥0.

Then F (·, t) : X→ R is measurable for each t ∈ R and F (x, ·) is a distribution
function on R for each x ∈ X. Hence an application of Lemma 13.22 shows
F : X× R→ [0, 1] is measurable.

For each x ∈ X and B ∈ BR, let Q (x,B) = µF (x,·) (B) where µF denotes the
probability measure on R determined by a distribution function, F : R→ [0, 1] .

We will now show that Q is the desired probability kernel. To prove this, let
H be the collection of bounded measurable functions, f : R→ R, such that X 3
x→ Q (x, f) ∈ R is measurable and E [f (Y ) |X] = Q (X, f) , P – a.s. It is easily
seen that H is a linear subspace which is closed under bounded convergence.
We will finish the proof by showing that H contains the multiplicative class,
M =

{
1(−∞,t] : t ∈ R

}
.

Notice that Q
(
x, 1(−∞,t]

)
= F (x, t) is measurable. Now let r ∈ Q and

g : X→ R be a bounded measurable function, then

E [1Y≤r · g (X)] = E [E [1Y≤r|X] g (X)] = E [qr (X) g (X)]
= E [qr (X) 1X0 (X) g (X)] .

For t ∈ R, we may let r ↓ t in the above equality (use DCT) to learn,

E [1Y≤t · g (X)] = E [F (X, t) 1X0 (X) g (X)] = E [F (X, t) g (X)] .

Since g was arbitrary, we may conclude that

Q
(
X, 1(−∞,t]

)
= F (X, t) = E [1Y≤t|X] a.s.

This completes the proof.
This result leads fairly immediately to the following far reaching generaliza-

tion.

Theorem 13.24. Suppose that (X,M) is a measurable space and (Y,N ) is a
standard Borel space, see Appendix 9.10. Suppose that X : Ω → X and Y :
Ω → Y are measurable functions. Then there exists a probability kernel, Q, on
X × Y such that E [f (Y ) |X] = Q (X, f) , P – a.s., for all bounded measurable
functions, f : Y→ R.

Proof. By definition of a standard Borel space, we may assume that Y ∈ BR
and N = BY. In this case Y may also be viewed to be a measurable map form
Ω → R such that Y (Ω) ⊂ Y. By Theorem 13.23, we may find a probability
kernel, Q0, on X× R such that

E [f (Y ) |X] = Q0 (X, f) , P – a.s., (13.33)

for all bounded measurable functions, f : R→ R.
Taking f = 1Y in Eq. (13.33) shows

1 = E [1Y (Y ) |X] = Q0 (X,Y) a.s..

Thus if we let X0 := {x ∈ X : Q0 (x,Y) = 1} , we know that P (X ∈ X0) = 1.
Let us now define

Q (x,B) := 1X0 (x)Q0 (x,B) + 1X\X0 (x) δy (B) for (x,B) ∈ X× BY,

where y is an arbitrary but fixed point in Y. Then and hence Q is a probability
kernel on X× Y. Moreover if B ∈ BY ⊂ BR, then

Q (X,B) = 1X0 (X)Q0 (X,B) = 1X0 (X) E [1B (Y ) |X] = E [1B (Y ) |X] a.s.

This shows that Q is the desired regular conditional probability.

Corollary 13.25. Suppose G is a sub-σ – algebra, (Y,N ) is a standard Borel
space, and Y : Ω → Y is a measurable function. Then there exists a probability
kernel, Q, on (Ω,G)× (Y,N ) such that E [f (Y ) |G] = Q (·, f) , P - a.s. for all
bounded measurable functions, f : Y→ R.

Proof. This is a special case of Theorem 13.24 applied with (X,M) = (Ω,G)
and Y : Ω → Ω being the identity map which is B/G – measurable.
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13.4 A little Markov Chain Theory

Lemma 13.26. Suppose that (X,M) , (Y,F) , and (Z,B) are measurable spaces
and Q : X ×F → [0, 1] and R : Y ×B → [0, 1] are probability kernels. Then for
every bounded measurable function, F : (Y × Z,F ⊗ B)→ (R,BR) , the map

y →
∫
Z

R (y; dz)F (y, z)

is measurable. Moreover, if we define P (x;A) for A ∈ F ⊗ B and x ∈ X by

P (x,A) =
∫
Y

Q (x; dy)
∫
Z

R (y; dz) 1A (y, z) ,

then P : X ×F ⊗ B → [0, 1] is a probability kernel such that

P (x, F ) =
∫
Y

Q (x; dy)
∫
Z

R (y; dz)F (y, z)

for all bounded measurable functions, F : (Y × Z,F ⊗ B) → (R,BR) . We will
denote the kernel P by QR and write

(QR) (x; dy, dz) = Q (x; dy)R (y; dz) .

Proof. A routine exercise in using the multiplicative systems theorem.

Example 13.27. Let (S,S) be a standard Borel space, Ω := SN0 , for all n ∈ N0,
let

Xn (ω) = Xn (ω0, ω1, . . . , ωn, . . . ) = ωn

and Bn := σ (X0, . . . , Xn) . Further let, B := B∞ := σ (Xn : n ∈ N0) and sup-
pose qn : S × S → [0, 1] is a probability kernel for each n ∈ N0. Then to
each probability measure, ν, on (S,S) there exists (by Theorem 9.45) a unique
probability measure, Pν , on

(
Ω := SN0 ,B

)
satisfying

EPν [f (X0, . . . , Xn)]

=
∫
Sn+1

f (x0, . . . , xn) dν (x0) q1 (x0, dx1) q2 (x1, dx2) . . . qn (xn−1, dxn) .

which is supposed to hold for all n ∈ N and all bounded measurable functions,
f : Sn+1 → R. That is the finite dimensional distributions of Pν are the measure,

dµn (x0, . . . , xn) := dν (x0) q1 (x0, dx1) q2 (x1, dx2) . . . qn (xn−1, dxn) , (13.34)

i.e. µn = νq1q2 . . . qn.

Notation 13.28 When x ∈ S and ν := δx we abbreviated, Pδx simply by Px.
So for x ∈ X,

EPx [f (X0, . . . , Xn)]

=
∫
Sn
f (x, x1, . . . , xn) q1 (x, dx1) q2 (x1, dx2) . . . qn (xn−1, dxn) .

Exercise 13.6 (Markov Property I). Keeping then notation in Example
13.27 and letting Eν denote the expectation relative to Pν . Show {Xn}∞n=0 has
the Markov property, i.e. if f : S → R is a bounded measurable function, then

Eν [f (Xn+1) |Bn] = qn+1 (Xn, f) = Eν [f (Xn+1) |Xn] Pν – a.s.,

where
qn+1 (x, f) :=

∫
S

f (y) qn+1 (x, dy) .

In the next exercise, we will continue the notation of Example 13.27 but we
will further assume that there is a fixed probability kernel, q : S × S → [0, 1]
such that qn = q for all n. This is the so called time homogeneous case. Let
us also now define, for all n ∈ N0, the shift operator, θn : Ω → Ω, by

θn (ω0, ω1, . . . , ωn, ωn+1, . . . ) = (ωn, ωn+1, . . . ) .

Since
Xk (θn (ω)) = [θn (ω)]k = ωk+n = Xk+n (ω) ,

it follows that Xk ◦ θn = Xn+k.

Exercise 13.7 (Markov Property II). For each bounded measurable func-
tion, F : Ω → R, show

Eν [F ◦ θn|Bn] = [ExF ] |x=Xn =: EXnF a.s. (13.35)

Hint: First prove Eq. (13.35) when F = f (X0, . . . , Xm) for some bounded
measurable function, f : Sm+1 → R.

Exercise 13.8 (The Strong Markov Property). Continue the notation and
assumptions in Exercise 13.7. Suppose τ : Ω → [0,∞] is a stopping time as in
Definition ??, Bτ is the stopped σ – algebra as in ??, and F : Ω → R is a
bounded measurable function. Show

Eν [F ◦ θτ |Bτ ] =: EXτF, Pν a.s. on {τ <∞} . (13.36)

More precisely you are to show

Eν [F ◦ θτ |Bτ ] 1τ<∞ =: 1τ<∞ · EXτF , Pν a.s.

Hint: Use Lemma ??.
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The Radon-Nikodym Theorem

Theorem 14.1 (A Baby Radon-Nikodym Theorem). Suppose (X,M) is
a measurable space, λ and ν are two finite positive measures on M such that
ν(A) ≤ λ(A) for all A ∈M. Then there exists a measurable function, ρ : X →
[0, 1] such that dν = ρdλ.

Proof. If f is a non-negative simple function, then

ν (f) =
∑
a≥0

aν (f = a) ≤
∑
a≥0

aλ (f = a) = λ (f) .

In light of Theorem 6.39 and the MCT, this inequality continues to hold for all
non-negative measurable functions. Furthermore if f ∈ L1 (λ) , then ν (|f |) ≤
λ (|f |) <∞ and hence f ∈ L1 (ν) and

|ν (f)| ≤ ν (|f |) ≤ λ (|f |) ≤ λ (X)1/2 · ‖f‖L2(λ) .

Therefore, L2 (λ) 3 f → ν (f) ∈ C is a continuous linear functional on L2(λ).
By the Riesz representation Theorem 12.14, there exists a unique ρ ∈ L2(λ)
such that

ν(f) =
∫
X

fρdλ for all f ∈ L2(λ).

In particular this equation holds for all bounded measurable functions, f : X →
R and for such a function we have

ν (f) = Re ν (f) = Re
∫
X

fρdλ =
∫
X

f Re ρ dλ. (14.1)

Thus by replacing ρ by Re ρ if necessary we may assume ρ is real.
Taking f = 1ρ<0 in Eq. (14.1) shows

0 ≤ ν (ρ < 0) =
∫
X

1ρ<0ρ dλ ≤ 0,

from which we conclude that 1ρ<0ρ = 0, λ – a.e., i.e. λ (ρ < 0) = 0. Therefore
ρ ≥ 0, λ – a.e. Similarly for α > 1,

λ (ρ > α) ≥ ν (ρ > α) =
∫
X

1ρ>αρ dλ ≥ αλ (ρ > α)

which is possible iff λ (ρ > α) = 0. Letting α ↓ 1, it follows that λ (ρ > 1) = 0
and hence 0 ≤ ρ ≤ 1, λ - a.e.

Definition 14.2. Let µ and ν be two positive measure on a measurable space,
(X,M). Then:

1. µ and ν are mutually singular (written as µ ⊥ ν) if there exists A ∈ M
such that ν (A) = 0 and µ (Ac) = 0. We say that ν lives on A and µ lives
on Ac.

2. The measure ν is absolutely continuous relative to µ (written as ν �
µ) provided ν(A) = 0 whenever µ (A) = 0.

As an example, suppose that µ is a positive measure and ρ ≥ 0 is a measur-
able function. Then the measure, ν := ρµ is absolutely continuous relative to
µ. Indeed, if µ (A) = 0 then

ν (A) =
∫
A

ρdµ = 0.

We will eventually show that if µ and ν are σ – finite and ν � µ, then dν = ρdµ
for some measurable function, ρ ≥ 0.

Definition 14.3 (Lebesgue Decomposition). Let µ and ν be two positive
measure on a measurable space, (X,M). Two positive measures νa and νs form
a Lebesgue decomposition of ν relative to µ if ν = νa + νs, νa � µ, and
νs ⊥ µ.

Lemma 14.4. If µ1, µ2 and ν are positive measures on (X,M) such that µ1 ⊥
ν and µ2 ⊥ ν, then (µ1 + µ2) ⊥ ν. More generally if {µi}∞i=1 is a sequence of
positive measures such that µi ⊥ ν for all i then µ =

∑∞
i=1 µi is singular relative

to ν.

Proof. It suffices to prove the second assertion since we can then take µj ≡ 0
for all j ≥ 3. Choose Ai ∈ M such that ν (Ai) = 0 and µi (Aci ) = 0 for all i.
Letting A := ∪iAi we have ν (A) = 0. Moreover, since Ac = ∩iAci ⊂ Acm for
all m, we have µi (Ac) = 0 for all i and therefore, µ (Ac) = 0. This shows that
µ ⊥ ν.

Lemma 14.5. Let ν and µ be positive measures on (X,M). If there exists a
Lebesgue decomposition, ν = νs + νa, of the measure ν relative to µ then this
decomposition is unique. Moreover: if ν is a σ – finite measure then so are νs
and νa.
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Proof. Since νs ⊥ µ, there exists A ∈M such that µ(A) = 0 and νs (Ac) = 0
and because νa � µ, we also know that νa (A) = 0. So for C ∈M,

ν (C ∩A) = νs (C ∩A) + νa (C ∩A) = νs (C ∩A) = νs (C) (14.2)

and

ν (C ∩Ac) = νs (C ∩Ac) + νa (C ∩Ac) = νa (C ∩Ac) = νa (C) . (14.3)

Now suppose we have another Lebesgue decomposition, ν = ν̃a + ν̃s with
ν̃s ⊥ µ and ν̃a � µ. Working as above, we may choose Ã ∈ M such that
µ(Ã) = 0 and Ãc is ν̃s – null. Then B = A ∪ Ã is still a µ – null set and and
Bc = Ac ∩ Ãc is a null set for both νs and ν̃s. Therefore we may use Eqs. (14.2)
and (14.3) with A being replaced by B to conclude,

νs(C) = ν(C ∩B) = ν̃s(C) and
νa(C) = ν(C ∩Bc) = ν̃a(C) for all C ∈M.

Lastly if ν is a σ – finite measure then there exists Xn ∈ M such that
X =

∑∞
n=1Xn and ν(Xn) <∞ for all n. Since∞ > ν(Xn) = νa(Xn)+νs(Xn),

we must have νa(Xn) < ∞ and νs(Xn) < ∞, showing νa and νs are σ – finite
as well.

Lemma 14.6. Suppose µ is a positive measure on (X,M) and f, g : X → [0,∞]
are functions such that the measures, fdµ and gdµ are σ – finite and further
satisfy, ∫

A

fdµ =
∫
A

gdµ for all A ∈M. (14.4)

Then f(x) = g(x) for µ – a.e. x.

Proof. By assumption there exists Xn ∈ M such that Xn ↑ X and∫
Xn

fdµ < ∞ and
∫
Xn

gdµ < ∞ for all n. Replacing A by A ∩ Xn in Eq.
(14.4) implies∫

A

1Xnfdµ =
∫
A∩Xn

fdµ =
∫
A∩Xn

gdµ =
∫
A

1Xngdµ

for all A ∈M. Since 1Xnf and 1Xng are in L1(µ) for all n, this equation implies
1Xnf = 1Xng, µ – a.e. Letting n→∞ then shows that f = g, µ – a.e.

Remark 14.7. Lemma 14.6 is in general false without the σ – finiteness assump-
tion. A trivial counterexample is to takeM = 2X , µ(A) =∞ for all non-empty
A ∈M, f = 1X and g = 2 · 1X . Then Eq. (14.4) holds yet f 6= g.

Theorem 14.8 (Radon Nikodym Theorem for Positive Measures).
Suppose that µ and ν are σ – finite positive measures on (X,M). Then ν has
a unique Lebesgue decomposition ν = νa + νs relative to µ and there exists
a unique (modulo sets of µ – measure 0) function ρ : X → [0,∞) such that
dνa = ρdµ. Moreover, νs = 0 iff ν � µ.

Proof. The uniqueness assertions follow directly from Lemmas 14.5 and
14.6.

Existence when µ and ν are both finite measures. (Von-Neumann’s
Proof. See Remark 14.9 for the motivation for this proof.) First suppose that µ
and ν are finite measures and let λ = µ+ ν. By Theorem 14.1, dν = hdλ with
0 ≤ h ≤ 1 and this implies, for all non-negative measurable functions f, that

ν(f) = λ(fh) = µ(fh) + ν(fh) (14.5)

or equivalently
ν(f(1− h)) = µ(fh). (14.6)

Taking f = 1{h=1} in Eq. (14.6) shows that

µ ({h = 1}) = ν(1{h=1}(1− h)) = 0,

i.e. 0 ≤ h (x) < 1 for µ - a.e. x. Let

ρ := 1{h<1}
h

1− h

and then take f = g1{h<1}(1− h)−1 with g ≥ 0 in Eq. (14.6) to learn

ν(g1{h<1}) = µ(g1{h<1}(1− h)−1h) = µ(ρg).

Hence if we define

νa := 1{h<1}ν and νs := 1{h=1}ν,

we then have νs ⊥ µ (since νs “lives” on {h = 1} while µ (h = 1) = 0) and
νa = ρµ and in particular νa � µ. Hence ν = νa + νs is the desired Lebesgue
decomposition of ν. If we further assume that ν � µ, then µ (h = 1) = 0 implies
ν (h = 1) = 0 and hence that νs = 0 and we conclude that ν = νa = ρµ.

Existence when µ and ν are σ-finite measures. Write X =
∑∞
n=1Xn

where Xn ∈ M are chosen so that µ(Xn) < ∞ and ν(Xn) < ∞ for all n. Let
dµn = 1Xndµ and dνn = 1Xndν. Then by what we have just proved there exists
ρn ∈ L1(X,µn) ⊂ L1(X,µ) and measure νsn such that dνn = ρndµn + dνsn with
νsn ⊥ µn. Since µn and νsn “live” on Xn there exists An ∈ MXn such that
µ (An) = µn (An) = 0 and
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νsn (X \An) = νsn (Xn \An) = 0.

This shows that νsn ⊥ µ for all n and so by Lemma 14.4, νs :=
∑∞
n=1 ν

s
n is

singular relative to µ. Since

ν =
∞∑
n=1

νn =
∞∑
n=1

(ρnµn + νsn) =
∞∑
n=1

(ρn1Xnµ+ νsn) = ρµ+ νs, (14.7)

where ρ :=
∑∞
n=1 1Xnρn, it follows that ν = νa + νs with νa = ρµ. Hence this

is the desired Lebesgue decomposition of ν relative to µ.

Remark 14.9. Here is the motivation for the above construction. Suppose that
dν = dνs + ρdµ is the Radon-Nikodym decomposition and X = A

∑
B such

that νs(B) = 0 and µ(A) = 0. Then we find

νs(f) + µ(ρf) = ν(f) = λ(hf) = ν(hf) + µ(hf).

Letting f → 1Af then implies that

ν(1Af) = νs(1Af) = ν(1Ahf)

which show that h = 1, ν –a.e. on A. Also letting f → 1Bf implies that

µ(ρ1Bf) = ν(h1Bf) + µ(h1Bf) = µ(ρh1Bf) + µ(h1Bf)

which implies, ρ = ρh+ h, µ – a.e. on B, i.e.

ρ (1− h) = h, µ– a.e. on B.

In particular it follows that h < 1, µ = ν – a.e. on B and that ρ = h
1−h1h<1,

µ – a.e. So up to sets of ν – measure zero, A = {h = 1} and B = {h < 1} and
therefore,

dν = 1{h=1}dν + 1{h<1}dν = 1{h=1}dν +
h

1− h
1h<1dµ.
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MR MR1102676 (92d:60057)

7. Claude Dellacherie, Capacités et processus stochastiques, Springer-Verlag, Berlin,
1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 67. MR
MR0448504 (56 #6810)
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Reprint of the second (1994) edition. MR MR1780932 (2001g:60189)

45. Sheldon M. Ross, Stochastic processes, Wiley Series in Probability and Mathe-
matical Statistics: Probability and Mathematical Statistics, John Wiley & Sons
Inc., New York, 1983, Lectures in Mathematics, 14. MR MR683455 (84m:60001)

46. H. L. Royden, Real analysis, third ed., Macmillan Publishing Company, New York,
1988. MR MR1013117 (90g:00004)

47. Robert Schatten, Norm ideals of completely continuous operators, Second printing.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 27, Springer-Verlag,
Berlin, 1970. MR 41 #2449

48. Michael Sharpe, General theory of Markov processes, Pure and Applied Math-
ematics, vol. 133, Academic Press Inc., Boston, MA, 1988. MR MR958914
(89m:60169)

49. Barry Simon, Trace ideals and their applications, London Mathematical Society
Lecture Note Series, vol. 35, Cambridge University Press, Cambridge, 1979. MR
80k:47048

50. , Functional integration and quantum physics, second ed., AMS Chelsea
Publishing, Providence, RI, 2005. MR MR2105995 (2005f:81003)

51. S. R. S. Varadhan, Probability theory, Courant Lecture Notes in Mathematics,
vol. 7, New York University Courant Institute of Mathematical Sciences, New
York, 2001. MR MR1852999 (2003a:60001)

52. John B. Walsh, An introduction to stochastic partial differential equations, École
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