Bruce K. Driver

Math 280 (Probability Theory) Lecture Notes

September 22, 2009 File:prob.tex






Contents

[Part Homework Problems]

[0 Math 280A Homework Problems Fall 2000 . .. ... e e 3
[0.1 Homework 1. Due Monday, September 29, 2000] . . . .. ..ottt e e e e e 3
(0.2 Homework 2. Due Monday October 5, 200 . . . . ..ottt e e e e e e e 3

[Part I Background Materiall

[1 Limsups, Liminfs and Extended Limits| . .. ... ... e 7
2 Basic Probabilistic NOtIOMS] . . . . ..o 11

(B Prellminaries] . . .. ..o e e e 17
[3.1 Set Operations] . . . ..o 17

R DT e IS 19

[3.3  Algebraic sub-strucCtures Of SEtS| . . . . ..ot 19

4 Finitely Additive Measures| . ... ... 23
.1 inite TEIVE IVLBASUTES | . ¢ o ottt e e e e e e e e e 23

.2 xamples Of Measures|. . . . . oo 24

[4.3  Simple INtegration]. . . . ... o e e e 26

[4.4 Simple Independence and the Weak Law of Large Numbers| . . . ... e e e e 28

[4.5  Constructing Finitely Additive Measures| . . . . ... o 30




4 Contents

6 Countably Additive IMIEASUTES| . . .. ... ...ttt ittt ettt et et ettt e e e e e 33
[.1_Distribution Function for Probability Measures on (R, BR)| . . - - .« v .ottt ettt ettt e e 33
5.2 Construction of PTEIMEASUTES . . « . .« v oo et ettt et e e e e e e e e e e e e e e e e 33
[5.3 Regularity and UDIQUENESS RESULEST| .« . .« o vt ottt et e e e e e e e e e e e e e e e e e e e e e e e 35
5.4 Construction of Measures]. . . . ..ot e 36
[5.5 Completions of Measure SDACEST] -« v v e e e e 40
[5.6 A Baby Version of Kolmogorov's BExXtension TIEOTEIN|. . . . . oo v vun ettt et e e e e e e e e e e e e e e e e e 40

6 Random Variables| . . ... ... o 43
[6.1  Measurable Functions]. . . . ..« oo 43
[6.2  Factoring Random Variables| . . . . ..o 48

REFEIOIICES]. . . . o oottt e e 51

Page: 4 job: prob macro: svmonob.cls date/time: 22-Sep-2009/16:17



Part

Homework Problems






0

Math 280A Homework Problems Fall 2009

Problems are from Resnick, S. A Probability Path, Birkhauser, 1999 or from
the lecture notes. The problems from the lecture notes are hyperlinked to their
location.

0.1 Homework 1. Due Monday, September 29, 2009

e Read over Chapter
e Hand in Exercises and

0.2 Homework 2. Due Monday October 5, 2009






Part 1

Background Material






1

Limsups, Liminfs and Extended Limits

Notation 1.1 The extended real numbers is the set R := RU{+o0}, i.e. it
is R with two new points called oo and —oo. We use the following conventions,
+00-0=0, £c0-a =t if a € R with a > 0, +00-a = Foo if a € R with
a<0,foo+a==x foranya € R, co+ o0 =00 and —oco — o0 = —o0 while
00 — 00 is not defined. A sequence a, € R is said to converge to oo (—oc) if for
all M € R there ezists m € N such that ap, > M (a, < M) for all n > m.

Lemma 1.2. Suppose {a,},—, and {b,},. | are convergent sequences in R,
then:

1. If a, < b, meI a.a. n then lim,,_, oo a, < lim,,_, oo bn,.
2. If c € R, limy, o0 (cap) = climy, o0 ay.
3. If {an, + by },o is convergent and

lim (a, +b,)= lim a, + lim b, (1.1)

n—oo n—oo n—oo

provided the right side is not of the form oo — co.
4. {anby },2, is convergent and

lim (apb,) = lim a, - lim b, (1.2)

provided the right hand side is not of the for £00-0 of 0 (£00).

Before going to the proof consider the simple example where a,, = n and
b, = —an with a > 0. Then

o ifa<l1
lim (ay, + by) = 0 fa=1
—ocoifa>1
while
lim a, + lim b,“="00 — o0.

n—oo n—oo

This shows that the requirement that the right side of Eq. (1.1 is not of form
00— o0 is necessary in Lemmal[l.2] Similarly by considering the examples a,, = n

! Here we use “a.a. n” as an abreviation for almost all n. So an < b, a.a. n iff there
exists N < oo such that a, < b, for all n > N.

and b, = n~% with a > 0 shows the necessity for assuming right hand side of
Eq. is not of the form oo - 0.

Proof. The proofs of items 1. and 2. are left to the reader.
Proof of Eq. . Let a :=lim, . a, and b = lim,,_. o, b,. Case 1., suppose
b = oo in which case we must assume a > —oo. In this case, for every M > 0,
there exists N such that b, > M and a,, > a — 1 for all n > N and this implies

ap +by, > M+a—1foralln > N.

Since M is arbitrary it follows that a, + b, — 0o as n — co. The cases where
b = —oo or a = oo are handled similarly. Case 2. If a,b € R, then for every
€ > 0 there exists N € N such that

la —ay| <eand |b—b,| <eforalln>N.
Therefore,
la+b—(an+by)|=|a—an+b—by| <|a—a|+1|b—0,| <2

for all n > N. Since n is arbitrary, it follows that lim,, . (a, + b,) = a + .

Proof of Eq. (1.2). It will be left to the reader to prove the case where lim a,,
and lim b,, exist in R. I will only consider the case where a = lim,, .o a, # 0
and lim,_ . b, = oo here. Let us also suppose that a > 0 (the case a < 0 is
handled similarly) and let o := min (%, 1). Given any M < oo, there exists
N € N such that a,, > o and b, > M for all n > N and for this choice of N,
anby, > Ma for all n > N. Since o > 0 is fixed and M is arbitrary it follows
that lim, o (anbyp) = 0o as desired. [

For any subset A C R, let sup A and inf A denote the least upper bound and
greatest lower bound of A respectively. The convention being that sup A = oo
if oo € A or A is not bounded from above and inf A = —oo0 if —co € A or A is
not bounded from below. We will also use the conventions that sup () = —co
and inf ) = +o0.

Notation 1.3 Suppose that {x,} -~ C R is a sequence of numbers. Then

liminf 2, = lim inf{zy : k > n} and (1.3)
n—oo n—oo
limsupz, = lim sup{xy: k > n}. (1.4)
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We will also write lim for liminf, .o and lim for limsup .

n—oo

Remark 1.4. Notice that if ay := inf{xy : &k > n} and by := sup{zy : k >
n}, then {ax} is an increasing sequence while {b;} is a decreasing sequence.
Therefore the limits in Eq. (1.3) and Eq. (1.4) always exist in R and

liminf z,, = supinf{zy : £ > n} and
n—oo n

limsup z,, = inf sup{zy : k > n}.
n

n—oo

The following proposition contains some basic properties of liminfs and lim-
sups.

Proposition 1.5. Let {a,,}22; and {b,}32, be two sequences of real numbers.
Then

1. liminf, . a, < limsupa, and lim,_. a, ezxists in R iff
n—oo

liminf a,, = limsup a, € R.
n—00 n—o0o

2. There is a subsequence {an, }52, of {an}S2y such that limy .o Gy, =
limsup a,,. Similarly, there is a subsequence {an, }32, of {an}5%; such that

n—oo
limy o0 ap, = liminf,_, ay.
3.
lim sup(a,, + b,) < limsup a,, + limsup b, (1.5)
n—oo n—00 n—oo

whenever the right side of this equation is not of the form oo — oo.
4. If a, > 0 and b, > 0 for all n € N, then

lim sup(a,by) < limsup ay, - limsup by, (1.6)

n—oo n—oo n—oo
provided the right hand side of @ is not of the form 0 - oo or oo - 0.

Proof. Item 1. will be proved here leaving the remaining items as an exercise
to the reader. Since

inf{ay : k > n} <sup{ay: k>n} Vn,

liminf a,, < limsup a,,.

n—00 n— oo

Now suppose that liminf,, .. a, = limsupa, = a € R. Then for all € > 0,
n—oo

there is an integer N such that
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a—ce<inf{ag: k> N} <supfar : k> N} <a+e,

ie.
a—ec<ap<a-+eforal k> N.

Hence by the definition of the limit, limg_ o ax = a. If liminf,, . a, = oo,
then we know for all M € (0, 00) there is an integer N such that

M <inf{ay : k > N}

and hence lim,,_,., a,, = co. The case where lim sup a,, = —o0 is handled simi-
n—oo

larly.
Conversely, suppose that lim, .. a, = A € R exists. If A € R, then for
every € > 0 there exists N(g) € N such that |A — a,| < ¢ for all n > N(e), i.e.

A—e<a, <A+eforalln> N(e).
From this we learn that

A — e <liminfa, <limsupa, < A+e¢.

n—oo n—00

Since € > 0 is arbitrary, it follows that

A <liminfa, <limsupa, < A4,

n—00 n— oo

i.e. that A = liminf,, ., a, = limsupa,. If A = oo, then for all M > 0

n—oo

there exists N = N(M) such that a, > M for all n > N. This show that
liminf, .. a, > M and since M is arbitrary it follows that

oo < liminf a,, < limsup a,,.
n—o0 n— oo

The proof for the case A = —oo is analogous to the A = oo case. [
We will refer to the following basic proposition as the monotone convergence
theorem for sums (MCT for short).

Proposition 1.6 (MCT for sums). Suppose that for each n € N, {f, (i)};=,

is a sequence in [0,00] such that T limy, . fn (i) = f (i) by which we mean
fn (@) T f(i) asn — oco. Then

i D fu (@)= f(0), e
=1 1=1

lim. S foli) = fjnlggo Ja ).
i=1 i=1

We allow for the possibility that these expression may equal to +oo.
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Proof. Let M :=1lim,, o0 Y 50y fn (3). As f,, (i) < f (i) for all n it follows
that Y .2, fn (i) < >0y f (i) for all n and therefore passing to the limit shows
M <32 f(i). IfNerehave7

N N
350 = 3 Jim 0= Jim 359
=1 =1

Letting N 1 oo in this equation then shows Y.~ f (i) < M which completes
the proof. [

) < nh_)n;@ Z fn (3) =

Proposition 1.7 (Tonelli’s theorem for sums). If {ag,};,_, C [0,00],

then ~ - ~ -
DD IIINES 3) it

k=1n=1 n=1k=1

Here we allow for one and hence both sides to be infinite.

Proof. First Proof. Let Sy (k) := Zgzl Akn, then by the MCT (Proposi-

tion7
lim ZSN Z hm Sn (k ZZakn
=1

N=oo k=1n=1
On the other hand,
oo co N N oo
ZSN Zzaknzzzakn
k=1 k=1n=1 n=1k=1
so that
0o N oo oo 0o
lim Y Sy (k)= lim > > agn =YD apn.
N=eoi = N v n=1k=1

Second Proof. Let

K N N K
M:—sup{ZZakn KNEN}— p{ZZakn:K,NGN}

k=1n=1 n=1k=1
and
oo o0
L= E E Qfn, -
k=1n=1
Since
co 0o K oo K N
L:E E A, = lim E E Ay, = hm lim E E Akn
K—oo —o00 N—oo
k=1n=1 k=1n=1 k=1n=1
Page: 9 job: prob

macro:

max (—agn, 0) and observe that; ay, = azn —a,

1 Limsups, Liminfs and Extended Limits 9
and Zle 25:1 apn < M for all K and N, it follows that L < M. Conversely,

K N K oo 0o o0
Zzakngzzakngzzakn:L

k=1n=1 k=1n=1 k=1n=1

and therefore taking the supremum of the left side of this inequality over K
and N shows that M < L. Thus we have shown

Z Zakn =M.
k=1n=1

By symmetry (or by a similar argument), we also have that 07, >"7° | apn, =
M and hence the proof is complete. [
You are asked to prove the next three results in the exercise.

Proposition 1.8 (Fubini for sums). Suppose {arn}y,—; C R such that

o0 oo oo oo
Z Z lagn| = ZZ |agn| < oo.

k=1n=1 n=1k=1
Then
o0 o0 o0 (o)
> D akn = Z >
k=1n=1 n=1k=1

Proposition 1.9 (Fatou’s Lemma for sums). Suppose that for each n € N,
{hn (i) };=, is any sequence in [0,00], then

Zliminfh (1) < hmlanh
i=1

Proposition 1.10 (DCT for sums). Suppose that for each n € N,
{fn ()};2, CRis a sequence and {gy (i)}, is a sequence in [0,00) such that;

1.5°72 1 gn (i) < oo for all n,

2. f(i) =limp— oo fn (1) and g (i) := limp, o0 gn (i) exists for each i,
3. fn (0)] < gp (2) for all i and n,

4T o0 3575 g (1) = 272, 9 (3) < o0,

Then -
EDWACED SEWAUED WG
Exercise 1.1. Prove Proposmlonu 1.8 Hint: Let a,m = max (an,0) and a,, =

n and ‘a’kn| + |akn’ - |akn|

Now apply Proposition with ag, replaced by akn and a,,.

svmonob.cls date/time: 22-Sep-2009/16:17



Exercise 1.2. Prove Proposition Hint: apply the MCT by applying the
monotone convergence theorem with f, (¢) := inf,;, >, hp, (7).

Exercise 1.3. Prove Proposition Hint: Apply Fatou’s lemma twice. Once
with hy, (1) = gn (1) + fn (i) and once with Ay, (i) = g, (¢) — frn (7).



2

Basic Probabilistic Notions

Definition 2.1. A sample space {2 is a set which is to represents all possible
outcomes of an “experiment.”

Example 2.2. 1. The sample space for flipping a coin one time could be taken
to be, 2 ={0,1}.
2. The sample space for flipping a coin N -times could be taken to be, 2 =
{0, 1}N and for flipping an infinite number of times,

Q={w=(w1,ws,...) rw; € {0,1}} = {0,1}".
3. If we have a roulette wheel with 40 entries, then we might take
2 ={00,0,1,2,...,36}

for one spin,
2 =1{00,0,1,2,...,36}"

for N spins, and
2 ={00,0,1,2,...,36}"

for an infinite number of spins.
4. If we throw darts at a board of radius R, we may take

2 =Dp:={(z,y) eER*:2” +y* < R}

for one throw,
2 =D¥

for N throws, and
N
for an infinite number of throws.

5. Suppose we release a perfume particle at location z € R? and follow its
motion for all time, 0 < ¢ < oco. In this case, we might take,

2 ={weC(0,0),R*:w(0)=2a}.
Definition 2.3. An event is a subset of 2.

Ezample 2.4. Suppose that 2 = {0, 1}N is the sample space for flipping a coin
an infinite number of times. Here w,, = 1 represents the fact that a head was
thrown on the n'® — toss, while w,, = 0 represents a tail on the n*" — toss.

1. A={w € 2 : w3 =1} represents the event that the third toss was a head.

2. A=U2, {w e N:w; =w;41 = 1} represents the event that (at least) two
heads are tossed twice in a row at some time.

3.A=NF_; Up>n {w € 2:w, =1} is the event where there are infinitely
many heads tossed in the sequence.

4. A = UF_y N>y {w € 2:w, =1} is the event where heads occurs from
some time onwards, i.e. w € A iff there exists, N = N (w) such that w, =1
for all n > N.

Ideally we would like to assign a probability, P (A), to all events A C (2.
Given a physical experiment, we think of assigning this probability as follows.
Run the experiment many times to get sample points, w (n) € (2 for each n € N,
then try to “define” P (A) by

P(A):A;iinoo%#{lgng:w(k)eA}. (2.1)

That is we think of P (A) as being the long term relative frequency that the
event A occurred for the sequence of experiments, {w (k)},—, -

Similarly supposed that A and B are two events and we wish to know how
likely the event A is given that we now that B has occurred. Thus we would
like to compute:

. #{k:1<k<nandw, € AN B}
P((AB)=1
(4]B) o #{k:1<k<nandw, € B} ’
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which represents the frequency that A occurs given that we know that B has
occurred. This may be rewritten as

%#{k:lgkgnandwkeAﬁB}
%#{k:lgkgnandwkeB}
P(ANB)
P(B)

P(A|B) = lim

n—oo

Definition 2.5. If B is a non-null event, i.e. P(B) > 0, define the condi-
tional probability of A given B by,

P(ANB)

PAIB) = =5

There are of course a number of problems with this definition of P in Eq.
including the fact that it is not mathematical nor necessarily well defined.
For example the limit may not exist. But ignoring these technicalities for the
moment, let us point out three key properties that P should have.

1. P(A) €[0,1] for all A C 0.
2. P(@)=1and P(N2) =1.
3. Additivity. If A and B are disjoint event, i.e. AN B = AB = (), then

P(AUB) = lim %#{1§k§N:w(k)eAuB}
:]&@m%[#{lngN:w(k)eA}+#{1§k§N:w(k)eB}]
— P(A)+P(B).

Example 2.6. Let us consider the tossing of a coin N times with a fair coin. In
this case we would expect that every w € §2 is equally likely, i.e. P ({w}) = k.
Assuming this we are then forced to define

P(A4) = oo# (4).

Observe that this probability has the following property. Suppose that o €
{0, 1}]c is a given sequence, then
1 1
P({W(W1,7(Uk):0'}):27N2N :27
That is if we ignore the flips after time k, the resulting probabilities are the
same as if we only flipped the coin k times.

Page: 12 job: prob

Example 2.7. The previous example suggests that if we flip a fair coin an infinite
number of times, so that now £2 = {0,1}", then we should define

P({we 2:(w,... (2.2)
for any k > 1 and o € {0, 1}k. Assuming there exists a probability, P : 2 —
[0,1] such that Eq. (2.2) holds, we would like to compute, for example, the

probability of the event B where an infinite number of heads are tossed. To try
to compute this, let

Ap ={w e 2 :w, =1} = {heads at time n}

By :=U,>nA, = {at least one heads at time N or later}

and
B = ﬁ}’voleN = {An 10} = ﬂ})vozl UnZN An

Since
B% :ﬂnzNA% C ﬂMZnZNAfL:{wE :wy=-=wum :1},

we see that

Therefore, P (By) = 1 for all N. If we assume that P is continuous under taking
decreasing limits we may conclude, using By | B, that

P(B) = lim P(By)=1.

Without this continuity assumption we would not be able to compute P (B).

The unfortunate fact is that we can not always assign a desired probability
function, P (A), for all A C 2. For example we have the following negative
theorem.

Theorem 2.8 (No-Go Theorem). Let S = {z € C: |z| =1} be the unit cir-
cle. Then there is no probability function, P : 25 — [0,1] such that P (S) = 1,
P is invariant under rotations, and P is continuous under taking decreasing
limats.

Proof. We are going to use the fact proved below in Proposition that
the continuity condition on P is equivalent to the o — additivity of P. For z € S
and N C S let

zN :={zneS:neN}, (2.3)

that is to say e N is the set N rotated counter clockwise by angle 6. By
assumption, we are supposing that

macro: svmonob.cls date/time: 22-Sep-2009/16:17



P(zN) = P(N) (2.4)

forall z€ S and N C S.
Let 4 '
Ri={z=¢e?":tcQ}={z=¢""":tc[0,1)NQ}

— a countable subgroup of S. As above R acts on S by rotations and divides S
up into equivalence classes, where z,w € S are equivalent if z = rw for some
r € R. Choose (using the axiom of choice) one representative point n from each
of these equivalence classes and let N C S be the set of these representative
points. Then every point z € S may be uniquely written as z = nr with n € N
and r € R. That is to say

S=Y(rN) (2.5)

reR

where ) A, is used to denote the union of pair-wise disjoint sets {A,}. By

Egs. and (2.5),
1=P(S)=>_ P(rN)=>_ P(N). (2.6)

rER rcR

We have thus arrived at a contradiction, since the right side of Eq. is either
equal to 0 or to co depending on whether P (N) =0 or P(N) > 0. |

To avoid this problem, we are going to have to relinquish the idea that P
should necessarily be defined on all of 2. So we are going to only define P on
particular subsets, B C 22. We will developed this below.






Part 11

Formal Development






3

Preliminaries

3.1 Set Operations

Let N denote the positive integers, Ny := NU{0} be the non-negative integers
and Z = Ny U (—=N) — the positive and negative integers including 0, Q the
rational numbers, R the real numbers, and C the complex numbers. We will
also use F to stand for either of the fields R or C.

Notation 3.1 Given two sets X and Y, let YX denote the collection of all
functions f : X — Y. If X = N, we will say that f € YN is a sequence
with values in'Y and often write f, for f(n) and express f as {fn}rry. If
X ={1,2,..., N}, we will write YV in place of Y112N}t and denote f € YN
by f = (f1, f2,..., fn) where fr, = f(n).

Notation 3.2 More generally if {X, : « € A} is a collection of non-empty sets,

let X4 = [] Xa and 7o : Xa4 — X, be the canonical projection map defined
acA
by mo(z) = o If If Xo = X for some fized space X, then we will write || X,
acA
as X4 rather than X 4.

Recall that an element x € X4 is a “choice function,” i.e. an assignment
ZTo = z(a) € X, for each a € A. The axiom of choice states that X4 # 0
provided that X, # ) for each a € A.

Notation 3.3 Given a set X, let 2% denote the power set of X — the collection
of all subsets of X including the empty set.

The reason for writing the power set of X as 2% is that if we think of 2
meaning {0, 1}, then an element of a € 2% = {0, 1}X is completely determined
by the set

A={re X :a(zx)=1} C X.

In this way elements in {0,1}~ are in one to one correspondence with subsets
of X.
For A € 2% let
A =X\A={zeX:z ¢ A}

and more generally if A, B C X let
B\A:={zxeB:x¢ A} = An B°.

We also define the symmetric difference of A and B by
AAB:=(B\A)U(A\B).
As usual if {A4},,; is an indexed collection of subsets of X we define the union
and the intersection of this collection by
Uaerda ={z€X:F3ael 3 xe€ A,} and
NactAa ={zeX:z e A Vael}.

Notation 3.4 We will also write Zael A, for UserAs in the case that
{Aa} e are pairwise disjoint, i.e. Aq N Ag =0 if o # .

Notice that U is closely related to 3 and N is closely related to V. For example
let {A,},~, be a sequence of subsets from X and define

inf A, == Ni>nAgk,
k>n -

sup A, = UanAk,
k>n

limsup A, :={A, l0.} ={z e X :#{n:xe€ A} =}

and
liminf A, := {A, a.a.} :={z € X : 2 € A, for all n sufficiently large}.

n—oo

(One should read {A,, i.0.} as A, infinitely often and {A,, a.a.} as A,, almost
always.) Then = € {A, i.0.} iff

VNeNdn>N>ze€ A,
and this may be expressed as

{4, 1.0.} =NY¥y Up>n An.
Similarly, z € {4,, a.a.} iff

dNeN>3VYn>N, z€ A,
which may be written as

{An a.a.} = U?\?:l ngN An
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Definition 3.5. Given a set A C X, let

wo={o s

be the characteristic function of A.

Lemma 3.6. We have:

{A, i.0.}° = {A¢ a.a.},

limsup A, ={z € X :> 7~ 14, () =00},
liminf, e An = {ac eEX Y, Lae (z) < oo} ,
SUPg>n lAk (J}) = 1Uk2nAk = 1supk2n Ans

infla, () = 1nana, = Linfusn, A

Liimsup 4,, = limsup 1,4, , and

n—oo n—oo

N oW e

Liimint, .o A, = liminf, 14, .

Definition 3.7. A set X is said to be countable if is empty or there is an
injective function f: X — N, otherwise X is said to be uncountable.

Lemma 3.8 (Basic Properties of Countable Sets).

. If A C X is a subset of a countable set X then A is countable.

. Any infinite subset A C N is in one to one correspondence with N.

. A non-empty set X is countable iff there exists a surjective map, g : N — X.

Af X and Y are countable then X X Y is countable.

. Suppose for each m € N that A,, is a countable subset of a set X, then
A =UX_ Ay, is countable. In short, the countable union of countable sets
is still countable.

6. If X is an infinite set and Y is a set with at least two elements, then YX

is uncountable. In particular 2% is uncountable for any infinite set X.

Gr s Lo~

Proof. 1. If f : X — N is an injective map then so is the restriction, f|4,
of f to the subset A. 2. Let f (1) = min A and define f inductively by

fn+1) = min (A\{f(1),..., f(n)}).

Since A is infinite the process continues indefinitely. The function f : N — A
defined this way is a bijection.
3.If g : N — X is a surjective map, let

f(z) =ming™' ({z}) = min{n e N: f(n) = z}.

Then f: X — N is injective which combined with item
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2. (taking A = f(X)) shows X is countable. Conversely if f : X — N is
injective let 29 € X be a fixed point and define g : N — X by g(n) = f~1(n)
for n € f(X) and g(n) = xg otherwise.

4. Let us first construct a bijection, h, from N to N x N. To do this put the
elements of N x N into an array of the form

(1,1) (1,2) (1,3) ...
(2,1) (2,2) (2,3) ...
(3,1) (3,2) (3,3) ...

and then “count” these elements by counting the sets {(i,5): 4+ j = k} one
at a time. For example let h (1) = (1,1), h(2) = (2,1), h(3) = (1,2), h(4) =
(3,1), h(5) = (2,2), h(6) = (1,3) and so on. If f : N—=X and g : N =Y are
surjective functions, then the function (f x g) o h : N—=X x Y is surjective
where (f x g) (m,n) := (f (m),g(n)) for all (m,n) € N x N.

5. If A = () then A is countable by definition so we may assume A # ().
With out loss of generality we may assume A; # @ and by replacing A, by
A1 if necessary we may also assume A,, # @ for all m. For each m € N let
am : N —A,, be a surjective function and then define f: NxN — UX_, A, by
f(lm,n) := ay,(n). The function f is surjective and hence so is the composition,
foh:N—U¥X_1A,,, where h : N — N x N is the bijection defined above.

6. Let us begin by showing 2V = {O,l}N is uncountable. For sake of
contradiction suppose f : N — {0,1}N is a surjection and write f(n) as
(fi(n), fa(n), f3(n),...). Now define a € {0,1}" by a, := 1 — f,(n). By
construction f, (n) # a, for all n and so a ¢ f(N). This contradicts the as-
sumption that f is surjective and shows 2V is uncountable. For the general
case, since ;¥ C Y¥ for any subset Yy C Y, if ;¥ is uncountable then so
is YX. In this way we may assume Y{ is a two point set which may as well
be Yy = {0,1}. Moreover, since X is an infinite set we may find an injective
map z : N — X and use this to set up an injection, i : 2V — 2% by setting
i(A) :={x, :n €N} C X for all A C N. If 2% were countable we could find
a surjective map f : 2% — N in which case f o : 2 — N would be surjec-
tive as well. However this is impossible since we have already seed that 2V is
uncountable. ]

We end this section with some notation which will be used frequently in the
sequel.

Notation 3.9 If f : X — Y is a function and £ C 2 let
frle=f1E) = {f(B)E e}

If G C 2%, let
fG:={Aec2Y|f1(A) eg}.
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Definition 3.10. Let £ C 2% be a collection of sets, A C X, i4 : A — X be
the inclusion map (ia(z) = x for allz € A) and

Ea=i"(&)={ANE:Ec&}.

3.2 Exercises

Let f: X — Y be a function and {4;};c; be an indexed family of subsets of Y,
verify the following assertions.

Exercise 3.1. (N;erA;)¢ = U;er AS.

Exercise 3.2. Suppose that B C Y, show that B\ (U;er4;) = Nier(B\ A;).
Exercise 3.3. f 1 (UjerA;) = Uier fH(A).

Exercise 3.4. f~1(NierA;) = Nier fH(A)).

Exercise 3.5. Find a counterexample which shows that f(C N D) = f(C) N
f(D) need not hold.

Ezample 8.11. Let X = {a,b,c} and Y = {1,2} and define f (a) = f(b) =1
and f(c) = 2. Then § = f({a} N{b}) # f({a}) N f({b}) = {1} and {1,2} =
f{a}?) # f({a})" = {2}

3.3 Algebraic sub-structures of sets

Definition 3.12. A collection of subsets A of a set X is a 1 — system or
multiplicative system if A is closed under taking finite intersections.

Definition 3.13. A collection of subsets A of a set X is an algebra (Field)
if

1.0, Xc A

2. A € A implies that A° € A

3. A is closed under finite unions, i.e. if Ay,..., A, € A then A;U---UA, € A.
In view of conditions 1. and 2., 3. is equivalent to

3. A is closed under finite intersections.

Definition 3.14. A collection of subsets B of X is a 0 — algebra (or some-
times called a 0 — field) if B is an algebra which also closed under countable
unions, i.e. if {A;};o; C B, then U2, A; € B. (Notice that since B is also
closed under taking complements, B is also closed under taking countable inter-
sections.)
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Example 3.15. Here are some examples of algebras.

1. B=2% then B is a ¢ — algebra.

2. B={0,X} is a 0 — algebra called the trivial o — field.

3. Let X = {1,2,3}, then A = {0, X,{1},{2,3}} is an algebra while, S :=
{0, X,{2,3}} is a not an algebra but is a m — system.

Proposition 3.16. Let £ be any collection of subsets of X. Then there exists
a unique smallest algebra A(E) and o — algebra o(E) which contains E.

Proof. Simply take

A(E) = m{A : A is an algebra such that £ C A}

and

(€)= m{./\/l : M is a 0 — algebra such that & C M}.
[

Ezample 3.17. Suppose X = {1,2,3} and & = {0, X, {1,2}, {1, 3}}, see Figure
Bl Then

GRS

Fig. 3.1. A collection of subsets.

AE) =0o(&) =2%.
On the other hand if £ = {{1,2}}, then A () = {0, X, {1, 2}, {3}}.

Exercise 3.6. Suppose that & C 2% for i = 1,2. Show that A(&;) = A (&)
iff & C A(gg) and & C A (81) Simﬂarly show, o (51) =0 (52) iff &4 Co (52)
and & C o (&1) . Give a simple example where A (&1) = A (£2) while &1 # &;.
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20 3 Preliminaries

Definition 3.18. Let X be a set. We say that a family of sets F C 2% is a
partition of X if distinct members of F are disjoint and if X is the union of
the sets in F.

Ezample 3.19. Let X be a set and &€ = {A;,...,A,} where Ay,..., A, is a
partition of X. In this case

A(E) = 0(&) = {Uieadi : AC {1,2,...,n}}
where U;e 1 A; := 0 when A = (). Notice that

#(A(E)) = #(202m)) = 2.

Example 3.20. Suppose that X is a finite set and that A C 2% is an algebra.
For each x € X let
Ar=nN{Aec A:x € A} € A,

wherein we have used A is finite to insure A, € A. Hence A, is the smallest
set in A which contains z. Let C' = A, N A, € A. I claim that if C' # 0, then
Ay = A,y. To see this, let us first consider the case where {z,y} C C. In this case
we must have A, C C and A, C C and therefore A, = A,. Now suppose either
x or y is not in C. For definiteness, say ¢ C,i.e. z ¢ y. Thenz € A, \ A, € A
from which it follows that A, = A, \ 4y, i.e. A, N A, = 0.

Let us now define {Bi}le to be an enumeration of {A,} .y . It is now a
straightforward exercise to show

A={UieaB; - AC{1,2,...,k}}.

Proposition 3.21. Suppose that B C 2% is a 0 — algebra and B is at most
a countable set. Then there exists a unique finite partition F of X such that
F C B and every element B € B is of the form

B=U{AeF:AcCBj}. (3.1)
In particular B is actually a finite set and # (B) = 2™ for some n € N.
Proof. We proceed as in Example |3.20} For each z € X let
A, =n{AeB:zec A} € B,

wherein we have used B is a countable o — algebra to insure A, € B. Just as
above either A, N A, =0 or A, = A, and therefore F = {4, :x € X} C Bisa
(necessarily countable) partition of X for which Eq. holds for all B € B.

Enumerate the elements of F as F = {P,})_, where N € Nor N = co. If
N = oo, then the correspondence
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ae{0,1}" -4, =U{P,:a,=1}€B

is bijective and therefore, by Lemma[3.8] B is uncountable. Thus any countable
o — algebra is necessarily finite. This finishes the proof modulo the uniqueness
assertion which is left as an exercise to the reader. ]

Ezample 3.22 (Countable/Co-countable o — Field). Let X = R and £ :=
{{z} : z € R}. Then o (£) consists of those subsets, A C R, such that A is
countable or A€ is countable. Similarly, A (€) consists of those subsets, A C R,
such that A is finite or A€ is finite. More generally we have the following exercise.

Exercise 3.7. Let X be a set, I be an infinite index set, and £ = {4;}ics be a
partition of X. Prove the algebra, A (£), and that o — algebra, o (£), generated
by & are given by

A(E) = {Usead; : A C I with # (A) < oo or # (A°) < oo}

and
(&) = {UjcaA; : A C I with A countable or A° countable}

respectively. Here we are using the convention that U;e4A; := @ when A = ().

Proposition 3.23. Let X be a set and & C 2X. Let £¢ := {A°: A € £} and
E=EU{X,0}UE" Then

A(E) := {finite unions of finite intersections of elements from E.}.  (3.2)

Proof. Let A denote the right member of Eq. . From the definition of
an algebra, it is clear that £ C A C A(E). Hence to finish that proof it suffices
to show A is an algebra. The proof of these assertions are routine except for
possibly showing that A is closed under complementation. To check A is closed
under complementation, let Z € A be expressed as

N K
z=U4y

i=1j=1

where A;; € &.. Therefore, writing B;; = Afj € &, we find that

N K K
72=UBy= U (BiinBy, N NBy;,) € A
i=1j=1 Jyeedn=1
wherein we have used the fact that By;, NBaj,N- - -N By, is a finite intersection
of sets from &,. [ |
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Remark 3.24. One might think that in general o(€) may be described as the
countable unions of countable intersections of sets in £¢. However this is in

general false, since if
z=U N4y

i=1j=1
with A;; € &, then

LU (15
=1,... \/=1

ji=1,j2=1,..48v=1

which is now an uncountable union. Thus the above description is not correct.
In general it is complicated to explicitly describe o(€), see Proposition 1.23 on
page 39 of Folland for details. Also see Proposition

Exercise 3.8. Let 7 be a topology on a set X and A = A(7) be the algebra
generated by 7. Show A is the collection of subsets of X which may be written
as finite union of sets of the form F' NV where F is closed and V is open.

Solution to Exercise . In this case 7. is the collection of sets which are
either open or closed. Now if V; C, X and F; C X for each j, then (N, Vi) N
(ﬁ;ﬁ:le) is simply a set of the form VNF where V' C, X and F C X. Therefore
the result is an immediate consequence of Proposition [3.23

Definition 3.25. The Borel o - field, B = Bg = B(R), on R is the smallest o
-field containing all of the open subsets of R.

Exercise 3.9. Verify the o — algebra, By, is generated by any of the following
collection of sets:

1. {(a,0):a € R}, 2. {(a,00):a € Q} or 3. {[a,0):a€Q}.
Hint: make use of Exercise [3.6

Exercise 3.10. Suppose f : X — Y is a function, F C 2¥ and B c 2X. Show
fYF and f.B (see Notation are algebras (o — algebras) provided F and
B are algebras (o — algebras).

Lemma 3.26. Suppose that f : X — Y is a function and £ C 2¥ and ACY
then

o (f7HE) = 1 (0(£)) and (3.3)
(@(€)a=0(a ), (3.4)

where B4 :={BNA: B e B}. (Similar assertion hold with o (-) being replaced
by A(-).)
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Proof. By Exercise f~Y(o(€)) is a o — algebra and since £ C F,
FHE) C f~Ho(€)). It now follows that

a(f7HE) € fH(a(€)).
For the reverse inclusion, notice that
fo (f7HE) ={BcY : fT(B)eo (7€)}
is a 0 — algebra which contains £ and thus ¢(£) C f.o (f71(£)). Hence for
every B € o(£) we know that f~1(B) € o (f71(£)), i.e.
fHoE) co (7).
Applying Eq. with X = A and f = i4 being the inclusion map implies

(0(E) 4 =ix' (0(E)) = a(i3' () = o (Ea).
]

Ezample 3.27. Let € = {(a,b] : —00 < a < b < oo} and B = o (£) be the Borel
o — field on R. Then

5(071] = {(a,b] :0 <a< b < 1}
and we have
By = o (o.1) -
In particular, if A € B such that A C (0,1], then A € o (£0,11) -
Definition 3.28. A function, f : 2 — Y is said to be simple if f(£2) C Y is
a finite set. If A C 29 is an algebra, we say that a simple function f: 2 —Y

is measurable if {f =y} := f~1 ({y}) € A for all y € Y. A measurable simple
function, f: 2 — C, is called a simple random wvariable relative to A.

Notation 3.29 Given an algebra, A C 27, let S(A) denote the collection of
stmple random variables from (2 to C. For example if A € A, then 14 € S(A)
is a measurable simple function.

Lemma 3.30. For every algebra A C 2, the set simple random variables,
S(A), forms an algebra.

Proof. Let us observe that 1o, =1 and 1p = 0 are in S(A). If f,g € S(A)
and ¢ € C\ {0}, then

{(freg=X= | {f=an{g=thea (3.5)

a,beC:a+cb=X
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22 3 Preliminaries
and
{fa=x= U {r=an{g=theda (3.6)
a,beC:a-b=A\
from which it follows that f 4+ cg and f - g are back in S (A) . ]

Definition 3.31. A simple function algebra, S, is a subalgebra of the
bounded complex functions on X such that 1 € S and each function, f € S,
is a simple function. If S is a simple function algebra, let

AS)={ACX:14€S}.
(It is easily checked that A (S) is a sub-algebra of 2°X.)

Lemma 3.32. Suppose that S is a simple function algebra, f € S and o €
f(X). Then {f =a} € A(S).

Proof. Let {\;}\", be an enumeration of f (X) with A\g = . Then

n

- |TI

i=1

n

[I(r=xnes.

i=1

(a — )\z)‘|

Moreover, we see that g = 0 on U, {f = \;} while g =1 on {f = a}. So we
have shown g = 1;5—,} € S and therefore that {f = a} € A. ]

Exercise 3.11. Continuing the notation introduced above:

1. Show A(S) is an algebra of sets.
2. Show S (A) is a simple function algebra.
3. Show that the map

A € {Algebras C 2%} — S(A) € {simple function algebras on X}

is bijective and the map, S — A (S), is the inverse map.

Solution to Exercise ((3.11]).

1. Since 0 = 1p,1 = 1x €S, it follows that f) and X arein A (S).If A € A(S),
then 14c =1 —14 € S and so A° € A(S). Finally, if A, B € A(S) then
lane=14a-1p €S and thus AN B € A(S).

2. If f,g € S(A) and ¢ € F, then
{freg=x= U {f=anfg=thea
a,beEF:a+cb=\
and
{(frg=x= U {f=an{g=bheA

a,beF:a-b=A
from which it follows that f + c¢g and f - g are back in S (A).

Page: 22 job: prob macro:

3. If f: 2 — Cis a simple function such that 1;;_5; € S for all A € C,
then f = >\ ccAl{y=ay € S. Conversely, by Lemma if f €S then
1iy=xy € S for all A € C. Therefore, a simple function, f: X — Cisin S
iff 1;7—x) € S for all A € C. With this preparation, we are now ready to
complete the verification.

First off,
Ac AS(A) < 1aeS(A) < Ac A

which shows that A (S (A)) = A. Similarly,
FeESA®N)) < {f=XeAS)VreC

<~ 1{f:)\}€SV)\€C
<~ fesS

which shows S (A(S)) =S.
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4

Finitely Additive Measures

Definition 4.1. Suppose that £ C 2% is a collection of subsets of X and p :
€ — [0,00] is a function. Then

1. 1 is monotonic if u(A) < u(B) for all A, B € £ with A C B.
2. u is sub-additive (finitely sub-additive) on & if

E) <) wE

whenever E = J!, B; € £ withn € NU{oo} (n € N).
3. u is super-additive (finitely super-additive) on £ if

whenever E =Y""" | E; € £ withn € NU{oo} (n € N).
4. 1 is additive or finitely additive on & if

whenever E =" | B, € £ with E; € € fori=1,2,...,n < c0.

5. If E = A is an algebra, 1 (0) = 0, and p is finitely additive on A, then p is
said to be a finitely additive measure.

6. 1 is o — additive (or countable additive) on & if item 4. holds even
when n = 0.

7.If € = A is an algebra, p(0) = 0, and p is o — additive on A then p is
called a premeasure on A.

8. A measure is a premeasure, i : B — [0,00], where B is a o — algebra. We
say that 1 is a probability measure if 1 (X) = 1.

4.1 Finitely Additive Measures

Proposition 4.2 (Basic properties of finitely additive measures). Sup-
pose i is a finitely additive measure on an algebra, A C 2%, E,F € A with
E C Fand {Ej};.lzl C A, then :

1. (u is monotone) u(E) < u(F) if E C F.
2. For A, B € A, the following strong additivity formula holds;

p(AUB)+pu(ANB) = p(A)+pu(B). (4.3)

3. (u is finitely subbadditive) j((U7_ E;) < >0 p(Ey).
4. p is sub-additive on A iff

Z i) for A= Z A; (4.4)

where A € A and {A;};2, C A are pairwise disjoint sets.
5. (u is countably superadditive) If A= " A, with A;; A € A, then

o0 o0
o(Z) = 2w
=1 =1
6. A finitely additive measure, i, is a premeasure iff p is sub-additve.

Proof.

1. Since F is the disjoint union of F and (F\ E) and F\E=FNE°€ Ait
follows that

u(F) = p(E) + p(F\ E) = p(E).

2. Since

AUB=[A\(ANB)]Y [B\(ANB)]Y AnB,
uw(AUuB)=p(AUB\(ANB))+p(ANB)
=p(A\N(ANB))+u(B\(ANB))+p(ANB).

Addmg 1 (AN B) to both sides of this equatlon proves Eq. .
3. Let E = E;\ (F1U---UE;_) so that the E; ’s are pair-wise disjoint and
E=Uj_ E Since E C Ej it follows from the monotonicity of x that

- S HE) < s,



24 4 Finitely Additive Measures

4. It A=;2, Bi with A € Aand B; € A, then A =Y 2, A; where A; :=
B;\ (B1U...B;_1) € A and By = (). Therefore using the monotonicity of

p and Eq.
<Y nA) <y wB

i=1 i=1

5. Suppose that A = Y ;2 A; with 4;,A € A, then Y. | A4; C A for all n
and so by the monotonicity and finite additivity of p, >, p(4;) < p(A).
Letting n — oo in this equation shows u is superadditive.

6. This is a combination of items 5. and 6.

Proposition 4.3. Suppose that P is a finitely additive probability measure on
an algebra, A C 2. Then the following are equivalent:

1. P is o — additive on A.
2. For all A, € A such that A, 1 A€ A, P(A,) 1 P(A).
3. For all A, € A such that A, | A€ A, P(A,) ]| P(A)
4. For all A, € A such that A, T 2, P(A4,) 1 1.
5. For all A, € A such that A, | 2, P(A,) | 1.
Proof. We will start by showing 1 <— 2 < 3.
1 = 2. Suppose A,, € A such that A, 1 A € A. Let A/,
with Ay := 0. Then {A}} 7, are disjoint, 4, = U
Therefore,

= An \An—l
R Al and A = U AL

P(A)=>_ P(4)) :RILII;OZP(A;) = lim P (Uf_,A}) = lim P(A,).

n— o0
k=1 k=1

2 = 1.1If {A,};2, C A are disjoint and A :=
UN_, A, T A. Therefore,

U2 A, € A, then

N o
An) = lim Y P(4,)=3 P(4,)

n=1 n=1

2 = 3.If A, € Asuch that A,, | A € A, then A% T A° and therefore,

P(A)= lim P (UDZ,

lim (1- P (A4,)) = lim P(AS) =

n—oo n—oo

3 = 2.If A, € Asuch that 4, T A € A, then AS | A° and therefore we
again have,

P (A% =1— P(A).

lim (1-P(A,) = lim P(A%) =

n—oo n—oo

P(A%) =1—P(A).
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It is clear that 2 = 4 and that 3 = 5. To finish the proof we will show
5 = 2and 5 = 3.
5 = 2.If A, € A such that 4,, T A€ A, then A\ A, | 0 and therefore
lim [P(A) = P(4,)] = lim P(A\Ay) =

n—oo

5 = 3.1If A, € Asuch that A,, | A € A, then A, \ A | 0. Therefore,
lim [P (A4,) — P(A)]= lim P(A,\ A)=0.

Remark 4.4. Observe that the equivalence of items 1. and 2. in the above propo-
sition hold without the restriction that P (£2) =1 and in fact P (£2) = co may
be allowed for this equivalence.

Definition 4.5. Let (£2,B) be a measurable space, i.e. B C 2% is a 0 -
algebra. A probability measure on (£2,B) is a finitely additive probability
measure, P : B — [0,1] such that any and hence all of the continuity properties
n Proposition hold. We will call (£2,B, P) a probability space.

Lemma 4.6. Suppose that (£2,B, P) is a probability space, then P is countably
sub-additive.

Proof. Suppose that A,, € B and let A/1 := Ay and for n > 2, let A, =

A\ (A1 U...A,_1) € B. Then
P (U2, A,) = P (U3, A)) Z <Y P(4,)
n=1 n=1

4.2 Examples of Measures

Most o — algebras and ¢ -additive measures are somewhat difficult to describe
and define. However, there are a few special cases where we can describe ex-
plicitly what is going on.

Ezxample 4.7. Suppose that 2 is a finite set, B := 2% and p : 2 — [0,1] is a
function such that
> pw) =

wen
Then
=Y pw) forall AC 2
w€EA
defines a measure on 2.
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Example 4.8. Suppose that X is any set and x € X is a point. For A C X, let

1if z€ A
5I(A)_{Oifx¢A.

Then p = 6, is a measure on X called the Dirac delta measure at z.

Example 4.9. Suppose that p is a measure on X and A > 0, then A - p is also a
measure on X. Moreover, if {j;};cs are all measures on X, then p = Z 1 s
ie.

A) = ZM(A) forall AC X

is a measure on X. (See Section for the meaning of this sum.) To prove this
we must show that y is countably additive. Suppose that {A4;};°, is a collection
of pair-wise disjoint subsets of X, then

4y =3

'MS
Mg

Uz, A;) = pi(A

i=1 i=1 j=1

=D pwi(A) = i
j=1i=1 j=1

= p(UZ1A;)

wherein the third equality we used Tonelli for sums (Proposition and in
the fourth we used that fact that u; is a measure.

Ezample 4.10. Suppose that X is a set A : X — [0, 00] is a function. Then

W= Z M),

reX

A) =) Aa)

z€A

is a measure, explicitly

for all A C X.

Ezample 4.11. Suppose that F C 2% is a countable or finite partition of X and
B C 2% is the o — algebra which consists of the collection of sets A C X such
that

A=U{aeF:aC A}. (4.5)

Any measure p : B — [0,00] is determined uniquely by its values on F. Con-
versely, if we are given any function A : F — [0, 00] we may define, for A € B,
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pA) = 3 M) =Y A@)laca

acFd3aCA acF

where 1,04 is one if @ C A and zero otherwise. We may check that p is a
measure on B. Indeed, if A =) 2, A; and a € F, then a C A iff a C A; for
one and hence exactly one A;. Therefore 1oca = > o) laca, and hence

A) = Z /\(a)laCA = Z )‘(0‘) Z laca,

acF acF
3 Mo, =3 a4
i=1 a€F i=1

as desired. Thus we have shown that there is a one to one correspondence
between measures p on B and functions A : F — [0, o0].

The following example explains what is going on in a more typical case of
interest to us in the sequel.

Example 4.12. Suppose that 2 = R, A consists of those sets, A C R which may
be written as finite disjoint unions from

S:={(a,b)NR: —c0<a<b< o}.
We will show below the following:

1. A is an algebra. (Recall that Bg = o (A).)
2. To every increasing function, F' : R — [0, 1] such that

F(—o00):= lim F(z)=0and

r——00

F (+00) := lim F(z)=

r—00

there exists a finitely additive probability measure, P = Pgr on A such that
P((a,))"NR)=F (b) — F (a) for all —oo<a <b< oo.

3. P is 0 — additive on A iff F' is right continuous.
4. P extends to a probability measure on By iff F' is right continuous.

Let us observe directly that if F' (a+) := lim, |, F (x) # F (a), then (a,a +
1/n] | O while

P((a,a+1/n])=F(a+1/n)—F(a) | F(a+)— F(a) > 0.

Hence P can not be o — additive on A in this case.
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26 4 Finitely Additive Measures

4.3 Simple Integration

Definition 4.13 (Simple Integral). Suppose now that P is a finitely additive
probability measure on an algebra A C 2%. For f € S(A) the integral or
expectation, E(f) = Ep(f), is defined by

£ =>_yP(f=y). (4.6)

yeC
Ezample 4.14. Suppose that A € A, then
Els=0-P(A°)+1-P(A)=P(A). (4.7)

Remark 4.15. Let us recall that our intuitive notion of P (A) was given as in

Eq. (@) by

P(A):]\}iinm%#{lngN:w(k)EA}

where w (k) € 2 was the result of the k' “independent” experiment. If we use
this interpretation back in Eq. (4.6, we arrive at

=Y yP(f=y) = lm —Zy #{1<k<N:f(w(k) =y}

yeC yeC
1 N
S8 O3B WIRREEE S 3 IETRIRNS
yeC k=1 k=1yeC
1 N
= i 3 (k)

Thus informally, Ef should represent the average of the values of f over many
“independent” experiments. We will come back to this later when we study the
strong law of large numbers.

Proposition 4.16. The expectation operator, E = Ep, satisfies:
1.If f € S(A) and A € C, then

E(Af) = AE(f). (4.8)

2.If f,g € S(A), then
E(f +9) =E(g9) + E(f). (4.9)
3. E is positive, i.c. E(f) > 0 if f is a non-negative measurable simple func-

tion.
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4. For all f €S(A),
Efl <EIfl. (110)

Proof.
1. If A # 0, then

EAN)= Y. yPAf=y)= >  yP(f=y/N
y€CU{oo} yeCU{oo}
= Y Xz P(f=2) =)E(f).
z€CU{o0}

The case A = 0 is trivial.
2. Writing {f = a,g = b} for f~1({a}) N g~ ({b}), then

E(f+9)=> zP(f+g=2)

zeC

:ZZ P(Ua—i-b:z{f:aag:b})
zeC

—Zz Z ({f=a, g=10})
zeC a+b=z

—ZZ (a+b)P{f=a, g=1b})
2€Ca+b=z

—Z a+b)P({f=a, g=0}).

But

Y aP({f=a g=b})=

a,b

Y aY P({f=a, g=0})
a b

=Y aP(Up{f=a, g=1b})
=Y aP({f=a})=E

and similarly,
Y bP({f=a g=b})=
a,b

Equation (4.9) is now a consequence of the last three displayed equations.
3. If f >0 then
E(f) =Y aP(f=a)>0.

a>0
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4. First observe that

1= A 15

AeC

and therefore,

E[f|=EY [Mlj=a= > [MElj—x= > [A|P(f=2X) < max|f|.
AeC AeC AeC
On the other hand,
Bfl =D AP(f=N] <Y P(f=X=E|f].
AeC AeC

Remark 4.17. Every simple measurable function, f : 2 — C, may be written as
= Zjvzl Ajly, for some \; € C and some A; € C. Moreover if f is represented
this way, then

N
Ef=E > MNla, | =) NELa, => NP (4)).
j=1

Exercise 4.1. Let P is a finitely additive probability measure on an algebra
A C 2X and for A,B € Alet p(A,B) := P(AAB) where AAB = (A\ B) U
(B\ A). Show;

1. p(A,B) =E|14 — 1p| and then use this (or not) to show
2.p(A,C)<p(A,B)+p(B,C) forall A,B,C € A.

Remark: it is now easy to see that p: A x A — [0, 1] satisfies the axioms of
a metric except for the condition that p (A, B) = 0 does not imply that A = B
but only that A = B modulo a set of probability zero.

Remark 4.18 (Chebyshev’s Inequality). Suppose that f € S(A), e > 0, and
p > 0, then

7P
P{[fl>e}) =E s <E [' | 1|f|>5:| <ePE|fI". (4.11)
Observe that
7= DI L=
aeC
is a simple random variable and {|f[>¢e} = > > {f=A} € A as well.

Therefore, U; Il,p 1)f|>¢ is still a simple random variable.
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Lemma 4.19 (Inclusion Exclusion Formula). If A, € A for n =
1,2,..., M such that u (U%:IAH) < 00, then
M
p(UALA,) =D () > p(Ay, N NA,).  (412)
k=1 1<ni<ngs<--<np <M

Proof. This may be proved inductively from Eq. (4.3). We will give a dif-
ferent and perhaps more 111um1nating proof here. Let A := UM  A,.
Since A¢ = (UM A ) =nNM | AS, we have

n=1

M
1—1A:1Ac=H1AC =J[a-14,)
n=1

0 0<n <na< - --<np <M

M
Z (_ Z 1A,L1r‘1 ‘NAp,

k=0 0<n;<ne<---<np <M

la, --la,,

from which it follows that

>

1<ni<ne<---<np<M

1Anlﬂ‘“mA"k (413)

Taking expectations of this equation then gives Eq. (4.12)). ]

Remark 4.20. Here is an alternate proof of Eq. . Let w € 2 and by rela-
beling the sets {4, } if necessary, we may assume that w € 41 N---N A4, and
w ¢ Apmi1 U---U Ay for some 0 < m < M. (When m = 0, both sides of Eq.
are zero and so we will only consider the case where 1 < m < M.) With
this notation we have

> (-1

k+1

>

1Anlm...mAnk (LLJ)

k=1 1<ni<ng<---<nip <M
m
k+1
= E E 1a,, nena,, W)
k=1 1<ni<ne<---<nr<m

-3 ()
1= (<D (’}j)

k=0
=1-(1-1"
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28 4 Finitely Additive Measures

This verifies Eq. (4.13) since 1ya 4, (w) = 1.

Ezample 4.21 (Coincidences). Let 2 be the set of permutations (think of card
shuffling), w: {1,2,...,n} — {1,2,...,n}, and define P (4) := #(A to be the
uniform distribution (Haar measure) on {2. We wish to compute the probability
of the event, B, that a random permutation fixes some index 7. To do this, let
A; = A{w € 2:w(i) =i} and observe that B = U ;A;. So by the Inclusion
Exclusion Formula, we have

= Z (—1)k+1 Z P (Ail N NA;,)
k=1 1<ih <ig<ig<-<ig<n
Since
P(Ailﬂ ﬂAik)ZP({wEQ:w(il):il,...7w(ik):ik})
_ (n—k)!
- nl
and
#{1§i1<i2<i3<--~<ik§n}= (Z),
we find . .
_ Z 1)k ( > Z 1)L 1
=1 =1
For large n this gives,
PB) =3 (-1F L= (1 S 1y 2063
(B)=— (—)H:—(e —):0.63.
k=1

Ezxample 4.22. Continue the notation in Example We now wish to compute
the expected number of fixed points of a random permutation, w, i.e. how many
cards in the shuffled stack have not moved on average. To this end, let

X, =14,

and observe that

Nw=> X
i=1

denote the number of fixed points of w. Hence we have

IEN:i]EXi:iP(Ai):i (n—

i=1

W)=Y L= = #{iw (i) =i}
i=1
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Let us check the above formula when n = 6. In this case we have

w N(w)
123
132
213
231
312
321

= O O = =W

and so

while

and

1
= @+1+14040+1) =1

4.4 Simple Independence and the Weak Law of Large
Numbers

For the next two problems, let A be a finite set, n € N, 2 =A" and X; : 2 — A
be defined by X; (w) = w; for w € 2 and i = 1,2,...,n. We further suppose

p: 2 —[0,1] is a function such that

macro:

Y o pw) =

wen
and P : 2% — [0,1] is the probability measure defined by
A):=> p(w) forall Ae27 (4.14)
w€eA
Exercise 4.2 (Simple Independence 1.). Suppose ¢; : A — [0, 1] are func-

tions such that ., ¢ (A) =1 fori=1,2,...
Show for any functions, f; : A — R that

Hfi (Xi)‘| = HEP [fi (X4)] = HEQifi

= Z/\@ gi (\) for all v C A.

,n andpr( ):H 14 (wi)

Ep

where Q; (7)
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Exercise 4.3 (Simple Independence 2.). Prove the converse of the previous
exercise. Namely, if

Ep lH fi (Xz)] = [1Er £ (X)) (4.15)
i=1 i=1

for any functions, f; : A — R, then there exists functions ¢; : A — [0, 1] with
> aea i (A) =1, such that p(w) = [[;2; ¢ (wi).

Exercise 4.4 (A Weak Law of Large Numbers). Suppose that 4 C R
is a finite set, n € N, 2 = A", p(w) = [, ¢(w;) where ¢ : A — [0,1]
such that >°,.,¢(A\) = 1, and let P : 2 — [0,1] be the probability measure
defined as in Eq. (4.14)). Further let X; (w) = w; for i = 1,2,...,n, £ := EX,,
0% :=E(X; —¢)?, and

1. Show, £ = > .4 A ¢()) and
o’ =3 (A=) =) Nq() ¢ (4.16)
AeA AeA

2. Show, ES,, = ¢.
3. Let 5L] :1ifi:jand (Sij :()1fz7é] Show

E[(Xi — &) (X; —&)] = 60>

4. Using S,, — £ may be expressed as, % St (Xs =€), show

1
E (S, —¢)* = ﬁo—? (4.17)
5. Conclude using Eq. (4.17) and Remark that
L
P (IS, —¢&l>¢) < @U . (4.18)

So for large n, S, is concentrated near £ = EX; with probability approach-
ing 1 for n large. This is a version of the weak law of large numbers.

Exercise 4.5 (Bernoulli Random Variables). Let A ={0,1},, X : 4 - R
be defined by X (0) = 0 and X (1) = 1, = € [0,1], and define @ = zd; +
(1 —2)dp,1e. Q({0})=1—2 and Q ({1}) = x. Verify,

&(z) =EgX =z and
o (x)=FEg (X —z)’=(1—-z)z<1/4
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Theorem 4.23 (Weierstrass Approximation Theorem via Bernstein’s
Polynomials.). Suppose that f € C([0,1],C) and

pn () = Z (Z)f <fl) zk (1— x)n—k:.
k=0
Then
lim sup |f(z) —pn ()] =0.
n—=0 2¢[0,1]

(See Theorem ?? for a multi-dimensional generalization of this theorem.)
Proof. Let x € [0,1], A={0,1},¢(0) =1—2, ¢(1) =, 2 = A", and
Pe({wh) =g (@) q(wn) =aZi e (1—z) 7

As above, let S,, = % (X1 4+ X,), where X; (w) = w; and observe that

P, <Sn — fL> = <Z)xk (1-2)"".

Therefore, writing E, for Ep,, we have

s =2 () () 0o =m.

k

Hence we find

P (2) = £ @)] = [Eof (S0) — f (@)] = [E. [ (S) - £ @)]
<E, |f(Sa) — f (@)
=B [If (Sa) — £ (@)] 1 S0 — 2] > <]
FE (1 (S0) — f @) 18, —al <]
<2M Py (IS, — 1 2 ) +6(c)

where

=
i

d
max |f (y)| an

6 (e) =sup{|f(y) — f(2)] : z,y € [0,1] and [y — 2| < &}

is the modulus of continuity of f. Now by the above exercises,

1
P, (S, —z| >¢) <
(‘ x‘ 78) — 4n€2

(see Figure

and hence we may conclude that
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30 4 Finitely Additive Measures

M
— <
e Ipn () — f ()| < 52

+4(e)
and therefore, that

limsup max |p, () — f (z)| < 0 (e).

n—oo «€[0,1] -

This completes the proof, since by uniform continuity of f, 6 (¢) | 0 as ¢ | 0.

P_xiS=k'n)
0.1

oOTsT

DOST | .

Fig. 4.1. Plots of P, (S, = k/n) versus k/n for n = 100 with = 1/4 (black), z = 1/2
(red), and x = 5/6 (green).

4.5 Constructing Finitely Additive Measures

Definition 4.24. A set S C 2% is said to be an semialgebra or elementary
class provided that

e 0cs

e S is closed under finite intersections

o if E €S8, then E¢ is a finite disjoint union of sets from S. (In particular
X = 0° is a finite disjoint union of elements from S.)

Example 4.25. Let X = R, then
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S:={(a,))NR:a,beR}
={(a,b] : a € [-00,00) and a < b < oo} U {0, R}
is a semi-field
Exercise 4.6. Let A C 2% and B C 2¥ be semi-fields. Show the collection
E={AxB:A€ Aand B € B}
is also a semi-field.

Solution to Exercise ([4.6). Clearly ) =) x ) € £ = A x B. Let 4; € A and
B; € B, then

m?:l(Ai X Bz) = ( ?zlAi) X (ﬂ?lei) S .A x B

showing & is closed under finite intersections. For A x B € &,
(Ax B)®=(A°x B> (A°xB)Y (Ax B°)

and by assumption A° = >"" | A; with A; € A and B® = 27:1 B; with B; € B.
Therefore

2 Ai XB,L',

¢x B¢ = (ZA) X iBi

j=1 i=1,j=1

Ach:iAixR andAxBC:iAxBi
i=1 j

showing (A x B)® may be written as finite disjoint union of elements from &.

Proposition 4.26. Suppose S C 2% is a semi-field, then A = A(S) consists of
sets which may be written as finite disjoint unions of sets from S.

Proof. Let A denote the collection of sets which may be written as finite
disjoint unions of sets from S. Clearly S C A C A(S) so it suffices to show A is
an algebra since A(S) is the smallest algebra containing S. By the properties
of S, we know that ), X € A. Now suppose that A; = ZFeAi F € A where, for
i=1,2,...,n, A; is a finite collection of disjoint sets from S. Then

ﬁAi:ﬁ<ZF>: U (FiNFN---NF,)

(F1yyeo 0 Frn)EAL XX Ay

and this is a disjoint (you check) union of elements from S. Therefore A is
closed under finite intersections. Similarly, if A =" ., F' with A being a finite
collection of disjoint sets from S, then A° = (., F°. Since by assumption
Fee Afor F € A C S and A is closed under finite intersections, it follows that
A e A. ]
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Example 4.27. Let X = R and § := {(a,b] NR:a,be R} be as in Example
4.25] Then A(S) may be described as being those sets which are finite disjoint
unions of sets from S.

Proposition 4.28 (Construction of Finitely Additive Measures). Sup-
pose S C 2% is a semi-algebra (see Deﬁnition and A = A(S) is the algebra
generated by S. Then every additive function p: S — [0, 00| such that u (0) =0
extends uniquely to an additive measure (which we still denote by p) on A.

Proof. Since (by Proposition [4.26)) every element A € A is of the form
A =3, E; for a finite collection of E; € S, it is clear that if 1 extends to a
measure then the extension is unique and must be given by

u(A) =D (B, (4.19)

To prove existence, the main point is to show that u(A) in Eq. (4.19) is well
defined; i.e. if we also have A = Zj F; with F; € S, then we must show

Z,U(Ei) = ZM(FJ‘)-

But E; =}, (E; N F}) and the additivity of 4 on § implies pu(E;) = 3, p(E; N
F;) and hence

ZH(Ei) = ZZM(Ez’ Nk = Zu(Ei NEFj).

(4.20)

Similarly,
> w(F) =D wEiNF)
J .

which combined with the previous equation shows that Eq. (4.20) holds. It is
now easy to verify that p extended to A as in Eq. (4.19)) is an additive measure
on A. ]

Proposition 4.29. Let X =R, S be a semi-algebra

S={(a,b))NR: —00 <a<b< oo}, (4.21)

and A = A(S) be the algebra formed by taking finite disjoint unions of elements
from S, see Proposition[{.26, To each finitely additive probability measures y :
A — [0,00], there is a unique increasing function F : R —[0,1] such that
F(—00) =0, F(0) =1 and

p((a,b] NR) = F(b) — F(a) Va<binR. (4.22)

Conversely, given an increasing function F : R — [0,1] such that F(—o0) = 0,
F(o0) =1 there is a unique finitely additive measure p = pup on A such that

the relation in Eq. holds.
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Proof. Given a finitely additive probability measure pu, let
F(x):=p((—oo0,z] NR) for all z € R.

Then F (c0) =1, F (—o0) = 0 and for b > a,

F(b) = F(a) = p((=00,0] NR) — (=00, a]) = p((a,b] NR).

Conversely, suppose F : R —[0,1] as in the statement of the theorem is
given. Define p on S using the formula in Eq. . The argument will be
completed by showing p is additive on S and hence, by Proposition has a
unique extension to a finitely additive measure on A. Suppose that

n

(a, b] = Z(ai, bz]

i=1
By reordering (a;, b;] if necessary, we may assume that
a=a1<bi=ay<by=a3<---<bp,_1=a,<b,=0.

Therefore, by the telescoping series argument,

n n

u((a, b} NR) = F(b) = F(a) = Y [F(b:) = F(a)] = Y p(as, ] NR).

i=1 i=1

svmonob.cls date/time: 22-Sep-2009/16:17






5

Countably Additive Measures

5.1 Distribution Function for Probability Measures on
(Ra BR)

Definition 5.1. Given a probability measure, P on Bg, the cumulative dis-
tribution function (CDF) of P is defined as the function, F' = Fp : R — [0, 1]
given as

F (z):= P ((—o0,z]).
Ezxample 5.2. Suppose that

P=pé_1+4+¢b1 +7i
with p,q,7 > 0 and p + ¢+ r = 1. In this case,

0 for z< -1

p for—-1<z<1
p+qfor 1<z<m’

1 forr<z<oo

F(z)=

Lemma 5.3. If F = Fp : R —[0,1] is a distribution function for a probability
measure, P, on Bg, then:

1. F(—00) :=lim,;—,_o F (x) =0,
2. F(00) :=limy o0 F (z) =1,

3. F is non-decreasing, and

4. F is right continuous.

Theorem 5.4. To each function F : R — [0, 1] satisfying properties 1. — 4. in
Lemma[5.3, there exists a unique probability measure, Pp, on Bg such that

Pr ((a,b)) = F(b) — F (a) for all —oco < a<b< oo.

Proof. The uniqueness assertion in the theorem is covered in Exercise [5.1
below. The existence portion of the Theorem follows from Proposition [5.7] and
Theorem [5.20] below. [

Ezample 5.5 (Uniform Distribution). The function,

Ofor x<0
F(zx):=qazfor 0<z<1),
lforl <z <o

is the distribution function for a measure, m on Bg which is concentrated on
(0,1]. The measure, m is called the uniform distribution or Lebesgue mea-
sure on (0, 1].

Recall from Definition that B C 2X is a 0 — algebra on X if B is an
algebra which is closed under countable unions and intersections.

5.2 Construction of Premeasures

Proposition 5.6. Suppose that S C 2% is a semi-algebra, A = A(S) and p :
A — [0,00] is a finitely additive measure. Then u is a premeasure on A iff y is
sub-additive on S.

Proof. Clearly if u is a premeasure on A then u is o - additive and hence
sub-additive on S. Because of Proposition to prove the converse it suffices
to show that the sub-additivity of y on & implies the sub-additivity of x on A.

[ee]
So suppose A = > A, with A € A and each A,, € A which we express as
n=1
A=Y" | Ejwith Ej € S and A, = Y1 E,,; with E,,; € S. Then

e} oo Np
Ej=ANE; =) A,NE; =Y > E.NE;
n=1

n=1i=1
which is a countable union and hence by assumption,

oo Np

WE;) < Z ZN(En,i NE;j).

n=1 i=1

Summing this equation on j and using the finite additivity of u shows
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k k oo N,
= Z/’L(E]) <IN u(BEainE))

j=1n=11i=1
o Ny ]k Z o Ny oo
:Z Z,U'(En,imEj):ZZ,U)(Enz):ZU(An)
n=1i=1 j=1 n=1 i=1 n=1

which proves (using Proposition the sub-additivity of p on A. ]

Now suppose that F' : R — R be an increasing function, F'(£oo) :=
lim,; 400 F (2) and g = pp be the finitely additive measure on (R,.A4) de-
scribed in Proposition [£:29] If y happens to be a premeasure on A, then, letting
A, = (a,by,] with b, | b as n — oo, implies

F(bn) = F(a) = p((a; bn]) | p((a,b]) =

Since {b,},>, was an arbitrary sequence such that b, | b, we have shown
limy |, F(y) = F(b), i.e. F is right continuous. The next proposition shows the
converse is true as well. Hence premeasures on .4 which are finite on bounded
sets are in one to one correspondences with right continuous increasing functions
which vanish at 0.

F(b) - F(a).

Proposition 5.7. To each right continuous increasing function F : R — R
there exists a unique premeasure j = pip on A such that

pr((a,b]) = F(b) — F(a) ¥V —oco<a <b< 0.

Proof. As above, let F(+00) := lim,;— 1o F(z) and p = pr be as in Propo-
sition .29} Because of Proposition [5.6} to finish the proof it suffices to show
is sub-additive on S.

First suppose that —oo < a < b < o0, J = (a,b], J, = (an,b,] such that

J=>" J, We wish to show

n=1

< Zu(Jn). (5.1)

To do this choose numbers a > a, b, > b, in which case I := (a,b] C J,

T = (an,bp] D JC := (an,bp) D Jy.

_ _ oo
Since I = [a,b] is compact and I € J C |J J2 there exist N < oo such that
n=1
1 To see this, let ¢ := sup {m <b:[a,z] is finitely covered by {jZ}oo } .Ife<b,
~ ~ n=1
then ¢ € Jj, for some m and there exists « € J;, such that [a, z] is finitely covered
~ ) oo ~ VN .~ 3\ max(m,N)
by {Jﬁ} , say by {Jz} . We would then have that {Jﬁ}
n=1 n=1

_/n=1
covers [a, '] for all ¢’ € JY,. But this contradicts the definition of c.

finitely

Page: 34 job: prob

macro:

Using the right continuity of F' and letting @ | a in the above inequality,

w(J) = p((a,b]) =

_ZM

n=1

+Z,uJ\J (5.2)

Given € > 0, we may use the right continuity of F' to choose by, so that
:u(jn \ Jn) = F(Bn) -

Using this in Eq. (5.2) shows

F(b,) <e2™™ ¥neN.

u(J) =

Siu(J ) +€

which verifies Eq. (5.1)) since £ > 0 was arbitrary.
The hard work is now done but we still have to check the cases where
a = —o0 or b= 0. For example, suppose that b = co so that

S

n=1

with J,, = (an,b,] NR. Then

JﬂIMZiJnﬂIM

n=1

IM = (G,M} =

and so by what we have already proved,

Now let M — oo in this last inequality to find that
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o0

((a,00)) = F(o0) = F(a) < 3 (7).

n=1

The other cases where a = —oo and b € R and a = —oo and b = oo are handled
similarly. ]

Before continuing our development of the existence of measures, we will
pause to show that measures are often uniquely determined by their values
on a generating sub-algebra. This detour will also have the added benefit of
motivating Carathoedory’s existence proof to be given below.

5.3 Regularity and Uniqueness Results*

Technically we only need Definition and Lemma from this section.

Definition 5.8. Given a collection of subsets, €, of X, let €, denote the col-
lection of subsets of X which are finite or countable unions of sets from E.
Similarly let Es denote the collection of subsets of X which are finite or count-
able intersections of sets from E. We also write E,5 = (E5)5 and Eso = (E5), »
etc.

Lemma 5.9. Suppose that A C 2% is an algebra. Then:

1. A, is closed under taking countable unions and finite intersections.
2. As is closed under taking countable intersections and finite unions.

3{A:Ac A} =As and {A°: Ac As} = A

Proof. By construction A, is closed under countable unions. Moreover if
A=U21A; and B = U2, B; with A;, B; € A, then

ANB=U;5_14;iNBj € Ay,

which shows that A, is also closed under finite intersections. Item 3. is straight
forward and item 2. follows from items 1. and 3. ]

Theorem 5.10 (Finite Regularity Result). Suppose A C 2% is an algebra,
B=o0(A) and p : B — [0,00) is a finite measure, i.e. p(X) < co. Then for
every € > 0 and B € B there exists A € As and C € A, such that AC B C C
and p(C\ A) <e.

Proof. Let By denote the collection of B € B such that for every € > 0
there here exists A € A5 and C € A, such that AC BC C and u(C\ A) < e.
It is now clear that A C By and that By is closed under complementation. Now
suppose that B; € By for i = 1,2,... and € > 0 is given. By assumption there
exists A; € A5 and C; € A, such that A; C B; C C; and p (OIL \Az) < 27 %,
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Let A := U2 A;, AN = Uf\LlAi € As, B :==UX,;B;, and C := U2, C; €
Ay. Then AN ¢ AC Bc C and

C\NA=[UZiC)\A=UZ, [C;\ A CUZ, [Ci\ Ay

Therefore,
1 (C\A) = (U2, [C;\ A)) Z 1 (Ci\ A) sz 1 (Ci \ A)

Since C'\ AN | C'\ 4, it also follows that p (C'\ AY) < ¢ for sufficiently large
N and this shows B = U$°, B; € By. Hence By is a sub-c-algebra of B = o (A)
which contains A which shows By = B. [ |

Many theorems in the sequel will require some control on the size of a
measure p. The relevant notion for our purposes (and most purposes) is that
of a o — finite measure defined next.

Definition 5.11. Suppose X is a set, ECB C 2% and p : B — [0,0] is a
function. The function p is o — finite on £ if there exists E, € £ such that
wEy) < oo and X =SS E,. If B is a 0 — algebra and p is a measure on B
which is o — finite on B we will say (X, B, 1) is a o — finite measure space.

The reader should check that if i is a finitely additive measure on an algebra,
B, then p is ¢ — finite on B iff there exists X,, € B such that X,, T X and
w(Xy) < oo.

Corollary 5.12 (¢ — Finite Regularity Result). Theorem continues
to hold under the weaker assumption that y : B — [0, 00] is a measure which is
o — finite on A.

Proof. Let X,, € A such that U2 ;X,, = X and p(X,,) < oo for all n.Since
Ae B—-pu,(4) = p(X,NA) is a ﬁmte measure on A € B for each n, by
Theorem [5.10] for every B € B there exists C,, € A, such that B C C,, and
w( X, N[Cy\ B]) = pn (C, \ B) < 27"e. Now let C' := U2, [X,,NC,] € A,
and observe that B C C' and

p(C\ B) = p(UpZy ([Xn N Ca] \ B))

<

Mg

p ([ X, NGy N[Cy \ B]) <

=2 nl
Applying this result to B¢ shows there exists D € A, such that B¢ C D and
§(B\ D*) = (D \ BY) < c.
So if we let A := D¢ € As, then A C B C C and
p(CNA) = p(BNAJUC\B)\A]) <p(B\A)+p(C\B) <2

and the result is proved. [

1
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36 5 Countably Additive Measures

Exercise 5.1. Suppose A C 2% is an algebra and p and v are two measures on

B=o(A).

a. Suppose that p and v are finite measures such that 4 = v on A. Show
W=r.

b. Generalize the previous assertion to the case where you only assume that
i and v are o — finite on A.

Corollary 5.13. Suppose A C 2% is an algebra and p : B = o (A) — [0, 00] is
a measure which is o — finite on A. Then for all B € B, there exists A € As,
and C € Ays such that AC B C C and n(C'\ A) =0.

Proof. By Theorem [5.10} given B € B, we may choose A, € As and
C, € Ay such that A, C B C C,, and u(Cp, \ B) < 1/n and u(B\ A4,) < 1/n.
By replacing Ay by UY_; A, and Cy by NY_;C,, we may assume that A, 1
and C,, | as n increases. Let A = UA, € A5, and C = NC,, € A,s, then
AC B CC and

w(C\A) = p(C\B) +pu(B\ A) < u(Cr \ B) + (B \ Ap)
<2/n—0asn— .

Exercise 5.2. Let B = Bgrn = o ({open subsets of R"}) be the Borel o — alge-
bra on R™ and p be a probability measure on B. Further, let 5y denote those
sets B € B such that for every ¢ > 0 there exists FF C B C V such that F is
closed, V is open, and u (V \ F) < . Show:

1. By contains all closed subsets of B. Hint: given a closed subset, FF C R™ and
keN,let Vi := UzepB (x,1/k), where B (z,0) :={y e R": |y — x| < d}.
Show, Vi, | F as k — oo.

2. Show By is a o — algebra and use this along with the first part of this
exercise to conclude B = By. Hint: follow closely the method used in the
first step of the proof of Theorem [5.10

3. Show for every ¢ > 0 and B € B, there exist a compact subset, K C R™, such
that K C B and pu(B\ K) < e. Hint: take K := FN{z € R": |z| < n}
for some sufficiently large n.

5.4 Construction of Measures

Remark 5.14. Let us recall from Proposition [£.3]and Remark [£.4] that a finitely
additive measure p : A — [0, 00] is a premeasure on A iff u (A4,) T p(A) for all
{A,}72, C Asuch that A, T A € A. Furthermore if u (X) < oo, then p is a

premeasure on A iff (A,) | 0 for all {A4,} | C A such that A, | 0.
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Proposition 5.15. Given a premeasure, u : A — [0,00], we extend p to A,
by definining
w(B):=sup{u(4): A>AC B}. (5.3)

This function p: A, — [0,00] then satisfies;
1. (Monotonicity) If A, B € A, with A C B then pu(A) < u(B).
A

2. (Continuity) If A, € Aand A, T A € Ay, then p(An) T p(A) asn — oc.
3. (Strong Additivity) If A, B € A,, then

#(AUB) + u(ANB) = u(4)+ u(B). (5.4)

4. (Sub-Additivity on A,) The function p is sub-additive on A, i.e. if
{A,}07, C Ay, then

P An) <> p(An). (5.5)
n=1

5. (o - Additivity on A,) The function p is countably additive on A,.

Proof. 1. and 2. Monotonicity follows directly from Eq. (5.3]). To prove
continuity, choose B,, € A such that B,, C A and u(B,,) T p(A4) as m — oo.
By replacing B,,, by B1 U---U B,, we may assume that B,, C B,,+1 for all m.
As A, N By, | B, as n ] oo and p is a premeausre, it follows that

e (Bm) = nhjrgo p(An N By) < nlggo p(An) .
Letting m T oo in this equation then shows that u(A4) < lim, oo i (4y). As
w(Ay) < u(A) for all n (see Eq. again), we may conclude that p(A) =
lim,, oo pt (A7)

3. Suppose that A, B € A, and {A,} -, and {B,}, | are sequences in A
such that A, T A and B, T B as n — oo. Then passing to the limit as n — oo
in the identity,

1 (AU By) +p(An N By) = p(An) + 1 (Bn)

proves Eq. (5.4). In particular, it follows that u is finitely additive on A,.
4 and 5. Let {A,},” be any sequence in A, and choose {A,;};-, C A
such that A, ; T A, as i — co. Then we have,

N N 0o
M(UrjyzlAn,N) < ZM(An,N) < ZM(An) < ZM(An) (56)

Since A > UTJLIA”’N TUX A, € Ay, we may let N — oo in Eq. (5.6) to
conclude Eq. (5.5) holds. If we further assume that {A4,} -, C A, are pairwise
disjoint, by the finite additivity and monotonicity of x on A, we have
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) N
le‘ (An) = A}Enoo Zlﬂ (An) = J\;Lmooﬂ (Ug’:lAn) < ,u( ;.LozlAn) .

This inequality along with Eq. shows that p is o — additive on A,. [

Suppose p is a finite premeasure on an algebra, A C 2%, and A € AsN A,.
Since A, A¢ € A, and X = AU A°, it follows that p (X) = u (A) 4+ p (A°) . From
this observation we may extend p to a function on As U A, by defining

pw(A) :=p(X)—p(A°) for all A € As. (5.7)

Lemma 5.16. Suppose p is a finite premeasure on an algebra, A C 2%, and p
has been extended to As U A, as described in Proposition and Fq.
above.

1.If Ae As then p(A) =inf{u(B): AC Be A}.

2. If A€ As and A, € A such that A, | A, then p(A) =] lim,_co pt (4n) .
3. u is strongly additive when restricted to As.

4. If A€ As and C € A, such that A C C, then u(C\ A) = u(C) — p(A).

Proof.
1. Since p(B) = p(X) — p(B€) and A C B iff B¢ C A€, it follows that
inf{u(B):ACBe A} =inf {u(X) — pn(B°): A> B C A°}
=p(X)—sup{p(B): A> B C A%}
=p(X) = p(A%) = pn(A).

2. Similarly, since AS 1 A° € A,, by the definition of u(A) and Proposition
(.15 it follows that

p(A) = p(X) = p(A9) = p(X) =1 lim p(A7)
=1 lim [ (X) = p(A7)] =] lim p(A,).

3. Suppose A, B € As and A,, B, € A such that A,, | A and B, | B, then
A,UB, | AUB and A, N B, | AN B and therefore,

M(AUB)+M(AOB): lim [/J’(AnUB7L)+M(AnﬂBn)]

= lim [ (4,) + p(Bn)] = p(A) + p(B).

4. Since A¢,C € A, we may use the strong additivity of p on A, to conclude,
p(A°UC) +p(ANC) = p(A%) +p(C).
Since C\ A=A°NC, X = A°UC, and p(A) = p(X) — p(Ae), the result

follows.
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Notation 5.17 (Inner and outer measures) Let i : A — [0,00) be a finite
premeasure extended to A, U As as above. The for any B C X let

tx (B) :=sup{pu(A): As > AC B} and
p(B):=inf{pu(C): BCCeA,}.
We refer to u. (B) and p* (B) as the inner and outer content of B respec-
tively.

If B C X has the same inner and outer content it is reasonable to define the
measure of B as this common value. As we will see in Theorem below, this
extension becomes a o — additive measure on a o — algebra of subsets of X.

Definition 5.18 (Measurable Sets). Suppose u is a finite premeasure on an
algebra A C 2X. We say that B C X is measurable if 1. (B) = p* (B). We
will denote the collection of measurable subsets of X by B = B (u) and define
fi: B— [0, (X)] by

i (B) := ps (B) = p* (B) for all B € B. (5.8)

Remark 5.19. Observe that p, (B) = p* (B) iff for all € > 0 there exists A € A;
and C € A, such that A € B C C such that

p(C\A)=p(C)—p(4) <e,

wherein we have used Lemma for the first equality. Moreover we will use
below for any As > A C B C C € A, that

1(A) < (B) = 1 (B) = p* (B) < u (C), (5.9)
0<i(B)—p(A) < p(C) - p(4) = (C\ 4), and (5.10)
0<u(C) = fi(B) < p(C) = u(A) = u(C\ A). (5.11

Theorem 5.20 (Finite Premeasure Extension Theorem). Suppose y is a
finite premeasure on an algebra A C 2% and i : B := B(p) — [0, 1 (X)] be as
in Definition[5.18 Then B is a o — algebra on X which contains A and ji is a
o — additive measure on B. Moreover, i is the unique measure on B such that

fla = p.

Proof. It is clear that A C B and that B is closed under complementation.
Now suppose that B; € B for i = 1,2 and ¢ > 0 is given. We may then
choose A; C B; C C; such that A; € As, C; € A,, and p(C;\ 4;) < ¢ for
i = 1,2. Then with A = A; U Ay, B = By UBy and C = C; U(Cs, we have
As>AcC BcC e A,. Since
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38 5 Countably Additive Measures
C\NA=(Cr\A)U(C2\A) C (CL\ A1) U (C2\ A),
it follows from the sub-additivity of p that with
p(CNA) < p(Cr\ Ar) +p(Cr\ Ag) < 2e.

Since € > 0 was arbitrary, we have shown that B € B. Hence we now know that
B is an algebra.

Because B is an algebra, to verify that B is a ¢ — algebra it suffices to show
that B =Y~ | B, € B whenever {B,} ~_, is a disjoint sequence in B. To prove
B € B, let ¢ > 0 be given and choose A; C B; C C; such that A; € As, C; € A,,
and p (C; \ A;) < 27" for all 7. Since the {A;};°, are pairwise disjoint we may
use Lemma [5.16] to show,

n

S 0= Y (A

=1 =1

= (U +ZuC’\A <p(X Jrz»s?’

=1

i) + 1 (Ci\ Ai))

Passing to the limit, n — oo, in this equation then shows
D n(Ci) < p(X)+e < oo (5.12)
i=1

Let B = U2, B;, C:=U2,C; € A, and for n € Nlet A” :=>"" | A; € As.
Then As 5 A" CBCCeA,, C\ A" € A, and
C\A" =UE (G \A") C UL (Ci\ A)] U [UE,, 11 Ci] € A,

Therefore, using the sub-additivity of x4 on A, and the estimate (5.12)),

p(CNAY) <D p(C\A)+ Y n(C)
1=1 1=n+1
<e+ Z w(C;) »easn— 0
i=n+1

Since € > 0 is arbitrary, it follows that B € B. Moreover by repeated use of
Remark we find
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A (B) =i (A S p(C\AY) e+ 3 p(Ch) and

1=n—+1

(B~ (4”)

<D TIRB) = p (A <D u(Ci\ Ay) <eZ2Z<e
1 =1

i=1

Combining these estimates shows

<2+ i u(Cl)

1=n—+1

A(B) > (B
i=1

which upon letting n — oo gives,

< 2e.

ﬂ(B)_Zﬂ(Bi)

Since ¢ > 0 is arbitrary, we have shown fi (B) = Y ., i (B;) . This completes
the proof that B is a ¢ - algebra and that p is a measure on 5.
You are asked to prove the uniqueness assertion in Exercise [5.3] below. m

Exercise 5.3. Let y, fi, A, and B := B(u) be as in Theorem [5.20} Further
suppose that By C 2% is a ¢ — algebra such that A C By C B and v : By —
[0, (X)] is a 0 — additive measure on By such that v = p on A. Show that
v = [ on By as well.

Corollary 5.21. Suppose that A C 2% is an algebra and u : By := o (A) —
[0, (X)] s a 0 — additive measure. Then for every B € o (A) and € > 0;

1. there exists As > AC B C C € Ayand € > 0 such that 4 (C'\ A) < e and
2. there exists A € A such that 1 (AAB) < e.

Exercise 5.4. Prove corollary by considering v where v := u|4. Hint:
you may find Exercise [£.1] useful here.

Theorem 5.22. Suppose that i is a o — finite premeasure on an algebra A.
Then

i(B):=inf{u(C): BCCeA,} ¥ Beo(A (5.13)

defines a measure on o (A) and this measure is the unique extension of p on A
to a measure on o (A).
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Proof. Let {X,},-, C A be chosen so that u (X,,) < co for all n and X, 1
X as n — oo and let

pn (A) ==, (AN X,) for all A € A.

Each p, is a premeasure (as is easily verified) on A and hence by Theorem
each p, has an extension, fi,, to a measure on o (A) . Since the measure fi,, are
increasing, i := lim,, . [, is @ measure which extends p.

The proof will be completed by verifying that Eq. (5.13) holds. Let B €
oc(A), By, = X, N B and € > 0 be given. By Theoﬁle%[@ there exists
Cp € A, such that B, C C,,, C X, and i(Cy, \ Bin) = i (Crn \ B) < €27™.
Then C := U_,C,, € A, and

ﬂ(C\B)</j<U (Crm \B) > (Cm\B) < > [i(Cm \ By)

m=1

Thus
p(B)<p(C)=p(B)+p(C\B)<p(B)+e

which, since € > 0 is arbitrary, shows [i satisfies Eq. (5.13)). The uniqueness of
the extension i is proved in Exercise [5.1} [
The following slight reformulation of Theorem [5.22| can be useful.

Corollary 5.23. Let A be an algebra of sets, { X, }-_; C Ais a given sequence
of sets such that X,, T X as m — oco. Let

Ap:={Ae A: AC X, for some m € N}.

Notice that Ay is a ring, i.e. closed under differences, intersections and unions
and contains the empty set. Further suppose that ji : Ay — [0,00) is an additive
set function such that p(Ay) | 0 for any sequence, {A,} C Ay such that Ay, | 0
as n — oo. Then u extends uniquely to a o — finite measure on A.

Proof. Existence. By assumption, pn, = pla,,  : Ax, — [0,00) is a
premeasure on (X,,, Ay, ) and hence by Theorem extends to a measure
wroon (X, 0(Ax,,) =Bx,, ). Let fi, (B) = pl, (BNX,,) for all B € B.
Then {fim,}._, is an increasing sequence of measure on (X, B) and hence ji :=
lim,;, o0 flm defines a measure on (X, B) such that fi| 4, = p.

Uniqueness. If uq and po are two such extensions, then pq (X, N B) =
w2 (X, N B) for all B € A and therefore by Exercise or Dynkin’s 7 — A
theorem we know that p; (X, N B) = p2 (X, N B) for all B € B. We may now
let m — oo to see that in fact uy (B) = po (B) for all B € B, i.e. ygy = p2. |

Ezample 5.24.If F(x) = x for all z € R, we denote pup by m and call m
Lebesgue measure on (R, Bgr) .
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Theorem 5.25. Lebesgue measure m is invariant under translations, i.e. for
B € Bg and x € R,

m(z + B) = m(B). (5.14)
Moreover, m is the unique measure on Bgr such that m((0,1]) = 1 and Eq.
holds for B € Br and x € R. Moreover, m has the scaling property

m(AB) = |\|m(B) (5.15)

where A € R, B € Bg and A\B := {A\z : x € B}.

Proof. Let m,(B) := m(x+ B), then one easily shows that m,, is a measure
on Bg such that m,((a,b]) = b — a for all a < b. Therefore, m, = m by
the uniqueness assertion in Exercise For the converse, suppose that m is
translation invariant and m((0,1]) = 1. Given n € N, we have

0.1 =Uin (o B = v (S 0.41).

n n

Therefore,

That is to say
1
0,-])=1/n.
m((0, ) =1/n

Similarly, m((0, £]) = I/n for all I,n € N and therefore by the translation
invariance of m,

m((a,b]) =b—a for all a,b € Q with a < b.

Finally for a,b € R such that a < b, choose a,,b, € Q such that b, | b and
an T a, then (an,by,] | (a,b] and thus

m((a,b]) = lim m((an,b,]) = lim (b, —a,) =b—aq,
i.e. m is Lebesgue measure. To prove Eq. (5.15) we may assume that A # 0

since this case is trivial to prove. Now let my(B) := |A|”' m(AB). It is easily
checked that my is again a measure on Br which satisfies

ma((a, b)) = A7 m (Aa, \b)) = A™H(Ab— Xa) = b —a
if A > 0 and
ma((a,0]) = |\ 7 m (b, Aa)) = — AT (Ab—Xa) =b—a

if A < 0. Hence my = m. [
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40 5 Countably Additive Measures

5.5 Completions of Measure Spaces*

Definition 5.26. A set E C X is a null set if E € B and u(E) = 0. If P is
some “property” which is either true or false for each x € X, we will use the
terminology P a.e. (to be read P almost everywhere) to mean

E:={x € X : P is false for x}

is a null set. For example if f and g are two measurable functions on (X, B, u),
f =g a.e. means that u(f # g) = 0.

Definition 5.27. A measure space (X, B, i) is complete if every subset of a
null set is in B, i.e. for all F C X such that F C E € B with u(E) = 0 implies
that F' € B.

Proposition 5.28 (Completion of a Measure). Let (X, B, u) be a measure
space. Set

N =NF:={NCX:3F € Bsuch that N C F and u(F) =0},
B=B"={AUN:A€Band N € N} and
P(AUN) := u(A) for A€ B and N e N,

see Fig. . Then B is a o — algebra, [i is a well defined measure on B, [i is the
unique measure on B which extends p on B, and (X, B, i) is complete measure
space. The o-algebra, B, is called the completion of B relative to p and [i, is
called the completion of p.

Proof. Clearly X,0) € B. Let A € B and N € N and choose F € B such

Fig. 5.1. Completing a o — algebra.

that N C F and p(F) = 0. Since N® = (F\ N) U F*©,
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(AUN)¢ = A° N N°® = A°N (F\ N UF°)
= [A°N (F\ N)]U[A° N F°]

where [A° N (F\ N)] € N and [A°N F¢] € B. Thus B is closed under
complements. If A; € B and N, C F; € B such that u(F;) = 0 then
U(4; U N;) = (UA;) U (UN;) € B since UA; € B and UN; C UF; and
w(UE;) <3 u(F;) = 0. Therefore, B is a o — algebra. Suppose AUN; = BU N,
with A,B € B and Ny,No, € N. Then A C AUN; C AUN,UF, = BUF,
which shows that

w(4) < p(B) + u(Fy) = u(B).

Similarly, we show that u(B) < p(A) so that u(A) = p(B) and hence fi(A U
N) := u(A) is well defined. It is left as an exercise to show fi is a measure, i.e.
that it is countable additive. ]

5.6 A Baby Version of Kolmogorov’s Extension Theorem

For this section, let A be a finite set, 2 := A® = AN, and let A denote the
collection of cylinder subsets of (2, where A C {2 is a cylinder set iff there
exists n € N and B C A™ such that

A=BxA® :={we N: (wy,...,w,) € B}.

Observe that we may also write 4 as A = B’ x A™ where B’ = B x A* c A*+F
for any k£ > 0.

Exercise 5.5. Show A is an algebra.

Lemma 5.29. Suppose {A,},—, C A is a decreasing sequence of non-empty
cylinder sets, then NS, A, # 0.

Proof. Since 4, € A, we may find N,, € N and B,, € A™» such that
A, = B,, x A%°. Using the observation just prior to this Lemma, we may assume
that {N,},~, is a strictly increasing sequence.

By assumption, there exists w(n) = (w; (n),w2(n),...) € 2 such that
w(n) € A, for all n. Moreover, since w (n) € A,, C Ay, for all k¥ < n, it follows
that

(w1 (n), w2 (n),...,wn, (n)) € By for all k <mn. (5.16)

Since A is a finite set, we may find a A\; € A and an infinite subset, I1 C N
such that wy (n) = Ay for all n € I, Similarly, there exists Ay € A and an
infinite set, Iy C I7, such that ws (n) = Ay for all n € I's. Continuing this
procedure inductively, there exists (for all j € N) infinite subsets, I; C N and
points \; € A such that [T DI, D I3 D ... and w; (n) = A, for all n € Ij.
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We are now going to complete the proof by showing that A := (A1, Ag,...)
is in NS2, A,,. By the construction above, for all N € N we have

(wi(n),...,wn(n)) =(A1,...,An) foralln e I'y.
Taking N = Nj, and n € 'y, with n > k, we learn from Eq. (5.16]) that
()‘17"'7/\Nk) = (wl (n),...7ka (n)) € By,.

But this is equivalent to showing A\ € Aj. Since k € N was arbitrary it follows
that A € N22; A,,. ]

Theorem 5.30 (Kolmogorov’s Extension Theorem 1.). Continuing the
notation above, every finitely additive probability measure, P : A — [0,1], has
a unique extension to a probability measure on o (A).

Proof. From Theorem it suffices to show lim,, o P (A,) = 0 whenever
{A,},2, € Awith 4, | 0. However, by Lemma if A, € Aand A, | 0,
we must have that A, = () for a.a. n and in particular P (A,) = 0 for a.a. n.
This certainly implies lim,,_,, P (A,) = 0. [

Given a probability measure, P : o(A) — [0,1] and n € N and
(A, ..y An) € A7, let

Pn (A1, s An) =P{HweR:iw =A1,...,wn = A }) . (5.17)

Exercise 5.6 (Consistency Conditions). If p, is defined as above, show:

1> xeap1 (M) =1and
2. for all n € Nand (Aq,...,A,) € A",

Po A An) =D Past (Mo, An ).
AeA

Exercise 5.7 (Converse to . Suppose for each n € N we are given func-
tions, p, : A™ — [0, 1] such that the consistency conditions in Exercise hold.
Then there exists a unique probability measure, P on o (A) such that Eq.
holds for all n € N and (Ay,...,A,) € A™.

Ezample 5.31 (Existence of #id simple R.V.s). Suppose now that ¢ : A — [0, 1]
is a function such that ) ., ¢ () = 1. Then there exists a unique probability
measure P on o (A) such that, for all n € N and (A1,...,A,) € A™, we have

PweNR:wi=X,...;wun=2})=q¢A)...q¢(M\n).

This is a special case of Exercise with pr, (A1, .., An) == ¢ (M) ...q (M) .






6

Random Variables

6.1 Measurable Functions

Definition 6.1. A measurable space is a pair (X, M), where X is a set and
M is a 0 — algebra on X.

To motivate the notion of a measurable function, suppose (X, M, ) is a
measure space and f: X — Ry is a function. Roughly speaking, we are going
to define [ fdu as a certain limit of sums of the form,

X

oo

> aip(f~H (i, aip])-

0<ai<az<asz<...

For this to make sense we will need to require f~*((a,b]) € M for all a < b.
Because of Corollary [6.7] below, this last condition is equivalent to the condition

fﬁl(BR) C M.

Definition 6.2. Let (X, M) and (Y,F) be measurable spaces. A function f :
X — Y is measurable of more precisely, M/F — measurable or (M,F) —
measurable, if f~1(F) C M, i.e. if f71(A) € M for all A€ F.

Remark 6.3. Let f: X — Y be a function. Given a o — algebra F C 2Y, the o
— algebra M := f~1(F) is the smallest o — algebra on X such that f is (M, F)
- measurable . Similarly, if M is a ¢ - algebra on X then

F=fM={Ac2V|f1(A) e M}
is the largest o — algebra on Y such that f is (M, F) - measurable.

Ezample 6.4 (Characteristic Functions). Let (X, M) be a measurable space and
A C X. Then 14 is (M, Bg) — measurable iff A € M. Indeed, 1;,*(W) is either
0, X, A or A° for any W C R with 1;1 ({1} =

Ezample 6.5. Suppose f : X — Y with Y being a finite set and F = 2. Then
f is measurable iff f~1 ({y}) € M forally € Y.

Proposition 6.6. Suppose that (X, M) and (Y, F) are measurable spaces and
further assume £ C F generates F, i.e. F =0 (E). Then a map, f: X — Y is
measurable iff f~1 () C M.

Proof. If f is M /F measurable, then f~1(£) C f=! (F) c M. Conversely
if f=1(€) C M, then, using Lemma

PR =0 @E)=c(f1(6) cM.
]

Corollary 6.7. Suppose that (X, M) is a measurable space. Then the following
conditions on a function f: X — R are equivalent:

(M, Br) — measurable,
((a,00)) € M for all a € R,
((a,0)) € M for all a € Q,
((—o0,a]) € M for all a € R.

Exercise 6.1. Prove Corollary [6.7] Hint: See Exercise [3.9]

1

1.f
2. f~
3’f

S
1
1
-1

Exercise 6.2. If M is the ¢ — algebra generated by £ C 2%, then M is the
union of the o — algebras generated by countable subsets F C &.

Exercise 6.3. Let (X, M) be a measure space and f, : X — R be a sequence
of measurable functions on X. Show that {z : lim, ., fn(z) exists in R} € M.

Exercise 6.4. Show that every monotone function f : R — R is (Bg,Bgr) —
measurable.

Definition 6.8. Given measurable spaces (X, M) and (Y,F) and a subset A C
X. We say a function f: A —Y is measurable iff f is Ms/F — measurable.

Proposition 6.9 (Localizing Measurability). Let (X, M) and (Y,F) be
measurable spaces and f : X —'Y be a function.

1. If f is measurable and A C X then f|a: A — Y is measurable.
2. Suppose there exist A, € M such that X = U2, A, and f|A, is Ma,
measurable for all n, then f is M — measurable.

Proof. 1. If f : X —-Y is measurab]e, f*l(B) c M for all B e F and
therefore
fI2t(B)=Anf1(B) € My for all B € F.
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2. If B € F, then

FHB) =02, (FH(B)NAy) = U, fI41(B).

Since each A, € M, M4, C M and so the previous displayed equation shows
f~YB) e M. n

The proof of the following exercise is routine and will be left to the reader.

Proposition 6.10. Let (X, M, u) be a measure space, (Y,F) be a measurable
space and f : X — Y be a measurable map. Define a function v : F — [0, 0]
by v(A) := p(f~1(A)) for all A € F. Then v is a measure on (Y,F). (In the
future we will denote v by fopu or o f~1 and call f.p the push-forward of
by f or the law of f under p.

Theorem 6.11. Given a distribution function, F: R —[0,1] let G : (0,1) = R
be defined (see Figure [6.1]) by,

G(y):=inf{z: F(x) >y}.

Then G : (0,1) — R is Borel measurable and G.m = pp where i is the unique
measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —co < a <b<
00.

&, G-ia;) >x

Fig. 6.1. A pictorial definition of G.

Proof. Since G : (0,1) — R is a non-decreasing function, G is measurable.
We also claim that, for all g € R, that

G™H((0,20]) = {y : G (y) < w0} = (0, F ()] NR, (6.1)

see Figure [6.2]
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Fig. 6.2. As can be seen from this picture, G (y) < xo iff y < F (20) and similarly,
G(y) <a iff y <uz1.

To give a formal proof of Eq. (6.1)), G (y) = inf {z : F (z) > y} < x9, there
exists x,, > xo with x,, | zo¢ such that F (x,) > y. By the right continuity of F,
it follows that F' (zp) > y. Thus we have shown

{G < 20} € (0, F (20)] N (0,1).

For the converse, if y < F (xg) then G (y) = inf{x: F(z) >y} < zo, ie.
y € {G <z} . Indeed, y € G~ ((—o00, z¢]) iff G (y) < xo. Observe that

G (F (z9)) =inf{z: F(z) > F(x0)} < o
and hence G (y) < zp whenever y < F (zg) . This shows that
(0, F (x0)] N (0,1) € G~ ((0, 0]) -
As a consequence we have G,m = pp. Indeed,

(Gem) (=00, z]) = m (G ((—o0,2])) =m ({y € (0,1) : G (y) < x})
=m((0,F ()] N (0,1)) = F (x).

See section 2.5.2 on p. 61 of Resnick for more details. [

Theorem 6.12 (Durret’s Version). Given a distribution function, F
R —1[0,1] let Y : (0,1) — R be defined (see Figure[6.3) by,

Y (z) :=sup{y: F(y) < z}.

ThenY : (0,1) — R is Borel measurable and Yom = up where pp is the unique
measure on (R, Br) such that pr ((a,b]) = F (b) — F (a) for all —co < a <b <
00.
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Fig. 6.3. A pictorial definition of Y (z).

<V

Proof. Since Y : (0,1) — R is a non-decreasing function, Y is measurable.
Also observe, if y < Y (2), then F (y) < = and hence,

F(Y (2)-) = y%%c)F(y) <@

For y > Y (x), we have F' (y) > = and therefore,

F(Y @)= F(Y @+) = lm F()>a

and so we have shown
F(Y(@)-) Sz < F(Y ().
We will now show
{z€(0,1):Y (2) <yo} = (0,F ()] N (0,1). (6.2)

For the inclusion “C,” if z € (0,1) and Y (x) < yo, then z < F (Y ()) < F (o),
ie. x € (0,F (yo)] N (0,1). Conversely if € (0,1) and = < F (yo) then (by
definition of Y (2)) yo > Y (x).

From the identity in Eq. , it follows that Y is measurable and

(Yam) (=00, y0)) = m (Y ' (—00,40)) = m ((0, F (y0)] N (0,1)) = F (yo) -
Therefore, Law (Y) = pp as desired. ]

Lemma 6.13 (Composing Measurable Functions). Suppose that
(X, M), (Y,F) and (Z,G) are measurable spaces. If f : (X, M) — (Y, F) and
g: (Y, F) — (Z,G) are measurable functions then go f : (X,M) — (Z,G) is
measurable as well.
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Proof. By assumption ¢=1(G) C F and f~! (F) C M so that

(go /)G =F1(g7(G) C fTH(F)c M.
| |

Definition 6.14 (¢ — Algebras Generated by Functions). Let X be a set
and suppose there is a collection of measurable spaces {(Yo, Fo) : « € A} and
functions fo : X — Y, for all a € A. Let o(f, : « € A) denote the smallest o
— algebra on X such that each f. is measurable, i.e.

o(fa:a€A)= U(Uafa_l(]:a))'

Example 6.15. Suppose that Y is a finite set, F = 2¥, and X = YV for some
N € N. Let m; : YN — Y be the projection maps, ; (y1,--.,yn) = y;. Then,
as the reader should check,

o(m,...,mp) ={Ax AN AC A"}

Proposition 6.16. Assuming the notation in Definition |6.14] and additionally
let (Z, M) be a measurable space and g : Z — X be a function. Then g is
M,o(fa : a € A)) — measurable iff fo 0 g is (M,Fy)-measurable for all
a € A

Proof. (=) If g is (M, 0(fs : @ € A)) — measurable, then the composition
fa0gis (M, F,) — measurable by Lemma (<) Let

G=0(fa:a€A)=0(Uscafs (Fa)).
If fo 0gis (M, F,) — measurable for all «, then
g VTN F) Cc MYac A
and therefore
9 (Uacafy (Fa)) = Uacag " 31 (Fa) C M.
Hence
971(G) =97 (0 (Vaeafa ' (Fa))) = 097" (Vaeafa ' (Fa)) M
which shows that ¢ is (M, G) — measurable. |

Definition 6.17. A function f : X — Y between two topological spaces is
Borel measurable if f~1(By) C Bx.

Proposition 6.18. Let X and Y be two topological spaces and f: X — Y be
a continuous function. Then f is Borel measurable.

macro: svmonob.cls date/time: 22-Sep-2009/16:17
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Proof. Using Lemma and By = o(1y),
F7'By) = fHo(ry)) =a(f (rv)) Co(rx) = Bx.
[

Ezample 6.19. For i = 1,2,...,n, let m; : R™ — R be defined by m; () = a;.
Then each ; is continuous and therefore Bg» /Bg — measurable.

Lemma 6.20. Let £ denote the collection of open rectangle in R™, then Bgrn =
o (€). We also have that Bgn = o (71, ..., 7y,) and in particular, Ay X---X A, €
Brn whenever A; € Br fori = 1,2,...,n. Therefore Brn may be described as
the o algebra generated by {A; X --- x A, : A; € Br}.

Proof. Assertion 1. Since £ C Bgn, it follows that o (£) C Bgn. Let
& :={(a,b):a,b € Q" 3 a < b},
where, for a,b € R", we write a < b iff a; < b; for : =1,2,...,n and let
(a,b) = (a1,b1) X -+ X (an,by) . (6.3)

Since every open set, V' C R™, may be written as a (necessarily) countable
union of elements from &y, we have

Vea(&)call),

ie. 0(&) and hence o (€) contains all open subsets of R™. Hence we may
conclude that

Brn = o (open sets) C 0 (&) C o (€) C Bgrn.

Assertion 2. Since each m; is Bre/Bgr — measurable, it follows that
o (m1,...,7n) C Brn. Moreover, if (a,b) is as in Eq. (6.3)), then

(a,) = Ay (a0, b)) € 0 (T ).

Therefore, £ C o (7y,...,7,) and Brr =0 (£) C o (71,...,7p) .
Assertion 3. If A; € Bg for i =1,2,...,n, then

Ap X --- XAn:ﬂ?:ﬂTi_l (Al) EO’(7T1,...,7T”):BR1L.

Corollary 6.21. If (X, M) is a measurable space, then

f=0U1f o, fn) : X >R

is (M, Bgn) — measurable iff f; : X — R is (M, Bgr) — measurable for each i.
In particular, a function f: X — C is (M, Bc) — measurable iff Re f and Im f
are (M, Br) — measurable.
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Proof. This is an application of Lemma and Proposition [6.16) [

Corollary 6.22. Let (X, M) be a measurable space and f,g : X — C be
(M, Bc) — measurable functions. Then f + g and f - g are also (M,B¢) -
measurable.

Proof. Define FF : X - CxC, AL :CxC—->Cand M :CxC — C
by F(z) = (f(z),g9(z)), Ax(w,2z) = w £+ z and M(w,z) = wz. Then Ay and
M are continuous and hence (Bgz,Bc) — measurable. Also F is (M, Bg2) —
measurable since o F = f and mooF = g are (M, Bg) — measurable. Therefore
AjyoF = fdgand MoF = f-g, being the composition of measurable functions,
are also measurable. [

Lemma 6.23. Let a € C, (X, M) be a measurable space and f : X — C be a
(M, Bc) — measurable function. Then

_1 0
P — T if f(x) #
(@) { a if flx)=0
18 measurable.
Proof. Define i : C — C by

, Lif 240
Z('Z)_{Oif 2=0.

For any open set V' C C we have
V)= (V{0 U (V n{o})

Because i is continuous except at z = 0, i~ (V' \ {0}) is an open set and hence
in Bc. Moreover, i~1(V N {0}) € Bc since i~1(V N {0}) is either the empty
set or the one point set {0}. Therefore i~!(7c) C Bc and hence i~!(Bc) =
i~1(o(rc)) = o(i~t(m¢)) C Bc which shows that i is Borel measurable. Since
F =io f is the composition of measurable functions, F' is also measurable. m

Remark 6.24. For the real case of Lemma define 7 as above but now take
z to real. From the plot of i, Figure the reader may easily verify that

i~ ((—o0, a]) is an infinite half interval for all a and therefore i is measurable.

¥ 50
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We will often deal with functions f : X — R =RU {+oco}. When talking
about measurability in this context we will refer to the o — algebra on R defined
by

Bg :=0 ({[a,<] : a € R}). (6.4)

Proposition 6.25 (The Structure of Bg). Let Br and B be as above, then
Bg ={A CR:AQREBR}. (6.5)
In particular {oo} ,{—o0} € Bg and Br C Bg.

Proof. Let us first observe that

n=1

{00} =N, [n, <] € Bg and R = R\ {+o0} € Bg.

{_OO} = ﬂ;l’ozl[—oo, _n) =NpZ [_nvoo]c S B]Ra

Letting i : R — R be the inclusion map,

it (Bg) =0 (i7" ({[a,00] :a €R})) =0 ({i7" ([a,0]) : a € R})
=0 ({la,c]NR:aeR}) =0 ({[a,0):a e R}) =B

Thus we have shown
Bg=i! (Bg) ={ANR: A€ Bg}.
This implies:

1. Ae Bg = ANR eBg and

2. if A C R is such that ANR €Bg there exists B € By such that ANR = BNR.
Because AAB C {#oo} and {oo},{—oc0} € Bz we may conclude that
A € Bz as well.

This proves Eq. (6.5). ]
The proofs of the next two corollaries are left to the reader, see Exercises

6.5 and [6.61

Corollary 6.26. Let (X, M) be a measurable space and f : X — R be a func-
tion. Then the following are equivalent

is (M, Bg) - measurable,

~((a,]) € M for all a € R,

“1((—o0 ])GMfor all a € R,

“1({- oo}) eM, f1({oc}) € M and fO: X — R defined by

o) =1 (f (z) = { / éx) Zf (J;)(xe) {Eiﬂio}
1s measurable.
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Corollary 6.27. Let (X, M) be a measurable space, f,g: X — R be functions
and define f-g: X — R and (f +g) : X — R using the conventions, 0-oc = 0

and (f +g) (x) = 0 if f (z) = o0 and g () = —o0 or f (z) = —o0 and g (z) =
oo. Then f-g and f + g are measurable functions on X if both f and g are
measurable.

Exercise 6.5. Prove Corollary [6.20] noting that the equivalence of items 1. —
3. is a direct analogue of Corollary [6.7} Use Proposition [6.25] to handle item 4.

Exercise 6.6. Prove Corollary

Proposition 6.28 (Closure under sups, infs ‘and limits). Suppose that
(X, M) is a measurable space and f; : (X, M) — R for j € N is a sequence of
M /By — measurable functions. Then

sup;fj, inf;f;, limsup f; and hmmf fi

Jj—00

are all M /Bg — measurable functions. (Note that this result is in generally false
when (X, M) is a topological space and measurable is replaced by continuous in
the statement.)

Proof. Define g (z) := sup, f;(x), then

{v:9:(2) Sa} = {a: f;(2) SaVj)
= ny{e: fi(e) < a)} e M

so that g1 is measurable. Similarly if g_(z) = inf; f;(z) then
[0 9-(@) > a} = N{o s f(@) > a} € M.

Since
limsup f; =infsup{f;:j > n} and
Jj—oo n
liminf f; =supinf{f;:j >n}
J— n
we are done by what we have already proved. [

Definition 6.29. Given a function f : X — R let fi(z) := max {f(x),0} and
fo (x) :=max (—f(x),0) = —min (f(z),0). Notice that f = f+ — f_.

Corollary 6.30. Suppose (X, M) is a measurable space and f : X — R is a
function. Then f is measurable iff f+ are measurable.

Proof. If f is measurable, then Proposition [6.28 implies f+ are measurable.
Conversely if fi are measurable then sois f = f. — f_. [ ]
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Definition 6.31. Let (X, M) be a measurable space. A function ¢ : X — F
(F denotes either R, C or [0,00] C R) is a simple function if ¢ is M — By
measurable and p(X) contains only finitely many elements.

Any such simple functions can be written as

@ = Aila, with 4; € M and \; € F. (6.6)
i=1
Indeed, take Aq, Aa,..., A, to be an enumeration of the range of ¢ and A; =

0 Y({\;}). Note that this argument shows that any simple function may be
written intrinsically as

Y = Zyltpfl({y})' (67)
yelF

The next theorem shows that simple functions are “pointwise dense” in the
space of measurable functions.

Theorem 6.32 (Approximation Theorem). Let f : X — [0, 00] be measur-
able and define, see Figure[6.4}

n2"—1
k

on(@) = > on L1 (e 1) () + 1L =1 ((n2n o)) (2)
k=0

n2"
k
Z on e <<t} (@) + 1l gonony (2)
k=0

then @, < f for all n, p,(x) 1 f(x) for allx € X and v, 1 [ uniformly on the
sets Xpr i={x € X : f(x) < M} with M < cc.

Moreover, if f : X — C is a measurable function, then there exists simple
functions p,, such that im,, o, ¢, (z) = f(x) for allx and |p,| T |f] asn — oco.

Proof. Since

kok+1, 2k 2%k+1. 2k+1 2k+2
(27’ on ]7 (2n+1’ on—+1 } ( on+1 ' on+l ]’
if x € f~ ((2351,3’3111]) then ¢, (z) = ¢pyi(x) = 23% and if z €

£ (2R, 2E£2]) then ¢, (z) = 5255 < 25 = ¢, 41 (). Similarly
(2",00] = (2", 2" U (2", o],
and so for z € f71((2""1,00]), pn(x) = 2" < 2" = ¢, 1 (x) and for z €

) =
U2, 27, oy (x) > 27 = gpn(x) Therefore ¢, < @41 for all n. It is
clear by construction that ¢, (x) < f(z) for all z and that 0 < f(z) — pn(x) <
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Fig. 6.4. Constructing simple functions approximating a function, f : X — [0, co].

27" if x € Xon. Hence we have shown that o, (z) T f(z) for all x € X and
@n T f uniformly on bounded sets. For the second assertion, first assume that
f: X — R is a measurable function and choose ¢} to be simple functions such
that @ T f+ as n — oo and define ¢,, = ¢} — ¢~. Then

lonl = @ + 05 < ©f i1 +onir = lontal
and clearly [pn| = o + 5 1 f4+f- =|fland o =} =, = fr—f- =
as n — co. Now suppose that f : X — C is measurable. We may now choose

simple function u,, and v, such that |u,| T |Re f|, |vn| T |Im f|, u, — Re f and
v, — Im f as n — oco. Let ¢,, = u, + iv,, then

lonl® = u2 + 02 1 |Re fI° + Im f* = | f?

and ¢, = up +1v, = Ref+iIm f = f asn — oo. =

6.2 Factoring Random Variables

Lemma 6.33. Suppose that (Y,F) is a measurable space and 'Y 2 —Yisa
map. Then to every (o(Y),Bg) — measurable function, H : §2 — R, there is a
(F,Bg) — measurable function h: Y — R such that H=hoY.

Proof. First suppose that H = 14 where A € o(Y) = Y Y(F). Let B € F
such that A = Y~(B) then 14 = 1y-1(p) = 1 oY and hence the lemma
is valid in this case with h = 1. More generally if H = ) a;14, is a simple
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function, then there exists B; € F such that 14, = 15,0Y and hence H = hoY
with h := 3" a;1p, — a simple function on R.

For a general (F,Bg) — measurable function, H, from 2 — R, choose simple
functions H,, converging to H. Let h, : Y — R be simple functions such that
H, = h, oY. Then it follows that

H = lim H, =limsup H,, =limsuph, oY =hoY

n—0o0 n— o0 n— 00

where h := limsup h,, — a measurable function from Y to R. [

n—o0
The following is an immediate corollary of Proposition [6.16] and Lemma
0.5

Corollary 6.34. Let X and A be sets, and suppose for a € A we are give a
measurable space (Yo, Fo) and a function fo : X — Yo. Let Y := [[ e Yas
F := QacaFa be the product o — algebra on'Y and M := o(f, : a € A) be the
smallest o — algebra on X such that each f, is measurable. Then the function
F: X =Y defined by [F(z)], = fa(x) for each a € A is (M, F) — measurable
and a function H : X — R is (M, Bg) — measurable iff there exists a (F,Bg) —
measurable function h from'Y to R such that H = ho F.
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