
Bruce K. Driver

Math 280 (Probability Theory) Lecture Notes

October 19, 2009 File:prob.tex



Contents

Part Homework Problems

-3 Math 280A Homework Problems Fall 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
-3.1 Homework 1. Due Wednesday, September 30, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
-3.2 Homework 2. Due Wednesday, October 7, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
-3.3 Homework 3. Due Wednesday, October 21, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
-3.4 Homework 4. Due Wednesday, October 28, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

-2 Math 280B Homework Problems Winter 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

-1 Math 280C Homework Problems Spring 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

0 Math 286 Homework Problems Spring 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Part I Background Material

1 Limsups, Liminfs and Extended Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Basic Probabilistic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Part II Formal Development

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Algebraic sub-structures of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



4 Contents

4 Finitely Additive Measures / Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Examples of Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Simple Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 The algebraic structure of simple functions* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Simple Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1 Appendix: Bonferroni Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Appendix: Riemann Stieljtes integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Simple Independence and the Weak Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.1 Product Measures and Fubini’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Simple Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Countably Additive Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 π – λ Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 A Density Result* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Construction of Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Radon Measures on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 A Discrete Kolmogorov’s Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Appendix: Regularity and Uniqueness Results* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 Appendix: Completions of Measure Spaces* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8 Appendix Monotone Class Theorems* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.2 Factoring Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Page: 4 job: prob macro: svmonob.cls date/time: 19-Oct-2009/7:30



Part

Homework Problems



-3

Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

-3.1 Homework 1. Due Wednesday, September 30, 2009

• Read over Chapter 1.
• Hand in Exercises 1.1, 1.2, and 1.3.

-3.2 Homework 2. Due Wednesday, October 7, 2009

• Look at Resnick, p. 20-27: 9, 12, 17, 19, 27, 30, 36, and Exercise 3.9 from
the lecture notes.

• Hand in Resnick, p. 20-27: 5, 18, 23, 40*, 41, and Exercise 4.1 from the
lecture notes.

*Notes on Resnick’s #40: (i) B ((0, 1]) should be B ([0, 1)) in the statement
of this problem, (ii) k is an integer, (iii) r ≥ 2.

-3.3 Homework 3. Due Wednesday, October 21, 2009

• Look at Lecture note Exercises; 4.7, 4.8, 4.9
• Hand in Resnick, p. 63–70; 7* and 13.
• Hand in Lecture note Exercises: 4.3, 4.4, 4.5, 4.6, 4.10 – 4.15.

*Hint: For #7 you might label the coupons as {1, 2, . . . , N} and let Ai be
the event that the collector does not have the ith – coupon after buying n -
boxes of cereal.

-3.4 Homework 4. Due Wednesday, October 28, 2009

• Look at Lecture note Exercises; 5.5, 5.10.

• Look at Resnick, p. 63–70; 5, 14, 16, 19
• Hand in Resnick, p. 63–70; 3, 6, 11
• Hand in Lecture note Exercises: 5.6 – 5.9.
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Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R̄ := R∪{±∞} , i.e. it
is R with two new points called ∞ and −∞. We use the following conventions,
±∞ · 0 = 0, ±∞ · a = ±∞ if a ∈ R with a > 0, ±∞ · a = ∓∞ if a ∈ R with
a < 0, ±∞+ a = ±∞ for any a ∈ R, ∞+∞ =∞ and −∞−∞ = −∞ while
∞−∞ is not defined. A sequence an ∈ R̄ is said to converge to ∞ (−∞) if for
all M ∈ R there exists m ∈ N such that an ≥M (an ≤M) for all n ≥ m.

Lemma 1.2. Suppose {an}∞n=1 and {bn}∞n=1 are convergent sequences in R̄,
then:

1. If an ≤ bn for1 a.a. n, then limn→∞ an ≤ limn→∞ bn.
2. If c ∈ R, then limn→∞ (can) = c limn→∞ an.
3. {an + bn}∞n=1 is convergent and

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn (1.1)

provided the right side is not of the form ∞−∞.
4. {anbn}∞n=1 is convergent and

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn (1.2)

provided the right hand side is not of the for ±∞ · 0 of 0 · (±∞) .

Before going to the proof consider the simple example where an = n and
bn = −αn with α > 0. Then

lim (an + bn) =

 ∞ if α < 1
0 if α = 1
−∞ if α > 1

while
lim
n→∞

an + lim
n→∞

bn“ = ”∞−∞.

This shows that the requirement that the right side of Eq. (1.1) is not of form
∞−∞ is necessary in Lemma 1.2. Similarly by considering the examples an = n

1 Here we use “a.a. n” as an abreviation for almost all n. So an ≤ bn a.a. n iff there
exists N <∞ such that an ≤ bn for all n ≥ N.

and bn = n−α with α > 0 shows the necessity for assuming right hand side of
Eq. (1.2) is not of the form ∞ · 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. (1.1). Let a := limn→∞ an and b = limn→∞ bn. Case 1., suppose
b = ∞ in which case we must assume a > −∞. In this case, for every M > 0,
there exists N such that bn ≥M and an ≥ a− 1 for all n ≥ N and this implies

an + bn ≥M + a− 1 for all n ≥ N.

Since M is arbitrary it follows that an + bn → ∞ as n → ∞. The cases where
b = −∞ or a = ±∞ are handled similarly. Case 2. If a, b ∈ R, then for every
ε > 0 there exists N ∈ N such that

|a− an| ≤ ε and |b− bn| ≤ ε for all n ≥ N.

Therefore,

|a+ b− (an + bn)| = |a− an + b− bn| ≤ |a− an|+ |b− bn| ≤ 2ε

for all n ≥ N. Since ε > 0 is arbitrary, it follows that limn→∞ (an + bn) = a+b.
Proof of Eq. (1.2). It will be left to the reader to prove the case where lim an

and lim bn exist in R. I will only consider the case where a = limn→∞ an 6= 0
and limn→∞ bn = ∞ here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let α := min

(
a
2 , 1
)
. Given any M < ∞, there exists

N ∈ N such that an ≥ α and bn ≥ M for all n ≥ N and for this choice of N,
anbn ≥ Mα for all n ≥ N. Since α > 0 is fixed and M is arbitrary it follows
that limn→∞ (anbn) =∞ as desired.

For any subset Λ ⊂ R̄, let supΛ and inf Λ denote the least upper bound and
greatest lower bound of Λ respectively. The convention being that supΛ = ∞
if ∞ ∈ Λ or Λ is not bounded from above and inf Λ = −∞ if −∞ ∈ Λ or Λ is
not bounded from below. We will also use the conventions that sup ∅ = −∞
and inf ∅ = +∞.

Notation 1.3 Suppose that {xn}∞n=1 ⊂ R̄ is a sequence of numbers. Then

lim inf
n→∞

xn = lim
n→∞

inf{xk : k ≥ n} and (1.3)

lim sup
n→∞

xn = lim
n→∞

sup{xk : k ≥ n}. (1.4)



14 1 Limsups, Liminfs and Extended Limits

We will also write lim for lim infn→∞ and lim for lim sup
n→∞

.

Remark 1.4. Notice that if ak := inf{xk : k ≥ n} and bk := sup{xk : k ≥
n}, then {ak} is an increasing sequence while {bk} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R̄ and

lim inf
n→∞

xn = sup
n

inf{xk : k ≥ n} and

lim sup
n→∞

xn = inf
n

sup{xk : k ≥ n}.

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {an}∞n=1 and {bn}∞n=1 be two sequences of real numbers.
Then

1. lim infn→∞ an ≤ lim sup
n→∞

an and limn→∞ an exists in R̄ iff

lim inf
n→∞

an = lim sup
n→∞

an ∈ R̄.

2. There is a subsequence {ank}∞k=1 of {an}∞n=1 such that limk→∞ ank =
lim sup
n→∞

an. Similarly, there is a subsequence {ank}∞k=1 of {an}∞n=1 such that

limk→∞ ank = lim infn→∞ an.
3.

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn (1.5)

whenever the right side of this equation is not of the form ∞−∞.
4. If an ≥ 0 and bn ≥ 0 for all n ∈ N, then

lim sup
n→∞

(anbn) ≤ lim sup
n→∞

an · lim sup
n→∞

bn, (1.6)

provided the right hand side of (1.6) is not of the form 0 · ∞ or ∞ · 0.

Proof. 1. Since

inf{ak : k ≥ n} ≤ sup{ak : k ≥ n} ∀n,

lim inf
n→∞

an ≤ lim sup
n→∞

an.

Now suppose that lim infn→∞ an = lim sup
n→∞

an = a ∈ R. Then for all ε > 0,

there is an integer N such that

a− ε ≤ inf{ak : k ≥ N} ≤ sup{ak : k ≥ N} ≤ a+ ε,

i.e.
a− ε ≤ ak ≤ a+ ε for all k ≥ N.

Hence by the definition of the limit, limk→∞ ak = a. If lim infn→∞ an = ∞,
then we know for all M ∈ (0,∞) there is an integer N such that

M ≤ inf{ak : k ≥ N}

and hence limn→∞ an =∞. The case where lim sup
n→∞

an = −∞ is handled simi-

larly.
Conversely, suppose that limn→∞ an = A ∈ R̄ exists. If A ∈ R, then for

every ε > 0 there exists N(ε) ∈ N such that |A− an| ≤ ε for all n ≥ N(ε), i.e.

A− ε ≤ an ≤ A+ ε for all n ≥ N(ε).

From this we learn that

A− ε ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A+ ε.

Since ε > 0 is arbitrary, it follows that

A ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an ≤ A,

i.e. that A = lim infn→∞ an = lim sup
n→∞

an. If A = ∞, then for all M > 0

there exists N = N(M) such that an ≥ M for all n ≥ N. This show that
lim infn→∞ an ≥M and since M is arbitrary it follows that

∞ ≤ lim inf
n→∞

an ≤ lim sup
n→∞

an.

The proof for the case A = −∞ is analogous to the A =∞ case.
2. – 4. The remaining items are left as an exercise to the reader. It may

be useful to keep the following simple example in mind. Let an = (−1)n and
bn = −an = (−1)n+1

. Then an + bn = 0 so that

0 = lim
n→∞

(an + bn) = lim inf
n→∞

(an + bn) = lim sup
n→∞

(an + bn)

while

lim inf
n→∞

an = lim inf
n→∞

bn = −1 and

lim sup
n→∞

an = lim sup
n→∞

bn = 1.

Thus in this case we have

Page: 14 job: prob macro: svmonob.cls date/time: 19-Oct-2009/7:30
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lim sup
n→∞

(an + bn) < lim sup
n→∞

an + lim sup
n→∞

bn and

lim inf
n→∞

(an + bn) > lim inf
n→∞

an + lim inf
n→∞

bn.

We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n ∈ N, {fn (i)}∞i=1

is a sequence in [0,∞] such that ↑ limn→∞ fn (i) = f (i) by which we mean
fn (i) ↑ f (i) as n→∞. Then

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

f (i) , i.e.

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

lim
n→∞

fn (i) .

We allow for the possibility that these expression may equal to +∞.

Proof. Let M :=↑ limn→∞
∑∞
i=1 fn (i) . As fn (i) ≤ f (i) for all n it follows

that
∑∞
i=1 fn (i) ≤

∑∞
i=1 f (i) for all n and therefore passing to the limit shows

M ≤
∑∞
i=1 f (i) . If N ∈ N we have,

N∑
i=1

f (i) =
N∑
i=1

lim
n→∞

fn (i) = lim
n→∞

N∑
i=1

fn (i) ≤ lim
n→∞

∞∑
i=1

fn (i) = M.

Letting N ↑ ∞ in this equation then shows
∑∞
i=1 f (i) ≤ M which completes

the proof.

Proposition 1.7 (Tonelli’s theorem for sums). If {akn}∞k,n=1 ⊂ [0,∞] ,
then

∞∑
k=1

∞∑
n=1

akn =
∞∑
n=1

∞∑
k=1

akn.

Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let SN (k) :=
∑N
n=1 akn, then by the MCT (Proposi-

tion 1.6),

lim
N→∞

∞∑
k=1

SN (k) =
∞∑
k=1

lim
N→∞

SN (k) =
∞∑
k=1

∞∑
n=1

akn.

On the other hand,

∞∑
k=1

SN (k) =
∞∑
k=1

N∑
n=1

akn =
N∑
n=1

∞∑
k=1

akn

so that

lim
N→∞

∞∑
k=1

SN (k) = lim
N→∞

N∑
n=1

∞∑
k=1

akn =
∞∑
n=1

∞∑
k=1

akn.

Second Proof. Let

M := sup

{
K∑
k=1

N∑
n=1

akn : K,N ∈ N

}
= sup

{
N∑
n=1

K∑
k=1

akn : K,N ∈ N

}

and

L :=
∞∑
k=1

∞∑
n=1

akn.

Since

L =
∞∑
k=1

∞∑
n=1

akn = lim
K→∞

K∑
k=1

∞∑
n=1

akn = lim
K→∞

lim
N→∞

K∑
k=1

N∑
n=1

akn

and
∑K
k=1

∑N
n=1 akn ≤M for all K and N, it follows that L ≤M. Conversely,

K∑
k=1

N∑
n=1

akn ≤
K∑
k=1

∞∑
n=1

akn ≤
∞∑
k=1

∞∑
n=1

akn = L

and therefore taking the supremum of the left side of this inequality over K
and N shows that M ≤ L. Thus we have shown

∞∑
k=1

∞∑
n=1

akn = M.

By symmetry (or by a similar argument), we also have that
∑∞
n=1

∑∞
k=1 akn =

M and hence the proof is complete.
You are asked to prove the next three results in the exercises.

Proposition 1.8 (Fubini for sums). Suppose {akn}∞k,n=1 ⊂ R such that

∞∑
k=1

∞∑
n=1

|akn| =
∞∑
n=1

∞∑
k=1

|akn| <∞.

Then
∞∑
k=1

∞∑
n=1

akn =
∞∑
n=1

∞∑
k=1

akn.
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Example 1.9 (Counter example). Let {Smn}∞m,n=1 be any sequence of complex
numbers such that limm→∞ Smn = 1 for all n and limn→∞ Smn = 0 for all n.
For example, take Smn = 1m≥n + 1

n1m<n. Then define {aij}∞i,j=1 so that

Smn =
m∑
i=1

n∑
j=1

aij .

Then
∞∑
i=1

∞∑
j=1

aij = lim
m→∞

lim
n→∞

Smn = 0 6= 1 = lim
n→∞

lim
m→∞

Smn =
∞∑
j=1

∞∑
i=1

aij .

To find aij , set Smn = 0 if m = 0 or n = 0, then

Smn − Sm−1,n =
n∑
j=1

amj

and

amn = Smn − Sm−1,n − (Sm,n−1 − Sm−1,n−1)
= Smn − Sm−1,n − Sm,n−1 + Sm−1,n−1.

Proposition 1.10 (Fatou’s Lemma for sums). Suppose that for each n ∈ N,
{hn (i)}∞i=1 is any sequence in [0,∞] , then

∞∑
i=1

lim inf
n→∞

hn (i) ≤ lim inf
n→∞

∞∑
i=1

hn (i) .

The next proposition is referred to as the dominated convergence theorem
(DCT for short) for sums.

Proposition 1.11 (DCT for sums). Suppose that for each n ∈ N,
{fn (i)}∞i=1 ⊂ R is a sequence and {gn (i)}∞i=1 is a sequence in [0,∞) such that;

1.
∑∞
i=1 gn (i) <∞ for all n,

2. f (i) = limn→∞ fn (i) and g (i) := limn→∞ gn (i) exists for each i,
3. |fn (i)| ≤ gn (i) for all i and n,
4. limn→∞

∑∞
i=1 gn (i) =

∑∞
i=1 g (i) <∞.

Then

lim
n→∞

∞∑
i=1

fn (i) =
∞∑
i=1

lim
n→∞

fn (i) =
∞∑
i=1

f (i) .

(Often this proposition is used in the special case where gn = g for all n.)

Exercise 1.1. Prove Proposition 1.8. Hint: Let a+
kn := max (akn, 0) and a−kn =

max (−akn, 0) and observe that; akn = a+
kn − a

−
kn and

∣∣a+
kn

∣∣ +
∣∣a−kn∣∣ = |akn| .

Now apply Proposition 1.7 with akn replaced by a+
kn and a−kn.

Exercise 1.2. Prove Proposition 1.10. Hint: apply the MCT by applying the
monotone convergence theorem with fn (i) := infm≥n hm (i) .

Exercise 1.3. Prove Proposition 1.11. Hint: Apply Fatou’s lemma twice. Once
with hn (i) = gn (i) + fn (i) and once with hn (i) = gn (i)− fn (i) .
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2

Basic Probabilistic Notions

Definition 2.1. A sample space Ω is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, Ω = {0, 1} .

2. The sample space for flipping a coin N -times could be taken to be, Ω =
{0, 1}N and for flipping an infinite number of times,

Ω = {ω = (ω1, ω2, . . . ) : ωi ∈ {0, 1}} = {0, 1}N .

3. If we have a roulette wheel with 38 entries, then we might take

Ω = {00, 0, 1, 2, . . . , 36}

for one spin,
Ω = {00, 0, 1, 2, . . . , 36}N

for N spins, and
Ω = {00, 0, 1, 2, . . . , 36}N

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

Ω = DR :=
{

(x, y) ∈ R2 : x2 + y2 ≤ R
}

for one throw,
Ω = DN

R

for N throws, and
Ω = DN

R

for an infinite number of throws.
5. Suppose we release a perfume particle at location x ∈ R3 and follow its

motion for all time, 0 ≤ t <∞. In this case, we might take,

Ω =
{
ω ∈ C ([0,∞) ,R3) : ω (0) = x

}
.

Definition 2.3. An event, A, is a subset of Ω. Given A ⊂ Ω we also define
the indicator function of A by

1A (ω) :=
{

1 if ω ∈ A
0 if ω /∈ A.

Example 2.4. Suppose that Ω = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here ωn = 1 represents the fact that a head was
thrown on the nth – toss, while ωn = 0 represents a tail on the nth – toss.

1. A = {ω ∈ Ω : ω3 = 1} represents the event that the third toss was a head.
2. A = ∪∞i=1 {ω ∈ Ω : ωi = ωi+1 = 1} represents the event that (at least) two

heads are tossed twice in a row at some time.
3. A = ∩∞N=1 ∪n≥N {ω ∈ Ω : ωn = 1} is the event where there are infinitely

many heads tossed in the sequence.
4. A = ∪∞N=1 ∩n≥N {ω ∈ Ω : ωn = 1} is the event where heads occurs from

some time onwards, i.e. ω ∈ A iff there exists, N = N (ω) such that ωn = 1
for all n ≥ N.

Ideally we would like to assign a probability, P (A) , to all events A ⊂ Ω.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, ω (n) ∈ Ω for each n ∈ N,
then try to “define” P (A) by

P (A) = lim
N→∞

1
N

N∑
k=1

1A (ω (k)) (2.1)

= lim
N→∞

1
N

# {1 ≤ k ≤ N : ω (k) ∈ A} . (2.2)
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That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {ω (k)}∞k=1 .

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we know that B has occurred. Thus we would
like to compute:

P (A|B) = lim
N→∞

# {k : 1 ≤ k ≤ N and ωk ∈ A ∩B}
# {k : 1 ≤ k ≤ N and ωk ∈ B}

,

which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

P (A|B) = lim
N→∞

1
N# {k : 1 ≤ k ≤ N and ωk ∈ A ∩B}

1
N# {k : 1 ≤ k ≤ N and ωk ∈ B}

=
P (A ∩B)
P (B)

.

Definition 2.5. If B is a non-null event, i.e. P (B) > 0, define the condi-
tional probability of A given B by,

P (A|B) :=
P (A ∩B)
P (B)

.

There are of course a number of problems with this definition of P in Eq.
(2.1) including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P (A) ∈ [0, 1] for all A ⊂ Ω.
2. P (∅) = 0 and P (Ω) = 1.
3. Additivity. If A and B are disjoint event, i.e. A ∩ B = AB = ∅, then

1A∪B = 1A + 1B so that

P (A ∪B) = lim
N→∞

1
N

N∑
k=1

1A∪B (ω (k)) = lim
N→∞

1
N

N∑
k=1

[1A (ω (k)) + 1B (ω (k))]

= lim
N→∞

[
1
N

N∑
k=1

1A (ω (k)) +
1
N

N∑
k=1

1B (ω (k))

]
= P (A) + P (B) .

4. Countable Additivity. If {Aj}∞j=1 are pairwise disjoint events (i.e. Aj ∩
Ak = ∅ for all j 6= k), then again, 1∪∞j=1Aj

=
∑∞
j=1 1Aj and therefore we

might hope that,

P
(
∪∞j=1Aj

)
= lim
N→∞

1
N

N∑
k=1

1∪∞j=1Aj
(ω (k)) = lim

N→∞

1
N

N∑
k=1

∞∑
j=1

1Aj (ω (k))

= lim
N→∞

∞∑
j=1

1
N

N∑
k=1

1Aj (ω (k))

?=
∞∑
j=1

lim
N→∞

1
N

N∑
k=1

1Aj (ω (k)) (by a leap of faith)

=
∞∑
j=1

P (Aj) .

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every ω ∈ Ω is equally likely, i.e. P ({ω}) = 1

2N
.

Assuming this we are then forced to define

P (A) =
1

2N
# (A) .

Observe that this probability has the following property. Suppose that σ ∈
{0, 1}k is a given sequence, then

P ({ω : (ω1, . . . , ωk) = σ}) =
1

2N
· 2N−k =

1
2k
.

That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Example 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now Ω = {0, 1}N , then we should define

P ({ω ∈ Ω : (ω1, . . . , ωk) = σ}) =
1
2k

(2.3)

for any k ≥ 1 and σ ∈ {0, 1}k . Assuming there exists a probability, P : 2Ω →
[0, 1] such that Eq. (2.3) holds, we would like to compute, for example, the
probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

An = {ω ∈ Ω : ωn = 1} = {heads at time n}
BN := ∪n≥NAn = {at least one heads at time N or later}

and
B = ∩∞N=1BN = {An i.o.} = ∩∞N=1 ∪n≥N An.

Since
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BcN = ∩n≥NAcn ⊂ ∩M≥n≥NAcn = {ω ∈ Ω : ωN = ωN+1 = · · · = ωM = 0} ,

we see that
P (BcN ) ≤ 1

2M−N
→ 0 as M →∞.

Therefore, P (BN ) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using BN ↓ B, that

P (B) = lim
N→∞

P (BN ) = 1.

Without this continuity assumption we would not be able to compute P (B) .

The unfortunate fact is that we can not always assign a desired probability
function, P (A) , for all A ⊂ Ω. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z ∈ C : |z| = 1} be the unit cir-
cle. Then there is no probability function, P : 2S → [0, 1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limits.

Proof. We are going to use the fact proved below in Proposition 5.3, that
the continuity condition on P is equivalent to the σ – additivity of P. For z ∈ S
and N ⊂ S let

zN := {zn ∈ S : n ∈ N}, (2.4)

that is to say eiθN is the set N rotated counter clockwise by angle θ. By
assumption, we are supposing that

P (zN) = P (N) (2.5)

for all z ∈ S and N ⊂ S.
Let

R := {z = ei2πt : t ∈ Q} = {z = ei2πt : t ∈ [0, 1) ∩Q}

– a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z, w ∈ S are equivalent if z = rw for some
r ∈ R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N ⊂ S be the set of these representative
points. Then every point z ∈ S may be uniquely written as z = nr with n ∈ N
and r ∈ R. That is to say

S =
∑
r∈R

(rN) (2.6)

where
∑
αAα is used to denote the union of pair-wise disjoint sets {Aα} . By

Eqs. (2.5) and (2.6),

1 = P (S) =
∑
r∈R

P (rN) =
∑
r∈R

P (N). (2.7)

We have thus arrived at a contradiction, since the right side of Eq. (2.7) is either
equal to 0 or to ∞ depending on whether P (N) = 0 or P (N) > 0.

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2Ω . So we are going to only define P on
particular subsets, B ⊂ 2Ω . We will developed this below.
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3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, N0 := N∪{0} be the non-negative integers
and Z = N0 ∪ (−N) – the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let Y X denote the collection of all
functions f : X → Y. If X = N, we will say that f ∈ Y N is a sequence
with values in Y and often write fn for f (n) and express f as {fn}∞n=1 . If
X = {1, 2, . . . , N}, we will write Y N in place of Y {1,2,...,N} and denote f ∈ Y N
by f = (f1, f2, . . . , fN ) where fn = f(n).

Notation 3.2 More generally if {Xα : α ∈ A} is a collection of non-empty sets,
let XA =

∏
α∈A

Xα and πα : XA → Xα be the canonical projection map defined

by πα(x) = xα. If If Xα = X for some fixed space X, then we will write
∏
α∈A

Xα

as XA rather than XA.

Recall that an element x ∈ XA is a “choice function,” i.e. an assignment
xα := x(α) ∈ Xα for each α ∈ A. The axiom of choice states that XA 6= ∅
provided that Xα 6= ∅ for each α ∈ A.

Notation 3.3 Given a set X, let 2X denote the power set of X – the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2X is that if we think of 2
meaning {0, 1} , then an element of a ∈ 2X = {0, 1}X is completely determined
by the set

A := {x ∈ X : a(x) = 1} ⊂ X.

In this way elements in {0, 1}X are in one to one correspondence with subsets
of X.

For A ∈ 2X let
Ac := X \A = {x ∈ X : x /∈ A}

and more generally if A,B ⊂ X let

B \A := {x ∈ B : x /∈ A} = B ∩Ac.

We also define the symmetric difference of A and B by

A4B := (B \A) ∪ (A \B) .

As usual if {Aα}α∈I is an indexed collection of subsets of X we define the union
and the intersection of this collection by

∪α∈IAα := {x ∈ X : ∃ α ∈ I 3 x ∈ Aα} and
∩α∈IAα := {x ∈ X : x ∈ Aα ∀ α ∈ I }.

Notation 3.4 We will also write
∑
α∈I Aα for ∪α∈IAα in the case that

{Aα}α∈I are pairwise disjoint, i.e. Aα ∩Aβ = ∅ if α 6= β.

Notice that ∪ is closely related to ∃ and ∩ is closely related to ∀. For example
let {An}∞n=1 be a sequence of subsets from X and define

inf
k≥n

An := ∩k≥nAk,

sup
k≥n

An := ∪k≥nAk,

lim sup
n→∞

An := {An i.o.} := {x ∈ X : # {n : x ∈ An} =∞}

and
lim inf
n→∞

An := {An a.a.} := {x ∈ X : x ∈ An for all n sufficiently large}.

(One should read {An i.o.} as An infinitely often and {An a.a.} as An almost
always.) Then x ∈ {An i.o.} iff

∀N ∈ N ∃ n ≥ N 3 x ∈ An

and this may be expressed as

{An i.o.} = ∩∞N=1 ∪n≥N An.

Similarly, x ∈ {An a.a.} iff

∃ N ∈ N 3 ∀ n ≥ N, x ∈ An

which may be written as

{An a.a.} = ∪∞N=1 ∩n≥N An.
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Definition 3.5. Given a set A ⊂ X, let

1A (x) =
{

1 if x ∈ A
0 if x /∈ A

be the indicator function of A.

Lemma 3.6. We have:

1. (∪nAn)c = ∩nAcn,
2. {An i.o.}c = {Acn a.a.} ,
3. lim sup

n→∞
An = {x ∈ X :

∑∞
n=1 1An (x) =∞} ,

4. lim infn→∞An =
{
x ∈ X :

∑∞
n=1 1Acn (x) <∞

}
,

5. supk≥n 1Ak (x) = 1∪k≥nAk = 1supk≥n Ak ,
6. infk≥n 1Ak (x) = 1∩k≥nAk = 1infk≥n Ak ,
7. 1lim sup

n→∞
An = lim sup

n→∞
1An , and

8. 1lim infn→∞ An = lim infn→∞ 1An .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f : X → N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

1. If A ⊂ X is a subset of a countable set X then A is countable.
2. Any infinite subset Λ ⊂ N is in one to one correspondence with N.
3. A non-empty set X is countable iff there exists a surjective map, g : N→ X.
4. If X and Y are countable then X × Y is countable.
5. Suppose for each m ∈ N that Am is a countable subset of a set X, then
A = ∪∞m=1Am is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then Y X

is uncountable. In particular 2X is uncountable for any infinite set X.

Proof. 1. If f : X → N is an injective map then so is the restriction, f |A,
of f to the subset A. 2. Let f (1) = minΛ and define f inductively by

f(n+ 1) = min (Λ \ {f(1), . . . , f(n)}) .

Since Λ is infinite the process continues indefinitely. The function f : N → Λ
defined this way is a bijection.

3. If g : N→ X is a surjective map, let

f(x) = min g−1 ({x}) = min {n ∈ N : f(n) = x} .

Then f : X → N is injective which combined with item

2. (taking Λ = f(X)) shows X is countable. Conversely if f : X → N is
injective let x0 ∈ X be a fixed point and define g : N → X by g(n) = f−1(n)
for n ∈ f (X) and g(n) = x0 otherwise.

4. Let us first construct a bijection, h, from N to N×N. To do this put the
elements of N× N into an array of the form

(1, 1) (1, 2) (1, 3) . . .
(2, 1) (2, 2) (2, 3) . . .
(3, 1) (3, 2) (3, 3) . . .

...
...

...
. . .


and then “count” these elements by counting the sets {(i, j) : i+ j = k} one
at a time. For example let h (1) = (1, 1) , h(2) = (2, 1), h (3) = (1, 2), h(4) =
(3, 1), h(5) = (2, 2), h(6) = (1, 3) and so on. If f : N→X and g : N→Y are
surjective functions, then the function (f × g) ◦ h : N→X × Y is surjective
where (f × g) (m,n) := (f (m), g(n)) for all (m,n) ∈ N× N.

5. If A = ∅ then A is countable by definition so we may assume A 6= ∅.
With out loss of generality we may assume A1 6= ∅ and by replacing Am by
A1 if necessary we may also assume Am 6= ∅ for all m. For each m ∈ N let
am : N→Am be a surjective function and then define f : N×N→ ∪∞m=1Am by
f(m,n) := am(n). The function f is surjective and hence so is the composition,
f ◦ h : N→ ∪∞m=1Am, where h : N→ N× N is the bijection defined above.

6. Let us begin by showing 2N = {0, 1}N is uncountable. For sake of
contradiction suppose f : N → {0, 1}N is a surjection and write f (n) as
(f1 (n) , f2 (n) , f3 (n) , . . . ) . Now define a ∈ {0, 1}N by an := 1 − fn(n). By
construction fn (n) 6= an for all n and so a /∈ f (N) . This contradicts the as-
sumption that f is surjective and shows 2N is uncountable. For the general
case, since Y X0 ⊂ Y X for any subset Y0 ⊂ Y, if Y X0 is uncountable then so
is Y X . In this way we may assume Y0 is a two point set which may as well
be Y0 = {0, 1} . Moreover, since X is an infinite set we may find an injective
map x : N → X and use this to set up an injection, i : 2N → 2X by setting
i (A) := {xn : n ∈ N} ⊂ X for all A ⊂ N. If 2X were countable we could find
a surjective map f : 2X → N in which case f ◦ i : 2N → N would be surjec-
tive as well. However this is impossible since we have already seed that 2N is
uncountable.

3.2 Exercises

Let f : X → Y be a function and {Ai}i∈I be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (∩i∈IAi)c = ∪i∈IAci .
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Exercise 3.2. Suppose that B ⊂ Y, show that B \ (∪i∈IAi) = ∩i∈I(B \Ai).

Exercise 3.3. f−1(∪i∈IAi) = ∪i∈If−1(Ai).

Exercise 3.4. f−1(∩i∈IAi) = ∩i∈If−1(Ai).

Exercise 3.5. Find a counterexample which shows that f(C ∩ D) = f(C) ∩
f(D) need not hold.

Example 3.9. Let X = {a, b, c} and Y = {1, 2} and define f (a) = f (b) = 1
and f (c) = 2. Then ∅ = f ({a} ∩ {b}) 6= f ({a}) ∩ f ({b}) = {1} and {1, 2} =
f ({a}c) 6= f ({a})c = {2} .

3.3 Algebraic sub-structures of sets

Definition 3.10. A collection of subsets A of a set X is a π – system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.11. A collection of subsets A of a set X is an algebra (Field)
if

1. ∅, X ∈ A
2. A ∈ A implies that Ac ∈ A
3. A is closed under finite unions, i.e. if A1, . . . , An ∈ A then A1∪· · ·∪An ∈ A.

In view of conditions 1. and 2., 3. is equivalent to
3′. A is closed under finite intersections.

Definition 3.12. A collection of subsets B of X is a σ – algebra (or some-
times called a σ – field) if B is an algebra which also closed under countable
unions, i.e. if {Ai}∞i=1 ⊂ B, then ∪∞i=1Ai ∈ B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)

Example 3.13. Here are some examples of algebras.

1. B = 2X , then B is a σ – algebra.
2. B = {∅, X} is a σ – algebra called the trivial σ – field.
3. Let X = {1, 2, 3}, then A = {∅, X, {1} , {2, 3}} is an algebra while, S :=
{∅, X, {2, 3}} is a not an algebra but is a π – system.

Proposition 3.14. Let E be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and σ – algebra σ(E) which contains E .

Proof. Simply take

A(E) :=
⋂
{A : A is an algebra such that E ⊂ A}

and
σ(E) :=

⋂
{M :M is a σ – algebra such that E ⊂M}.

Example 3.15. Suppose X = {1, 2, 3} and E = {∅, X, {1, 2}, {1, 3}}, see Figure
3.1. Then

Fig. 3.1. A collection of subsets.

A(E) = σ(E) = 2X .

On the other hand if E = {{1, 2}} , then A (E) = {∅, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that Ei ⊂ 2X for i = 1, 2. Show that A (E1) = A (E2)
iff E1 ⊂ A (E2) and E2 ⊂ A (E1) . Similarly show, σ (E1) = σ (E2) iff E1 ⊂ σ (E2)
and E2 ⊂ σ (E1) . Give a simple example where A (E1) = A (E2) while E1 6= E2.

In this course we will often be interested in the Borel σ – algebra on a
topological space.

Definition 3.16 (Borel σ – field). The Borel σ – algebra, B = BR =
B (R) , on R is the smallest σ -field containing all of the open subsets of R.
More generally if (X, τ) is a topological space, the Borel σ – algebra on X is
BX := σ (τ) – i.e. the smallest σ – algebra containing all open (closed) subsets
of X.
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Exercise 3.7. Verify the Borel σ – algebra, BR, is generated by any of the
following collection of sets:

1. {(a,∞) : a ∈ R} , 2. {(a,∞) : a ∈ Q} or 3. {[a,∞) : a ∈ Q} .

Hint: make use of Exercise 3.6.

We will postpone a more in depth study of σ – algebras until later. For now,
let us concentrate on understanding the the simpler notion of an algebra.

Definition 3.17. Let X be a set. We say that a family of sets F ⊂ 2X is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F .

Example 3.18. Let X be a set and E = {A1, . . . , An} where A1, . . . , An is a
partition of X. In this case

A(E) = σ(E) = {∪i∈ΛAi : Λ ⊂ {1, 2, . . . , n}}

where ∪i∈ΛAi := ∅ when Λ = ∅. Notice that

# (A(E)) = #(2{1,2,...,n}) = 2n.

Example 3.19. Suppose that X is a set and that A ⊂ 2X is a finite algebra, i.e.
# (A) <∞. For each x ∈ X let

Ax = ∩{A ∈ A : x ∈ A} ∈ A,

wherein we have used A is finite to insure Ax ∈ A. Hence Ax is the smallest set
in A which contains x.

Now suppose that y ∈ X. If x ∈ Ay then Ax ⊂ Ay so that Ax ∩ Ay = Ax.
On the other hand, if x /∈ Ay then x ∈ Ax \Ay and therefore Ax ⊂ Ax \Ay, i.e.
Ax ∩ Ay = ∅. Therefore we have shown, either Ax ∩ Ay = ∅ or Ax ∩ Ay = Ax.
By reversing the roles of x and y it also follows that either Ay ∩ Ax = ∅ or
Ay ∩Ax = Ay. Therefore we may conclude, either Ax = Ay or Ax ∩Ay = ∅ for
all x, y ∈ X.

Let us now define {Bi}ki=1 to be an enumeration of {Ax}x∈X . It is a straight-
forward to conclude that

A = {∪i∈ΛBi : Λ ⊂ {1, 2, . . . , k}} .

For example observe that for any A ∈ A, we have A = ∪x∈AAx = ∪i∈ΛBi where
Λ := {i : Bi ⊂ A} .

Proposition 3.20. Suppose that B ⊂ 2X is a σ – algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F ⊂ B and every element B ∈ B is of the form

B = ∪{A ∈ F : A ⊂ B} . (3.1)

In particular B is actually a finite set and # (B) = 2n for some n ∈ N.

Proof. We proceed as in Example 3.19. For each x ∈ X let

Ax = ∩{A ∈ B : x ∈ A} ∈ B,

wherein we have used B is a countable σ – algebra to insure Ax ∈ B. Just as
above either Ax ∩Ay = ∅ or Ax = Ay and therefore F = {Ax : x ∈ X} ⊂ B is a
(necessarily countable) partition of X for which Eq. (3.1) holds for all B ∈ B.

Enumerate the elements of F as F = {Pn}Nn=1 where N ∈ N or N = ∞. If
N =∞, then the correspondence

a ∈ {0, 1}N → Aa = ∪{Pn : an = 1} ∈ B

is bijective and therefore, by Lemma 3.8, B is uncountable. Thus any countable
σ – algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader.

Example 3.21 (Countable/Co-countable σ – Field). Let X = R and E :=
{{x} : x ∈ R} . Then σ (E) consists of those subsets, A ⊂ R, such that A is
countable or Ac is countable. Similarly, A (E) consists of those subsets, A ⊂ R,
such that A is finite or Ac is finite. More generally we have the following exercise.

Exercise 3.8. Let X be a set, I be an infinite index set, and E = {Ai}i∈I be a
partition of X. Prove the algebra, A (E) , and that σ – algebra, σ (E) , generated
by E are given by

A(E) = {∪i∈ΛAi : Λ ⊂ I with # (Λ) <∞ or # (Λc) <∞}

and
σ(E) = {∪i∈ΛAi : Λ ⊂ I with Λ countable or Λc countable}

respectively. Here we are using the convention that ∪i∈ΛAi := ∅ when Λ = ∅.
In particular if I is countable, then

σ(E) = {∪i∈ΛAi : Λ ⊂ I} .

Proposition 3.22. Let X be a set and E ⊂ 2X . Let Ec := {Ac : A ∈ E} and
Ec := E ∪ {X, ∅} ∪ Ec Then

A(E) := {finite unions of finite intersections of elements from Ec}. (3.2)
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Proof. Let A denote the right member of Eq. (3.2). From the definition of
an algebra, it is clear that E ⊂ A ⊂ A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z ∈ A be expressed as

Z =
N⋃
i=1

K⋂
j=1

Aij

where Aij ∈ Ec. Therefore, writing Bij = Acij ∈ Ec, we find that

Zc =
N⋂
i=1

K⋃
j=1

Bij =
K⋃

j1,...,jN=1

(B1j1 ∩B2j2 ∩ · · · ∩BNjN ) ∈ A

wherein we have used the fact that B1j1∩B2j2∩· · ·∩BNjN is a finite intersection
of sets from Ec.

Remark 3.23. One might think that in general σ(E) may be described as the
countable unions of countable intersections of sets in Ec. However this is in
general false, since if

Z =
∞⋃
i=1

∞⋂
j=1

Aij

with Aij ∈ Ec, then

Zc =
∞⋃

j1=1,j2=1,...jN=1,...

( ∞⋂
`=1

Ac`,j`

)

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe σ(E), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition 3.20.

Exercise 3.9. Let τ be a topology on a set X and A = A(τ) be the algebra
generated by τ. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F ∩ V where F is closed and V is open.

Solution to Exercise (3.9). In this case τc is the collection of sets which are
either open or closed. Now if Vi ⊂o X and Fj @ X for each j, then (∩ni=1Vi) ∩(
∩mj=1Fj

)
is simply a set of the form V ∩F where V ⊂o X and F @ X. Therefore

the result is an immediate consequence of Proposition 3.22.

Definition 3.24. A set S ⊂ 2X is said to be an semialgebra or elementary
class provided that

• ∅ ∈ S
• S is closed under finite intersections
• if E ∈ S, then Ec is a finite disjoint union of sets from S. (In particular

X = ∅c is a finite disjoint union of elements from S.)

Proposition 3.25. Suppose S ⊂ 2X is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. (Although it is possible to give a proof using Proposition 3.22, it is
just as simple to give a direct proof.) Let A denote the collection of sets which
may be written as finite disjoint unions of sets from S. Clearly S ⊂ A ⊂ A(S) so
it suffices to show A is an algebra since A(S) is the smallest algebra containing
S. By the properties of S, we know that ∅, X ∈ A. The following two steps now
finish the proof.

1. (A is closed under finite intersections.) Suppose that Ai =
∑
F∈Λi F ∈ A

where, for i = 1, 2, . . . , n, Λi is a finite collection of disjoint sets from S. Then

n⋂
i=1

Ai =
n⋂
i=1

(∑
F∈Λi

F

)
=

⋃
(F1,,...,Fn)∈Λ1×···×Λn

(F1 ∩ F2 ∩ · · · ∩ Fn)

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections.

2. (A is closed under complementation.) IfA =
∑
F∈Λ F with Λ being a finite

collection of disjoint sets from S, then Ac =
⋂
F∈Λ F

c. Since, by assumption,
F c ∈ A for all F ∈ Λ ⊂ S and A is closed under finite intersections by step 1.,
it follows that Ac ∈ A.

Example 3.26. Let X = R, then

S :=
{

(a, b] ∩ R : a, b ∈ R̄
}

= {(a, b] : a ∈ [−∞,∞) and a < b <∞} ∪ {∅,R}

is a semi-field. The algebra, A(S), generated by S consists of finite disjoint
unions of sets from S. For example,

A = (0, π] ∪ (2π, 7] ∪ (11,∞) ∈ A (S) .

Exercise 3.10. Let A ⊂ 2X and B ⊂ 2Y be semi-fields. Show the collection

S := {A×B : A ∈ A and B ∈ B}

is also a semi-field.
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Solution to Exercise (3.10). Clearly ∅ = ∅ × ∅ ∈ E = A × B. Let Ai ∈ A
and Bi ∈ B, then

∩ni=1(Ai ×Bi) = (∩ni=1Ai)× (∩ni=1Bi) ∈ A× B

showing E is closed under finite intersections. For A×B ∈ E ,

(A×B)c = (Ac ×Bc)
∑

(Ac ×B)
∑

(A×Bc)

and by assumption Ac =
∑n
i=1Ai with Ai ∈ A and Bc =

∑m
j=1Bi with Bj ∈ B.

Therefore

Ac ×Bc =

(
n∑
i=1

Ai

)
×

 m∑
j=1

Bi

 =
n,m∑

i=1,j=1

Ai ×Bi,

Ac ×B =
n∑
i=1

Ai ×B, and A×Bc =
m∑
j=1

A×Bi

showing (A×B)c may be written as finite disjoint union of elements from S.



4

Finitely Additive Measures / Integration

Definition 4.1. Suppose that E ⊂ 2X is a collection of subsets of X and µ :
E → [0,∞] is a function. Then

1. µ is additive or finitely additive on E if

µ(E) =
n∑
i=1

µ(Ei) (4.1)

whenever E =
∑n
i=1Ei ∈ E with Ei ∈ E for i = 1, 2, . . . , n <∞.

2. µ is σ – additive (or countable additive) on E if Eq. (4.1) holds even
when n =∞.

3. µ is sub-additive (finitely sub-additive) on E if

µ(E) ≤
n∑
i=1

µ(Ei)

whenever E =
⋃n
i=1Ei ∈ E with n ∈ N∪{∞} (n ∈ N).

4. µ is a finitely additive measure if E = A is an algebra, µ (∅) = 0, and µ
is finitely additive on A.

5. µ is a premeasure if µ is a finitely additive measure which is σ – additive
on A.

6. µ is a measure if µ is a premeasure on a σ – algebra. Furthermore if
µ (X) = 1, we say µ is a probability measure on X.

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose µ is a finitely additive measure on an algebra, A ⊂ 2X , A,B ∈ A with
A ⊂ Band {Aj}nj=1 ⊂ A, then :

1. (µ is monotone) µ (A) ≤ µ(B) if A ⊂ B.
2. For A,B ∈ A, the following strong additivity formula holds;

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (4.2)

3. (µ is finitely subbadditive) µ(∪nj=1Aj) ≤
∑n
j=1 µ(Aj).

4. µ is sub-additive on A iff

µ(A) ≤
∞∑
i=1

µ(Ai) for A =
∞∑
i=1

Ai (4.3)

where A ∈ A and {Ai}∞i=1 ⊂ A are pairwise disjoint sets.

5. (µ is countably superadditive) If A =
∑∞
i=1Ai with Ai, A ∈ A, then

µ

( ∞∑
i=1

Ai

)
≥
∞∑
i=1

µ (Ai) . (4.4)

(See Remark 4.9 for example where this inequality is strict.)
6. A finitely additive measure, µ, is a premeasure iff µ is subadditve.

Proof.

1. Since B is the disjoint union of A and (B \ A) and B \ A = B ∩ Ac ∈ A it
follows that

µ(B) = µ(A) + µ(B \A) ≥ µ(A).
2. Since

A ∪B = [A \ (A ∩B)]
∑

[B \ (A ∩B)]
∑

A ∩B,

µ (A ∪B) = µ (A ∪B \ (A ∩B)) + µ (A ∩B)
= µ (A \ (A ∩B)) + µ (B \ (A ∩B)) + µ (A ∩B) .

Adding µ (A ∩B) to both sides of this equation proves Eq. (4.2).
3. Let Ẽj = Ej \ (E1 ∪ · · · ∪Ej−1) so that the Ẽj ’s are pair-wise disjoint and
E = ∪nj=1Ẽj . Since Ẽj ⊂ Ej it follows from the monotonicity of µ that

µ(E) =
n∑
j=1

µ(Ẽj) ≤
n∑
j=1

µ(Ej).

4. If A =
⋃∞
i=1Bi with A ∈ A and Bi ∈ A, then A =

∑∞
i=1Ai where Ai :=

Bi \ (B1 ∪ . . . Bi−1) ∈ A and B0 = ∅. Therefore using the monotonicity of
µ and Eq. (4.3)

µ(A) ≤
∞∑
i=1

µ(Ai) ≤
∞∑
i=1

µ(Bi).

5. Suppose that A =
∑∞
i=1Ai with Ai, A ∈ A, then

∑n
i=1Ai ⊂ A for all n

and so by the monotonicity and finite additivity of µ,
∑n
i=1 µ (Ai) ≤ µ (A) .

Letting n→∞ in this equation shows µ is superadditive.
6. This is a combination of items 5. and 6.
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4.1 Examples of Measures

Most σ – algebras and σ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Example 4.3. Suppose that Ω is a finite set, B := 2Ω , and p : Ω → [0, 1] is a
function such that ∑

ω∈Ω
p (ω) = 1.

Then
P (A) :=

∑
ω∈A

p (ω) for all A ⊂ Ω

defines a measure on 2Ω .

Example 4.4. Suppose that X is any set and x ∈ X is a point. For A ⊂ X, let

δx(A) =
{

1 if x ∈ A
0 if x /∈ A.

Then µ = δx is a measure on X called the Dirac delta measure at x.

Example 4.5. Suppose B ⊂ 2X is a σ algebra, µ is a measure on B, and λ > 0,
then λ · µ is also a measure on B. Moreover, if J is an index set and {µj}j∈J
are all measures on B, then µ =

∑∞
j=1 µj , i.e.

µ(A) :=
∞∑
j=1

µj(A) for all A ∈ B,

defines another measure on B. To prove this we must show that µ is countably
additive. Suppose that A =

∑∞
i=1Ai with Ai ∈ B, then (using Tonelli for sums,

Proposition 1.7),

µ(A) =
∞∑
j=1

µj(A) =
∞∑
j=1

∞∑
i=1

µj(Ai)

=
∞∑
i=1

∞∑
j=1

µj(Ai) =
∞∑
i=1

µ(Ai).

Example 4.6. Suppose that X is a countable set and λ : X → [0,∞] is a func-
tion. Let X = {xn}∞n=1 be an enumeration of X and then we may define a
measure µ on 2X by,

µ = µλ :=
∞∑
n=1

λ(xn)δxn .

We will now show this measure is independent of our choice of enumeration of
X by showing,

µ(A) =
∑
x∈A

λ(x) := sup
Λ⊂⊂A

∑
x∈Λ

λ (x) ∀ A ⊂ X. (4.5)

Here we are using the notation, Λ ⊂⊂ A to indicate that Λ is a finite subset of
A.

To verify Eq. (4.5), let M := supΛ⊂⊂A
∑
x∈Λ λ (x) and for each N ∈ N let

ΛN := {xn : xn ∈ A and 1 ≤ n ≤ N} .

Then by definition of µ,

µ (A) =
∞∑
n=1

λ(xn)δxn (A) = lim
N→∞

N∑
n=1

λ(xn)1xn∈A

= lim
N→∞

∑
x∈ΛN

λ (x) ≤M.

On the other hand if Λ ⊂⊂ A, then∑
x∈Λ

λ(x) =
∑

n: xn∈Λ
λ(xn) = µ (Λ) ≤ µ (A)

from which it follows that M ≤ µ (A) . This shows that µ is independent of how
we enumerate X.

The above example has a natural extension to the case where X is uncount-
able and λ : X → [0,∞] is any function. In this setting we simply may define
µ : 2X → [0,∞] using Eq. (4.5). We leave it to the reader to verify that this is
indeed a measure on 2X .

We will construct many more measure in Chapter 5 below. The starting
point of these constructions will be the construction of finitely additive measures
using the next proposition.

Proposition 4.7 (Construction of Finitely Additive Measures). Sup-
pose S ⊂ 2X is a semi-algebra (see Definition 3.24) and A = A(S) is the
algebra generated by S. Then every additive function µ : S → [0,∞] such that
µ (∅) = 0 extends uniquely to an additive measure (which we still denote by µ)
on A.

Proof. Since (by Proposition 3.25) every element A ∈ A is of the form
A =

∑
iEi for a finite collection of Ei ∈ S, it is clear that if µ extends to a

measure then the extension is unique and must be given by
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µ(A) =
∑
i

µ(Ei). (4.6)

To prove existence, the main point is to show that µ(A) in Eq. (4.6) is well
defined; i.e. if we also have A =

∑
j Fj with Fj ∈ S, then we must show∑

i

µ(Ei) =
∑
j

µ(Fj). (4.7)

But Ei =
∑
j (Ei ∩ Fj) and the additivity of µ on S implies µ(Ei) =

∑
j µ(Ei∩

Fj) and hence ∑
i

µ(Ei) =
∑
i

∑
j

µ(Ei ∩ Fj) =
∑
i,j

µ(Ei ∩ Fj).

Similarly, ∑
j

µ(Fj) =
∑
i,j

µ(Ei ∩ Fj)

which combined with the previous equation shows that Eq. (4.7) holds. It is
now easy to verify that µ extended to A as in Eq. (4.6) is an additive measure
on A.

Proposition 4.8. Let X = R, S be the semi-algebra,

S = {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}, (4.8)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition 3.25. To each finitely additive probability measures µ :
A → [0,∞], there is a unique increasing function F : R̄→ [0, 1] such that
F (−∞) = 0, F (∞) = 1 and

µ((a, b] ∩ R) = F (b)− F (a) ∀ a ≤ b in R̄. (4.9)

Conversely, given an increasing function F : R̄→ [0, 1] such that F (−∞) = 0,
F (∞) = 1 there is a unique finitely additive measure µ = µF on A such that
the relation in Eq. (4.9) holds. (Eventually we will only be interested in the case
where F (−∞) = lima↓−∞ F (a) and F (∞) = limb↑∞ F (b) .)

Proof. Given a finitely additive probability measure µ, let

F (x) := µ ((−∞, x] ∩ R) for all x ∈ R̄.

Then F (∞) = 1, F (−∞) = 0 and for b > a,

F (b)− F (a) = µ ((−∞, b] ∩ R)− µ ((−∞, a]) = µ ((a, b] ∩ R) .

Conversely, suppose F : R̄→ [0, 1] as in the statement of the theorem is
given. Define µ on S using the formula in Eq. (4.9). The argument will be
completed by showing µ is additive on S and hence, by Proposition 4.7, has a
unique extension to a finitely additive measure on A. Suppose that

(a, b] =
n∑
i=1

(ai, bi].

By reordering (ai, bi] if necessary, we may assume that

a = a1 < b1 = a2 < b2 = a3 < · · · < bn−1 = an < bn = b.

Therefore, by the telescoping series argument,

µ((a, b] ∩ R) = F (b)− F (a) =
n∑
i=1

[F (bi)− F (ai)] =
n∑
i=1

µ((ai, bi] ∩ R).

Remark 4.9. Suppose that F : R̄→ R̄ is any non-decreasing function such that
F (R) ⊂ R. Then the same methods used in the proof of Proposition 4.8 shows
that there exists a unique finitely additive measure, µ = µF , on A = A (S) such
that Eq. (4.9) holds. If F (∞) > limb↑∞ F (b) and Ai = (i, i+ 1] for i ∈ N, then

∞∑
i=1

µF (Ai) =
∞∑
i=1

(F (i+ 1)− F (i)) = lim
N→∞

N∑
i=1

(F (i+ 1)− F (i))

= lim
N→∞

(F (N + 1)− F (1)) < F (∞)− F (1) = µF (∪∞i=1Ai) .

This shows that strict inequality can hold in Eq. (4.4) and that µF is not
a premeasure. Similarly one shows µF is not a premeasure if F (−∞) <
lima↓−∞ F (a) or if F is not right continuous at some point a ∈ R. Indeed,
in the latter case consider

(a, a+ 1] =
∞∑
n=1

(a+
1

n+ 1
, a+

1
n

].

Working as above we find,

∞∑
n=1

µF

(
(a+

1
n+ 1

, a+
1
n

]
)

= F (a+ 1)− F (a+)

while µF ((a, a+ 1]) = F (a+ 1)−F (a) . We will eventually show in Chapter 5
below that µF extends uniquely to a σ – additive measure on BR whenever F
is increasing, right continuous, and F (±∞) = limx→±∞ F (x) .
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32 4 Finitely Additive Measures / Integration

Before constructing σ – additive measures (see Chapter 5 below), we are
going to pause to discuss a preliminary notion of integration and develop some
of its properties. Hopefully this will help the reader to develop the necessary
intuition before heading to the general theory. First we need to describe the
functions we are allowed to integrate.

4.2 Simple Random Variables

Definition 4.10 (Simple random variables). A function, f : Ω → Y is said
to be simple if f (Ω) ⊂ Y is a finite set. If A ⊂ 2Ω is an algebra, we say that a
simple function f : Ω → Y is measurable if {f = y} := f−1 ({y}) ∈ A for all
y ∈ Y. A measurable simple function, f : Ω → C, is called a simple random
variable relative to A.

Notation 4.11 Given an algebra, A ⊂ 2Ω , let S(A) denote the collection of
simple random variables from Ω to C. For example if A ∈ A, then 1A ∈ S (A)
is a measurable simple function.

Lemma 4.12. Let A ⊂ 2Ω be an algebra, then;

1. S (A) is a sub-algebra of all functions from Ω to C.
2. f : Ω → C, is a A – simple random variable iff there exists αi ∈ C and
Ai ∈ A for 1 ≤ i ≤ n for some n ∈ N such that

f =
n∑
i=1

αi1Ai . (4.10)

3. For any function, F : C→ C, F ◦f ∈ S (A) for all f ∈ S (A) . In particular,
|f | ∈ S (A) if f ∈ S (A) .

Proof. 1. Let us observe that 1Ω = 1 and 1∅ = 0 are in S (A) . If f, g ∈ S (A)
and c ∈ C\ {0} , then

{f + cg = λ} =
⋃

a,b∈C:a+cb=λ

({f = a} ∩ {g = b}) ∈ A (4.11)

and
{f · g = λ} =

⋃
a,b∈C:a·b=λ

({f = a} ∩ {g = b}) ∈ A (4.12)

from which it follows that f + cg and f · g are back in S (A) .
2. Since S (A) is an algebra, every f of the form in Eq. (4.10) is in S (A) .

Conversely if f ∈ S (A) it follows by definition that f =
∑
α∈f(Ω) α1{f=α}

which is of the form in Eq. (4.10).

3. If F : C→ C, then

F ◦ f =
∑

α∈f(Ω)

F (α) · 1{f=α} ∈ S (A) .

Exercise 4.1 (A – measurable simple functions). As in Example 3.19, let
A ⊂ 2X be a finite algebra and {B1, . . . , Bk} be the partition of X associated to
A. Show that a function, f : X → C, is an A – simple function iff f is constant
on Bi for each i. Thus any A – simple function is of the form,

f =
k∑
i=1

αi1Bi (4.13)

for some αi ∈ C.

Corollary 4.13. Suppose that Λ is a finite set and Z : X → Λ is a function.
Let

A := A (Z) := Z−1
(
2Λ
)

:=
{
Z−1 (E) : E ⊂ Λ

}
.

Then A is an algebra and f : X → C is an A – simple function iff f = F ◦ Z
for some function F : Λ→ C.

Proof. For λ ∈ Λ, let

Aλ := {Z = λ} = {x ∈ X : Z (x) = λ} .

The {Aλ}λ∈Λ is the partition of X determined by A. Therefore f is an A –
simple function iff f |Aλ is constant for each λ ∈ Λ. Let us denote this constant
value by F (λ) . As Z = λ on Aλ, F : Λ→ C is a function such that f = F ◦Z.

Conversely if F : Λ→ C is a function and f = F ◦Z, then f = F (λ) on Aλ,
i.e. f is an A – simple function.

4.2.1 The algebraic structure of simple functions*

Definition 4.14. A simple function algebra, S, is a subalgebra1 of the
bounded complex functions on X such that 1 ∈ S and each function in S is
a simple function. If S is a simple function algebra, let

A (S) := {A ⊂ X : 1A ∈ S} .

(It is easily checked that A (S) is a sub-algebra of 2X .)
1 To be more explicit we are assuming that S is a linear subspace of bounded functions

which is closed under pointwise multiplication.
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Lemma 4.15. Suppose that S is a simple function algebra, f ∈ S and α ∈ f (X)
– the range of f. Then {f = α} ∈ A (S) .

Proof. Let {λi}ni=0 be an enumeration of f (X) with λ0 = α. Then

g :=

[
n∏
i=1

(α− λi)

]−1 n∏
i=1

(f − λi1) ∈ S.

Moreover, we see that g = 0 on ∪ni=1 {f = λi} while g = 1 on {f = α} . So we
have shown g = 1{f=α} ∈ S and therefore that {f = α} ∈ A (S) .

Exercise 4.2. Continuing the notation introduced above:

1. Show A (S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A ∈
{

Algebras ⊂ 2X
}
→ S (A) ∈ {simple function algebras on X}

is bijective and the map, S→ A (S) , is the inverse map.

Solution to Exercise (4.2).

1. Since 0 = 1∅, 1 = 1X ∈ S, it follows that ∅ and X are in A (S) . If A ∈ A (S) ,
then 1Ac = 1 − 1A ∈ S and so Ac ∈ A (S) . Finally, if A,B ∈ A (S) then
1A∩B = 1A · 1B ∈ S and thus A ∩B ∈ A (S) .

2. If f, g ∈ S (A) and c ∈ F, then

{f + cg = λ} =
⋃

a,b∈F:a+cb=λ

({f = a} ∩ {g = b}) ∈ A

and
{f · g = λ} =

⋃
a,b∈F:a·b=λ

({f = a} ∩ {g = b}) ∈ A

from which it follows that f + cg and f · g are back in S (A) .
3. If f : Ω → C is a simple function such that 1{f=λ} ∈ S for all λ ∈ C,

then f =
∑
λ∈C λ1{f=λ} ∈ S. Conversely, by Lemma 4.15, if f ∈ S then

1{f=λ} ∈ S for all λ ∈ C. Therefore, a simple function, f : X → C is in S
iff 1{f=λ} ∈ S for all λ ∈ C. With this preparation, we are now ready to
complete the verification.
First off,

A ∈ A (S (A)) ⇐⇒ 1A ∈ S (A) ⇐⇒ A ∈ A

which shows that A (S (A)) = A. Similarly,

f ∈ S (A (S)) ⇐⇒ {f = λ} ∈ A (S) ∀ λ ∈ C
⇐⇒ 1{f=λ} ∈ S ∀ λ ∈ C
⇐⇒ f ∈ S

which shows S (A (S)) = S.

4.3 Simple Integration

Definition 4.16 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A ⊂ 2X . For f ∈ S (A) the integral or
expectation, E(f) = EP (f), is defined by

EP (f) =
∫
X

fdP =
∑
y∈C

yP (f = y). (4.14)

Example 4.17. Suppose that A ∈ A, then

E1A = 0 · P (Ac) + 1 · P (A) = P (A) . (4.15)

Remark 4.18. Let us recall that our intuitive notion of P (A) was given as in
Eq. (2.1) by

P (A) = lim
N→∞

1
N

∑
1A (ω (k))

where ω (k) ∈ Ω was the result of the kth “independent” experiment. If we use
this interpretation back in Eq. (4.14) we arrive at,

E(f) =
∑
y∈C

yP (f = y) =
∑
y∈C

y · lim
N→∞

1
N

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1
N

∑
y∈C

y

N∑
k=1

1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

∑
y∈C

f (ω (k)) · 1f(ω(k))=y

= lim
N→∞

1
N

N∑
k=1

f (ω (k)) .

Thus informally, Ef should represent the limiting average of the values of f
over many “independent” experiments. We will come back to this later when
we study the strong law of large numbers.
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Proposition 4.19. The expectation operator, E = EP : S (A)→ C, satisfies:

1. If f ∈ S(A) and λ ∈ C, then

E(λf) = λE(f). (4.16)

2. If f, g ∈ S (A) , then

E(f + g) = E(g) + E(f). (4.17)

Items 1. and 2. say that E (·) is a linear functional on S (A) .
3. If f =

∑N
j=1 λj1Aj for some λj ∈ C and some Aj ∈ C, then

Ef =
N∑
j=1

λjP (Aj) . (4.18)

4. E is positive, i.e. E(f) ≥ 0 for all 0 ≤ f ∈ S (A) .
5. For all f ∈ S (A) ,

|Ef | ≤ E |f | . (4.19)

Proof.

1. If λ 6= 0, then

E(λf) =
∑
y∈C

y P (λf = y) =
∑
y∈C

y P (f = y/λ)

=
∑
z∈C

λz P (f = z) = λE(f).

The case λ = 0 is trivial.
2. Writing {f = a, g = b} for f−1({a}) ∩ g−1({b}), then

E(f + g) =
∑
z∈C

z P (f + g = z)

=
∑
z∈C

z P

( ∑
a+b=z

{f = a, g = b}

)
=
∑
z∈C

z
∑
a+b=z

P ({f = a, g = b})

=
∑
z∈C

∑
a+b=z

(a+ b)P ({f = a, g = b})

=
∑
a,b

(a+ b)P ({f = a, g = b}) .

But ∑
a,b

aP ({f = a, g = b}) =
∑
a

a
∑
b

P ({f = a, g = b})

=
∑
a

aP (∪b {f = a, g = b})

=
∑
a

aP ({f = a}) = Ef

and similarly, ∑
a,b

bP ({f = a, g = b}) = Eg.

Equation (4.17) is now a consequence of the last three displayed equations.
3. If f =

∑N
j=1 λj1Aj , then

Ef = E

 N∑
j=1

λj1Aj

 =
N∑
j=1

λjE1Aj =
N∑
j=1

λjP (Aj) .

4. If f ≥ 0 then
E(f) =

∑
a≥0

aP (f = a) ≥ 0.

5. By the triangle inequality,

|Ef | =

∣∣∣∣∣∑
λ∈C

λP (f = λ)

∣∣∣∣∣ ≤∑
λ∈C
|λ|P (f = λ) = E |f | ,

wherein the last equality we have used Eq. (4.18) and the fact that |f | =∑
λ∈C |λ| 1f=λ.

Remark 4.20. If Ω is a finite set and A = 2Ω , then

f (·) =
∑
ω∈Ω

f (ω) 1{ω}

and hence
EP f =

∑
ω∈Ω

f (ω)P ({ω}) .

Remark 4.21. All of the results in Proposition 4.19 and Remark 4.20 remain
valid when P is replaced by a finite measure, µ : A → [0,∞), i.e. it is enough
to assume µ (X) <∞.
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Exercise 4.3. Let P is a finitely additive probability measure on an algebra
A ⊂ 2X and for A,B ∈ A let ρ (A,B) := P (A∆B) where A∆B = (A \B) ∪
(B \A) . Show;

1. ρ (A,B) = E |1A − 1B | and then use this (or not) to show
2. ρ (A,C) ≤ ρ (A,B) + ρ (B,C) for all A,B,C ∈ A.

Remark: it is now easy to see that ρ : A×A → [0, 1] satisfies the axioms of
a metric except for the condition that ρ (A,B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.22 (Chebyshev’s Inequality). Suppose that f ∈ S(A), ε > 0, and
p > 0, then

P ({|f | ≥ ε}) = E
[
1|f |≥ε

]
≤ E

[
|f |p

εp
1|f |≥ε

]
≤ ε−pE |f |p . (4.20)

Observe that
|f |p =

∑
λ∈C
|λ|p 1{f=λ}

is a simple random variable and {|f | ≥ ε} =
∑
|λ|≥ε {f = λ} ∈ A as well.

Therefore, |f |
p

εp 1|f |≥ε is still a simple random variable.

Lemma 4.23 (Inclusion Exclusion Formula). If An ∈ A for n =
1, 2, . . . ,M such that µ

(
∪Mn=1An

)
<∞, then

µ
(
∪Mn=1An

)
=

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (4.21)

Proof. This may be proved inductively from Eq. (4.2). We will give a dif-
ferent and perhaps more illuminating proof here. Let A := ∪Mn=1An.

Since Ac =
(
∪Mn=1An

)c = ∩Mn=1A
c
n, we have

1− 1A = 1Ac =
M∏
n=1

1Acn =
M∏
n=1

(1− 1An)

= 1 +
M∑
k=1

(−1)k
∑

1≤n1<n2<···<nk≤M

1An1
· · · 1Ank

= 1 +
M∑
k=1

(−1)k
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank

from which it follows that

1∪Mn=1An
= 1A =

M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank . (4.22)

Integrating this identity with respect to µ gives Eq. (4.21).

Remark 4.24. The following identity holds even when µ
(
∪Mn=1An

)
=∞,

µ
(
∪Mn=1An

)
+

M∑
k=2 & k even

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank)

=
M∑

k=1 & k odd

∑
1≤n1<n2<···<nk≤M

µ (An1 ∩ · · · ∩Ank) . (4.23)

This can be proved by moving every term with a negative sign on the right
side of Eq. (4.22) to the left side and then integrate the resulting identity.
Alternatively, Eq. (4.23) follows directly from Eq. (4.21) if µ

(
∪Mn=1An

)
< ∞

and when µ
(
∪Mn=1An

)
=∞ one easily verifies that both sides of Eq. (4.23) are

infinite.

To better understand Eq. (4.22), consider the case M = 3 where,

1− 1A = (1− 1A1) (1− 1A2) (1− 1A3)
= 1− (1A1 + 1A2 + 1A3)
+ 1A11A2 + 1A11A3 + 1A21A3 − 1A11A21A3

so that

1A1∪A2∪A3 = 1A1 + 1A2 + 1A3 − (1A1∩A2 + 1A1∩A3 + 1A2∩A3) + 1A1∩A2∩A3

Here is an alternate proof of Eq. (4.22). Let ω ∈ Ω and by relabeling the
sets {An} if necessary, we may assume that ω ∈ A1 ∩ · · · ∩Am and ω /∈ Am+1 ∪
· · · ∪AM for some 0 ≤ m ≤M. (When m = 0, both sides of Eq. (4.22) are zero
and so we will only consider the case where 1 ≤ m ≤ M.) With this notation
we have
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M∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤M

1An1∩···∩Ank (ω)

=
m∑
k=1

(−1)k+1
∑

1≤n1<n2<···<nk≤m

1An1∩···∩Ank (ω)

=
m∑
k=1

(−1)k+1

(
m

k

)

= 1−
m∑
k=0

(−1)k (1)n−k
(
m

k

)
= 1− (1− 1)m = 1.

This verifies Eq. (4.22) since 1∪Mn=1An
(ω) = 1.

Example 4.25 (Coincidences). Let Ω be the set of permutations (think of card
shuffling), ω : {1, 2, . . . , n} → {1, 2, . . . , n} , and define P (A) := #(A)

n! to be the
uniform distribution (Haar measure) on Ω. We wish to compute the probability
of the event, B, that a random permutation fixes some index i. To do this, let
Ai := {ω ∈ Ω : ω (i) = i} and observe that B = ∪ni=1Ai. So by the Inclusion
Exclusion Formula, we have

P (B) =
n∑
k=1

(−1)k+1
∑

1≤i1<i2<i3<···<ik≤n

P (Ai1 ∩ · · · ∩Aik) .

Since

P (Ai1 ∩ · · · ∩Aik) = P ({ω ∈ Ω : ω (i1) = i1, . . . , ω (ik) = ik})

=
(n− k)!
n!

and

# {1 ≤ i1 < i2 < i3 < · · · < ik ≤ n} =
(
n

k

)
,

we find

P (B) =
n∑
k=1

(−1)k+1

(
n

k

)
(n− k)!
n!

=
n∑
k=1

(−1)k+1 1
k!
. (4.24)

For large n this gives,

P (B) = −
n∑
k=1

1
k!

(−1)k ∼= 1−
∞∑
k=0

1
k!

(−1)k = 1− e−1 ∼= 0.632.

Example 4.26 (Expected number of coincidences). Continue the notation in Ex-
ample 4.25. We now wish to compute the expected number of fixed points of
a random permutation, ω, i.e. how many cards in the shuffled stack have not
moved on average. To this end, let

Xi = 1Ai

and observe that

N (ω) =
n∑
i=1

Xi (ω) =
n∑
i=1

1ω(i)=i = # {i : ω (i) = i} .

denote the number of fixed points of ω. Hence we have

EN =
n∑
i=1

EXi =
n∑
i=1

P (Ai) =
n∑
i=1

(n− 1)!
n!

= 1.

Let us check the above formulas when n = 3. In this case we have

ω N (ω)
1 2 3 3
1 3 2 1
2 1 3 1
2 3 1 0
3 1 2 0
3 2 1 1

and so
P (∃ a fixed point) =

4
6

=
2
3
∼= 0.67 ∼= 0.632

while
3∑
k=1

(−1)k+1 1
k!

= 1− 1
2

+
1
6

=
2
3

and
EN =

1
6

(3 + 1 + 1 + 0 + 0 + 1) = 1.

The next three problems generalize the results above. The following notation
will be used throughout these exercises.

1. (Ω,A, P ) is a finitely additive probability space, so P (Ω) = 1,
2. Ai ∈ A for i = 1, 2, . . . , n,
3. N (ω) :=

∑n
i=1 1Ai (ω) = # {i : ω ∈ Ai} , and
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4. {Sk}nk=1 are given by

Sk :=
∑

1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

=
∑

Λ⊂{1,2,...,n}3|Λ|=k

P (∩i∈ΛAi) .

Exercise 4.4. For 1 ≤ k ≤ n, show;

1. (as functions on Ω) that(
N

k

)
=

∑
Λ⊂{1,2,...,n}3|Λ|=k

1∩i∈ΛAi , (4.25)

where by definition (
m

k

)
=


0 if k > m
m!

k!·(m−k)! if 1 ≤ k ≤ m
1 if k = 0

. (4.26)

2. Concluded from Eq. (4.25) that for all z ∈ C,

(1 + z)N = 1 +
n∑
k=1

zk
∑

1≤i1<i2<···<ik≤n

1Ai1∩···∩Aik (4.27)

for all z ∈ C provided (1 + z)0 = 1 even when z = −1.
3. Concluded from Eq. (4.25) to conclude that Sk = EP

(
N
k

)
.

Exercise 4.5. Taking expectations of Eq. (4.27) implies,

E
[
(1 + z)N

]
= 1 +

n∑
k=1

Skz
k. (4.28)

Show that setting z = −1 in Eq. (4.28) gives another proof of the inclusion
exclusion formula. Hint: use the definition of the expectation to write out
E
[
(1 + z)N

]
explicitly.

Exercise 4.6. Let 1 ≤ m ≤ n. In this problem you are asked to compute the
probability that there are exactly m – coincidences. Namely you should show,

P (N = m) =
n∑

k=m

(−1)k−m
(
k

m

)
Sk

=
n∑

k=m

(−1)k−m
(
k

m

) ∑
1≤i1<···<ik≤n

P (Ai1 ∩ · · · ∩Aik)

Hint: differentiate Eq. (4.28) m times with respect to z and then evaluate the
result at z = −1. In order to do this you will find it useful to derive formulas
for;

dm

dzm
|z=−1 (1 + z)n and

dm

dzm
|z=−1z

k.

Example 4.27. Let us again go back to Example 4.26 where we computed,

Sk =
(
n

k

)
(n− k)!
n!

=
1
k!
.

Therefore it follows from Exercise 4.6 that

P (∃ exactly m fixed points) = P (N = m)

=
n∑

k=m

(−1)k−m
(
k

m

)
1
k!

=
1
m!

n∑
k=m

(−1)k−m
1

(k −m)!
.

So if n is much bigger than m we may conclude that

P (∃ exactly m fixed points) ∼=
1
m!
e−1.

Let us check our results are consistent with Eq. (4.24);

P (∃ a fixed point) =
n∑

m=1

P (N = m)

=
n∑

m=1

n∑
k=m

(−1)k−m
(
k

m

)
1
k!

=
∑

1≤m≤k≤n

(−1)k−m
(
k

m

)
1
k!

=
n∑
k=1

k∑
m=1

(−1)k−m
(
k

m

)
1
k!

=
n∑
k=1

[
k∑

m=0

(−1)k−m
(
k

m

)
− (−1)k

]
1
k!

= −
n∑
k=1

(−1)k
1
k!

wherein we have used,
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k∑
m=0

(−1)k−m
(
k

m

)
= (1− 1)k = 0.

4.3.1 Appendix: Bonferroni Inequalities

In this appendix (see Feller Volume 1., p. 106-111 for more) we want to dis-
cuss what happens if we truncate the sums in the inclusion exclusion formula
of Lemma 4.23. In order to do this we will need the following lemma whose
combinatorial meaning was explained to me by Jeff Remmel.

Lemma 4.28. Let n ∈ N0 and 0 ≤ k ≤ n, then

k∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1
k

)
1n>0 + 1n=0. (4.29)

Proof. The case n = 0 is trivial. We give two proofs for when n ∈ N.
First proof. Just use induction on k. When k = 0, Eq. (4.29) holds since

1 = 1. The induction step is as follows,

k+1∑
l=0

(−1)l
(
n

l

)
= (−1)k

(
n− 1
k

)
+
(

n

k + 1

)

=
(−1)k+1

(k + 1)!
[n (n− 1) . . . (n− k)− (k + 1) (n− 1) . . . (n− k)]

=
(−1)k+1

(k + 1)!
[(n− 1) . . . (n− k) (n− (k + 1))] = (−1)k+1

(
n− 1
k + 1

)
.

Second proof. Let X = {1, 2, . . . , n} and observe that

mk :=
k∑
l=0

(−1)l
(
n

l

)
=

k∑
l=0

(−1)l ·#
(
Λ ∈ 2X : # (Λ) = l

)
=

∑
Λ∈2X : #(Λ)≤k

(−1)#(Λ) (4.30)

Define T : 2X → 2X by

T (S) =
{
S ∪ {1} if 1 /∈ S
S \ {1} if 1 ∈ S .

Observe that T is a bijection of 2X such that T takes even cardinality sets to
odd cardinality sets and visa versa. Moreover, if we let

Γk :=
{
Λ ∈ 2X : # (Λ) ≤ k and 1 ∈ Λ if # (Λ) = k

}
,

then T (Γk) = Γk for all 1 ≤ k ≤ n. Since∑
Λ∈Γk

(−1)#(Λ) =
∑
Λ∈Γk

(−1)#(T (Λ)) =
∑
Λ∈Γk

− (−1)#(Λ)

we see that
∑
Λ∈Γk (−1)#(Λ) = 0. Using this observation with Eq. (4.30) implies

mk =
∑
Λ∈Γk

(−1)#(Λ) +
∑

#(Λ)=k & 1/∈Λ

(−1)#(Λ) = 0 + (−1)k
(
n− 1
k

)
.

Corollary 4.29 (Bonferroni Inequalitites). Let µ : A → [0, µ (X)] be a
finitely additive finite measure on A ⊂ 2X , An ∈ A for n = 1, 2, . . . ,M, N :=∑M
n=1 1An , and

Sk :=
∑

1≤i1<···<ik≤M

µ (Ai1 ∩ · · · ∩Aik) = Eµ
[(
N

k

)]
.

Then for 1 ≤ k ≤M,

µ
(
∪Mn=1An

)
=

k∑
l=1

(−1)l+1
Sl + (−1)k Eµ

[(
N − 1
k

)]
. (4.31)

This leads to the Bonferroni inequalities;

µ
(
∪Mn=1An

)
≤

k∑
l=1

(−1)l+1
Sl if k is odd

and

µ
(
∪Mn=1An

)
≥

k∑
l=1

(−1)l+1
Sl if k is even.

Proof. By Lemma 4.28,

k∑
l=0

(−1)l
(
N

l

)
= (−1)k

(
N − 1
k

)
1N>0 + 1N=0.

Therefore integrating this equation with respect to µ gives,

µ (X) +
k∑
l=1

(−1)l Sl = µ (N = 0) + (−1)k Eµ
(
N − 1
k

)
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and therefore,

µ
(
∪Mn=1An

)
= µ (N > 0) = µ (X)− µ (N = 0)

= −
k∑
l=1

(−1)l Sl + (−1)k Eµ
(
N − 1
k

)
.

The Bonferroni inequalities are a simple consequence of Eq. (4.31) and the fact
that (

N − 1
k

)
≥ 0 =⇒ Eµ

(
N − 1
k

)
≥ 0.

4.3.2 Appendix: Riemann Stieljtes integral

In this subsection, let X be a set, A ⊂ 2X be an algebra of sets, and P := µ :
A → [0,∞) be a finitely additive measure with µ (X) <∞. As above let

Eµf :=
∫
X

fdµ :=
∑
λ∈C

λµ(f = λ) ∀ f ∈ S (A) . (4.32)

Notation 4.30 For any function, f : X → C let ‖f‖∞ := supx∈X |f (x)| .
Further, let S̄ := S (A) denote those functions, f : X → C such that there exists
fn ∈ S (A) such that limn→∞ ‖f − fn‖u = 0.

Exercise 4.7. Prove the following statements.

1. For all f ∈ S (A) ,
|Eµf | ≤ µ (X) ‖f‖∞ . (4.33)

2. If f ∈ S̄ and fn ∈ S := S (A) such that limn→∞ ‖f − fn‖u = 0, show
limn→∞ Eµfn exists. Also show that defining Eµf := limn→∞ Eµfn is well
defined, i.e. you must show that limn→∞ Eµfn = limn→∞ Eµgn if gn ∈ S
such that limn→∞ ‖f − gn‖u = 0.

3. Show Eµ : S̄→ C is still linear and still satisfies Eq. (4.33).
4. Show |f | ∈ S̄ if f ∈ S̄ and that Eq. (4.19) is still valid, i.e. |Eµf | ≤ Eµ |f |

for all f ∈ S̄.

Let us now specialize the above results to the case where X = [0, T ] for
some T <∞. Let S := {(a, b] : 0 ≤ a ≤ b ≤ T} ∪ {0} which is easily seen to be
a semi-algebra. The following proposition is fairly straightforward and will be
left to the reader.

Proposition 4.31 (Riemann Stieljtes integral). Let F : [0, T ] → R be an
increasing function, then;

1. there exists a unique finitely additive measure, µF , on A := A (S) such that
µF ((a, b]) = F (b)− F (a) for all 0 ≤ a ≤ b ≤ T and µF ({0}) = 0. (In fact
on could allow for µF ({0}) = λ for any λ ≥ 0, but we would then have to
write µF,λ rather than µF .)

2. Show C ([0, 1] ,C) ⊂ S (A). More precisely, suppose π :=
{0 = t0 < t1 < · · · < tn = T} is a partition of [0, T ] and c = (c1, . . . , cn) ∈
[0, T ]n with ti−1 ≤ ci ≤ ti for each i. Then for f ∈ C ([0, 1] ,C) , let

fπ,c := f (0) 1{0} +
n∑
i=1

f (ci) 1(ti−1,ti]. (4.34)

Show that ‖f − fπ,c‖u is small provided, |π| := max {|ti − ti−1| : i = 1, 2, . . . , n}
is small.

3. Using the above results, show∫
[0,T ]

fdµF = lim
|π|→0

n∑
i=1

f (ci) (F (ti)− F (ti−1))

where the ci may be chosen arbitrarily subject to the constraint that ti−1 ≤
ci ≤ ti.

It is customary to write
∫ T

0
fdF for

∫
[0,T ]

fdµF . This integral satisfies the
estimates,∣∣∣∣∣

∫
[0,T ]

fdµF

∣∣∣∣∣ ≤
∫

[0,T ]

|f | dµF ≤ ‖f‖u (F (T )− F (0)) ∀ f ∈ S (A).

When F (t) = t, ∫ T

0

fdF =
∫ T

0

f (t) dt,

is the usual Riemann integral.

Exercise 4.8. Let a ∈ (0, T ) , λ > 0, and

G (x) = λ · 1x≥a =
{
λ if x ≥ a
0 if x < a

.

1. Explicitly compute
∫

[0,T ]
fdµG for all f ∈ C ([0, 1] ,C) .

2. If F (x) = x + λ · 1x≥a describe
∫

[0,T ]
fdµF for all f ∈ C ([0, 1] ,C) . Hint:

if F (x) = G (x) + H (x) where G and H are two increasing functions on
[0, T ] , show ∫

[0,T ]

fdµF =
∫

[0,T ]

fdµG +
∫

[0,T ]

fdµH .
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Exercise 4.9. Suppose that F,G : [0, T ]→ R are two increasing functions such
that F (0) = G (0) , F (T ) = G (T ) , and F (x) 6= G (x) for at most countably
many points, x ∈ (0, T ) . Show∫

[0,T ]

fdµF =
∫

[0,T ]

fdµG for all f ∈ C ([0, 1] ,C) . (4.35)

Note well, given F (0) = G (0) , µF = µG on A iff F = G.

One of the points of the previous exercise is to show that Eq. (4.35) holds
when G (x) := F (x+) – the right continuous version of F. The exercise applies
since and increasing function can have at most countably many jumps ,see
Remark ??. So if we only want to integrate continuous functions, we may always
assume that F : [0, T ]→ R is right continuous.

4.4 Simple Independence and the Weak Law of Large
Numbers

To motivate the exercises in this section, let us imagine that we are following
the outcomes of two “independent” experiments with values {αk}∞k=1 ⊂ Λ1 and
{βk}∞k=1 ⊂ Λ2 where Λ1 and Λ2 are two finite set of outcomes. Here we are
using term independent in an intuitive form to mean that knowing the outcome
of one of the experiments gives us no information about outcome of the other.

As an example of independent scenario, suppose that one experiment my be
the results of spinning a roulette wheel and the second is the outcome of rolling
a dice. We expect these two experiments will be independent.

As an example of dependent experiments, suppose that dice roller now has
two dice – one red and one black. The person rolling dice throws his black or
red dice after the roulette ball has stopped and landed on either black or red
respectively. If the black and the red dice are weighted differently, we expect
that these two experiments are no longer independent.

Lemma 4.32 (Heuristic). Suppose that {αk}∞k=1 ⊂ Λ1 and {βk}∞k=1 ⊂ Λ2 are
the outcomes of repeatedly running two experiments independent of each other
and for x ∈ Λ1 and y ∈ Λ2,

p (x, y) := lim
N→∞

1
N

# {1 ≤ k ≤ N : αk = x and βk = y} ,

p1 (x) := lim
N→∞

1
N

# {1 ≤ k ≤ N : αk = x} , and

p2 (y) := lim
N→∞

1
N

# {1 ≤ k ≤ N : βk = y} . (4.36)

Then p (x, y) = p1 (x) p2 (y) . In particular this then implies for any h : Λ1 ×
Λ2 → R we have,

Eh = lim
N→∞

1
N

N∑
k=1

h (αk, βk) =
∑

(x,y)∈Λ1×Λ2

h (x, y) p1 (x) p2 (y) .

Proof. (Heuristic.) Let us imagine running the first experiment repeatedly
with the results being recorded as,

{
α`k
}∞
k=1

, where ` ∈ N indicates the `th –
run of the experiment. Then we have postulated that, independent of `,

p (x, y) := lim
N→∞

1
N

N∑
k=1

1{α`k=x and βk=y} = lim
N→∞

1
N

N∑
k=1

1{α`k=x} · 1{βk=y}

So for any L ∈ N we must also have,

p (x, y) =
1
L

L∑
`=1

p (x, y) =
1
L

L∑
`=1

lim
N→∞

1
N

N∑
k=1

1{α`k=x} · 1{βk=y}

= lim
N→∞

1
N

N∑
k=1

1
L

L∑
`=1

1{α`k=x} · 1{βk=y}.

Taking the limit of this equation as L→∞ and interchanging the order of the
limits (this is faith based) implies,

p (x, y) = lim
N→∞

1
N

N∑
k=1

1{βk=y} · lim
L→∞

1
L

L∑
`=1

1{α`k=x}. (4.37)

Since for fixed k,
{
α`k
}∞
`=1

is just another run of the first experiment, by our
postulate, we conclude that

lim
L→∞

1
L

L∑
`=1

1{α`k=x} = p1 (x) (4.38)

independent of the choice of k. Therefore combining Eqs. (4.36), (4.37), and
(4.38) implies,

p (x, y) = lim
N→∞

1
N

N∑
k=1

1{βk=y} · p1 (x) = p2 (y) p1 (x) .

To understand this “Lemma” in another but equivalent way, let X1 : Λ1 ×
Λ2 → Λ1 and X2 : Λ1 × Λ2 → Λ2 be the projection maps, X1 (x, y) = x and
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X2 (x, y) = y respectively. Further suppose that f : Λ1 → R and g : Λ2 → R
are functions, then using the heuristics Lemma 4.32 implies,

E [f (X1) g (X2)] =
∑

(x,y)∈Λ1×Λ2

f (x) g (y) p1 (x) p2 (y)

=
∑
x∈Λ1

f (x) p1 (x) ·
∑
y∈Λ2

g (y) p2 (y) = Ef (X1) · Eg (X2) .

Hopefully these heuristic computations will convince you that the mathe-
matical notion of independence developed below is relevant. In what follows,
we will use the obvious generalization of our “results” above to the setting of n
– independent experiments. For notational simplicity we will now assume that
Λ1 = Λ2 = · · · = Λn = Λ.

Let Λ be a finite set, n ∈ N, Ω = Λn, and Xi : Ω → Λ be defined by
Xi (ω) = ωi for ω ∈ Ω and i = 1, 2, . . . , n. We further suppose p : Ω → [0, 1] is
a function such that ∑

ω∈Ω
p (ω) = 1

and P : 2Ω → [0, 1] is the probability measure defined by

P (A) :=
∑
ω∈A

p (ω) for all A ∈ 2Ω . (4.39)

Exercise 4.10 (Simple Independence 1.). Suppose qi : Λ → [0, 1] are
functions such that

∑
λ∈Λ qi (λ) = 1 for i = 1, 2, . . . , n and now define

p (ω) =
∏n
i=1 qi (ωi) . Show for any functions, fi : Λ→ R that

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] =
n∏
i=1

EQifi

where Qi is the measure on Λ defined by, Qi (γ) =
∑
λ∈γ qi (λ) for all γ ⊂ Λ.

Exercise 4.11 (Simple Independence 2.). Prove the converse of the previ-
ous exercise. Namely, if

EP

[
n∏
i=1

fi (Xi)

]
=

n∏
i=1

EP [fi (Xi)] (4.40)

for any functions, fi : Λ → R, then there exists functions qi : Λ → [0, 1] with∑
λ∈Λ qi (λ) = 1, such that p (ω) =

∏n
i=1 qi (ωi) .

Definition 4.33 (Independence). We say simple random variables,
X1, . . . , Xn with values in Λ on some probability space, (Ω,A, P ) are indepen-
dent (more precisely P – independent) if Eq. (4.40) holds for all functions,
fi : Λ→ R.

Exercise 4.12 (Simple Independence 3.). Let X1, . . . , Xn : Ω → Λ and
P : 2Ω → [0, 1] be as described before Exercise 4.10. Show X1, . . . , Xn are
independent iff

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) . . . P (Xn ∈ An) (4.41)

for all choices of Ai ⊂ Λ. Also explain why it is enough to restrict the Ai to
single point subsets of Λ.

Exercise 4.13 (A Weak Law of Large Numbers). Suppose that Λ ⊂ R
is a finite set, n ∈ N, Ω = Λn, p (ω) =

∏n
i=1 q (ωi) where q : Λ → [0, 1]

such that
∑
λ∈Λ q (λ) = 1, and let P : 2Ω → [0, 1] be the probability measure

defined as in Eq. (4.39). Further let Xi (ω) = ωi for i = 1, 2, . . . , n, ξ := EXi,

σ2 := E (Xi − ξ)2
, and

Sn =
1
n

(X1 + · · ·+Xn) .

1. Show, ξ =
∑
λ∈Λ λ q (λ) and

σ2 =
∑
λ∈Λ

(λ− ξ)2
q (λ) =

∑
λ∈Λ

λ2q (λ)− ξ2. (4.42)

2. Show, ESn = ξ.
3. Let δij = 1 if i = j and δij = 0 if i 6= j. Show

E [(Xi − ξ) (Xj − ξ)] = δijσ
2.

4. Using Sn − ξ may be expressed as, 1
n

∑n
i=1 (Xi − ξ) , show

E (Sn − ξ)2 =
1
n
σ2. (4.43)

5. Conclude using Eq. (4.43) and Remark 4.22 that

P (|Sn − ξ| ≥ ε) ≤
1
nε2

σ2. (4.44)

So for large n, Sn is concentrated near ξ = EXi with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Definition 4.34 (Covariance). Let (Ω,B, P ) is a finitely additive probability.
The covariance, Cov (X,Y ) , of X,Y ∈ S (B) is defined by

Cov (X,Y ) = E [(X − ξX) (Y − ξY )] = E [XY ]− EX · EY

where ξX := EX and ξY := EY. The variance of X,
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Var (X) := Cov (X,X) = E
[
X2
]
− (EX)2

We say that X and Y are uncorrelated if Cov (X,Y ) = 0, i.e. E [XY ] = EX ·
EY. More generally we say {Xk}nk=1 ⊂ S (B) are uncorrelated iff Cov (Xi, Xj) =
0 for all i 6= j.

Remark 4.35. 1. Observe that X and Y are independent iff f (X) and g (Y ) are
uncorrelated for all functions, f and g on the range of X and Y respectively. In
particular if X and Y are independent then Cov (X,Y ) = 0.

2. If you look at your proof of the weak law of large numbers in Exercise
4.13 you will see that it suffices to assume that {Xi}ni=1 are uncorrelated rather
than the stronger condition of being independent.

Exercise 4.14 (Bernoulli Random Variables). Let Λ = {0, 1} , X : Λ→ R
be defined by X (0) = 0 and X (1) = 1, x ∈ [0, 1] , and define Q = xδ1 +
(1− x) δ0, i.e. Q ({0}) = 1− x and Q ({1}) = x. Verify,

ξ (x) := EQX = x and

σ2 (x) := EQ (X − x)2 = (1− x)x ≤ 1/4.

Theorem 4.36 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f ∈ C([0, 1] ,C) and

pn (x) :=
n∑
k=0

(
n

k

)
f

(
k

n

)
xk (1− x)n−k .

Then
lim
n→∞

sup
x∈[0,1]

|f (x)− pn (x)| = 0.

(See Theorem ?? for a multi-dimensional generalization of this theorem.)

Proof. Let x ∈ [0, 1] , Λ = {0, 1} , q (0) = 1− x, q (1) = x, Ω = Λn, and

Px ({ω}) = q (ω1) . . . q (ωn) = x
∑n
i=1 ωi · (1− x)1−

∑n
i=1 ωi .

As above, let Sn = 1
n (X1 + · · ·+Xn) , where Xi (ω) = ωi and observe that

Px

(
Sn =

k

n

)
=
(
n

k

)
xk (1− x)n−k .

Therefore, writing Ex for EPx , we have

Ex [f (Sn)] =
n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)n−k = pn (x) .

Hence we find

|pn (x)− f (x)| = |Exf (Sn)− f (x)| = |Ex [f (Sn)− f (x)]|
≤ Ex |f (Sn)− f (x)|
= Ex [|f (Sn)− f (x)| : |Sn − x| ≥ ε]

+ Ex [|f (Sn)− f (x)| : |Sn − x| < ε]
≤ 2M · Px (|Sn − x| ≥ ε) + δ (ε)

where

M := max
y∈[0,1]

|f (y)| and

δ (ε) := sup {|f(y)− f(x)| : x, y ∈ [0, 1] and |y − x| ≤ ε}

is the modulus of continuity of f. Now by the above exercises,

Px (|Sn − x| ≥ ε) ≤
1

4nε2
(see Figure 4.1)

and hence we may conclude that

max
x∈[0,1]

|pn (x)− f (x)| ≤ M

2nε2
+ δ (ε)

and therefore, that

lim sup
n→∞

max
x∈[0,1]

|pn (x)− f (x)| ≤ δ (ε) .

This completes the proof, since by uniform continuity of f, δ (ε) ↓ 0 as ε ↓ 0.

4.4.1 Product Measures and Fubini’s Theorem

In the last part of this section we will extend some of the above ideas to
more general “finitely additive measure spaces.” A finitely additive mea-
sure space is a triple, (X,A, µ), where X is a set, A ⊂ 2X is an algebra, and
µ : A → [0,∞] is a finitely additive measure. Let (Y,B, ν) be another finitely
additive measure space.

Definition 4.37. Let A�B be the smallest sub-algebra of 2X×Y containing all
sets of the form S := {A×B : A ∈ A and B ∈ B} . As we have seen in Exercise
3.10, S is a semi-algebra and therefore A� B consists of subsets, C ⊂ X × Y,
which may be written as;

C =
n∑
i=1

Ai ×Bi with Ai ×Bi ∈ S. (4.45)
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Fig. 4.1. Plots of Px (Sn = k/n) versus k/n for n = 100 with x = 1/4 (black), x = 1/2
(red), and x = 5/6 (green).

Theorem 4.38 (Product Measure and Fubini’s Theorem). Assume that
µ (X) < ∞ and ν (Y ) < ∞ for simplicity. Then there is a unique finitely
additive measure, µ� ν, on A�B such that µ� ν (A×B) = µ (A) ν (B) for all
A ∈ A and B ∈ B. Moreover if f ∈ S (A� B) then;

1. y → f (x, y) is in S (B) for all x ∈ X and x → f (x, y) is in S (A) for all
y ∈ Y.

2. x→
∫
Y
f (x, y) dν (y) is in S (A) and y →

∫
X
f (x, y) dµ (x) is in S (B) .

3. we have,∫
X

[∫
Y

f (x, y) dν (y)
]
dµ (x)

=
∫
X×Y

f (x, y) d (µ� ν) (x, y)

=
∫
Y

[∫
X

f (x, y) dµ (x)
]
dν (y) .

We will refer to µ� ν as the product measure of µ and ν.

Proof. According to Eq. (4.45),

1C (x, y) =
n∑
i=1

1Ai×Bi (x, y) =
n∑
i=1

1Ai (x) 1Bi (y)

from which it follows that 1C (x, ·) ∈ S (B) for each x ∈ X and

∫
Y

1C (x, y) dν (y) =
n∑
i=1

1Ai (x) ν (Bi) .

It now follows from this equation that x→
∫
Y

1C (x, y) dν (y) ∈ S (A) and that∫
X

[∫
Y

1C (x, y) dν (y)
]
dµ (x) =

n∑
i=1

µ (Ai) ν (Bi) .

Similarly one shows that∫
Y

[∫
X

1C (x, y) dµ (x)
]
dν (y) =

n∑
i=1

µ (Ai) ν (Bi) .

In particular this shows that we may define

(µ� ν) (C) =
n∑
i=1

µ (Ai) ν (Bi)

and with this definition we have,∫
X

[∫
Y

1C (x, y) dν (y)
]
dµ (x)

= (µ� ν) (C)

=
∫
Y

[∫
X

1C (x, y) dµ (x)
]
dν (y) .

From either of these representations it is easily seen that µ � ν is a finitely
additive measure on A � B with the desired properties. Moreover, we have
already verified the Theorem in the special case where f = 1C with C ∈ A �
B. Since the general element, f ∈ S (A� B) , is a linear combination of such
functions, it is easy to verify using the linearity of the integral and the fact that
S (A) and S (B) are vector spaces that the theorem is true in general.

Example 4.39. Suppose that f ∈ S (A) and g ∈ S (B) . Let f ⊗ g (x, y) :=
f (x) g (y) . Since we have,

f ⊗ g (x, y) =

(∑
a

a1f=a (x)

)(∑
b

b1g=b (y)

)
=
∑
a,b

ab1{f=a}×{g=b} (x, y)

it follows that f ⊗ g ∈ S (A� B) . Moreover, using Fubini’s Theorem 4.38 it
follows that ∫

X×Y
f ⊗ g d (µ� ν) =

[∫
X

f dµ

] [∫
Y

g dν

]
.
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4.5 Simple Conditional Expectation

In this section, B is a sub-algebra of 2Ω , P : B → [0, 1] is a finitely additive
probability measure, and A ⊂ B is a finite sub-algebra. As in Example 3.19, for
each ω ∈ Ω, let Aω := ∩{A ∈ A : ω ∈ A} and recall that either Aω = Aω′ of
Aω ∩Aω′ = ∅ for all ω, ω′ ∈ Ω. In particular there is a partition, {B1, . . . , Bn} ,
of Ω such that Aω ∈ {B1, . . . , Bn} for all ω ∈ Ω.

Definition 4.40 (Conditional expectation). Let X : Ω → R be a B – simple
random variable, i.e. X ∈ S (B) , and

X̄ (ω) :=
1

P (Aω)
E [1AωX] for all ω ∈ Ω, (4.46)

where by convention, X̄ (ω) = 0 if P (Aω) = 0. We will denote X̄ by E [X|A]
for EAX and call it the conditional expectation of X given A. Alternatively we
may write X̄ as

X̄ =
n∑
i=1

E [1BiX]
P (Bi)

1Bi , (4.47)

again with the convention that E [1BiX] /P (Bi) = 0 if P (Bi) = 0.

It should be noted, from Exercise 4.1, that X̄ = EAX ∈ S (A) . Heuristi-
cally, if (ω (1) , ω (2) , ω (3) , . . . ) is the sequence of outcomes of “independently”
running our “experiment” repeatedly, then

X̄|Bi =
E [1BiX]
P (Bi)

“ = ”
limN→∞

1
N

∑N
n=1 1Bi (ω (n))X (ω (n))

limN→∞
1
N

∑N
n=1 1Bi (ω (n))

= lim
N→∞

∑N
n=1 1Bi (ω (n))X (ω (n))∑N

n=1 1Bi (ω (n))
.

So to compute X̄|Bi “empirically,” we remove all experimental outcomes from
the list, (ω (1) , ω (2) , ω (3) , . . . ) ∈ ΩN, which are not in Bi to form a new
list, (ω̄ (1) , ω̄ (2) , ω̄ (3) , . . . ) ∈ BN

i . We then compute X̄|Bi using the empirical
formula for the expectation of X relative to the “bar” list, i.e.

X̄|Bi = lim
N→∞

1
N

N∑
n=1

X (ω̄ (n)) .

Exercise 4.15 (Simple conditional expectation). Let X ∈ S (B) and, for
simplicity, assume all functions are real valued. Prove the following assertions;

1. (Orthogonal Projection Property 1.) If Z ∈ S (A), then

E [XZ] = E
[
X̄Z

]
= E [EAX · Z] (4.48)

and

(EAZ) (ω) =
{
Z (ω) if P (Aω) > 0

0 if P (Aω) = 0 . (4.49)

In particular, EA [EAZ] = EAZ.
This basically says that EA is orthogonal projection from S (B) onto S (A)
relative to the inner product

(f, g) = E [fg] for all f, g ∈ S (B) .

2. (Orthogonal Projection Property 2.) If Y ∈ S (A) satisfies, E [XZ] =
E [Y Z] for all Z ∈ S (A) , then Y (ω) = X̄ (ω) whenever P (Aω) > 0. In
particular, P

(
Y 6= X̄

)
= 0. Hint: use item 1. to compute E

[(
X̄ − Y

)2]
.

3. (Best Approximation Property.) For any Y ∈ S (A) ,

E
[(
X − X̄

)2] ≤ E
[
(X − Y )2

]
(4.50)

with equality iff X̄ = Y almost surely (a.s. for short), where X̄ = Y a.s. iff
P
(
X̄ 6= Y

)
= 0. In words, X̄ = EAX is the best (“L2”) approximation to

X by an A – measurable random variable.
4. (Contraction Property.) E

∣∣X̄∣∣ ≤ E |X| . (It is typically not true that∣∣X̄ (ω)
∣∣ ≤ |X (ω)| for all ω.)

5. (Pull Out Property.) If Z ∈ S (A) , then

EA [ZX] = ZEAX.

Example 4.41 (Heuristics of independence and conditional expectations). Let us
suppose that we have an experiment consisting of spinning a spinner with values
in Λ1 = {1, 2, . . . , 10} and rolling a die with values in Λ2 = {1, 2, 3, 4, 5, 6} . So
the outcome of an experiment is represented by a point, ω = (x, y) ∈ Ω =
Λ1 × Λ2. Let X (x, y) = x, Y (x, y) = y, B = 2Ω , and

A = X−1
(
2Λ1
)

=
{
X−1 (A) : A ⊂ Λ1

}
⊂ B,

so that A is the smallest algebra of subsets of Ω such that {X = x} ∈ A for all
x ∈ Λ1. Notice that the partition associated to A is precisely

{{X = 1} , {X = 2} , . . . , {X = 10}} .

Let us now suppose that the spins of the spinner are “empirically independent”
of the throws of the dice. As usual let us run the experiment repeatedly to
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produce a sequence of results, ωn = (xn, yn) for all n ∈ N. If g : Λ2 → R is a
function, we have (heuristically) that

EA [g (Y )] (x, y) = lim
N→∞

∑N
n=1 g (Y (ω (n))) 1X(ω(n))=x∑N

n=1 1X(ω(n))=x

= lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

.

As {yn} sequence of results is independent of the {xn} we should expect by the
usual mantra (i.e. it does not matter which sequence of independent experiments
are used to compute the time averages) that

lim
N→∞

∑N
n=1 g (yn) 1xn=x∑N

n=1 1xn=x

= lim
N→∞

1
M (N)

M(N)∑
n=1

g (ȳn) = E [g (Y )] ,

where M (N) =
∑N
n=1 1xn=x and (ȳ1, ȳ2, . . . ) = {yl : 1xl=x} . (We are also

assuming here that P (X = x) > 0 so that we expect, M (N) ∼ P (X = x)N
for N large, in particular M (N) → ∞.) Thus under the assumption that X
and Y are describing “independent” experiments we have heuristically deduced
that EA [g (Y )] : Ω → R is the constant function;

EA [g (Y )] (x, y) = E [g (Y )] for all (x, y) ∈ Ω. (4.51)

Let us further observe that if f : Λ1 → R is any other function, then f (X) is
an A – simple function and therefore by Eq. (4.51) and Exercise 4.15

E [f (X)]·E [g (Y )] = E [f (X) · E [g (Y )]] = E [f (X) · EA [g (Y )]] = E [f (X) · g (Y )] .

This observation along with Exercise 4.12 gives another “proof” of Lemma 4.32.

Lemma 4.42 (Conditional Expectation and Independence). Let Ω =
Λ1 × Λ2, X, Y, B = 2Ω , and A =X−1

(
2Λ1
)
, be as in Example 4.41 above.

Assume that P : B → [0, 1] is a probability measure. If X and Y are P –
independent, then Eq. (4.51) holds.

Proof. From the definitions of conditional expectation and of independence
we have,

EA [g (Y )] (x, y) =
E [1X=x · g (Y )]
P (X = x)

=
E [1X=x] · E [g (Y )]

P (X = x)
= E [g (Y )] .

The following theorem summarizes much of what we (i.e. you) have shown
regarding the underlying notion of independence of a pair of simple functions.

Theorem 4.43 (Independence result summary). Let (Ω,B, P ) be a
finitely additive probability space, Λ be a finite set, and X,Y : Ω → Λ be two
B – measurable simple functions, i.e. {X = x} ∈ B and {Y = y} ∈ B for all
x, y ∈ Λ. Further let A = A (X) := A ({X = x} : x ∈ Λ) . Then the following
are equivalent;

1. P (X = x, Y = y) = P (X = x) · P (Y = y) for all x ∈ Λ and y ∈ Λ,
2. E [f (X) g (Y )] = E [f (X)] E [g (Y )] for all functions, f : Λ → R and g :
Λ→ R,

3. EA(X) [g (Y )] = E [g (Y )] for all g : Λ→ R, and
4. EA(Y ) [f (X)] = E [f (X)] for all f : Λ→ R.

We say that X and Y are P – independent if any one (and hence all) of the
above conditions holds.
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5

Countably Additive Measures

Let A ⊂ 2Ω be an algebra and µ : A → [0,∞] be a finitely additive measure.
Recall that µ is a premeasure on A if µ is σ – additive on A. If µ is a
premeasure on A and A is a σ – algebra (Definition 3.12), we say that µ is a
measure on (Ω,A) and that (Ω,A) is a measurable space.

Definition 5.1. Let (Ω,B) be a measurable space. We say that P : B → [0, 1] is
a probability measure on (Ω,B) if P is a measure on B such that P (Ω) = 1.
In this case we say that (Ω,B, P ) a probability space.

5.1 Overview

The goal of this chapter is develop methods for proving the existence of desirable
probability measures. with the properties that we desire. The main results of
this chapter may are summarized in the following theorem.

Theorem 5.2. The finitely additive probability measure P on A extends to σ
– additive measure on σ (A) iff P is a premeasure on A. If the extension exists
it is unique.

Proof. The uniqueness assertion is proved Proposition 5.15 below. The ex-
istence assertion of the theorem in the content of Theorem 5.27.

In order to use this theorem it is necessary to determine when a finitely ad-
ditive probability measure in is in fact a premeasure. The following Proposition
is sometimes useful in this regard.

Proposition 5.3 (Equivalent premeasure conditions). Suppose that P is
a finitely additive probability measure on an algebra, A ⊂ 2Ω . Then the following
are equivalent:

1. P is a premeasure on A, i.e. P is σ – additive on A.
2. For all An ∈ A such that An ↑ A ∈ A, P (An) ↑ P (A) .
3. For all An ∈ A such that An ↓ A ∈ A, P (An) ↓ P (A) .
4. For all An ∈ A such that An ↑ Ω, P (An) ↑ 1.
5. For all An ∈ A such that An ↓ ∅, P (An) ↓ 0.

Proof. We will start by showing 1 ⇐⇒ 2 ⇐⇒ 3.
1. =⇒ 2. Suppose An ∈ A such that An ↑ A ∈ A. Let A′n := An \ An−1

with A0 := ∅. Then {A′n}
∞
n=1 are disjoint, An = ∪nk=1A

′
k and A = ∪∞k=1A

′
k.

Therefore,

P (A) =
∞∑
k=1

P (A′k) = lim
n→∞

n∑
k=1

P (A′k) = lim
n→∞

P (∪nk=1A
′
k) = lim

n→∞
P (An) .

2. =⇒ 1. If {An}∞n=1 ⊂ A are disjoint and A := ∪∞n=1An ∈ A, then
∪Nn=1An ↑ A. Therefore,

P (A) = lim
N→∞

P
(
∪Nn=1An

)
= lim
N→∞

N∑
n=1

P (An) =
∞∑
n=1

P (An) .

2. =⇒ 3. If An ∈ A such that An ↓ A ∈ A, then Acn ↑ Ac and therefore,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

3. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then Acn ↓ Ac and therefore we
again have,

lim
n→∞

(1− P (An)) = lim
n→∞

P (Acn) = P (Ac) = 1− P (A) .

The same proof used for 2. ⇐⇒ 3. shows 4. ⇐⇒ 5 and it is clear that
3. =⇒ 5. To finish the proof we will show 5. =⇒ 2.

5. =⇒ 2. If An ∈ A such that An ↑ A ∈ A, then A \An ↓ ∅ and therefore

lim
n→∞

[P (A)− P (An)] = lim
n→∞

P (A \An) = 0.

Remark 5.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (Ω) = 1 and in fact P (Ω) =∞ may
be allowed for this equivalence.

Lemma 5.5. If µ : A → [0,∞] is a premeasure, then µ is countably sub-additive
on A.
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Proof. Suppose that An ∈ A with ∪∞n=1An ∈ A. Let A
′

1 := A1 and for
n ≥ 2, let A′n := An \ (A1 ∪ . . . An−1) ∈ A. Then ∪∞n=1An =

∑∞
n=1A

′
n and

therefore by the countable additivity and monotonicity of µ we have,

µ (∪∞n=1An) = µ

( ∞∑
n=1

A′n

)
=
∞∑
n=1

µ (A′n) ≤
∞∑
n=1

µ (An) .

Let us now specialize to the case where Ω = R and A =
A ({(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞}) . In this case we will describe proba-
bility measures, P, on BR by their “cumulative distribution functions.”

Definition 5.6. Given a probability measure, P on BR, the cumulative dis-
tribution function (CDF) of P is defined as the function, F = FP : R→ [0, 1]
given as

F (x) := P ((−∞, x]) . (5.1)

Example 5.7. Suppose that

P = pδ−1 + qδ1 + rδπ

with p, q, r > 0 and p+ q + r = 1. In this case,

F (x) =


0 for x < −1
p for −1 ≤ x < 1

p+ q for 1 ≤ x < π
1 for π ≤ x <∞

.

A plot of F (x) with p = .2, q = .3, and r = .5.

Lemma 5.8. If F = FP : R→ [0, 1] is a distribution function for a probability
measure, P, on BR, then:

1. F is non-decreasing,
2. F is right continuous,
3. F (−∞) := limx→−∞ F (x) = 0, and F (∞) := limx→∞ F (x) = 1.

Proof. The monotonicity of P shows that F (x) in Eq. (5.1) is non-
decreasing. For b ∈ R let An = (−∞, bn] with bn ↓ b as n→∞. The continuity
of P implies

F (bn) = P ((−∞, bn]) ↓ µ((−∞, b]) = F (b).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
F (b+) := limy↓b F (y) = F (b). This show that F is right continuous. Similar
arguments show that F (∞) = 1 and F (−∞) = 0.

It turns out that Lemma 5.8 has the following important converse.

Theorem 5.9. To each function F : R→ [0, 1] satisfying properties 1. – 3.. in
Lemma 5.8, there exists a unique probability measure, PF , on BR such that

PF ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞.

Proof. The uniqueness assertion is proved in Corollary 5.17 below or see
Exercises 5.2 and 5.11 below. The existence portion of the theorem is a special
case of Theorem 5.33 below.

Example 5.10 (Uniform Distribution). The function,

F (x) :=

 0 for x ≤ 0
x for 0 ≤ x < 1
1 for 1 ≤ x <∞

,

is the distribution function for a measure, m on BR which is concentrated on
(0, 1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

With this summary in hand, let us now start the formal development. We
begin with uniqueness statement in Theorem 5.2.

5.2 π – λ Theorem

Recall that a collection, P ⊂ 2Ω , is a π – class or π – system if it is closed
under finite intersections. We also need the notion of a λ –system.

Definition 5.11 (λ – system). A collection of sets, L ⊂ 2Ω , is λ – class or
λ – system if

a. Ω ∈ L
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Fig. 5.1. The cumulative distribution function for the uniform distribution.

b. If A,B ∈ L and A ⊂ B, then B \A ∈ L. (Closed under proper differences.)
c. If An ∈ L and An ↑ A, then A ∈ L. (Closed under countable increasing

unions.)

Remark 5.12. If L is a collection of subsets of Ω which is both a λ – class and
a π – system then L is a σ – algebra. Indeed, since Ac = Ω \ A, we see that
any λ - system is closed under complementation. If L is also a π – system, it is
closed under intersections and therefore L is an algebra. Since L is also closed
under increasing unions, L is a σ – algebra.

Lemma 5.13 (Alternate Axioms for a λ – System*). Suppose that L ⊂ 2Ω

is a collection of subsets Ω. Then L is a λ – class iff λ satisfies the following
postulates:

1. Ω ∈ L
2. A ∈ L implies Ac ∈ L. (Closed under complementation.)
3. If {An}∞n=1 ⊂ L are disjoint, then

∑∞
n=1An ∈ L. (Closed under disjoint

unions.)

Proof. Suppose that L satisfies a. – c. above. Clearly then postulates 1. and
2. hold. Suppose that A,B ∈ L such that A ∩B = ∅, then A ⊂ Bc and

Ac ∩Bc = Bc \A ∈ L.

Taking complements of this result shows A ∪ B ∈ L as well. So by induction,
Bm :=

∑m
n=1An ∈ L. Since Bm ↑

∑∞
n=1An it follows from postulate c. that∑∞

n=1An ∈ L.

Now suppose that L satisfies postulates 1. – 3. above. Notice that ∅ ∈ L
and by postulate 3., L is closed under finite disjoint unions. Therefore if A,B ∈
L with A ⊂ B, then Bc ∈ L and A ∩ Bc = ∅ allows us to conclude that
A ∪ Bc ∈ L. Taking complements of this result shows B \ A = Ac ∩ B ∈ L as
well, i.e. postulate b. holds. If An ∈ L with An ↑ A, then Bn := An \An−1 ∈ L
for all n, where by convention A0 = ∅. Hence it follows by postulate 3 that
∪∞n=1An =

∑∞
n=1Bn ∈ L.

Theorem 5.14 (Dynkin’s π – λ Theorem). If L is a λ class which contains
a contains a π – class, P, then σ(P) ⊂ L.

Proof. We start by proving the following assertion; for any element C ∈ L,
the collection of sets,

LC := {D ∈ L : C ∩D ∈ L} ,

is a λ – system. To prove this claim, observe that: a. Ω ∈ LC , b. if A ⊂ B with
A,B ∈ LC , then A ∩ C, B ∩ C ∈ L with A ∩ C ⊂ B ∩ C and therefore,

(B \A) ∩ C = [B ∩ C] \A = [B ∩ C] \ [A ∩ C] ∈ L.

This shows that LC is closed under proper differences. c. If An ∈ LC with
An ↑ A, then An ∩C ∈ L and An ∩C ↑ A∩C ∈ L, i.e. A ∈ LC . Hence we have
verified LC is still a λ – system.

For the rest of the proof, we may assume without loss of generality that L
is the smallest λ – class containing P – if not just replace L by the intersection
of all λ – classes containing P. Then for C ∈ P we know that LC ⊂ L is a λ
- class containing P and hence LC = L. Since C ∈ P was arbitrary, we have
shown, C ∩ D ∈ L for all C ∈ P and D ∈ L. We may now conclude that if
C ∈ L, then P ⊂ LC ⊂ L and hence again LC = L. Since C ∈ L is arbitrary,
we have shown C∩D ∈ L for all C,D ∈ L, i.e. L is a π – system. So by Remark
5.12, L is a σ algebra. Since σ (P) is the smallest σ – algebra containing P it
follows that σ (P) ⊂ L.

As an immediate corollary, we have the following uniqueness result.

Proposition 5.15. Suppose that P ⊂ 2Ω is a π – system. If P and Q are two
probability1 measures on σ (P) such that P = Q on P, then P = Q on σ (P) .

Proof. Let L := {A ∈ σ (P) : P (A) = Q (A)} . One easily shows L is a λ –
class which contains P by assumption. Indeed, Ω ∈ P ⊂ L, if A,B ∈ L with
A ⊂ B, then

P (B \A) = P (B)− P (A) = Q (B)−Q (A) = Q (B \A)

1 More generally, P and Q could be two measures such that P (Ω) = Q (Ω) <∞.
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so that B \A ∈ L, and if An ∈ L with An ↑ A, then P (A) = limn→∞ P (An) =
limn→∞Q (An) = Q (A) which shows A ∈ L. Therefore σ (P) ⊂ L = σ (P) and
the proof is complete.

Example 5.16. Let Ω := {a, b, c, d} and let µ and ν be the probability measure
on 2Ω determined by, µ ({x}) = 1

4 for all x ∈ Ω and ν ({a}) = ν ({d}) = 1
8 and

ν ({b}) = ν ({c}) = 3/8. In this example,

L :=
{
A ∈ 2Ω : P (A) = Q (A)

}
is λ – system which is not an algebra. Indeed, A = {a, b} and B = {a, c} are in
L but A ∩B /∈ L.

Exercise 5.1. Suppose that µ and ν are two measures (not assumed to be
finite) on a measure space, (Ω,B) such that µ = ν on a π – system, P. Further
assume B = σ (P) and there exists Ωn ∈ P such that; i) µ (Ωn) = ν (Ωn) <∞
for all n and ii) Ωn ↑ Ω as n ↑ ∞. Show µ = ν on B.

Hint: Consider the measures, µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) .

Solution to Exercise (5.1). Let µn (A) := µ (A ∩Ωn) and νn (A) =
ν (A ∩Ωn) for all A ∈ B. Then µn and νn are finite measure such µn (Ω) =
νn (Ω) and µn = νn on P. Therefore by Proposition 5.15, µn = νn on B. So by
the continuity properties of µ and ν, it follows that

µ (A) = lim
n→∞

µ (A ∩Ωn) = lim
n→∞

µn (A) = lim
n→∞

νn (A) = lim
n→∞

ν (A ∩Ωn) = ν (A)

for all A ∈ B.

Corollary 5.17. A probability measure, P, on (R,BR) is uniquely determined
by its cumulative distribution function,

F (x) := P ((−∞, x]) .

Proof. This follows from Proposition 5.15 wherein we use the fact that
P := {(−∞, x] : x ∈ R} is a π – system such that BR = σ (P) .

Remark 5.18. Corollary 5.17 generalizes to Rn. Namely a probability measure,
P, on (Rn,BRn) is uniquely determined by its CDF,

F (x) := P ((−∞, x]) for all x ∈ Rn

where now

(−∞, x] := (−∞, x1]× (−∞, x2]× · · · × (−∞, xn].

5.2.1 A Density Result*

Exercise 5.2 (Density of A in σ (A)). Suppose that A ⊂ 2Ω is an algebra,
B := σ (A) , and P is a probability measure on B. Let ρ (A,B) := P (A∆B) .
The goal of this exercise is to use the π – λ theorem to show that A is dense in
B relative to the “metric,” ρ. More precisely you are to show using the following
outline that for every B ∈ B there exists A ∈ A such that that P (A4B) < ε.

1. Recall from Exercise 4.3 that ρ (a,B) = P (A4B) = E |1A − 1B | .
2. Observe; if B = ∪Bi and A = ∪iAi, then

B \A ⊂ ∪i (Bi \Ai) ⊂ ∪iAi 4Bi and
A \B ⊂ ∪i (Ai \Bi) ⊂ ∪iAi 4Bi

so that
A4B ⊂ ∪i (Ai 4Bi) .

3. We also have

(B2 \B1) \ (A2 \A1) = B2 ∩Bc1 ∩ (A2 \A1)c

= B2 ∩Bc1 ∩ (A2 ∩Ac1)c

= B2 ∩Bc1 ∩ (Ac2 ∪A1)
= [B2 ∩Bc1 ∩Ac2] ∪ [B2 ∩Bc1 ∩A1]
⊂ (B2 \A2) ∪ (A1 \B1)

and similarly,

(A2 \A1) \ (B2 \B1) ⊂ (A2 \B2) ∪ (B1 \A1)

so that

(A2 \A1)4 (B2 \B1) ⊂ (B2 \A2) ∪ (A1 \B1) ∪ (A2 \B2) ∪ (B1 \A1)
= (A1 4B1) ∪ (A2 4B2) .

4. Observe that An ∈ B and An ↑ A, then

P (B 4An) = P (B \An) + P (An \B)
→ P (B \A) + P (A \B) = P (A4B) .

5. Let L be the collection of sets B ∈ B for which the assertion of the theorem
holds. Show L is a λ – system which contains A.
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Solution to Exercise (5.2). Since L contains the π – system, A it suffices by
the π – λ theorem to show L is a λ – system. Clearly, Ω ∈ L since Ω ∈ A ⊂ L.
If B1 ⊂ B2 with Bi ∈ L and ε > 0, there exists Ai ∈ A such that P (Bi 4Ai) =
EP |1Ai − 1Bi | < ε/2 and therefore,

P ((B2 \B1)4 (A2 \A1)) ≤ P ((A1 4B1) ∪ (A2 4B2))
≤ P ((A1 4B1)) + P ((A2 4B2)) < ε.

Also if Bn ↑ B with Bn ∈ L, there exists An ∈ A such that P (Bn 4An) < ε2−n

and therefore,

P ([∪nBn]4 [∪nAn]) ≤
∞∑
n=1

P (Bn 4An) < ε.

Moreover, if we let B := ∪nBn and AN := ∪Nn=1An, then

P
(
B 4AN

)
= P

(
B \AN

)
+P

(
AN \B

)
→ P (B \A)+P (A \B) = P (B 4A)

where A := ∪nAn. Hence it follows for N large enough that P
(
B 4AN

)
< ε.

Since ε > 0 was arbitrary we have shown B ∈ L as desired.

5.3 Construction of Measures

Definition 5.19. Given a collection of subsets, E , of Ω, let Eσ denote the col-
lection of subsets of Ω which are finite or countable unions of sets from E .
Similarly let Eδ denote the collection of subsets of Ω which are finite or count-
able intersections of sets from E . We also write Eσδ = (Eσ)δ and Eδσ = (Eδ)σ ,
etc.

Lemma 5.20. Suppose that A ⊂ 2Ω is an algebra. Then:

1. Aσ is closed under taking countable unions and finite intersections.
2. Aδ is closed under taking countable intersections and finite unions.
3. {Ac : A ∈ Aσ} = Aδ and {Ac : A ∈ Aδ} = Aσ.

Proof. By construction Aσ is closed under countable unions. Moreover if
A = ∪∞i=1Ai and B = ∪∞j=1Bj with Ai, Bj ∈ A, then

A ∩B = ∪∞i,j=1Ai ∩Bj ∈ Aσ,

which shows that Aσ is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3.

Remark 5.21. Let us recall from Proposition 5.3 and Remark 5.4 that a finitely
additive measure µ : A → [0,∞] is a premeasure on A iff µ (An) ↑ µ(A) for all
{An}∞n=1 ⊂ A such that An ↑ A ∈ A. Furthermore if µ (Ω) < ∞, then µ is a
premeasure on A iff µ(An) ↓ 0 for all {An}∞n=1 ⊂ A such that An ↓ ∅.

Proposition 5.22. Given a premeasure, µ : A → [0,∞] , we extend µ to Aσ
by defining

µ (B) := sup {µ (A) : A 3 A ⊂ B} . (5.2)

This function µ : Aσ → [0,∞] then satisfies;

1. (Monotonicity) If A,B ∈ Aσ with A ⊂ B then µ (A) ≤ µ (B) .
2. (Continuity) If An ∈ A and An ↑ A ∈ Aσ, then µ (An) ↑ µ (A) as n→∞.
3. (Strong Additivity) If A,B ∈ Aσ, then

µ (A ∪B) + µ (A ∩B) = µ (A) + µ (B) . (5.3)

4. (Sub-Additivity on Aσ) The function µ is sub-additive on Aσ, i.e. if
{An}∞n=1 ⊂ Aσ, then

µ (∪∞n=1An) ≤
∞∑
n=1

µ (An) . (5.4)

5. (σ - Additivity on Aσ) The function µ is countably additive on Aσ.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.2) which then
implies µ (An) ≤ µ (B) for all n. Therefore M := limn→∞ µ (An) ≤ µ (B) . To
prove the reverse inequality, let A 3 A ⊂ B. Then by the continuity of µ on
A and the fact that An ∩ A ↑ A we have µ (An ∩A) ↑ µ (A) . As µ (An) ≥
µ (An ∩A) for all n it then follows that M := limn→∞ µ (An) ≥ µ (A) . As
A ∈ A with A ⊂ B was arbitrary we may conclude,

µ (B) = sup {µ (A) : A 3 A ⊂ B} ≤M.

3. Suppose that A,B ∈ Aσ and {An}∞n=1 and {Bn}∞n=1 are sequences in A
such that An ↑ A and Bn ↑ B as n→∞. Then passing to the limit as n→∞
in the identity,

µ (An ∪Bn) + µ (An ∩Bn) = µ (An) + µ (Bn)

proves Eq. (5.3). In particular, it follows that µ is finitely additive on Aσ.
4 and 5. Let {An}∞n=1 be any sequence in Aσ and choose {An,i}∞i=1 ⊂ A

such that An,i ↑ An as i→∞. Then we have,

µ
(
∪Nn=1An,N

)
≤

N∑
n=1

µ (An,N ) ≤
N∑
n=1

µ (An) ≤
∞∑
n=1

µ (An) . (5.5)
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Since A 3 ∪Nn=1An,N ↑ ∪∞n=1An ∈ Aσ, we may let N → ∞ in Eq. (5.5) to
conclude Eq. (5.4) holds. If we further assume that {An}∞n=1 ⊂ Aσ are pairwise
disjoint, by the finite additivity and monotonicity of µ on Aσ, we have

∞∑
n=1

µ (An) = lim
N→∞

N∑
n=1

µ (An) = lim
N→∞

µ
(
∪Nn=1An

)
≤ µ (∪∞n=1An) .

This inequality along with Eq. (5.4) shows that µ is σ – additive on Aσ.
Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and A ∈ Aδ ∩Aσ.

Since A,Ac ∈ Aσ and Ω = A∪Ac, it follows that µ (Ω) = µ (A)+µ (Ac) . From
this observation we may extend µ to a function on Aδ ∪ Aσ by defining

µ (A) := µ (Ω)− µ (Ac) for all A ∈ Aδ. (5.6)

Lemma 5.23. Suppose µ is a finite premeasure on an algebra, A ⊂ 2Ω , and µ
has been extended to Aδ ∪ Aσ as described in Proposition 5.22 and Eq. (5.6)
above.

1. If A ∈ Aδ then µ (A) = inf {µ (B) : A ⊂ B ∈ A} .
2. If A ∈ Aδ and An ∈ A such that An ↓ A, then µ (A) =↓ limn→∞ µ (An) .
3. µ is strongly additive when restricted to Aδ.
4. If A ∈ Aδ and C ∈ Aσ such that A ⊂ C, then µ (C \A) = µ (C)− µ (A) .

Proof.

1. Since µ (B) = µ (Ω)− µ (Bc) and A ⊂ B iff Bc ⊂ Ac, it follows that

inf {µ (B) : A ⊂ B ∈ A} = inf {µ (Ω)− µ (Bc) : A 3 Bc ⊂ Ac}
= µ (Ω)− sup {µ (B) : A 3 B ⊂ Ac}
= µ (Ω)− µ (Ac) = µ (A) .

2. Similarly, since Acn ↑ Ac ∈ Aσ, by the definition of µ (A) and Proposition
5.22 it follows that

µ (A) = µ (Ω)− µ (Ac) = µ (Ω)− ↑ lim
n→∞

µ (Acn)

=↓ lim
n→∞

[µ (Ω)− µ (Acn)] =↓ lim
n→∞

µ (An) .

3. Suppose A,B ∈ Aδ and An, Bn ∈ A such that An ↓ A and Bn ↓ B, then
An ∪Bn ↓ A ∪B and An ∩Bn ↓ A ∩B and therefore,

µ (A ∪B) + µ (A ∩B) = lim
n→∞

[µ (An ∪Bn) + µ (An ∩Bn)]

= lim
n→∞

[µ (An) + µ (Bn)] = µ (A) + µ (B) .

All we really need is the finite additivity of µ which can be proved as follows.
Suppose that A,B ∈ Aδ are disjoint, then A∩B = ∅ implies Ac ∪Bc = Ω.
So by the strong additivity of µ on Aσ it follows that

µ (Ω) + µ (Ac ∩Bc) = µ (Ac) + µ (Bc)

from which it follows that

µ (A ∪B) = µ (Ω)− µ (Ac ∩Bc)
= µ (Ω)− [µ (Ac) + µ (Bc)− µ (Ω)]
= µ (A) + µ (B) .

4. Since Ac, C ∈ Aσ we may use the strong additivity of µ on Aσ to conclude,

µ (Ac ∪ C) + µ (Ac ∩ C) = µ (Ac) + µ (C) .

Because Ω = Ac ∪C, and µ (Ac) = µ (Ω)− µ (A) , the above equation may
be written as

µ (Ω) + µ (C \A) = µ (Ω)− µ (A) + µ (C)

which finishes the proof.

Notation 5.24 (Inner and outer measures) Let µ : A → [0,∞) be a finite
premeasure extended to Aσ ∪ Aδ as above. The for any B ⊂ Ω let

µ∗ (B) := sup {µ (A) : Aδ 3 A ⊂ B} and
µ∗ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} .

We refer to µ∗ (B) and µ∗ (B) as the inner and outer content of B respec-
tively.

If B ⊂ Ω has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem 5.27 below, this
extension becomes a σ – additive measure on a σ – algebra of subsets of Ω.

Definition 5.25 (Measurable Sets). Suppose µ is a finite premeasure on an
algebra A ⊂ 2Ω . We say that B ⊂ Ω is measurable if µ∗ (B) = µ∗ (B) . We
will denote the collection of measurable subsets of Ω by B = B (µ) and define
µ̄ : B → [0, µ (Ω)] by

µ̄ (B) := µ∗ (B) = µ∗ (B) for all B ∈ B. (5.7)
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Remark 5.26. Observe that µ∗ (B) = µ∗ (B) iff for all ε > 0 there exists A ∈ Aδ
and C ∈ Aσ such that A ⊂ B ⊂ C and

µ (C \A) = µ (C)− µ (A) < ε,

wherein we have used Lemma 5.23 for the first equality. Moreover we will use
below for any Aδ 3 A ⊂ B ⊂ C ∈ Aσ that

µ (A) ≤ µ∗ (B) = µ̄ (B) = µ∗ (B) ≤ µ (C) . (5.8)

Theorem 5.27 (Finite Premeasure Extension Theorem). Suppose µ is a
finite premeasure on an algebra A ⊂ 2Ω and µ̄ : B := B (µ) → [0, µ (Ω)] be as
in Definition 5.25. Then B is a σ – algebra on Ω which contains A and µ̄ is a
σ – additive measure on B. Moreover, µ̄ is the unique measure on B such that
µ̄|A = µ.

Proof. It is clear that A ⊂ B and that B is closed under complementation.
Now suppose that Bi ∈ B for i = 1, 2 and ε > 0 is given. We may then
choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ, and µ (Ci \Ai) < ε for
i = 1, 2. Then with A = A1 ∪ A2, B = B1 ∪ B2 and C = C1 ∪ C2, we have
Aδ 3 A ⊂ B ⊂ C ∈ Aσ. Since

C \A = (C1 \A) ∪ (C2 \A) ⊂ (C1 \A1) ∪ (C2 \A2) ,

it follows from the sub-additivity of µ that with

µ (C \A) ≤ µ (C1 \A1) + µ (C2 \A2) < 2ε.

Since ε > 0 was arbitrary, we have shown that B ∈ B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a σ – algebra it suffices to show
that B =

∑∞
n=1Bn ∈ B whenever {Bn}∞n=1 is a disjoint sequence in B. To prove

B ∈ B, let ε > 0 be given and choose Ai ⊂ Bi ⊂ Ci such that Ai ∈ Aδ, Ci ∈ Aσ,
and µ (Ci \Ai) < ε2−i for all i. Since the {Ai}∞i=1 are pairwise disjoint we may
use Lemma 5.23 to show,

n∑
i=1

µ (Ci) =
n∑
i=1

(µ (Ai) + µ (Ci \Ai))

= µ (∪ni=1Ai) +
n∑
i=1

µ (Ci \Ai) ≤ µ (Ω) +
n∑
i=1

ε2−i.

Passing to the limit, n→∞, in this equation then shows

∞∑
i=1

µ (Ci) ≤ µ (Ω) + ε <∞. (5.9)

Let B = ∪∞i=1Bi, C := ∪∞i=1Ci ∈ Aσ and for n ∈ N let An :=
∑n
i=1Ai ∈ Aδ.

Then Aδ 3 An ⊂ B ⊂ C ∈ Aσ, C \An ∈ Aσ and

C \An = ∪∞i=1 (Ci \An) ⊂ [∪ni=1 (Ci \Ai)] ∪
[
∪∞i=n+1Ci

]
∈ Aσ.

Therefore, using the sub-additivity of µ on Aσ and the estimate (5.9),

µ (C \An) ≤
n∑
i=1

µ (Ci \Ai) +
∞∑

i=n+1

µ (Ci)

≤ ε+
∞∑

i=n+1

µ (Ci)→ ε as n→∞.

Since ε > 0 is arbitrary, it follows that B ∈ B and that

n∑
i=1

µ (Ai) = µ (An) ≤ µ̄ (B) ≤ µ (C) ≤
∞∑
i=1

µ (Ci) .

Letting n→∞ in this equation then shows,

∞∑
i=1

µ (Ai) ≤ µ̄ (B) ≤
∞∑
i=1

µ (Ci) . (5.10)

On the other hand, since Ai ⊂ Bi ⊂ Ci, it follows (see Eq. (5.8) that

∞∑
i=1

µ (Ai) ≤
∞∑
i=1

µ̄ (Bi) ≤
∞∑
i=1

µ (Ci) . (5.11)

As
∞∑
i=1

µ (Ci)−
∞∑
i=1

µ (Ai) =
∞∑
i=1

µ (Ci \Ai) ≤
∞∑
i=1

ε2−i = ε,

we may conclude from Eqs. (5.10) and (5.11) that∣∣∣∣∣µ̄ (B)−
∞∑
i=1

µ̄ (Bi)

∣∣∣∣∣ ≤ ε.
Since ε > 0 is arbitrary, we have shown µ̄ (B) =

∑∞
i=1 µ̄ (Bi) . This completes

the proof that B is a σ - algebra and that µ̄ is a measure on B.
Since we really had no choice as to how to extend µ, it is to be expected

that the extension is unique. You are asked to supply the details in Exercise 5.3
below.
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Exercise 5.3. Let µ, µ̄, A, and B := B (µ) be as in Theorem 5.27. Further
suppose that B0 ⊂ 2Ω is a σ – algebra such that A ⊂ B0 ⊂ B and ν : B0 →
[0, µ (Ω)] is a σ – additive measure on B0 such that ν = µ on A. Show that
ν = µ̄ on B0 as well. (When B0 = σ (A) this exercise is of course a consequence
of Proposition 5.15. It is not necessary to use this information to complete the
exercise.)

Corollary 5.28. Suppose that A ⊂ 2Ω is an algebra and µ : B0 := σ (A) →
[0, µ (Ω)] is a σ – additive measure. Then for every B ∈ σ (A) and ε > 0;

1. there exists Aδ 3 A ⊂ B ⊂ C ∈ Aσand ε > 0 such that µ (C \A) < ε and
2. there exists A ∈ A such that µ (A∆B) < ε.

Exercise 5.4. Prove corollary 5.28 by considering ν̄ where ν := µ|A. Hint:
you may find Exercise 4.3 useful here.

Theorem 5.29. Suppose that µ is a σ – finite premeasure on an algebra A.
Then

µ̄ (B) := inf {µ (C) : B ⊂ C ∈ Aσ} ∀ B ∈ σ (A) (5.12)

defines a measure on σ (A) and this measure is the unique extension of µ on A
to a measure on σ (A) .

Proof. Let {Ωn}∞n=1 ⊂ A be chosen so that µ (Ωn) <∞ for all n and Ωn ↑
Ω as n→∞ and let

µn (A) := µn (A ∩Ωn) for all A ∈ A.

Each µn is a premeasure (as is easily verified) on A and hence by Theorem 5.27
each µn has an extension, µ̄n, to a measure on σ (A) . Since the measure µ̄n are
increasing, µ̄ := limn→∞ µ̄n is a measure which extends µ.

The proof will be completed by verifying that Eq. (5.12) holds. Let B ∈
σ (A) , Bm = Ωm ∩ B and ε > 0 be given. By Theorem 5.27, there exists
Cm ∈ Aσ such that Bm ⊂ Cm ⊂ Ωm and µ̄(Cm \Bm) = µ̄m(Cm \Bm) < ε2−n.
Then C := ∪∞m=1Cm ∈ Aσ and

µ̄(C \B) ≤ µ̄

( ∞⋃
m=1

(Cm \B)

)
≤
∞∑
m=1

µ̄(Cm \B) ≤
∞∑
m=1

µ̄(Cm \Bm) < ε.

Thus
µ̄ (B) ≤ µ̄ (C) = µ̄ (B) + µ̄(C \B) ≤ µ̄ (B) + ε

which, since ε > 0 is arbitrary, shows µ̄ satisfies Eq. (5.12). The uniqueness of
the extension µ̄ is proved in Exercise 5.11.

The following slight reformulation of Theorem 5.29 can be useful.

Corollary 5.30. Let A be an algebra of sets, {Ωm}∞m=1 ⊂ A is a given sequence
of sets such that Ωm ↑ Ω as m→∞. Let

Af := {A ∈ A : A ⊂ Ωm for some m ∈ N} .

Notice that Af is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that µ : Af → [0,∞) is an additive
set function such that µ (An) ↓ 0 for any sequence, {An} ⊂ Af such that An ↓ ∅
as n→∞. Then µ extends uniquely to a σ – finite measure on A.

Proof. Existence. By assumption, µm := µ|AΩm : AΩm → [0,∞) is a
premeasure on (Ωm,AΩm) and hence by Theorem 5.29 extends to a measure
µ′m on (Ωm, σ (AΩm) = BΩm) . Let µ̄m (B) := µ′m (B ∩Ωm) for all B ∈ B.
Then {µ̄m}∞m=1 is an increasing sequence of measure on (Ω,B) and hence µ̄ :=
limm→∞ µ̄m defines a measure on (Ω,B) such that µ̄|Af = µ.

Uniqueness. If µ1 and µ2 are two such extensions, then µ1 (Ωm ∩B) =
µ2 (Ωm ∩B) for all B ∈ A and therefore by Exercise 5.11 or Dynkin’s π – λ
theorem below we know that µ1 (Ωm ∩B) = µ2 (Ωm ∩B) for all B ∈ B. We
may now let m → ∞ to see that in fact µ1 (B) = µ2 (B) for all B ∈ B, i.e.
µ1 = µ2.

5.4 Radon Measures on R

We say that a measure, µ, on (R,BR) is a Radon measure if µ ([a, b]) < ∞
for all −∞ < a < b < ∞. In this section we will give a characterization of all
Radon measures on R. We first need the following general result characterizing
premeasures on an algebra generated by a semi-algebra.

Proposition 5.31. Suppose that S ⊂ 2Ω is a semi-algebra, A = A(S) and
µ : A → [0,∞] is a finitely additive measure. Then µ is a premeasure on A iff
µ is countably sub-additive on S.

Proof. Clearly if µ is a premeasure on A then µ is σ - additive and hence
sub-additive on S. Because of Proposition 4.2, to prove the converse it suffices
to show that the sub-additivity of µ on S implies the sub-additivity of µ on A.

So suppose A =
∑∞
n=1An ∈ A with each An ∈ A . By Proposition 3.25 we

may write A =
∑k
j=1Ej and An =

∑Nn
i=1En,i with Ej , En,i ∈ S. Intersecting

the identity, A =
∑∞
n=1An, with Ej implies

Ej = A ∩ Ej =
∞∑
n=1

An ∩ Ej =
∞∑
n=1

Nn∑
i=1

En,i ∩ Ej .

By the assumed sub-additivity of µ on S,
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µ(Ej) ≤
∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej) .

Summing this equation on j and using the finite additivity of µ shows

µ(A) =
k∑
j=1

µ(Ej) ≤
k∑
j=1

∞∑
n=1

Nn∑
i=1

µ (En,i ∩ Ej)

=
∞∑
n=1

Nn∑
i=1

k∑
j=1

µ (En,i ∩ Ej) =
∞∑
n=1

Nn∑
i=1

µ (En,i) =
∞∑
n=1

µ (An) .

Suppose now that µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that

µ ((a, b]) = F (b)− F (a) for all −∞ < a ≤ b <∞. (5.13)

For example if µ (R) <∞ we can take F (x) = µ ((−∞, x]) while if µ (R) =∞
we might take

F (x) =
{
µ ((0, x]) if x ≥ 0
−µ ((x, 0]) if x ≤ 0 .

The function F is uniquely determined modulo translation by a constant.

Lemma 5.32. If µ is a Radon measure on (R,BR) and F : R→ R is chosen
so that µ ((a, b]) = F (b)− F (a) , then F is increasing and right continuous.

Proof. The function F is increasing by the monotonicity of µ. To see that
F is right continuous, let b ∈ R and choose a ∈ (−∞, b) and any sequence
{bn}∞n=1 ⊂ (b,∞) such that bn ↓ b as n → ∞. Since µ ((a, b1]) < ∞ and
(a, bn] ↓ (a, b] as n→∞, it follows that

F (bn)− F (a) = µ((a, bn]) ↓ µ((a, b]) = F (b)− F (a).

Since {bn}∞n=1 was an arbitrary sequence such that bn ↓ b, we have shown
limy↓b F (y) = F (b).

The key result of this section is the converse to this lemma.

Theorem 5.33. Suppose F : R→ R is a right continuous increasing function.
Then there exists a unique Radon measure, µ = µF , on (R,BR) such that Eq.
(5.13) holds.

Proof. Let S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} , and A = A (S) consists
of those sets, A ⊂ R which may be written as finite disjoint unions of sets
from S as in Example 3.26. Recall that BR = σ (A) = σ (S) . Further define
F (±∞) := limx→±∞ F (x) and let µ = µF be the finitely additive measure

on (R,A) described in Proposition 4.8 and Remark 4.9. To finish the proof it
suffices by Theorem 5.29 to show that µ is a premeasure on A = A (S) where
S := {(a, b] ∩ R : −∞ ≤ a ≤ b ≤ ∞} . So in light of Proposition 5.31, to finish
the proof it suffices to show µ is sub-additive on S, i.e. we must show

µ(J) ≤
∞∑
n=1

µ(Jn). (5.14)

where J =
∑∞
n=1 Jn with J = (a, b] ∩ R and Jn = (an, bn] ∩ R. Recall from

Proposition 4.2 that the finite additivity of µ implies

∞∑
n=1

µ(Jn) ≤ µ (J) . (5.15)

We begin with the special case where −∞ < a < b <∞. Our proof will be
by “continuous induction.” The strategy is to show a ∈ Λ where

Λ :=

{
α ∈ [a, b] : µ(J ∩ (α, b]) ≤

∞∑
n=1

µ(Jn ∩ (α, b])

}
. (5.16)

As b ∈ J, there exists an k such that b ∈ Jk and hence (ak, bk] = (ak, b] for this
k. It now easily follows that Jk ⊂ Λ so that Λ is not empty. To finish the proof
we are going to show ā := inf Λ ∈ Λ and that ā = a.

• If ā /∈ Λ, there would exist αm ∈ Λ such that αm ↓ ā, i.e.

µ(J ∩ (αm, b]) ≤
∞∑
n=1

µ(Jn ∩ (αm, b]). (5.17)

Since µ(Jn ∩ (αm, b]) ≤ µ(Jn) and
∑∞
n=1 µ (Jn) ≤ µ (J) <∞ by Eq. (5.15),

we may use the right continuity of F and the dominated convergence the-
orem for sums in order to pass to the limit as m → ∞ in Eq. (5.17) to
learn,

µ(J ∩ (ā, b]) ≤
∞∑
n=1

µ(Jn ∩ (ā, b]).

This shows ā ∈ Λ which is a contradiction to the original assumption that
ā /∈ Λ.

• If ā > a, then ā ∈ Jl = (al, bl] for some l. Letting α = al < ā, we have,
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µ(J ∩ (α, b]) = µ(J ∩ (α, ā]) + µ(J ∩ (ā, b])

≤ µ(Jl ∩ (α, ā]) +
∞∑
n=1

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, ā]) + µ (Jl ∩ (ā, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

= µ(Jl ∩ (α, b]) +
∑
n 6=l

µ(Jn ∩ (ā, b])

≤
∞∑
n=1

µ(Jn ∩ (α, b]).

This shows α ∈ Λ and α < ā which violates the definition of ā. Thus we
must conclude that ā = a.

The hard work is now done but we still have to check the cases where
a = −∞ or b =∞. For example, suppose that b =∞ so that

J = (a,∞) =
∞∑
n=1

Jn

with Jn = (an, bn] ∩ R. Then

IM := (a,M ] = J ∩ IM =
∞∑
n=1

Jn ∩ IM

and so by what we have already proved,

F (M)− F (a) = µ(IM ) ≤
∞∑
n=1

µ(Jn ∩ IM ) ≤
∞∑
n=1

µ(Jn).

Now let M →∞ in this last inequality to find that

µ((a,∞)) = F (∞)− F (a) ≤
∞∑
n=1

µ(Jn).

The other cases where a = −∞ and b ∈ R and a = −∞ and b =∞ are handled
similarly.

5.4.1 Lebesgue Measure

If F (x) = x for all x ∈ R, we denote µF by m and call m Lebesgue measure on
(R,BR) .

Theorem 5.34. Lebesgue measure m is invariant under translations, i.e. for
B ∈ BR and x ∈ R,

m(x+B) = m(B). (5.18)

Lebesgue measure, m, is the unique measure on BR such that m((0, 1]) = 1 and
Eq. (5.18) holds for B ∈ BR and x ∈ R. Moreover, m has the scaling property

m(λB) = |λ|m(B) (5.19)

where λ ∈ R, B ∈ BR and λB := {λx : x ∈ B}.
Proof. Let mx(B) := m(x+B), then one easily shows that mx is a measure

on BR such that mx((a, b]) = b − a for all a < b. Therefore, mx = m by
the uniqueness assertion in Exercise 5.11. For the converse, suppose that m is
translation invariant and m((0, 1]) = 1. Given n ∈ N, we have

(0, 1] = ∪nk=1(
k − 1
n

,
k

n
] = ∪nk=1

(
k − 1
n

+ (0,
1
n

]
)
.

Therefore,

1 = m((0, 1]) =
n∑
k=1

m

(
k − 1
n

+ (0,
1
n

]
)

=
n∑
k=1

m((0,
1
n

]) = n ·m((0,
1
n

]).

That is to say

m((0,
1
n

]) = 1/n.

Similarly, m((0, ln ]) = l/n for all l, n ∈ N and therefore by the translation
invariance of m,

m((a, b]) = b− a for all a, b ∈ Q with a < b.

Finally for a, b ∈ R such that a < b, choose an, bn ∈ Q such that bn ↓ b and
an ↑ a, then (an, bn] ↓ (a, b] and thus

m((a, b]) = lim
n→∞

m((an, bn]) = lim
n→∞

(bn − an) = b− a,

i.e. m is Lebesgue measure. To prove Eq. (5.19) we may assume that λ 6= 0
since this case is trivial to prove. Now let mλ(B) := |λ|−1

m(λB). It is easily
checked that mλ is again a measure on BR which satisfies

mλ((a, b]) = λ−1m ((λa, λb]) = λ−1(λb− λa) = b− a

if λ > 0 and

mλ((a, b]) = |λ|−1
m ([λb, λa)) = − |λ|−1 (λb− λa) = b− a

if λ < 0. Hence mλ = m.
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5.5 A Discrete Kolmogorov’s Extension Theorem

For this section, let S be a finite or countable set (we refer to S as state space),
Ω := S∞ := SN (think of N as time and Ω as path space)

An := {B ×Ω : B ⊂ Sn} for all n ∈ N,

and A := ∪∞n=1An. We call the elements, A ⊂ Ω, the cylinder subsets of Ω.
Notice that A ⊂ Ω is a cylinder set iff there exists n ∈ N and B ⊂ Sn such that

A = B ×Ω := {ω ∈ Ω : (ω1, . . . , ωn) ∈ B} .

Also observe that we may write A as A = B′ ×Ω where B′ = B × Sk ⊂ Sn+k

for any k ≥ 0.

Exercise 5.5. Show;

1. An is a σ – algebra for each n ∈ N,
2. An ⊂ An+1 for all n, and
3. A ⊂ 2Ω is an algebra of subsets of Ω. (In fact, you might show that
A = ∪∞n=1An is an algebra whenever {An}∞n=1 is an increasing sequence
of algebras.)

Lemma 5.35 (Baby Tychonov Theorem). Suppose {Cn}∞n=1 ⊂ A is a
decreasing sequence of non-empty cylinder sets. Further assume there exists
Nn ∈ N and Bn ⊂⊂ SNn such that Cn = Bn × Ω. (This last assumption is
vacuous when S is a finite set.) Then ∩∞n=1Cn 6= ∅.

Proof. Since Cn+1 ⊂ Cn, if Nn > Nn+1, we would have Bn+1×SNn+1−Nn ⊂
Bn. If S is an infinite set this would imply Bn is an infinite set and hence we
must have Nn+1 ≥ Nn for all n when # (S) = ∞. On the other hand, if S is
a finite set, we can always replace Bn+1 by Bn+1 × Sk for some appropriate
k and arrange it so that Nn+1 ≥ Nn for all n. So from now we assume that
Nn+1 ≥ Nn.

Case 1. limn→∞Nn <∞ in which case there exists some N ∈ N such that
Nn = N for all large n. Thus for large N, Cn = Bn × Ω with Bn ⊂⊂ SN and
Bn+1 ⊂ Bn and hence # (Bn) ↓ as n→∞. By assumption, limn→∞# (Bn) 6= 0
and therefore # (Bn) = k > 0 for all n large. It then follows that there exists
n0 ∈ N such that Bn = Bn0 for all n ≥ n0. Therefore ∩∞n=1Cn = Bn0 ×Ω 6= ∅.

Case 2. limn→∞Nn = ∞. By assumption, there exists ω (n) =
(ω1 (n) , ω2 (n) , . . . ) ∈ Ω such that ω (n) ∈ Cn for all n. Moreover, since
ω (n) ∈ Cn ⊂ Ck for all k ≤ n, it follows that

(ω1 (n) , ω2 (n) , . . . , ωNk (n)) ∈ Bk for all n ≥ k (5.20)

and as Bk is a finite set {ωi (n)}∞n=1 must be a finite set for all 1 ≤ i ≤ Nk.
As Nk → ∞ as k → ∞ it follows that {ωi (n)}∞n=1 is a finite set for all i ∈ N.
Using this observation, we may find, s1 ∈ S and an infinite subset, Γ1 ⊂ N such
that ω1 (n) = s1 for all n ∈ Γ1. Similarly, there exists s2 ∈ S and an infinite
set, Γ2 ⊂ Γ1, such that ω2 (n) = s2 for all n ∈ Γ2. Continuing this procedure
inductively, there exists (for all j ∈ N) infinite subsets, Γj ⊂ N and points
sj ∈ S such that Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ . . . and ωj (n) = sj for all n ∈ Γj .

We are now going to complete the proof by showing s := (s1, s2, . . . ) ∈
∩∞n=1Cn. By the construction above, for all N ∈ N we have

(ω1 (n) , . . . , ωN (n)) = (s1, . . . , sN ) for all n ∈ ΓN .

Taking N = Nk and n ∈ ΓNk with n ≥ k, we learn from Eq. (5.20) that

(s1, . . . , sNk) = (ω1 (n) , . . . , ωNk (n)) ∈ Bk.

But this is equivalent to showing s ∈ Ck. Since k ∈ N was arbitrary it follows
that s ∈ ∩∞n=1Cn.

Theorem 5.36 (Kolmogorov’s Extension Theorem I.). Let us continue
the notation above with the further assumption that S is a finite set. Then every
finitely additive probability measure, P : A → [0, 1] , has a unique extension to
a probability measure on σ (A) .

Proof. From Theorem 5.27, it suffices to show limn→∞ P (An) = 0 whenever
{An}∞n=1 ⊂ A with An ↓ ∅. However, by Lemma 5.35 with Cn = An, An ∈ A
and An ↓ ∅, we must have that An = ∅ for a.a. n and in particular P (An) = 0
for a.a. n. This certainly implies limn→∞ P (An) = 0.

For the next three exercises, suppose that S is a finite set and continue the
notation from above. Further suppose that P : σ (A) → [0, 1] is a probability
measure and for n ∈ N and (s1, . . . , sn) ∈ Sn, let

pn (s1, . . . , sn) := P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) . (5.21)

Exercise 5.6 (Consistency Conditions). If pn is defined as above, show:

1.
∑
s∈S p1 (s) = 1 and

2. for all n ∈ N and (s1, . . . , sn) ∈ Sn,

pn (s1, . . . , sn) =
∑
s∈S

pn+1 (s1, . . . , sn, s) .

Exercise 5.7 (Converse to 5.6). Suppose for each n ∈ N we are given func-
tions, pn : Sn → [0, 1] such that the consistency conditions in Exercise 5.6 hold.
Then there exists a unique probability measure, P on σ (A) such that Eq. (5.21)
holds for all n ∈ N and (s1, . . . , sn) ∈ Sn.
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Example 5.37 (Existence of iid simple R.V.s). Suppose now that q : S → [0, 1]
is a function such that

∑
s∈S q (s) = 1. Then there exists a unique probability

measure P on σ (A) such that, for all n ∈ N and (s1, . . . , sn) ∈ Sn, we have

P ({ω ∈ Ω : ω1 = s1, . . . , ωn = sn}) = q (s1) . . . q (sn) .

This is a special case of Exercise 5.7 with pn (s1, . . . , sn) := q (s1) . . . q (sn) .

Theorem 5.38 (Kolmogorov’s Extension Theorem II). Suppose now that
S is countably infinite set and P : A → [0, 1] is a finitely additive measure such
that P |An is a σ – additive measure for each n ∈ N. Then P extends uniquely
to a probability measure on σ (A) .

Proof. From Theorem 5.27 it suffice to show; if {Am}∞n=1 ⊂ A is a decreas-
ing sequence of subsets such that ε := infm P (Am) > 0, then ∩∞m=1Am 6= ∅.
You are asked to verify this property of P in the next couple of exercises.

For the next couple of exercises the hypothesis of Theorem 5.38 are to be
assumed.

Exercise 5.8. Show for each n ∈ N, A ∈ An, and ε > 0 are given. Show there
exists F ∈ An such that F ⊂ A, F = K×Ω with K ⊂⊂ Sn, and P (A \ F ) < ε.

Exercise 5.9. Let {Am}∞n=1 ⊂ A be a decreasing sequence of subsets such that
ε := infm P (Am) > 0. Using Exercise 5.8, choose Fm = Km × Ω ⊂ Am with
Km ⊂⊂ SNn and P (Am \ Fm) ≤ ε/2m+1. Further define Cm := F1 ∩ · · · ∩ Fm
for each m. Show;

1. Show Am \ Cm ⊂ (A1 \ F1) ∪ (A2 \ F2) ∪ · · · ∪ (Am \ Fm) and use this to
conclude that P (Am \ Cm) ≤ ε/2.

2. Conclude Cm is not empty for m.
3. Use Lemma 5.35 to conclude that ∅ 6= ∩∞m=1Cm ⊂ ∩∞m=1Am.

Exercise 5.10. Convince yourself that the results of Exercise 5.6 and 5.7 are
valid when S is a countable set. (See Example 4.6.)

Example 5.39 (Markov Chain Probabilities). Let S be a finite or at most count-
able state space and p : S × S → [0, 1] be a Markov kernel, i.e.∑

y∈S
p (x, y) = 1 for all x ∈ S. (5.22)

Also let π : S → [0, 1] be a probability function, i.e.
∑
x∈S π (x) = 1. We now

take
Ω := SN0 = {ω = (s0, s1, . . . ) : sj ∈ S}

and let Xn : Ω → S be given by

Xn (s0, s1, . . . ) = sn for all n ∈ N0.

Then there exists a unique probability measure, Pπ, on σ (A) such that

Pπ (X0 = x0, . . . , Xn = xn) = π (x0) p (x0, x1) . . . p (xn−1, xn)

for all n ∈ N0 and x0, x1, . . . , xn ∈ S. To see such a measure exists, we need
only verify that

pn (x0, . . . , xn) := π (x0) p (x0, x1) . . . p (xn−1, xn)

verifies the hypothesis of Exercise 5.6 taking into account a shift of the n –
index.

5.6 Appendix: Regularity and Uniqueness Results*

The goal of this appendix it to approximating measurable sets from inside
and outside by classes of sets which are relatively easy to understand. Our
first few results are already contained in Carathoédory’s existence of measures
proof. Nevertheless, we state these results again and give another somewhat
independent proof.

Theorem 5.40 (Finite Regularity Result). Suppose A ⊂ 2Ω is an algebra,
B = σ (A) and µ : B → [0,∞) is a finite measure, i.e. µ (Ω) < ∞. Then for
every ε > 0 and B ∈ B there exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C
and µ (C \A) < ε.

Proof. Let B0 denote the collection of B ∈ B such that for every ε > 0
there here exists A ∈ Aδ and C ∈ Aσ such that A ⊂ B ⊂ C and µ (C \A) < ε.
It is now clear that A ⊂ B0 and that B0 is closed under complementation. Now
suppose that Bi ∈ B0 for i = 1, 2, . . . and ε > 0 is given. By assumption there
exists Ai ∈ Aδ and Ci ∈ Aσ such that Ai ⊂ Bi ⊂ Ci and µ (Ci \Ai) < 2−iε.

Let A := ∪∞i=1Ai, A
N := ∪Ni=1Ai ∈ Aδ, B := ∪∞i=1Bi, and C := ∪∞i=1Ci ∈

Aσ. Then AN ⊂ A ⊂ B ⊂ C and

C \A = [∪∞i=1Ci] \A = ∪∞i=1 [Ci \A] ⊂ ∪∞i=1 [Ci \Ai] .

Therefore,

µ (C \A) = µ (∪∞i=1 [Ci \A]) ≤
∞∑
i=1

µ (Ci \A) ≤
∞∑
i=1

µ (Ci \Ai) < ε.

Since C \ AN ↓ C \ A, it also follows that µ
(
C \AN

)
< ε for sufficiently large

N and this shows B = ∪∞i=1Bi ∈ B0. Hence B0 is a sub-σ-algebra of B = σ (A)
which contains A which shows B0 = B.
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Many theorems in the sequel will require some control on the size of a
measure µ. The relevant notion for our purposes (and most purposes) is that
of a σ – finite measure defined next.

Definition 5.41. Suppose Ω is a set, E ⊂ B ⊂ 2Ω and µ : B → [0,∞] is a
function. The function µ is σ – finite on E if there exists En ∈ E such that
µ(En) < ∞ and Ω = ∪∞n=1En. If B is a σ – algebra and µ is a measure on B
which is σ – finite on B we will say (Ω,B, µ) is a σ – finite measure space.

The reader should check that if µ is a finitely additive measure on an algebra,
B, then µ is σ – finite on B iff there exists Ωn ∈ B such that Ωn ↑ Ω and
µ(Ωn) <∞.

Corollary 5.42 (σ – Finite Regularity Result). Theorem 5.40 continues
to hold under the weaker assumption that µ : B → [0,∞] is a measure which is
σ – finite on A.

Proof. Let Ωn ∈ A such that ∪∞n=1Ωn = Ω and µ(Ωn) <∞ for all n.Since
A ∈ B →µn (A) := µ (Ωn ∩A) is a finite measure on A ∈ B for each n, by
Theorem 5.40, for every B ∈ B there exists Cn ∈ Aσ such that B ⊂ Cn and
µ (Ωn ∩ [Cn \B]) = µn (Cn \B) < 2−nε. Now let C := ∪∞n=1 [Ωn ∩ Cn] ∈ Aσ
and observe that B ⊂ C and

µ (C \B) = µ (∪∞n=1 ([Ωn ∩ Cn] \B))

≤
∞∑
n=1

µ ([Ωn ∩ Cn] \B) =
∞∑
n=1

µ (Ωn ∩ [Cn \B]) < ε.

Applying this result to Bc shows there exists D ∈ Aσ such that Bc ⊂ D and

µ (B \Dc) = µ (D \Bc) < ε.

So if we let A := Dc ∈ Aδ, then A ⊂ B ⊂ C and

µ (C \A) = µ ([B \A] ∪ [(C \B) \A]) ≤ µ (B \A) + µ (C \B) < 2ε

and the result is proved.

Exercise 5.11. Suppose A ⊂ 2Ω is an algebra and µ and ν are two measures
on B = σ (A) .

a. Suppose that µ and ν are finite measures such that µ = ν on A. Show
µ = ν.

b. Generalize the previous assertion to the case where you only assume that
µ and ν are σ – finite on A.

Corollary 5.43. Suppose A ⊂ 2Ω is an algebra and µ : B = σ (A) → [0,∞] is
a measure which is σ – finite on A. Then for all B ∈ B, there exists A ∈ Aδσ
and C ∈ Aσδ such that A ⊂ B ⊂ C and µ (C \A) = 0.

Proof. By Theorem 5.40, given B ∈ B, we may choose An ∈ Aδ and
Cn ∈ Aσ such that An ⊂ B ⊂ Cn and µ(Cn \B) ≤ 1/n and µ(B \ An) ≤ 1/n.
By replacing AN by ∪Nn=1An and CN by ∩Nn=1Cn, we may assume that An ↑
and Cn ↓ as n increases. Let A = ∪An ∈ Aδσ and C = ∩Cn ∈ Aσδ, then
A ⊂ B ⊂ C and

µ(C \A) = µ(C \B) + µ(B \A) ≤ µ(Cn \B) + µ(B \An)
≤ 2/n→ 0 as n→∞.

Exercise 5.12. Let B = BRn = σ ({open subsets of Rn}) be the Borel σ –
algebra on Rn and µ be a probability measure on B. Further, let B0 denote
those sets B ∈ B such that for every ε > 0 there exists F ⊂ B ⊂ V such that
F is closed, V is open, and µ (V \ F ) < ε. Show:

1. B0 contains all closed subsets of B. Hint: given a closed subset, F ⊂ Rn and
k ∈ N, let Vk := ∪x∈FB (x, 1/k) , where B (x, δ) := {y ∈ Rn : |y − x| < δ} .
Show, Vk ↓ F as k →∞.

2. Show B0 is a σ – algebra and use this along with the first part of this
exercise to conclude B = B0. Hint: follow closely the method used in the
first step of the proof of Theorem 5.40.

3. Show for every ε > 0 and B ∈ B, there exist a compact subset,K ⊂ Rn, such
that K ⊂ B and µ (B \K) < ε. Hint: take K := F ∩ {x ∈ Rn : |x| ≤ n}
for some sufficiently large n.

5.7 Appendix: Completions of Measure Spaces*

Definition 5.44. A set E ⊂ Ω is a null set if E ∈ B and µ(E) = 0. If P is
some “property” which is either true or false for each x ∈ Ω, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E := {x ∈ Ω : P is false for x}

is a null set. For example if f and g are two measurable functions on (Ω,B, µ),
f = g a.e. means that µ(f 6= g) = 0.

Definition 5.45. A measure space (Ω,B, µ) is complete if every subset of a
null set is in B, i.e. for all F ⊂ Ω such that F ⊂ E ∈ B with µ(E) = 0 implies
that F ∈ B.
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Proposition 5.46 (Completion of a Measure). Let (Ω,B, µ) be a measure
space. Set

N = N µ := {N ⊂ Ω : ∃ F ∈ B such that N ⊂ F and µ(F ) = 0} ,
B = B̄µ := {A ∪N : A ∈ B and N ∈ N} and

µ̄(A ∪N) := µ(A) for A ∈ B and N ∈ N ,

see Fig. 5.2. Then B̄ is a σ – algebra, µ̄ is a well defined measure on B̄, µ̄ is the
unique measure on B̄ which extends µ on B, and (Ω, B̄, µ̄) is complete measure
space. The σ-algebra, B̄, is called the completion of B relative to µ and µ̄, is
called the completion of µ.

Proof. Clearly Ω, ∅ ∈ B̄. Let A ∈ B and N ∈ N and choose F ∈ B such

Fig. 5.2. Completing a σ – algebra.

that N ⊂ F and µ(F ) = 0. Since N c = (F \N) ∪ F c,

(A ∪N)c = Ac ∩N c = Ac ∩ (F \N ∪ F c)
= [Ac ∩ (F \N)] ∪ [Ac ∩ F c]

where [Ac ∩ (F \ N)] ∈ N and [Ac ∩ F c] ∈ B. Thus B̄ is closed under
complements. If Ai ∈ B and Ni ⊂ Fi ∈ B such that µ(Fi) = 0 then
∪(Ai ∪ Ni) = (∪Ai) ∪ (∪Ni) ∈ B̄ since ∪Ai ∈ B and ∪Ni ⊂ ∪Fi and
µ(∪Fi) ≤

∑
µ(Fi) = 0. Therefore, B̄ is a σ – algebra. Suppose A∪N1 = B∪N2

with A,B ∈ B and N1, N2,∈ N . Then A ⊂ A ∪ N1 ⊂ A ∪ N1 ∪ F2 = B ∪ F2

which shows that
µ(A) ≤ µ(B) + µ(F2) = µ(B).

Similarly, we show that µ(B) ≤ µ(A) so that µ(A) = µ(B) and hence µ̄(A ∪
N) := µ(A) is well defined. It is left as an exercise to show µ̄ is a measure, i.e.
that it is countable additive.

5.8 Appendix Monotone Class Theorems*

This appendix may be safely skipped!

Definition 5.47 (Montone Class). C ⊂ 2Ω is a monotone class if it is
closed under countable increasing unions and countable decreasing intersections.

Lemma 5.48 (Monotone Class Theorem*). Suppose A ⊂ 2Ω is an algebra
and C is the smallest monotone class containing A. Then C = σ(A).

Proof. For C ∈ C let

C(C) = {B ∈ C : C ∩B,C ∩Bc, B ∩ Cc ∈ C},

then C(C) is a monotone class. Indeed, if Bn ∈ C(C) and Bn ↑ B, then Bcn ↓ Bc
and so

C 3 C ∩Bn ↑ C ∩B
C 3 C ∩Bcn ↓ C ∩Bc and
C 3 Bn ∩ Cc ↑ B ∩ Cc.

Since C is a monotone class, it follows that C ∩ B,C ∩ Bc, B ∩ Cc ∈ C, i.e.
B ∈ C(C). This shows that C(C) is closed under increasing limits and a similar
argument shows that C(C) is closed under decreasing limits. Thus we have
shown that C(C) is a monotone class for all C ∈ C. If A ∈ A ⊂ C, then
A ∩ B,A ∩ Bc, B ∩ Ac ∈ A ⊂ C for all B ∈ A and hence it follows that
A ⊂ C(A) ⊂ C. Since C is the smallest monotone class containing A and C(A) is
a monotone class containing A, we conclude that C(A) = C for any A ∈ A. Let
B ∈ C and notice that A ∈ C(B) happens iff B ∈ C(A). This observation and
the fact that C(A) = C for all A ∈ A implies A ⊂ C(B) ⊂ C for all B ∈ C. Again
since C is the smallest monotone class containing A and C(B) is a monotone
class we conclude that C(B) = C for all B ∈ C. That is to say, if A,B ∈ C then
A ∈ C = C(B) and hence A ∩ B, A ∩ Bc, Ac ∩ B ∈ C. So C is closed under
complements (since Ω ∈ A ⊂ C) and finite intersections and increasing unions
from which it easily follows that C is a σ – algebra.
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Notation 6.1 If f : X → Y is a function and E ⊂ 2Y let

f−1E := f−1 (E) := {f−1(E)|E ∈ E}.

If G ⊂ 2X , let
f∗G := {A ∈ 2Y |f−1(A) ∈ G}.

Definition 6.2. Let E ⊂ 2X be a collection of sets, A ⊂ X, iA : A→ X be the
inclusion map (iA(x) = x for all x ∈ A) and

EA = i−1
A (E) = {A ∩ E : E ∈ E} .

The following results will be used frequently (often without further refer-
ence) in the sequel.

Exercise 6.1. Suppose f : X → Y is a function, F ⊂ 2Y and B ⊂ 2X . Show
f−1F and f∗B (see Notation 6.1) are algebras (σ – algebras) provided F and
B are algebras (σ – algebras).

Lemma 6.3. Suppose that f : X → Y is a function and E ⊂ 2Y and A ⊂ Y
then

σ
(
f−1(E)

)
= f−1(σ(E)) and (6.1)

(σ(E))A = σ(EA ), (6.2)

where BA := {B ∩A : B ∈ B} . (Similar assertion hold with σ (·) being replaced
by A (·) .)

Proof. By Exercise 6.1, f−1(σ(E)) is a σ – algebra and since E ⊂ F ,
f−1(E) ⊂ f−1(σ(E)). It now follows that

σ(f−1(E)) ⊂ f−1(σ(E)).

For the reverse inclusion, notice that

f∗σ
(
f−1(E)

)
:=
{
B ⊂ Y : f−1(B) ∈ σ

(
f−1(E)

)}
is a σ – algebra which contains E and thus σ(E) ⊂ f∗σ

(
f−1(E)

)
. Hence for

every B ∈ σ(E) we know that f−1(B) ∈ σ
(
f−1(E)

)
, i.e.

f−1(σ(E)) ⊂ σ
(
f−1(E)

)
.

Applying Eq. (6.1) with X = A and f = iA being the inclusion map implies

(σ(E))A = i−1
A (σ(E)) = σ(i−1

A (E)) = σ(EA).

Example 6.4. Let E = {(a, b] : −∞ < a < b <∞} and B = σ (E) be the Borel σ
– field on R. Then

E(0,1] = {(a, b] : 0 ≤ a < b ≤ 1}

and we have
B(0,1] = σ

(
E(0,1]

)
.

In particular, if A ∈ B such that A ⊂ (0, 1], then A ∈ σ
(
E(0,1]

)
.

6.1 Measurable Functions

Definition 6.5. A measurable space is a pair (X,M), where X is a set and
M is a σ – algebra on X.

To motivate the notion of a measurable function, suppose (X,M, µ) is a
measure space and f : X → R+ is a function. Roughly speaking, we are going
to define

∫
X

fdµ as a certain limit of sums of the form,

∞∑
0<a1<a2<a3<...

aiµ(f−1(ai, ai+1]).

For this to make sense we will need to require f−1((a, b]) ∈ M for all a < b.
Because of Corollary 6.11 below, this last condition is equivalent to the condition
f−1(BR) ⊂M.

Definition 6.6. Let (X,M) and (Y,F) be measurable spaces. A function f :
X → Y is measurable of more precisely, M/F – measurable or (M,F) –
measurable, if f−1(F) ⊂M, i.e. if f−1 (A) ∈M for all A ∈ F .
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Remark 6.7. Let f : X → Y be a function. Given a σ – algebra F ⊂ 2Y , the σ
– algebraM := f−1(F) is the smallest σ – algebra on X such that f is (M,F)
- measurable . Similarly, if M is a σ - algebra on X then

F = f∗M ={A ∈ 2Y |f−1(A) ∈M}

is the largest σ – algebra on Y such that f is (M,F) - measurable.

Example 6.8 (Characteristic Functions). Let (X,M) be a measurable space and
A ⊂ X. Then 1A is (M,BR) – measurable iff A ∈M. Indeed, 1−1

A (W ) is either
∅, X, A or Ac for any W ⊂ R with 1−1

A ({1}) = A.

Example 6.9. Suppose f : X → Y with Y being a finite set and F = 2Ω . Then
f is measurable iff f−1 ({y}) ∈M for all y ∈ Y.

Proposition 6.10. Suppose that (X,M) and (Y,F) are measurable spaces and
further assume E ⊂ F generates F , i.e. F = σ (E) . Then a map, f : X → Y is
measurable iff f−1 (E) ⊂M.

Proof. If f is M/F measurable, then f−1 (E) ⊂ f−1 (F) ⊂M. Conversely
if f−1 (E) ⊂M then σ

(
f−1 (E)

)
⊂M and so making use of Lemma 6.3,

f−1 (F) = f−1 (σ (E)) = σ
(
f−1 (E)

)
⊂M.

Corollary 6.11. Suppose that (X,M) is a measurable space. Then the follow-
ing conditions on a function f : X → R are equivalent:

1. f is (M,BR) – measurable,
2. f−1((a,∞)) ∈M for all a ∈ R,
3. f−1((a,∞)) ∈M for all a ∈ Q,
4. f−1((−∞, a]) ∈M for all a ∈ R.

Exercise 6.2. Prove Corollary 6.11. Hint: See Exercise 3.7.

Exercise 6.3. If M is the σ – algebra generated by E ⊂ 2X , then M is the
union of the σ – algebras generated by countable subsets F ⊂ E .

Exercise 6.4. Let (X,M) be a measure space and fn : X → R be a sequence
of measurable functions on X. Show that {x : limn→∞ fn(x) exists in R} ∈ M.

Exercise 6.5. Show that every monotone function f : R→ R is (BR,BR) –
measurable.

Definition 6.12. Given measurable spaces (X,M) and (Y,F) and a subset
A ⊂ X. We say a function f : A→ Y is measurable iff f is MA/F – measur-
able.

Proposition 6.13 (Localizing Measurability). Let (X,M) and (Y,F) be
measurable spaces and f : X → Y be a function.

1. If f is measurable and A ⊂ X then f |A : A→ Y is measurable.
2. Suppose there exist An ∈ M such that X = ∪∞n=1An and f |An is MAn

measurable for all n, then f is M – measurable.

Proof. 1. If f : X → Y is measurable, f−1(B) ∈ M for all B ∈ F and
therefore

f |−1
A (B) = A ∩ f−1(B) ∈MA for all B ∈ F .

2. If B ∈ F , then

f−1(B) = ∪∞n=1

(
f−1(B) ∩An

)
= ∪∞n=1f |−1

An
(B).

Since each An ∈ M,MAn ⊂M and so the previous displayed equation shows
f−1(B) ∈M.

The proof of the following exercise is routine and will be left to the reader.

Proposition 6.14. Let (X,M, µ) be a measure space, (Y,F) be a measurable
space and f : X → Y be a measurable map. Define a function ν : F → [0,∞]
by ν(A) := µ(f−1(A)) for all A ∈ F . Then ν is a measure on (Y,F) . (In the
future we will denote ν by f∗µ or µ ◦ f−1 and call f∗µ the push-forward of µ
by f or the law of f under µ.

Theorem 6.15. Given a distribution function, F : R→ [0, 1] let G : (0, 1)→ R
be defined (see Figure 6.1) by,

G (y) := inf {x : F (x) ≥ y} .

Then G : (0, 1)→ R is Borel measurable and G∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Proof. Since G : (0, 1)→ R is a non-decreasing function, G is measurable.
We also claim that, for all x0 ∈ R, that

G−1 ((0, x0]) = {y : G (y) ≤ x0} = (0, F (x0)] ∩ R, (6.3)

see Figure 6.2.
To give a formal proof of Eq. (6.3), G (y) = inf {x : F (x) ≥ y} ≤ x0, there

exists xn ≥ x0 with xn ↓ x0 such that F (xn) ≥ y. By the right continuity of F,
it follows that F (x0) ≥ y. Thus we have shown

{G ≤ x0} ⊂ (0, F (x0)] ∩ (0, 1) .

Page: 62 job: prob macro: svmonob.cls date/time: 19-Oct-2009/7:30



6.1 Measurable Functions 63

Fig. 6.1. A pictorial definition of G.

Fig. 6.2. As can be seen from this picture, G (y) ≤ x0 iff y ≤ F (x0) and similarly,
G (y) ≤ x1 iff y ≤ x1.

For the converse, if y ≤ F (x0) then G (y) = inf {x : F (x) ≥ y} ≤ x0, i.e.
y ∈ {G ≤ x0} . Indeed, y ∈ G−1 ((−∞, x0]) iff G (y) ≤ x0. Observe that

G (F (x0)) = inf {x : F (x) ≥ F (x0)} ≤ x0

and hence G (y) ≤ x0 whenever y ≤ F (x0) . This shows that

(0, F (x0)] ∩ (0, 1) ⊂ G−1 ((0, x0]) .

As a consequence we have G∗m = µF . Indeed,

(G∗m) ((−∞, x]) = m
(
G−1 ((−∞, x])

)
= m ({y ∈ (0, 1) : G (y) ≤ x})

= m ((0, F (x)] ∩ (0, 1)) = F (x) .

See section 2.5.2 on p. 61 of Resnick for more details.

Theorem 6.16 (Durret’s Version). Given a distribution function, F :
R→ [0, 1] let Y : (0, 1)→ R be defined (see Figure 6.3) by,

Y (x) := sup {y : F (y) < x} .

Then Y : (0, 1)→ R is Borel measurable and Y∗m = µF where µF is the unique
measure on (R,BR) such that µF ((a, b]) = F (b)− F (a) for all −∞ < a < b <
∞.

Fig. 6.3. A pictorial definition of Y (x) .

Proof. Since Y : (0, 1)→ R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (x) , then F (y) < x and hence,

F (Y (x)−) = lim
y↑Y (x)

F (y) ≤ x.

For y > Y (x) , we have F (y) ≥ x and therefore,

F (Y (x)) = F (Y (x) +) = lim
y↓Y (x)

F (y) ≥ x

and so we have shown

F (Y (x)−) ≤ x ≤ F (Y (x)) .

We will now show

{x ∈ (0, 1) : Y (x) ≤ y0} = (0, F (y0)] ∩ (0, 1) . (6.4)
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For the inclusion “⊂,” if x ∈ (0, 1) and Y (x) ≤ y0, then x ≤ F (Y (x)) ≤ F (y0),
i.e. x ∈ (0, F (y0)] ∩ (0, 1) . Conversely if x ∈ (0, 1) and x ≤ F (y0) then (by
definition of Y (x)) y0 ≥ Y (x) .

From the identity in Eq. (6.4), it follows that Y is measurable and

(Y∗m) ((−∞, y0)) = m
(
Y −1(−∞, y0)

)
= m ((0, F (y0)] ∩ (0, 1)) = F (y0) .

Therefore, Law (Y ) = µF as desired.

Lemma 6.17 (Composing Measurable Functions). Suppose that
(X,M), (Y,F) and (Z,G) are measurable spaces. If f : (X,M) → (Y,F) and
g : (Y,F) → (Z,G) are measurable functions then g ◦ f : (X,M) → (Z,G) is
measurable as well.

Proof. By assumption g−1(G) ⊂ F and f−1 (F) ⊂M so that

(g ◦ f)−1 (G) = f−1
(
g−1 (G)

)
⊂ f−1 (F) ⊂M.

Definition 6.18 (σ – Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yα,Fα) : α ∈ A} and
functions fα : X → Yα for all α ∈ A. Let σ(fα : α ∈ A) denote the smallest σ
– algebra on X such that each fα is measurable, i.e.

σ(fα : α ∈ A) = σ(∪αf−1
α (Fα)).

Example 6.19. Suppose that Y is a finite set, F = 2Y , and X = Y N for some
N ∈ N. Let πi : Y N → Y be the projection maps, πi (y1, . . . , yN ) = yi. Then,
as the reader should check,

σ (π1, . . . , πn) =
{
A× ΛN−n : A ⊂ Λn

}
.

Proposition 6.20. Assuming the notation in Definition 6.18 and additionally
let (Z,M) be a measurable space and g : Z → X be a function. Then g is
(M, σ(fα : α ∈ A)) – measurable iff fα ◦ g is (M,Fα)–measurable for all
α ∈ A.

Proof. (⇒) If g is (M, σ(fα : α ∈ A)) – measurable, then the composition
fα ◦ g is (M,Fα) – measurable by Lemma 6.17. (⇐) Let

G = σ(fα : α ∈ A) = σ
(
∪α∈Af−1

α (Fα)
)
.

If fα ◦ g is (M,Fα) – measurable for all α, then

g−1f−1
α (Fα) ⊂M∀α ∈ A

and therefore

g−1
(
∪α∈Af−1

α (Fα)
)

= ∪α∈Ag−1f−1
α (Fα) ⊂M.

Hence

g−1 (G) = g−1
(
σ
(
∪α∈Af−1

α (Fα)
))

= σ(g−1
(
∪α∈Af−1

α (Fα)
)
⊂M

which shows that g is (M,G) – measurable.

Definition 6.21. A function f : X → Y between two topological spaces is
Borel measurable if f−1(BY ) ⊂ BX .

Proposition 6.22. Let X and Y be two topological spaces and f : X → Y be
a continuous function. Then f is Borel measurable.

Proof. Using Lemma 6.3 and BY = σ(τY ),

f−1(BY ) = f−1(σ(τY )) = σ(f−1(τY )) ⊂ σ(τX) = BX .

Example 6.23. For i = 1, 2, . . . , n, let πi : Rn → R be defined by πi (x) = xi.
Then each πi is continuous and therefore BRn/BR – measurable.

Lemma 6.24. Let E denote the collection of open rectangle in Rn, then BRn =
σ (E) . We also have that BRn = σ (π1, . . . , πn) and in particular, A1×· · ·×An ∈
BRn whenever Ai ∈ BR for i = 1, 2, . . . , n. Therefore BRn may be described as
the σ algebra generated by {A1 × · · · ×An : Ai ∈ BR} .

Proof. Assertion 1. Since E ⊂ BRn , it follows that σ (E) ⊂ BRn . Let

E0 := {(a, b) : a, b ∈ Qn 3 a < b} ,

where, for a, b ∈ Rn, we write a < b iff ai < bi for i = 1, 2, . . . , n and let

(a, b) = (a1, b1)× · · · × (an, bn) . (6.5)

Since every open set, V ⊂ Rn, may be written as a (necessarily) countable
union of elements from E0, we have

V ∈ σ (E0) ⊂ σ (E) ,

i.e. σ (E0) and hence σ (E) contains all open subsets of Rn. Hence we may
conclude that

BRn = σ (open sets) ⊂ σ (E0) ⊂ σ (E) ⊂ BRn .
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Assertion 2. Since each πi is BRn/BR – measurable, it follows that
σ (π1, . . . , πn) ⊂ BRn . Moreover, if (a, b) is as in Eq. (6.5), then

(a, b) = ∩ni=1π
−1
i ((ai, bi)) ∈ σ (π1, . . . , πn) .

Therefore, E ⊂ σ (π1, . . . , πn) and BRn = σ (E) ⊂ σ (π1, . . . , πn) .
Assertion 3. If Ai ∈ BR for i = 1, 2, . . . , n, then

A1 × · · · ×An = ∩ni=1π
−1
i (Ai) ∈ σ (π1, . . . , πn) = BRn .

Corollary 6.25. If (X,M) is a measurable space, then

f = (f1, f2, . . . , fn) : X → Rn

is (M,BRn) – measurable iff fi : X → R is (M,BR) – measurable for each i.
In particular, a function f : X → C is (M,BC) – measurable iff Re f and Im f
are (M,BR) – measurable.

Proof. This is an application of Lemma 6.24 and Proposition 6.20.

Corollary 6.26. Let (X,M) be a measurable space and f, g : X → C be
(M,BC) – measurable functions. Then f ± g and f · g are also (M,BC) –
measurable.

Proof. Define F : X → C × C, A± : C × C → C and M : C × C −→ C
by F (x) = (f(x), g(x)), A±(w, z) = w ± z and M(w, z) = wz. Then A± and
M are continuous and hence (BC2 ,BC) – measurable. Also F is (M,BC2) –
measurable since π1◦F = f and π2◦F = g are (M,BC) – measurable. Therefore
A±◦F = f±g and M ◦F = f ·g, being the composition of measurable functions,
are also measurable.

Lemma 6.27. Let α ∈ C, (X,M) be a measurable space and f : X → C be a
(M,BC) – measurable function. Then

F (x) :=
{ 1
f(x) if f(x) 6= 0
α if f(x) = 0

is measurable.

Proof. Define i : C→ C by

i(z) =
{

1
z if z 6= 0
0 if z = 0.

For any open set V ⊂ C we have

i−1(V ) = i−1(V \ {0}) ∪ i−1(V ∩ {0})

Because i is continuous except at z = 0, i−1(V \ {0}) is an open set and hence
in BC. Moreover, i−1(V ∩ {0}) ∈ BC since i−1(V ∩ {0}) is either the empty
set or the one point set {0} . Therefore i−1(τC) ⊂ BC and hence i−1(BC) =
i−1(σ(τC)) = σ(i−1(τC)) ⊂ BC which shows that i is Borel measurable. Since
F = i ◦ f is the composition of measurable functions, F is also measurable.

Remark 6.28. For the real case of Lemma 6.27, define i as above but now take
z to real. From the plot of i, Figure 6.28, the reader may easily verify that
i−1 ((−∞, a]) is an infinite half interval for all a and therefore i is measurable. 1

x

We will often deal with functions f : X → R̄ = R∪{±∞} . When talking
about measurability in this context we will refer to the σ – algebra on R̄ defined
by

BR̄ := σ ({[a,∞] : a ∈ R}) . (6.6)

Proposition 6.29 (The Structure of BR̄). Let BR and BR̄ be as above, then

BR̄ = {A ⊂ R̄ : A ∩ R ∈BR}. (6.7)

In particular {∞} , {−∞} ∈ BR̄ and BR ⊂ BR̄.

Proof. Let us first observe that

{−∞} = ∩∞n=1[−∞,−n) = ∩∞n=1[−n,∞]c ∈ BR̄,

{∞} = ∩∞n=1[n,∞] ∈ BR̄ and R = R̄\ {±∞} ∈ BR̄.

Letting i : R→ R̄ be the inclusion map,

i−1 (BR̄) = σ
(
i−1

({
[a,∞] : a ∈ R̄

}))
= σ

({
i−1 ([a,∞]) : a ∈ R̄

})
= σ

({
[a,∞] ∩ R : a ∈ R̄

})
= σ ({[a,∞) : a ∈ R}) = BR.

Thus we have shown

BR = i−1 (BR̄) = {A ∩ R : A ∈ BR̄}.

This implies:
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1. A ∈ BR̄ =⇒ A ∩ R ∈BR and
2. if A ⊂ R̄ is such that A∩R ∈BR there exists B ∈ BR̄ such that A∩R = B∩R.

Because A∆B ⊂ {±∞} and {∞} , {−∞} ∈ BR̄ we may conclude that
A ∈ BR̄ as well.

This proves Eq. (6.7).
The proofs of the next two corollaries are left to the reader, see Exercises

6.6 and 6.7.

Corollary 6.30. Let (X,M) be a measurable space and f : X → R̄ be a func-
tion. Then the following are equivalent

1. f is (M,BR̄) - measurable,
2. f−1((a,∞]) ∈M for all a ∈ R,
3. f−1((−∞, a]) ∈M for all a ∈ R,
4. f−1({−∞}) ∈M, f−1({∞}) ∈M and f0 : X → R defined by

f0 (x) := 1R (f (x)) =
{
f (x) if f (x) ∈ R

0 if f (x) ∈ {±∞}

is measurable.

Corollary 6.31. Let (X,M) be a measurable space, f, g : X → R̄ be functions
and define f · g : X → R̄ and (f + g) : X → R̄ using the conventions, 0 ·∞ = 0
and (f + g) (x) = 0 if f (x) = ∞ and g (x) = −∞ or f (x) = −∞ and g (x) =
∞. Then f · g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.6. Prove Corollary 6.30 noting that the equivalence of items 1. – 3.
is a direct analogue of Corollary 6.11. Use Proposition 6.29 to handle item 4.

Exercise 6.7. Prove Corollary 6.31.

Proposition 6.32 (Closure under sups, infs and limits). Suppose that
(X,M) is a measurable space and fj : (X,M)→ R for j ∈ N is a sequence of
M/BR – measurable functions. Then

supjfj , infjfj , lim sup
j→∞

fj and lim inf
j→∞

fj

are allM/BR – measurable functions. (Note that this result is in generally false
when (X,M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g+(x) := sup jfj(x), then

{x : g+(x) ≤ a} = {x : fj(x) ≤ a ∀ j}
= ∩j{x : fj(x) ≤ a} ∈ M

so that g+ is measurable. Similarly if g−(x) = infj fj(x) then

{x : g−(x) ≥ a} = ∩j{x : fj(x) ≥ a} ∈ M.

Since

lim sup
j→∞

fj = inf
n

sup {fj : j ≥ n} and

lim inf
j→∞

fj = sup
n

inf {fj : j ≥ n}

we are done by what we have already proved.

Definition 6.33. Given a function f : X → R̄ let f+(x) := max {f(x), 0} and
f− (x) := max (−f(x), 0) = −min (f(x), 0) . Notice that f = f+ − f−.

Corollary 6.34. Suppose (X,M) is a measurable space and f : X → R̄ is a
function. Then f is measurable iff f± are measurable.

Proof. If f is measurable, then Proposition 6.32 implies f± are measurable.
Conversely if f± are measurable then so is f = f+ − f−.

Definition 6.35. Let (X,M) be a measurable space. A function ϕ : X → F
(F denotes either R, C or [0,∞] ⊂ R̄) is a simple function if ϕ is M – BF
measurable and ϕ(X) contains only finitely many elements.

Any such simple functions can be written as

ϕ =
n∑
i=1

λi1Ai with Ai ∈M and λi ∈ F. (6.8)

Indeed, take λ1, λ2, . . . , λn to be an enumeration of the range of ϕ and Ai =
ϕ−1({λi}). Note that this argument shows that any simple function may be
written intrinsically as

ϕ =
∑
y∈F

y1ϕ−1({y}). (6.9)

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.36 (Approximation Theorem). Let f : X → [0,∞] be measur-
able and define, see Figure 6.4,
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ϕn(x) :=
n2n−1∑
k=0

k

2n
1f−1(( k

2n ,
k+1
2n ])(x) + n1f−1((n2n,∞])(x)

=
n2n−1∑
k=0

k

2n
1{ k

2n<f≤
k+1
2n }(x) + n1{f>n2n}(x)

then ϕn ≤ f for all n, ϕn(x) ↑ f(x) for all x ∈ X and ϕn ↑ f uniformly on the
sets XM := {x ∈ X : f(x) ≤M} with M <∞.

Moreover, if f : X → C is a measurable function, then there exists simple
functions ϕn such that limn→∞ ϕn(x) = f(x) for all x and |ϕn| ↑ |f | as n→∞.

Fig. 6.4. Constructing simple functions approximating a function, f : X → [0,∞].

Proof. Since

(
k

2n
,
k + 1

2n
] = (

2k
2n+1

,
2k + 1
2n+1

] ∪ (
2k + 1
2n+1

,
2k + 2
2n+1

],

if x ∈ f−1
(
( 2k

2n+1 ,
2k+1
2n+1 ]

)
then ϕn(x) = ϕn+1(x) = 2k

2n+1 and if x ∈
f−1

(
( 2k+1

2n+1 ,
2k+2
2n+1 ]

)
then ϕn(x) = 2k

2n+1 <
2k+1
2n+1 = ϕn+1(x). Similarly

(2n,∞] = (2n, 2n+1] ∪ (2n+1,∞],

and so for x ∈ f−1((2n+1,∞]), ϕn(x) = 2n < 2n+1 = ϕn+1(x) and for x ∈
f−1((2n, 2n+1]), ϕn+1(x) ≥ 2n = ϕn(x). Therefore ϕn ≤ ϕn+1 for all n. It is
clear by construction that ϕn(x) ≤ f(x) for all x and that 0 ≤ f(x)− ϕn(x) ≤
2−n if x ∈ X2n . Hence we have shown that ϕn(x) ↑ f(x) for all x ∈ X and

ϕn ↑ f uniformly on bounded sets. For the second assertion, first assume that
f : X → R is a measurable function and choose ϕ±n to be simple functions such
that ϕ±n ↑ f± as n→∞ and define ϕn = ϕ+

n − ϕ−n . Then

|ϕn| = ϕ+
n + ϕ−n ≤ ϕ+

n+1 + ϕ−n+1 = |ϕn+1|

and clearly |ϕn| = ϕ+
n +ϕ−n ↑ f+ + f− = |f | and ϕn = ϕ+

n −ϕ−n → f+− f− = f
as n → ∞. Now suppose that f : X → C is measurable. We may now choose
simple function un and vn such that |un| ↑ |Re f | , |vn| ↑ |Im f | , un → Re f and
vn → Im f as n→∞. Let ϕn = un + ivn, then

|ϕn|2 = u2
n + v2

n ↑ |Re f |2 + |Im f |2 = |f |2

and ϕn = un + ivn → Re f + i Im f = f as n→∞.

6.2 Factoring Random Variables

Lemma 6.37. Suppose that (Y,F) is a measurable space and Y : Ω → Y is a
map. Then to every (σ(Y ),BR̄) – measurable function, H : Ω → R̄, there is a
(F ,BR̄) – measurable function h : Y→ R̄ such that H = h ◦ Y.

Proof. First suppose that H = 1A where A ∈ σ(Y ) = Y −1(F). Let B ∈ F
such that A = Y −1(B) then 1A = 1Y −1(B) = 1B ◦ Y and hence the lemma
is valid in this case with h = 1B . More generally if H =

∑
ai1Ai is a simple

function, then there exists Bi ∈ F such that 1Ai = 1Bi ◦Y and hence H = h◦Y
with h :=

∑
ai1Bi – a simple function on R̄.

For a general (F ,BR̄) – measurable function, H, from Ω → R̄, choose simple
functions Hn converging to H. Let hn : Y → R̄ be simple functions such that
Hn = hn ◦ Y. Then it follows that

H = lim
n→∞

Hn = lim sup
n→∞

Hn = lim sup
n→∞

hn ◦ Y = h ◦ Y

where h := lim sup
n→∞

hn – a measurable function from Y to R̄.

The following is an immediate corollary of Proposition 6.20 and Lemma
6.37.

Corollary 6.38. Let X and A be sets, and suppose for α ∈ A we are give a
measurable space (Yα,Fα) and a function fα : X → Yα. Let Y :=

∏
α∈A Yα,

F := ⊗α∈AFα be the product σ – algebra on Y and M := σ(fα : α ∈ A) be the
smallest σ – algebra on X such that each fα is measurable. Then the function
F : X → Y defined by [F (x)]α := fα(x) for each α ∈ A is (M,F) – measurable
and a function H : X → R̄ is (M,BR̄) – measurable iff there exists a (F ,BR̄) –
measurable function h from Y to R̄ such that H = h ◦ F.
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