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-3

Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

-3.1 Homework 1. Due Wednesday, September 30, 2009

e Read over Chapter
e Hand in Exercises and

-3.2 Homework 2. Due Wednesday, October 7, 2009

e Look at Resnick, p. 20-27: 9, 12, 17, 19, 27, 30, 36, and Exercise [3.9] from
the lecture notes.

e Hand in Resnick, p. 20-27: 5, 18, 23, 40*, 41, and Exercise from the
lecture notes.
*Notes on Resnick’s #40: (i) B ((0,1]) should be B ([0,1)) in the statement

of this problem, (ii) k is an integer, (iii) r > 2.

-3.3 Homework 3. Due Wednesday, October 21, 2009

e Look at Lecture note Exercises;
e Hand in Resnick, p. 63-70; 7* and 13.

e Hand in Lecture note Exercises: 44 -

*Hint: For #7 you might label the coupons as {1,2,..., N} and let A; be
the event that the collector does not have the it* — coupon after buying n -
boxes of cereal.

-3.4 Homework 4. Due Wednesday, October 28, 2009

Look at Lecture note Exercises;
Look at Resnick, p. 63-70; 5, 14, 16, 19
Hand in Resnick, p. 63-70; 3, 6, 11

Hand in Lecture note Exercises: -

-3.5 Homework 5. Due Wednesday, November 4, 2009

Look at Resnick, p. 85-90: 3, 7, 8, 12, 17, 21

Hand in from Resnick, p. 85-90: 4, 6%, 9, 15, 18**.

*Note: In #6, the random variable X is understood to take values in the
extended real numbers.

** T would write the left side in terms of an expectation.

Look at Lecture note Exercise

Hand in Lecture note Exercises:

-3.6 Homework 6 (Tentative). Due Wednesday, November
18, 2009

Look at Lecture note Exercise and [7.16]

Hand in Lecture note Exercises: 7.11]
Look at from Resnik, p. 155-166: 6, 13, 26, 37

Hand in from Resnick,p. 155-166: 7, 38
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Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+o0}, i.e. it
is R with two new points called oo and —oo. We use the following conventions,
+00-0=0, £c0-a =t if a € R with a > 0, +00-a = Foo if a € R with
a<0,foo+a==x foranya € R, co+ o0 =00 and —oco — o0 = —o0 while
00 — 00 is not defined. A sequence a, € R is said to converge to oo (—oc) if for
all M € R there ezists m € N such that ap, > M (a, < M) for all n > m.

Lemma 1.2. Suppose {a,},—, and {b,},. | are convergent sequences in R,
then:

1. If a, < b, meI a.a. n, then lim,,_, . a,, <lim, _, o b,.
2. If c € R, then lim,, o (cay) = climy, o0 ap.
3. {an + bn},— is convergent and

lim (a, +b,)= lim a, + lim b, (1.1)

n—oo n—oo n—oo

provided the right side is not of the form oo — co.
4. {anby },2, is convergent and

lim (apb,) = lim a, - lim b, (1.2)

provided the right hand side is not of the for £00-0 of 0 (£00).

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l1
lim (ay, + by) = 0 fa=1
—ocoifa>1
while
lim a, + lim b,“="00 — o0.

n—oo n—oo

This shows that the requirement that the right side of Eq. (1.1)) is not of form
00— o0 is necessary in Lemmal[l.2] Similarly by considering the examples a,, = n

)

! Here we use “a.a. n” as an abbreviation for almost all n. So an < b, a.a. n iff there
exists N < oo such that a, < b, for all n > N.

and b, = n~% with a > 0 shows the necessity for assuming right hand side of
Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. . Let a :=lim, . a, and b = lim,,_. o, b,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists N such that b, > M and a,, > a — 1 for all n > N and this implies

ap +by, > M+a—1foralln > N.

Since M is arbitrary it follows that a, + b, — 0o as n — co. The cases where
b = —oo or a = oo are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists N € N such that

la —a,| <eand |b—b,| <eforalln>N.
Therefore,
la+b—(an+bp)|=|a—an+b—by| <|a—a|+1|b—0,| <2

for all n > N. Since € > 0 is arbitrary, it follows that lim,, o (a, + b,) = a+b.

Proof of Eq. (1.2). It will be left to the reader to prove the case where lim a,,
and lim b,, exist in R. I will only consider the case where a = lim,, . a, # 0
and lim,_ . b, = oo here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let @ := min (%, 1). Given any M < oo, there exists
N € N such that a,, > o and b, > M for all n > N and for this choice of N,
anby, > Ma for all n > N. Since o > 0 is fixed and M is arbitrary it follows
that lim, o (anbyp) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if oo € A or A is not bounded from above and inf A = —oo0 if —co € A or A is
not bounded from below. We will also use the conventions that sup () = —co
and inf ) = +o0.

Notation 1.3 Suppose that {x,} -~ C R is a sequence of numbers. Then

liminf 2, = lim inf{zy : k > n} and (1.3)
n—oo n—oo
limsupz, = lim sup{xy: k > n}. (1.4)



14 1 Limsups, Liminfs and Extended Limits

We will also write lim for liminf, .o and lim for limsup .
n—oo
Remark 1.4. Notice that if ap := inf{zy : £k > n} and by := sup{zy : k >
n}, then {ax} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R and
liminf x,, = supinf{zy : k > n} and
n—oo n
lim sup x,, = inf sup{zy, : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {a,}52, and {b,}52, be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,_. a, ezxists in R iff
n—oo

liminf a,, = limsup a,, € R.

n—0oo n— o0

2. There is a subsequence {an, }52, of {an}S2, such that limg o an,
limsup a,,. Similarly, there is a subsequence {an, }32, of {an}52, such that

n—oo
limy o0 ap, = liminf, . ay.
3.
lim sup(a,, + b,) < limsup a,, + limsup b, (1.5)
n—oo n—oo n—oo

whenever the right side of this equation is not of the form oo — co.
4. If ap, >0 and b, > 0 for alln € N, then

lim sup(a,by,) < limsup a,, - lim sup by, (1.6)

provided the right hand side of @ is not of the form 0 - oo or oo - 0.
Proof. 1. Since
inf{ag : k > n} <sup{ag : k > n} ¥n,
liminf a,, < limsup a,,.

n—0oo n— oo

Now suppose that liminf,, .. a, = limsupa, = a € R. Then for all ¢ > 0,
n—oo
there is an integer N such that

a—e<inf{ag : k> N} <sup{arp:k >N} <a+e,

Page: 14 job: prob

ie.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limg_ o ax = a. If liminf,, . a, = oo,
then we know for all M € (0,00) there is an integer N such that

M <inf{ay : k > N}

and hence lim,,_~, a, = co. The case where lim sup a,, = —oc0o is handled simi-
n—oo

larly.
Conversely, suppose that lim, ..o a, = A € R exists. If A € R, then for
every € > 0 there exists N(g) € N such that |A — a,| < ¢ for all n > N(e), i.e.

A—e<a, <A+ceforaln>N().
From this we learn that

A — e <liminfa, <limsupa, < A+e¢.

n—oo n—00

Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A4,

n—oo N—00

i.e. that A = liminf, ., a, = limsupa,. If A = oo, then for all M > 0

n—oo

there exists N = N(M) such that a, > M for all n > N. This show that
liminf, .. a, > M and since M is arbitrary it follows that

oo < liminf a,, < limsup a,,.
n—oo n—00

The proof for the case A = —oo is analogous to the A = co case.
2. — 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let a,, = (—1)" and
bp = —an = (—1)"*". Then a, + b, = 0 so that
0= lim (an + b,) = liminf (a, + b,) = limsup (a, + by)
n—oo n—oo n—oo
while
liminf a,, = liminfb,, = —1 and
n—oo n—oo
limsup a,, = limsup b,, = 1.
n—oo n—oo
Thus in this case we have
macro: svmonob.cls date/time: 28-0ct-2009/9:49



lim sup (a,, + b,) < limsup a,, + lim sup b,, and

n—oo n—oo n—oo
liminf (a,, + b,) > liminf a,, + liminf b,,.
n—oo n—oo n—oo

]
We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n € N, {f, (i)};=,
is a sequence in [0,00] such that T limy, o fn (i) = f (i) by which we mean
fn (i) T f (i) as n — oco. Then

Jim, Z I

JKZM% i f ().
i=1 i=1

1=

f @), ie

)

=1

3

We allow for the possibility that these expression may equal to +oo.

Proof. Let M :=1 lim;, o0 Y 50y fn (2). As fi, (¢) < f (i) for all n it follows
that oo fr (i) < Yooy f (i) for all n and therefore passing to the limit shows
M <Y 2, f(i). If N € N we have,

N
2,50 th G —,}LH;Oan EECSWACE

=1

Letting N 1 oo in this equation then shows Y .o, f (i) < M which completes
the proof. -

Proposition 1.7 (Tonelli’s theorem for sums). If {axn};,—; C [0,00],

then
oo oo oo oo
Zzakn = Zzakn-

k=1n=1 n=1k=1
Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let Sy (k) := ij:l Akn, then by the MCT (Proposi-
tion ,
hm ZSN

On the other hand,

oo

)= Jim Sy (k)= ) ar.

k=1 k=1n=1

Page: 15 job: prob
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so that
N oo oo 00
Nlim ZSN lim ZZakn:ZZakn.
e N=oo i =1 n=1k=1

Second Proof. Let
K N N K

M = sup{ZZakn : K,NEN} ZSUP{ZZGML : K,NEN}
k=1n=1

and

Since

oo 0o K o K N
L:ZZ@M :Iggrloozz%n = hmooj\}gnooZZakn

k=1n=1 k=1n=1 k=1n=1
and Zk 1 Z _q Okn < M for all K and N, it follows that L < M. Conversely,
K N K oo 0o 00
PBP SIS 35 SIS 3) I’
k=1n=1 k=1n=1 k=1n=1

and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

oo 00
E E An — M
k=1n=1

By symmetry (or by a similar argument), we also have that > >~ | > 7° | ap, =
M and hence the proof is complete. [
You are asked to prove the next three results in the exercises.

Proposition 1.8 (Fubini for sums). Suppose {arn}y,,—; C R such that

E E lagn| = E E lagn| < 00
k=1n=1 n=1 k=1
Then
oo oo oo oo
DD k=) ) am
k=1n=1 n=1k=1

macro: svmonob.cls date/time: 28-0ct-2009/9:49



16 1 Limsups, Liminfs and Extended Limits

Ezample 1.9 (Counter example). Let {Smn}:,nzl be any sequence of complex

numbers such that lim,, ..o Sy, = 1 for all n and lim,, .o Sy = 0 for all n.
For example, take Syp = Lm>n + +Lm<n. Then define {aij}fC;.:l so that

m n
i=1 j=1
Then
oo oo o0 oo
E E ai; = lim lim Sy, =0#1= lim lim Sy, = E E aij
m—00 N—00 n—od Mm—0o0
i=1j=1 j=1i=1

To find a;j, set Sy = 0if m =0 or n = 0, then

n
Smn — Sm—l,n = § Qmj
Jj=1

and

n — Smn - Smfl,n - (Sm,nfl - Smfl,nfl)
= Smn - Smfl,n - Sm,nfl + Smfl,nfl'

Proposition 1.10 (Fatou’s Lemma for sums). Suppose that for eachn € N,
{hn (i) };=, is any sequence in [0,00], then

- T
Zhnnigfhn(z)_hnn_{nghn(z)

i=1 =1

The next proposition is referred to as the dominated convergence theorem

(DCT for short) for sums.

Proposition 1.11 (DCT for sums). Suppose that for each n € N,

{fn (0)};2, C R is a sequence and {gy (i)};=, is a sequence in [0,00) such that;

1.5°% gn (i) < 00 for all n,

2. f(i) =limp— o0 fn (1) and g (i) := limy, 00 gn (i) exists for each i,
3. 1fu ()| < g (i) Jor all i andn,

4 lim o D77 gn (1) = 3072, 9 (i) < oo

Then -
Jim, > ) Z lin i i Zf
i=1

(Often this proposition is used in the special case where g, = g for all n.)

Page: 16 job: prob

Exercise 1.1. Prove Proposwlonu 1.8l Hint: Let o}, := max (ag,,0) and a,, =
max (—agn, 0) and observe that; ag, = a;n — al;n and ‘a,m| + ’akn’ = |agn| -

Now apply Proposition with ay, replaced by a,m and a,,.

Exercise 1.2. Prove Proposition [[.10} Hint: apply the MCT by applying the
monotone convergence theorem with f, (7) := inf,,>p A (7).

Exercise 1.3. Prove Proposition[I.11} Hint: Apply Fatou’s lemma twice. Once
with hy, (1) = gn (1) + fn (i) and once with hy, (1) = gp, (1) — frn (7).

macro: svmonob.cls date/time: 28-0ct-2009/9:49



2

Basic Probabilistic Notions

Definition 2.1. A sample space {2 is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, 1}N and for flipping an infinite number of times,

Q={w=(w1,ws,...) rw; € {0,1}} = {0,1}".
3. If we have a roulette wheel with 38 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 =1{00,0,1,2,...,36}"

for N spins, and
2 ={00,0,1,2,...,36}"

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

2 =Dp:={(z,y) eER*:2” +y* < R}

for one throw,
2 =D¥

for N throws, and
2 =D%

for an infinite number of throws.
5. Suppose we release a perfume particle at location € R? and follow its
motion for all time, 0 <t < oo. In this case, we might take,

2 ={weC(0,0),R*:w(0)=2a}.

Definition 2.3. An event, A, is a subset of 2. Given A C 2 we also define
the indicator function of A by

_JlifweAd
La (@) '_{Oifw¢A'

Ezample 2.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n*" — toss, while w,, = 0 represents a tail on the n'® — toss.

1. A={w € 2 : w3 =1} represents the event that the third toss was a head.

2.A=U2, {w € 2:w; =w;y1 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3.A=nNF_; Up>n {w e 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A =UF_; Np>n {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w (n) € (2 for each n € N,
then try to “define” P (A) by

P(A) = Jim =314 (k) (2.1)
k=1
—Nliinm%#{lgng:w(k)eA}. (2.2)
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That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {w (k)},—; .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we know that B has occurred. Thus we would
like to compute:

. #{k:1<EkE<Nandw, € ANB}
P(A|B)—ngr(1>o #{k:1<k<Nandw, € B} ’

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

%#{k:lgkﬁNandwkeAﬂB}
%#{k:lgkﬁNandwkeB}

_ P(ANB)

~ P(B)

P(AID) = Jim,

Definition 2.5. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,

P(ANB)

PAIB) = =5

There are of course a number of problems with this definition of P in Eq.
including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P(A) €[0,1] for all A C (2.

2. P@)=0and P(2)=1

3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then
laup =14 + 1p so that

N
PAUB) = Jim =3 Lus(w(k) = Jim 3" [1a(w (k) + 1s (@ (k)]
k_le 1 N k=1
= lim 2> s @ (k) + 5 D1 (@ (R))
k=1 k=1
= P(A)+P(B).

4. Countable Additivity. If {A; }Joil are pairwise disjoint events (i.e. 4; N
Aj, = 0 for all j # k), then again, lux 4, = > 5= 1a, and therefore we
might hope that,

Page: 18 job: prob
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P = i &3 o8 = i %S5 0
k=1j5=1
oo 1 N
S0 L0 SN
Jj=1 k=1
) 00 1 N
:ZI\}llnooﬁzlAJ (w (k) (by a leap of faith)
j=1 k=1
:ZP(AJ)

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every w € (2 is equally likely, i.e. P ({w}) = QLN
Assuming this we are then forced to define

P(A)= oo # (4).

Observe that this probability has the following property. Suppose that o €
{0,1}" is a given sequence, then

1 _ 1
P(fw: (wr,. @) = 0}) = g - 2¥F =

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Ezample 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now £2 = {0,1}", then we should define

P{we 2:(w,...,wx) =0}) = — (2.3)

for any k > 1 and o € {0, 1}k. Assuming there exists a probability, P : 27 —
[0,1] such that Eq. holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

Ap ={w e 2 :w, =1} = {heads at time n}
By :=U,>nA, = {at least one heads at time N or later}

and
B = ﬂ?voleN = {An 10} = m]ovo:1 Un>nN A,.

Since
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B]c;]:ﬂnZNA;’;CﬂMZnZNA%:{wE.QZwN:wN+1:“-:wM:O},

we see that

Therefore, P (By) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using By | B, that
P(B)= lim P(By)=1.

N—o0
Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z € C: |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 25 — [0,1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limats.

Proof. We are going to use the fact proved below in Proposition that
the continuity condition on P is equivalent to the ¢ — additivity of P. For z € S
and N C S let

zN:={zne€S:neN}, (2.4)

that is to say ¢’’N is the set N rotated counter clockwise by angle §. By
assumption, we are supposing that

P(zN) = P(N) (2.5)

for all z€ S and N C S.
Let A ‘
Ri={z=e?":tcQ}={z=¢?":1t€[0,1)NQ}

— a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z,w € S are equivalent if z = rw for some
r € R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N C S be the set of these representative
points. Then every point z € S may be uniquely written as z = nr with n € N
and r € R. That is to say

=Y (rN) (2.6)

rER

where ) A, is used to denote the union of pair-wise disjoint sets {A,}. By

Eqgs. and ,
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1=P(S)=>_ P(rN)=>_ P(N). (2.7)

reR reR

We have thus arrived at a contradiction, since the right side of Eq. is either
equal to 0 or to co depending on whether P (N) =0 or P(N) > 0. |

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2. So we are going to only define P on
particular subsets, B C 2. We will developed this below.
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3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in'Y and often write f, for f(n) and express f as {fn}rry. If
X ={1,2,..., N}, we will write YV in place of Y112N}t and denote f € YN
by f = (f1, f2,..., fn) where fr, = f(n).

Notation 3.2 More generally if {X, : « € A} is a collection of non-empty sets,

let X4 = [] Xa and 7o : Xa4 — X, be the canonical projection map defined
acA
by o (z) = zo. If If Xo = X for some fized space X, then we will write || X,
acA
as X4 rather than X 4.

Recall that an element x € X4 is a “choice function,” i.e. an assignment
ZTo = z(a) € X, for each a € A. The axiom of choice states that X4 # 0
provided that X, # ) for each « € A.

Notation 3.3 Given a set X, let 2% denote the power set of X — the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={re X :a(zx)=1} C X.

In this way elements in {0,1}~ are in one to one correspondence with subsets
of X.
For A € 2% let
A =X\A={zeX:z ¢ A}

and more generally if A, B C X let
B\A:={zeB:x¢ A} = Bn A°.

We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\B).
As usual if {A4},,; is an indexed collection of subsets of X we define the union
and the intersection of this collection by
Uaerda ={z€X:3aecl 3 x€ A,} and
NactAa ={zeX:z € A Vael}.

Notation 3.4 We will also write Zael A, for UserAs in the case that
{Aa} e are pairwise disjoint, i.e. Aq N Ag =0 if o # .

Notice that U is closely related to 3 and N is closely related to V. For example
let {A,},2, be a sequence of subsets from X and define

inf A, == Ni>nAgk,
k>n -

sup A, = UanAk,
k>n

limsup A, :={A, l0.} ={z e X :#{n:xe€ A} =}

and
liminf A, := {A, a.a.} :={z € X : 2 € A, for all n sufficiently large}.

n—oo

(One should read {A,, i.0.} as A, infinitely often and {A,, a.a.} as A,, almost
always.) Then © € {A, i.0.} iff

VNeNdn>N>ze€A,
and this may be expressed as

{4, 1.0.} =NXy Up>n An.
Similarly, z € {4,, a.a.} iff

dNeN>3VYn>N, z€ A,
which may be written as

{An a.a.} = U?\?:l ngN An
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Definition 3.5. Given a set A C X, let

_JlifxeA
lA(x)_{OifxgéA

be the indicator function of A.
Lemma 3.6. We have:

(UnAn)c = ﬂnAfw
{A, i.0.}° = {A¢ a.a.},
limsup A, ={z € X :> " 14, (z) =00},

n—oo
liminf, oo Ay = {z € X : 307 14e (z) < 00},
SUPg>n La, (.%') = 1Uk2nAk = 1Supk2n Ag>s
infr>nla, (2) = 1n,2, 4, = Linfys, Acs

liim sup 4,, = limsup 1,4, , and

n— o0 n— o0

© N oA W=

Limint, .o A, = liminf, 14, .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

. If A C X is a subset of a countable set X then A is countable.

. Any infinite subset A C N is in one to one correspondence with N.

. A non-empty set X is countable iff there exists a surjective map, g : N — X.

If X and Y are countable then X XY is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =UP_ Ay, is countable. In short, the countable union of countable sets
1s still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2% is uncountable for any infinite set X.

Grds Lo o~

Proof. 1. If f : X — N is an injective map then so is the restriction, f|4,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1) = min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f : N — A
defined this way is a bijection.
3. If g : N — X is a surjective map, let

f(z) =ming™ ({z}) =min{n € N: f(n) =z}.

Then f: X — N is injective which combined with item
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2. (taking A = f(X)) shows X is countable. Conversely if f : X — N is
injective let 29 € X be a fixed point and define g : N — X by g(n) = f~1(n)
for n € f(X) and g(n) = xg otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put the
elements of N x N into an array of the form

and then “count” these elements by counting the sets {(i,5): 4+ j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f : N—X and g : N =Y are
surjective functions, then the function (f x g) o h : N =X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € N x N.

5. If A = () then A is countable by definition so we may assume A # ().
With out loss of generality we may assume A; # @ and by replacing A,, by
Ay if necessary we may also assume A,, # @ for all m. For each m € N let
am : N — A, be a surjective function and then define f: NxN — U>®_, A, by
flm,n) := a,(n). The function f is surjective and hence so is the composition,
foh:N—UX_ A, where h : N — N x N is the bijection defined above.

6. Let us begin by showing 2N = {O,I}N is uncountable. For sake of
contradiction suppose f : N — {0,1}N is a surjection and write f(n) as
(fi(n), f2(n), f3(n),...). Now define a € {0,1}" by a, := 1 — f,(n). By
construction f,, (n) # a, for all n and so a ¢ f(N). This contradicts the as-
sumption that f is surjective and shows 2V is uncountable. For the general
case, since Y;5 C YX for any subset Yy C Y, if Y;¥ is uncountable then so
is YX. In this way we may assume Y is a two point set which may as well
be Yy = {0,1}. Moreover, since X is an infinite set we may find an injective
map z : N — X and use this to set up an injection, i : 2V — 2X by setting
i(A) := {r, :n €N} C X for all A C N. If 2% were countable we could find
a surjective map f : 2% — N in which case foi : 2¥ — N would be surjec-
tive as well. However this is impossible since we have already seed that 2V is
uncountable. ]

3.2 Exercises

Let f: X — Y be a function and {4;};cr be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (N;jerA;)°¢ = U;er AS.
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Exercise 3.2. Suppose that B C Y, show that B\ (U;cr4;) = Nier(B\ A;).
Exercise 3.3. f =1 (UjerA;) = Uier fH(A).
Exercise 3.4. f 1 (NierA;) = NierfH(A).

Exercise 3.5. Find a counterexample which shows that f(C N D) = f(C) N
f(D) need not hold.

Ezample 3.9. Let X = {a,b,c} and Y = {1,2} and define f(a) = f(b) =1
and f (c) = 2. Then § = f ({a} N {b}) # f ({a}) N f({0}) = {1} and {1,2} =
f{a}?) # f({a})" ={2}.

3.3 Algebraic sub-structures of sets

Definition 3.10. A collection of subsets A of a set X is a m — system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.11. A collection of subsets A of a set X is an algebra (Field)
if

1.0, Xec A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if A1, ..., A, € A then A1U---UA,, € A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 3.12. A collection of subsets B of X is a 0 — algebra (or some-
times called a o — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};0, C B, then U2, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.13. Here are some examples of algebras.

1. B =2%, then Bis a o — algebra.

2. B={0,X} is a o — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, § :=
{0, X,{2,3}} is a not an algebra but is a 7 — system.

Proposition 3.14. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.
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Proof. Simply take

A(€) = n{A : A is an algebra such that & C A}

and

(&) = ﬂ{/\/l : M is a o — algebra such that &€ C M}.

Ezample 3.15. Suppose X = {1,2,3} and £ = {0, X, {1,2},{1,3}}, see Figure
31l Then

(o

Fig. 3.1. A collection of subsets.

AE) =0o(E) =2%.
On the other hand if £ = {{1,2}}, then A(£) = {0, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that & C 2% for i = 1,2. Show that A (&;) = A(&)
it & C A(&) and & C A(&r). Similarly show, o (&) = 0 (&) iff & C o (&)
and & C o (&) . Give a simple example where A (1) = A (E3) while £ # &s.

In this course we will often be interested in the Borel ¢ — algebra on a
topological space.

Definition 3.16 (Borel o — field). The Borel ¢ — algebra, B = Br =
B(R), on R is the smallest o -field containing all of the open subsets of R.
More generally if (X, 7) is a topological space, the Borel o — algebra on X is

Bx :=o0(1) — i.e. the smallest o — algebra containing all open (closed) subsets
of X.
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Exercise 3.7. Verify the Borel o — algebra, Bg, is generated by any of the
following collection of sets:

1. {(a,00):a €R}, 2. {(a,0):a € Q} or 3. {[a,0):acQ}.
Hint: make use of Exercise [3.0]

We will postpone a more in depth study of ¢ — algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 3.17. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F.

Ezample 8.18. Let X be a set and &€ = {A;,...,A,} where Ay,... A4, is a
partition of X. In this case

A(E) = 0(&) = {Uieadi - AC{1,2,...,n}}
where U;e 1 A; := 0 when A = (). Notice that
#(AE)) = #2012 = 2m,

Example 8.19. Suppose that X is a set and that A C 2% is a finite algebra, i.e.
# (A) < oo. For each z € X let

A, =n{AecA:zc A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest set
in A which contains x.

Now suppose that y € X. If v € A, then A, C A, so that A, N A, = A,.
On the other hand, if ¢ A, then z € A, \ A, and therefore A, C A, \ 4,, i.e.
Ay N Ay = 0. Therefore we have shown, either A, N A, =0 or A, N A, = A,.
By reversing the roles of z and y it also follows that either A, N A, = 0 or
Ay N A, = A,. Therefore we may conclude, either A, = A, or A, N A, =0 for
all z,y € X.

Let us now define {Bi}le to be an enumeration of {4}, y . It is a straight-
forward to conclude that

A={UieaB;i : AC{1,2,... k}}.

For example observe that for any A € A, we have A = Uca Ay = Ujea B; where
A:={i:B; C A}.
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Proposition 3.20. Suppose that B C 2% is a o — algebra and B is at most
a countable set. Then there erists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AeF:AcCBj}. (3.1)
In particular B is actually a finite set and # (B) = 2" for some n € N.
Proof. We proceed as in Example [3.19] For each z € X let
A, =nN{AeB:x e A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N A, =0 or A, = A, and therefore F = {4, :x2 € X} C Bisa
(necessarily countable) partition of X for which Eq. holds for all B € B.

Enumerate the elements of F as F = {P,})_, where N € Nor N = co. If
N = oo, then the correspondence

ae{0,1}" 54, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[3.8] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. [

Ezample 3.21 (Countable/Co-countable o — Field). Let X = R and & :=
{{z} : 2 € R}. Then o (€) consists of those subsets, A C R, such that A is
countable or A€ is countable. Similarly, A (€) consists of those subsets, A C R,
such that A is finite or A€ is finite. More generally we have the following exercise.

Exercise 3.8. Let X be a set, I be an infinite index set, and £ = {4;}ics be a
partition of X. Prove the algebra, A (£), and that o — algebra, o (£), generated
by & are given by

A(E) = {UseaA; : A C I with # (A) < oo or # (A°) < oo}

and
(&) ={Uiead; : A C I with A countable or A° countable}

respectively. Here we are using the convention that U;c4A; := @ when A = 0.
In particular if I is countable, then

O'(g) :{UiEAAiZACI}.

Proposition 3.22. Let X be a set and £ C 2%. Let £¢ := {A°: A € £} and
E=EU{X,0}UEC Then

A(E) := {finite unions of finite intersections of elements from E.}.  (3.2)
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Proof. Let A denote the right member of Eq. . From the definition of
an algebra, it is clear that £ C A C A(£). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
Z=J( A
i=1j=1
where A;; € &. Therefore, writing B;; = Af; € &, we find that

N K K
ZC:mUBij: U, (Bijy N Baj, N---N Byjy) € A

wherein we have used the fact that B1;, NBaj,N- - -N By, is a finite intersection
of sets from &.. [ |

Remark 3.23. One might think that in general o(£) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
oo o0
Z=J( A

i=1j=1
with Aij € gc, then

Z7° = U <ﬂ AZ]’@)
(=1

Ji=1,j2=1,..58v=1,...

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe o (&), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition [3.20

Exercise 3.9. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F NV where F is closed and V is open.

Solution to Exercise . In this case 7. is the collection of sets which are
either open or closed. Now if V; C, X and F; C X for each j, then (N, Vi) N
(ﬂ;”:le) is simply a set of the form VNF where V C, X and F C X. Therefore
the result is an immediate consequence of Proposition [3.22

Definition 3.24. A set S C 2X is said to be an semialgebra or elementary
class provided that
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e 0es

o S is closed under finite intersections

o if E €S, then E€ is a finite disjoint union of sets from S. (In particular
X = 0° is a finite disjoint union of elements from S.)

Proposition 3.25. Suppose S C 2% is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S C A C A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that #, X € A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that 4; =3 p, F' € A
where, for i = 1,2,...,n, A; is a finite collection of disjoint sets from S. Then

(s, Y

(Fiyseeis Fp)EAL XX Ay,

(FLNFyn---NF,)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (Ais closed under complementation.) If A = 3" . | F with A being a finite
collection of disjoint sets from S, then A¢ = (., F°. Since, by assumption,
Fee Aforall Fe€ ACS and A is closed under finite intersections by step 1.,
it follows that A€ € A. ]

Ezxample 3.26. Let X = R, then

S:={(a,))NR:a,beR}
={(a,b] : a € [-00,0) and a < b < oo} U {0, R}

is a semi-field. The algebra, A(S), generated by S consists of finite disjoint
unions of sets from S. For example,

A= (0,7]U (27,7 U(11,00) € A(S).
Exercise 3.10. Let A C 2% and B € 2¥ be semi-fields. Show the collection
S:={AxB:Ac Aand B € B}

is also a semi-field.
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Solution to Exercise ((3.10). Clearly 0 =0 x 0 € E = Ax B. Let A; € A
and B; € B, then

ﬁ?zl(Ai X Bl) = ( ?:]A’L-) X (ﬂ?lel) cAxB

showing & is closed under finite intersections. For A x B € &,
(Ax B)"=(A°x B> (A°xB)Y (AxB°)

and by assumption A° = >""" | A; with 4; € Aand B¢ = ;.”:1 B; with B; € B.
Therefore

ACXBc:<iAZ’>X zm:Bl = %n AZ'XBi,
=1 j=1

i=1,j=1

ACxB:iAixB, andAch:iAxBi
j=1

i=1

showing (A x B) may be written as finite disjoint union of elements from S.



4

Finitely Additive Measures / Integration

Definition 4.1. Suppose that £ C 2% is a collection of subsets of X and p :
& — [0,00] is a function. Then

1. p is additive or finitely additive on £ if
WE) =Y ul(E;) (4.1)

whenever E=Y"" | E; € E with E; € € fori=1,2,...,n < oo.

2. p is o — additive (or countable additive) on & if Fq. holds even
when n = 0.

3. p is sub-additive (finitely sub-additive) on & if

SZM(E)

whenever E =] E; € € withn € NU{oo} (n € N).

4. i is a finitely additive measure if € = A is an algebra, 1 (0) =0, and p
18 finitely additive on A.

5. 1 is a premeasure if p is a finitely additive measure which is o — additive
on A.

6. 1 is a measure if u is a premeasure on a o — algebra. Furthermore if
w(X) =1, we say u is a probability measure on X.

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose i is a finitely additive measure on an algebra, A C 2%, A, B € A with
A C Band {A;}_, C A, then :

1. (1 is monotone) p(A) < u(B) if A C B.
2. For A, B € A, the following strong additivity formula holds;

W(AUB) + u(ANB) = p(A) + u(B). (4.2)

3. (u is finitely subbadditive) j((U7_; A;) < 771 u(A;).
4. p is sub-additive on A iff

p(A) < p(Ay) for A= ZA (4.3)

=1

where A € A and {A;};2, C A are pairwise disjoint sets.

5. (w is countably superadditive) If A =>"°, A; with A;, A € A, then

It (Z Ai) > Zu (4;). (4.4)

(See Remark for example where this inequality is strict.)
6. A finitely additive measure, i, is a premeasure iff p is subadditve.

Proof.

1. Since B is the disjoint union of A and (B\ A) and B\ A=BNA°e€ Ait

follows that
w(B) = p(A) + n(B\ A) = u(A).

2. Since

AUB=[A\(ANB)]Y [B\(ANB)]Y ANB,

p(AUB)=p(AUB\ (ANB))+un(ANB)
=n(A\N(ANB))+pu(B\(ANB))+pu(ANB).
Addlng 1 (AN B) to both sides of this equatlon proves Eq. .

3. Let E; = E; \ (B, U---UE;_) so that the E; ’s are pair-wise disjoint and

E=U7 1E Since E; C Ej it follows from the monotonicity of y that

E) =3 n(E;) < Zu(En

4. If A=J2, B; with A € Aand B; € A, then A = >, A; where A; :=

B;\ (B1U...B;_1) € A and By = (. Therefore using the monotonicity of

w and Eq.
<ZM <Z,u

5. Suppose that 4 = Y02, A, w1th A A e .A, then > 1" | A; C A for all n

and so by the monotonicity and finite additivity of p, >~ & | 1 (A;) < p(A).
Letting n — oo in this equation shows pu is superadditive.

6. This is a combination of items 5. and 6.
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4.1 Examples of Measures

Most o — algebras and o -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.
Ezxample 4.3. Suppose that 2 is a finite set, B := 2% and p : 2 — [0,1] is a
function such that

Y o pw) =1

wes?

Then
P(A):=> p(w) forall AC Q2
weA

defines a measure on 2.
Example 4.4. Suppose that X is any set and x € X is a point. For A C X, let

1if z€ A
5'T(A){0ifx¢A.

Then p = §, is a measure on X called the Dirac delta measure at x.

Example 4.5. Suppose B C 2% is a ¢ algebra, i is a measure on B, and A > 0,
then X - p is also a measure on B. Moreover, if J is an index set and {u;}ecs
are all measures on B, then p = »772 | py, i.e.

w(A) = Z,uj(A) for all A € B,
j=1

defines another measure on B. To prove this we must show that p is countably
additive. Suppose that A = >"°, A; with A; € B, then (using Tonelli for sums,

Proposition [1.7]),

(A) =D mi(A) =3 > mi(A)
= : i (Ai) = ZH(AZ)

Ezample 4.6. Suppose that X is a countable set and A : X — [0, 00] is a func-
tion. Let X = {x,},—, be an enumeration of X and then we may define a
measure 4 on 2% by,
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We will now show this measure is independent of our choice of enumeration of
X by showing,

p(A)=> Mz):= sup ¥ Ax)VACX. (4.5)

zeA ACCAxeA

Here we are using the notation, A CC A to indicate that A is a finite subset of
A

To verify Eq. (4.5)), let M :=sup, cca > ,caA(2) and for each N € N let
Ay ={zp:2p, € Aand 1 <n < N}.

Then by definition of p,

) N
n(A) = Z AM@p)0z, (A) = ngnoo Mxn)le,ea
n=1 n=1
= lim Ax) < M.
N—o00
TEAN

On the other hand if A CC A, then

SA@ = Y Aea) = u(4) < u(4)

z€A n: rp€A

from which it follows that M < p (A). This shows that p is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and A : X — [0,00] is any function. In this setting we simply may define
w: 2% — [0, 00] using Eq. . We leave it to the reader to verify that this is
indeed a measure on 2%.

We will construct many more measure in Chapter [5] below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 4.7 (Construction of Finitely Additive Measures). Sup-
pose S C 2% is a semi-algebra (see Definition and A = A(S) is the
algebra generated by S. Then every additive function p: S — [0, 00| such that
(D) =0 extends uniquely to an additive measure (which we still denote by p)

on A.

Proof. Since (by Proposition [3.25) every element A € A is of the form
A = )", E; for a finite collection of E; € S, it is clear that if 1 extends to a
measure then the extension is unique and must be given by
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p(A) =D (B, (4.6)

To prove existence, the main point is to show that p(A) in Eq. (4.6)) is well
defined; i.e. if we also have A =3 F; with F; € S, then we must show

SO u(E) =3 ulF). (4.7)

But E; =}, (E; N F}) and the additivity of 4 on S implies p(E;) = 3, p(E; N
F;) and hence

Don(E) =3 Y BN ) =3 (BN Ey).
Similarly,
ZM(Fj) = ZM(Ei N Fj)

which combined with the previous equation shows that Eq. (4.7) holds. It is
now easy to verify that u extended to A as in Eq. (4.6]) is an additive measure
on A. ]

Proposition 4.8. Let X =R, S be the semi-algebra,
S={(a,))"R: —00 <a<b< oo}, (4.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition[3.25 To each finitely additive probability measures i :
A — [0,00], there is a unique increasing function F : R —[0,1] such that

F(—00) =0, F(c0) =1 and
w((a, b)) NR) = F(b) — F(a) ¥V a < b in R. (4.9)

Conversely, given an increasing function F : R — [0,1] such that F(—o0) = 0,
F(o0) =1 there is a unique finitely additive measure p = pp on A such that
the relation in Eq. @ holds. (Eventually we will only be interested in the case
where F' (—o0) = lim,| o F (a) and F (00) = limpjeo F' (D) .)

Proof. Given a finitely additive probability measure p, let
F(z) = p((—oo,z] NR) for all x € R.
Then F (c0) =1, F (—o0) = 0 and for b > a,

F(b) = F(a) = p((=00,b] NR) — p((—00,a]) = pu((a,b] NR).
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Conversely, suppose F' : R —[0,1] as in the statement of the theorem is
given. Define p on § using the formula in Eq. . The argument will be
completed by showing y is additive on S and hence, by Proposition [£.7] has a
unique extension to a finitely additive measure on A. Suppose that

n

(a, b] = Z(ai, bz]

i=1
By reordering (a;, b;] if necessary, we may assume that
a = aj <b1=a2<b2:a3<-~-<bn_1:an<bn:b.
Therefore, by the telescoping series argument,

u((a,b)VR) = F(b) — F(a) = 3" [F(b) — F(a)] = 3 pl(ai, bl N R).

i=1 i=1

Remark 4.9. Suppose that F': R — R is any non-decreasing function such that
F (R) C R. Then the same methods used in the proof of Proposition shows
that there exists a unique finitely additive measure, 4 = pr, on A = A (S) such
that Eq. holds. If F'(00) > limpje F'(b) and A; = (i,i+ 1] for ¢ € N, then

[e'S) 0 N
ZMF(Ai) ZZ(F(HU—F(Z')) ZJJEHOOZ(F(HU—F(@'))
= Jim (F(N+1) = F (1)) < F (00) = F (1) = (U2, A1),

This shows that strict inequality can hold in Eq. and that pp is not
a premeasure. Similarly one shows pup is not a premeasure if F(—o00) <
limg| oo F'(a) or if F' is not right continuous at some point ¢ € R. Indeed,
in the latter case consider

1 Jr1]
a4+ —].
n+1’ n

(aa+1= (a+

n=1

Working as above we find,
i (a+L a+l] =F(a+1)—F(a+)
— e n+4+1’ n)

while pp ((a,a+ 1]) = F (a + 1) — F (a) . We will eventually show in Chapter [j]
below that pp extends uniquely to a ¢ — additive measure on Bg whenever F'
is increasing, right continuous, and F (£o00) = lim, 1o F ().
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32 4 Finitely Additive Measures / Integration

Before constructing o — additive measures (see Chapter [5| below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are allowed to integrate.

4.2 Simple Random Variables

Definition 4.10 (Simple random variables). A function, f : 2 — Y is said
to be simple if f (2) C Y is a finite set. If A C 2 is an algebra, we say that a
simple function f: 2 — Y is measurable if {f =y} = f~1 ({y}) € A for all
y € Y. A measurable simple function, f : 2 — C, is called a stimple random
variable relative to A.

Notation 4.11 Given an algebra, A C 27, let S(A) denote the collection of
stmple random variables from (2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 4.12. Let A C 2? be an algebra, then;

1. S(A) is a sub-algebra of all functions from §2 to C.
2.f: 802 — C,is a A - simple random variable iff there exists a; € C and
A; € A for1 <i<n for somen €N such that

F=Y aila, (4.10)
=1

3. For any function, F : C — C, Fo f € S(A) for all f € S(A). In particular,
Ifl€S(A) if feS(A).

Proof. 1. Let us observe that 1, =1 and 1y = 0 arein S (A) . If f,g € S(A)
and ¢ € C\ {0}, then

{(freg=M= | (f=anfg=thea (4.11)

a,beC:a+cb=X\

and

{fr9g=M= U {=anfg=thea (4.12)
a,beC:a-b=X\
from which it follows that f 4+ cg and f - g are back in S(A).
2. Since S(A) is an algebra, every f of the form in Eq. (4.10)) is in S (A).
Conversely if f € S(A) it follows by definition that f = 3 ¢ ) @l{s=a}
which is of the form in Eq. .
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3.If F:C — C, then
Fof: Z F(Oz)-l{f:a}ES(A).
a€f(£2)

Exercise 4.1 (A — measurable simple functions). As in Example[3.19] let
A C 2% be a finite algebra and {Bj, ..., By} be the partition of X associated to
A. Show that a function, f: X — C, is an A — simple function iff f is constant
on B; for each ¢. Thus any A — simple function is of the form,

k
f= ZailBi (4.13)
i=1

for some «a; € C.

Corollary 4.13. Suppose that A is a finite set and Z : X — A is a function.
Let
A=AZ)=2"2Y ={Z(E):EC A}.

Then A is an algebra and f: X — C is an A — simple function iff f = F o Z
for some function F : A — C.

Proof. For A € A, let
Ay ={Z=X}={zeX:Z(z)=\}.

The {Ax},c, is the partition of X determined by A. Therefore f is an A —
simple function iff f|4, is constant for each A € A. Let us denote this constant
value by F'(A\). As Z =X on Ay, F: A — C is a function such that f = F o Z.

Conversely if F': A — C is a function and f = F o Z, then f = F (\) on Aj,
i.e. fis an A — simple function. ]

4.2.1 The algebraic structure of simple functions*

Definition 4.14. A simple function algebra, S, is a subalgebnﬂ of the
bounded complex functions on X such that 1 € S and each function in S is
a simple function. If S is a simple function algebra, let

AS):={ACX:14€S}.
(It is easily checked that A(S) is a sub-algebra of 2°X.)

! To be more explicit we are assuming that S is a linear subspace of bounded functions
which is closed under pointwise multiplication.
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Lemma 4.15. Suppose thatS is a simple function algebra, f € S anda € f (X)
— the range of f. Then {f =a} € A(S).

Proof. Let {\;},_, be an enumeration of f (X) with Ao = a. Then

= lH(a—m} [I -2

i=1

Moreover, we see that g = 0 on U™, {f = A\;} while g =1 on {f = a}. So we
have shown g = 1;;_,) € S and therefore that {f=a}e A(S). [

Exercise 4.2. Continuing the notation introduced above:

1. Show A(S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 2¥} — S(A) € {simple function algebras on X}

is bijective and the map, S — A(S), is the inverse map.

Solution to Exercise (4.2).

1. Since 0 = 1p,1 = 1x €S, it follows that ) and X arein A (S).If A € A(S),
then 14c =1—14 € S and so A° € A(S). Finally, if A, B € A(S) then
lang =14-1p € S and thus AQBGA(S)

2. If f,g €S(A) and ¢ € F, then

{(f+eg=XN= |J {f=aln{g=b}hecAa

a,beF:a+cb=A

and
{fra=x= | {r=an{g=tphe4
a,beF:a-b=A\
from which it follows that f + cg and f - g are back in S (A).

3. If f: 62 — Cis asimple function such that 1;;_y; € S for all A € C,
then f = > ccAlis=x} € S. Conversely, by Lemma if f €S then
1gy=x) € S for all A € C. Therefore, a simple function, f : X — Cisin §
iff 17—y € S for all A € C. With this preparation, we are now ready to
complete the verification.

First off,
Ac AS(A) <= 1, €S(A) < Ac A
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which shows that A (S (A)) = A. Similarly,
FES(A(S) < {f=Al€A®S)VreC
<~ 1{f=)\} esSvieC
<~ feS

which shows S (A(S)) =S.

4.3 Simple Integration

Definition 4.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A C 2%. For f € S(A) the integral or
expectation, E(f) = Ep(f), is defined by

/ fdP =Y "yP(f (4.14)
yeC
Ezample 4.17. Suppose that A € A, then
Ely =0-P(A°)+1-P(A)=P(A). (4.15)

Remark 4.18. Let us recall that our intuitive notion of P (A) was given as in

Eq. (2.1) by

where w (k) € 2 was the result of the k' “independent” experiment. If we use
this interpretation back in Eq. (4.14)) we arrive at,

N
1
E(f)=) vP(f=9 = vy Jim &> 1wu)—y
yeC yeC k=1
= ngﬂoof Dy Zlf(w(k)) y
yeC k=1
=NlijﬂmNZZf ) L=y
k=1yeC
1 N
ZA}EHOON;JC(W(/@)-

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.
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34 4 Finitely Additive Measures / Integration

Proposition 4.19. The expectation operator, E =Ep : S(A) — C, satisfies:
1. If f € S(A) and A € C, then

E(\f) = AE(f). (4.16)

2.If f,g € S(A), then
E(f +g9) =E(g) + E(f). (4.17)

Items 1. and 2. say that E(-) is a linear functional on S (A).
3 If f= Zj\le Ajla; for some \j € C and some A; € C, then

N
=> NP (4;). (4.18)
j=1

4. E is positive, i.e. E(f) > 0 for all 0 < f € S(A). More generally, if
f,9€S(A) and f < g, then E(f) <E(g).
5. For all f € S(A),
Ef| <E|f]. (4.19)

Proof.
1. If A0, then

=Yy POf=y)=> y P(f=y/N

yeC yeC
=> Xz P(f = AE(f).
zeC

The case A = 0 is trivial.
2. Writing {f = a,g = b} for f~*({a}) Ng=t({b}), then

E(f+9)=> zP(f+g=2)

zeC

:ZzP<Z {fza,g:b}>

zeC a+b=z

=> 2 > P({f=a g=b)

zeC  a+b==z

=3 Y @+ P{f=a g=b})

z€Ca+b==z

=Y (a+b)P({f=a, g=1}).
a,b
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But

Y aP({f=a,g=b}) =) a) P({f=0 g=0}

a,b a b
:ZGP(Ub{f:aa g ="b})
=Y aP({f=a}) =Ef

and similarly,

Y bP({f=a,g=b})=E

a,b

Equation (4.17) is now a consequence of the last three displayed equations.
3. If f= ijl Ajla;, then

N N N
Ef=E [ZAlej] => NEla, =Y M\P(4))
j=1 j=1

j=1

4. If f > 0 then

£)=) aP(f =

a>0
and if f < g, then g — f > 0 so that

E(g)—E(f)=E(g—f)>0.

5. By the triangle inequality,

D AP(f=N)

xeC

<Y P =N =E|f],

AeC

|Ef| =

wherein the last equality we have used Eq. (4.18)) and the fact that |f| =
2onec A=

| ]
Remark 4.20. If §2 is a finite set and A = 22, then
=) f(w) 1w
wes?
and hence
Epf =Y f(w)P{w}).
wenR
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Remark 4.21. All of the results in Proposition and Remark remain
valid when P is replaced by a finite measure, p : A — [0,00), i.e. it is enough
to assume p (X) < 0.

Exercise 4.3. Let P is a finitely additive probability measure on an algebra
A C 2% and for A,B € Alet p(A,B) := P(AAB) where AAB = (A\ B) U
(B\ A). Show;

1. p(A,B) =E|14 — 1p]| and then use this (or not) to show
2.p(A,C)<p(A B)+p(B,C) forall A,B,C € A.

Remark: it is now easy to see that p : A x A — [0, 1] satisfies the axioms of
a metric except for the condition that p (A, B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.22 (Chebyshev’s Inequality). Suppose that f € S(A), e > 0, and

p > 0, then
|fI”

Lpize € Srlipize <€ PUAIT

and therefore, see item 4. of Proposition
P >e})=E <E 171" < e PE|f]P
{Ifl > e}) =E [1j2c] < > Ligise| <€ |£1”. (4.20)

Observe that
7= I 1oy

AeC
is a simple random variable and {|f[>=¢e} = >\ {f =A} € A as well.
Therefore, E%hflzs is still a simple random variable.

Lemma 4.23 (Inclusion Exclusion Formula). If A, € A for n =
1,2,..., M such that p (Uﬁ/[:lAn) < 00, then

M
p(UAL AL) =) (-1 > p(An, N NAL).  (4.21)
k=1 1<ni<ng<---<np<M

Proof. This may be proved inductively from Eq. (4.2)). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := UM | A,,.
Since A¢ = (Uﬁ/[:lAn)c =M | A¢, we have
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M M
T—Ia=1a = [[1as =] 0 =14,
n=1 n=1
M
=13 DT Ly lay,
k=1 1<ni<no<---<nip <M
M
=1+ (—1)k Z 1Anlﬁ---ﬁAnk
k=1 1<ni<ng<---<np <M

from which it follows that

M
k+1
o~ =SS e G2)
k=1 1<ni<ng<---<nip <M
Integrating this identity with respect to p gives Eq. (4.21]). ]

Remark 4.24. The following identity holds even when p (UﬂleAn) = 00,

M
pUlA)+ > > p(An, NN A,
k=2 & k even 1<ni<no<---<np <M
M
= > (A, N--NA,) . (4.23)

=1 k odd 1<ni<ng<---<np <M

o

This can be proved by moving every term with a negative sign on the right
side of Eq. (4.22) to the left side and then integrate the resulting identity.

Alternatively, Eq. 1) follows directly from Eq. G) if p (Uﬁ/leAn < 00
and when g (UanlAn) = oo one easily verifies that both sides of Eq. 1} are
infinite.

To better understand Eq. (4.22)), consider the case M = 3 where,
I—1a=(1-14)1—1a,)(1—1a,)

=1- (1141 +1a4, + 1A3)
+ ]-Al ]-Ag + 1A11A3 + ]-A2 ]-A3 - 1A1 1A21A3

so that
la,uasua; =1a, +1a, +1a, — (La;na, + 14,04, + Layna,s) + 1anasna,

Here is an alternate proof of Eq. (4.22). Let w € {2 and by relabeling the
sets {A,} if necessary, we may assume that w € 41N---NA, andw ¢ A1 U
-« U A for some 0 < m < M. (When m = 0, both sides of Eq. (4.22)) are zero
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36 4 Finitely Additive Measures / Integration

and so we will only consider the case where 1 < m < M.) With this notation
we have

M

k
o=yt > L, nend,, (@)
k=1 1<ni<ne<---<npg<M

S

1a,,nna,, (W)

k=1 1<ni<na<--<np<m
_ i it ( )
k=1
—1— 1k1n—k<m>
>ty (]

=1-(1-1)"=1.
This verifies Eq. (4.22) since 1yn 4, (w) = 1.

Ezxample 4.25 (Coincidences). Let {2 be the set of permutations (think of card
shuffling), w: {1,2,...,n} — {1,2,...,n}, and define P (A) := #(A) to be the
uniform distribution (Haar measure) on (2. We wish to compute the probability
of the event, B, that a random permutation fixes some index 7. To do this, let
A; = {w € 2 :w(i) =i} and observe that B = U ; A;. So by the Inclusion
Exclusion Formula, we have

:zn:(_nk*l > P(Ay, N NAy).

k=1 1<i1<i2<ig< - <ip<n
Since
PA,Nn-NA,)=P{weR:w(ir) =1i1,...,w(ix) =ir})
(k!
- n!
and
#{1§i1<i2<i3<--~<ik§n}= (Z),
we find

B= Y0 ()T e

k=1
For large n this gives,

Ezample 4.26 (Expected number of coincidences). Continue the notation in Ex-
ample We now wish to compute the expected number of fixed points of
a random permutation, w, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

X;=1a,

and observe that

N(w):ZX ()

denote the number of fixed points of w. Hence we have

EN:iEXi:iP(Ai):i(n_

i=1

:lem:i:#{i:w(i):i}'

Let us check the above formulas when n = 3. In this case we have

w N{(
123 3
132 1
213 1
231 0
312 0
321 1

and so 4 9
P (3 a fixed point) = §=3 >~ (.67 = 0.632

while

1 1 1 2

k+1
7_1_, -z
2+6 3

Mw

k:l
and 1
]EN:6<3+1+1+0+0+1):1

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (2, A, P) is a finitely additive probability space, so P (§2) =1,
2. Aje Afori=1,2,...,n,
3. N (w) =201 14, (w) =#{i:we A}, and
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4. {Sk}i_, are given by

Sc= Y P n-nAy)

1<) < <ixg<n

= > P (Nieads).

AC{1,2,...,n}>|A|=k
Exercise 4.4. For 1 < k < n, show;
1. (as functions on 2) that
N
()= = ot (429
AC{1,2,...,n}>|A|=k

where by definition

" 0 if k>m
(k) o ifl<k<m . (4.26)
1 k=0

2. Conclude from Eq. (4.25) that for all z € C,

(1+ 2) _1+Zz > La, nna,, (4.27)

1<ii<ig< - <ip<n

provided (1 + 2)° = 1 even when z = —1.
3. Conclude from Eq. (4.25) that Sy, = Ep(}).

Exercise 4.5. Taking expectations of Eq. (4.27) implies,
]E[(l—l—z :|—1+ZS]€Z (4.28)

Show that setting z = —1 in Eq. (4.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out

E {(1 + Z)N} explicitly.

Exercise 4.6. Let 1 < m < n. In this problem you are asked to compute the
probability that there are exactly m — coincidences. Namely you should show,

=3 o (H)a

k=m

n(1)km(k) > P4, N N4y

m . )
k=m 1< << <n
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Hint: differentiate Eq. (4.28) m times with respect to z and then evaluate the

result at z = —1. In order to do this you will find it useful to derive formulas
for;
e () and
J— z)" an a—12".
dz™m ! dzm !

Ezample 4.27. Let us again go back to Example where we computed,

s (o)

Therefore it follows from Exercise [4.6] that

P (3 exactly m fixed points) = P (N = m)

So if n is much bigger than m we may conclude that

>~ ~ ol
m

P (3 exactly m fixed points) '

Let us check our results are consistent with Eq. (4.24);

P (3 a fixed point) = Z P(N =m)

1<m<k<n m
n k
=SS o ()
k=1m=1 m
n k
_ k sl 1
_ 1 k—m — (=1 -
35 () -
- 1
o k
e
k=1
wherein we have used,
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38 4 Finitely Additive Measures / Integration
k
- k
> (-f m( ):(1—1)’“:0.
m
m=0

4.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 4.28. Let n € Ng and 0 < k < n, then

ZZ;H)I (?) = (-1 (n N 1) Ln>0 + Lo (4.29)

Proof. The case n = 0 is trivial. We give two proofs for when n € N.
First proof. Just use induction on k. When k = 0, Eq. (4.29) holds since
1 = 1. The induction step is as follows,

S (5= () ()

k+1
(( D =D (=B = (kD (= 1) (= )
k+1 _
((kjl) (n—1)...(n—k)(n—(k+1))] = (=1)F" (ZJ)

Second proof. Let X = {1,2,...,n} and observe that

k n k
=> (-1 (l) = (-1 (A2 (M) =1)
=0

1=

0
= Y (-pFW (4.30)

A€2X: #(A)<k
Define T : 2X — 2% by

Su{1lif1¢s
T(S)_{S\{{l]]:iflzb”'

Observe that T is a bijection of 2% such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let
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Iy={Ae2¥ :#(A) <kand 1€ Aif #(A) =k},

then T'(I) = I for all 1 < k < n. Since

Z (_1)#(/1) _ Z (_1)#(T(/1)) _ Z _(_1)#(A)

A€y A€Ty, A€ETY,

we see that ZAGFk (—1)#(/1) = 0. Using this observation with Eq. 1' implies
A A k(T — 1
mp= Y ()P4 S (—)FW =04 (-1 ( . )
A€Ty, #(A)=k & 1¢A

Corollary 4.29 (Bonferroni Inequalitites). Let p : A — [0,u(X)] be a
finitely additive finite measure on A C 2%, A, € A forn =1,2,...,M, N :=
224:1 la,, and

Sy = > M(Ailﬁ“-ﬂAik):]Eu[(]Z)]

1<ii <<, <M

Then for 1 <k < M,

Ek: ) S+ (1) E, [(Nk_ 1)} : (4.31)

=1

This leads to the Bonferroni inequalities;

k

<> (-1 8y if k is odd
=1

and

71

k
1A Z l+1 Sy if k is even.

Proof. By Lemma [1.28]

g(—l)l (le) = (-1)* (Nk_ 1) 1ns0 + Lv—o.

Therefore integrating this equation with respect to p gives,

k

=1
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and therefore,

p(Upli4,) = (N > 0) = p(X) = u(N =0)
k

N -1
)
=1
The Bonferroni inequalities are a simple consequence of Eq. (4.31]) and the fact

that N1 N1
() 0 = m (V) 20

4.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A C 2% be an algebra of sets, and P := p :
A — [0,00) be a finitely additive measure with p (X) < oo. As above let

]Euf::/deu::Z)\u(f:A)erS(A).

AeC

(4.32)

Notation 4.30 For any function, f : X — C let ||f|, = sup,ex |f ().

Further, let S := S (A) denote those functions, f : X — C such that there ezists
fn € S(A) such that lim, .o ||f — full, = 0.

Exercise 4.7. Prove the following statements.

1. For all f €S (A),
B f| < p (X)L, - (4.33)

2.If f € Sand f, € S := S(A) such that lim, .o ||f — fall, = 0, show
lim,, o E,, f, exists. Also show that defining E,, f := lim,, o E, fy, is well
defined, i.e. you must show that lim, . E,f, = lim, . E,g, if g, € S
such that lim, . ||f = gnll,, = 0.

3. Show E,, : S — C is still linear and still satisfies Eq. .

4. Show |f| € Sif f € S and that Eq. is still valid, i.e. [E,f| < E,|f|
for all f €S.

Let us now specialize the above results to the case where X = [0,7] for
some T' < 0o. Let § := {(a,b] : 0 < a <b<T}U{0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 4.31 (Riemann Stieljtes integral). Let F': [0,7] — R be an

increasing function, then;
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1. there exists a unique finitely additive measure, pp, on A := A(S) such that
pr ((a,b)) = F (b) — F(a) for all0<a<b<T and pr ({0}) =0. (In fact
one could allow for pp ({0}) = A for any A > 0, but we would then have to
write (g Tather than pp.)

2. Show C([0,1],C) < S(A). More precisely, suppose m =

{0=tyg <ty < - <tn,=T} is a partition of [0,T] and ¢ = (c1,...,cn) €
[0, 7" with t;—1 < ¢; < t; for each i. Then for f € C([0,1],C), let
fre = F(0)Lioy + D (i) Lty (4.34)

i=1

Show that || f — fx.cll,, is small provided, |r| := max {|t; —t;_1]:i=1,2,...,n}
is small.

3. Using the above results, show

fdur = lim 3 f () (F (t) = F (ti-1))

[0,7]

where the ¢; may be chosen arbitrarily subject to the constraint that t;_1 <
C; é ti.

It is customary to write fOT fdF for f[o ] fdpp. This integral satisfies the

estimates,

fdpr ]Ifldup < |Ifll, (F(T) = F(0)) V f € S(A).

<
[0,T

)

| [0,7]

When F (t) = t,

/Odeszon@)dt,

is the usual Riemann integral.

Exercise 4.8. Let a € (0,7), A > 0, and

macro:

Nifz>a

G(m):A‘1x>f‘:{01fx<a'

1. Explicitly compute f[o ) fdpc for all f € C ([0,1],C).

2.If F(x) =x+ X 1;>, describe f[o 7] fdup for all f € C([0,1],C). Hint:

if F(x) = G(z) + H (z) where G and H are two increasing functions on

[0,T], show
/ fdup = / fdua + / fdps.
[0,7] [0,7] [0,7]
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40 4 Finitely Additive Measures / Integration

Exercise 4.9. Suppose that F, G : [0,T] — R are two increasing functions such
that F(0) = G(0), F(T) = G(T), and F (z) # G (z) for at most countably
many points, z € (0,T) . Show

fdup = / fdug for all f € C([0,1],C). (4.35)
[0,7] [0,7]

Note well, given F' (0) = G (0), pr = pug on Aiff F = G.

One of the points of the previous exercise is to show that Eq. holds
when G (z) := F (z+) — the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps ,see
Remark ?7. So if we only want to integrate continuous functions, we may always
assume that F': [0,7] — R is right continuous.

4.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {ay}ro; C Ay and
{ﬂk}zozl C As where A; and Ay are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent experiments, suppose that one experiment
is the outcome of spinning a roulette wheel and the second is the outcome of
rolling a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice — one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 4.32 (Heuristic). Suppose that {ax}ro; C A1 and {Bx}req C A2 are
the outcomes of repeatedly running two experiments independent of each other
and for x € Ay and y € A,
1
p(x,y) = A}im N#{l <k<N:ap=z and By =y},
. 1
p1 (x) := ngnooﬁ#{l <k<N:ap=z}, and

1
p2(y) = lim —#{l<k<N:G =y} (4.36)
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Then p (z,y) = p1 (z) p2 (y) . In particular this then implies for any h : Ay X
Ay — R we have,

N
1
Eh = lim NZ (g, Ok) = Z h(x,y)p1 (z)p2 (y) -
=1 (z,y)EAL X Ag

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as, {af;}:o:l , where ¢ € N indicates the £t —
run of the experiment. Then we have postulated that, independent of ¢,

p (x,y) - ]\}E»noo N Z l{ae =z and Bx= 'u} lim —= Z 1{0/ —a:} 1{5k =y}

N—oo N

1 <& 1< 1Y
p(x,y) = 7 Zp(r,y) = ZN“E},O N Z Leae—ay - Lpe=yy
k=1

L
=1 =1
N 1 L
ZJJEHOONZLzl{ [—w} l{ﬁk y}
k=1 =1

Taking the limit of this equation as L — oo and interchanging the order of the
limits (this is faith based) implies,

N L
. 1 . 1
plz,y) = lim ,;1 Lipmyy - Jim —+ ; Lag=a}- (4.37)

Since for fixed k, {o/,;};il is just another run of the first experiment, by our
postulate, we conclude that

1L
lim I ezzl 1{%:3:} =p1 (2) (4.38)

L—oo

independent of the choice of k. Therefore combining Eqs. (4.36]), (4.37)), and
[£-38) implies,

N
1
p(z,y) = N;L{ﬁk y} p1(x) =p2 (y) 1 ().

]
To understand this “Lemma” in another but equivalent way, let X : A; x
Ay — A; and X5 : Ay X Ay — As be the projection maps, X; (z,y) = x and

macro: svmonob.cls date/time: 28-0ct-2009/9:49



Xo (z,y) = y respectively. Further suppose that f: 43 — Rand g: 49 — R
are functions, then using the heuristics Lemma [£.32] implies,

E[f(X1)g(X2)]= >, f@)g@p ()p2(y)

(z,y)EAL X As

= Z f(z)p1(2) - Z 9(y)p2(y) =Ef (X1) - Eg(X2).

TEAN, yEN2

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
— independent experiments. For notational simplicity we will now assume that
N=N=---=A,=A.

Let A be a finite set, n € N, 2 = A™ and X; : 2 — A be defined by
Xi(w)=w; forw e 2 and i =1,2,...,n. We further suppose p: 2 — [0,1] is
a function such that

d pw) =1

wes?
and P :2? —[0,1] is the probability measure defined by
P(A):=) p(w) forall Ac2 (4.39)
w€EA

Exercise 4.10 (Simple Independence 1.). Suppose ¢; : A — [0,1] are
functions such that > . ,q;(\) = 1 for i = 1,2,...,n and now define
p(w) =TI’ ¢ (w;). Show for any functions, f; : A — R that

Ep

11+ (XZ-)] = [1Er(f: (X)) = [[ Eq. f:
i=1 =1 =1

where @; is the measure on A defined by, Q; (v) = >_yc, @ (A) for all v C A.

Exercise 4.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

Ep lH fi (Xz)] = [1Er £ (X)) (4.40)
i=1 i=1

for any functions, f; : A — R, then there exists functions ¢; : A — [0,1] with
> aea i (A) =1, such that p(w) = []i2; ¢ (wi).

Definition 4.33 (Independence). We say simple random wvariables,
X1,..., Xy with values in A on some probability space, (2, A, P) are indepen-
dent (more precisely P — independent) if Eq. holds for all functions,
fi: A—=R.
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Exercise 4.12 (Simple Independence 3.). Let X;,..., X, : 2 — A and
P : 22 — [0,1] be as described before Exercise Show Xji,...,X, are
independent iff

P(X1€A;,...,.X,€A,)=P(X;1€4)...P(X, € 4,) (4.41)

for all choices of A; C A. Also explain why it is enough to restrict the A; to
single point subsets of A.

Exercise 4.13 (A Weak Law of Large Numbers). Suppose that A C R
is a finite set, n € N, 2 = A", p(w) = [, ¢(w;) where ¢ : A — [0,1]
such that >°,.,¢(A) = 1, and let P : 2 — [0,1] be the probability measure
defined as in Eq. (4.39)). Further let X; (w) = w; for i = 1,2,...,n, £ := EX,,
o2 :=E(X; —¢)?, and

1
Sn:ﬁ(X1+~~+Xn).

1. Show, £ = > 34 A q(A) and

=Y (A=%q(N) =D Nq() -&. (4.42)

AeA AeA

2. Show, ES,, = €.

E[(Xi - €) (X; — §)] = di0°.
4. Using S,, — £ may be expressed as, % St (Xs =€), show
1
E (S, —£)* = 502. (4.43)
5. Conclude using Eq. (4.43]) and Remark that
Ly
P (1S, —¢&l>¢) < @U . (4.44)

So for large n, S, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 4.34 (Covariance). Let ({2, 8, P) is a finitely additive probability.
The covariance, Cov (X,Y), of X,Y € S(B) is defined by

Cov(X,Y)=E[(X —€x) (Y — &) =E[XY] - EX -EY

where {x == EX and & :=EY. The variance of X,
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42 4 Finitely Additive Measures / Integration
Var (X) := Cov (X, X) = E [X?] — (EX)”
We say that X and Y are uncorrelated if Cov (X,Y) =0, i.e. E[XY]|=EX -

EY. More generally we say {Xy};_, CS(B) are uncorrelated iff Cov (X;, X;) =
0 for all i # j.

Remark 4.35. 1. Observe that X and Y are independent iff f (X) and g (V) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
you will see that it suffices to assume that {X;}!_, are uncorrelated rather
than the stronger condition of being independent.

Exercise 4.14 (Bernoulli Random Variables). Let A = {0,1}, X : 4 =R
be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define Q@ = zd; +
(1 —x)dp, ie. Q({0}) =1—x and Q ({1}) = x. Verity,

&(x) =EgX =z and
o (x)=FEo (X —2)’=(1—-xz)z<1/4

Theorem 4.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

P (@) = g% (Z)f <z> 2k (1— )" ",
Then
lim sup [f(x)—pn(z)| =0.

n=0 4e0,1]

(See Theorem ?? for a multi-dimensional generalization of this theorem.)

Proof. Let x € [0,1], A ={0,1},¢(0) =1 -2z, ¢(1) =z, 2 = A", and
Py () = 4 w) - (wa) = 220 (1= ) S,

As above, let S,, = % (X14 -+ X,), where X; (w) = w; and observe that

P, (sn - D _ (Z)xk (1— )"

Therefore, writing E, for Ep,, we have
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Hence we find

lpn () = [ (2)| = [Ec f (Sn) — f(2)| = [Ez [f (Sn) — [ (2)]]
< Eg [f (Sn) = f(2)]
=E; [|f (Sn) = f(@)]: [Sn — x| = €]
+Eq [[f(Sn) = f ()] : [Sn — 2] < €]
<2M - P, (|Sp — x| >¢e)+d(e)

where

M = d
Jmax |f (y)| an

6 (e) =sup{|f(y) — f(2)] : z,y € [0,1] and [y — 2| < &}

is the modulus of continuity of f. Now by the above exercises,

P, (]S, —z| >2¢) < (see Figure

~ 4ne?

and hence we may conclude that

— <
e Ipn (z) — f (2)| < T

and therefore, that

limsup max |p, () — f ()] < d(¢).
n—oo x€[0,1]
This completes the proof, since by uniform continuity of f, § (¢) | 0 as e | 0.
[

4.4.1 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X, A, 1), where X is a set, A C 2% is an algebra, and
A —[0,00] is a finitely additive measure. Let (Y, B,v) be another finitely
additive measure space.

Definition 4.37. Let A® B be the smallest sub-algebra of 2X*Y containing all
sets of the form S :={Ax B: Ac€ A and B € B} . As we have seen in Ezercise
S is a semi-algebra and therefore A ® B consists of subsets, C C X XY,
which may be written as;

i=1
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P_x{S=kin)
01

Fig. 4.1. Plots of P, (S, = k/n) versus k/n for n = 100 with x = 1/4 (black), x = 1/2
(red), and = = 5/6 (green).

Theorem 4.38 (Product Measure and Fubini’s Theorem). Assume that
w(X) < oo and v(Y) < oo for simplicity. Then there is a unique finitely
additive measure, p O v, on A® B such that p©v (A x B) = u(A) v (B) for all
A€ A and B € B. Moreover if f € S(A® B) then;

L.y — f(x,y) isin S(B) for allx € X and © — f(x,y) is in S(A) for all
yevy.

2.x— [y f(z,y)dv(y) is in S(A) and y — [y f(x,y)dp(x) is in S (B).

3. we have,

/X {/Yf(x,y) dv (y)} dp (z)

:/ fl@y)d(pov)(,y)
XXY

:/Y[/Xf(x,y)du(:v)}dl/(y)-

We will refer to u ® v as the product measure of p and v.

Proof. According to Eq. (4.45)),

y) = Z 1a;xB, ($,y) = Z La, (.17) 1, (y)

from which it follows that 1¢ (z,-) € S (B) for each z € X and
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/1C(xydu ZlA

It now follows from this equation that z — [, 1¢ (2, y) dv (y) € S (A) and that

I

A n

[ 1e @y )] dn@) = 3 (49 (B).

- i=1

Similarly one shows that

J

In particular this shows that we may define

=2 n(4

r 1 n

/X Lo (2,y) d (@) | dv () = S (A v (By).

and with this definition we have,

/X [/Y le (z,y) dl/(y)] dp (z)

=(rov)(C)

:/Y{/ch(x,y)du(iﬂ)} dv (y) .

From either of these representations it is easily seen that p ©® v is a finitely
additive measure on A ® B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1o with C € A ®
B. Since the general element, f € S(A® B), is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general. |

Ezample 4.39. Suppose that f € S(A) and g € S(B). Let f ® g(z,y) =
f(x)g(y). Since we have,

f®g x y (Zalf a > (Zblg b )
= Zabl{f:a}x{g:b} (z,y)
a,b

it follows that f ® g € S(A® B). Moreover, using Fubini’s Theorem it

follows that
d = d dv| .
foreadwen=|f s f s

macro: svmonob.cls date/time: 28-0ct-2009/9:49



44 4 Finitely Additive Measures / Integration

4.5 Simple Conditional Expectation

In this section, B is a sub-algebra of 2, P : B — [0,1] is a finitely additive
probability measure, and A C B is a finite sub-algebra. As in Example [3.19] for
each w € 2, let A, :=N{A € A:w e A} and recall that either A, = A, or
A,NA, =0 for all w,w’ € 2. In particular there is a partition, {B1,..., By},
of 2 such that A, € {B1,...,B,} for all w € {2.

Definition 4.40 (Conditional expectation). Let X : 2 — R be a B — simple
random variable, i.e. X € S(B), and

El4,X] forallw € £, (4.46)

where by convention, X (w) = 0 if P(A,) = 0. We will denote X by E[X|A]
for E4X and call it the conditional expectation of X given A. Alternatively we
may write X as

E[1 X
—Z B 13,“ (4.47)

again with the convention that E[1p,X] /P (B;) =0 if P(B;) = 0.

It should be noted, from Exercise that X = E4X € S(A). Heuristi-
cally, if (w(1),w (2),w(3),...) is the sequence of outcomes of “independently”
running our “experiment” repeatedly, then

el _ [ )
Xlp: = P(B) My o0 2 Sony 1a, (@ (0)
i Tl @) X ()
N—oo SN g, (@ (n)

So to compute X|p, “empirically,” we remove all experimental outcomes from
the list, (w(1),w(2),w(3),...) € 2% which are not in B; to form a new
list, (@(1),@(2),@(3),...) € BY. X
formula for the expectation of X relative to the “bar” list, i.e.

E[lpX], limy_o %0 15, (w(n) X (w(n)
)

X|p, = lim —ZX (@ (

N—oo N

Exercise 4.15 (Simple conditional expectation). Let X € S(B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;
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1. (Orthogonal Projection Property 1.) If Z € S(A), then
E[XZ]=E[XZ] =E[EAX - Z] (4.48)

and

(IEAZ)(w):{ : ;fP( . (4.49)

In particular, E4 [E4Z] = E4Z.
This basically says that E 4 is orthogonal projection from S (B) onto S (A)
relative to the inner product

(f,9) =E[fg] forall f,g € S(B).

2. (Orthogonal Projection Property 2.) If Y € S (A) satisfies, E[X Z] =
E[YZ] for all Z € S(A), then Y (w) = X (w) whenever P (A4,) > 0. In
particular, P (Y #* )_() = 0. Hint: use item 1. to compute E [(X — Y)Q} .

3. (Best Approximation Property.) For any Y € S(A),

E[(X-X)"| <E[(X -] (4.50)

with equality iff X =Y almost surely (a.s. for short), where X =Y a.s. iff
(X #+ Y) = 0. In words, X = E4X is the best (“L?”) approximation to
X by an A — measurable random variable.
4. (Contraction Property.) E|X| < E|X|. (It is typically not true that
|X(w)| < |X (w)| for all w.)
5. (Pull Out Property.) If Z € S(A), then

E4[ZX] = ZE4X.

Ezample 4.41 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in A; = {1,2,...,10} and rolling a die with values in Ay = {1,2,3,4,5,6}. So
the outcome of an experiment is represented by a point, w = (z,y) € 2 =
Ay x Ay, Let X (z,y) =2, Y (z,y) =y, B=2%, and

A=Xx"102")={X"1(4):Ac A} CB,

so that A is the smallest algebra of subsets of 2 such that {X =z} € A for all
x € Ay. Notice that the partition associated to A is precisely

X =1}, {X =2},...,{X =10}}.

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
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produce a sequence of results, w, = (¢, yn) foralln e N.If g: A3 — Ris a
function, we have (heuristically) that

N
Y 1 _
Bl (V)] (z,y) = fim 2=t 8 @MW) Ix@m=r
N —oo N
Y onet Lx(wn))=z
— E _
N—oo )7

n=1 1$n:93

As {yn} sequence of results is independent of the {x,} we should expect by the
usual mantra (i.e. it does not matter which sequence of independent experiments
are used to compute the time averages) that

M(N)

. ZN71 g (yn) 1y, =2 . 1 —

lim n= — = lim 9 (yn) =E[g(Y)],
N—oo Z’r[jzl Tn=2T N—oo M (N) n=1 !

where M (N) = SN 1, —, and (1,%2,---) = {91 : loy=s}. (We are also
assuming here that P (X = z) > 0 so that we expect, M (N) ~ P(X =z) N
for N large, in particular M (N) — 00.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced

that E4 [g (Y)] : 2 — R is the constant function;
Ealg (V)] (z,y) =E[g (V)] for all (z,y) € £2. (4.51)

Let us further observe that if f : A; — R is any other function, then f(X) is
an A — simple function and therefore by Eq. (4.51]) and Exercise

E[f (XOIE[gV]=E[f(X)-ElgWV|=E[f(X)-Ealg(V)]] =E[f(X)-g(Y)].

This observation along with Exercise [4.12| gives another “proof” of Lemma [4.32

Lemma 4.42 (Conditional Expectation and Independence). Let {2 =
Ay x Ay, X, Y, B =29 and A=X"1! (2A1), be as in Example above.
Assume that P : B — [0,1] is a probability measure. If X and Y are P -
independent, then Fq. holds.

Proof. From the definitions of conditional expectation and of independence
we have,

Ellx—s9(V)] _E[lx_s]-E[g(V)

=E[g(Y)].
]

The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.
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Theorem 4.43 (Independence result summary). Let (2,B,P) be a
finitely additive probability space, A be a finite set, and X,Y : 2 — A be two
B — measurable simple functions, i.e. {X =x} € B and {Y =y} € B for all
z,y € A. Further let A= A(X) := A({X =z} :2 € A). Then the following
are equivalent;

1.P(X=2,Y=y)=P(X=2)-P(Y=y)forallz € Aandy € A,

2E[f(X)g(Y)] =E[f (X)]E[g(Y)] for all functions, f : A — R and g :
A — R,

3. Eaxylg(Y)]=E[g(Y)] forallg: A — R, and

4 B If (O] =E[f (X)] for all f - 4— R

We say that X andY are P — independent if any one (and hence all) of the
above conditions holds.
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5

Countably Additive Measures

Let A C 2 be an algebra and u : A — [0, 00] be a finitely additive measure.
Recall that p is a premeasure on A if p is ¢ — additive on A. If u is a
premeasure on A and A is a o — algebra (Definition , we say that u is a
measure on ({2, A) and that ({2, 4) is a measurable space.

Definition 5.1. Let (£2,B) be a measurable space. We say that P : B —[0,1] is
a probability measure on (12, B) if P is a measure on B such that P (§2) = 1.
In this case we say that (2,8, P) a probability space.

5.1 Overview

The goal of this chapter is develop methods for proving the existence of desirable
probability measures. with the properties that we desire. The main results of
this chapter may are summarized in the following theorem.

Theorem 5.2. The finitely additive probability measure P on A extends to o
— additive measure on o (A) iff P is a premeasure on A. If the extension exists
it 15 unique.

Proof. The uniqueness assertion is proved Proposition below. The ex-
istence assertion of the theorem in the content of Theorem ]

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 5.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A C 2. Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is 0 — additive on A.
2. For all A, € A such that A, 1 A€ A, P(A,) 1 P(A).
3. For all A,, € A such that A, | Aec A, P(A,) | P(A).
4. For all A, € A such that A, T 2, P(4,) 1 1.

5. For all A,, € A such that A, | 0, P(A,) | 0.

Proof. We will start by showing 1 <— 2 < 3.

1. = 2. Suppose A,, € A such that 4,, T A € A. Let A}, := A, \ 4,1
with A := (. Then {4} } >~ are disjoint, 4, = Uy_; A} and A = U A].
Therefore,

P(A) =) P(A}) = lim Y P(A) = lim P(Ui_,4}) = lim P(A,).
k=1 k=1

2. = 1.If {4,};2, C A are disjoint and A := U2, A4, € A, then
UN_, A, T A. Therefore,

N—o0

P(A) = lim P(UTJLV_IA”):NhinoozN:P(An)zip(An).

n=1
2. = 3.If A, € Asuch that A4, | A € A, then AS T A° and therefore,

lim (1-P(A,)) = lim P(A;)=P(A°)=1-P(4).
3. = 2.If A, € Asuch that A, T A € A, then A% | A° and therefore we
again have,

lim (1 —P(A,)) = lim P(AS) =P (A°) =1- P(A).

n—oo n—oo

The same proof used for 2. <= 3. shows 4. <= 5 and it is clear that
3. = 5. To finish the proof we will show 5. = 2.
5. = 2.If A,, € A such that A, 1 A € A, then A\ A, | ® and therefore

Jim [P (A) = P(4,)] = lim P(A\A,)=0.

Remark 5.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (£2) = 1 and in fact P (£2) = oo may
be allowed for this equivalence.

Lemma 5.5. If u: A — [0, 00] is a premeasure, then p is countably sub-additive

on A.
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Proof. Suppose that A, € A with U2 A, € A. Let A} := A; and for
n > 2 let A = A, \ (A1 U...4,_1) € A Then U2, A4, = > A and
therefore by the countable additivity and monotonicity of p we have,

p(Unz, A (ZA’> Zu (47,) Si

]

Let us now specialize to the case where 2 = R and A =

A{(a, )] NR: —co<a<b<oo}). In this case we will describe proba-
bility measures, P, on Bg by their “cumulative distribution functions.”

Definition 5.6. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = Fp : R — [0, 1]
given as

F(z):= P ((—o0,x]). (5.1)

Ezxample 5.7. Suppose that
P=p6_1+4+qb + 76
with p,q,7 > 0 and p + ¢ + r = 1. In this case,

0 for xz< -1

p for—-1<z<1
ptgfor 1<zx<m’

1 forr<z<oo

F(z)=

o

I

A plot of F (x) with p=.2, ¢ = .3, and r = .5.

Lemma 5.8. If F = Fp : R —[0,1] 4s a distribution function for a probability
measure, P, on Bg, then:
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1. F is non-decreasing,
2. F is right continuous,
3. F(—00):=limy—,_oo F (2) =0, and F (00) := lim,; . F (z) = 1.

Proof. The monotonicity of P shows that F (z) in Eq. . is non-
decreasing. For b € R let A,, = (—00,b,] with b,, | b as n — oo. The continuity
of P implies

F(bn) = P((—00,bn]) | p((=00,b]) = F(b).
Since {b,},>, was an arbitrary sequence such that b, | b, we have shown
F (b+) := lim, ), F(y) = F(b). This show that F is right continuous. Similar
arguments show that F (co) =1 and F (—o0) = 0. |

It turns out that Lemma [5.§ has the following important converse.

Theorem 5.9. To each function F : R — [0,1] satisfying properties 1. — 3.. in
Lemmal[5.8 there exists a unique probability measure, Pg, on Br such that

Pr ((a,b]) = F (b) — F (a) for all —oo <a<b< 0.

Proof. The uniqueness assertion is proved in Corollary [5.17) below or see
Exercises and below. The existence portion of the theorem is a special
case of Theorem [£.33] below. m

Ezample 5.10 (Uniform Distribution). The function,

0for <0
F(zx):=qazfor 0<z<1),
lforl<zxz< o0

is the distribution function for a measure, m on Br which is concentrated on
(0,1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem

5.2 m — X Theorem

Recall that a collection, P C 2, is a m — class or m — system if it is closed
under finite intersections. We also need the notion of a A —system.

Definition 5.11 (A — system). A collection of sets, L C 2, is X — class or
A — system if

a. 2L
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Fig. 5.1. The cumulative distribution function for the uniform distribution.

b. If A,B € L and A C B, then B\ A € L. (Closed under proper differences.)
c. If A, € L and A, 1 A, then A € L. (Closed under countable increasing
unions.)

Remark 5.12. If L is a collection of subsets of {2 which is both a A — class and
a 7 — system then L is a o — algebra. Indeed, since A° = 2\ A, we see that
any A - system is closed under complementation. If £ is also a 7 — system, it is
closed under intersections and therefore £ is an algebra. Since L is also closed
under increasing unions, L is a o — algebra.

Lemma 5.13 (Alternate Axioms for a A\ — System*). Suppose that L C 2%
is a collection of subsets 2. Then L is a A — class iff X satisfies the following
postulates:

1.2el

2. A € L implies A® € L. (Closed under complementation.)

3. If {An},, C L are disjoint, then Y .~ | A, € L. (Closed under disjoint
unions.)

Proof. Suppose that L satisfies a. — c¢. above. Clearly then postulates 1. and
2. hold. Suppose that A, B € £ such that AN B =@, then A C B° and

A°NB=B°\A€L.

Taking complements of this result shows AU B € £ as well. So by induction,
By, =Y | A, € L. Since By, T Y07, Ay it follows from postulate c. that
Yo A €L
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Now suppose that £ satisfies postulates 1. — 3. above. Notice that } € £
and by postulate 3., £ is closed under finite disjoint unions. Therefore if A, B €
L with A C B, then B¢ € £ and AN B¢ = () allows us to conclude that
AU B¢ € L. Taking complements of this result shows B\ A = A°NB € L as
well, i.e. postulate b. holds. If A,, € £ with A,, T A, then B,, := A, \ A,,—1 € L
for all n, where by convention Ag = (). Hence it follows by postulate 3 that
U A, =3 B, e L. ]

Theorem 5.14 (Dynkin’s 7 — A Theorem). If L is a A class which contains
a contains a m — class, P, then o(P) C L.

Proof. We start by proving the following assertion; for any element C' € L,
the collection of sets,

LC:={DecL:CnDeL},

is a A\ — system. To prove this claim, observe that: a. 2 € £%, b. if A C B with
A Be £ then ANC, BNC € £ with ANC C BN C and therefore,

(B\A)NC =[BNC]\A=[BNC]\[ANC] € L.

This shows that £¢ is closed under proper differences. c. If A, € £¢ with
A, TA then A,NC e Land A,NCTANC € L, ie. A€ £ Hence we have
verified £ is still a A — system.

For the rest of the proof, we may assume without loss of generality that £
is the smallest A — class containing P — if not just replace £ by the intersection
of all A — classes containing P. Then for C € P we know that £& C L is a A
- class containing P and hence L% = L. Since C' € P was arbitrary, we have
shown, CND € L for all C € P and D € £. We may now conclude that if
C € L, then P C LY C £ and hence again £ = L. Since C € L is arbitrary,
we have shown CND € Lforall C,D € L, i.e. Lis am—system. So by Remark
L is a o algebra. Since o (P) is the smallest o — algebra containing P it
follows that o (P) C L. [

As an immediate corollary, we have the following uniqueness result.

Proposition 5.15. Suppose that P C 2 is a m — system. If P and Q are two
probabz'lz'tgﬂ measures on o (P) such that P = Q on P, then P =Q on o (P).

Proof. Let L:={A€c(P): P(A) =Q(A)}. One easily shows L is a A —
class which contains P by assumption. Indeed, 2 € P C L, if A, B € L with
A C B, then

P(B\A)=P(B)-P(4)=Q(B)-Q(4) =Q(B\4)

! More generally, P and @ could be two measures such that P (£2) = Q () < co.
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so that B\ A € L, and if A,, € L with A, T A, then P (A) =1lim, . P (A,) =
lim;, o Q (A4,) = Q (A) which shows A € L. Therefore o (P) C L = o (P) and
the proof is complete. [

Example 5.16. Let (2 := {a,b,c,d} and let p and v be the probability measure
on 29 determined by, p ({z}) = 1 for all z € 2 and v ({a}) = v ({d}) = £ and
v ({b}) = v ({c}) = 3/8. In this example,

L:={Ae2”:P(A)=Q(A)}

is A — system which is not an algebra. Indeed, A = {a,b} and B = {a, ¢} are in
Lbut ANB ¢ L.

Exercise 5.1. Suppose that 1 and v are two measures (not assumed to be
finite) on a measure space, ({2, B) such that p = v on a 7 — system, P. Further
assume B = o (P) and there exists £2,, € P such that; 1) pu(£2,,) = v (£2,,) < o0
for all n and ii) £2,, T 2 as n ] co. Show = v on B.

Hint: Consider the measures, p,(A) = p(ANL2,) and v, (A) =
v(AN{2,).
Solution to Exercise (5.1). Let u,(A4) = p(AN£,) and v, (A) =

v(AN{2,) for all A € B. Then p,, and v, are finite measure such pu, (2) =
v (£2) and p,, = v, on P. Therefore by Proposition ln = Vpn on B. So by
the continuity properties of p and v, it follows that

w(A)= lim p(AN§2,) = lim p, (A) = lim v, (A) = lim v(AN,) =v(4)

n—oo n—oo n—oo n—oo

for all A € B.

Corollary 5.17. A probability measure, P, on (R, Bgr) is uniquely determined
by its cumulative distribution function,

F(z):=P((—o0,x]).

Proof. This follows from Proposition wherein we use the fact that
P :={(—o0,z] : x € R} is a m — system such that Bg = o (P). [

Remark 5.18. Corollary generalizes to R™. Namely a probability measure,
P, on (R™, Bgn) is uniquely determined by its CDF,

F (z):= P((—o0,z]) for all z € R"
where now

(—o00, 2] := (=00, x1] X (—00, ] X + -+ X (—00, Ty].
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5.2.1 A Density Result*

Exercise 5.2 (Density of A in o (A)). Suppose that A C 2 is an algebra,
B :=0(A), and P is a probability measure on B. Let p (A, B) := P(AAB).
The goal of this exercise is to use the m — A theorem to show that A4 is dense in
B relative to the “metric,” p. More precisely you are to show using the following
outline that for every B € B there exists A € A such that that P (A A B) < e.

1. Recall from Exercise [4.3| that p (a,B) = P(AAB) =E |14 — 1p|.
2. Observe; if B =UB; and A = U;A;, then

A\B:UZ[AZ\B]CUZ(Al\BZ)CUZAZABl

so that

3. We also have

(B2\ B1) \ (A2\ A1) = Bo N B N (A2 \ Ay)°
= By N B{ N (A N A
= By N B{N (A5 U A4y)
= [BaN BN AS] U [Bs N Bf N Aq]
C (B2 \ A2) U (A1 \ By)

and similarly,
(A2 \ A1)\ (B2 \ B1) C (A2\ B2) U (B \ A1)
so that

(A2\ A1) & (B2 \ B1) C (B2 \ A2) U (A1 \ B1) U (A2 \ B2) U (B1\ 41)
— (A1 A B U(4s A By).

4. Observe that A, € B and A, T A, then

. P(B\A)+P(A\B)=P(AA B).

5. Let £ be the collection of sets B € B for which the assertion of the theorem
holds. Show £ is a A — system which contains A.
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Solution to Exercise ([5.2]). Since £ contains the 7 — system, .4 it suffices by
the m — A theorem to show L is a A — system. Clearly, {2 € £ since 2 € A C L.
If By C By with B; € £ and € > 0, there exists A; € A such that P (B; A A;) =
Ep|la, — 1p,| < €/2 and therefore,

P((B2\ B1) A (A2 \ A1) < P((A1 A By) U (A2 A By))
< P((A) AB)) + P ((As A By)) < e

Alsoif B,, 1 B with B,, € L, there exists A,, € A such that P (B,, A A,) <e2™"
and therefore,

NE

P([UpBn] A [UnAL) < ST P(B, A A) < e.

1

3
Il

Moreover, if we let B := U, B,, and AN := UﬁleAn, then
P(BAAN) =P (B\AN)+P (AN\B) — P(B\ A)+P(A\ B) = P (B A A)

where A := U, A,. Hence it follows for N large enough that P (B A AN) <e.
Since € > 0 was arbitrary we have shown B € L as desired.

5.3 Construction of Measures

Definition 5.19. Given a collection of subsets, £, of £2, let £, denote the col-
lection of subsets of {2 which are finite or countable unions of sets from E.
Similarly let Es denote the collection of subsets of 2 which are finite or count-
able intersections of sets from €. We also write E,5 = (E5)5 and Eso = (Es), ,
etc.

Lemma 5.20. Suppose that A C 2 is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. As is closed under taking countable intersections and finite unions.

3. {A°:Ac A} = As and {A°: A€ As} = A,.

Proof. By construction A, is closed under countable unions. Moreover if
A=U2 A and B = U2, B; with A;, B; € A, then
ANB=U_1AiNB; € A,

which shows that A, is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3. ]
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Remark 5.21. Let us recall from Proposition [5.3] and Remark [5.4] that a finitely
additive measure p : A — [0, 00] is a premeasure on A iff u (A4,) T p(A) for all
{A,}7, C Asuch that A, 1 A € A. Furthermore if p (£2) < oo, then y is a

n=1

premeasure on A iff 1(A,) | 0 for all {A4,} 7, C A such that A4, | 0.

Proposition 5.22. Given a premeasure, p : A — [0,00], we extend p to A,
by defining
w(B):=sup{u(4): A>AC B}. (5.2)

This function p: A, — [0,00] then satisfies;

1. (Monotonicity) If A, B € A, with A C B then u(A) < u(B).
2. (Continuity) If A, € Aand A, 1 A € Ay, then u(Ay) T 1 (4) asn — .
3. (Strong Additivity) If A, B € A,, then

n(AUB) +p(ANB) = pu(A) + p(B). (5.3)

4. (Sub-Additivity on A,) The function p is sub-additive on A, i.e. if
{A, 3}, C Ay, then

5. (o - Additivity on A,) The function p is countably additive on A,.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.2) which then
implies u (A,) < p(B) for all n. Therefore M := lim,_,o t (An) < u(B). To
prove the reverse inequality, let A 3 A C B. Then by the continuity of u on
A and the fact that 4, N A T A we have pu (4, NA) T u(A4). As p(A,) >
w(A, NA) for all n it then follows that M := lim, oo (A4,) > p(A). As
A € A with A C B was arbitrary we may conclude,

u(B)=sup{n(4): A>ACB}<M.

3. Suppose that A, B € A, and {A,,},~, and {B,}, -, are sequences in A
such that A, T A and B, T B as n — oo. Then passing to the limit as n — oo
in the identity,

1 (AnUBy) +p(An N By) = p(An) + 1 (Bn)

proves Eq. (5.3). In particular, it follows that pu is finitely additive on A, .
4 and 5. Let {A,},”; be any sequence in A, and choose {A,;};-, C A
such that A, ; T A, as i — co. Then we have,

N N oo
p(UAnn) €D p(Ann) <D n(An) <Y u(4n).  (5.5)
n=1 n=1 n=1
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Since A 3 UY A, v T U, A, € A,, we may let N — oo in Eq. (5.5)) to
conclude Eq. (5.4) holds. If we further assume that {A,} -, C A, are pairwise
disjoint, by the finite additivity and monotonicity of y on A,, we have

) N
s T N 0o
HEZI/J(An)f lim n§=1u(An) = Jim g (UnziAn) < p(UR21An)

N—o0

This inequality along with Eq. shows that p is o — additive on A,. [

Suppose j is a finite premeasure on an algebra, A C 22, and A € As N A,.
Since A, A¢ € A, and 2 = AU A€, it follows that pu (£2) = p (A) + p (A€) . From
this observation we may extend p to a function on 45 U A, by defining

p(A) :=p(2)—p(A°) for all A € As. (5.6)

Lemma 5.23. Suppose p is a finite premeasure on an algebra, A C 29, and p
has been extended to As U A, as described in Proposition and Eq. (@

above.

1.If A€ As then p(A) =inf{u(B): AC Be A}.

2. If A€ As and A, € A such that A, | A, then pu(A) =] lim, oo p (4y) .
3. is strongly additive when restricted to As.

4. If A€ As and C € A, such that A C C, then u(C\ A) = u(C) — p(A).

Proof.
1. Since p(B) = p(£2) — p(B€) and A C B iff B¢ C A, it follows that
inf{u(B):AC Be Ay =inf{u(2) — pn(B°) : A> B C A°}
=pn(2) —sup{pu(B): A> B C A}
— () = 1 (4%) = p (4).

2. Similarly, since AS 1 A° € A,, by the definition of y(A) and Proposition
E23] it follows that

p(A) = p(2) = p(A) = p(2) =1 lim p (A7)
=1 lim [p(2) = p(A7)] =1 lim p(A).

3. Suppose A, B € As and A,, B, € A such that A,, | A and B, | B, then
A,UB, | AUB and A, N B, | AN B and therefore,

p(AUB) +pu(ANB) = lim [u(A, U By) + p (A, N By)]

n—oo

= lim [ (4,) + p(Bn)] = p(A) + p(B).

n—oo
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All we really need is the finite additivity of u which can be proved as follows.
Suppose that A, B € Ajs are disjoint, then AN B = () implies A°U B¢ = 2.
So by the strong additivity of u on A, it follows that

1 (82) + p (AN BY) = p(A°) + p (B°)
from which it follows that
p(AUB) = pu(82) — p(A°NB°)

= () = [ (A) + p (B) — ()]
— 1 (A) +u(B).

4. Since A¢,C € A, we may use the strong additivity of u on A, to conclude,
p(A°UC) +p(ANC) = p(A%) +pn(C).

Because 2 = A°UC, and p(A°) = u(§2) — 1 (A), the above equation may
be written as

() +p(C\NA) = p(2) = p(A) + 1 (C)
which finishes the proof.
]

Notation 5.24 (Inner and outer measures) Let p: A — [0,00) be a finite
premeasure extended to A, U As as above. The for any B C {2 let

tx (B) :=sup{u(A): As > AC B} and
p (B):=inf{u(C): BCCeA,}.

We refer to . (B) and p* (B) as the inner and outer content of B respec-
tively.

If B C {2 has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem [5.27] below, this
extension becomes a o — additive measure on a o — algebra of subsets of (2.

Definition 5.25 (Measurable Sets). Suppose p is a finite premeasure on an
algebra A C 2. We say that B C §2 is measurable if ju,. (B) = p* (B). We
will denote the collection of measurable subsets of 2 by B = B(u) and define
i B — [0, 1 (2)] by

i (B) = u« (B) = p* (B) for all B € B. (5.7)
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Remark 5.26. Observe that . (B) = p* (B) iff for all € > 0 there exists A € Aj
and C € A, such that A C B C C and

p(C\A)=p(C)—p(4) <e,

wherein we have used Lemma for the first equality. Moreover we will use
below that if Be€ Band As > AC BC C € A,, then

#(A) < . (B) = i (B) = p* (B) < u (C). (5.8)

Theorem 5.27 (Finite Premeasure Extension Theorem). Suppose p is a
finite premeasure on an algebra A C 2% and i : B := B (u) — [0, 1 (£2)] be as
in Definition[5.25. Then B is a o — algebra on 2 which contains A and fi is a
o — additive measure on B. Moreover, [i is the unique measure on B such that
fila = p.

Proof. It is clear that A C B and that B is closed under complementation.
Now suppose that B; € B for ¢ = 1,2 and € > 0 is given. We may then
choose A; C B; C C; such that 4; € As, C; € Ay, and u(C; \ A;) < ¢ for
i = 1,2. Then with A = A1 U Ay, B = B UBs and C = C7 UC(Cy, we have
As>AcCc Bc C e A,. Since

C\A=(C1\A)U(C2\A) C (C1\ A1) U(C2\ 42),
it follows from the sub-additivity of u that with
p(C\NA) <p(Cr\ A1) +p(Co\ Az) < 2e.

Since € > 0 was arbitrary, we have shown that B € B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a ¢ — algebra it suffices to show
that B =Y ", B, € B whenever {B,} -, is a disjoint sequence in B. To prove
B € B, let ¢ > 0 be given and choose A; C B; C C; such that A; € As, C; € A,,
and p (C; \ A;) < 27" for all 7. Since the {A;};°, are pairwise disjoint we may
use Lemma to show,

i=1

)+ 1 (Ci\ A))

(U Ay) +ZMC\A < (R +Zgz—l

i=1

Passing to the limit, n — oo, in this equation then shows

o0

D pu(C) < p(2)+e < oo (5.9)

i=1
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Let B=U2,B;, C:=U2,C; € A, and forn € Nlet A" :=3""  A; € As.
ThenAgBA"CBCCGAU,C\A”EA and

O\ A" = U, (G \ A™) € ULy (C:\ AD] U [UR11C] € Ao

Therefore, using the sub-additivity of u on A, and the estimate (5.9)),

p(C\A") < Z (Ci\NA)+ Y p(Cy)

1=n—+1

o0
<e+ Z w(C;) — € as n — oc.
i=n+1

Since € > 0 is arbitrary, it follows that B € B and that

S n(A) = p(4") < (B) <Xul

Letting n — oo in this equation then shows,

Z (A Z (5.10)

On the other hand, since A; C B; C C;, it follows (see Eq. (5.8]) that

WIEEED SICAES Wle (5.11)

7;\
I/\

As
Zu( Zu ZuC\A <252’:

we may conclude from Egs. ) and ( - ) that
i(B)—-Y (B
i=1

Since € > 0 is arbitrary, we have shown p (B) = >_;, i (B;). This completes
the proof that B is a ¢ - algebra and that i is a measure on B.

Since we really had no choice as to how to extend p, it is to be expected
that the extension is unique. You are asked to supply the details in Exercise
below. ]
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54 5 Countably Additive Measures

Exercise 5.3. Let u, fi, A, and B := B(u) be as in Theorem Further
suppose that By C 2 is a o — algebra such that A C By C B and v : By —
[0, (£2)] is a 0 — additive measure on By such that v = y on A. Show that
v = [ on By as well. (When By = o (\A) this exercise is of course a consequence
of Proposition It is not necessary to use this information to complete the
exercise. )

Corollary 5.28. Suppose that A C 27 is an algebra and p : By := o (A) —
[0, (£2)] is a o — additive measure. Then for every B € o (A) and e > 0;

1. there exists As > AC B C C € Ayand € > 0 such that 4 (C\ A) < e and
2. there exists A € A such that ;1 (AAB) < e.

Exercise 5.4. Prove corollary by considering v where v := u|4. Hint:
you may find Exercise [£.9] useful here.

Theorem 5.29. Suppose that pu is a o — finite premeasure on an algebra A.
Then
g(B)=inf{u(C):BCcCeA,} YVBeo(A (5.12)

defines a measure on o (A) and this measure is the unique extension of u on A
to a measure on o (A).

Proof. Let {£2,}~, C A be chosen so that x (£2,) < oo for all n and £2,, 1
{2 as n — oo and let

tn (A) =y (AN £2,) for all A€ A.

Each i, is a premeasure (as is easily verified) on .4 and hence by Theorem
each p,, has an extension, fi,, to a measure on o (A) . Since the measure fi,, are
increasing, fi := lim,,_ o fi, is a measure which extends p.

The proof will be completed by verifying that Eq. (5.12)) holds. Let B €
o(A), Bp = 2, N B and € > 0 be given. By Theo there exists
Cm € Ay such that By, C Cy, C 2., and a(C, \ Bpn) = fim (Cry \ Bi) < €27™.
Then C := UX_,Cy, € A, and

ﬁ(C\B)§ﬂ<U (cm\B>> < HC\B) < Y O\ By) < <.

m=1 m=1 m=1

Thus
[(B) <p(C)=n(B)+mC\B) <j(B)+e

which, since & > 0 is arbitrary, shows [ satisfies Eq. (5.12]). The uniqueness of
the extension [ is proved in Exercise [5.11 [ |
The following slight reformulation of Theorem can be useful.
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Corollary 5.30. Let A be an algebra of sets, {2, },-_, C Ais a given sequence
of sets such that 2, T 2 as m — oo. Let

A ={Ae A: AC (2, for some m € N}.

Notice that Ay is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that 1 : Ay — [0,00) is an additive
set function such that i (Ay,) | 0 for any sequence, {An} C Ay such that Ay, | 0
as n — 0o. Then u extends uniquely to a o — finite measure on A.

Proof. Existence. By assumption, pn, = pla, : Ag, — [0,00) is a
premeasure on ({2,,, Ap, ) and hence by Theorem extends to a measure
o on (2,0 (Ap, ) =DBgn, ). Let fm (B) = ., (BN§2y,) for all B € B.
Then {fim},._, is an increasing sequence of measure on (£2, B) and hence ji :=
lim,;, oo flm defines a measure on (2, B) such that fi|4, = pu.

Uniqueness. If pq and po are two such extensions, then i (£2,, N B) =
w2 (2, N B) for all B € A and therefore by Proposition or Exercise
we know that pq (2, N B) = pa (2, N B) for all B € B. We may now let
m — 0o to see that in fact py (B) = o (B) for all B € B, i.e. u1 = uo. ]

5.4 Radon Measures on R

We say that a measure, u, on (R, Bg) is a Radon measure if x ([a,b]) < oo
for all —co < a < b < oco. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 5.31. Suppose that S C 2% is a semi-algebra, A = A(S) and
w:A—[0,00] is a finitely additive measure. Then u is a premeasure on A iff
1 1s countably sub-additive on S.

Proof. Clearly if u is a premeasure on A4 then u is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of x on & implies the sub-additivity of u on A.

So suppose A =3 ° A, € A with each A,, € A . By Proposition we

may write A = Z?Zl E; and A, = ZZV:WI E,; with E;, E, ; € S. Intersecting
the identity, A = >"° | A,, with E; implies

00 oo Np
Ej=ANE; =) A,NE; =Y > E,iNE;.

n=1 n=1 i=1

By the assumed sub-additivity of p on S,
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Suppose now that u is a Radon measure on (R, Bg) and F' : R — R is chosen

so that
i ((a,b])) = F(b) — F(a) forall —oo<a<b< oo. (5.13)

For example if p (R) < oo we can take F' () = p ((—o0, z]) while if u (R) = oo

we might take
_ n((02]) ifzx>0
Fz) = {—ﬂu((x,O]) ife <0’

The function F' is uniquely determined modulo translation by a constant.

Lemma 5.32. If i is a Radon measure on (R,Br) and F : R — R is chosen
so that p((a,b)) = F (b) — F (a), then F is increasing and right continuous.

Proof. The function F' is increasing by the monotonicity of u. To see that
F is right continuous, let b € R and choose a € (—o0,b) and any sequence
{b,}>2, C (b,o0) such that b, | b as n — oo. Since p((a,b1]) < oo and
(a,by] | (a,b] as n — oo, it follows that

F(by) — F(a) = p((a,bn]) | p((a,b]) = F(b) — Fla).
Since {bn}zoz1 was an arbitrary sequence such that b, | b, we have shown

limylb F(y) = F(b) u
The key result of this section is the converse to this lemma.

Theorem 5.33. Suppose F': R — R is a right continuous increasing function.
Then there exists a unique Radon measure, p = pp, on (R, Bgr) such that Eq.

holds.

Proof. Let S := {(a,b]NR: —c0 <a <b< oo}, and A = A(S) consists
of those sets, A C R which may be written as finite disjoint unions of sets
from S as in Example Recall that Bg = 0 (A) = 0 (S). Further define
F(£o00) := lim;— 100 F'(x) and let u = pp be the finitely additive measure
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on (R,.A) described in Proposition and Remark To finish the proof it
suffices by Theorem to show that u is a premeasure on A = A(S) where
S :={(a,))NR: —00 <a<b<oo}. So in light of Proposition to finish
the proof it suffices to show pu is sub-additive on S, i.e. we must show

<> (). (5.14)
n=1

where J = Y7 | J, with J = (a,b] "R and J,, = (an,b,] N R. Recall from
Proposition [£.2] that the finite additivity of x4 implies

> u(n) < p (). (5.15)
n=1

We begin with the special case where —co < a < b < 0o. Our proof will be
by “continuous induction.” The strategy is to show a € A where

A::{ae[a,b] (J N (a,b]) ZuJﬁab } (5.16)

As b € J, there exists an k such that b € Jj, and hence (ay, bx] = (ax, b] for this
k. It now easily follows that J, C A so that A is not empty. To finish the proof
we are going to show a :=inf A € A and that a = a.

o Ifaé¢ A, there would exist o, € A such that a,, | a, i.e.

w(J N (m, b)) < w(Jn N (g, b]). (5.17)

M8

Il
-

n

Since (N (@, b)) < p(Jn) and 3225 i (Ja) < o (J) < o0 by Eq. (B.19),
we may use the right continuity of F' and the dominated convergence the-
orem for sums in order to pass to the limit as m — oo in Eq. (5.17)) to
learn,

p(JN(a,b]) <y p(Jn (@ b)).

M8

Il
-

n
This shows a € A which is a contradiction to the original assumption that
a¢ A

o Ifa> a,then a e J; = (aj, ] for some . Letting @ = a; < @, we have,
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56 5 Countably Additive Measures
(01 (@) = (T 0 (s a]) + (I 0 (@,5)
< :U’(Jl N (ava]) + Z ;U'(Jn N (av bD

n=1

= p(Ji 0 (,al) + p (S0 (@) + Y plJn N (@, b))
n#l

— (0 (@b + 3 p(J 0 (@,5)
n#l

i (Jn N (a, b))

This shows o € A and « < a which violates the definition of a. Thus we
must conclude that a = a.

The hard work is now done but we still have to check the cases where
a = —oo or b = co. For example, suppose that b = oo so that

J = (a,00) = i‘]"
n=1

with J,, = (an,b,] NR. Then

o0
Ing = (a, M =J NIy =Y JuN Iy

n=1

and so by what we have already proved,
F(M) = F(a) = pln) € 3l 0 1ap) €3 ()
n=1 n=1

Now let M — oo in this last inequality to find that

o0

((a,00)) = Fo0) = F(a) < 3 (7).

n=1

The other cases where a = —occ and b € R and a = —oo and b = oo are handled
similarly. ]

5.4.1 Lebesgue Measure

If F (x) =« for all x € R, we denote pp by m and call m Lebesgue measure on
(R7 B]R) .
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Theorem 5.34. Lebesgue measure m is invariant under translations, i.e. for
B € Bg and x € R,
m(z + B) = m(B). (5.18)

Lebesgue measure, m, is the unique measure on Bgr such that m((0,1]) =1 and
Eq. holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |\|m(B) (5.19)
where A € R, B € Bg and AB := {A\z : x € B}.

Proof. Let m,(B) := m(x+ B), then one easily shows that m,, is a measure
on Bg such that m,((a,b]) = b — a for all a < b. Therefore, m, = m by
the uniqueness assertion in Exercise [5.11] For the converse, suppose that m is
translation invariant and m((0,1]) = 1. Given n € N, we have

T N )

n n

Therefore,

That is to say
1
0,-])=1/n.
m((0, ) =1/n

Similarly, m((0, £]) = I/n for all I,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an T a, then (an,by,] | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—aq,
i.e. m is Lebesgue measure. To prove Eq. (5.19) we may assume that A # 0

since this case is trivial to prove. Now let my(B) := |A|”' m(AB). It is easily
checked that my is again a measure on Br which satisfies

mx((a, b)) = A7 m (Aa, \b)) = A1 (Ab— Xa) = b —a
if A > 0 and
ma((a,0) = |\ m (b, Aa)) = — A 7P (Ab—Xa) =b—a

if A < 0. Hence my = m. [
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5.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let .S be a finite or countable set (we refer to S as state space),
2 := 8% := SN (think of N as time and (2 as path space)

A, :={Bx2:BCS"} foralln €N,

A= U2 A, and B := o (A). We call the elements, A C {2, the cylinder
subsets of (2. Notice that A C {2 is a cylinder set iff there exists n € N and
B C S™ such that

A=Bx2:={weNR:(w,...,w,) € B}.

Also observe that we may write A as A = B’ x {2 where B’ = B x §¥ ¢ §»t*
for any k£ > 0.

Exercise 5.5. Show;

1. A, is a o0 — algebra for each n € N,

2. A, C A,y for all n, and

3. A C 2? is an algebra of subsets of 2. (In fact, you might show that
A = U2, A, is an algebra whenever {4, } ° is an increasing sequence
of algebras.)

Lemma 5.35 (Baby Tychonov Theorem). Suppose {Cy,},—, C A is a de-
creasing sequence of non-empty cylinder sets. Further assume there ezists
N, € N and B,, cC S™» such that C,, = B,, x 2. (This last assumption is
vacuous when S is a finite set. Recall that we write A CC A to indicate that A
is a finite subset of A.) Then NS, C,, # 0.

Proof. Since C,, .1 C C,, if N,, > N,,,1, we would have B, ; x SNn+1=Nn
B,,. If S is an infinite set this would imply B,, is an infinite set and hence we
must have N, 1 > N, for all n when # (S) = oco. On the other hand, if S is
a finite set, we can always replace B, 1 by B,;1 x S* for some appropriate
k and arrange it so that N1 > N, for all n. So from now we assume that
Nn+1 2 Nn

Case 1. lim,, ., N,, < oo in which case there exists some N € N such that
N,, = N for all large n. Thus for large N, C,, = B,, x 2 with B,, cc SV and
By+1 C B, and hence # (B,,) | as n — co. By assumption, lim,, o # (Bp) # 0
and therefore # (B,,) = k > 0 for all n large. It then follows that there exists
no € N such that B, = B, for all n > ng. Therefore N2 ,C,, = By, x 2 # 0.

Case 2. lim,—o N, = oo0. By assumption, there exists w(n) =
(w1 (n),w2(n),...) € 2 such that w(n) € C, for all n. Moreover, since
w(n) € C, C Cy, for all k < n, it follows that
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(w1 (n), w2 (n),...,wn, (n)) € By for all n >k (5.20)

and as By, is a finite set {w; (n)} —, must be a finite set for all 1 < i < Nj.
As Nj, — 00 as k — oo it follows that {w; (n)},—; is a finite set for all i € N.
Using this observation, we may find, s; € .S and an infinite subset, I3 C N such
that wy (n) = s; for all n € Iy, Similarly, there exists sy € S and an infinite
set, I» C I7, such that wy (n) = so for all n € I'. Continuing this procedure
inductively, there exists (for all j € N) infinite subsets, I; C N and points
sj€Ssuchthat I1 D I3 D I5D ... andw; (n) =s; for all n € Ij.

We are now going to complete the proof by showing s := (s1,89,...) €
N2, C,. By the construction above, for all N € N we have

(wi(n),...,wn (n)) = (s1,...,sn) foralln e I'y.
Taking N = Nj, and n € 'y, with n > k, we learn from Eq. (5.20]) that
($1,---58n,) = (w1 (n),...,wn, (n)) € By.

But this is equivalent to showing s € C}. Since k € N was arbitrary it follows
that s € N2, Cy. ]

Let S := S is S is a finite set and S = S U {oo} if S is an infinite set. Here,
00, is simply another point not in S which we call infinity Let {z,} -, C S
be a sequence, then we way lim,,_,o, z, = oo if for every A CC S, z,, ¢ A for
almost all n and we say that lim, ... x, = s € S if z,, = s for almost all n.
For example this is the usual notion of convergence for S = {% 'n € N} and
S =SU{0} C[0,1], where 0 is playing the role of infinity here. Observe that
either lim,, . x,, = 0o or there exists a finite subset F' C S such that z,, € F
infinitely often. Moreover, there must be some point, s € F' such that z,, = s
infinitely often. Thus if we let {n; < ns < ...} C N be chosen such that =, = s
for all k, then limy_,o Zy, = s. Thus we have shown that every sequence in S
has a convergent subsequence.

Lemma 5.36 (Baby Tychonov Theorem I.). Let 2 := S and {w (n)},,
be a sequence in (2. Then there is a subsequence, {ny},—, of {n},_, such that
limg 0o w (ng) exists in 2 by which we mean, limy_, o w; (ng) exists in S for

all i € N.

Proof. This follows by the usual cantor’s diagonalization argument. Indeed,
let {n,lc}:;l C {n},;2, be chosen so that lim;_.o w1 (n}) = s; € S exists. Then
choose {ni}:il C {n,lc};il so that limy_, oo wo (n%) = 35 € S exists. Continue
on this way to inductively choose

{nllf}i?; = {”E};oﬂ DD {ngc};oﬂ SRR

oo

such that limy_, o w; (n%) = s5; € S. The subsequence, {ni}re, of {n} 2, , may
now be defined by, ny = nf. ]
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Corollary 5.37 (Baby Tychonov Theorem II.). Suppose that {F,},~, C
(2 is decreasing sequence of non-empty sets which are closed under taking se-
quential limits, then NS\ F,, # ().

Proof. Since F,, # () there exists w (n) € F), for all n. Using Lemma [5.36]
there exists {ny},—; C {n}r—; such that w := limy_,c w (ng) exits in £2. Since
w(ny) € F, for all k > n, it follows that w € F,, for all n, i.e. w € N2, F), and
hence N2, F,, # 0. [

Example 5.38. Suppose that 1 < Ny < Ny < N3 < ..., F, = K,, x {2 with
K, cC SN» such that {F,}.~, C Risa decreasmg sequence of non-empty sets.
Then N3, F,, # (). To prove this, let F,, := K,, x {2 in which case F,, are non —
empty sets closed under taking limits. T herefore by Corollary [5.37] - N, wEn # 0.
This completes the proof since it is easy to check that NS, F,, = N, F, # 0.

Corollary 5.39. If S is a finite set and {A,},>., C A is a decreasing sequence
of non-empty cylinder sets, then NS, A,, # 0.

Proof. This follows directly from Example [5.3§ since necessarily, A, =
K, x £2, for some K, cC SN». [

Theorem 5.40 (Kolmogorov’s Extension Theorem 1.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A — [0,1], has a unique extension to
a probability measure on B := o (A).

Proof. From Theorem it suffices to show lim,, o P (A,) = 0 whenever
{A,}.2, € Awith A, | 0. However, by Lemma with C,, = A,, A, € A
and A, | ), we must have that A, = 0 for a.a. n and in particular P (4,) =0
for a.a. n. This certainly implies lim,,_,, P (4,) = 0. [

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : o (A) — [0, 1] is a probability
measure and for n € N and (s1,...,s,) € S™, let

P (8155 8n) =P ({w € N w1 =81,...,wn = Sn}). (5.21)
Exercise 5.6 (Consistency Conditions). If p, is defined as above, show:

LY cgpi(s)=1and
2. for all n € N and (s1,...,8,) € S™,

pn(sla-“a E Pn+1 517-- ySny S )
seS

Exercise 5.7 (Converse to . Suppose for each n € N we are given func-
tions, p, : S™ — [0, 1] such that the consistency conditions in Exercise hold.
Then there exists a unique probability measure, P on o (A) such that Eq.
holds for all n € N and (s1,...,s,) € S™.
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Ezample 5.41 (Existence of iid simple R.V.s). Suppose now that ¢ : S — [0,1]
is a function such that ) _¢q(s) = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (s1,...,s,) € S™, we have

PHwe N :wi =81,...,wn=5p}) =q(s1)...q(sn).
This is a special case of Exercise 5.7 with py, (s1,...,8,) :=q(s1)...q(sn).

Theorem 5.42 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A — [0,1] is a finitely additive measure such
that P|a, is a 0 — additive measure for each n € N. Then P extends uniquely
to a probability measure on B := o (A).

Proof. From Theorem it suffice to show; if {A4,,},~, C A is a decreas-
ing sequence of subsets such that ¢ := inf,, P (A4,,) > 0, then N%_, A,, # 0.
You are asked to verify this property of P in the next couple of exercises. =

For the next couple of exercises the hypothesis of Theorem [5.42] are to be
assumed.

Exercise 5.8. Show for each n € N; A € A,,, and € > 0 are given. Show there
exists F' € A, such that FF C A, F = K x 2 with K CcC S™,and P (A\ F) < e.

Exercise 5.9. Let {A4,,},~, C A be a decreasing sequence of subsets such that

= inf,, P (A,,) > 0. Using Exercise choose F,,, = K,, x 2 C A,, with
K,, cC SN+ and P (A,, \ F,) < ¢/2™FL Further define C,,, :== Fy N ---N F,
for each m. Show;

1. Show A, \ Cp,, C (Al \ Fl) U (AQ\FQ) @]
conclude that P (A, \ Cp,) < e/2.

2. Conclude C), is not empty for m.

3. Use Lemma to conclude that @ # NSS_,Cp, CNX_1 Ay,

U (A \ Fin) and use this to

Exercise 5.10. Convince yourself that the results of Exercise [5.6] and [5.7] are
valid when S is a countable set. (See Example [4.6])

In summary, the main result of this section states, to any sequence of
functions, p, : S™ — [0,1], such that ) 3 cgnpn (A) =1and Y g pni1 (A, 5) =
prn (A) for all n and A € S™, there exists a unique probability measure, P, on
B := o (A) such that

P(Bx2)=Y p,(\) VBCS" andneN.
AEB

Ezample 5.43 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S X S — [0, 1] be a Markov kernel, i.e.
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Zp(x,y) =1forall z € S. (5.22)
yeSs

Also let m: S — [0, 1] be a probability function, i.e. Y
take

zeg T (x) = 1. We now

Q= 85" = {w=(sp,51,...): 85 € S}
and let X,, : {2 — S be given by

Xn (80,81,...) = 8y for all n € Ny.
Then there exists a unique probability measure, Py, on o (A) such that

P (Xo=20,.-., Xn =x,) =7 (x0) p(0,21) ... p(Tp—1,Tn)

for all n € Ny and zg,z1,...,z, € S. To see such a measure exists, we need
only verify that

Pn (To, ..., 2n) =T (20) p (70, 21) ... P (Tp_1,Zn)

verifies the hypothesis of Exercise taking into account a shift of the n —
index.

5.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 5.44 (Finite Regularity Result). Suppose A C 2% is an algebra,
B=o0(A) and p: B — [0,00) is a finite measure, i.e. {1 (§2) < co. Then for
every € > 0 and B € B there exists A € As and C € A, such that AC B C C
and p(C\ A) <e.

Proof. Let By denote the collection of B € B such that for every € > 0
there here exists A € As and C € A, such that A C BC C and u(C\ A) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i = 1,2,... and € > 0 is given. By assumption there
exists A; € As and C; € A, such that A; C B; C C; and u (C; \ 4;) < 27 %.

Let A := U2 A;, AN .= UN A, € As, B := U2 B;, and C 1= UZ,C; €
Agy. Then AN ¢ AC Bc C and

CANA=[UEGINA=UZ, [Ci\A] CUE [Ci\ Ay
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Therefore,

p(C\A) = p (U, [Ci\ A)) Z (Ci\ A4) sz (Ci\ Ai)

Since C'\ AN | C'\ A, it also follows that u (C’ \ AN) < ¢ for sufficiently large
N and this shows B = U2, B; € By. Hence By is a sub-o-algebra of B = o (A)
which contains A which shows By = B. ]

Many theorems in the sequel will require some control on the size of a
measure u. The relevant notion for our purposes (and most purposes) is that
of a 0 — finite measure defined next.

Definition 5.45. Suppose 2 is a set, ECB C 2 and p : B — [0,00] is a
function. The function p is o — finite on & if there exists E,, € £ such that
wWEy) < oo and 2 =UX2 E,. If B is a 0 — algebra and p is a measure on B
which is o — finite on B we will say (2,8, ) is a o — finite measure space.

The reader should check that if u is a finitely additive measure on an algebra,
B, then p is o — finite on B iff there exists (2, € B such that (2, T {2 and
w(f2,) < 0.

Corollary 5.46 (0 — Finite Regularity Result). Theorem continues
to hold under the weaker assumption that u: B — [0,00] is a measure which is
o — finite on A.

Proof. Let §2,, € A such that U2 ,$2,, = 2 and p(£2,) < oo for all n.Since
A€ B—-p,(A) = p(2,NA) is a finite measure on A € B for each n, by
Theorem [5.44] for every B € B there exists C,, € A, such that B C C,, and
w(£2,N[Cy \ B]) = pin (Cp \ B) < 27"¢. Now let C := U, [£2,NC,] € A,
and observe that B C C and

p(C\B) = Z1 (2N CA]\ B))

P
gi 2.1 C,] i (2.1 \ B]) <

Applying this result to B¢ shows there exists D € A, such that B¢ C D and
W(B\ D) = u(D\ B < ¢
So if we let A := D¢ € As, then A C B C C and
p(C\A) = p(BAAJUIC\ B)\ A]) < (B\ A) + u(C\ B) < 2

and the result is proved. ]
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Exercise 5.11. Suppose A C 2 is an algebra and y and v are two measures

on B=oc(A).

a. Suppose that p and v are finite measures such that 4 = v on A. Show
uw=rv.

b. Generalize the previous assertion to the case where you only assume that
i and v are o — finite on A.

Corollary 5.47. Suppose A C 2% is an algebra and p : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € As,
and C € Ays such that AC B C C and u(C\ A) =0.

Proof. By Theorem [5.44] given B € B, we may choose A, € As and
C,, € A, such that A, C B C Cy, and u(C, \ B) < 1/n and u(B\ 4,,) < 1/n.
By replacing Ax by UﬁzlAn and Cy by ﬂ,ly:lCn, we may assume that A, T
and C,, | as n increases. Let A = UA, € A5, and C = NC,, € A,s, then
ACBcCC and

w(C\A) = p(C\B) +pu(B\ A) < u(Cr \ B) + (B \ Ap)
<2/n—0asn— .

Exercise 5.12. Let B = Bgr» = o ({open subsets of R"}) be the Borel o —
algebra on R™ and p be a probability measure on B. Further, let By denote
those sets B € B such that for every ¢ > 0 there exists ' C B C V such that
F is closed, V is open, and u (V' \ F) < e. Show:

1. By contains all closed subsets of B. Hint: given a closed subset, F' C R™ and
keN,let Vi :=UgzerB (x,1/k), where B (x,0) :={y € R" : |y — x| < §}.
Show, Vi, | F as k — .

2. Show By is a o — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [5.44]

3. Show for every ¢ > 0 and B € B, there exist a compact subset, X' C R™, such
that K C B and pu(B\ K) < e. Hint: take K := FN{z € R": |z| < n}
for some sufficiently large n.

5.7 Appendix: Completions of Measure Spaces*
Definition 5.48. A set E C 2 is a null set if E € B and u(F) = 0. If P is

some “property” which is either true or false for each x € 2, we will use the
terminology P a.e. (to be read P almost everywhere) to mean
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E:={xz € 2:P is false for x}

is a null set. For example if f and g are two measurable functions on (§2, 8, ),
f =g a.e. means that u(f # g) = 0.

Definition 5.49. A measure space (§2,B, u) is complete if every subset of a
null set is in B, i.e. for all F' C {2 such that F C E € B with u(E) = 0 implies
that F € B.

Proposition 5.50 (Completion of a Measure). Let (12,8, 1) be a measure
space. Set

N=NHt:={N CR:3F €Bsuch that N C F and u(F) =0},
B=B":={AUN:A€Band N € N} and
@(AUN) := u(A) for A€ B and N € N,
see Fig. ‘ Then Bf@‘s a o - algebra, [i is a well defined measure on B, i is the
unique measure on B which extends p on B, and (2,8, i) is complete measure

space. The o-algebra, B, is called the completion of B relative to p and [i, is
called the completion of .

Proof. Clearly 2,0) € B. Let A € B and N € N and choose F € B such

Fig. 5.2. Completing a o — algebra.

that N C F and u(F) = 0. Since N = (F\ N) U F°,

(AUN)° = A°NN°® = A°N (F\ N UF°)
= [A°N (F\ N)]U[A° N F*]

where [A° N (F\ N)] € N and [A° N F¢] € B. Thus B is closed under
complements. If A; € B and N; C F; € B such that u(F;) = 0 then

U(Aq; U Nz) = (UAi) U (UNz') € B since UA; € B and UN; C UF; and
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w(UE;) <5 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BU N,
with A, B € B and Ny, Ny, € N. Then AC AUN; CAUN, UF, = BUF,
which shows that

p(A) < uw(B) + p(Fz) = p(B).
Similarly, we show that u(B) < p(A) so that u(A) = p(B) and hence i(A U
N) := u(A) is well defined. Tt is left as an exercise to show fi is a measure, i.e.
that it is countable additive. ]

5.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 5.51 (Montone Class). C C 2 is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 5.52 (Monotone Class Theorem*). Suppose A C 2% is an algebra
and C is the smallest monotone class containing A. Then C = o(A).

Proof. For C € C let
C(C)={BeC:CnNnB,CNB*,BNC*eC},

then C(C) is a monotone class. Indeed, if B,, € C(C) and B,, | B, then B, | B¢
and so

C>5CNB,1CNB
C>CNB: | CNB° and
C>B,NnC¢1BNC"

Since C is a monotone class, it follows that C N B,C N B¢, BN C° € C, i.e.
B € C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C') is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C € C. If A € A C C, then
ANB,ANB BN A € A C C for all B € A and hence it follows that
A C C(A) C C. Since C is the smallest monotone class containing .4 and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A € A. Let
B € C and notice that A € C(B) happens iff B € C(A). This observation and
the fact that C(A) = C for all A € Aimplies A C C(B) C C for all B € C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B € C. That is to say, if A, B € C then
A e C=C(B) and hence ANB, ANB®, AN B € C. So C is closed under
complements (since 2 € A C C) and finite intersections and increasing unions
from which it easily follows that C is a o — algebra. [ ]






6

Random Variables

Notation 6.1 If f: X — Y is a function and € C 2Y let
frle= 1€ ={f(B)Ee&}
If G C 2%, let
.G :={Ac2Y|f1(A) g}
Definition 6.2. Let £ C 2X be a collection of sets, A C X, is: A — X be the
inclusion map (ia(z) =z for allz € A) and
Ea=i"(E)={ANE:E€&}.
The following results will be used frequently (often without further refer-

ence) in the sequel.

Lemma 6.3 (A key measurability lemma). If f : X — Y is a function and
Ec2Y, then

o (f7HE) = fHa(€)). (6.1)
In particular, if A CY then
(@(€))a =0(Ea), (6.2)
(Similar assertion hold with o (-) being replaced by A(-).)
Proof. Since £ C o(£), it follows that f~1(£) C f~1(c(£)). Moreover, by
Exercise below, f~1(c(£)) is a o — algebra and therefore,
a(f7HE) € FH(a(€)).

To finish the proof we must show f~1(c(£)) C o(f~1(£)), i.e. that f~1(B) €
o(f71(€)) for all B € o (£). To do this we follow the usual measure theoretic
mantra, namely let

M:={BcY: [ (B)ea(f &)} = fo(fHE)).

We will now finish the proof by showing o (£) € M. This is easily achieved
by observing that M is a o — algebra (see Exercise which contains £ and
therefore o (£) C M.

Equation is a special case of Eq. (6.1). Indeed, f =i : A — X we

have
()4 =in'(0(E)) = a(ix ' (E)) = a(Ea).

Exercise 6.1.If f : X — Y is a function and F C 2¥ and B C 2% are o —
algebras (algebras), then f~'F and f.B are o — algebras (algebras).

Ezample 6.4. Let € = {(a,b] : —00 < a <b < oo} and B = o (€) be the Borel o
— field on R. Then
Eo =1{(a,b]: 0<a<b< 1}
and we have
B = (Eo) -
In particular, if A € B such that A C (0,1], then A € ¢ (5(0,1]) :

6.1 Measurable Functions

Definition 6.5. A measurable space is a pair (X, M), where X is a set and
M is a o — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, u) is a
measure space and f : X — Ry is a function. Roughly speaking, we are going

to define [ fdu as a certain limit of sums of the form,
X

oo

> aip(f~ (ai, ain])-

O0<ai;<az<as<...

For this to make sense we will need to require f~1((a,b]) € M for all a < b.
Because of Corollary below, this last condition is equivalent to the condition
f_l(B]R) C M.

Definition 6.6. Let (X, M) and (Y,F) be measurable spaces. A function f :

X — Y is measurable of more precisely, M/F — measurable or (M,F) -
measurable, if f~YH(F) C M, i.e. if f~1(A) € M forall A€ F.

Remark 6.7. Let f: X — Y be a function. Given a o — algebra F C 2Y, the o
— algebra M := f~1(F) is the smallest o — algebra on X such that f is (M, F)
- measurable . Similarly, if M is a o - algebra on X then

F=fM={Ac2V|f 1A € M}
is the largest o — algebra on Y such that f is (M, F) - measurable.
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Ezample 6.8 (Indicator Functions). Let (X, M) be a measurable space and A C
X. Then 1,4 is (M, Bg) — measurable iff A € M. Indeed, 1;,*(W) is either 0,
X, A or A° for any W C R with 1" ({1}) =

Ezxample 6.9. Suppose f : X — Y with Y being a finite or countable set and
F =2Y. Then f is measurable iff f~1 ({y}) € M for all y € Y.

Proposition 6.10. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume € C F generates F, i.e. F = 0o (E). Then a map, f: X - Y is
measurable iff f~1 () C M.

Proof. If f is M/F measurable, then f~! () C f~! (F) c M. Conversely
if f71(£) C M then o (f~'(£)) C M and so making use of Lemma

FUE) =0 ) =0 (f7HE) c M.
| |

Corollary 6.11. Suppose that (X, M) is a measurable space. Then the follow-
ing conditions on a function f: X — R are equivalent:

1 f is (M, Br) — measurable,
~1((a,0)) € M for all a € R,

“((a,0)) € M for all a € Q,

“1((~o0,a]) € M for all a € R.

Exercise 6.2. Prove Corollary [6.11] Hint: See Exercise [3.7}

Exercise 6.3. If M is the ¢ — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Exercise 6.4. Let (X, M) be a measure space and f, : X — R be a sequence
of measurable functions on X. Show that {z : lim, o fn(z) exists in R} € M.
Similarly show the same holds if R is replaced by C.

Exercise 6.5. Show that every monotone function f : R — R is (Bg,Bgr) —
measurable.

Definition 6.12. Given measurable spaces (X, M) and (Y,F) and a subset
A C X. We say a function f: A —'Y is measurable iff f is Ma/F — measur-
able.

Proposition 6.13 (Localizing Measurability). Let (X, M) and (Y, F) be
measurable spaces and f: X — Y be a function.

1. If f is measurable and A C X then fla: A—Y is Ma/F — measurable.
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2. Suppose there exist A, € M such that X = U2, A, and f|A, is Ma, |F
— measurable for all n, then f is M - measumble

Proof. 1. If f : X — Y is measurable, f~1(B) € M for all B € F and
therefore
flat(B)=Anf~Y(B) € My for all B € F.

2. If B € F, then

FHB) = Uty (fTHB)N A) = U2y fl4, (B).

Since each A, € M, M4, C M and so the previous displayed equation shows
f~1(B) e M. [

Lemma 6.14 (Composing Measurable Functions). Suppose that
(X, M), (Y,F) and (Z,G) are measurable spaces. If f : (X, M) — (Y, F) and
g: (Y, F) — (Z,G) are measurable functions then go f : (X, M) — (Z,G) is

measurable as well.

Proof. By assumption g71(G) C F and f~! (F) C M so that

(go /)G =F"(g7(G) C f(F)cM.
| |

Definition 6.15 (0 — Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yo, Fo) i € I} and
functions fo : X = Y, foralla € I. Let o(fy : a € I) denote the smallest o —
algebra on X such that each f. is measurable, i.e.

U(fa YOS I) = O'(Uaf(;l(fa))'

Example 6.16. Suppose that Y is a finite set, F = 2¥, and X = YV for some
N € N. Let m; : YN — Y be the projection maps, 7; (y1,-..,yn) = y;. Then,
as the reader should check,

o(m,...,mp) ={Ax AN AC A"}

Proposition 6.17. Assuming the notation in Definition (s0 fo : X —
Y, for all a € I) and additionally let (Z, M) be a measurable space. Then

g:7Z — X is (M,0(fo : « € I)) — measurable iff fo 0g (ZiX&»Ya) is
(M, Fo)-measurable for all a € I.

Proof. (=) If g is (M,0(fs : @ € I)) — measurable, then the composition
fa0gis (M, F,) — measurable by Lemma

macro: svmonob.cls date/time: 28-0ct-2009/9:49



(<) Since o(fo : @ € I) = 0 (&) where € := U, f;'(Fa), according to
Proposition it suffices to show g=1 (A) € M for A € f;(F,). But this is
true since if A = f; ! (B) for some B € F,, then g~ (A) = g7' (f71(B)) =

(fao g)_1 (B) € M because f,0g:7Z — Y, is assumed to be measurable.
|

Definition 6.18. If {(Y,, Fa) : a € I} is a collection of measurable spaces, then
the product measure space, (Y, F), is Y :=[[,c; Yo, F := 0 (7o : a € I) where
Ty Y — Y, is the o — component projection. We call F the product o — algebra
and denote it by, F = QacrFa-

If A is a finite or countable set it is easily seen that

®aelfa20<{HBa:Baefaforallozel}>.

acl
Let us record an important special case of Proposition [6.1

Corollary 6.19. If (Z, M) is a measure space, then g: Z — Y =[] ;Yo is
(M, F := QqerFa) — measurable iff o 0g: Z — Yy is (M, F,) — measurable
foralla € I.

As a special case of the above corollary, if A = {1,2,...,n}, then Y =
Yi x---xY,and g = (g1,-.-,9,) : Z — Y is measurable iff each component,
gi - Z —Y;, is measurable. Here is another closely related result.

Proposition 6.20. Suppose X is a set, {(Ya,Fo): a € I} is a collection of
measurable spaces, and we are given maps, fo : X — Y, for all o € 1. If
f:X =Y :=]l,c;Ya is the unique map, such that my o f = fo, then

o(farael)=o(f)=f"1(F)

acl

where F = QuerFa-

Proof. Since 0 f = fo is 0 (fo : @ € I) /F, — measurable for all « € I it
follows from Corollary that f: X — Y is 0 (fo : @ € I) /F — measurable.
Since o (f) is the smallest o — algebra on X such that f is measurable we may
conclude that o (f) Co(fa: € I).

Conversely, for each a € I, fo, = mq 0 f is 0 (f) /Fa — measurable for all
a € I being the composition of two measurable functions. Since o (f, : o € I)
is the smallest o — algebra on X such that each f, : X — Y, is measurable, we
learn that o (fo: o€ I) Co(f). |

Exercise 6.6. Suppose that (Y7, ;) and (Y3, F2) are measurable spaces and
E; is a subset of F; such that Y; € & and F; = o (&;) for i = 1 and 2. Show
Fi1 @ Fo =0 () where £ := {A; x Ag : A; € &; for i = 1,2} . Hints:
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1. First show that if Y is a set and &; and S; are two non-empty sub-
sets of 2¥, then o (0 (S1) U0 (Ss)) = 0 (S; USs). (In fact, one has that
0 (Uaero (8a)) = 0 (UaerSs) for any collection of non-empty subsets,

{Sataer €2Y)
2. After this you might start your proof as follows;

Fi@Fs =0 (ry (F)Um ' (F)) =0 (7r1_1 (0 (&E))Umyt (0 (&) =....

Remark 6.21. The reader should convince herself that Exercise [6.6] admits the
following extension. If I is any finite or countable index set, {(Y;, i)}, are
measurable spaces and & C F; are such that Y; € & and F; = o (&;) for all

i € I, then
®i€[./f7; =0 <{HA1 : Aj S 5j for all] e I})
i€l

Exercise 6.7. Suppose that (Y7, 7;) and (Y3, F2) are measurable spaces and
() # B; C Y; for i = 1,2. Show

[F1® Falp, x5, = [F1lp, @ [Falp, -
Hint: you may find it useful to use the result of Exercise with
£ .= {Al X Ag : A; € F; fori:1,2}.

Definition 6.22. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 6.23. Let X and Y be two topological spaces and f : X — Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma [6.3| and By = o(71y),

fH(By) = folry)) =o(f(rv)) C o(rx) = Bx.
| |

Ezxample 6.24. For i = 1,2,...,n, let m; : R” — R be defined by m; () = a;.
Then each 7; is continuous and therefore Bgn /Bg — measurable.

Lemma 6.25. Let £ denote the collection of open rectangle in R™, then Bgn =
o (€). We also have that Bgn = o (m1,...,7,) = Br®---®@Bgr and in particular,
Ay X -+ X A, € Brn whenever A; € Bg fori=1,2,...,n. Therefore Bgn may
be described as the o algebra generated by {A; X --- X A, : A; € Br}. (Also see

Remark|6.21))
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Proof. Assertion 1. Since £ C Bgn, it follows that ¢ (£) C Brn. Let
& ={(a,b):a,be Q" 3 a<b},
where, for a,b € R™, we write a < b iff a; < b; for i =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,by) . (6.3)

Since every open set, V. C R™, may be written as a (necessarily) countable
union of elements from &y, we have

Veo() Cco(é),

ie. 0(&) and hence o (€) contains all open subsets of R™. Hence we may
conclude that

Brr = o (open sets) C o (&) C o (E) C Bgrn.

Assertion 2. Since each 7; : R™ — R is continuous, it is Bg» /Bgr — measur-
able and therefore, o (71,...,m,) C Bgn. Moreover, if (a,b) is as in Eq. ,
then

(a,b) = ﬁ?zlﬂ'i_l ((as,b5)) € o (m1, .-, 70) -
Therefore, £ C o (71,...,m,) and Brn =0 (£) C o (M1, .., T0n) -
Assertion 3. If A; € Bg fori=1,2,...,n, then

Ay x - x Ay =0yt (A) € o (T, e, Tp) = Bga.

Corollary 6.26. If (X, M) is a measurable space, then

f:(f17f27"'7fn):X4’Rn

is (M, Bgn) — measurable iff f; : X — R is (M,Br) — measurable for each 1i.
In particular, a function f: X — C is (M, Bc) — measurable iff Re f and Im f
are (M, Br) — measurable.

Proof. This is an application of Lemmal6.25 and Corollary .19 with ¥; = R
for each 1. ]

Corollary 6.27. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,B¢) -
measurable.
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Proof. Define FF: X - CxC, AL :CxC—->Cand M :CxC — C
by F(z) = (f(z),9(z)), Ax(w,2z) = w £+ z and M(w,z) = wz. Then Ay and
M are continuous and hence (Bgz,Bc) — measurable. Also F is (M, Be2) —
measurable since mj o F = f and myoF = g are (M, Bc) — measurable. Therefore
AyoF = fdgand MoF = f-g, being the composition of measurable functions,
are also measurable. [

Lemma 6.28. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

s measurable.

Proof. Define i : C — C by

, Lif 240
Z(Z){Oif z=0.

For any open set V C C we have
THV) = (VA{0h) UV n{0})

Because i is continuous except at z = 0, i~1(V \ {0}) is an open set and hence
in Be. Moreover, i~1(V N {0}) € Be since i~ 1(V N {0}) is either the empty
set or the one point set {0} . Therefore i~!(7¢) C B¢ and hence i~1(B¢) =
i~Y(o(mc)) = o(i~Y(7¢)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

Remark 6.29. For the real case of Lemma define 7 as above but now take
z to real. From the plot of i, Figure the reader may easily verify that
i1 ((—00,a]) is an infinite half interval for all a and therefore i is measurable.

See Example [6.34] for another proof of this fact.
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We will often deal with functions f : X — R =RU {+oco}. When talking
about measurability in this context we will refer to the o — algebra on R defined
by

Bg :=0 ({[a,<] : a € R}). (6.4)

Proposition 6.30 (The Structure of Bg). Let Br and Bg be as above, then
Bg={ACR:ANR EBg}. (6.5)
In particular {oo} ,{—o0} € Bg and Br C Bg.
Proof. Let us first observe that

{—OO} = mf:l[_oo? —TL) = Sbo:l[_nvoo]c € B]Ra

{00} =N, [n, <] € Bg and R = R\ {+o0} € Bg.
Letting i : R — R be the inclusion map,

it (Bg) =0 (i7" ({[a,00] :a €R})) =0 ({i7" ([a,0]) : a € R})
=0 ({la,c]NR:aeR}) =0 ({[a,) : a € R}) = Br.

Thus we have shown
Bg=i! (Bg) ={ANR: A€ Bg}.
This implies:

1. Ae Bg = ANR eBg and

2. if A C R is such that ANR €Bg there exists B € By such that ANR = BNR.
Because AAB C {#oo} and {oo},{—oc0} € Bz we may conclude that
A € Bz as well.

This proves Eq. (6.5). ]
The proofs of the next two corollaries are left to the reader, see Exercises

6.8 and [6.91

Corollary 6.31. Let (X, M) be a measurable space and f : X — R be a func-
tion. Then the following are equivalent

1. f is (M, Bg) - measurable,
2. f~Y((a,00]) € M for all a € R,
3. f71((—o0,a]) € M for all a € R,
4. fH{—o0}) e M, f71{oo}) € M and f°: X — R defined by
oy Jf@if flx)eR
Fiw)= { 0 if f(x) € {+o0}

1s measurable.

Page: 67 job: prob

6.1 Measurable Functions 67
Corollary 6.32. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f +g) : X — R using the conventions, 0-occ = 0
and (f +g)(z) =0 if f(x) =00 and g(x) = —o0 or f(z) = —oc0 and g (z) =
oo. Then f-g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.8. Prove Corollary noting that the equivalence of items 1. — 3.
is a direct analogue of Corollary [6.11] Use Proposition [6.30] to handle item 4.

Exercise 6.9. Prove Corollary

Proposition 6.33 (Closure under sups, infs ‘and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence of
M /By — measurable functions. Then

sup; f;j, inf;f;, limsup f; and lbrgérgf £

J—00

are all M /Bg — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g4 (z) :=sup; f;(z), then

{z:91(2) <ap ={z: fi(x) <aVj}
=nN{x: fj(x) <a} e M

so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then
{z:9_(z) >a} =nj{z: fj(z) >a} € M.

Since
limsup f; =infsup{f;:j > n} and
Jj—o0 n
liminf f; =supinf{f;:j > n}
j—00 n
we are done by what we have already proved. ]

Example 6.34. As we saw in Remark i: R — R defined by

, Lif 240
Z(Z)_{Oif z=0.

is measurable by a simple direct argument. For an alternative argument, let

in (2) :=

%foraﬂneN.
21

Then 4, is continuous and lim,, s i, (2) = i(z) for all z € R from which it
follows that i is Borel measurable.
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68 6 Random Variables

Ezample 6.35. Let {r,}52,; be an enumeration of the points in Q N [0,1] and
define

with the convention that

Then f: R — R is measurable. Indeed, if

gn<x>={mlf“”"

0 ifx=r,

then g, (z) = /|i (x — r,)| is measurable as the composition of measurable is
measurable. Therefore g, +5- 1y, } is measurable as well. Finally,

= lim E 2—n
T Nox v/ |x — Tl
is measurable since sums of measurable functions are measurable and limits

of measurable functions are measurable. Moral: if you can explicitly write a
function f : R — R down then it is going to be measurable.

Definition 6.36. Given a function f : X — R let fi(z) := max {f(x),0} and
f- (x) :=max (—f(x),0) = —min (f(z),0). Notice that f = f+ — f_.

Corollary 6.37. Suppose (X, M) is a measurable space and f : X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [6.33]implies fi are measurable.
Conversely if fi are measurable then sois f = f, — f_. [

Definition 6.38. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — Bg
measurable and ¢(X) contains only finitely many elements.

Any such simple functions can be written as

@ = Aila, with 4; € M and \; € F. (6.6)
i=1
Indeed, take A1, Ao,..., A, to be an enumeration of the range of ¢ and A; =

0 Y({\:}). Note that this argument shows that any simple function may be
written intrinsically as
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=2 Yo 1)) (6.7)

yeF
The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.39 (Approximation Theorem). Let f : X — [0, 00] be measur-
able and define, see Figure[6.1}
22n 1 k
on () = ’;) on L (e 1) (%) + 271 o1 (2n o0)) (2)
22" —1

- Z 2n Lo <retity (@) + 2" 0y (2)

then @, < f for all n, @n(x) 1 f(x) for allz € X and ¢, 1 f uniformly on the
sets Xpr :={x € X : f(x) < M} with M < cc.

Moreover, if f: X — C is a measurable function, then there exists simple
functions p,, such that im,, o, ¢, (z) = f(x) for allx and |p,| T |f] asn — oco.

Proof. Since f~1 (£, &) and f~1((2", oc]) are in M as f is measurable,

n, is a measurable simple function for each n. Because

k kE+1 2k 2k+1 2k+1 2k+42
(27’ on ]:(2n+1’ on+1 ] (2n+1 > 9n+l ]’
if v € ((2721&17225%11]) then LPn< ) = L)OnJrl( ) = 22% and if = €
2

I (( ktl 2’21'12}) then @, (z) = 2n+1 < gﬁﬂ = ¢p+1(x). Similarly
(2", 00] = (2", 2" U (2", o),

and so for z € f71((2"1,00]), pn(x) = 2" < 2" = ¢, 11 (x) and for = €
e, 2n ), ppai(x) > 2" = @, (x). Therefore ¢, < @, for all n. It is
clear by construction that 0 < ¢,(z) < f(x) for all  and that 0 < f(x) —
on(x) < 27" if x € Xon = {f < 2"} . Hence we have shown that ¢, (z) T f(z)
for all x € X and ¢, T f uniformly on bounded sets.

For the second assertion, first assume that f : X — R is a measurable
function and choose ; to be non-negative simple functions such that ¢ 1 fi
as n — oo and define ¢,, = ¢;7 — ¢, . Then (using ¢} - ¢, < f+ - f- =0)

lonl = @ff + 05 <O +0ni1 = lontl

and clearly |on| = ¢F +¢n T fr+f-=|fland o = o —¢p = fr—f-=f
as n — o0o. Now suppose that f : X — C is measurable. We may now choose
simple function u,, and v, such that |u,| T |[Re f|, |vn| T |Im f|, v, — Re f and
v, — Im f as n — oco. Let ¢,, = uy,, + iv,, then

lonl® = u2 +02 1 |Re fI> + |Im f|* = | [

and ¢, = up +iv, — Re f+ilm f = f as n — oco. ™
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Fig. 6.1. Constructing the simple function, 2, approximating a function, f : X —
[0, 00]. The graph of 2 is in red.

6.2 Factoring Random Variables

Lemma 6.40. Suppose that (Y,F) is a measurable space and Y —Yisa
map. Then to every (o(Y),Bg) — measurable function, h : 2 — R, there is a
(F,Bg) — measurable function H : Y — R such that h = HoY. More generally,

R may be replaced by any “standard Borel space, ’E| i.e. a space, (S,Bgs) which
is measure theoretic isomorphic to a Borel subset of R.

(2.0(Y)) = (V.F)
hl ) H
(5.55)

Proof. First suppose that h = 14 where A € 0(Y) =Y 1(F). Let B€ F
such that A = Y~}(B) then 14 = ly-1gy = 1p oY and hence the lemma

! Standard Borel spaces include almost any measurable space that we will consider in

these notes. For example they include all complete seperable metric spaces equipped
with the Borel o — algebra, see Section ?7.
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is valid in this case with H = 1. More generally if h = > a;14, is a simple
function, then there exists B; € F such that 14, = 1p,0Y and hence h = HoY
with H := Y a;1p, — a simple function on R.

For a general (F, Bg) — measurable function, h, from {2 — R, choose simple
functions h,, converging to h. Let H, : Y — R be simple functions such that
h, = H,, oY. Then it follows that

h = lim h, =limsuph, =limsupH,oY =HoY

n—oo n— o0 n—oo

where H := limsup H,, — a measurable function from Y to R.
n—oo

For the last assertion we may assume that S € Br and Bs = (Br)g =
{ANS: A€ Bgr}. Since ig : S — R is measurable, what we have just proved
shows there exists, H : Y — R which is (F,Bg) — measurable such that h =
igoh = HoY. The only problems with H is that H (Y) may not be contained
in S. To fix this, let

_ [ Hlg-syon H(S)
HS_{ * on Y\ H~1(S)

where * is some fixed arbitrary point in S. It follows from Proposition [6.13| that

Hs : Y — Sis (F,Bs) — measurable and we still have h = Hg oY as the range

of Y must necessarily be in H~* (S). |
Here is how this lemma will often be used in these notes.

Corollary 6.41. Suppose that (§2,B) is a measurable space, X,, : 2 — R are
B/Bgr — measurable functions, and B, := o (Xy,...,X,) C B for each n € N.
Then h : 2 — R is B, — measurable iff there exists H : R™ — R which is
Brn /Br — measurable such that h = H (X1,...,X,).

(2B, = o (¥)) Z=2 (RY Ban)
hl /,—/"/
.- H
(R7BR)

Proof. By Lemma and Corollary the map, YV := (Xy,...,X,) :
22— R"is (B,Bgr = Br ® - -+ ® Bg) — measurable and by Proposition
B, = o0(X1,...,Xy) = 0(Y). Thus we may apply Lemma to see that
there exists a Bgn /Bgr — measurable map, H : R” — R, such that h = HoY =
H(X1,...,Xn). -
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70 6 Random Variables

6.3 Summary of Measurability Statements 14. If X; : 2 — R are B/Bg — measurable maps and B, := o (X1,...,X,),

It may be worthwhile to gather the statements of the main measurability re-

then h : 2 — R is B,, — measurable iff h = H (X1, ..., X,) for some Bgn /Br
— measurable map, H : R — R (Corollary [6.41]).

sults of Sections and in one place. To do this let (2,8), (X, M), and 15. We also have the more general factorization Lemma [6.40]

{(Ya, Fa)}oer be measurable spaces and fo : £2 — Y, be given maps for all
a € 1. Also let m,, : Y — Y, be the o — projection map,

For the most part most of our future measurability issues can be resolved

by one or more of the items on this list.

F = QaciFa:=0(nq:a €l

be the product o — algebra on Y, and f : 2 — Y be the unique map determined
by mq o f = fo for all « € I. Then the following measurability results hold;

1. For A C {2, the indicator function, 14, is (B, Bg) — measurable iff A € B.
(Example [6.8).

2. If £ C M generates M (i.e. M =0 (£)), then a map, g: 2 — X is (B, M)

— measurable iff g~ (£) C B (Lemmal6.3) and Proposition )

The notion of measurability may be localized (Proposition |6.13]).

Composition of measurable functions are measurable (Lemma .

5. Continuous functions between two topological spaces are also Borel mea-
surable (Proposition [6.23).

6. o (f) =0 (fa:a€I) (Proposition [6.20).

7. Amap, h: X — 21is (M,0(f) =0 (fa: @ € I)) — measurable iff f, oh is
(M, F,) — measurable for all « € I (Proposition [6.17)).

8. Amap, h: X — Y is (M, F) - measurable iff 7, 0h is (M, F,) — measurable
for all o € I (Corollary [6.19).

9. I ={1,2,...,n}, then

w0

®a61.7:a:f1®"'®fn:0({141XAQX"'XA7LSAi€f¢f0ri€I}),

this is a special case of Remark

10. Bgn = Br ® - - ® Br (n - times) for all n € N, i.e. the Borel o — algebra on
R™ is the same as the product o — algebra. (Lemma .

11. The collection of measurable functions from (£2, B) to (R, Bg) is closed un-
der the usual pointwise algebraic operations (Corollary [6.32)). They are also
closed under the countable supremums, infimums, and limits (Proposition
6.33)).

12. The collection of measurable functions from (§2, B) to (C, Be) is closed under
the usual pointwise algebraic operations and countable limits. (Corollary
and Proposition . The limiting assertion follows by considering
the real and imaginary parts of all functions involved.

13. The class of measurable functions from (£2,8) to (R, Bg) and from (12, B)
to (C, Bc) may be well approximated by measurable simple functions (The-

orem .
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6.4 Distributions / Laws of Random Vectors

The proof of the following proposition is routine and will be left to the reader.

Proposition 6.42. Let (X, M, 1) be a measure space, (Y,F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0, 0]
by v(A) := p(f~Y(A)) for all A € F. Then v is a measure on (Y, F). (In the
future we will denote v by f.p or o f~1 and call f.p the push-forward of i
by f or the law of f under p.

Definition 6.43. Suppose that {X;}!_, is a sequence of random variables on a
probability space, (12,8, P). The probability measure,

p=(X1,....X,), P=Po(Xy,....,X,)"" onBg

(see Proposition is called the joint distribution (or law) of
(X1,...,X,). To be more explicit,

w(B):=P((X1,....,Xn,)€B)=P({we : (X1 (w),...,X,(w) € B})
for all B € Bgn.

Corollary 6.44. The joint distribution, p is uniquely determined from the
knowledge of

P((Xy,...,Xpn) € Ay x--- X A,) for all A; € By
or from the knowledge of
P(X; <x1,...,X, <m,) forall A; € By
for allx = (z1,...,2,) € R™.
Proof. Apply Proposition with P being the m — systems defined by
P:={A; x -+ x A, €Bgn: A; € B}
for the first case and
P:={(—o00,x1] X -+ X (—00,x,] € Brn : z; € R}
for the second case. ]

Definition 6.45. Suppose that {X;};_, and {Y;}!_, are two finite sequences of
random variables on two probability spaces, (£2,B,P) and (£2',B', P') respec-
tively. We write (X1, ..., Xn) = (Y1,...,Y,) if (X1,...,Xn) and (Y1,...,Y,,)
have the same distribution, i.e. if
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P((X1,...,X,) € B)=P((Y1,...,Y,) € B) for all B € Bgn.

More generally, if {X;};2, and {Y;};2, are two sequences of random variables
on two probability spaces, (12,8, P) and (£2',B', P") we write {X;};-, 4 {vi} .2,
i (X1, Xn) 2 (V1,...,Y,) for alln € N.

Proposition 6.46. Let us continue using the notation in Definition [6.45 Fur-
ther let

X=(X1,Xg,...): 2 =RV and Y := (V1,Ys,...): 2 — RY

and let F := QunenBr — be the product o — algebra on RN, Then {Xi}:i1 4
{Yi}i2, iff XuP =Y, P as measures on (RN,}') )

Proof. Let
Pi=Usl {41 x Ay x -+ x Ay x RV 1 A; € B for 1 <i <m}.
Notice that P is a m — system and it is easy to show o (P) = F (see Exercise
. Therefore by Proposition X, P=Y.P iff X,P=Y,P' on P. Now
for A1 x Ay x -+ x A, x RN € P we have,
X.P (A1 x Ay x - x Ay xRY) = P((X1,...,Xn) € A; X Ay X -+ X Ay)
and hence the condition becomes,

P((Xl,...,Xn)GAlXAQX"'XAn):P/((Yl,...,Yn)EAlXAQX"'XAn)

for all n € N and A; € Bgr. Another application of Proposition [5.15| or us-
ing Corollary allows us to conclude that shows that X,P = Y,.P' iff

(X1,..., X)) 2 (Y1,...,Y,,) for all n € N. -

|a.

Corollary 6.47. Continue the notation above and assume that {X;}i0, =
{Y;}:2, . Further let

X, — { limsup,, o Xn if +

liminf, .. X, if —

and define Yo similarly. Then (X_, X ) 4 (Y_,Y,) as random variables into
(RQ, Bz ® BR) . In particular,

P ( lim X, exists in ]R) =P ( lim Y exists in R) . (6.8)
n—oo n—oo
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72 6 Random Variables

Proof. First suppose that (2/,B',P') = (RN,}', P = X*P) where
Y; (a1,a2,...) :=a; = m; (a1,a2,...). Then for C' € Bz ® By we have,

XT{(Vo, v el ={(Y-oX,Y,0X)eC} ={(X_,X,)eC},
since, for example,

Y_ oX =liminfY,, o X =liminf X,, = X_.

n—oo n—0oo

Therefore it follows that

P((X-,X;4)€C)=PoX " ({(Y_,Yy) € C}) = P/({(Y-,Y4) € C}). (6.9)

The general result now follows by two applications of this special case.
For the last assertion, take

C={(z,x):x € R} € Bg: = Br @ Br C B ® Bg.

Then (X_, X ) e Ciff X_ = X € R which happens iff lim,,_, . X, exists in
R. Similarly, (Y_,Yy) € C iff lim, . Y, exists in R and therefore Eq. ( .
holds as a consequence of Eq. .

Exercise 6.10. Let {X;};2, and {Y;}.°, be two sequences of random variables
such that {X;}2; 4 {Vi}2, . Let {S,},—, and {T,,} , be defined by, S, :=
Xi+---+X,and T}, :=Y; 4+ --- +Y,. Prove the following assertions.
1. Suppose that f : R® — RF is a Bgn/Bge — measurable function, then
JXu Xa) S f (Y, V).
2. Use your result in item 1. to show {S,} 4 {T.}, .

Hint: Apply item 1. with & = n after making a judicious choice for f :
R™ — R™.

6.5 Generating All Distributions from the Uniform
Distribution

Theorem 6.48. Given a distribution function, F : R —[0,1] let G : (0,1) = R
be defined (see Figure[6.9) by,

G(y)=inf{zx: F(z) > y}.
Then G : (0,1) — R is Borel measurable and G.m = pr where pp is the unique

measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —oco < a <b <
00.
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Fig. 6.3. As can be seen from this picture, G (y) < zo iff y < F (xo) and similarly,
G(y) <ziiff y <a1.

Proof. Since G : (0,1) — R is a non-decreasing function, G is measurable.
We also claim that, for all zg € R, that

G ((0,20]) = {y : G (y) < w0} = (0, F (w0)] NR, (6.10)

see Figure

To give a formal proof of Eq. (6.10), G (y) = inf {z : F (z) > y} < o, there
exists x,, > xg with x,, | z¢ such that F (x,) > y. By the right continuity of F,
it follows that F' () > y. Thus we have shown

(G < 20} (0, F (20)] N (0,1).

For the converse, if y < F(xg) then G (y) = inf{z: F(x) >y} < xo, ie.
y € {G <z} Indeed, y € G~ ((—o00, z0]) iff G (y) < xo. Observe that

macro: svmonob.cls date/time: 28-0ct-2009/9:49



G (F (z9)) =inf{z: F(z) > F(x0)} < 29
and hence G (y) < xp whenever y < F (z¢) . This shows that
(0, F (20)] N (0,1) € G ((0, z0)) -
As a consequence we have G,m = up. Indeed,

(Gem) ((—o00,z]) = m (G ((—o0,a])) =m({y € (0,1) : G (y) < z})
=m((0,F (2)]N(0,1)) = F(z).

See section 2.5.2 on p. 61 of Resnick for more details. [

Theorem 6.49 (Durret’s Version). Given a distribution function, F
R —[0,1] let Y : (0,1) — R be defined (see Figure by,

Y (z) :=sup{y: F(y) < x}.

Then'Y : (0,1) — R is Borel measurable and Yom = up where pup is the unique
measure on (R, Br) such that pp ((a,b]) = F (b) — F (a) for all —oo < a < b <
00.

N X
- - - - - —:L— —!’—/—-_’:_——:—
J

<V

YA

Fig. 6.4. A pictorial definition of Y (z).

Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (2), then F (y) < = and hence,

F(Y()-)= lim F()<a.
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For y > Y (x), we have F (y) > x and therefore,

F(Y (@) =F(Y(@)4) = lim F(y)>a

and so we have shown

We will now show
{ze(0,1): Y (x) <wo} = (0,F (y0)] N (0,1). (6.11)

For the inclusion “C,” if x € (0,1) and Y (z) < yo, then x < F (Y (x)) < F (yo),
ie. z € (0,F (yo)] N (0,1). Conversely if z € (0,1) and = < F (yo) then (by
definition of Y (2)) yo > Y (x).

From the identity in Eq. , it follows that Y is measurable and

(Yam) ((—00,90)) =m (Y~ (—00,90)) = m ((0, F (y0)] N (0,1)) = F (yo) -

Therefore, Law (Y) = pp as desired. ]
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7

Integration Theory

In this chapter, we will greatly extend the “simple” integral or expectation
which was developed in Section above. Recall there that if (£2, B, u) was
measurable space and f : {2 — [0, 00] was a measurable simple function, then

we let
Efi= S Mi(f=N.

A€E€[0,00]

The conventionsﬂ being use here is that co-p (f = 00) = 01if p (f = 00) =0 and
0-u(f=0)=0when pu(f =0) = oco. In short, in these integration formulas
we adopt the convention that 0 - oo = 0. Please be careful not to apply this
convention in general elsewhere.

7.1 Integrals of positive functions

Definition 7.1. Let LT = LT (B) = {f : 2 — [0,00] : f is measurable}. Define
/ f(w)du(w) = / fdp :=sup{E, ¢ : ¢ is simple and ¢ < f}.
2 (0]

We say the f € L is integrable if fQ fdu < oo. If A € B, let

/A F (@) dp () = /A fu = /Q 1af dp.

We also use the notation,
]Ef:/ fdu and E[f : A] ::/ fdu.
19 A

Remark 7.2. Because of item 3. of Proposition if  is a non-negative simple
function, [, pdp =E,¢ so that [, is an extension of E,,.

Lemma 7.3. Let f,g € L™ (B). Then:

1 .. . .
This is the convention necessary in order for the monotone convergence theorem to
hold.

1. if A >0, then

/Q)\fdu:)\/ﬁfdu

wherein X [, fdp =0 if X =0, even if [, fdu = oo.

2.if0< f <g, then
[ sdu< | gd (7.1)
2 2

1 1
wfze = /prl{sz}du < ;p/ﬂf”du- (7.2)

3. For alle >0 and p > 0,

The inequality in Fq. 1s called Chebyshev’s Inequality for p = 1 and
Markov’s inequality for p = 2.

4. 1f [, fdp < oo then pu(f = 00) =0 (i.e. f < oo a.e.) and the set {f > 0}
is 0 — finite.

Proof. 1. We may assume A > 0 in which case,

/ Afdp = sup{E ¢ : ¢ is simple and ¢ < Af}
Q

= sup {E#(p ;@ is simple and A1y < f}
=sup{E, [A\Y] : ¢ is simple and ¢ < f}
= sup {AE, [¢] : ¢ is simple and ¢ < f}

= )\/Qfdu.

{¢ is simple and ¢ < f} C {¢ is simple and ¢ < g},

2. Since

Eq. (7.1]) follows from the definition of the integral.
3. Since > < 1{f26}%f < %f we have

1 \? 1 \?
Lipzey < Lip>ey <5f> < <€f>
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and by monotonicity and the multiplicative property of the integral,

1\* 1\*
M(fze):/nl{fze}dué <€> /Ql{fza}fpduﬁ (8> /prdu-

4. If p(f =o00) > 0, then @, := nlfs_) is a simple function such that
pn < f for all n and hence

np (f =o00) =E, (¢n) < /Qfdﬁb

for all n. Letting n — oo shows [, fdu = oco. Thus if [, fdu < oo then

p(f =o00) =0.
Moreover,
{f >0y =z {f > 1/n}
with pu(f > 1/n) <n [, fdu < oo for each n. n

Theorem 7.4 (Monotone Convergence Theorem). Suppose f, € LT is a
sequence of functions such that fn, T f (f is necessarily in L") then

[t [sasn—c

Proof. Since f,, < f,, < f, for all n < m < oo,

JEEY RS

from which if follows [ f,, is increasing in n and

lim [ f, < / f (7.3)

n—oo

For the opposite inequality, let ¢ : 2 — [0,00) be a simple function such
that 0 < ¢ < f, @ € (0,1) and 2, := {f. > ay}. Notice that §2,, T £2 and
fn > alg, ¢ and so by definition of [ f,,

/hz&mmMFWMDm@- (7.4)

Then using the identity

1Qn,<P = 1(2" Z yl{ga:y} = Z yl{tp:y}ﬂflny
y>0 y>0

and the linearity of [E,, we have,
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lim B, [Lo,¢] = lim D> y-u(2 N {o=1y})

n—oo

y>0
— Z y lim (€2, 0 {p = y}) (finite sum)
y>0
=Y yul{e =y}) =Eu[d],
y>0

wherein we have used the continuity of g under increasing unions for the
third equality. This identity allows us to let n — oo in Eq. to conclude
lim,, oo f fn > aE, [¢] and since a € (0,1) was arbitrary we may further con-
clude, E,, [¢] < lim,, .o [ fn. The latter inequality being true for all simple
functions ¢ with ¢ < f then implies that

]/f:: sup Eule] < lim [ fu,

0<p<f nree
which combined with Eq. ((7.3) proves the theorem. ]

Remark 7.5 (“Explicit” Integral Formula). Given f : {2 — [0, 00] measurable,
we know from the approximation Theorem on T f where

Therefore by the monotone convergence theorem,

‘/.fdu:: T
(9] 0

n—oo

22n 1
k k k+1
= i o = < 2" 2"
im | ) 2nu(2n<f_ )+ w(f>2")

n— o0 on
k=0

Corollary 7.6. If f, € L™ is a sequence of functions then

=% [n

In particular, if Y0~ | [ fn < oo then Y 0" | fn < 00 a.e.

Proof. First off we show that

/(f1+f2):/f1+/f2
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by choosing non-negative simple function ¢, and %, such that ¢, T fi and

Yn T f2. Then (@, + 9y,) is simple as well and (@, + ©¥,) T (f1 + f2) so by the
monotone convergence theorem,

Jim [ (on +¢pn) = lim (/gon+/1/1n>
:hm <pn+hm/1/)n /f1+/f2

Now to the general case. Let gy := Z fnand g = Z fn, then gy T g and so

[+ n

again by monotone convergence thcorom and the add1t1v1ty just proved,
00 N N
S [ o=t 30 [ ga= tim [3°5,
n=1 n=1 n=1

:A}gnw/gszg::/ifn.

Remark 7.7. It is in the proof of Corollary (i.e. the linearity of the integral)
that we really make use of the assumption that all of our functions are measur-
able. In fact the definition [ fdu makes sense for all functions f : 2 — [0, o]
not just measurable functions. Moreover the monotone convergence theorem
holds in this generality with no change in the proof. However, in the proof of
Corollary we use the approximation Theorem [6.39| which relies heavily on
the measurability of the functions to be approximated.

Example 7.8 (Sums as Integrals I). Suppose, 2 = N, B := 2Ny (A) = # (A)
for A C {2 is the counting measure on B, and f : N — [0, oc] is a function. Since

f=>fn) 1y,
n=1
it follows from Corollary [7.6] that

/fdu Z/f 1{n}du—Zf i ({n}) = i (n).

Thus the integral relative to counting measure is simply the infinite sum.

Lemma 7.9 (Sums as Integrals IT*). Let {2 be a set and p : 2 — [0,00] be
a function, let p =3 o p(w)d, on B=2i.e.
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7.1 Integrals of positive functions 7

pA) =" pw).

weA

If f: 82— [0,00] is a function (which is necessarily measurable), then

/Qfdu =S

Proof. Suppose that ¢ : 2 — [0,00) is a simple function, then ¢ =
Zze[O,oo) Zl{‘P=Z} and

Z‘pp— Z ) Z Zl{ap z} Z Z l{cp z} )

wes? z€[0,00) z€[0,00) wE
= Y aulle=:)- / i
z€[0,00) 2

So if ¢ : 2 — [0,00) is a simple function such that ¢ < f, then

/ pdp =Y op< > fp.
2 Q Q

Taking the sup over ¢ in this last equation then shows that

[ fan<> so
2 Q

For the reverse inequality, let A CC {2 be a finite set and N € (0,00).
Set fN(w) = min{N, f(w)} and let ¢ 4 be the simple function given by
oN.A(W) == 14 (w) fY (w). Because oy a(w) < f(w),

Y Vo= enap= / oN,Adp < / fdp.
" o 0 0
Since fV 1 f as N — 0o, we may let N — oo in this last equation to concluded

;fp < /Qfdu-

Since A is arbitrary, this implies

Zg:fp < /Q fdp.
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Exercise 7.1. Suppose that p, : B — [0, co] are measures on B for n € N. Also
suppose that p,(A) is increasing in n for all A € B. Prove that p: B — [0, c0]
defined by p(A) = lim,_ . pn(A) is also a measure.

Proposition 7.10. Suppose that f > 0 is a measurable function. Then
fQ fdu =0 iff f =0 a.e. Also if f,g > 0 are measurable functions such that

[ <gae then [ fdu < [ gdup. In particular if f = g a.e. then [ fdu = [ gdp.

Proof. If f =0 a.e. and ¢ < f is a simple function then ¢ = 0 a.e. This
implies that u(¢~'({y})) = 0 for all y > 0 and hence [, pdp = 0 and therefore
S fdpu = 0. Conversely, if [ fdu =0, then by (Lemma [7.3)),

w(f >1/n) §n/fd,u:0for all n.

Therefore, u(f > 0) < Y00 u(f > 1/n) = 0, ie. f =0 a.e. For the second
assertion let E be the exceptional set where f > g, i.e. E:={w € 2: f(w) >
g(w)}. By assumption E is a null set and 1gcf < 1geg everywhere. Because
g=1geg+1gg and 1gg =0 a.e.,

/gdu=/1Ecgdu+/1E9du=/1Ecgdu

and similarly [ fdp = [1ge fdp. Since 1ge f < 1geg everywhere,

Corollary 7.11. Suppose that {f,} is a sequence of non-negative measurable
functions and f is a measurable function such that f, T f off a null set, then

/hT/fwnﬂw-

Proof. Let E C {2 be a null set such that f,1gc T flge as n — oo. Then
by the monotone convergence theorem and Proposition [7.10]

/fn:/fnlE“T/flEC:/faSn—)oo.

Lemma 7.12 (Fatou’s Lemma). If f,, : £2 — [0,00] is a sequence of measur-

able functions then
/ liminf f, < liminf / fn
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Proof. Define g; := 1r>1f’c fn so that gi T liminf, . f, as k — oo. Since

gkg.f’n for aukgna
/gké/fnforallnzk

/gk <lim inf /fn for all k.

We may now use the monotone convergence theorem to let k& — oo to find

and therefore

MCT

f1m g o= [ i M i f o < im imt[ o
u

The following Lemma and the next Corollary are simple applications of

Corollary

Lemma 7.13 (The First Borell — Cantelli Lemma). Let (2,8, 1) be a
measure space, A, € B, and set

{4, i.0.} ={w € 2 :w € A, for infinitely many n’s} = m U A,
N=1n>N

IfF >0 w(Ay) < oo then p({A, i.0.}) = 0.
Proof. (First Proof.) Let us first observe that

{4, 1.0.} = {we Q:ilAn(w) :oo}.

n=1

Hence if Y77, u(A;) < oo then
oo > Z,u(An):Z/ lAnd,u:/ ZlAndu
n=1 n=1 2 Qn:l

[e.e]
implies that > 14 (w) < oo for u - a.e. w. That is to say u({4, i.0.}) = 0.
n=1
(Second Proof.) Of course we may give a strictly measure theoretic proof of this
fact:

w(A, i.0.) = ngnoou U A,

n>N
n>N
and the last limit is zero since > - | pu(A,) < oo. [
macro: svmonob.cls date/time: 28-0ct-2009/9:49



Corollary 7.14. Suppose that (2,8, 1) is a measure space and {A,},~, C B
is a collection of sets such that p(A; N A;) =0 for all i # j, then

p(UniiAy) = Z 1(Ay).
n=1
Proof. Since

1 ( ?:1An):/ Ly  a,dp and
(%}

> wldn) = [ 3714, du
n=1 2 n=1
it suffices to show -
Z La, = 1lu= 4, p—ae. (7.5)
n=1

Now Y27 1 1a, > 1y 4, and 307 14, (W) # 1ux 4, (w) iff w € A; N Aj for
some i # j, that is

{w : Z ].An(w) 75 1U?=1A"(w)} = Ui<in N Aj
n=1

and the latter set has measure 0 being the countable union of sets of measure
zero. This proves Eq. (7.5 and hence the corollary. ]

7.2 Integrals of Complex Valued Functions

Definition 7.15. A measurable function f : 2 — R is integrable if f, :=
fly>o0y and f— = —f 11y<oy are integrable. We write L' (u;R) for the space
of real valued integrable functions. For f € L' (u;R), let

/Q fp = /Q Fodpi— /Q fdp.

To shorten notation in this chapter we may simply write [ fdu or even [ f for

Jo fdp.

Convention: If f, g : £2 — R are two measurable functions, let f + g denote
the collection of measurable functions h : £2 — R such that h(w) = f(w) + g(w)
whenever f(w)+ g(w) is well defined, i.e. is not of the form oo — 0o or —oo 4 0.
We use a similar convention for f — g. Notice that if f,g € L!(u;R) and
hi,ho € f + g, then hy = hy a.e. because |f| < oo and |g] < oo a.e.
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Notation 7.16 (Abuse of notation) We will sometimes denote the integral
Jo fdp by p(f) . With this notation we have pu(A) = (14) for all A € B.

Remark 7.17. Since
J <|fI < fe + [,

a measurable function f is integrable iff [ |f| dp < co. Hence

L' (;R) := {f:Q—>R: fismeasurablcand/|f| du<oo}.
Q

If f,g € L' (;R) and f = g a.e. then fi = g+ a.e. and so it follows from
Proposition that [ fdp = [ gdp. In particular if f,g € L' (u;R) we may

define
|+ adn= [ na

where h is any element of f + g.

Proposition 7.18. The map
feLl'(wR) — | fdueR
0

is linear and has the monotonicity property: [ fdu < [gdu for all f,g €
L' (43 R) such that f < g a.e.

Proof. Let f,g € L' (1;R) and a,b € R. By modifying f and g on a null set,
we may assume that f, g are real valued functions. We have af +bg € L (u; R)
because
laf +bg| < lal|f| + bl lg| € L' (1 R).

If a < 0, then
(af)s = —af- and (af)- = —afy

Jar=-a[sva[ti=a(ft.- [£)=a]1

A similar calculation works for ¢ > 0 and the case a = 0 is trivial so we have

shown that
/af = a/f.

Now set h = f +g. Since h =hy — h_,

so that

hy —h_=fr—f-+9+—9g-

or
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80 7 Integration Theory
hy+f-+g9-=h_+fi+9+.

T g e e s
S S I P (A P 9

Finally if f — f- = f < g=g94+ —g— then fi +¢9_ < gy + f- which implies

that
/f++/g,§/g++/f,
or equivalently that

1= 5% fofore o

The monotonicity property is also a consequence of the linearity of the integral,
the fact that f < g a.e. implies 0 < g — f a.e. and Proposition [7.10}] |

Therefore,

Definition 7.19. A measurable function f
Jo If] dp < co. Analogously to the real case, let

2 — C is integrable if

Ll(,u;(C):—{f:.QH(C: fismeasumbleand/\ﬂ du<oo}.
2

denote the complex valued integrable functions. Because, max (|Re f|, [Im f]) <

fI < V2max (|Re f|, [Im f]), [|f] dp < oo iff
/|Ref|du+/\1mf\du<oo.
For f € L (u;C) define

/fdu:/Refd,u—l-i/Imfdu.

It is routine to show the integral is still linear on L! (;C) (prove!). In the
remainder of this section, let L' (u) be either L (1;C) or L (u;R). If A € B
and f € L (u;C) or f: 2 — [0, 0] is a measurable function, let

/A fp = /!2 Lafdp.
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Proposition 7.20. Suppose that f € L (u;C), then

/Q fdu'< /Q fldp. (7.6)

Proof. Start by writing [, f du = Re®® with R > 0. We may assume that
R = | /. o fdu| > 0 since otherwise there is nothing to prove. Since

Rze’“’/ﬁf dMZ/Qe*“’f duz/ﬂRe(e’wf)du—i—i/Im(e’“’f)du,

9]

it must be that fQ Im [e’wf] dp = 0. Using the monotonicity in Proposition

/Qfdﬂl:/(2Re(e_i9f)d“</Q‘Re(e_wf)|du</g|f|du.

Proposition 7.21. Let f,g € L (1), then
1. The set {f # 0} is o — finite, in fact {|f| = L} 1 {f # 0} and p(|f] > L) <

oo for all n.
2. The following are equivalent

a) [of=[gp9 foral EcB
b)(];\f—m:o

c) f=g ae

Proof. 1. By Chebyshev’s inequality, Lemma

u71= ) < [ Ifldn <o

for all n.
2. (a) => (c) Notice that

[Ef:/Eg@ﬁE(f—m:o

for all £ € B. Taking E = {Re(f —g) > 0} and using 1pRe(f —g) > 0, we
learn that

OzRe/E(f—g)d,u:/lERe(f—g):>1ERe(f—g):0a.e.

This implies that 15 = 0 a.e. which happens iff

macro: svmonob.cls date/time: 28-0ct-2009/9:49



1 ({Re(f —g) > 0}) = p(E) = 0.

Similar p(Re(f —g) < 0) = 0 so that Re(f —g) = 0 a.e. Similarly, Im(f —¢g) =0
a.e and hence f —g =0 a.e., i.e. f =g a.e.
(¢) = (b) is clear and so is (b) = (a) since

’/Ef_/Eg‘S/If—m:o.

Lemma 7.22. Suppose that h € L' (1) satisfies
/ hdu > 0 for all A € B, (7.7)
A

then h >0 a.e.

Proof. Since by assumption,
0 :Im/ hdy = / Im hdp for all A € B,
A A

we may apply Proposition to conclude that Imh = 0 a.e. Thus we may
now assume that h is real valued. Taking A = {h < 0} in Eq. (7.7) implies

/1A\h|d,u:/—1Ahd,u=—/hdu§0.
Q Q A

However 1,4 |h| > 0 and therefore it follows that [, 14 |h|dp = 0 and so Propo-
sition implies 14 |h| = 0 a.e. which then implies 0 = pu (4) = p (h < 0) = 0.
n

Lemma 7.23 (Integral Comparison). Suppose (2,8, 1) is a o — finite mea-
sure space (i.e. there exists 2, € B such that 2, T 2 and u(£2,) < oo for all
n) and f,g: 2 — [0,00] are B — measurable functions. Then f > g a.e. iff

/ fdu > / gdu for all A € B. (7.8)
A A

In particular f = g a.e. iff equality holds in FEq. @

Proof. It was already shown in Proposition that f > g a.e. implies Eq.
(7.8)). For the converse assertion, let B, := {f <nlg, }. Then from Eq. (7.8),

00 > np (§2,,) > /lendu > /ngndu
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from which it follows that both fl1g, and glp, are in L' (1) and hence h :=
flp, —glp, € L' (). Using Eq. (7.8)) again we know that

/h:/lenmA_/ngmAZOforallAEB.
A

An application of Lemma implies h > 0 a.e., i.e. flg, > glp, a.e. Since
B, T {f < oo}, we may conclude that

flifeoey = lim flp, > lim glp, = glijco) ae.

Since f > g whenever f = co, we have shown f > g a.e.
If equality holds in Eq. (7.8)), then we know that ¢ < f and f < g a.e,, i.e.

f=gae. [
Notice that we can not drop the o — finiteness assumption in Lemma [7.23
For example, let 4 be the measure on B such that u(A4) = co when A # (),
g = 3, and f = 2. Then equality holds (both sides are infinite unless A = ()
when they are both zero) in Eq. holds even though f < g everywhere.

Definition 7.24. Let (2,B,1) be a measure space and L*(p) = LY($2,B, 1)
denote the set of L' (u) functions modulo the equivalence relation; f ~ g iff
f =g a.e. We make this into a normed space using the norm

I£ =gl = [ 1f =gl d

and into a metric space using p1(f,g) = ||f — g1 -

Warning;: in the future we will often not make much of a distinction between
L'(u) and L! (1) . On occasion this can be dangerous and this danger will be
pointed out when necessary.

Remark 7.25. More generally we may define LP(u) = LP(£2, B, u) for p € [1,00)
as the set of measurable functions f such that

/ 1P dy < oo
0

modulo the equivalence relation; f ~ g iff f = g a.e.

We will see in later that

1/p
e = ([ 1) for e 220
is a norm and (LP(u), ||-||.») is a Banach space in this norm and in particular,

1f +gll, < If1l, + llgll, forall f,g.€ LP (n).
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Theorem 7.26 (Dominated Convergence Theorem). Suppose f,, gn,g €

L' (u), fo = f ae, [fu]l < gn € L' (1), gn — g ae. and [, gndp — [, gdp.
Then f € L (n) and

fdp = lim fndp.
Q h—oo J
(In most typical applications of this theorem g, = g € L' (i) for all n.)

Proof. Notice that |f| = limy, oo |[fn| < limpoo [gn] < g a.e. so that
f € L' (u). By considering the real and imaginary parts of f separately, it
suffices to prove the theorem in the case where f is real. By Fatou’s Lemma,

[ (o D= [ timint g = g < timint [ (0% 1)
(9] (9} n—0o0 2

= lim gndp + lim inf (:l:/ fnd,u>

/gdu—i—liminf <:|:/ fndu)
Q n—0o0 Q

Since liminf,,_ . (—a,) = — limsup a,,, we have shown,
n—oo

liminf,, fQ fndu
gdui/fduﬁ/gdwr 1
/Q 5 o hrrlnasotip Jo fndp

and therefore

limsup/ fnd,ug/ fdu < liminf/ fndp.

n—oo

This shows that lim [, f,dp exists and is equal to [, fdp. n

Exercise 7.2. Give another proof of Proposition by first proving Eq. (|7.6])
with f being a simple function in which case the triangle inequality for complex
numbers will do the trick. Then use the approximation Theorem [6.39)along with
the dominated convergence Theorem [7.26] to handle the general case.

Corollary 7.27. Let {f,},~, C L'(u) be a sequence such that
ZZO:1 ||fn”Ll(H) < 00, then Zzozl n 18 convergent a.e. and

/ (i_ojl fn> dy — f}l | .
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Proof. The condition 3777, || fnll11(,) < oo is equivalent to 3572 [fu] €

L' (1) . Hence Y°°°, f,, is almost everywhere convergent and if Sy 1= YN f,.,
then

N [e%s)
‘SN| < Z|fn| < Z|fﬂ‘ € Ll (.u)
n=1 n=1

So by the dominated convergence theorem,

fnd:/lidezlim/Sd
/9(7; H  N—oo Nap N—co Jn Nap
N 00
Jim S [ =3 [ fud
=1 n=1

n

Ezample 7.28 (Sums as integrals). Suppose, 2 = N, B := 2V 1 is counting
measure on B (see Example , and f: N — C is a function. From Example
[7.8] we have f € L' (u) iff Y07, |f (n)] < oo, ie. iff the sum, 307 f(n) is
absolutely convergent. Moreover, if f € L (1), we may again write

n=1

and then use Corollary to conclude that

/Nfdui

n=1

/N F) Lmydn =3 F ) u(in) =S ().

So again the integral relative to counting measure is simply the infinite sum
provided the sum is absolutely convergent.
However if f (n) = (—1)" %, then

0o N
n;f(n) =ngnoo;f<n)

is perfectly well defined while fN fdp is not. In fact in this case we have,

/Nfidu = 00.

The point is that when we write Y - | f (n) the ordering of the terms in the
sum may matter. On the other hand, fN fdu knows nothing about the integer
ordering.
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The following corollary will be routinely be used in the sequel — often without
explicit mention.

Corollary 7.29 (Differentiation Under the Integral). Suppose that J C R
is an open interval and f : J x 2 — C is a function such that

1. w — f(t,w) is measurable for each t € J.
2. f§t0, ) € LY () for some to € J.
3. %t(t,w) exists for all (t,w).

4. There is a function g € L* (1)

%t(t,-)’ < g for each t € J.

Then f(t,-) € L' (u) for all t € J (ie. [,|f(t,w)]du(w) < o0), t —
fQ ft,w)du(w) is a differentiable function on J, and

/ftwdu /a (t, w)dpu(w).

Proof. By considering the real and imaginary parts of f separately, we may
assume that f is real. Also notice that

g{(t w) = lim n(f(t+n"tw) - f(t,w))
and therefore, for w — %(t,w) is a sequential limit of measurable functions
and hence is measurable for all ¢ € J. By the mean value theorem,

lf(t,w) — f(to,w)] < g(w) |t —to| for allt € J (7.9)
and hence
[t w)] < [f(tw) = flto,w)[ + | f(to, w)| < g(w) [t — to] + | f(to, w)]-
This shows f(t,-) € L' (u) for all t € J. Let G(t) := [, f(t,w)du(w), then
G(t)—G(o) _ [ f(t,w)— f(to,w)
t—to _/ t—to dp(w).

By assumption,

i L) = o) OF e 0
t—to t— tO at

and by Eq. (79),

ft,w) = f(to,w)
t—to

< g(w) for all t € J and w € £2.
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Therefore, we may apply the dominated convergence theorem to conclude

lim G(tn) lim / F(tn,w) — to’w)d,u(w)

n— oo tn 7250 tn —to

:/ lim f(t"’w)_f(to’w)du(w)
0

n— o0 tn —to

= [ o)t

for all sequences t, € J \ {to} such that t, — to. Therefore, G(to) =
G(t)—G(to)
t—to

exists and

cmwzégﬁmwww»

limtﬂt(]

Corollary 7.30. Suppose that {an}zozo C C is a sequence of complexr numbers
such that series
o0
= Z an(z — 29)"
n=0

is convergent for |z — zo| < R, where R is some positive number. Then f :
D(zp, R) — C is complex differentiable on D(z, R) and

g nan(z — 2z9)"

By induction it follows that f*) exists for all k and that

Z nan(z — 20)" L. (7.10)

oo

f®(z) Z (n—1)...(n—k+Da,(z — 20)" "

Proof. Let p < R be given and choose r € (p, R). Since z = 29 +r €

n

D(zo, R), by assumption the series > a,r

n=0
M := sup,, |a,r"| < co. We now apply Corollary with X = NU{0}, pu
being counting measure, {2 = D(zo, p) and g(z,n) := a,(z — 29)". Since

is convergent and in particular

19'(z, )| = [nan(z — 20)" | < nlan| p" "
1 n—1 1 n—1
(&) < o (0)
r r r r
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and the function G(n) := Xn (g)nil is summable (by the Ratio test for exam-
ple), we may use G as our dominating function. It then follows from Corollary

(.29
Z an(z — 20)"

is complex differentiable with the differential given as in Eq. (7.10). [

ﬂwzﬁ,znw

Definition 7.31 (Moment Generating Function). Let ({2, B, P) be a prob-
ability space and X : 2 — R a random variable. The moment generating
Sfunction of X is Mx : R — [0, 00] defined by

Mx (t):=E [etx] .

Proposition 7.32. Suppose there exists € > 0 such that E [edxq < o0, then
Mx (t) is a smooth function of t € (—¢,€) and

oo

o
Mx (t) =" —EX" if |t <e. (7.11)
n=0
In particular,
d n
EX" = (dt) lt=oMx (t) for all n € Ny. (7.12)

Proof. If |t| < e, then

Zw Xln] <E

it etX < esIX!l for all |t| < e. Hence it follows from Corollary that, for

Z T: X|”] =E [e¥] < o0,

n=0

t| <e,
Mx (t) = Z X”] Z ]EX"
n= O n= 0
Equation (|7.12)) now is a consequence of Corollary - [

7.2.1 Square Integrable Random Variables and Correlations

Suppose that (2,8, P) is a probability space. We say that X : 2 — R is
integrable if X € L! (P) and square integrable if X € L? (P). When X is
integrable we let ax := EX be the mean of X.
Now suppose that X,Y : 2 — R are two square integrable random variables.
Since
0< X —YP = |XP+ V] -2|X]|Y],
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it follows that L )
[XY| <3 X7+ 3 Y|* e L' (P).

In particular by taking Y = 1, we learn that |X| < % (1 + |X2|) which shows
that every square integrable random variable is also integrable.

Definition 7.33. The covariance, Cov (X,Y), of two square integrable ran-
dom wvariables, X and Y, is defined by

Cov(X,)Y)=E[(X —ax)(Y —ay)]| =E[XY]-EX -EY
where ax := EX and ay := EY. The variance of X,
Var (X) := Cov (X, X) = E [X?] — (EX)? (7.13)

We say that X and Y are uncorrelated if Cov (X,Y) = 0, i.e. E[XY] =
EX - EY. More generally we say {Xy},_, C L*(P) are uncorrelated iff
Cov (X;,X;) =0 for all i # j.

It follows from Eq. (7.13]) that
Var (X) <E[X?] for all X € L*(P). (7.14)

Lemma 7.34. The covariance function, Cov (X,Y) is bilinear in X andY and
Cov (X,Y) = 0 if either X orY is constant. For any constant k, Var (X + k) =
Var (X) and Var (kX) = k*Var(X). If {Xy},_, are uncorrelated L* (P) -
random variables, then

Var (S, Z Var (Xy)

Proof. We leave most of this simple proof to the reader. As an example of
the type of argument involved, let us prove Var (X + k) = Var (X);

Var (X + k) = Cov(X + k, X + k) = Cov (X + k, X) + Cov (X + k, k)
= Cov (X + k,X) = Cov (X, X) + Cov (k, X)
= Cov (X, X) = Var (X),

wherein we have used the bilinearity of Cov(-,-) and the property that
Cov (Y, k) = 0 whenever k is a constant. ]

Exercise 7.3 (A Weak Law of Large Numbers). Assume {X, }, ., is a se-

quence if uncorrelated square integrable random variables which are identically

distributed, i.e. X,, 2 x,, for all m,n € N. Let S, :=>7_| Xy, p:=EX}, and
= Var (X},) (these are independent of k). Show;
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2 2
E<Snu> = Var <Sn> :J—, and
n n n

Sy, o2
— —pl>e) < —

n ne

(

for all ¢ > 0 and n € N. (Compare this with Exercise )

7.2.2 Some Discrete Distributions

Definition 7.35 (Generating Function). Suppose that N : 2 — Ny is an
integer valued random variable on a probability space, (2,8, P) . The generating
function associated to N is defined by

Gy (2) =E[zN] =Y P(N=n)z" for |2 < 1. (7.15)

n=0

By Corollary it follows that P (N =n) = %GS\?) (0) so that Gy can
be used to completely recover the distribution of N.

Proposition 7.36 (Generating Functions). The generating function satis-
fies,
GV ) =E[NWN=1)...(N—k+1)2V"*] for |z| <1

and

G (1) znglc:(k) (2)=E[N(N—-1)...(N—k+1)],

where it is possible that one and hence both sides of this equation are infinite.

In particular, G' (1) := lim,11 G’ (2) = EN and if EN? < oo,
Var (N) = G" (1) + G’ (1) — [G' (1)) (7.16)
Proof. By Corollary [7.30] for |2| < 1,
G (2) = iP(N:n) mn=1)...(n—k+1)2""*
n=0
=E[N(N-1)...(N —k+1)2NF]. (7.17)
Since, for z € (0,1),

0OSN(N—-1)...(N—=k+1D2N"* T NWN-1)...(N-k+1) as 2 ] 1,
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we may apply the MCT to pass to the limit as z T 1 in Eq. (7.17) to find,

e (1):11%1110(’“) (2) =E[N(N—=1)...(N —k+1)].

Exercise 7.4 (Some Discrete Distributions). Let p € (0,1] and A > 0. In
the four parts below, the distribution of N will be described. You should work

out the generating function, G (2), in each case and use it to verify the given
formulas for EN and Var (N).

1. Bernoulli(p) : P(N=1) = p and P(N =0) = 1 — p. You should find
EN = p and Var (N) = p — p°.

2. Binomial(n,p) : P(N=k) = (Z)pk (1 —p)n_k for ¥ = 0,1,...,n.
(P (N = k) is the probability of k successes in a sequence of n indepen-
dent yes/no experiments with probability of success being p.) You should
find EN = np and Var (N) =n (p—pQ) .

3. Geometric(p) : P(N=4k) = p(1—p)* ! for k € N. (P(N =k) is the
probability that the k'™ — trial is the first time of success out a sequence
of independent trials with probability of success being p.) You should find
EN =1/p and Var (N) = 1p_2p.

4. Poisson(\) : P(N =k) = ),‘C—TE_A for all k € Ny. (We will come back to
the interpretation of this distribution later.) You should find EN = A =
Var (N).

7.3 Integration on R

Notation 7.37 If m is Lebesgue measure on Bg, f is a mnon-negative Borel
measurable function and a < b with a,b € R, we will often write f; f(z)dz or

[? fdm for Jasyrz fm.

Ezample 7.38. Suppose —co < a < b < 00, f € C([a,b],R) and m be Lebesgue
measure on R. Given a partition,

T={a=ay<ay <--<a,=>b},

let
mesh(7) = max{|a; —a;_1|:j=1,...,n}
and
n—1
f‘ﬂ' (.’E) = Z f (al) 1(al7al+1](x)'
=0
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Then
b n—1 n—1
[ fedm= 3 flaym (o)) = Y F @) (o - )
@ 1=0 1=0

is a Riemann sum. Therefore if {m;},-, is a sequence of partitions with
limg_, oo mesh () = 0, we know that

hm le'k dm = / f(x (7.18)

where the latter integral is the Riemann integral. Using the (uniform) continuity
of f on [a,b], it easily follows that limy_,o0 fr, () = f () and that | f, (x)] <
g(x) := M1(gy (z) for all z € (a,b] where M := maxgeq 4 |f (7)] < 0o. Since
Jg gdm = M (b— a) < co, we may apply D.C.T. to conclude,

Jlim / Fr dm = / lim fr, dm = / f dm.

This equation with Eq. (7.18)) shows

/abfdm:/abf(a:)dx

whenever f € C([a,b],R), i.e. the Lebesgue and the Riemann integral agree
on continuous functions. See Theorem below for a more general statement
along these lines.

Theorem 7.39 (The Fundamental Theorem of Calculus) Suppose
—00 < a<b< oo, feC((ab),RNL ((a,b),m) and F(x) := [T f(y
Then

1. F € C(la,b],R) N C((a,b),R).

2. F'(z) = f(x) for all x € (a,b).

3. If G € C([a, b] )ﬂ C'((a,b),R) is an anti-derivative of f on (a,b) (i.e.
f=Glay) th

b
/ f(@)dm(x) = G(b) — G(a).

Proof. Since F f]R ]-(a :c) )f(y)dm(y)v limg—, . ]-(a,w) (y) = 1(a,z)(y) for

—ae. yand |14 (y )f( )| < 1w () |f(y)] is an L' — function, it follows
from the dominated convergence Theorem that F' is continuous on [a, b].
Simple manipulations show,
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S ) = S dmiy)] it h > 0
S U w) = f(@))dm(y)] £k <0

LA - @) dm(y) it h >0
|h| fx+h ‘ (y

\/\/

F(@) dm(y) it h <0
<sup{|f(y) — f(z)| :y € [z — |h], 2 + [R[]}

and the latter expression, by the continuity of f, goes to zero as h — 0 . This
shows F' = f on (a,b).
For the converse direction, we have by assumption that G'(z) = F'(x) for
€ (a,b). Therefore by the mean value theorem, F' — G = C for some constant
C. Hence

b
/f@wmm=F@:F@—Fw
= (G(b) 4+ C) — (G(a) + C) = G(b) — G(a).

]
We can use the above results to integrate some non-Riemann integrable
functions:

Ezample 7.40. For all \ > 0,

e 1
/ e Mdm(x) = A1 and / ——dm(z) =m.
0 R 1+

The proof of these identities are similar. By the monotone convergence theorem,
Example [7.38 and the fundamental theorem of calculus for Riemann integrals
(or Theorem below),

e} N N
/ e Mdm(x) = lim e dm(x) = lim e~ Mdg
0 N—oo Jo N—oo Jg

1
= Jim e =

and

/71d() im [ dm) = m [ 4
= 1m = 1m
r 1+ 22 )= Ny 1+22 )= Ny 1+22 v

= ngnoo [tan™'(N) — tan™ ' (—N)] = .

Let us also consider the functions z 7P,
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1 e 1
/ — dm(z) = lim Ly (x)ﬁdm(x)

(0’1] xP n—oo Jq
1 —p+1 1
= lim —dx = lim z
n—oo % xP n—oo 1—p l/n
1 .
oo ifp>1
If p=1 we find

1 "1
/ — dm(z) = lim —dac = lim In(z )H/n =00

(071] ,Ip n—oeo z n—oeo
Exercise 7.5. Show
> 1 c ifp<1
/1 pime )_{pllifp>1'

Ezample 7.41 (Integration of Power Series). Suppose R > 0 and {a,},_, is a
sequence of complex numbers such that Y7 |a,|r™ < oo for all r € (0, R).
Then

/8 [ee]
[ (S amte) = Yo [ sante) = 3 P
@ n=0
for all -R < a < 8 < R. Indeed this follows from Corollary since

;O/a |an| 2™ dm(z) < Z (/ |an| z]™ dm(z) +/0 |ay| |z dm@))

n+1

18" + o S n
<Z|an|—<2r2|an|r < o0
n=

ﬁn—&-l n+1

where r = max(|4], |a|).

Ezxample 7.42. Let {r,}52, be an enumeration of the points in Q N [0,1] and
define

oo
1; \/|xfrn|

with the convention that
1

Ve =yl

=5ifx=nr,.
Since, By Theorem [7:39]
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/1 Ly / ! d+/” L g

—dr = —dzx —dx

0 ,/\x_rn| rn VI —Tp o VIn—2
:2\/@”«”—2\/@8"=2(v1—7"n—m)

<4,

we find

d:r<22 "4 =4 < oco.

d = 2 "
(0,1] fwydmz) ; /0 1] \/m

In particular, m(f = co) = 0, i.e. that f < oo for almost every z € [0,1] and
this implies that

< oo for a.e. z € [0, 1].

>

This result is somewhat surprising since the singularities of the summands form
a dense subset of [0, 1].

Ezxample 7.43. The following limit holds,

n

. T\"

nh_)n;O ; (1 - E) dm(z) = 1. (7.19)
DCT Proof. To verify this, let f,(z) := (177) Ljo,n)(z). Then
lim, oo fr(x) = e * for all x > 0. Moreover by simple calculug’| (or

taking logarithms of Eq. (??) below) we have
In(l—2)<—zforx<l.

Therefore, for x < n, we have

(1 B {)n _ enln(l—%) < e—n(%) — @
n

from which it follows that
0 < fu(x) <e® forall z > 0.

From Example we know

/ e Tdm(z) =1 < oo,
0

2 Indeed, In (1 — ) is concave down and y = —x is the tangent line to y = In (1 — )
at x = 0.
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so that e is an integrable function on [0,00). Hence by the dominated con-
vergence theorem,

n

lim ; (1—£) dm(z) = lim frn(x)dm(z)

n— o0 n n—oo 0

= /000 lim f,(x)dm(z) = /000 e "dm(z) = 1.

n—oo

MCT Proof. The limit in Eq. (7.19) may also be computed using the
monotone convergence theorem. To do this we must show that n — f, (z) is
increasing in n for each x and for this it suffices to consider n > z. But for
n>uwx,

where, for 0 <y < 1,

Since h (0) = 0 and

+ +
-y 1-y (1-y)
it follows that A > 0. Thus we have shown, f, (z) 1 e~ as n — oo as claimed.

Ezxample 7.44 (Jordan’s Lemma). In this example, let us consider the limit;

™ 0 .
lim cos <sin ) e~ sin@) gp.
0 n

n—oo

Let 0
fn (0) := 1(0,x) (0) cos (sin n) e~ sin(0),
Then
|fnl < 1(0,m € L' (M)
and

Therefore by the D.C.T.,

n—oo

lim cos (Sin 6) e s gp = / Lzy (0)dm (8) = m ({7}) = 0.
0 n R
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Ezample 7.45. Recall from Example that
A= / e~ dm(z) for all A > 0.
[0,00)
Let € > 0. For A > 2¢ > 0 and n € N there exists Cp,(g) < oo such that
0< _4 ' e =g M < Ole)e 50,
S{—m <

Using this fact, Corollary [7.29] and induction gives

d\" d\"
-1 _ ( _ 2 -1 _ T —Az
nI\ ( d)\> A /[0700) ( d)\) e "*dm(x)

= / z"e A dm(x).
[0,00)

nl = )\"/ z"e N dm(x). (7.20)
[0,00)

That is

Remark 7.46. Corollary [7.:29] may be generalized by allowing the hypothesis to
hold for z € X \ E where E € B is a fixed null set, i.e. E must be independent
of t. Consider what happens if we formally apply Corollary to g(t) =

fooo ly<idm(z),

/ 8t x<tdm )

The last integral is zero since %cht = 0 unless ¢ = x in which case it is not
defined. On the other hand g(t) = ¢ so that ¢(t) = 1. (The reader should decide
which hypothesis of Corollary has been violated in this example.)

d oo
i) =2 [ 1lecd
g(t) dt/o <tdm(x

Exercise 7.6 (Folland 2.28 on p. 60.). Compute the following limits and
justify your calculations:

1. lim fo sin() dx.

n—oo (a+3% )n

1 1+nw
2. nlLrI;o 0 () dzr

oo nsin(z/n)
3. nhi& f 2422y dx
4. For all a € R compute,

(oo}
f(a):= lim n(1+n?z?)"tdz.
n—oo
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Exercise 7.7 (Integration by Parts). Suppose that f,g : R — R are two
continuously differentiable functions such that f’g, f¢’, and fg are all Lebesgue
integrable functions on R. Prove the following integration by parts formula;

/ F (@) - g () de = / f (@) () de. (7.21)
R R

Similarly show that if Suppose that f, g : [0,00)— [0,00) are two continuously
differentiable functions such that f’g, fg’, and fg are all Lebesgue integrable
functions on [0, c0), then

/0 T @) g (@) de = —F(0)g (0) - / T @) o (@) de. (7.22)

Outline: 1. First notice that Eq. holds if f (z) = 0 for |z| > N for
some N < oo by undergraduate calculus.

2. Let ¢ : R —[0,1] be a continuously differentiable function such that
P (x) =11if || <1 and ¢ (z) = 0if |x| > 2. For any € > 0 let ¢.(x) = ¢(ex)
Write out the identity in Eq. with f (x) being replaced by f (z) ¢e ().

3. Now use the dominated convergence theorem to pass to the limit ase | 0
in the identity you found in step 2.

4. A similar outline works to prove Eq. .

Solution to Exercise (7.7)). If f has compact support in [—N, N] for some
N < oo, then by undergraduate integration by parts,

4f’(x)-g(w)dx=[zf’(x) g () do
—f(w)g(w)NN—/_]:f(ﬂf) ¢
[ e d @ [ 1@y @

Similarly if f has compact support in [0, 00), then

(%) N
/0 f<x>~g<x>dx:/0 f (@) g (@) de
N
z) Y — )¢ (x)dx
)13 /Of() J (@) d
N
:—f(O)g(O)—/O f(@) g
—/ f(@) ¢ (z)da
0
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For general f we may apply this identity with f (z) replaced by ¥, (z) f (z) to
learn,

|5 @-a@v@dot [ f@)g@ @) de =~ [ 0@ ] @) @)d

(7.23)
Since 9. (x) — 1 boundedly and |[¢L (x)| = ¢ (ex)| < Ce, we may use the

DCT to conclude,
tim [ /(@) g(0) - @)do = [ 1)
lgfg/f 2)v. (@) do = [ 1(@)-
2) ! (a) do| < Cc - /If

Therefore passing to the limit as ¢ | 0 in Eq. (7.23)) completes the proof of Eq.

(7.21). Equation (7.22) is proved in the same way.

Definition 7.47 (Gamma Function). The Gamma function, I' : R, —
R, is defined by

x)dz, and

(z)|de — 0 ase | 0.

I'(z) = / u” e du (7.24)
0
(The reader should check that I'(z) < oo for all x > 0.)
Here are some of the more basic properties of this function.

Ezample 7.48 (I' — function properties). Let I" be the gamma function, then;

1. (1) 1 as is easily verified.
2. I'(x+ 1) = «I'(z) for all z > 0 as follows by integration by parts;

° d *° d
I'(x+1) z/ eyt 2 :/ u” (— e“) du
0 U 0 du
:x/ u e du =z I'(x).
0
In particular, it follows from items 1. and 2. and induction that

I'(n+1)=n!for alln € N. (7.25)

(Equation as also proved in Eq. (7.20)).)
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3. I'(1/2) = \/m. This last assertion is a bit trickier. One proof is to make use
of the fact (proved below in Lemma [9.27]) that

/ e~ dr = \/j for all @ > 0. (7.26)

Taking a = 1 and making the change of variables, © = r? below implies,
o0
0

V= / e dr = 2/ w1 2e ™ du = I'(1/2).

r(1/2) = 2/000 e dr = /_Oo e " dr
=nL(1) = V. )

4. A simple induction argument using items 2. and 3. now shows that

r(neg) =

where (—1)!l:=1and 2n—1)!!I=(2n—-1)(2n—3)...3-1forn € N.

7.4 Densities and Change of Variables Theorems

Exercise 7.8. Let (X, M, 1) be a measure space and p : X — [0,00] be a
measurable function. For A € M, set v(A) := [, pdp.

1. Show v : M — [0, 0] is a measure.
2. Let f: X — [0, 00] be a measurable function, show

/X fdv = /X fodp. (7.27)

Hint: first prove the relationship for characteristic functions, then for sim-
ple functions, and then for general positive measurable functions.

3. Show that a measurable function f : X — C is in L'(v) iff |f|p € L' (u)
and if f € L'(v) then Eq. still holds.

Solution to Exercise ([7.8)). The fact that v is a measure follows easily from
Corollary Clearly E holds when f = 14 by definition of v. It then
holds for positive simple functions, f, by linearity. Finally for general f € LT,
choose simple functions, ¢,,, such that 0 < ¢, T f. Then using MCT twice we
find
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/de: lim ppdv = lim / wnpdu:/ lim gon,od,u:/ fpdu.
X n— 00 X n—oo X X’I’L—>OO X

By what we have just proved, for all f: X — C we have

/X\fldv=/X|f|pd#

so that f € L' (n) iff |f|p € LY(p). If f € L' (u) and f is real,

[ [ eav— [ pav= [ fooau= [ ropd

:/X[fw*f—p]du:/Xfﬂdu-

The complex case easily follows from this identity.

Notation 7.49 It is customary to informally describe v defined in Ezercise[7.8
by writing dv = pdp.

Exercise 7.9. Let (X, M, 1) be a measure space, (Y, F) be a measurable space
and f: X — Y be a measurable map. Recall that v = f.u : F — [0, 00| defined
by v(A) := u(f~1(A)) for all A € F is a measure on F.

/Ygdv=/x(90f) du (7.28)

for all measurable functions g : Y — [0, oo]. Hint: see the hint from Exercise
(.3l

2. Show a measurable function g : ¥ — C is in L'(v) iff go f € L'(u) and
that Eq. (7.28) holds for all g € L!(v).

Remark 7.50. If X is a random variable on a probability space, ({2, B, P), and
F(z):=P(X <x). Then

1. Show

E[f (X)) = / f (2) dF (2) (7.20)

where dF () is shorthand for dup (x) and pp is the unique probability measure
on (R, Bg) such that pup ((—oo,z]) = F (x) for all z € R. Moreover if F: R —
[0, 1] happens to be C''-function, then

dup () = F' (z)dm (z) (7.30)

and Eq. (7.29) may be written as
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E[f (X)) = / f (@) F' (2) dm (x) (7.31)

To verify Eq. (7.30]) it suffices to observe, by the fundamental theorem of cal-
culus, that

b
pur ((a,b]) = F (b) — F (a) :/ F' (z)dz :/( ) F'dm.

From this equation we may deduce that pup (A) = [, F'dm for all A € Bg.

Exercise 7.10. Let F' : R — R be a C'-function such that F’(z) > 0 for all
x € R and lim,_, +o F(2) = +oo. (Notice that F is strictly increasing so that
F~1:R — R exists and moreover, by the inverse function theorem that F~1 is
a C! — function.) Let m be Lebesgue measure on Bg and

-1

v(A) =m(F(A)) =m((F~') " (4)) = (F7'm) (4)

for all A € Bg. Show dv = F'dm. Use this result to prove the change of variable
formula,

/hoF - Fldm = / hdm (7.32)
R R

which is valid for all Borel measurable functions h : R — [0, c0].

Hint: Start by showing dv = F’'dm on sets of the form A = (a,b] with
a,b € R and a < b. Then use the uniqueness assertions in Exercise to
conclude dv = F'dm on all of Bg. To prove Eq. apply Exercise with
g=hoF and f=FL

Solution to Exercise (7.10). Let du = F'dm and A = (a,b], then
v((a,b]) =m(F((a,b])) = m((F(a), F(b)]) = F(b) — F(a)

while

b
wu((a, b)) = /( ) F'dm = / F'(x)dz = F(b) — F(a).

It follows that both 4 = v = up — where pp is the measure described in
Theorem m By Exercise with g =ho F and f = F~!, we find

/hoF-F’dm:/hoquz/hoFd(F,:lm):/(hoF)oF—ldm
R R R R

= / hdm.
R

This result is also valid for all h € L (m).
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7.5 Some Common Continuous Distributions

Ezxample 7.51 (Uniform Distribution). Suppose that X has the uniform distri-
bution in [0,b] for some b € (0,00) , i.e. X, P = ; -m on [0,b]. More explicitly,

1 b
E[f(X)] = 3 /o f (x) dz for all bounded measurable f.

The moment generating function for X is;

M (t)—l/b rgr = L (e 1)
x(t) =+ ; ede =+ (e
=1 el o= b7
= —_— (bt) = tn.
On the other hand (see Proposition [7.32)),
X in
Mx (1) = Y —EX".
n=0
Thus it follows that 5
EX" = .
n+1
Of course this may be calculated directly just as easily,
1 b 1 b’n,
EX”Z* nd _ n+1b: )
b/ox o b(n+1)x T 41

Definition 7.52. A random wvariable T > 0 is said to be exponential with
parameter \ € [0,00) provided, P (T >t) = e~ for allt > 0. We will write

TLE (A\) for short.

If A > 0, we have
P(T>t)=e M= / e dr
t

from which it follows that P (T € (t,t + dt)) = A;>pe~*dt. Applying Corollary
.29| repeatedly implies,

d d
ET = 7 AT = —T AT - / t= !

and more generally that
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3] koo k
ET" = / e Adr = A L / e = (L) At Z gk,
0 ) Jo )

(7.33)
In particular we see that

Var (T) =202 = X\2 =172 (7.34)

Alternatively we may compute the moment generating function for 7T,

My (a):=E [e“T] = / e Ae N dr
0
e A 1

= “TXe A dr = = 7.35
/0 @ e [ P g (7.35)

which is valid for a < A. On the other hand (see Proposition [7.32)), we know
that

a - an mn
E [e*T] :ZEE[T ] for |a| < A.
n=0
Comparing this with Eq. (7.35)) again shows that Eq. (7.33) is valid.

Here is yet another way to understand and generalize Eq. (7.35]). We simply
make the change of variables, u = A7 in the integral in Eq. (7.33]) to learn,

(o)
ET* = )\‘k/ e dr = AP (k+1).
0
This last equation is valid for all k¥ € (—1,00) — in particular k£ need not be an
integer.

Theorem 7.53 (Memoryless property). A random variable, T € (0, 0] has
an exponential distribution iff it satisfies the memoryless property:

P(T>s+tlT'>s)=P (T >t) foralls,t>0,

where as usual, P (A|B) := P(ANB) /P (B) when p(B) > 0. (Note that T <
E (0) means that P(T >t) = €% =1 for all t > 0 and therefore that T = oo
a.s.)

Proof. (The following proof is taken from [33].) Suppose first that T' 1E (N
for some A > 0. Then
P(T>s+t) et

P(T>s+tT>s)= P> ) =%

—eM=P(T>1).
For the converse, let g (t) := P (T > t), then by assumption,
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g(t+s)

e =P(T>s+tT>s)=P(T>t)=g(t)

whenever g (s) # 0 and g (¢) is a decreasing function. Therefore if g (s) = 0 for
some s > 0 then g (t) = 0 for all £ > s. Thus it follows that

gt+s)=g(t)g(s) forall s,t>0.

Since T' > 0, we know that g(1/n) = P(T > 1/n) > 0 for some n and
therefore, g (1) = g (1/n)" > 0 and we may write g (1) = e~ for some 0 < \ <
0.

Observe for p,q € N, g(p/q) = g(1/q)" and taking p = ¢ then shows,
e =g (1) = g(1/q)?. Therefore, g (p/q) = e~ /9 so that g (t) = e~ for all
teQy =QnNR,. Given r,s € Q4 and ¢t € R such that » <t < s we have,
since g is decreasing, that

e N =g(r)=g(t)>g(s)=e.

Hence letting s Tt and 7 | t in the above equations shows that g (t) = e=** for
all t € Ry and therefore T LE (A). |

Exercise 7.11 (Gamma Distributions). Let X be a positive random vari-
able. For k,6 > 0, we say that X iGaumrna(k, 0) if

(X P) (dzx) = f (z;k,0) dz for z > 0,

where
—z/0

fx;k,0) = wk_lgip(k)

Find the moment generating function (see Definition [7.31), Mx (t) = E [eX]
for t < ~!. Differentiate your result in ¢ to show

for x > 0, and k,0 > 0.

EX™ =k(k+1)...(k+m—1)0™ for all m € Ny.

In particular, E [X] = kf and Var (X) = k6%. (Notice that when k = 1 and
0=XA"1X<LEMN)

7.5.1 Normal (Gaussian) Random Variables

Definition 7.54 (Normal / Gaussian Random Variables). A random
variable, Y, is normal with mean ;1 standard deviation o iff

1

P(YEB)ZW

/ ¢ 22w dy for all B € Bg. (7.36)
B
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We will abbreviate this by writing Y iN (,u,crz) . When =0 and 0® = 1 we
will simply write N for N (0,1) and if Y 4 N, we will say Y is a standard
normal random variable.

Observe that Eq. (7.36]) is equivalent to writing

E[f (V)] y) e mT @1 gy

eIl

for all bounded measurable functions, f : R — R. Also observe that Y 4

N (u, 02) is equivalent to Y’ 25N +p. Indeed, by making the change of variable,
y = ox + p, we find

E[f (oN + p)] = %/f(awru) e 2% d

2 d 1 1 2
sz (y=—n)* Y _ / sz (=) g,
\/ 27 / Iy o V2ro? Jr fy)e Y

—1/2

Lastly the constant, (271'02) is chosen so that

1 1 2 1 1,2
— 5 (y—n) _ -3 _
e d_—/ezyd_L
V2no? /]R Y Vor Jr 4
see Example [7.48 and Lemma [9.27]

Exercise 7.12. Suppose that X N (0,1) and f : R — R is a C! — function
such that X f (X), f'(X) and f (X) are all integrable random variables. Show

1.2

ELS (0=~ [ 1) e #Pde = —— [ F e+ =B [ ().

Ezample 7.55. Suppose that X 4 N (0,1) and define oy, := E [X?*] for all
k € Ny. By Exercise [7.12]

a1 =E [XPF LX) = (2k + 1) o, with ag = 1.
Hence it follows that
ar=qy=1, as =301 =3, ag=5-3
and by a simple induction argument,

EX?* = oy, = (2k — 1)!!, (7.37)
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where (—1)!! := 0. Actually we can use the I" — function to say more. Namely
for any 8 > —1,

1 2 [ 1
]E|X|ﬁ = 7/ |CE|'8 e 3 dy = 1/ 7/ 2Pem2 dg.
Vor Jr ™ Jo

Now make the change of variables, y = 2%/2 (i.e. z = /2y and dz = %yil/zdy)
to learn,

1 e .
E|X|" = ﬁ/o (Qy)ﬁ/ze vy=H2dy

2&/2 B+1)/2=y,, =14y — QWF p+1 .
=/ | Yy ey dy = NG 5

Exercise 7.13. Suppose that X 4N (0,1) and A € R. Show
fA) :=E[e*] = exp (—1?/2). (7.38)

Hint: Use Corollary [7.29) - to show, f’(A\) = E [Xe**] and then use Exercise
- to see that f’ () satisfies a simple ordinary differential equation.

Solution to Exercise (|7.13]). Using Corollary and Exercise

; d
/ A — ]E X iIAX E l)\X
) =i [ e ] i dX
=i-(iIA)E [e**] = =Af (\) with f(0) =
Solving for the unique solution of this differential equation gives Eq. ([7.38]).

Exercise 7.14. Suppose that X < N(0,1) and ¢t € R. Show E [e/X] =
exp (t2 / 2). (You could follow the hint in Exercise or you could use a
completion of the squares argument along with the translation invariance of
Lebesgue measure.)

Exercise 7.15. Use Exercise [7.14] and Proposition to give another proof
that EX2F = (2k — 1)!! when X < N (0,1).

Exercise 7.16. Let X £ N (0,1) and @ € R, find p: Ry — R := (0, 00) such
that

E[f (1X]")] = A f (@) p(z)de

for all continuous functions, f : Ry — R with compact support in R;.
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94 7 Integration Theory

Lemma 7.56 (Gaussian tail estimates). Suppose that X is a standard nor-
mal random variable, i.e.

P(XeA)= \/% /A e " 2y for all A € B,

then for all x > 0,

1 X 2 1 2 1 2
P(X>z)<min( = — ——e* /2 e ® /2> < e ® /2, 7.39
(X 2a)< (2 V2T V2w 2 (7.39)

Moreover (see (35, Lemma 2.5]),

T T 1 2
P(X>z)>max(1- , e ” /2> 7.40
X za)2 ( Vor a2+ 14/2r (7.40)

which combined with Eq. proves Mill’s ratio (see [15]]);
P(X >
lim X=z) _

1 —z2/2
T—00 ——
\/27r:1:e

(7.41)

Proof. See Figure where; the green curve is the plot of P (X > z), the
black is the plot of

1 1 1
min ( — e~z /2 e_IQ/Q) ,

2 onx "Vorx

the red is the plot of %6_352/27 and the blue is the plot of

<1 x x 1 e /2)

max [ = — , e .

2 or 2?2+ 1.2r

The formal proof of these estimates for the reader who is not convinced by

Figure is given below.
We begin by observing that

1 e 1 >
P(XZx)zi/ €_y2/2dyﬁﬁ/ %e_yz/zdy
x

R N GRS BN Gy

<
T Vorx = Vorx

On the other hand we have,

P(X >x)= / eV 2y (7.42)

0
1 1 2
—x/Zd < - —;c/2.
/ € D) Tﬂe T

IN
l\D\»—l w\»—l

@\H@\H
3 3

o
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01257

] 1 2 3 4

Fig. 7.1. Plots of P (X > z) and its estimates.

The last two equations give the first equality in Eq. (7.39)). To prove the second

equality observe that v/27m > 2, so \/%%e_”zp < %e‘” /2if gz >1.Forxz <1

we must show,
T 1
e z2/2 < 26 z2/2

N | =

2—\/%x§ 1 for 0 < x < 1. Since f is convex

(f" (@) = (a2 +1) e /2 > o) L F(0) =1 and f(1) =085 < 1, it follows that
f <1on[0,1]. This proves the second inequality in Eq. (7.39).
It follows from Eq. (7.42)) that

1 1 r 2

51 L/ lay = Lo L
-2 \/27‘(’0 y_2 \/27‘(‘

So to finish the proof of Eq. (7.40) we must show,

or equivalently that f (z) :=

z for all x > 0.

1 2
— —x°/2 2
x xe —(1+z5)P(X >z
f@)= o= (1+3%) P(X 22
= L {xe”ﬁ/2 — (1 + xz) /00 ey2/2dy} <0 forall 0 <z < .
V2T z o B
This follows by observing that f (0) = —1/2 < 0, lim1o f () = 0 and
1 2 2
"a)=——=le®/?(1—-2®) —22P (X >2)+ (1 +2%) e /?
f@) = o= [ (1= a?) 2P (X 2 0) 4 (140%) e/
1 2
=2 e P2 2P (X > >>0,
< or X2y =
where the last inequality is a consequence Eq. (7.39). ]
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7.6 Comparison of the Lebesgue and the Riemann
Integral*®

For the rest of this chapter, let —0o < a < b < 0o and f : [a,] — R be a
bounded function. A partition of [a,b] is a finite subset © C [a,b] containing
{a,b}. To each partition

r={a=ty<t1 <---<t,=0b} (7.43)

of [a, b] let
mesh(m) :=max{|t; —t;—1|:j=1,...,n},

M; =sup{f(z):t; <z <t;_1}, m; =
Gr=f(@) @y + > Mile, e, 9r = f(a)
1

Sef =Y Mj(t;

Notice that

1nf{f(a:) : tj S X S tjfl}
Ly + Y _mjl
1

tj—1) and s f = ij ti—1).

(tj—1,t;) and

b b
Srf :/ Grdm and s f :/ grdm.

The upper and lower Riemann integrals are defined respectively by
) a
/ f(z)dz = inf S; f and / f(x)dx = sup sgf.
a g Jp “

Definition 7.57. The function f is Riemann integrable iff f;f = fbf eR

and which case the Riemann integral f: f is defined to be the common value:

/ab f(z)dx = /abf(x)dw = /abf(x)dm

The proof of the following Lemma is left to the reader as Exercise
Lemma 7.58. If 7’ and m are two partitions of [a,b] and 7 C 7' then

G‘n’ZGﬂ’ ZfZgn’ Zgﬂ and
SwaSn/fZSw/fZSwf-

There exists an increasing sequence of partitions {my}r, such that mesh(my) |
0 and

Smcfl/abf andsﬂkf]‘/bf as k — oco.
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If we let
G:= klim G, and g := klim G (7.44)
then by the dominated convergence theorem,
b
/ gdm = lim Gm, = lim s, f :/ fz)dz (7.45)
[a,0] F=00 Jlab) koo Ja_
and
b
Gdm = lim Gr, = hm Senf :/ f(z)dx. (7.46)
[a,b] k=00 Jla,p] a

Notation 7.59 For x € [a,b], let

H(z) = limsup f(y) := lim sup{f(y) : |y — 2| <e, y € [a,0]} and

y—x

h(z) = liminf f(y) := hfrol inf {f(y):|ly—z|<e, y€la,bl}.

Yy—T
Lemma 7.60. The functions H,h : [a,b] — R satisfy:
W) < f(x) <

at x.
2. If {m}rey is any increasing sequence of partitions such that mesh(my) | 0
and G and g are defined as in Eq. , then

G(x)=H(z) > f(x) > h(z) =g(x) Va¢nr:=Up Tk (7.47)

(Note m is a countable set.)
8. H and h are Borel measurable.

H(z) for all z € [a,b] and h(x) = H(x) iff f is continuous

Proof. Let Gy, := G, | G and g :=gn, T g
1. Tt is clear that h(z) < f(z) < H(z) for all z and H(z) = h(z) iff lim f(y)
nyE
exists and is equal to f(z). That is H(x) = h(z) iff f is continuous at x.
2. For z ¢ m,
Gi(x) > H(z) = f(x) = h(z) = gr(2) V k
and letting £ — oo in this equation implies
Glr) > H(z) > f(z) > h(z) > g

Moreover, given ¢ > 0 and = ¢ T,

sup{f(y) : ly — [ <&, y € [a,b]} > Gi(x)

(x)Vxé¢m. (7.48)
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for all k large enough, since eventually G () is the supremum of f(y) over
some interval contained in [z — €,z 4 ¢]. Again letting ¥ — oo implies

sup  f(y) > G(z) and therefore, that
ly—z|<e

H(z) = limsup f(y) = G(x)

Yy—r

for all 2 ¢ m. Combining this equation with Eq. (7.48)) then implies H(z) =
G(z) if x ¢ m. A similar argument shows that h(x) = g(z) if x ¢ 7 and

hence Eq. ((7.47) is proved.

3. The functions G and g are limits of measurable functions and hence mea-
surable. Since H = G and h = g except possibly on the countable set T,
both H and h are also Borel measurable. (You justify this statement.)

Theorem 7.61. Let f : [a,b] — R be a bounded function. Then

b b
/ f 2/ Hdm and/ f= hdm (7.49)
a [a,b] Ja_ [a,b]

and the following statements are equivalent:

1. H(z) = h(x) for m -a.e. z,
2. the set
E :={z €a,b] : f is discontinuous at x}

is an m — null set.
3. f is Riemann integrable.

If f is Riemann integrable then f is Lebesgue measumblfﬂ ie. fis L/B -
measurable where L is the Lebesque o — algebra and B is the Borel o — algebra
on [a,b]. Moreover if we let m denote the completion of m, then

b
/ Hdm = / flx)dx = fdm = hdm. (7.50)
[a,b] a [a,b] [a,b]

Proof. Let {m},—, be an increasing sequence of partitions of [a,b] as de-
scribed in Lemma and let G and g be defined as in Lemma Since

m(n) =0, H =G a.e., Eq. (7.49) is a consequence of Egs. (7.45)) and (7.46]).
From Eq. (7.49)), f is Riemann integrable iff

/ Hdm = hdm
la,b] [a,b]

3 f need not be Borel measurable.
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and because h < f < H this happens iff h(x) = H(x) for m - a.e. x. Since
E = {z: H(z) # h(x)}, this last condition is equivalent to E being a m — null
set. In light of these results and Eq. (7.47), the remaining assertions including

Eq. (7.50) are now consequences of Lemma ]

Notation 7.62 In view of this theorem we will often write fab f(x)dz for
[? fdm.

7.7 Measurability on Complete Measure Spaces™

In this subsection we will discuss a couple of measurability results concerning
completions of measure spaces.

Proposition 7.63. Suppose that (X, B, p) is a complete measure spaceﬂ and
f: X — R is measurable.

1.If g : X — R is a function such that f(x) = g(x) for p — a.e. x, then g is
measurable.

2.1If f, + X — R are measurable and f : X — R is a function such that
lim, .o fn = f, u - a.e., then f is measurable as well.

Proof. 1. Let £ = {x : f(x) # g(x)} which is assumed to be in B and
w(E) =0. Then g = 1gcf + 1gg since f = g on E°. Now lgcf is measurable
so g will be measurable if we show 1gg¢g is measurable. For this consider,

1 . ECU(lEg)_l(A\{O}) if0e A
(1eg)~ (4) = {(1E9)_1(A) if0¢ A (7.51)
Since (1gg)~Y(B) C E if 0 ¢ B and p(E) = 0, it follow by completeness
of B that (1gg) ' (B) € B if 0 ¢ B. Therefore Eq. (7.51)) shows that 1gzg is
measurable. 2. Let F = {z : lim f,(x) # f(z)} by assumption E € B and

w(E) = 0. Since g := 1gf = limy, 00 Lge frn, ¢ is measurable. Because f = g
on E° and pu(F) =0, f = g a.e. so by part 1. f is also measurable. ]

The above results are in general false if (X, B, 1) is not complete. For exam-
ple, let X = {0,1,2}, B = {{0}, {1,2}, X, ¢} and p = dp. Take g(0) =0, g(1) =
1, g(2) = 2, then g = 0 a.e. yet g is not measurable.

Lemma 7.64. Suppose that (X, M, 1) is a measure space and M is the com-
pletion of M relative to p and fi is the extension of p to M. Then a function
f: X — Ris (M,B=Bgr) — measurable iff there exists a function g : X — R

4 Recall this means that if N C X is a set such that N ¢ A € M and p(A) = 0,
then NV € M as well.
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that is (M, B) — measurable such E = {z : f(z) # g(x)} € M and i (E) = 0,
i.e. f(z) = g(x) for i — a.e. x. Moreover for such a pair f and g, f € L*(ji) iff

g € L' (u) and in which case
/ fdp = / gdp.
X X

Proof. Suppose first that such a function g exists so that i(£) = 0. Since
g is also (M, B) — measurable, we see from Proposition that fis (M, B) —
measurable. Conversely if f is (M, B) — measurable, by considering f+ we may

assume that f > 0. Choose (M, B) — measurable simple function ¢,, > 0 such
that ¢, T f as n — co. Writing

Pn = Z aklAk,

with Aj, € M, we may choose By, € M such that Bj, C Ay, and ji(A \ By) = 0.

Letting
@n = Z alek

we have produced a (M, B) — measurable simple function @, > 0 such that
E, = {pn # &n} has zero i — measure. Since i (U, E,) < > fi(Ey), there
exists F' € M such that U, E, C F and p(F) = 0. It now follows that

lp-@n=1p-@op Tg:=1pf asn — oo.

This shows that g = 1pf is (M, B) — measurable and that {f # g} C F has i
— measure zero. Since f = g, i — a.e., [ fdfi = [ gdfi so to prove Eq. (7.52)

it suffices to prove
/ gdp = / gdp. (7.52)
X X

Because i = p on M, Eq. is easily verified for non-negative M — mea-
surable simple functions. Then by the monotone convergence theorem and
the approximation Theorem [6.39] it holds for all M — measurable functions
g : X — [0,00]. The rest of the assertions follow in the standard way by con-
sidering (Reg), and (Img), . ]

7.8 More Exercises

Exercise 7.17. Let 1 be a measure on an algebra A C 2%, then u(A)+pu(B) =
w(AUB)+ u(ANB) for all A, B € A.

Exercise 7.18 (From problem 12 on p. 27 of Folland.). Let (X, M, )
be a finite measure space and for A,B € M let p(A,B) = pu(AAB) where
AAB = (A\ B)U(B\ A). It is clear that p (A, B) = p(B, A). Show:
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1. p satisfies the triangle inequality:
p(A,C)<p(A,B)+p(B,C) forall A,B,C € M.

2. Define A ~ B iff uy(AAB) = 0 and notice that p (A, B) = 0 iff A ~ B. Show
“~ 7 is an equivalence relation.

3. Let M/ ~ denote M modulo the equivalence relation, ~, and let [A] :=
{B e M: B~ A}. Show that p ([A], [B]) := p (4, B) is gives a well defined
metric on M/ ~ .

4. Similarly show fi ([A]) = p (A) is a well defined function on M/ ~ and show
i:(M/~)— Ry is p — continuous.

Exercise 7.19. Suppose that p, : M — [0, 00] are measures on M for n € N.
Also suppose that p,(A) is increasing in n for all A € M. Prove that p: M —
[0, 00] defined by p(A) := limy, o0 pin(A) is also a measure.

Exercise 7.20. Now suppose that A is some index set and for each A € A, uy :
M — [0, oc] is a measure on M. Define p : M — [0, 00] by u(A) = > 5o 4 ua(A)
for each A € M. Show that p is also a measure.

Exercise 7.21. Let (X, M, ;1) be a measure space and {A4,},~; C M, show
p({A, a.a.}) <liminf u (4,)

and if g (Upm>nAm) < oo for some n, then

w({Ay, i.0.}) > limsup p (Ay) .

n—00

Exercise 7.22 (Folland 2.13 on p. 52.). Suppose that {f, }, -, is a sequence
of non-negative measurable functions such that f,, — f pointwise and

lim [ f, = /f < 0.
Then
/f: lim fn
E n—oo E

for all measurable sets & € M. The conclusion need not hold if lim,, _, » f fn =
J f. Hint: “Fatou times two.”

Exercise 7.23. Give examples of measurable functions {f,} on R such that
fn decreases to 0 uniformly yet [ f,dm = oo for all n. Also give an example
of a sequence of measurable functions {g,} on [0,1] such that g, — 0 while
J gndm =1 for all n.
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Exercise 7.24. Suppose {a,}. - C C is a summable sequence (i.e.

n=—oo

Yoot lan] < 00), then f(0) := Zfz_oo a,e’™ is a continuous function for
0 € R and
1
ap = — f( e m0dg.
2

Exercise 7.25. For any function f € L' (m), show = €
R—>f(_oo x]f(t) dm (t) is continuous in z. Also find a finite measure, p,

on Bg such that x — f(foo o) (t) du (t) is not continuous.

Exercise 7.26. Folland 2.31b and 2.31e on p. 60. (The answer in 2.13b is wrong
by a factor of —1 and the sum is on k = 1 to oo. In part (e), s should be taken
to be a. You may also freely use the Taylor series expansion

_oN-1/2 (2n — 1) - (2n
(1-2) Z o] Z4n 52" for |z] < 1.

n=0 n=0

Exercise 7.27. Prove Lemma [7.58



8

Functional Forms of the m — A Theorem

In this chapter we will develop a very useful function analogue of the m — A
theorem. The results in this section will be used often in the sequel.

Notation 8.1 Let {2 be a set and H be a subset of the bounded real valued
functions on 2. We say that H is closed under bounded convergence if; for
every sequence, {fn}ff=1 C H, satisfying:

1. there exists M < oo such that |fn, (w)| < M for allw € 2 and n € N,
2. f(w):=limp 00 fr (w) exists for all w € 2, then f € H.

A subset, M, of H is called a multiplicative system if M is closed under
finite intersections.

The following result may be found in Dellacherie 7, p. 14]. The style of
proof given here may be found in Janson |20, Appendix A., p. 309].

Theorem 8.2 (Dynkin’s Multiplicative System Theorem). Suppose that
H is a vector subspace of bounded functions from §2 to R which contains the
constant functions and is closed under bounded convergence. If M C H is a mul-
tiplicative system, then H contains all bounded o (M) — measurable functions.

Proof. First Proof. In this proof, we may (and do) assume that H is
the smallest subspace of bounded functions on {2 which contains the constant
functions, contains M, and is closed under bounded convergence. (As usual such
a space exists by taking the intersection of all such spaces.) The remainder of
the proof will be broken into four steps.

Step 1. (H is an algebra of functions.) For f € H, let H/ =
{g € H:gf € H}. The reader will now easily verify that H/ is a linear sub-
space of H, 1 € H’, and H/ is closed under bounded convergence. Moreover if
f €M, since M is a multiplicative system, M C H. Hence by the definition of
H, H=H’, ie. fg € H for all f e M and g € H. Having proved this it now
follows for any f € H that M C H/ and therefore as before, H/ = H. Thus we
may conclude that fg € H whenever f, g € H, i.e. H is an algebra of functions.

Step 2. (B:={AC2:14 € H} is a 0 — algebra.) Using the fact that H
is an algebra containing constants, the reader will easily verify that B is closed
under complementation, finite intersections, and contains {2, i.e. B is an algebra.
Using the fact that H is closed under bounded convergence, it follows that B is
closed under increasing unions and hence that B is o — algebra.

Step 3. (H contains all bounded B — measurable functions.) Since H is a
vector space and H contains 14 for all A € B, H contains all B — measurable
simple functions. Since every bounded B — measurable function may be written
as a bounded limit of such simple functions (see Theorem [6.39)), it follows that
H contains all bounded B — measurable functions.

Step 4. (¢ (M) C B.) Let ¢, (x) = 0V [(nx) A 1] (see Figure below)
so that ¢, () 1 lyso. Given f € M and a € R, let F,, := ¢, (f —a) and
M :=sup,cp|f (w) — a|. By the Weierstrass approximation Theorem m we
may find polynomial functions, p; (x) such that p; — ¢, uniformly on [-M, M].
Since p; is a polynomial and H is an algebra, p; (f — a) € H for all I. Moreover,
pro(f —a) — F, uniformly as | — oo, from with it follows that F,, € H for all
n. Since, Fy, T 1i55q) it follows that 11554y € H, ie. {f > a} € B. As the sets
{f > a} with a € R and f € M generate o (M), it follows that o (M) C B.

Fig. 8.1. Plots of 1, 2 and ¢s3.

Second proof. (This proof may safely be skipped.) This proof will make
use of Dynkin’s m — A Theorem Let

L={ACN:14€H}.

We then have 2 € L since 1o =1€ H, if A,B € £ with A C Bthen B\A€ L
since 1g\4 = 1p — 14 € H, and if A,, € £ with A,, T A, then A € L because
14, € Hand 14, T 14 € H. Therefore £ is A — system.
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Let ¢n, () = 0V [(nx) A 1] (see Figure above) so that ¢, () T 1lzso0.
Given f1, fo,..., fx € M and aq,...,a; € R, let

k
o= en (fi —ai)
=1

and let
M:= sup suplf;(w)—ail.
i=1,...,k w
By the Weierstrass approximation Theorem we may find polynomial func-
tions, p; (z) such that p; — ¢, uniformly on [—M, M] .Since p; is a polynomial
it is easily seen that Hle pio (fi —a;) € H. Moreover,

le o —a;) — F,, uniformly as | — oo,

from with it follows that F;, € H for all n. Since,

k
F, 71 H 1{fi>lli} = 1ﬂ,’f=1{fi>a1,}

i=1

it follows that 1x (f,~,,) € H or equivalently that Nk, {fi > a;} € L. There-
fore £ contains the 7 — system, P, consisting of ﬁmte intersections of sets of
the form, {f > a} with f € M and a € R.

As a consequence of the above paragraphs and the 7 — A Theorem L
contains ¢ (P) = o (M) . In particular it follows that 14 € H for all A € o (M).
Since any positive o (M) — measurable function may be written as a increasing
limit of simple functions (see Theorem [6.39)), it follows that H contains all non-
negative bounded o (M) — measurable functions. Finally, since any bounded
o (M) — measurable functions may be written as the difference of two such
non-negative simple functions, it follows that H contains all bounded o (M) —
measurable functions. ]

Here is a complex version of the previous theorem.

Theorem 8.3 (Complex Multiplicative System Theorem). Suppose H is
a complex linear subspace of the bounded complex functions on 2, 1 € H, H is
closed under complex conjugation, and H is closed under bounded convergence.
If M C H is multiplicative system which is closed under conjugation, then H
contains all bounded complezx valued o(M)-measurable functions.

Proof. Let My = spans(M U {1}) be the complex span of M. As the reader
should verify, M is an algebra, My C H, M is closed under complex conjuga-
tion and o (My) = o (M) . Let
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R.={f €H: f is real valued} and
Mg := {f € M : f is real valued} .

Then HR is a real linear space of bounded real valued functions 1 which is closed
under bounded convergence and M C HF. Moreover, M is a multiplicative
system (as the reader should check) and therefore by Theorem H® contains
all bounded o (M) — measurable real valued functions. Since H and M are
complex linear spaces closed under complex conjugation, for any f € H or
f € My, the functions Re f = %(f—i—f) and Im f = %(f—f) are in H or
M respectively. Therefore My = M§ + iMg, o (MDOQ) =0 (M) = o (M), and
H = H® + H®. Hence if f : £2 — C is a bounded ¢ (M) — measurable function,
then f = Re f +iIm f € H since Re f and Im f are in HE. [

Notation 8.4 We say that H C £*° (2, R) is closed under monotone con-
vergence if; for every sequence, {f,},_,; C H, satisfying:

1. there exists M < oo such that 0 < f,, (W) < M for allw € 2 and n € N,
2. fn(w) is increasing in n for allw € 2, then f :=lim, .o fr € H.

Clearly if H is closed under bounded convergence then it is also closed under
monotone convergence. I learned the proof of the converse from Pat Fitzsim-
mons but this result appears in Sharpe [48] p. 365].

Proposition 8.5. Let {2 be a set. Suppose that H is a wvector subspace of
bounded real valued functions from {2 to R which is closed under monotone con-
vergence. Then H is closed under uniform convergence as well, i.e. {fn} _, CH
with sup, ey SUPyeq | fn (W) < 00 and f, — f, then f € H.

Proof. Let us first assume that {f,} —, C H such that f, converges uni-
formly to a bounded function, f : 2 — R. Let | f||, := sup,ecqn |f (w)|. Let
e > 0 be given. By passing to a subsequence if necessary, we may assume
If = fall o < €27"FD. Let

gn = fn—0n + M
with d,, and M constants to be determined shortly. We then have
In+1 — Gn = fn+1 — fn+0n = Opy1 > _527(n+1) +0p — 6n+1-

Taking 6, := 2", then 8, — dp41 = 27" (1 — 1/2) = £2= "+ in which case
gn+1 — gn > 0 for all n. By choosing M sufficiently large, we will also have
gn > 0 for all n. Since H is a vector space containing the constant functions,
gn € H and since g,, T f + M, it follows that f = f + M — M € H. So we have
shown that H is closed under uniform convergence. [ ]

This proposition immediately leads to the following strengthening of Theo-
rem
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Theorem 8.6. Suppose that H is a vector subspace of bounded functions from
2 to R which contains the constant functions and is closed under monotone
convergence. If M C H 1is multiplicative system, then H contains all bounded
o (M) — measurable functions.

Proof. Proposition [8.5] reduces this theorem to Theorem [8.2] [

Exercise 8.1. Let (§2, B, P) be a probability space and X,Y : {2 — R be a pair
of random variables such that

E[f(X)g(¥V)] =E[f(X)g(X)]

for every pair of bounded measurable functions, f,g R — R. Show
P (X =Y)=1. Hint: Let H denote the bounded Borel measurable functions,
h : R? — R such that

Eh (X, V)] =E[h (X, X)].

Use Theorem [8.2] to show H is the vector space of all bounded Borel measurable
functions. Then take h (z,y) = 1{,—y.

Corollary 8.7. Suppose H is a real subspace of bounded functions such that
1 € H and H is closed under bounded convergence. If P C 29 is a multiplicative
class such that 14 € H for all A € P, then H contains all bounded o(P) -
measurable functions.

Proof. Let M = {1}U{14 : A € P}. Then M C H is a multiplicative system
and the proof is completed with an application of Theorem [

Ezample 8.8. Suppose p and v are two probability measure on ({2, B) such that

/Q fdu = /Q fdv (8.1)

for all f in a multiplicative subset, M, of bounded measurable functions on 2.
Then p = v on o (M) . Indeed, apply Theorem [3.6] with H being the bounded
measurable functions on {2 such that Eq. olds. In particular if M =
{1} U{l4 : A € P} with P being a multiplicative class we learn that y = v on
o(M)=0(P).

Corollary 8.9. The smallest subspace of real valued functions, H, on R which
contains C. (R,R) (the space of continuous functions on R with compact sup-
port) is the collection of bounded Borel measurable function on R.

Proof. By a homework problem, for —co < a < b < 00, 1,3 may be
written as a bounded limit of continuous functions with compact support from
which it follows that o (C.(R,R)) = Bg. It is also easy to see that 1 is a bounded
limit of functions in C.(R,R) and hence 1 € H. The corollary now follows by
an application of The result now follows by an application of Theorem with
M := C.(R,R). ]
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8.0.1 The Bounded Approximation Theorem*

This section should be skipped until needed (if ever!).

Notation 8.10 Given a collection of bounded functions, M, from a set, {2, to
R, let M; (M) denote the the bounded monotone increasing (decreasing) limits
of functions from M. More explicitly a bounded function, f : 2 — R is in M;
respectively M| iff there exists f,, € M such that f,, T f respectively f,, | f.

Theorem 8.11 (Bounded Approximation Theorem*). Let (2,58, 1) be a
finite measure space and M be an algebra of bounded R — valued measurable
functions such that:

1.0 (M) =B,
2.1eM, and
3. |f| €M for all f € M.

Then for every bounded o (M) measurable function, g : 2 — R, and every
e > 0, there exists f € M| and h € My such that f <g<h and u(h— f) < EH

Proof. Let us begin with a few simple observations.

1. M is a “lattice” —if f,g € M then

fUg=5(f+g+lf—g) €M

and )
frg=5(f+g-1f—g) €M,

If f,geM;j or f,g € M then f+ g € M; or f+ g € M| respectively.

. If)\ZO&deEMT (fEMl>, then )\fGMT ()\fGMl)

. If f € My then —f € M and visa versa.

. If f,, € My and f,, T f where f : {2 — Ris a bounded function, then f € Mj.
Indeed, by assumption there exists f,; € M such that f,; T f, as ¢ — oo.
By observation (1), g, := max {f;; : ¢,j < n} € M. Moreover it is clear that
gn <max{fy:k <n}=f, <fandhenceg, T g:=lim, o g, < f. Since
fij < g for all 4, j, it follows that f, = lim;_.o fn; < g and consequently
that f =1lim, o fn < g < f. So we have shown that g, T f € Mj.

T W N

Now let H denote the collection of bounded measurable functions which
satisfy the assertion of the theorem. Clearly, M C H and in fact it is also easy
to see that My and M are contained in H as well. For example, if f € My, by
definition, there exists f, € Ml C M such that f,, T f. Since M| > f,, < f <

! Bruce: rework the Daniel integral section in the Analysis notes to stick to latticies

of bounded functions.
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f €M and p(f — fn) — 0 by the dominated convergence theorem, it follows
that f € H. As similar argument shows M| C H. We will now show H is a
vector sub-space of the bounded B = o (M) — measurable functions.

H is closed under addition. If g, € H for ¢ = 1,2, and € > 0 is given, we
may find f; € M} and h; € My such that f; < g; < h; and p (h; — f;) < /2 for
i=1,2.Sinceh=hy +ho €My, f:=fi+ foeM|, f<g1+g2 <h,and

p(h—f)=plh1— f1) +p(he — f2) <e

it follows that g; + go € H.

H is closed under scalar multiplication. If g € H then A\g € H for all
A € R. Indeed suppose that € > 0 is given and f € M| and h € My such that
f<g<hand p(h—f) <e. Thenfor A >0, M| 5 A\f < Ag < Ah € M; and

(M= Af) =M (h— f) < Ae.

Since ¢ > 0 was arbitrary, if follows that Ag € H for A > 0. Similarly, M| >
—h<—g<—feM;and

p(=f=(=h)=ph-f)<e

which shows —g € H as well.

Because of Theorem to complete this proof, it suffices to show H is
closed under monotone convergence. So suppose that g, € H and g,, T g, where
g : 2 — R is a bounded function. Since H is a vector space, it follows that
0 <6p:= gnt1—gn € H for all n € N. So if € > 0 is given, we can find,
M, 3 u, < 6, < v, € My such that p (v, — uy) < 277 for all n. By replacing
Up, by un, VO € M (by observation 1.), we may further assume that u, > 0. Let

N
vi= Z v, =1 hm Z vy, € My (using observations 2. and 5.)

n=1

and for N € N, let

N
N .= Z U, € M (using observation 2).

n=1

Then
N

g 0p = lim Op = hm (gns1— 1) =9 — 1
N—oo
n=1 n=1

and vV < g — g1 <v. Moreover,

Page: 102 job: prob

N 9]
plo—u™) =Y plon—uw)+ Y Zsz "> )
n=1 n=N+1 n=N+1
<e+ Z M(’Un)
n=N+1

However, since

Zp( Z (6, +2277) Z n) +ep(2)

n=1

=3 o=+ en(@) <o

it follows that for N € N sufficiently large that Y >° v, pu(v,) < . Therefore,
for this N, we have pu (v —ulv ) < 2¢ and since € > 0 is arbitrary, if follows
that g — g1 € H. Since g3 € H and H is a vector space, we may conclude that

g=(9—9g1)+g1 € H. m
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9

Multiple and Iterated Integrals

9.1 Iterated Integrals

Notation 9.1 (Iterated Integrals) If (X, M, u) and (Y,N,v) are two mea-
sure spaces and f : X xY — C is a MQN — measurable function, the iterated
integrals of f (when they make sense) are:

[ auta) [ s = [ | [ ena] due)

[ avt) [ autorsn) = [ [ /. f(x,y>du<x>] v (y).

Notation 9.2 Suppose that f : X — C and g :' Y — C are functions, let f ® g
denote the function on X XY given by

f@glz,y) = f(z)g(y).

Notice that if f, g are measurable, then f® g is (M @ N, Bc) — measurable.
To prove this let F(z,y) = f(x) and G(x,y) = g(y) so that f ® g = F - G will
be measurable provided that F' and G are measurable. Now F' = f o m; where
m : X XY — X is the projection map. This shows that F' is the composition
of measurable functions and hence measurable. Similarly one shows that G is
measurable.

and

9.2 Tonelli’s Theorem and Product Measure

Theorem 9.3. Suppose (X, M,u) and (Y,N,v) are o-finite measure spaces
and f is a nonnegative (M @ N, Br) — measurable function, then for eachy €Y,

v — f(z,y) is M — Bjg,oc] measurable, (9.1)

for each x € X,
y — f(z,y) is N~ Bjg,oc] measurable, (9.2)

x —>/ [z, y)dv(y) is M — By o] measurable, (9.3)
Y

y —>/ f(x,y)dp(z) is N — Bg o) measurable, (9.4)
X

and

| ) [ avwren = [ avt) [ ane)f@. 03)
Proof. Suppose that E = Ax B€ £ := M x N and f = 1g. Then
f(z,y) = Laxp(z,y) = La(z)1p(y)
and one sees that Egs. and hold. Moreover
| fenav) = [ 1a@iavy) = 1a@wms),
Y Y

so that Eq. (9.3 holds and we have

/ dyu(z) / dv(y) f(z.y) = v(B)u(A). (9.6)
X Y
Similarly,
/X f(.y)dp(z) = u(A)1p(y) and
[ avtw) [ duta)f(e.) = vBIa(4)
Y X

from which it follows that Eqgs. and hold in this case as well.

For the moment let us now further assume that p(X) < oo and v(Y) < 0o
and let H be the collection of all bounded (M ® N, Bg) — measurable functions
on X x Y such that Egs. - hold. Using the fact that measurable
functions are closed under pointwise limits and the dominated convergence the-
orem (the dominating function always being a constant), one easily shows that
H closed under bounded convergence. Since we have just verified that 1 € H
for all F in the m — class, &, it follows by Corollary that H is the space
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of all bounded (M ® N, Bgr) — measurable functions on X x Y. Moreover, if
f: X xY —[0,00] is a (M ®N,Bg) — measurable function, let foy = M A f
so that fas T f as M — oo. Then Egs. - hold with f replaced by fas
for all M € N. Repeated use of the monotone convergence theorem allows us to
pass to the limit M — oo in these equations to deduce the theorem in the case
w1 and v are finite measures.

For the o — finite case, choose X,, € M, Y,, € N such that X,, 1 X, Y, 1Y,
w(Xy) < oo and v(Y,) < oo for all m,n € N. Then define p,, (A) = p(X,, N A)
and v,(B) = v(Y, N B) for all A € M and B € N or equivalently du,, =
1x,  dp and dv, = 1y, dv. By what we have just proved Egs. - with
u replaced by g, and v by v, for all (M ® N, Bg) — measurable functions,
f: X xY — [0,00]. The validity of Eqgs. - then follows by passing to
the limits m — oo and then n — oo making use of the monotone convergence
theorem in the following context. For all u € LT (X, M),

/ udfly, = / ulx, dp T / udpL as m — 0o,
b b b
and for all and v € LT (Y, N),

/ vdpl, = / vly, dp 7 / vdp as n — o0.
Y Y Y

Corollary 9.4. Suppose (X, M, ) and (Y,N,v) are o — finite measure spaces.
Then there exists a unique measure ™ on MQN such that m(Ax B) = u(A)v(B)
for all A€ M and B € N'. Moreover w is given by

7T(E)=/Xdu(:v)/YdV(y)lE(ﬂc,y)=/YdV(y)/Xclu(sc)lza(ﬂw) (9.7)

foral E€ M QN and w is o — finite.

Proof. Notice that any measure 7 such that 7(A4 x B) = u(A)v(B) for
all A € M and B € N is necessarily o — finite. Indeed, let X,, € M and
Y, € N be chosen so that pu(X,) < oo, v(¥,) < 00, X;, 1 X and Y,, 1Y,
then X, xY, e MN, X, xY, 1 X xY and (X, xY,,) < oo for all n.
The uniqueness assertion is a consequence of the combination of Exercises [3.10
and Proposition with & = M x N. For the existence, it suffices to
observe, using the monotone convergence theorem, that 7w defined in Eq.
is a measure on M ® N. Moreover this measure satisfies 7(A x B) = u(A)v(B)
for all A € M and B € N from Eq. (9.6). n

Notation 9.5 The measure 7 is called the product measure of u and v and will
be denoted by p ® v.
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Theorem 9.6 (Tonelli’s Theorem). Suppose (X, M, ) and (Y,N,v) are o
— finite measure spaces and T = Q@ v is the product measure on M QN If f €
LY (X xY,M@N), then f(-,y) € LT (X, M) forally €Y, f(x,:) € LT(Y,N)
forallz e X,

/ Fw)duly) € L (X, M), / f(x, () € LY, N)

and

/nyf dW:/}(du(x)Ldy(y)f(z,y) (9.8)
Z/Ydlf(y)/xdu(:c)f(x,y). (9.9)

Proof. By Theorem and Corollary the theorem holds when f = 1g
with E € M®N'. Using the linearity of all of the statements, the theorem is also
true for non-negative simple functions. Then using the monotone convergence
theorem repeatedly along with the approximation Theorem [6.39] one deduces
the theorem for general f € LT (X x Y, M @ N). [

Ezample 9.7. In this example we are going to show, I := [, e~ 2dm (z) =
v27. To this end we observe, using Tonelli’s theorem, that

I = [/R e 2dm (a:)}2 =/Re‘y2/2 [/Re‘ﬁ/z’dm (x)} dm (y)

where m? = m ® m is “Lebesgue measure” on (Rz, Brz = Br ® BR) . From the

monotone convergence theorem,

2=1im [ e @) 200 2,y

R—o0 Dr

where Dp = {(as,y) cx? 4yt < RQ}. Using the change of variables theorem
described in Section belowE we find

/ e (& +9°)/2 g (z,y) =/ e Prdrdd
Dr (0,R) % (0,27)
R 2 2
:27r/ efr/zrdr:27r<lfe*R/2).
0

L Alternatively, you can easily show that the integral / Dr fdm? agrees with the
multiple integral in undergraduate analysis when f is continuous. Then use the
change of variables theorem from undergraduate analysis.
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From this we learn that

12 = lim 2r (1 _ 6*32/2) — o

— 00

as desired.

9.3 Fubini’s Theorem

The following convention will be in force for the rest of this section.

Convention: If (X, M, ) is a measure space and f : X — C is a mea-
surable but non-integrable function, i.e. [y |f|du = oo, by convention we will
define [y fdu := 0. However if f is a non-negative function (i.e. f : X — [0, co])
is a non-integrable function we will still write [ ¢ fdp = oo.

Theorem 9.8 (Fubini’s Theorem). Suppose (X, M,u) and (Y,N,v) are o
— finite measure spaces, T = p ® v is the product measure on M @ N and
f: X xY = CisaMN - measurable function. Then the following three
conditions are equivalent:

/ |f|dr < o0, i.e. f € LY(rm), (9.10)
XxXY

| ([ 15 lre)) dutw) < oo ana o11)
/Y (/X |f(z, )] du(m)) dv(y) < oc. (9.12)

)ELl( ) for p-a.e.
pu(x) € L'(v)

If any one (and hence all) of these condztwn hold, then f(z

z, f(- )ELl()forl/ae v, Jy f(y)do(y) ELl fX
and FEgs. and are still valzd

Proof. The equivalence of Egs. - is a direct consequence of
Tonelli’s Thoorcm- Now suppose f € L(r ) is a real valued function and let

o {xeX:/y|f(x,y)|du(y):oo}. (9.13)

Then by Tonelli’s theorem, 2 — [, |f (z,y)|dv (y) is measurable and hence
E € M. Moreover Tonelli’s theorem implies

/x [/ywx’y)'d”(y)] dp (@) = /ny |l dm < o

which implies that u (F) = 0. Let f1 be the positive and negative parts of f,
then using the above convention we have
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/ f (@, y)dv (y) = / 1 (2) f (2,5) dv (y)
Y Y
- /Y Lpe (2) Ufy (29) — f- (2 9)] dv ()

- / Lge (@) f (2,) dv (y) — / e (2) [ () dv (y)
Y Y
(9.14)

Noting that 1ge (z) f+ (z,y) = (1ge ® 1y - f1) (z,y) is a positive M @ N —
measurable function, it follows from another application of Tonelli’s theorem
that x — fo(x,y) dv (y) is M — measurable, being the difference of two
measurable functions. Moreover

@ dute) < [ | [ 17 @l )] dae) < o0

which shows fy y)dv(y) € L'(n). Integrating Eq. (9.14) on z and using
Tonelli’s theorem repeatedly implies,

L] e w] e
= [ du(z) | dv(y)lge (=) fy (2,y) — | dp(z) [ dv(y)lee (z) f- (2,y)
fow | fow |,
= /{ dv (y) /X dp (z) 1ge (z) f1 (x,y) — /Y dv (y) /X dp (x) 1ge (2) f- (2,y)
= [ dv(y) | du(@)fy (zy)— [ dv(y) | dp(z)f-(z,y)
fyw ], fyww ],

which proves Eq. holds.
Now suppose that f = u+iv is complex valued and again let E be as in Eq.
([©:13). Just as above we still have E € M and p (E) = 0. By our convention,

| fanae) = [ 1o @ @naw = [ 16 @0+ i@l o)
:/ 1ge (x)u(x,y)du(y)—i—i/ 1ge () v (z,y)dv (y)
% %

which is measurable in x by what we have just proved. Similarly one shows

)
)

Jy f( (y) € L' (1) and Eq. still holds by a computation similar to
that done in Eq (9.15)). The assertions pertaining to Eq. may be proved
in the same way. ]

The previous theorems have obvious generalizations to products of any finite
number of ¢ — finite measure spaces. For example the following theorem holds.
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106 9 Multiple and Iterated Integrals

Theorem 9.9. Suppose {(X;, My, p;)};_, are o — finite measure spaces

and X = X1 X --- X X,. Then there exists a unique measure, 7, on
(X, My ®---®@M,,) such that

7T(A1 X -+ X An) = Ml(Al) .. Mn(An) fO’I" all Ai S Ml

(This measure and its completion will be denoted by 1 ® -+ @ ) If [+ X —
[0,00] is a M1 ® -+ @ M,, — measurable function then

/ fdm = / d/’%’(l)<xa(1)) e / d,ug(n) (.Tg(n)) flz1,...,2)  (9.16)
X Xo(1) Xo(n)

where o is any permutation of {1,2,...,n}. This equation also holds for any
f € LY (n) and moreover, f € L () iff

/ dﬂa(l)(xo(l)) s / dua(n) (xa(n)) |f(£C17 oo 7$n)| <00
Xo(1) Xo(n)

for some (and hence all) permutations, o.

This theorem can be proved by the same methods as in the two factor case,
see Exercise Alternatively, one can use the theorems already proved and
induction on n, see Exercise [0.5]in this regard.

Ezxample 9.10. In this example we will show

M .
lim S 4y = 7)2. (9.17)
M—oo 0

To see this write % = fooo e~ ' dt and use Fubini-Tonelli to conclude that

M _. M s}
/ Smxdw = / [/ e "sinx dt] dz
0 € 0 0
e’} M
:/ / e sing dx| dt
0 0

< 1
:/ W(l—te*MtsinM—e*MtcosM) dt
0

>~ 1
H/ 7dt:zasMHoo,
o 1+1¢2 2

wherein we have used the dominated convergence theorem (for instance, take
g(t) == 5 (L +te™" +e7")) to pass to the limit.

The next example is a refinement of this result.
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Ezxample 9.11. We have

/ ST Az gy — 5T arctan A for all A >0 (9.18)
0 x

and ford, M € [0, c0),

67MA

M .
1
/ ST e gy o +arctan A| < C (9.19)
0

X

where C' = max;>¢ fj—wg = 2\/%_2 2 1.2. In particular Eq. 1’ is valid.

To verify these assertions, first notice that by the fundamental theorem of

calculus,
xT x x
|sinz| = ’/ cosydy’ < ’/ |cosy|dy’ < ‘/ ldy‘ = |z|
0 0 0

o) |%| < 1 for all = # 0. Making use of the identity

o0
/ e dt =1/x
0
and Fubini’s theorem,

M _: M oo
sinx _ . _ _
/ —e A”’dm:/ drsinze A’”/ et dt
0 l“ 0 0

oo M
= / dt dzsinz e~ (A+0T
0 0
B /oo 1 — (cos M + (A +t)sin M) e~ MA+)
0 (A+t)°+1
/oo 12 dt—/oo COSM"_(A";t)SinMefM(AH)dt
o (A+t)"+1 0 (A+t)"+1
1
=57 arctan A — e(M, A) (9.20)

dt

¢ ( ) —M(A-‘ri) “

E(M’A):/o (A+1)?+1

cos M + (A+t)sin M < 14+ (A+1) <
(A+1)°+1 T (A1) 41

Since

)
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—MA

(M, A)| < / M+ g o
0

This estimate along with Eq. (9.20]) proves Eq. (9.19) from which Eq. (9.17) fol-

lows by taking A — oo and Eq. ((9.18]) follows (using the dominated convergence
theorem again) by letting M — oc.

Lemma 9.12. Suppose that X is a random wvariable and ¢ : R — R is a C!
— functions such that lim,_,_o @ (x) = 0 and either ¢’ (x) > 0 for all x or
Jg ¢’ (x)] dz < oo. Then

E[so<x>1=/°o o (4) P (X > ) dy.

—00

Similarly if X >0 and ¢ : [0,00) — R is a C* — function such that ¢ (0) = 0
and either ¢’ >0 or [ |¢’ (z)|dz < oo, then

E[¢<X>]=/O°Oso'<y>P<X>y>dy.

Proof. By the fundamental theorem of calculus for all M < oo and z € R,

o) =p(-)+ [

-M

x

¢ (y) dy. (9.21)

Under the stated assumptions on ¢, we may use either the monotone or the
dominated convergence theorem to let M — oo in Eq. (9.21)) to find,

p(z) = / ¢ (y)dy = / 1<z’ (y) dy for all z € R.
o R
Therefore,

Blo () =E[ [ Lexe' ] = [Elexld @)ar= |

— 00

o0

¢ (y) P (X > y)dy,

where we applied Fubini’s theorem for the second equality. The proof of the
second assertion is similar and will be left to the reader. ]

Example 9.13. a couple of examples involving Lemma [9.12

1. Suppose X is a random variable, then

E [e¥] :/Oo P(X >y)eydy/OOOP(X > Inu) du, (9.22)

— 00
where we made the change of variables, u = e¥, to get the second equality.
2.If X >0and p>1, then

EXP = p/ yPTIP (X > y) dy. (9.23)
0
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9.4 Fubini’s Theorem and Completions*

Notation 9.14 Given E C X XY and z € X, let
E={yeY:(z,y) € E}.
Similarly if y € Y is given let
E, ={zeX:(z,y) € E}.

If f : X xY — C is a function let f, = f(x,-) and fY :=
fz: Y —=Cand f¥: X —C.

f(yy) so that

Theorem 9.15. Suppose (X, M, 1) and (Y, N ,v) are complete o — finite mea-
sure spaces. Let (X X Y, L, \) be the completion of (X xY, M QN , p@v). If f
is L — measurable and (a) f >0 or (b) f € L*()\) then f. is N' — measurable
for p a.e. x and fY is M — measurable for v a.e. y and in case (b) f, € L*(v)
and f¥ € L*(u) for u a.e. x and v a.e. y respectively. Moreover,

(x%/yfzdy>€L1(u) and (yﬂ/xfydu)eLl(y)
/)(nyd)\:/ydu/)(duf:/)(du/yduf.

Proof. f Fe M®N is a p @ v null set (i.e. (u® v)(E) =0), then

and

0= (e (E) = [viBydu(e) = [ w(E,)v(y).

X X

This shows that

p({z v E) # 0}) = 0 and v({y : p(Ey) # 0}) =0,

ie. v(oFE) =0 for p ae. x and p(E,) =0 for v a.e. y. If h is £ measurable and
h =0 for X — a.e., then there exists £ € M ® N such that {(z,y) : h(z,y) #
0} C E and (p®v)(E) = 0. Therefore |h(z,y)| < 1g(z,y) and (p®@ v)(E) = 0.
Since

{hy #0} ={y €Y : h(z,y) # 0} C ,F and
{hy #0} = {z € X : h(z,y) £ 0} C B,

we learn that for p a.e. z and v a.e. y that {h, #0} € M, {h, #0} € N,
v({hs #0}) = 0 and a.e. and p({hy # 0}) = 0. This implies [}, h(z,y)dv(y)
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108 9 Multiple and Iterated Integrals

exists and equals 0 for p a.e. x and similarly that [, h(x,y)du(z) exists and
equals 0 for v a.e. y. Therefore

0:/)(thd)\:/y</xhdu) dV:/X(/Yth) dp.

For general f € L*()\), we may choose g € LY (M &N, p®v) such that f(z,y) =
g(z,y) for A— a.e. (z,y). Define h := f —g. Then h = 0, A— a.e. Hence by what
we have just proved and Theorem f = g+ h has the following properties:

1. For pae. z, y — f(z,y) = g(z,y) + h(z,y) is in L1 (v) and
/ f,y)dv(y) = / 9(@,y)dv(y).
Y Y
2. For v ae. y, v — f(x,y) = g(x,y) + h(z,y) is in L' (x) and

/ f (@ y)dp(x) = / gz, y)dp(z).
X X

From these assertions and Theorem it follows that

[ duta) [ vt = [ dnte) [ avtigtan)

:/Ydl/(y)/ydl/(f)g(x’y)
:/ 9z, y)d(1 ® v)(z, y)
XxXY

- / f(,y)dA(z, v).
XxY

Similarly it is shown that

| ) [ s = [ @iy,

9.5 Lebesgue Measure on R? and the Change of Variables
Theorem

Notation 9.16 Let

d times d times
—_—— ——N—
mé:=m®---@m onBri =Br® - Bg
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be the d — fold product of Lebesque measure m on Br. We will also use m?

to denote its completion and let Lq be the completion of Bra relative to mo.
A subset A € L4 is called a Lebesque measurable set and m¢ is called d —
dimensional Lebesgue measure, or just Lebesque measure for short.

Definition 9.17. A function f : RY — R is Lebesgue measurable if
FY(Bg) C La.

Notation 9.18 I will often be sloppy in the sequel and write m for m?® and dx
for dm(z) = dm?(x), i.e.

f(z)dx = / fdm = fdm?.
R4 R4 Rd

Hopefully the reader will understand the meaning from the context.

d d

Theorem 9.19. Lebesgue measure m® is translation invariant. Moreover m
is the unique translation invariant measure on Bga such that m@((0,1]%) = 1.

Proof. Let A= J; x --- x J; with J; € Bg and z € R?. Then
x4+ A=(x1+ 1) X (@24 J2) X -+ X (2g+ Jg)
and therefore by translation invariance of m on Bg we find that
m(x+ A) =m(x1 + 1) ...m(zg + Jg) = m(Jr) ... m(Jy) = m?(A)

and hence m?(z + A) = m?(A) for all A € Bga since it holds for A in a multi-
plicative system which generates Bra. From this fact we see that the measure
m?(x + -) and m?(-) have the same null sets. Using this it is easily seen that
m(z+ A) = m(A) for all A € L4. The proof of the second assertion is Exercise
9.0l [ |

Exercise 9.1. In this problem you are asked to show there is no reasonable
notion of Lebesgue measure on an infinite dimensional Hilbert space. To be
more precise, suppose H is an infinite dimensional Hilbert space and m is a
countably additive measure on By which is invariant under translations and
satisfies, m(By(e)) > 0 for all £ > 0. Show m(V) = oo for all non-empty open
subsets V C H.

Theorem 9.20 (Change of Variables Theorem). Let 2 C, R? be an open
set and T : 2 — T(02) Co RY be a C' - dzﬁeomorphismﬂ see Figure , Then
for any Borel measurable function, f : T(£2) — [0, 0],

2 That is T : 2 — T(2) C, R? is a continuously differentiable bijection and the
inverse map T~ : T(2) — 2 is also continuously differentiable.
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/ £ (T (@) | det T () |da = / f () dy, (9.24)

Q 7(02)

where T'(x) is the linear transformation on R? defined by T (z)v := &[0T (x +
tv). More explicitly, viewing vectors in R as columns, T' (x) may be represented

by the matrix
81T1 (lL’) FN 8dT1 (ZL’)

T@=| : . | (9.25)
ale (JC) e 8de (a:)

i.e. the i - j — matriz entry of T'(x) is given by T'(x);; = 0;Tj(x) where
T(z) = (Ty(x),...,Ty(z))" and 8; = 8/0x;.

18

Ay

T8

\?/ 7

dy = JdaTon| dx
K- dpole

Fig. 9.1. The geometric setup of Theorem

Remark 9.21. Theorem [2.20] is best remembered as the statement: if we make
the change of variables y = T (), then dy = | det T” (z) |dx. As usual, you must
also change the limits of integration appropriately, i.e. if  ranges through 2
then y must range through 7 (£2).

Note: you may skip the rest of this chapter!

Proof. The proof will be by induction on d. The case d = 1 was essentially
done in Exercise [7.10] Nevertheless, for the sake of completeness let us give
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a proof here. Suppose d = 1, a < a < 8 < b such that [a,b] is a compact
subinterval of 2. Then |detT’| = |T"| and

|, e @@ T @l = [

la

8
; Lia,g (2) T (x)ldxz/ T ()| da.

s

If 7' (x) > 0 on [a,b], then

B B
/|T’(a:)|dx:/ T (x)de =T (B) — T (a)

while if 77 (z) < 0 on [a,b] , then

B8 B
[ r@de = [ 7@ =T(@-10)

[

—m (T (@A) = [

T([ab])

L7 (a0 (¥) dy-
Combining the previous three equations shows

F (T @) 1T (2)] d = / £ (w) dy (9.26)

[a,b] T([ab])

whenever f is of the form f = 17,3 with a < a < 8 <b. An application of
Dynkin’s multiplicative system Theorem then implies that Eq. (9.26]) holds
for every bounded measurable function f : T ([a, b]) — R. (Observe that |7’ ()|
is continuous and hence bounded for z in the compact interval, [a,b].) Recall
that 2 = Zgil (an,by) where a,,b, € RU{+oo} for n = 1,2,--- < N with
N = oo possible. Hence if f: T (£2) — R , is a Borel measurable function and
an < ap < B < b, with ay | a, and Bx T b,, then by what we have already
proved and the monotone convergence theorem

/1(an,bn) (foT)-|T'|dm = / (I7((anbny) - f) 0T+ |T |dm

«“ (]

= (Ir(an.p)) - f) o T - |T'] dm
2

= lm [ I (e, - f dm
T(£2)

= / Lo ((an,bn)) - f dm.

T(R2)
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110 9 Multiple and Iterated Integrals

Summing this equality on n, then shows Eq. holds.

To carry out the induction step, we now suppose d > 1 and suppose the
theorem is valid with d being replaced by d — 1. For notational compactness, let
us write vectors in R? as row vectors rather than column vectors. Nevertheless,
the matrix associated to the differential, T/ (x) , will always be taken to be given

as in Eq. (9.25).

Case 1. Suppose T (z) has the form
T(x) = (2, T2 (x),...,Ta(x)) (9.27)
or
T(z)=(Ty(2),....Ta-1 (), 2;) (9.28)

for some i € {1,...,d . For definiteness we will assume 7' is as in Eq. (19.27)), the
case of T' in Eq. (9.28)) may be handled similarly. For ¢ € R, let 4, : R~ — R4
be the inclusion map defined by

ir (W) ;= wy := (W1, ..., Wi—1, b, Wit1, -, Wa—1)
2; be the (possibly empty) open subset of R4~! defined by
2 = {w eRY: (wy, .. Wiy, b Wi, Wa—1) € _Q}
and T, : 2, — R%! be defined by
Ty (w) = (T (wy) ..., Ty (wy))

see Figure Expanding det T’ (w;) along the first row of the matrix 7" (w;)
shows
|det T (wy)| = |det T} (w)] .

Now by the Fubini-Tonelli Theorem and the induction hypothesis,
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Tup=(t, Tw)

T Q)

yt

Fig. 9.2. In this picture d = ¢ = 3 and {2 is an egg-shaped region with an egg-shaped
hole. The picture indicates the geometry associated with the map 7' and slicing the
set (2 along planes where x3 = t.

/foT|detT'|dm:/1Q~foT|detT’|dm
o

Rd

= /19 (wy) (f o T) (wy) | det T (wy) |dwdt
R4

:/]R /(foT)(wt)|detT’(wt)|dw dt

LS2¢
— [ | ] T @) | der; (w) duw | ae
R 9,

:/]R / f(t z)dz dt:/]R /].T(Q) (t,z) f(t,z)dz| dt

i (2,) d-1

[ tway

(%)

wherein the last two equalities we have used Fubini-Tonelli along with the iden-
tity;

T(2)=> T(i(2)=> {(tz):z€T ()}

teR teR
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Case 2. (Eq. (9.24) is true locally.) Suppose that T : 2 — R? is a general
map as in the statement of the theorem and xy € {2 is an arbitrary point. We
will now show there exists an open neighborhood W C {2 of x( such that

/f0T| detT'|dm:/ fdm
W W)

holds for all Borel measurable function, f : T(W) — [0, 00]. Let M; be the 1
minor of T’ (xg), i.e. the determinant of T’ (x) with the first row and " —
column removed. Since

H_l 8 T .7,‘0) Mi7

M&

0 # det T' (xg) =

z=1

there must be some i such that M; # 0. Fix an ¢ such that M; # 0 and let,
S (z) = (24, T2 (x),...

Observe that |det S” (zo)| = |M;| # 0. Hence by the inverse function Theorem,
there exist an open neighborhood W of z such that W C, 2 and S (W) C, R?
and S: W — S (W) is a C! - diffeomorphism. Let R : S (W) — T (W) C, R?
to be the C'! — diffeomorphism defined by

Ty () - (9.29)

R(z):=ToS8 ' (z) forall z € S (W).
Because
(Ty (x),...,Ty(x)) =T (z) = R(S (z)) = R (x5, T2 () ,. ..
for all z € W, if
(21,22, 2a) = S (z) = (25, T2 (2) ..., Tu (z))

then
R(z)=(T1 (S7'(2)),22,...,2a) - (9.30)
Observe that S is a map of the form in Eq. (9.27)), R is a map of the form in Eq.
(19.28), T" (x) = R' (S (z)) S" (z) (by the chain rule) and (by the multiplicative
property of the determinant)
|det T" (z)| = |det R’ (S (z))||det S (z)| ¥V = € W.

Soif f: T(W) — [0, 00] is a Borel measurable function, two applications of the
results in Case 1. shows,
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/fOT-\detT’|dm:/(f0R-\detR’|)OS-|detS'| dm

w
/ foR-|det R'|dm = / fdm
S(W) R(S(W))
= / fdm
W)

and Case 2. is proved.
Case 3. (General Case.) Let f : £2 — [0, 00| be a general non-negative Borel
measurable function and let

K, ={z e 2 :dist(z,2°) > 1/n and |z| < n}.

Then each K, is a compact subset of 2 and K,, T 2 as n — oo. Using the
compactness of K, and case 2, for each n € N, there is a finite open cover W,
of K, such that W C (2 and Eq - ) holds with {2 replaced by W for each
W e W,. Let {W; }l | be an enumeration of U2, W, and set W; = W, and
Wi =W\ (Wi U---UW;_;) for all i > 2. Then 2 = >.2°, W; and by repeated
use of case 2.,

/foT|detT’|dm Z/ ) | det T'|dm
1= 19
_i/[(lT(~l)f) | - 1det 7" |am
z=1Wi
=3 / Luginy F =3 [ Ly S i
=lpw,) =lr(e)

|
—
~
&
s

Remark 9.22. When d = 1, one often learns the change of variables formula as
T(b)

/ FE@)T @de= [ f)dy (9.31)
T(a)

where f : [a,b] — R is a continuous function and 7" is C* — function defined in
a neighborhood of [a,b]. If T/ > 0 on (a,b) then T ((a,b)) = (T (a),T (b)) and
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112 9 Multiple and Iterated Integrals

Eq. (9.31) is implies Eq. (9.24) with £ = (a,b). On the other hand if 7/ < 0
on (a,b) then T ((a,b)) = (T (b),T (a)) and Eq. (9.31)) is equivalent to

T(a)
£ (T (@) (~ T (2)]) do = —/ f(y)dyz—/T(( 1)y

(a;b) T(b)

which is again implies Eq. (9.24). On the other hand Eq. (9.31)) is more general
than Eq. (9.24) since it does not require T to be injective. The standard proof
of Eq. (9.31) is as follows. For z € T ([a, b]), let

z

F(z):= " )f(y) dy.

Then by the chain rule and the fundamental theorem of calculus,

b b b
/ F(T @) T (2) de = / F/ (T (2)) T’ (z) de = / P (@) de

—Pa@)l- | " way

¢ T(a) '

An application of Dynkin’s multiplicative systems theorem now shows that Eq.
(19.31) holds for all bounded measurable functions f on (a,b). Then by the
usual truncation argument, it also holds for all positive measurable functions
on (a,b).

Example 9.23. Continuing the setup in Theorem if A € Bg, then

m (7 (4)) = [

Locay () dy = / Lycay (Tx) [det T' ()] d
R4 R4

= / 14 (z)|det T (z)| dw
Rd

wherein the second equality we have made the change of variables, y = T ().
Hence we have shown

d(moT)=|detT" ()| dm.

In particular if T € GL(d,R) = GL(R?) — the space of d x d invertible matrices,
then mo T = |det T|m, i.e.

m (T (A)) = |det T|m (A) for allA € Bga. (9.32)
This equation also shows that m o T and m have the same null sets and hence

the equality in Eq. (9.32) is valid for any A € L.
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Exercise 9.2. Show that f € L' (T (£2),m?) iff

/|foT\|detT’|dm<oo
0

and if f € L' (T (2) 7md) , then Eq. l| holds.

Ezample 9.2 (Polar Coordinates). Suppose T : (0, 00) x (0, 27) — R? is defined
by
x=T(r,0) = (rcosf,rsinb),

i.e. we are making the change of variable,
r1 =7rcosf and x5 = rsinf for 0 < r < co and 0 < 6 < 2.

In this case

T'(r,0) = (cos& —rsin@)

sinf rcos6

and therefore
dr = |det T’ (r,0)| drdf = rdrde.

Observing that
R\ T ((0,00) x (0,27)) = £ := {(z,0) : = > 0}

2

has m* — measure zero, it follows from the change of variables Theorem

that ) -
f(z)dx = / d9/ dr r- f(r(cos@,sin6)) (9.33)
R2 0 0
for any Borel measurable function f : R? — [0, oc].

Ezample 9.25 (Holomorphic Change of Variables). Suppose that f : 2 C, C &
R%— C is an injective holomorphic function such that f’(z) # 0 for all z € £2.
We may express f as

fle+iy) =U(z,y) +iV (z,y)
for all z =z 4 iy € 2. Hence if we make the change of variables,

U, Uy
det |:Vw Vy}

Recalling that U and V satisfy the Cauchy Riemann equations, U, = V,, and
Uy, = —V, with f' = U, +iV,, we learn

then

dudv = daedy = U,V — Uy V| dady.
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UsVy = Uy Ve = U2+ V2 =|f.

Therefore
dudv = | f' (z + iy)|* dzdy.

Example 9.26. In this example we will evaluate the integral

I:= //Q (x4 — y4) dxdy

Q={(z,y):1<2®—y* <2, 0<ay<1},
see Figure We are going to do this by making the change of variables,

where

ta

Fig. 9.3. The region {2 consists of the two curved rectangular regions shown.

(u,v) :=T (z,y) = (z* —y°, 2y)

in which case

dudv = dxdy = 2 (x2 + y2) dxdy

det {217 2y}
Yy T

Notice that
(=) = (& =92) (& +9) = u(a? +47) = Judud.

The function T is not injective on {2 but it is injective on each of its connected
components. Let D be the connected component in the first quadrant so that
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2 =-DUDand T(xD) = (1,2) x (0,1). The change of variables theorem
then implies

1 1u?
Ii::// (14—y4)d;vdy:f// ududv:fu—\%lz§
+D 2 JJa2)x0,1) 22 4

and therefore I = I, +1_=2-(3/4) =3/2.

Exercise 9.3 (Spherical Coordinates). Let T': (0,00)x (0, 7) x (0,27) — R3
be defined by

T (r,p,0) = (rsinpcosf, rsinpsin, rcos p)

= r (sinp cos d, sin psin b, cos @),

see Figure By making the change of variables = T (r, ¢, 0) , show

Fig. 9.4. The relation of z to (r, ¢, 0) in spherical coordinates.

T 27 [e%S)
de= [ d do dr r?sing - f(T (r,,0
[tz = [ ap [0 [ arsing 5T o)

for any Borel measurable function, f : R3 — [0, oo].
Lemma 9.27. Let a > 0 and
Ii(a) := /eﬂl\zpdm(z).
Rd

Then Iy(a) = (7/a)¥?.
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114 9 Multiple and Iterated Integrals

Proof. By Tonelli’s theorem and induction,

L= [, e )
— Iy ()T (a) = I(a). (9.34)

So it suffices to compute:

2 2
e~ MFH22) g das.

(@) = [ el dmiz) =

R2 R2\{0}

Using polar coordinates, see Eq. (9.33)), we find,

[e%s) 27 o)
I5(a) :/ dr r/ df e= v = 27r/ re=9"" dr
0 0 0
M

—ar M

. —ar? . e 2

=27 lim re " dr =27 lim = — =7/a.
M—oo 0 M—oco —2a 0

This shows that I3(a) = 7/a and the result now follows from Eq. (9.34)).

9.6 The Polar Decomposition of Lebesgue Measure

Let
d

St ={z eR: |z)? =) af =1}
i=1
be the unit sphere in R? equipped with its Borel o — algebra, Bgia—1 and & :
R\ {0} — (0, 00) x §971 be defined by @(z) := (||, |z|”" #). The inverse map,
@1 :(0,00) x S — R4\ {0}, is given by &~ !(r,w) = rw. Since ¢ and &~!
are continuous, they are both Borel measurable. For E € Bga—1 and a > 0, let

E,:={rw:r€(0,a) and w € E} = & ((0,a] x E) € Bga.

Definition 9.28. For E € Bga-1, let 0(E) :=d-m(E1). We call o the surface
measure on S47L.

It is easy to check that o is a measure. Indeed if £ € Bga—1, then F; =
&1 ((0,1] x E) € Bga so that m(Ey) is well defined. Moreover if E = >"° | E;,
then E1 = Zjil (El)l and

oo

o(E)=d-m(E)) =) m((E),) =) o(E).

i=1 =1
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The intuition behind this definition is as follows. If E € S% 1 is a set and £ > 0
is a small number, then the volume of

(Ll4e-E={rw:re(l,14+¢]and w € E}

should be approximately given by m ((1,1+¢]- E) = o(F)e, see Figure
below. On the other hand

Fig. 9.5. Motivating the definition of surface measure for a sphere.

m((1,1+¢elE) =m (B4 \ E1) = {(1+ e)d — 1} m(Ey).
Therefore we expect the area of E should be given by

o(E) = lim {A+e)! 1 m(Er)
€l0 €

The following theorem is motivated by Example and Exercise [0.3)

Theorem 9.29 (Polar Coordinates). If f : R — [0,00] is a (Bpa,B)-
measurable function then

frw)rd=t drdo(w). (9.35)

(0,00) x §4—1

[ t@dm(z) -

In particular if f: Ry — Ry is measurable then

[ #alida = [ T v (9.36)
R 0

where V(r) = m (B(0,7)) = r%m (B(0,1)) = d" o (Sd_1> re.
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Proof. By Exercise 7.9

/fdm: / (fod ) od dm =

R R\ {0} (0,00) x §4—1

(fod™ ") d(®.m) (9.37)

and therefore to prove Eq. (9.35)) we must work out the measure @,m on By )®
Bga-1 defined by

®.m(A) :=m (&7 (A)) V A € B(g,00) ® Bga-1. (9.38)
If A= (a,b] x E with0<a <band E € Bga-1, then
oY (A)={rw:r € (a,b] and w € E} = bE; \ aE;

wherein we have used E, = aF; in the last equality. Therefore by the basic
scaling properties of m and the fundamental theorem of calculus,

(Qp*m) ((CL, b] X E) =m (bEl \(IE1> = m(bEl) — m(aE1)
= bim(Ey) — a’m(E;) = d-m(Ey) /b i ldr.  (9.39)

a

Letting dp(r) = r¢~1dr, i.e.

o(J) / rldr T € Bg.ooy, (9.40)
J
Eq. may be written as
(@.m) ((a,6] x E) = p((a,b]) - 0(E) = (p© o) (a,b] x B).  (9.41)

Since
E={(a,b) x E:0<a<band F € Bga-1},

is a 7 class (in fact it is an elementary class) such that o(£) = B(g,o0) ® Bga-1,
it follows from the = — A Theorem and Eq. (9.41) that ®.m = p ® 0. Using this

result in Eq. (9.37) gives
/fdmz / (fod™) d(p®o)
Rd

(0,00)x Sd—1
which combined with Tonelli’s Theorem proves Eq. (9.37). ]
Corollary 9.30. The surface area o(S?~1) of the unit sphere ST~ C RY is
27r/2
§4=1) = 9.42

where I is the gamma function is as in Example[7]5 and [T]8

Page: 115 job: prob

9.7 More Spherical Coordinates 115
Proof. Using Theorem we find

Id(l):/o dr rite=" / da:U(Sdfl)/O rd=te=" dr.
Sd—1

We simplify this last integral by making the change of variables u = 72 so that
r=u!? and dr = Ju~'/2du. The result is

o0 2 R 1
/ pd=le=r dr:/ wT e v a2y
0 0 2
* [ - 1
=- u2 e “du= -I'(d/2). (9.43)
2 Jo 2

Combing the the last two equations with Lemma which states that I;(1) =
742 we conclude that

7?2 = I,(1) = %J(Sd_l)F(d/Q)

which proves Eq. (9.42). ]

9.7 More Spherical Coordinates

In this section we will define spherical coordinates in all dimensions. Along
the way we will develop an explicit method for computing surface integrals on
spheres. As usual when n = 2 define spherical coordinates (r,6) € (0,00) X

[0,27) so that
z1\ (rcosf\
(1:2) o (TSin@) =T2(6,7)-

For n = 3 we let z3 = rcos 1 and then

<$1> = T5(0,rsinpq),

T2

as can be seen from Figure so that

z | = reos s rsing;sinf | =: T3(0, 1,7, ).

T (Tg(@,rsingal)) - 7 sin @1 cos 6
7 COS (1

zs3

We continue to work inductively this way to define
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116 9 Multiple and Iterated Integrals

Fig. 9.6. Setting up polar coordinates in two and three dimensions.

Ty
Tn(0,01,. .., n_o,Tsin@,_1,)
= ’ ’ ’ =T 0,01,y Pn_2,0n_1,T).
- ( T COS 1 nt1(0, 01 On—2,Pn-1,T)
Tn+1
So for example,
T1 = 78in g sin ¢ cos
To = 78in g sin 1 sin 6
T3 = rsin 2 cos Y1
T4 = T COS P2
and more generally,
T1 = rsinw,_g...sinp;sin p; cos
To = T8N Y,_2 .. .sin Py sin g sin
T3 = 7rSin(,_o...Sin s cos Y1
Tp—o = T8Ny _9SiN (3 COS Py _4
Tp—1 = T8I0 Q2 COS Pp_3
Ty = T COS Pp_2. (9.44)
By the change of variables formula,
f(z)dm(z)
RTL
= An(0, 015 pn—2,7)
= d?"/ dor...dpn_odf | TN I RS
/o 0<pi<mozo<an X f(Ta(b: 01, onm2 1))
(9.45)
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where
An(ea Py Pn—2, T) = |det Tv/l(97 P11y Pn—2, T)l .
Proposition 9.31. The Jacobian, A, is given by
A0, 01, .. Pr_a,T) = " lsin™ 2 @, _o...sin? gy sing;. (9.46)

If f is a function on rS™ ! — the sphere of radius v centered at 0 inside of R™,
then

[ sty =t [ et

= / f(Tn(aa PLs--5Pn—2, T))ATL(97 P15 Pn—2, r)d<p1 cee d(pn—QdG
0<p; <m,0<0<2m
(9.47)

Proof. We are going to compute A, inductively. Letting p := rsing,_1

and writing 887;" for 88T§" (0,01, .., 0n—2,p) we have
An+1 (97§01a ey Pn—2,Pn—1, T)
_ 3622" gg’; 76)2?; a8Tp"rcos ©On—1 ng, sin @n—1
0O 0 ... 0 —7rsinY,_1 COS Pr—1

=1 (cos® pp_1 +sin® vn_1) An(,0,91,. .., Pn2,p)
=rA,0,01,. .., n_2,TSINE, 1),

i.e.

Api1(0,01, -y 0n—2,0n-1,7) =14,(0,01,. ., Pn_o,rsinp,_1). (9.48)

To arrive at this result we have expanded the determinant along the bottom
row. Staring with Ag(6,r) = r already derived in Example Eq. (9.48)

implies,
2

As(0,p1,7) = rAz(0,rsingy) = r°sing

Ay(0, 01, 02,7) =1A3(0, 01,780 pg) = 3 sin? g sin @y

 Pn_g,r) =11 sin™ 2

A0, 01, ... On_s...sin? pg sin ¢y
which proves Eq. (9.46]). Equation (9.47) now follows from Egs. (9.35]), (9.45)
and (9.46)). ]
As a simple application, Eq. (9.47) implies
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0(5’”_1) = / Sin" "2 o ...sin% @ sin p1dp; . .. de,_odf
0<p; <m,0<0<27

n—2

=27 H Y = (8™ %) Y2 (9.49)
k=1

where v, := foﬂ sin® pdp. If k> 1, we have by integration by parts that,

s s ™
Vi = / sin® pdp = f/ sin* 1 dcosp = 20,1 + (k — 1)/ sinf =2 ¢ cos? pdp
0 0 0

=201+ (k— 1)/ sin® 2 ¢ (1- sin? @) dp =201 + (k— 1) [yr—2 — V&]
0

and hence ~; satisfies 79 = 7, 71 = 2 and the recursion relation

k—1
Tk = T k2 for k > 2.

Hence we may conclude

_ o g i 2y 3L 42, 531
Yo =T, V1= 4 72_271—7 73_3 ) 74_427(-7 75_53 776_6427[-
and more generally by induction that
(2k — D! (2k)N
B O T e Y AN 1T
Indeed,
2k+2 C2k+2_ 0 (2K 5 [2(k + D))
T o L T Sy 3T 2k + DI 2k + 1) + DI
and
C2k+1 0 2k+1 (26D (264 D!
TN T o 1R T 2k 2T 2kt 2k + 2l
The recursion relation in Eq. (9.49) may be written as
a(S") =0 (S" ") Y1 (9.50)

which combined with ¢ (S*) = 27 implies
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o (Sl) = 2,
o(S8%) =2m -y =272,
1 2272
2272 22g2 2 2372
1 2 31 2373
5 - . .- —_ - —_ o —— P —
o(S°)=2mr-2 57 32 DRI

2 31 42 2473
6 _
and more generally that
2 (2m)" (2m)"
2n — d 2n+1 —_ 51
o) = G o oS = T (9:51)
which is verified inductively using Eq. (9.50)). Indeed,
202m)"  (2n-1I  (2m)"t!
2n+1 — 2n — =
(ST = o5 = B T @ 2n)!
and
n+1 " 9 (97)" 1
(n+1)y _ 2n+2y _ 2n+1 _ (2m) 9 (2n)! _ (2m)
o(ST) = o (S = o (ST ens = S5 2 G 1 @ng DN
Using

2n)'=2n(2(n—1))...(2-1) =2"n!

we may write o(S?"1) = # which shows that Eqs. (9.35) and (9.51|are in
agreement. We may also write the formula in Eq. (9.51) as

2(2m)"/2
o(s™) =3 "

% for n odd.

for n even

9.8 Exercises

Exercise 9.4. Prove Theorem Suggestion, to get started define

m (A) :—/deu(ml).../X dup () 1a (1, .. 20)

n

and then show Eq. (9.16) holds. Use the case of two factors as the model of
your proof.
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118 9 Multiple and Iterated Integrals

Exercise 9.5. Let (X;, M;, u;) for j = 1,2,3 be o — finite measure spaces. Let
F: (Xl X XQ) X X3 — X1 X XQ X X3 be defined by

F((w1,72),73) = (21,22, 73).

1. Show F is (M1 ® Ms) @ M3, M1 ® My ® M3) — measurable and F~! is
(Ml ® Moy ® Ms, (Ml X Mz) ® Mg) — measurable. That is

F: ((Xl X Xg) ><X3, (Ml ®M2)®M3) — (Xl XX2 ><X3,M1®M2®M3)

is a “measure theoretic isomorphism.”

2. Let m:= F, [(u1 ® p2) ® p3], ie. 7(A) = [(u1 @ p2) @ 3] (F~1(A)) for all
A e My @ Moy ® Ms. Then 7 is the unique measure on M; @ Mo ® M3
such that

m(Ar x Az x Az) = p1(Ar)p2(A2)ps(As)
for all A; € M;. We will write 7 := 1 ® po ® 3.

3. Let f: X1 x Xg x X3 — [0,00] be a (M1 @ Mg ® Mg, Bg) — measurable
function. Verify the identity,

/XlxeX;(S der/X3 Cl'u?’(:c?’)/x2 dﬂ2(12)/X1 dp(x1) f(z1, 2, 3),

makes sense and is correct.
4. (Optional.) Also show the above identity holds for any one of the six possible
orderings of the iterated integrals.

Exercise 9.6. Prove the second assertion of Theorem [9.19 That is show m¢?

is the unique translation invariant measure on Bga such that m<((0,1]%) = 1.
Hint: Look at the proof of Theorem [5.34]

Exercise 9.7. (Part of Folland Problem 2.46 on p. 69.) Let X = [0,1], M =
Bjg,1) be the Borel o — field on X, m be Lebesgue measure on [0, 1] and v be
counting measure, v(A) = #(A). Finally let D = {(z,2) € X?: 2 € X} be the
diagonal in X?2. Show

/X [ /X 1D(1'7y)dy(y)] dm(z) # /X [ /X lp(x,y)dm(x)} dv(y)

by explicitly computing both sides of this equation.

Exercise 9.8. Folland Problem 2.48 on p. 69. (Counter example related to
Fubini Theorem involving counting measures.)

Exercise 9.9. Folland Problem 2.50 on p. 69 pertaining to area under a curve.
(Note the M x Bg should be M ® Bz in this problem.)
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Exercise 9.10. Folland Problem 2.55 on p. 77. (Explicit integrations.)

Exercise 9.11. Folland Problem 2.56 on p. 77. Let f € L'((0,a),dm), g(z) =
fa @dt for z € (Oa Cl), show g e Ll((o, a),dm) and

/Oag(x)dx _ /Oaf(t)dt.

Exercise 9.12. Show [;° |#2%|dm(z) = oo. So #2& ¢ L([0,00),m) and
fooo SINZ g (z) is not defined as a Lebesgue integral.

Exercise 9.13. Folland Problem 2.57 on p. 77.

Exercise 9.14. Folland Problem 2.58 on p. 77.

Exercise 9.15. Folland Problem 2.60 on p. 77. Properties of the I" — function.
Exercise 9.16. Folland Problem 2.61 on p. 77. Fractional integration.

Exercise 9.17. Folland Problem 2.62 on p. 80. Rotation invariance of surface
measure on S™ L.

Exercise 9.18. Folland Problem 2.64 on p. 80. On the integrability of
|z|* [log |z||” for = near 0 and z near oo in R™.

Exercise 9.19. Show, using Problem that

/ wiwjda (w) = é&ijo (Sd_l) .
Sd—1

Hint: show [g, , wdo (w) is independent of i and therefore

d
1
2 2
/Sdil wido (w) = p JE:I /Sdil wido (w).
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